151
|
Kumar D, Golchoubian B, Belevich I, Jokitalo E, Schlaitz AL. REEP3 and REEP4 determine the tubular morphology of the endoplasmic reticulum during mitosis. Mol Biol Cell 2019; 30:1377-1389. [PMID: 30995177 PMCID: PMC6724692 DOI: 10.1091/mbc.e18-11-0698] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The endoplasmic reticulum (ER) is extensively remodeled during metazoan open mitosis. However, whether the ER becomes more tubular or more cisternal during mitosis is controversial, and dedicated factors governing the morphology of the mitotic ER have remained elusive. Here, we describe the ER membrane proteins REEP3 and REEP4 as major determinants of ER morphology in metaphase cells. REEP3/4 are specifically required for generating the high-curvature morphology of mitotic ER and promote ER tubulation through their reticulon homology domains (RHDs). This ER-shaping activity of REEP3/4 is distinct from their previously described function to clear ER from metaphase chromatin. We further show that related REEP proteins do not contribute to mitotic ER shaping and provide evidence that the REEP3/4 carboxyterminus mediates regulation of the proteins. These findings confirm that ER converts to higher curvature during mitosis, identify REEP3/4 as specific and crucial morphogenic factors mediating ER tubulation during mitosis, and define the first cell cycle-specific role for RHD proteins.
Collapse
Affiliation(s)
- Darshan Kumar
- Cell and Molecular Biology Program, University of Helsinki, FI-00014 Helsinki, Finland
| | - Banafsheh Golchoubian
- Center for Molecular Biology of Heidelberg University (ZMBH), D-69120 Heidelberg, Germany
| | - Ilya Belevich
- Cell and Molecular Biology Program, University of Helsinki, FI-00014 Helsinki, Finland.,Electron Microscopy Unit, Institute of Biotechnology, University of Helsinki, FI-00014 Helsinki, Finland
| | - Eija Jokitalo
- Cell and Molecular Biology Program, University of Helsinki, FI-00014 Helsinki, Finland.,Electron Microscopy Unit, Institute of Biotechnology, University of Helsinki, FI-00014 Helsinki, Finland
| | - Anne-Lore Schlaitz
- Center for Molecular Biology of Heidelberg University (ZMBH), D-69120 Heidelberg, Germany
| |
Collapse
|
152
|
Behera V, Stonestrom AJ, Hamagami N, Hsiung CC, Keller CA, Giardine B, Sidoli S, Yuan ZF, Bhanu NV, Werner MT, Wang H, Garcia BA, Hardison RC, Blobel GA. Interrogating Histone Acetylation and BRD4 as Mitotic Bookmarks of Transcription. Cell Rep 2019; 27:400-415.e5. [PMID: 30970245 PMCID: PMC6664437 DOI: 10.1016/j.celrep.2019.03.057] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 11/30/2018] [Accepted: 03/14/2019] [Indexed: 12/12/2022] Open
Abstract
Global changes in chromatin organization and the cessation of transcription during mitosis are thought to challenge the resumption of appropriate transcription patterns after mitosis. The acetyl-lysine binding protein BRD4 has been previously suggested to function as a transcriptional "bookmark" on mitotic chromatin. Here, genome-wide location analysis of BRD4 in erythroid cells, combined with data normalization and peak characterization approaches, reveals that BRD4 widely occupies mitotic chromatin. However, removal of BRD4 from mitotic chromatin does not impair post-mitotic activation of transcription. Additionally, histone mass spectrometry reveals global preservation of most posttranslational modifications (PTMs) during mitosis. In particular, H3K14ac, H3K27ac, H3K122ac, and H4K16ac widely mark mitotic chromatin, especially at lineage-specific genes, and predict BRD4 mitotic binding genome wide. Therefore, BRD4 is likely not a mitotic bookmark but only a "passenger." Instead, mitotic histone acetylation patterns may constitute the actual bookmarks that restore lineage-specific transcription patterns after mitosis.
Collapse
Affiliation(s)
- Vivek Behera
- Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Aaron J Stonestrom
- Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Nicole Hamagami
- Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Chris C Hsiung
- Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Cheryl A Keller
- Department of Biochemistry and Molecular Biology, Penn State University, University Park, PA 16802, USA
| | - Belinda Giardine
- Department of Biochemistry and Molecular Biology, Penn State University, University Park, PA 16802, USA
| | - Simone Sidoli
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Zuo-Fei Yuan
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Natarajan V Bhanu
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michael T Werner
- Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hongxin Wang
- Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Benjamin A Garcia
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ross C Hardison
- Department of Biochemistry and Molecular Biology, Penn State University, University Park, PA 16802, USA
| | - Gerd A Blobel
- Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
153
|
Alber AB, Suter DM. Dynamics of protein synthesis and degradation through the cell cycle. Cell Cycle 2019; 18:784-794. [PMID: 30907235 PMCID: PMC6527273 DOI: 10.1080/15384101.2019.1598725] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 02/18/2019] [Accepted: 03/12/2019] [Indexed: 01/05/2023] Open
Abstract
Protein expression levels depend on the balance between their synthesis and degradation rates. Even quiescent (G0) cells display a continuous turnover of proteins, despite protein levels remaining largely constant over time. In cycling cells, global protein levels need to be precisely doubled at each cell division in order to maintain cellular homeostasis, but we still lack a quantitative understanding of how this is achieved. Recent studies have shed light on cell cycle-dependent changes in protein synthesis and degradation rates. Here we discuss current population-based and single cell approaches used to assess protein synthesis and degradation, and review the insights they have provided into the dynamics of protein turnover in different cell cycle phases.
Collapse
Affiliation(s)
- Andrea Brigitta Alber
- Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - David Michael Suter
- Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| |
Collapse
|
154
|
Ben-Yishay R, Shav-Tal Y. The dynamic lifecycle of mRNA in the nucleus. Curr Opin Cell Biol 2019; 58:69-75. [PMID: 30889416 DOI: 10.1016/j.ceb.2019.02.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 01/16/2019] [Accepted: 02/20/2019] [Indexed: 12/15/2022]
Abstract
The mRNA molecule roams through the nucleus on its way out to the cytoplasm. mRNA encounters and is bound by many protein factors, from the moment it begins to emerge from RNA polymerase II and during its travel in the nucleoplasm, where it will come upon chromatin and nuclear bodies. Some of the protein factors that engage with the mRNA can process it, until finally reaching a mature state fit for export through the nuclear pore complex (NPC). Examining the lifecycle of mRNAs in living cells using mRNA tagging techniques opens a window into our understanding of the rules that drive the dynamics of gene expression from transcription to mRNA export.
Collapse
Affiliation(s)
- Rakefet Ben-Yishay
- The Mina & Everard Goodman Faculty of Life Sciences and the Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan, Israel
| | - Yaron Shav-Tal
- The Mina & Everard Goodman Faculty of Life Sciences and the Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan, Israel.
| |
Collapse
|
155
|
Goto S, Takahashi M, Yasutsune N, Inayama S, Kato D, Fukuoka M, Kashiwaba SI, Murakami Y. Identification of GA-Binding Protein Transcription Factor Alpha Subunit (GABPA) as a Novel Bookmarking Factor. Int J Mol Sci 2019; 20:E1093. [PMID: 30836589 PMCID: PMC6429373 DOI: 10.3390/ijms20051093] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 02/26/2019] [Accepted: 02/27/2019] [Indexed: 12/14/2022] Open
Abstract
Mitotic bookmarking constitutes a mechanism for transmitting transcriptional patterns through cell division. Bookmarking factors, comprising a subset of transcription factors (TFs), and multiple histone modifications retained in mitotic chromatin facilitate reactivation of transcription in the early G1 phase. However, the specific TFs that act as bookmarking factors remain largely unknown. Previously, we identified the "early G1 genes" and screened TFs that were predicted to bind to the upstream region of these genes, then identified GA-binding protein transcription factor alpha subunit (GABPA) and Sp1 transcription factor (SP1) as candidate bookmarking factors. Here we show that GABPA and multiple histone acetylation marks such as H3K9/14AC, H3K27AC, and H4K5AC are maintained at specific genomic sites in mitosis. During the M/G1 transition, the levels of these histone acetylations at the upstream regions of genes bound by GABPA in mitosis are decreased. Upon depletion of GABPA, levels of histone acetylation, especially H4K5AC, at several gene regions are increased, along with transcriptional induction at 1 h after release. Therefore, we proposed that GABPA cooperates with the states of histone acetylation to act as a novel bookmarking factor which, may negatively regulate transcription during the early G1 phase.
Collapse
Affiliation(s)
- Shunya Goto
- Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan.
| | - Masashi Takahashi
- Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan.
| | - Narumi Yasutsune
- Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan.
| | - Sumiki Inayama
- Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan.
| | - Dai Kato
- Order-MadeMedical Research Inc., 208Todai-Kashiwa VP, 5-4-19 Kashiwanoha, Kashiwa-shi, Chiba-ken 277-0882, Japan.
| | - Masashi Fukuoka
- Department of Molecular Pharmacology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo 187-8551, Japan.
| | - Shu-Ichiro Kashiwaba
- Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan.
| | - Yasufumi Murakami
- Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan.
- Order-MadeMedical Research Inc., 208Todai-Kashiwa VP, 5-4-19 Kashiwanoha, Kashiwa-shi, Chiba-ken 277-0882, Japan.
| |
Collapse
|
156
|
Aprile-Garcia F, Tomar P, Hummel B, Khavaran A, Sawarkar R. Nascent-protein ubiquitination is required for heat shock–induced gene downregulation in human cells. Nat Struct Mol Biol 2019; 26:137-146. [DOI: 10.1038/s41594-018-0182-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 12/21/2018] [Indexed: 12/20/2022]
|
157
|
Festuccia N, Owens N, Papadopoulou T, Gonzalez I, Tachtsidi A, Vandoermel-Pournin S, Gallego E, Gutierrez N, Dubois A, Cohen-Tannoudji M, Navarro P. Transcription factor activity and nucleosome organization in mitosis. Genome Res 2019; 29:250-260. [PMID: 30655337 PMCID: PMC6360816 DOI: 10.1101/gr.243048.118] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 12/05/2018] [Indexed: 12/23/2022]
Abstract
Mitotic bookmarking transcription factors (BFs) maintain the capacity to bind to their targets during mitosis, despite major rearrangements of the chromatin. While they were thought to propagate gene regulatory information through mitosis by statically occupying their DNA targets, it has recently become clear that BFs are highly dynamic in mitotic cells. This represents both a technical and a conceptual challenge to study and understand the function of BFs: First, formaldehyde has been suggested to be unable to efficiently capture these transient interactions, leading to profound contradictions in the literature; and second, if BFs are not permanently bound to their targets during mitosis, it becomes unclear how they convey regulatory information to daughter cells. Here, comparing formaldehyde to alternative fixatives we clarify the nature of the chromosomal association of previously proposed BFs in embryonic stem cells: While ESRRB can be considered as a canonical BF that binds at selected regulatory regions in mitosis, SOX2 and POU5F1 (also known as OCT4) establish DNA sequence-independent interactions with the mitotic chromosomes, either throughout the chromosomal arms (SOX2) or at pericentromeric regions (POU5F1). Moreover, we show that ordered nucleosomal arrays are retained during mitosis at ESRRB bookmarked sites, whereas regions losing transcription factor binding display a profound loss of order. By maintaining nucleosome positioning during mitosis, ESRRB might ensure the rapid post-mitotic re-establishment of functional regulatory complexes at selected enhancers and promoters. Our results provide a mechanistic framework that reconciles dynamic mitotic binding with the transmission of gene regulatory information across cell division.
Collapse
Affiliation(s)
- Nicola Festuccia
- Epigenetics of Stem Cells, Department of Developmental and Stem Cell Biology, Institut Pasteur, CNRS UMR3738, 75015 Paris, France.,Equipe Labellisée LIGUE Contre le Cancer
| | - Nick Owens
- Epigenetics of Stem Cells, Department of Developmental and Stem Cell Biology, Institut Pasteur, CNRS UMR3738, 75015 Paris, France.,Equipe Labellisée LIGUE Contre le Cancer
| | - Thaleia Papadopoulou
- Epigenetics of Stem Cells, Department of Developmental and Stem Cell Biology, Institut Pasteur, CNRS UMR3738, 75015 Paris, France.,Equipe Labellisée LIGUE Contre le Cancer
| | - Inma Gonzalez
- Epigenetics of Stem Cells, Department of Developmental and Stem Cell Biology, Institut Pasteur, CNRS UMR3738, 75015 Paris, France.,Equipe Labellisée LIGUE Contre le Cancer
| | - Alexandra Tachtsidi
- Epigenetics of Stem Cells, Department of Developmental and Stem Cell Biology, Institut Pasteur, CNRS UMR3738, 75015 Paris, France.,Equipe Labellisée LIGUE Contre le Cancer.,Sorbonne Université, Collège Doctoral, F-75005 Paris, France
| | - Sandrine Vandoermel-Pournin
- Mouse Functional Genetics, Department of Developmental and Stem Cell Biology, Institut Pasteur, CNRS UMR 3738, 75015 Paris, France
| | - Elena Gallego
- Epigenetics of Stem Cells, Department of Developmental and Stem Cell Biology, Institut Pasteur, CNRS UMR3738, 75015 Paris, France.,Equipe Labellisée LIGUE Contre le Cancer
| | - Nancy Gutierrez
- Epigenetics of Stem Cells, Department of Developmental and Stem Cell Biology, Institut Pasteur, CNRS UMR3738, 75015 Paris, France.,Equipe Labellisée LIGUE Contre le Cancer
| | - Agnès Dubois
- Epigenetics of Stem Cells, Department of Developmental and Stem Cell Biology, Institut Pasteur, CNRS UMR3738, 75015 Paris, France.,Equipe Labellisée LIGUE Contre le Cancer
| | - Michel Cohen-Tannoudji
- Mouse Functional Genetics, Department of Developmental and Stem Cell Biology, Institut Pasteur, CNRS UMR 3738, 75015 Paris, France
| | - Pablo Navarro
- Epigenetics of Stem Cells, Department of Developmental and Stem Cell Biology, Institut Pasteur, CNRS UMR3738, 75015 Paris, France.,Equipe Labellisée LIGUE Contre le Cancer
| |
Collapse
|
158
|
Palozola KC, Lerner J, Zaret KS. A changing paradigm of transcriptional memory propagation through mitosis. Nat Rev Mol Cell Biol 2019; 20:55-64. [PMID: 30420736 PMCID: PMC6557398 DOI: 10.1038/s41580-018-0077-z] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The highly reproducible inheritance of chromosomes during mitosis in mammalian cells involves nuclear envelope breakdown, increased chromatin compaction, loss of long-range intrachromosomal interactions, loss of enhancer-promoter proximity, displacement of many transcription regulators from the chromatin and a marked decrease in RNA synthesis. Despite these dramatic changes in the mother cell, daughter cells are able to faithfully re-establish the parental chromatin and gene expression features characteristic of the cell type. Pioneering studies of mitotic chromatin signatures showed that despite global repression of transcription, the Hsp70 gene promoter retains an open chromatin conformation, which was proposed to allow the reactivation of the Hsp70 gene upon completion of mitosis - a phenomenon termed mitotic bookmarking. It was later shown that various cell-type-specific transcription factors, such as GATA-binding factor 1 (GATA1) in erythroblasts and forkhead box protein A1 (FOXA1) in hepatocytes, remain bound at a subset of their interphase binding sites in mitosis. Such bookmarking transcription factors remain on chromosomes in mitosis and have been shown to enable a subset of genes to be reactivated in a timely fashion upon mitotic exit. In addition, sensitive new methods to measure transcription revealed that mitotic cells retain residual transcription at a large number of genes. Furthermore, genes recover their interphase level of transcription in distinct waves. Thus, gene expression is precisely regulated as cells pass through mitosis to ensure faithful propagation of cell identity and function through cellular generations.
Collapse
Affiliation(s)
- Katherine C Palozola
- Institute for Regenerative Medicine, Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Smilow Center for Translational Research, Philadelphia, PA, USA
| | - Jonathan Lerner
- Institute for Regenerative Medicine, Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Smilow Center for Translational Research, Philadelphia, PA, USA
| | - Kenneth S Zaret
- Institute for Regenerative Medicine, Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Smilow Center for Translational Research, Philadelphia, PA, USA.
| |
Collapse
|
159
|
Global analysis of RNA metabolism using bio-orthogonal labeling coupled with next-generation RNA sequencing. Methods 2018; 155:88-103. [PMID: 30529548 DOI: 10.1016/j.ymeth.2018.12.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 11/30/2018] [Accepted: 12/03/2018] [Indexed: 11/21/2022] Open
Abstract
Many open questions in RNA biology relate to the kinetics of gene expression and the impact of RNA binding regulatory factors on processing or decay rates of particular transcripts. Steady state measurements of RNA abundance obtained from RNA-seq approaches are not able to separate the effects of transcription from those of RNA decay in the overall abundance of any given transcript, instead only giving information on the (presumed steady-state) abundances of transcripts. Through the combination of metabolic labeling and high-throughput sequencing, several groups have been able to measure both transcription rates and decay rates of the entire transcriptome of an organism in a single experiment. This review focuses on the methodology used to specifically measure RNA decay at a global level. By comparing and contrasting approaches and describing the experimental protocols in a modular manner, we intend to provide both experienced and new researchers to the field the ability to combine aspects of various protocols to fit the unique needs of biological questions not addressed by current methods.
Collapse
|
160
|
Baptista T, Devys D. Saccharomyces cerevisiae Metabolic Labeling with 4-thiouracil and the Quantification of Newly Synthesized mRNA As a Proxy for RNA Polymerase II Activity. J Vis Exp 2018. [PMID: 30394386 DOI: 10.3791/57982] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Global defects in RNA polymerase II transcription might be overlooked by transcriptomic studies analyzing steady-state RNA. Indeed, the global decrease in mRNA synthesis has been shown to be compensated by a simultaneous decrease in mRNA degradation to restore normal steady-state levels. Hence, the genome-wide quantification of mRNA synthesis, independently from mRNA decay, is the best direct reflection of RNA polymerase II transcriptional activity. Here, we discuss a method using non-perturbing metabolic labeling of nascent RNAs in Saccharomyces cerevisiae (S. cerevisiae). Specifically, the cells are cultured for 6 min with a uracil analog, 4-thiouracil, and the labeled newly transcribed RNAs are purified and quantified to determine the synthesis rates of all individual mRNA. Moreover, using labeled Schizosaccharomyces pombe cells as internal standard allows comparing mRNA synthesis in different S. cerevisiae strains. Using this protocol and fitting the data with a dynamic kinetic model, the corresponding mRNA decay rates can be determined.
Collapse
Affiliation(s)
- Tiago Baptista
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France; Centre National de la Recherche Scientifique, Illkirch, France; Institut National de la Santé et de la Recherche Médicale, Illkirch, France; Université de Strasbourg
| | - Didier Devys
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France; Centre National de la Recherche Scientifique, Illkirch, France; Institut National de la Santé et de la Recherche Médicale, Illkirch, France; Université de Strasbourg;
| |
Collapse
|
161
|
Cryo-ET reveals the macromolecular reorganization of S. pombe mitotic chromosomes in vivo. Proc Natl Acad Sci U S A 2018; 115:10977-10982. [PMID: 30297429 DOI: 10.1073/pnas.1720476115] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Chromosomes condense during mitosis in most eukaryotes. This transformation involves rearrangements at the nucleosome level and has consequences for transcription. Here, we use cryo-electron tomography (cryo-ET) to determine the 3D arrangement of nuclear macromolecular complexes, including nucleosomes, in frozen-hydrated Schizosaccharomyces pombe cells. Using 3D classification analysis, we did not find evidence that nucleosomes resembling the crystal structure are abundant. This observation and those from other groups support the notion that a subset of fission yeast nucleosomes may be partially unwrapped in vivo. In both interphase and mitotic cells, there is also no evidence of monolithic structures the size of Hi-C domains. The chromatin is mingled with two features: pockets, which are positions free of macromolecular complexes; and "megacomplexes," which are multimegadalton globular complexes like preribosomes. Mitotic chromatin is more crowded than interphase chromatin in subtle ways. Nearest-neighbor distance analyses show that mitotic chromatin is more compacted at the oligonucleosome than the dinucleosome level. Like interphase, mitotic chromosomes contain megacomplexes and pockets. This uneven chromosome condensation helps explain a longstanding enigma of mitosis: a subset of genes is up-regulated.
Collapse
|
162
|
Bellec M, Radulescu O, Lagha M. Remembering the past: Mitotic bookmarking in a developing embryo. ACTA ACUST UNITED AC 2018; 11:41-49. [PMID: 30417158 PMCID: PMC6218673 DOI: 10.1016/j.coisb.2018.08.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
During development, transcriptional properties of progenitor cells are stably propagated across multiple cellular divisions. Yet, at each division, chromatin faces structural constraints imposed by the important nuclear re-organization operating during mitosis. It is now clear that not all transcriptional regulators are ejected during mitosis, but rather that a subset of transcription factors, chromatin regulators and epigenetic histone marks are able to ‘bookmark’ specific loci, thereby providing a mitotic memory. Here we review mechanisms of mitotic bookmarking and discuss their impact on transcriptional dynamics in the context of multicellular developing embryos. We document recent discoveries and technological advances, and present current mathematical models of short-term transcriptional memory. Mitotically retained factors are able to ‘bookmark’ specific loci during embryogenesis. Mitotic bookmarking can elicit rapid post-mitotic transcriptional re-activation. Mathematical models relating transcriptional memory predict that efficient memory requires slow dynamics. Mitotic memory leads to a spectrum of consequences: stability, flexibility or plasticity.
Collapse
Affiliation(s)
- Maelle Bellec
- Institut de Genetique Moleculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France
| | - Ovidiu Radulescu
- DIMNP, UMR CNRS 5235, University of Montpellier, Montpellier, France
| | - Mounia Lagha
- Institut de Genetique Moleculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France
- Corresponding author: Lagha, Mounia
| |
Collapse
|
163
|
Multivariate Control of Transcript to Protein Variability in Single Mammalian Cells. Cell Syst 2018; 7:398-411.e6. [DOI: 10.1016/j.cels.2018.09.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Revised: 06/28/2018] [Accepted: 09/05/2018] [Indexed: 12/28/2022]
|
164
|
Sureka R, Wadhwa R, Thakur SS, Pathak RU, Mishra RK. Comparison of Nuclear Matrix and Mitotic Chromosome Scaffold Proteins in Drosophila S2 Cells-Transmission of Hallmarks of Nuclear Organization Through Mitosis. Mol Cell Proteomics 2018; 17:1965-1978. [PMID: 29991507 PMCID: PMC6166678 DOI: 10.1074/mcp.ra118.000591] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 05/07/2018] [Indexed: 01/08/2023] Open
Abstract
Chromatin condenses several folds to form mitotic chromosomes during cell division and decondenses post-mitotically to reoccupy their nuclear territory and regain their specific transcriptional profile in a precisely lineage specific manner. This necessitates that the features of nuclear architecture and DNA topology persist through mitosis. We compared the proteome of nuclease and high salt resistant fraction of interphase nucleus known as nuclear matrix (NuMat) and an equivalent biochemical fraction in the mitotic chromosome known as mitotic chromosome scaffold (MiCS). Our study elucidates that as much as 67% of the NuMat proteins are retained in the MiCS indicating that the features of nuclear architecture in interphase nucleus are retained on the mitotic chromosomes. Proteins of the NuMat/MiCS have large dynamic range of MS signal and were detected in sub-femtomolar amounts. Chromatin/RNA binding proteins with hydrolase and helicase activity are highly enriched in NuMat as well as MiCS. Although several transcription factors involved in functioning of interphase nucleus are present exclusively in NuMat, protein components responsible for assembly of membrane-less nuclear bodies are uniquely retained in MiCS. Our study clearly indicates that the features of nuclear architecture, in the structural context of NuMat, are retained in MiCS and possibly play an important role in maintenance of cell lineage specific transcriptional status during cell division and thereby, serve as components of cellular memory.
Collapse
Affiliation(s)
- Rahul Sureka
- From the Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad-500007, India
| | - Rashi Wadhwa
- From the Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad-500007, India
| | - Suman S Thakur
- From the Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad-500007, India
| | - Rashmi U Pathak
- From the Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad-500007, India
| | - Rakesh K Mishra
- From the Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad-500007, India
| |
Collapse
|
165
|
Hocquet C, Robellet X, Modolo L, Sun XM, Burny C, Cuylen-Haering S, Toselli E, Clauder-Münster S, Steinmetz L, Haering CH, Marguerat S, Bernard P. Condensin controls cellular RNA levels through the accurate segregation of chromosomes instead of directly regulating transcription. eLife 2018; 7:38517. [PMID: 30230473 PMCID: PMC6173581 DOI: 10.7554/elife.38517] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Accepted: 09/18/2018] [Indexed: 12/15/2022] Open
Abstract
Condensins are genome organisers that shape chromosomes and promote their accurate transmission. Several studies have also implicated condensins in gene expression, although any mechanisms have remained enigmatic. Here, we report on the role of condensin in gene expression in fission and budding yeasts. In contrast to previous studies, we provide compelling evidence that condensin plays no direct role in the maintenance of the transcriptome, neither during interphase nor during mitosis. We further show that the changes in gene expression in post-mitotic fission yeast cells that result from condensin inactivation are largely a consequence of chromosome missegregation during anaphase, which notably depletes the RNA-exosome from daughter cells. Crucially, preventing karyotype abnormalities in daughter cells restores a normal transcriptome despite condensin inactivation. Thus, chromosome instability, rather than a direct role of condensin in the transcription process, changes gene expression. This knowledge challenges the concept of gene regulation by canonical condensin complexes.
Collapse
Affiliation(s)
- Clémence Hocquet
- CNRS Laboratory of Biology and Modelling of the Cell, Lyon, France.,Université de Lyon, ENSL, UCBL, Lyon, France
| | - Xavier Robellet
- CNRS Laboratory of Biology and Modelling of the Cell, Lyon, France.,Université de Lyon, ENSL, UCBL, Lyon, France
| | - Laurent Modolo
- CNRS Laboratory of Biology and Modelling of the Cell, Lyon, France.,Université de Lyon, ENSL, UCBL, Lyon, France
| | - Xi-Ming Sun
- MRC London Institute of Medical Sciences, London, United Kingdom.,Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Claire Burny
- CNRS Laboratory of Biology and Modelling of the Cell, Lyon, France.,Université de Lyon, ENSL, UCBL, Lyon, France
| | - Sara Cuylen-Haering
- Cell Biology and Biophysics Unit, Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Esther Toselli
- CNRS Laboratory of Biology and Modelling of the Cell, Lyon, France.,Université de Lyon, ENSL, UCBL, Lyon, France
| | | | - Lars Steinmetz
- Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Christian H Haering
- Cell Biology and Biophysics Unit, Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Samuel Marguerat
- MRC London Institute of Medical Sciences, London, United Kingdom.,Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Pascal Bernard
- CNRS Laboratory of Biology and Modelling of the Cell, Lyon, France.,Université de Lyon, ENSL, UCBL, Lyon, France
| |
Collapse
|
166
|
Imami K, Milek M, Bogdanow B, Yasuda T, Kastelic N, Zauber H, Ishihama Y, Landthaler M, Selbach M. Phosphorylation of the Ribosomal Protein RPL12/uL11 Affects Translation during Mitosis. Mol Cell 2018; 72:84-98.e9. [PMID: 30220558 DOI: 10.1016/j.molcel.2018.08.019] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 06/09/2018] [Accepted: 08/10/2018] [Indexed: 12/22/2022]
Abstract
Emerging evidence indicates that heterogeneity in ribosome composition can give rise to specialized functions. Until now, research mainly focused on differences in core ribosomal proteins and associated factors. The effect of posttranslational modifications has not been studied systematically. Analyzing ribosome heterogeneity is challenging because individual proteins can be part of different subcomplexes (40S, 60S, 80S, and polysomes). Here we develop polysome proteome profiling to obtain unbiased proteomic maps across ribosomal subcomplexes. Our method combines extensive fractionation by sucrose gradient centrifugation with quantitative mass spectrometry. The high resolution of the profiles allows us to assign proteins to specific subcomplexes. Phosphoproteomics on the fractions reveals that phosphorylation of serine 38 in RPL12/uL11, a known mitotic CDK1 substrate, is strongly depleted in polysomes. Follow-up experiments confirm that RPL12/uL11 phosphorylation regulates the translation of specific subsets of mRNAs during mitosis. Together, our results show that posttranslational modification of ribosomal proteins can regulate translation.
Collapse
Affiliation(s)
- Koshi Imami
- Max Delbrück Center for Molecular Medicine, Robert-Rössle-Str. 10, 13092 Berlin, Germany; Department of Molecular and Cellular BioAnalysis, Kyoto University, 606-8501 Kyoto, Japan.
| | - Miha Milek
- Max Delbrück Center for Molecular Medicine, Robert-Rössle-Str. 10, 13092 Berlin, Germany
| | - Boris Bogdanow
- Max Delbrück Center for Molecular Medicine, Robert-Rössle-Str. 10, 13092 Berlin, Germany
| | - Tomoharu Yasuda
- Max Delbrück Center for Molecular Medicine, Robert-Rössle-Str. 10, 13092 Berlin, Germany
| | - Nicolai Kastelic
- Max Delbrück Center for Molecular Medicine, Robert-Rössle-Str. 10, 13092 Berlin, Germany
| | - Henrik Zauber
- Max Delbrück Center for Molecular Medicine, Robert-Rössle-Str. 10, 13092 Berlin, Germany
| | - Yasushi Ishihama
- Department of Molecular and Cellular BioAnalysis, Kyoto University, 606-8501 Kyoto, Japan
| | - Markus Landthaler
- Max Delbrück Center for Molecular Medicine, Robert-Rössle-Str. 10, 13092 Berlin, Germany; IRI Life Sciences, Institute für Biologie, Humboldt Universität zu Berlin, Philippstraße 13, 10115 Berlin, Germany
| | - Matthias Selbach
- Max Delbrück Center for Molecular Medicine, Robert-Rössle-Str. 10, 13092 Berlin, Germany; Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany.
| |
Collapse
|
167
|
Alber AB, Paquet ER, Biserni M, Naef F, Suter DM. Single Live Cell Monitoring of Protein Turnover Reveals Intercellular Variability and Cell-Cycle Dependence of Degradation Rates. Mol Cell 2018; 71:1079-1091.e9. [DOI: 10.1016/j.molcel.2018.07.023] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 06/05/2018] [Accepted: 07/20/2018] [Indexed: 11/28/2022]
|
168
|
Javasky E, Shamir I, Gandhi S, Egri S, Sandler O, Rothbart SB, Kaplan N, Jaffe JD, Goren A, Simon I. Study of mitotic chromatin supports a model of bookmarking by histone modifications and reveals nucleosome deposition patterns. Genome Res 2018; 28:1455-1466. [PMID: 30166406 PMCID: PMC6169886 DOI: 10.1101/gr.230300.117] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 08/27/2018] [Indexed: 01/23/2023]
Abstract
Mitosis encompasses key molecular changes including chromatin condensation, nuclear envelope breakdown, and reduced transcription levels. Immediately after mitosis, the interphase chromatin structure is reestablished and transcription resumes. The reestablishment of the interphase chromatin is probably achieved by "bookmarking," i.e., the retention of at least partial information during mitosis. To gain a deeper understanding of the contribution of histone modifications to the mitotic bookmarking process, we merged proteomics, immunofluorescence, and ChIP-seq approaches. We focused on key histone modifications and employed HeLa-S3 cells as a model system. Generally, in spite of the general hypoacetylation observed during mitosis, we observed a global concordance between the genomic organization of histone modifications in interphase and mitosis, suggesting that the epigenomic landscape may serve as a component of the mitotic bookmarking process. Next, we investigated the nucleosome that enters nucleosome depleted regions (NDRs) during mitosis. We observed that in ∼60% of the NDRs, the entering nucleosome is distinct from the surrounding highly acetylated nucleosomes and appears to have either low levels of acetylation or high levels of phosphorylation in adjacent residues (since adjacent phosphorylation may interfere with the ability to detect acetylation). Inhibition of histone deacetylases (HDACs) by the small molecule TSA reverts this pattern, suggesting that these nucleosomes are specifically deacetylated during mitosis. Altogether, by merging multiple approaches, our study provides evidence to support a model where histone modifications may play a role in mitotic bookmarking and uncovers new insights into the deposition of nucleosomes during mitosis.
Collapse
Affiliation(s)
- Elisheva Javasky
- Department of Microbiology and Molecular Genetics, Institute of Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University, Jerusalem 91120, Israel
| | - Inbal Shamir
- Department of Microbiology and Molecular Genetics, Institute of Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University, Jerusalem 91120, Israel
| | - Shashi Gandhi
- Department of Microbiology and Molecular Genetics, Institute of Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University, Jerusalem 91120, Israel
| | - Shawn Egri
- The Broad Institute of Harvard and MIT, Cambridge, Massachusetts 02142, USA
| | - Oded Sandler
- Department of Microbiology and Molecular Genetics, Institute of Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University, Jerusalem 91120, Israel
| | - Scott B Rothbart
- Center for Epigenetics, Van Andel Research Institute, Grand Rapids, Michigan 49503, USA
| | - Noam Kaplan
- Department of Physiology, Biophysics and Systems Biology, Rappaport Faculty of Medicine, Technion Israel Institute of Technology, Haifa, 31096, Israel
| | - Jacob D Jaffe
- The Broad Institute of Harvard and MIT, Cambridge, Massachusetts 02142, USA
| | - Alon Goren
- The Broad Institute of Harvard and MIT, Cambridge, Massachusetts 02142, USA.,Department of Medicine, University of California, San Diego, La Jolla, California 92093, USA
| | - Itamar Simon
- Department of Microbiology and Molecular Genetics, Institute of Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University, Jerusalem 91120, Israel
| |
Collapse
|
169
|
Novais-Cruz M, Alba Abad M, van IJcken WFJ, Galjart N, Jeyaprakash AA, Maiato H, Ferrás C. Mitotic progression, arrest, exit or death relies on centromere structural integrity, rather than de novo transcription. eLife 2018; 7:36898. [PMID: 30080136 PMCID: PMC6128689 DOI: 10.7554/elife.36898] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 08/03/2018] [Indexed: 12/30/2022] Open
Abstract
Recent studies have challenged the prevailing dogma that transcription is repressed during mitosis. Transcription was also proposed to sustain a robust spindle assembly checkpoint (SAC) response. Here, we used live-cell imaging of human cells, RNA-seq and qPCR to investigate the requirement for de novo transcription during mitosis. Under conditions of persistently unattached kinetochores, transcription inhibition with actinomycin D, or treatment with other DNA-intercalating drugs, delocalized the chromosomal passenger complex (CPC) protein Aurora B from centromeres, compromising SAC signaling and cell fate. However, we were unable to detect significant changes in mitotic transcript levels. Moreover, inhibition of transcription independently of DNA intercalation had no effect on Aurora B centromeric localization, SAC response, mitotic progression, exit or death. Mechanistically, we show that DNA intercalating agents reduce the interaction of the CPC with nucleosomes. Thus, mitotic progression, arrest, exit or death is determined by centromere structural integrity, rather than de novo transcription.
Collapse
Affiliation(s)
- Marco Novais-Cruz
- Chromosome Instability & Dynamics Laboratory, Instituto de Biologia Molecular e CelularUniversidade do PortoPortoPortugal
- Instituto de Investigação e Inovação em Saúde (i3S)Universidade do PortoPortoPortugal
| | - Maria Alba Abad
- Wellcome Trust Centre for Cell BiologyUniversity of EdinburghEdinburghUnited Kingdom
| | | | - Niels Galjart
- Department of Cell BiologyErasmus Medical CenterRotterdamNetherlands
| | - A Arockia Jeyaprakash
- Wellcome Trust Centre for Cell BiologyUniversity of EdinburghEdinburghUnited Kingdom
| | - Helder Maiato
- Chromosome Instability & Dynamics Laboratory, Instituto de Biologia Molecular e CelularUniversidade do PortoPortoPortugal
- Instituto de Investigação e Inovação em Saúde (i3S)Universidade do PortoPortoPortugal
- Cell Division Group, Experimental Biology Unit, Department of Biomedicine, Faculdade de MedicinaUniversidade do PortoPortoPortugal
| | - Cristina Ferrás
- Chromosome Instability & Dynamics Laboratory, Instituto de Biologia Molecular e CelularUniversidade do PortoPortoPortugal
- Instituto de Investigação e Inovação em Saúde (i3S)Universidade do PortoPortoPortugal
| |
Collapse
|
170
|
Gil RS, Vagnarelli P. Protein phosphatases in chromatin structure and function. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1866:90-101. [PMID: 30036566 PMCID: PMC6227384 DOI: 10.1016/j.bbamcr.2018.07.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 06/29/2018] [Accepted: 07/18/2018] [Indexed: 12/19/2022]
Abstract
Chromatin structure and dynamics are highly controlled and regulated processes that play an essential role in many aspects of cell biology. The chromatin transition stages and the factors that control this process are regulated by post-translation modifications, including phosphorylation. While the role of protein kinases in chromatin dynamics has been quite well studied, the nature and regulation of the counteracting phosphatases represent an emerging field but are still at their infancy. In this review we summarize the current literature on phosphatases involved in the regulation of chromatin structure and dynamics, with emphases on the major knowledge gaps that should require attention and more investigation.
Collapse
Affiliation(s)
- Raquel Sales Gil
- Colleges of Health and Life Science, Research Institute for Environment Health and Society, Brunel University London, London UB8 3PH, UK
| | - Paola Vagnarelli
- Colleges of Health and Life Science, Research Institute for Environment Health and Society, Brunel University London, London UB8 3PH, UK.
| |
Collapse
|
171
|
Rana M, Dash AK, Ponnusamy K, Tyagi RK. Nuclear localization signal region in nuclear receptor PXR governs the receptor association with mitotic chromatin. Chromosome Res 2018; 26:255-276. [DOI: 10.1007/s10577-018-9583-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 06/28/2018] [Accepted: 07/02/2018] [Indexed: 12/17/2022]
|
172
|
Zaidi SK, Nickerson JA, Imbalzano AN, Lian JB, Stein JL, Stein GS. Mitotic Gene Bookmarking: An Epigenetic Program to Maintain Normal and Cancer Phenotypes. Mol Cancer Res 2018; 16:1617-1624. [PMID: 30002192 DOI: 10.1158/1541-7786.mcr-18-0415] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 05/24/2018] [Accepted: 06/22/2018] [Indexed: 01/06/2023]
Abstract
Reconfiguration of nuclear structure and function during mitosis presents a significant challenge to resume the next cell cycle in the progeny cells without compromising structural and functional identity of the cells. Equally important is the requirement for cancer cells to retain the transformed phenotype, that is, unrestricted proliferative potential, suppression of cell phenotype, and activation of oncogenic pathways. Mitotic gene bookmarking retention of key regulatory proteins that include sequence-specific transcription factors, chromatin-modifying factors, and components of RNA Pol (RNAP) I and II regulatory machineries at gene loci on mitotic chromosomes plays key roles in coordinate control of cell phenotype, growth, and proliferation postmitotically. There is growing recognition that three distinct protein types, mechanistically, play obligatory roles in mitotic gene bookmarking: (i) Retention of phenotypic transcription factors on mitotic chromosomes is essential to sustain lineage commitment; (ii) Select chromatin modifiers and posttranslational histone modifications/variants retain competency of mitotic chromatin for gene reactivation as cells exit mitosis; and (iii) Functional components of RNAP I and II transcription complexes (e.g., UBF and TBP, respectively) are retained on genes poised for reactivation immediately following mitosis. Importantly, recent findings have identified oncogenes that are associated with target genes on mitotic chromosomes in cancer cells. The current review proposes that mitotic gene bookmarking is an extensively utilized epigenetic mechanism for stringent control of proliferation and identity in normal cells and hypothesizes that bookmarking plays a pivotal role in maintenance of tumor phenotypes, that is, unrestricted proliferation and compromised control of differentiation. Mol Cancer Res; 16(11); 1617-24. ©2018 AACR.
Collapse
Affiliation(s)
- Sayyed K Zaidi
- Department of Biochemistry and University of Vermont Cancer Centre, University of Vermont, Burlington Vermont
| | - Jeffrey A Nickerson
- Department of Pediatrics, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Anthony N Imbalzano
- Graduate Program in Cell Biology and Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Jane B Lian
- Department of Biochemistry and University of Vermont Cancer Centre, University of Vermont, Burlington Vermont
| | - Janet L Stein
- Department of Biochemistry and University of Vermont Cancer Centre, University of Vermont, Burlington Vermont
| | - Gary S Stein
- Department of Biochemistry and University of Vermont Cancer Centre, University of Vermont, Burlington Vermont.
| |
Collapse
|
173
|
Teves SS, An L, Bhargava-Shah A, Xie L, Darzacq X, Tjian R. A stable mode of bookmarking by TBP recruits RNA polymerase II to mitotic chromosomes. eLife 2018; 7:35621. [PMID: 29939130 PMCID: PMC6037474 DOI: 10.7554/elife.35621] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 06/23/2018] [Indexed: 12/18/2022] Open
Abstract
Maintenance of transcription programs is challenged during mitosis when chromatin becomes condensed and transcription is silenced. How do the daughter cells re-establish the original transcription program? Here, we report that the TATA-binding protein (TBP), a key component of the core transcriptional machinery, remains bound globally to active promoters in mouse embryonic stem cells during mitosis. Using live-cell single-molecule imaging, we observed that TBP mitotic binding is highly stable, with an average residence time of minutes, in stark contrast to typical TFs with residence times of seconds. To test the functional effect of mitotic TBP binding, we used a drug-inducible degron system and found that TBP promotes the association of RNA Polymerase II with mitotic chromosomes, and facilitates transcriptional reactivation following mitosis. These results suggest that the core transcriptional machinery promotes efficient transcription maintenance globally.
Collapse
Affiliation(s)
- Sheila S Teves
- Department of Molecular and Cell Biology, Li Ka Shing Center for Biomedical and Health Sciences, CIRM Center of Excellence, University of California, Berkeley, Berkeley, United States
| | - Luye An
- Department of Biochemistry, Molecular and Cell Biology, Cornell University, Ithaca, United States
| | - Aarohi Bhargava-Shah
- Department of Molecular and Cell Biology, Li Ka Shing Center for Biomedical and Health Sciences, CIRM Center of Excellence, University of California, Berkeley, Berkeley, United States
| | - Liangqi Xie
- Department of Molecular and Cell Biology, Li Ka Shing Center for Biomedical and Health Sciences, CIRM Center of Excellence, University of California, Berkeley, Berkeley, United States
| | - Xavier Darzacq
- Department of Molecular and Cell Biology, Li Ka Shing Center for Biomedical and Health Sciences, CIRM Center of Excellence, University of California, Berkeley, Berkeley, United States
| | - Robert Tjian
- Department of Molecular and Cell Biology, Li Ka Shing Center for Biomedical and Health Sciences, CIRM Center of Excellence, University of California, Berkeley, Berkeley, United States.,Howard Hughes Medical Institute, Berkeley, United States
| |
Collapse
|
174
|
Cuijpers SAG, Vertegaal ACO. Guiding Mitotic Progression by Crosstalk between Post-translational Modifications. Trends Biochem Sci 2018; 43:251-268. [PMID: 29486978 DOI: 10.1016/j.tibs.2018.02.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 01/29/2018] [Accepted: 02/01/2018] [Indexed: 12/12/2022]
Abstract
Cell division is tightly regulated to disentangle copied chromosomes in an orderly manner and prevent loss of genome integrity. During mitosis, transcriptional activity is limited and post-translational modifications (PTMs) are responsible for functional protein regulation. Essential mitotic regulators, including polo-like kinase 1 (PLK1) and cyclin-dependent kinases (CDK), as well as the anaphase-promoting complex/cyclosome (APC/C), are members of the enzymatic machinery responsible for protein modification. Interestingly, communication between PTMs ensures the essential tight and timely control during all consecutive phases of mitosis. Here, we present an overview of current concepts and understanding of crosstalk between PTMs regulating mitotic progression.
Collapse
Affiliation(s)
- Sabine A G Cuijpers
- Department of Molecular Cell Biology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Alfred C O Vertegaal
- Department of Molecular Cell Biology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands.
| |
Collapse
|
175
|
Modes of Interaction of KMT2 Histone H3 Lysine 4 Methyltransferase/COMPASS Complexes with Chromatin. Cells 2018; 7:cells7030017. [PMID: 29498679 PMCID: PMC5870349 DOI: 10.3390/cells7030017] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 02/22/2018] [Accepted: 02/27/2018] [Indexed: 02/07/2023] Open
Abstract
Regulation of gene expression is achieved by sequence-specific transcriptional regulators, which convey the information that is contained in the sequence of DNA into RNA polymerase activity. This is achieved by the recruitment of transcriptional co-factors. One of the consequences of co-factor recruitment is the control of specific properties of nucleosomes, the basic units of chromatin, and their protein components, the core histones. The main principles are to regulate the position and the characteristics of nucleosomes. The latter includes modulating the composition of core histones and their variants that are integrated into nucleosomes, and the post-translational modification of these histones referred to as histone marks. One of these marks is the methylation of lysine 4 of the core histone H3 (H3K4). While mono-methylation of H3K4 (H3K4me1) is located preferentially at active enhancers, tri-methylation (H3K4me3) is a mark found at open and potentially active promoters. Thus, H3K4 methylation is typically associated with gene transcription. The class 2 lysine methyltransferases (KMTs) are the main enzymes that methylate H3K4. KMT2 enzymes function in complexes that contain a necessary core complex composed of WDR5, RBBP5, ASH2L, and DPY30, the so-called WRAD complex. Here we discuss recent findings that try to elucidate the important question of how KMT2 complexes are recruited to specific sites on chromatin. This is embedded into short overviews of the biological functions of KMT2 complexes and the consequences of H3K4 methylation.
Collapse
|
176
|
Haschka M, Karbon G, Fava LL, Villunger A. Perturbing mitosis for anti-cancer therapy: is cell death the only answer? EMBO Rep 2018; 19:e45440. [PMID: 29459486 PMCID: PMC5836099 DOI: 10.15252/embr.201745440] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Revised: 12/15/2017] [Accepted: 01/29/2018] [Indexed: 12/12/2022] Open
Abstract
Interfering with mitosis for cancer treatment is an old concept that has proven highly successful in the clinics. Microtubule poisons are used to treat patients with different types of blood or solid cancer since more than 20 years, but how these drugs achieve clinical response is still unclear. Arresting cells in mitosis can promote their demise, at least in a petri dish. Yet, at the molecular level, this type of cell death is poorly defined and cancer cells often find ways to escape. The signaling pathways activated can lead to mitotic slippage, cell death, or senescence. Therefore, any attempt to unravel the mechanistic action of microtubule poisons will have to investigate aspects of cell cycle control, cell death initiation in mitosis and after slippage, at single-cell resolution. Here, we discuss possible mechanisms and signaling pathways controlling cell death in mitosis or after escape from mitotic arrest, as well as secondary consequences of mitotic errors, particularly sterile inflammation, and finally address the question how clinical efficacy of anti-mitotic drugs may come about and could be improved.
Collapse
Affiliation(s)
- Manuel Haschka
- Division of Developmental Immunology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Gerlinde Karbon
- Division of Developmental Immunology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Luca L Fava
- Centre for Integrative Biology (CIBIO), University of Trento, Povo, Italy
| | - Andreas Villunger
- Division of Developmental Immunology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
177
|
Palozola KC, Liu H, Nicetto D, Zaret KS. Low-Level, Global Transcription during Mitosis and Dynamic Gene Reactivation during Mitotic Exit. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2018; 82:197-205. [PMID: 29348325 DOI: 10.1101/sqb.2017.82.034280] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Mitosis is thought to be a period of transcriptional silence due to the compact nature of mitotic chromosomes and the apparent exclusion of RNA Pol II and many transcription factors from mitotic chromatin. Yet accurate reactivation of a cell's specific gene expression program is needed to reestablish functional cell identity after mitosis. The majority of studies on protein regulation and localization during mitosis have relied extensively on antibodies and cross-linking-based approaches that are known to artifactually exclude proteins from mitotic chromatin. Here we show that RNA Pol II localization in mitosis is antibody- and fixation-dependent, and that direct assessment of transcription by pulse-labeling nascent RNA reveals global, low-level mitotic transcription. We also find a hierarchy of gene reactivation as the cells transition from mitosis to their interphase amplitude of gene expression. Resetting of gene transcription during mitotic exit is coincident with enhancer transcription. Our work thus shifts focus from assessing mitotic exit as a binary transcription switch to a more nuanced concert of transcription amplitude and enhancer usage. We suggest that understanding how gene expression patterns are conserved during mitosis rests upon deciphering how transcription is maintained by promoters.
Collapse
Affiliation(s)
- Katherine C Palozola
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Hong Liu
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, Louisiana 70112
| | - Dario Nicetto
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Kenneth S Zaret
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| |
Collapse
|
178
|
Festuccia N, Gonzalez I, Owens N, Navarro P. Mitotic bookmarking in development and stem cells. Development 2017; 144:3633-3645. [DOI: 10.1242/dev.146522] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The changes imposed on the nucleus, chromatin and its regulators during mitosis lead to the dismantlement of most gene regulatory processes. However, an increasing number of transcriptional regulators are being identified as capable of binding their genomic targets during mitosis. These so-called ‘mitotic bookmarking factors’ encompass transcription factors and chromatin modifiers that are believed to convey gene regulatory information from mother to daughter cells. In this Primer, we review mitotic bookmarking processes in development and stem cells and discuss the interest and potential importance of this concept with regard to epigenetic regulation and cell fate transitions involving cellular proliferation.
Collapse
Affiliation(s)
- Nicola Festuccia
- Epigenetics of Stem Cells, Department of Developmental and Stem Cell Biology, Institut Pasteur, CNRS UMR3738, 25 rue du Docteur Roux, 75015 Paris, France
| | - Inma Gonzalez
- Epigenetics of Stem Cells, Department of Developmental and Stem Cell Biology, Institut Pasteur, CNRS UMR3738, 25 rue du Docteur Roux, 75015 Paris, France
| | - Nick Owens
- Epigenetics of Stem Cells, Department of Developmental and Stem Cell Biology, Institut Pasteur, CNRS UMR3738, 25 rue du Docteur Roux, 75015 Paris, France
| | - Pablo Navarro
- Epigenetics of Stem Cells, Department of Developmental and Stem Cell Biology, Institut Pasteur, CNRS UMR3738, 25 rue du Docteur Roux, 75015 Paris, France
| |
Collapse
|
179
|
|