151
|
Zhou L, Luo D, Lu W, Han J, Zhao M, Li X, Shen T, Jin Z, Zeng J, Wen Y. Gastrointestinal tract organoids as novel tools in drug discovery. Front Pharmacol 2024; 15:1463114. [PMID: 39281285 PMCID: PMC11394194 DOI: 10.3389/fphar.2024.1463114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 08/20/2024] [Indexed: 09/18/2024] Open
Abstract
Organoids, characterized by their high physiological attributes, effectively preserve the genetic characteristics, physiological structure, and function of the simulated organs. Since the inception of small intestine organoids, other organoids for organs including the liver, lungs, stomach, and pancreas have subsequently been developed. However, a comprehensive summary and discussion of research findings on gastrointestinal tract (GIT) organoids as disease models and drug screening platforms is currently lacking. Herein, in this review, we address diseases related to GIT organoid simulation and highlight the notable advancements that have been made in drug screening and pharmacokinetics, as well as in disease research and treatment using GIT organoids. Organoids of GIT diseases, including inflammatory bowel disease, irritable bowel syndrome, necrotizing enterocolitis, and Helicobacter pylori infection, have been successfully constructed. These models have facilitated the study of the mechanisms and effects of various drugs, such as metformin, Schisandrin C, and prednisolone, in these diseases. Furthermore, GIT organoids have been used to investigate viruses that elicit GIT reactions, including Norovirus, SARS-CoV-2, and rotavirus. Previous studies by using GIT organoids have shown that dasabuvir, gemcitabine, and imatinib possess the capability to inhibit viral replication. Notably, GIT organoids can mimic GIT responses to therapeutic drugs at the onset of disease. The GIT toxicities of compounds like gefitinib, doxorubicin, and sunset yellow have also been evaluated. Additionally, these organoids are instrumental for the study of immune regulation, post-radiation intestinal epithelial repair, treatment for cystic fibrosis and diabetes, the development of novel drug delivery systems, and research into the GIT microbiome. The recent use of conditioned media as a culture method for replacing recombinant hepatocyte growth factor has significantly reduced the cost associated with human GIT organoid culture. This advancement paves the way for large-scale culture and compound screening of GIT organoids. Despite the ongoing challenges in GIT organoid development (e.g., their inability to exist in pairs, limited cell types, and singular drug exposure mode), these organoids hold considerable potential for drug screening. The use of GIT organoids in this context holds great promises to enhance the precision of medical treatments for patients living with GIT diseases.
Collapse
Affiliation(s)
- Li Zhou
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Dan Luo
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wei Lu
- Department of Elderly Care Center, Chengdu Pidu District Hospital of Traditional Chinese Medicine, Chengdu, China
| | - Jun Han
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Maoyuan Zhao
- Department of Geriatrics, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xueyi Li
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Tao Shen
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhao Jin
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jinhao Zeng
- Department of Geriatrics, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yueqiang Wen
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Pediatrics, Guang'an Hospital of Traditional Chinese Medicine, Guang'an, China
| |
Collapse
|
152
|
Leto SM, Grassi E, Avolio M, Vurchio V, Cottino F, Ferri M, Zanella ER, Borgato S, Corti G, di Blasio L, Somale D, Vara-Messler M, Galimi F, Sassi F, Lupo B, Catalano I, Pinnelli M, Viviani M, Sperti L, Mellano A, Ferrero A, Zingaretti CC, Puliafito A, Primo L, Bertotti A, Trusolino L. XENTURION is a population-level multidimensional resource of xenografts and tumoroids from metastatic colorectal cancer patients. Nat Commun 2024; 15:7495. [PMID: 39209908 PMCID: PMC11362617 DOI: 10.1038/s41467-024-51909-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 08/19/2024] [Indexed: 09/04/2024] Open
Abstract
The breadth and depth at which cancer models are interrogated contribute to the successful clinical translation of drug discovery efforts. In colorectal cancer (CRC), model availability is limited by a dearth of large-scale collections of patient-derived xenografts (PDXs) and paired tumoroids from metastatic disease, where experimental therapies are typically tested. Here we introduce XENTURION, an open-science resource offering a platform of 128 PDX models from patients with metastatic CRC, along with matched PDX-derived tumoroids. Multidimensional omics analyses indicate that tumoroids retain extensive molecular fidelity with parental PDXs. A tumoroid-based trial with the anti-EGFR antibody cetuximab reveals variable sensitivities that are consistent with clinical response biomarkers, mirror tumor growth changes in matched PDXs, and recapitulate EGFR genetic deletion outcomes. Inhibition of adaptive signals upregulated by EGFR blockade increases the magnitude of cetuximab response. These findings illustrate the potential of large living biobanks, providing avenues for molecularly informed preclinical research in oncology.
Collapse
Affiliation(s)
| | - Elena Grassi
- Candiolo Cancer Institute - FPO IRCCS, Candiolo, Torino, Italy
- Department of Oncology, University of Torino, Candiolo, Torino, Italy
| | - Marco Avolio
- Candiolo Cancer Institute - FPO IRCCS, Candiolo, Torino, Italy
- Department of Oncology, University of Torino, Candiolo, Torino, Italy
| | - Valentina Vurchio
- Candiolo Cancer Institute - FPO IRCCS, Candiolo, Torino, Italy
- Department of Oncology, University of Torino, Candiolo, Torino, Italy
| | | | - Martina Ferri
- Candiolo Cancer Institute - FPO IRCCS, Candiolo, Torino, Italy
- Department of Oncology, University of Torino, Candiolo, Torino, Italy
| | | | - Sofia Borgato
- Candiolo Cancer Institute - FPO IRCCS, Candiolo, Torino, Italy
- Department of Oncology, University of Torino, Candiolo, Torino, Italy
| | - Giorgio Corti
- Department of Oncology, University of Torino, Candiolo, Torino, Italy
| | - Laura di Blasio
- Candiolo Cancer Institute - FPO IRCCS, Candiolo, Torino, Italy
- Department of Oncology, University of Torino, Candiolo, Torino, Italy
| | - Desiana Somale
- Candiolo Cancer Institute - FPO IRCCS, Candiolo, Torino, Italy
- Aptuit, an Evotec Company, Verona, Italy
| | - Marianela Vara-Messler
- Candiolo Cancer Institute - FPO IRCCS, Candiolo, Torino, Italy
- Department of Oncology, University of Torino, Candiolo, Torino, Italy
- Sanofi Belgium, Zwijnaarde, Belgium
| | - Francesco Galimi
- Candiolo Cancer Institute - FPO IRCCS, Candiolo, Torino, Italy
- Department of Oncology, University of Torino, Candiolo, Torino, Italy
| | - Francesco Sassi
- Candiolo Cancer Institute - FPO IRCCS, Candiolo, Torino, Italy
| | - Barbara Lupo
- Candiolo Cancer Institute - FPO IRCCS, Candiolo, Torino, Italy
- Department of Oncology, University of Torino, Candiolo, Torino, Italy
| | - Irene Catalano
- Candiolo Cancer Institute - FPO IRCCS, Candiolo, Torino, Italy
| | - Marika Pinnelli
- Candiolo Cancer Institute - FPO IRCCS, Candiolo, Torino, Italy
- Department of Oncology, University of Torino, Candiolo, Torino, Italy
| | - Marco Viviani
- Candiolo Cancer Institute - FPO IRCCS, Candiolo, Torino, Italy
- Department of Oncology, University of Torino, Candiolo, Torino, Italy
| | - Luca Sperti
- Candiolo Cancer Institute - FPO IRCCS, Candiolo, Torino, Italy
- Department of Oncology, University of Torino, Candiolo, Torino, Italy
| | - Alfredo Mellano
- Candiolo Cancer Institute - FPO IRCCS, Candiolo, Torino, Italy
| | | | | | - Alberto Puliafito
- Candiolo Cancer Institute - FPO IRCCS, Candiolo, Torino, Italy
- Department of Oncology, University of Torino, Candiolo, Torino, Italy
| | - Luca Primo
- Candiolo Cancer Institute - FPO IRCCS, Candiolo, Torino, Italy
- Department of Oncology, University of Torino, Candiolo, Torino, Italy
| | - Andrea Bertotti
- Candiolo Cancer Institute - FPO IRCCS, Candiolo, Torino, Italy.
- Department of Oncology, University of Torino, Candiolo, Torino, Italy.
| | - Livio Trusolino
- Candiolo Cancer Institute - FPO IRCCS, Candiolo, Torino, Italy.
- Department of Oncology, University of Torino, Candiolo, Torino, Italy.
| |
Collapse
|
153
|
Mao Y, Hu H. Establishment of advanced tumor organoids with emerging innovative technologies. Cancer Lett 2024; 598:217122. [PMID: 39029781 DOI: 10.1016/j.canlet.2024.217122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/21/2024] [Accepted: 07/12/2024] [Indexed: 07/21/2024]
Abstract
Tumor organoids have emerged as a crucial preclinical model for multiple cancer research. Their high establishment rates, stability, and ability to replicate key biological features of original tumor cells in vivo render them invaluable for exploring tumor molecular mechanisms, discovering potential anti-tumor drugs, and predicting clinical drug efficacy. Here, we review the establishment of tumor organoid models and provide an extensive overview of organoid culturing strategies. We also emphasize the significance of integrating cellular components of the tumor microenvironment and physicochemical factors in the organoid culturing system, highlighting the importance of artificial intelligence technology in advancing organoid construction. Moreover, we summarize recent advancements in utilizing organoid systems for novel anti-cancer drug screening and discuss promising trends for enhancing advanced organoids in next-generation disease modeling.
Collapse
Affiliation(s)
- Yunuo Mao
- The Key Laboratory of Experimental Teratology, Ministry of Education, Department of Systems Biomedicine, School of Basic Medical Sciences, Shandong University, Jinan, 250012, PR China
| | - Huili Hu
- The Key Laboratory of Experimental Teratology, Ministry of Education, Department of Systems Biomedicine, School of Basic Medical Sciences, Shandong University, Jinan, 250012, PR China.
| |
Collapse
|
154
|
Huang S, Mei Z, Wan A, Zhao M, Qi X. Application and prospect of organoid technology in breast cancer. Front Immunol 2024; 15:1413858. [PMID: 39253075 PMCID: PMC11381393 DOI: 10.3389/fimmu.2024.1413858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 08/06/2024] [Indexed: 09/11/2024] Open
Abstract
Breast cancer is the most common malignant tumor in women. Due to the high heterogeneity of breast cancer cells, traditional in vitro research models still have major limitations. Therefore, it is urgent to establish an experimental model that can accurately simulate the characteristics of human breast cancer. Breast cancer organoid technology emerged as the times required, that is, to construct tissue analogs with organ characteristics by using a patient's tumor tissue through 3D culture in vitro. Since the breast cancer organoid can fully preserve the histology and genetic characteristics of the original tumor, it provides a reliable model for preclinical drug screening, establishment of breast cancer organoid biobanks, research into the mechanisms of tumor development, and determination of cancer targets. It has promoted personalized treatment for clinical breast cancer patients. This article mainly focuses on recent research progress and applications of organoid technology in breast cancer, discussing the current limitations and prospects of breast cancer organoid technology.
Collapse
Affiliation(s)
- Shanlin Huang
- Department of Breast and Thyroid Surgery, Southwest Hospital, Army Medical University, Chongqing, China
- Key Laboratory of Chongqing Health Commission for Minimally Invasive and Precise Diagnosis and Treatment of Breast cancer, Southwest Hospital, Army Medical University, Chongqing, China
| | - Zifan Mei
- Department of Breast and Thyroid Surgery, Southwest Hospital, Army Medical University, Chongqing, China
- Key Laboratory of Chongqing Health Commission for Minimally Invasive and Precise Diagnosis and Treatment of Breast cancer, Southwest Hospital, Army Medical University, Chongqing, China
| | - Andi Wan
- Department of Breast and Thyroid Surgery, Southwest Hospital, Army Medical University, Chongqing, China
- Key Laboratory of Chongqing Health Commission for Minimally Invasive and Precise Diagnosis and Treatment of Breast cancer, Southwest Hospital, Army Medical University, Chongqing, China
| | - Min Zhao
- Department of Breast and Thyroid Surgery, Southwest Hospital, Army Medical University, Chongqing, China
- Key Laboratory of Chongqing Health Commission for Minimally Invasive and Precise Diagnosis and Treatment of Breast cancer, Southwest Hospital, Army Medical University, Chongqing, China
| | - Xiaowei Qi
- Department of Breast and Thyroid Surgery, Southwest Hospital, Army Medical University, Chongqing, China
- Key Laboratory of Chongqing Health Commission for Minimally Invasive and Precise Diagnosis and Treatment of Breast cancer, Southwest Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
155
|
Chen G, Han R, Wang L, Ma W, Zhang W, Lu Z, Wang L. Establishment of patient-derived organoids and a characterization based drug discovery platform for treatment of gastric cancer. Cancer Cell Int 2024; 24:288. [PMID: 39143546 PMCID: PMC11323579 DOI: 10.1186/s12935-024-03460-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 07/25/2024] [Indexed: 08/16/2024] Open
Abstract
BACKGROUND Gastric cancer (GC) encompasses many different histological and molecular subtypes. It is a major driver of cancer mortality because of poor survival and limited treatment options. Personalised medicine in the form of patient-derived organoids (PDOs) represents a promising approach for improving therapeutic outcomes. The goal of this study was to overcome the limitations of current models by ameliorating organoid cultivation. METHODS Organoids derived from cancer tissue were evaluated by haematoxylin and eosin staining, immunohistochemistry, mRNA, and whole-exome sequencing. Three representative chemotherapy drugs, 5-fluorouracil, docetaxel, and oxaliplatin, were compared for their efficacy against different subtypes of gastric organoids by ATP assay and apoptosis staining. In addition, drug sensitivity screening results from two publicly available databases, the Genomics of Drug Sensitivity in Cancer and Cancer Cell Line Encyclopaedia, were pooled and applied to organoid lines. Once key targeting genes were confirmed, chemotherapy was used in combination with poly (ADP ribose) polymerase (PARP)-targeted therapy. RESULTS We successfully constructed GC PDOs surgically resected from GC patient tissue. PDOs closely reflected the histopathological and genomic features of the corresponding primary tumours. Whole-exosome sequencing and mRNA analysis revealed that changes to the original tumour genome were maintained during long-term culture. The drugs caused divergent responses in intestinal, poorly differentiated intestinal, and diffuse gastric cancer organoids, which were confirmed in organoid lines. Poorly differentiated intestinal GC patients benefited from a combination of 5-fluorouracil and veliparib. CONCLUSION The present study demonstrates that combining chemotherapy with PARP targeting may improve the treatment of chemotherapy-resistant tumours.
Collapse
Affiliation(s)
- Guo Chen
- Department of Gastrointestinal Surgery, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
- Translational Medicine Center, Shaanxi Provincial People's Hospital, Xi'an, China
- State Key Laboratory of Cancer Biology, Department of Biopharmaceutics, The Fourth Military Medical University, Xi'an, China
| | - Ruidong Han
- Department of Gastrointestinal Surgery, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Li Wang
- State Key Laboratory of Cancer Biology, Department of Biopharmaceutics, The Fourth Military Medical University, Xi'an, China
| | - Wen Ma
- Department of Gastrointestinal Surgery, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Wenli Zhang
- Translational Medicine Center, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Zifan Lu
- Translational Medicine Center, Shaanxi Provincial People's Hospital, Xi'an, China.
- State Key Laboratory of Cancer Biology, Department of Biopharmaceutics, The Fourth Military Medical University, Xi'an, China.
| | - Lei Wang
- Department of Gastrointestinal Surgery, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China.
| |
Collapse
|
156
|
Dutta D, Lorenzo-Martín LF, Rivest F, Broguiere N, Tillard L, Ragusa S, Brandenberg N, Höhnel S, Saugy D, Rusakiewicz S, Homicsko K, Coukos G, Lutolf MP. Probing the killing potency of tumor-infiltrating lymphocytes on microarrayed colorectal cancer tumoroids. NPJ Precis Oncol 2024; 8:179. [PMID: 39143103 PMCID: PMC11324658 DOI: 10.1038/s41698-024-00661-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 07/19/2024] [Indexed: 08/16/2024] Open
Abstract
Immunotherapy has emerged as a new standard of care for certain cancer patients with specific cellular and molecular makeups. However, there is still an unmet need for ex vivo models able to readily assess the effectiveness of immunotherapeutic treatments in a high-throughput and patient-specific manner. To address this issue, we have developed a microarrayed system of patient-derived tumoroids with recreated immune microenvironments that are optimized for the high-content evaluation of tumor-infiltrating lymphocyte functionality. Here we show that this system offers unprecedented opportunities to evaluate tumor immunogenicity, characterize the response to immunomodulators, and explore novel approaches for personalized immuno-oncology.
Collapse
Affiliation(s)
- Devanjali Dutta
- Laboratory of Stem Cell Bioengineering, Institute of Bioengineering, School of Life Sciences and School of Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Genmab B.V., Utrecht, Netherlands
| | - L Francisco Lorenzo-Martín
- Laboratory of Stem Cell Bioengineering, Institute of Bioengineering, School of Life Sciences and School of Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - François Rivest
- Laboratory of Stem Cell Bioengineering, Institute of Bioengineering, School of Life Sciences and School of Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Lunaphore, Tolochenaz, Switzerland
| | - Nicolas Broguiere
- Laboratory of Stem Cell Bioengineering, Institute of Bioengineering, School of Life Sciences and School of Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Lucie Tillard
- Laboratory of Stem Cell Bioengineering, Institute of Bioengineering, School of Life Sciences and School of Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Simone Ragusa
- Laboratory of Stem Cell Bioengineering, Institute of Bioengineering, School of Life Sciences and School of Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Molecular Partners AG, Zürich, Switzerland
| | - Nathalie Brandenberg
- Laboratory of Stem Cell Bioengineering, Institute of Bioengineering, School of Life Sciences and School of Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- DOPPL, Lausanne, Switzerland
| | - Sylke Höhnel
- Laboratory of Stem Cell Bioengineering, Institute of Bioengineering, School of Life Sciences and School of Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- SUN bioscience, Lausanne, Switzerland
| | - Damien Saugy
- The Swiss Institute for Experimental Cancer Research (ISREC), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Sylvie Rusakiewicz
- The Swiss Institute for Experimental Cancer Research (ISREC), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Krisztian Homicsko
- The Swiss Institute for Experimental Cancer Research (ISREC), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Department of Oncology, Centre Hospitalier Universitaire Vaudois (CHUV), Ludwig Institute for Cancer Research, Lausanne, Switzerland
| | - George Coukos
- Department of Oncology, Centre Hospitalier Universitaire Vaudois (CHUV), Ludwig Institute for Cancer Research, Lausanne, Switzerland
| | - Matthias P Lutolf
- Laboratory of Stem Cell Bioengineering, Institute of Bioengineering, School of Life Sciences and School of Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
- Institute of Human Biology (IHB), Roche Pharma Research and Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland.
| |
Collapse
|
157
|
Zheng L, Zhan Y, Wang C, Fan Q, Sun D, Li Y, Xiong Y. Technological advances and challenges in constructing complex gut organoid systems. Front Cell Dev Biol 2024; 12:1432744. [PMID: 39206092 PMCID: PMC11349554 DOI: 10.3389/fcell.2024.1432744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024] Open
Abstract
Recent advancements in organoid technology have heralded a transformative era in biomedical research, characterized by the emergence of gut organoids that replicate the structural and functional complexity of the human intestines. These stem cell-derived structures provide a dynamic platform for investigating intestinal physiology, disease pathogenesis, and therapeutic interventions. This model outperforms traditional two-dimensional cell cultures in replicating cell interactions and tissue dynamics. Gut organoids represent a significant leap towards personalized medicine. They provide a predictive model for human drug responses, thereby minimizing reliance on animal models and paving the path for more ethical and relevant research approaches. However, the transition from basic organoid models to more sophisticated, biomimetic systems that encapsulate the gut's multifaceted environment-including its interactions with microbial communities, immune cells, and neural networks-presents significant scientific challenges. This review concentrates on recent technological strides in overcoming these barriers, emphasizing innovative engineering approaches for integrating diverse cell types to replicate the gut's immune and neural components. It also explores the application of advanced fabrication techniques, such as 3D bioprinting and microfluidics, to construct organoids that more accurately replicate human tissue architecture. They provide insights into the intricate workings of the human gut, fostering the development of targeted, effective treatments. These advancements hold promise in revolutionizing disease modeling and drug discovery. Future research directions aim at refining these models further, making them more accessible and scalable for wider applications in scientific inquiry and clinical practice, thus heralding a new era of personalized and predictive medicine.
Collapse
Affiliation(s)
- Longjin Zheng
- State Key Laboratory for the Modernization of Classical and Famous Prescriptions of Chinese Medicine, Nanchang, China
- Research and Development Department, Jiangzhong Pharmaceutical Co., Ltd., Nanchang, China
| | - Yang Zhan
- State Key Laboratory for the Modernization of Classical and Famous Prescriptions of Chinese Medicine, Nanchang, China
- Research and Development Department, Jiangzhong Pharmaceutical Co., Ltd., Nanchang, China
| | - Chenxuan Wang
- State Key Laboratory for the Modernization of Classical and Famous Prescriptions of Chinese Medicine, Nanchang, China
- Research and Development Department, Jiangzhong Pharmaceutical Co., Ltd., Nanchang, China
| | - Qigui Fan
- State Key Laboratory for the Modernization of Classical and Famous Prescriptions of Chinese Medicine, Nanchang, China
- Research and Development Department, Jiangzhong Pharmaceutical Co., Ltd., Nanchang, China
| | - Denglong Sun
- State Key Laboratory for the Modernization of Classical and Famous Prescriptions of Chinese Medicine, Nanchang, China
- Research and Development Department, Jiangzhong Pharmaceutical Co., Ltd., Nanchang, China
| | - Yingmeng Li
- State Key Laboratory for the Modernization of Classical and Famous Prescriptions of Chinese Medicine, Nanchang, China
- Research and Development Department, Jiangzhong Pharmaceutical Co., Ltd., Nanchang, China
| | - Yanxia Xiong
- State Key Laboratory for the Modernization of Classical and Famous Prescriptions of Chinese Medicine, Nanchang, China
- Research and Development Department, Jiangzhong Pharmaceutical Co., Ltd., Nanchang, China
| |
Collapse
|
158
|
Qu B, Mu Q, Bi H, Chen Y, Wang Q, Ma X, Lu L. Interpretation of the past, present, and future of organoid technology: an updated bibliometric analysis from 2009 to 2024. Front Cell Dev Biol 2024; 12:1433111. [PMID: 39193361 PMCID: PMC11347291 DOI: 10.3389/fcell.2024.1433111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 07/31/2024] [Indexed: 08/29/2024] Open
Abstract
Organoid technology has been developed rapidly in the past decade, which involves the exploration of the mechanism of development, regeneration and various diseases, and intersects among multiple disciplines. Thousands of literature on 3D-culture or organoids have been published in the research areas of cell biology tissue engineering, nanoscience, oncology and so on, resulting in it being challenging for researchers to timely summarize these studies. Bibliometric statistics is a helpful way to help researchers clarify the above issues efficiently and manage the whole landscape systematically. In our study, all original articles on organoids were included in the Web of Science database from January 2009 to May 2024, and related information was collected and analyzed using Excel software, "bibliometrix" packages of the R software, VOSviewer and CiteSpace. As results, a total of 6222 papers were included to classify the status quo of the organoids and predict future research areas. Our findings highlight a growing trend in publications related to organoids, with the United States and Netherlands leading in this field. The University of California System, Harvard University, Utrecht University and Utrecht University Medical Center have emerged as pivotal contributors and the key authors in the field include Clevers, H, Beekman, JM and Spence JR. Our results also revealed that the research hotspots and trends of organoids mainly focused on clinical treatment, drug screening, and the application of materials and technologies such as "hydrogel" and "microfluidic technology" in organoids. Next, we had an in-depth interpretation of the development process of organoid research area, including the emergence of technology, the translation from bench to bedsides, the profiles of the most widely studied types of organoids, the application of materials and technologies, and the emerging organoid-immune co-cultures trends. Furthermore, we also discussed the pitfalls, challenges and prospects of organoid technology. In conclusion, this study provides readers straightforward and convenient access to the organoid research field.
Collapse
Affiliation(s)
- Baozhen Qu
- Qingdao Cancer Prevention and Treatment Research Institute, Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao Central Hospital), Qingdao, China
| | - Qiang Mu
- The First Department of Breast Surgery, Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao Central Hospital), Qingdao, China
| | - Huanhuan Bi
- College of Medicine, Qingdao University, Qingdao, China
| | - Yuxian Chen
- College of Medicine, Qingdao University, Qingdao, China
| | - Qitang Wang
- The First Department of Breast Surgery, Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao Central Hospital), Qingdao, China
| | - Xuezhen Ma
- Department of Oncology, Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao Central Hospital), Qingdao, China
| | - Linlin Lu
- Qingdao Cancer Prevention and Treatment Research Institute, Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao Central Hospital), Qingdao, China
| |
Collapse
|
159
|
Gao M, Ding W, Wang Y, Li B, Huang Z, Liang N, Wei Z. Quantitatively Evaluating Interactions between Patient-Derived Organoids and Autologous Immune Cells by Microfluidic Chip. Anal Chem 2024; 96:13061-13069. [PMID: 39093612 DOI: 10.1021/acs.analchem.4c01389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
The coculture of patient-derived tumor organoids (PDOs) and autologous immune cells has been considered as a useful ex vivo surrogate of in vivo tumor-immune environment. However, the immune interactions between PDOs and autologous immune cells, including immune-mediated killing behaviors and immune-related cytokine variations, have yet to be quantitatively evaluated. This study presents a microfluidic chip for quantifying interactions between PDOs and autologous immune cells (IOI-Chip). A baffle-well structure is designed to ensure efficient trapping, long-term coculturing, and in situ fluorescent observation of a limited amount of precious PDOS and autologous immune cells, while a microbeads-based immunofluorescence assay is designed to simultaneously quantify multiple kinds of immune-related cytokines in situ. The PDO apoptosis and 2 main immune-related cytokines, TNF-α and IFN-γ, are simultaneously quantified using samples from a lung cancer patient. This study provides, for the first time, a capability to quantify interactions between PDOs and autologous immune cells at 2 levels, the immune-mediated killing behavior, and multiple immune-related cytokines, laying the technical foundation of ex vivo assessment of patient immune response.
Collapse
Affiliation(s)
- Mingyao Gao
- Department of Biomedical Engineering, School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Wenyong Ding
- Department of Biomedical Engineering, School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Yadong Wang
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Bowen Li
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Zhicheng Huang
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Naixin Liang
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Zewen Wei
- Department of Biomedical Engineering, School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
160
|
Küstermann C, Narbute K, Movčana V, Parfejevs V, Rūmnieks F, Kauķis P, Priedols M, Mikilps-Mikgelbs R, Mihailova M, Andersone S, Dzalbs A, Bajo-Santos C, Krams A, Abols A. iPSC-derived lung and lung cancer organoid model to evaluate cisplatin encapsulated autologous iPSC-derived mesenchymal stromal cell-isolated extracellular vesicles. Stem Cell Res Ther 2024; 15:246. [PMID: 39113093 PMCID: PMC11304910 DOI: 10.1186/s13287-024-03862-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 07/27/2024] [Indexed: 08/10/2024] Open
Abstract
BACKGROUND Lung cancer remains a leading cause of cancer-related mortality globally. Although recent therapeutic advancements have provided targeted treatment approaches, the development of resistance and systemic toxicity remain primary concerns. Extracellular vesicles (EVs), especially those derived from mesenchymal stromal cells (MSC), have gained attention as promising drug delivery systems, offering biocompatibility and minimal immune responses. Recognizing the limitations of conventional 2D cell culture systems in mimicking the tumor microenvironment, this study aims to describe a proof-of-principle approach for using patient-specific organoid models for both lung cancer and normal lung tissue and the feasibility of employing autologous EVs derived from induced pluripotent stem cell (iPSC)-MSC in personalized medicine approaches. METHODS First, we reprogrammed healthy fibroblasts into iPSC. Next, we differentiated patient-derived iPSC into branching lung organoids (BLO) and generated patient-matched lung cancer organoids (LCO) from patient-derived tumor tissue. We show a streamlined process of MSC differentiation from iPSC and EV isolation from iPSC-MSC, encapsulated with 0.07 µg/mL of cytotoxic agent cisplatin and applied to both organoid models. Cytotoxicity of cisplatin and cisplatin-loaded EVs was recorded with LDH and CCK8 tests. RESULTS Fibroblast-derived iPSC showed a normal karyotype, pluripotency staining, and trilineage differentiation. iPSC-derived BLO showed expression of lung markers, like TMPRSS2 and MUC5A while patient-matched LCO showed expression of Napsin and CK5. Next, we compared the effects of iPSC-MSC derived EVs loaded with cisplatin against empty EVs and cisplatin alone in lung cancer organoid and healthy lung organoid models. As expected, we found a cytotoxic effect when LCO were treated with 20 µg/mL cisplatin. Treatment of LCO and BLO with empty EVs resulted in a cytotoxic effect after 24 h. However, EVs loaded with 0.07 µg/mL cisplatin failed to induce any cytotoxic effect in both organoid models. CONCLUSION We report on a proof-of-principle pipeline towards using autologous or allogeneic iPSC-MSC EVs as drug delivery tests for lung cancer in future. However, due to the time and labor-intensive processes, we conclude that this pipeline might not be feasible for personalized approaches at the moment.
Collapse
Affiliation(s)
- Caroline Küstermann
- Latvian Biomedical Research and Study Center, Rātsupītes Iela 1, Riga, 1067, Latvia.
| | - Karīna Narbute
- Latvian Biomedical Research and Study Center, Rātsupītes Iela 1, Riga, 1067, Latvia
| | - Valērija Movčana
- Latvian Biomedical Research and Study Center, Rātsupītes Iela 1, Riga, 1067, Latvia
| | - Vadims Parfejevs
- Faculty of Medicine, University of Latvia, Jelgavas Iela 3, Riga, Latvia
| | - Fēlikss Rūmnieks
- Latvian Biomedical Research and Study Center, Rātsupītes Iela 1, Riga, 1067, Latvia
| | - Pauls Kauķis
- Latvian Biomedical Research and Study Center, Rātsupītes Iela 1, Riga, 1067, Latvia
| | - Miks Priedols
- Latvian Biomedical Research and Study Center, Rātsupītes Iela 1, Riga, 1067, Latvia
| | - Rihards Mikilps-Mikgelbs
- Riga East Clinical University Hospital Center of Tuberculosis and Lung Diseases, Upeslejas, Ropažu Novads, Latvia
| | | | | | - Aigars Dzalbs
- IVF Riga Stem Cell Center, Zaļā Iela 1, Rīga, Latvia
| | - Cristina Bajo-Santos
- Latvian Biomedical Research and Study Center, Rātsupītes Iela 1, Riga, 1067, Latvia
| | - Alvils Krams
- Riga East Clinical University Hospital Center of Tuberculosis and Lung Diseases, Upeslejas, Ropažu Novads, Latvia
| | - Arturs Abols
- Latvian Biomedical Research and Study Center, Rātsupītes Iela 1, Riga, 1067, Latvia
| |
Collapse
|
161
|
Yang Z, Yu J, Wong CC. Gastrointestinal Cancer Patient Derived Organoids at the Frontier of Personalized Medicine and Drug Screening. Cells 2024; 13:1312. [PMID: 39195202 PMCID: PMC11352269 DOI: 10.3390/cells13161312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/31/2024] [Accepted: 08/01/2024] [Indexed: 08/29/2024] Open
Abstract
Cancer is a leading cause of death worldwide. Around one-third of the total global cancer incidence and mortality are related to gastrointestinal (GI) cancers. Over the past few years, rapid developments have been made in patient-derived organoid (PDO) models for gastrointestinal cancers. By closely mimicking the molecular properties of their parent tumors in vitro, PDOs have emerged as powerful tools in personalized medicine and drug discovery. Here, we review the current literature on the application of PDOs of common gastrointestinal cancers in the optimization of drug treatment strategies in the clinic and their rising importance in pre-clinical drug development. We discuss the advantages and limitations of gastrointestinal cancer PDOs and outline the microfluidics-based strategies that improve the throughput of PDO models in order to extract the maximal benefits in the personalized medicine and drug discovery process.
Collapse
Affiliation(s)
- Zhenjie Yang
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China;
| | - Jun Yu
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China;
- Institute of Digestive Disease and Department of Medicine and Therapeutics, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, China
| | - Chi Chun Wong
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China;
- Institute of Digestive Disease and Department of Medicine and Therapeutics, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, China
| |
Collapse
|
162
|
Müller D, Loskutov J, Küffer S, Marx A, Regenbrecht CRA, Ströbel P, Regenbrecht MJ. Cell Culture Models for Translational Research on Thymomas and Thymic Carcinomas: Current Status and Future Perspectives. Cancers (Basel) 2024; 16:2762. [PMID: 39123489 PMCID: PMC11312172 DOI: 10.3390/cancers16152762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/22/2024] [Accepted: 07/31/2024] [Indexed: 08/12/2024] Open
Abstract
Cell culture model systems are fundamental tools for studying cancer biology and identifying therapeutic vulnerabilities in a controlled environment. TET cells are notoriously difficult to culture, with only a few permanent cell lines available. The optimal conditions and requirements for the ex vivo establishment and permanent expansion of TET cells have not been systematically studied, and it is currently unknown whether different TET subtypes require different culture conditions or specific supplements. The few permanent cell lines available represent only type AB thymomas and thymic carcinomas, while attempts to propagate tumor cells derived from type B thymomas so far have been frustrated. It is conceivable that epithelial cells in type B thymomas are critically dependent on their interaction with immature T cells or their three-dimensional scaffold. Extensive studies leading to validated cell culture protocols would be highly desirable and a major advance in the field. Alternative methods such as tumor cell organoid models, patient-derived xenografts, or tissue slices have been sporadically used in TETs, but their specific contributions and advantages remain to be shown.
Collapse
Affiliation(s)
- Denise Müller
- Institute of Pathology, University Medical Center Göttingen, 37075 Göttingen, Germany; (S.K.); (C.R.A.R.)
| | | | - Stefan Küffer
- Institute of Pathology, University Medical Center Göttingen, 37075 Göttingen, Germany; (S.K.); (C.R.A.R.)
| | - Alexander Marx
- Institute of Pathology, University Medical Center Göttingen, 37075 Göttingen, Germany; (S.K.); (C.R.A.R.)
| | - Christian R. A. Regenbrecht
- Institute of Pathology, University Medical Center Göttingen, 37075 Göttingen, Germany; (S.K.); (C.R.A.R.)
- CELLphenomics GmbH, 13125 Berlin, Germany (M.J.R.)
- ASC Oncology GmbH, 13125 Berlin, Germany
| | - Philipp Ströbel
- Institute of Pathology, University Medical Center Göttingen, 37075 Göttingen, Germany; (S.K.); (C.R.A.R.)
| | - Manuela J. Regenbrecht
- CELLphenomics GmbH, 13125 Berlin, Germany (M.J.R.)
- ASC Oncology GmbH, 13125 Berlin, Germany
- Department for Pneumology, Palliative Medicine, DRK Kliniken Berlin, 14050 Berlin, Germany
| |
Collapse
|
163
|
Vitacolonna M, Bruch R, Agaçi A, Nürnberg E, Cesetti T, Keller F, Padovani F, Sauer S, Schmoller KM, Reischl M, Hafner M, Rudolf R. A multiparametric analysis including single-cell and subcellular feature assessment reveals differential behavior of spheroid cultures on distinct ultra-low attachment plate types. Front Bioeng Biotechnol 2024; 12:1422235. [PMID: 39157442 PMCID: PMC11327450 DOI: 10.3389/fbioe.2024.1422235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 07/19/2024] [Indexed: 08/20/2024] Open
Abstract
Spheroids have become principal three-dimensional models to study cancer, developmental processes, and drug efficacy. Single-cell analysis techniques have emerged as ideal tools to gauge the complexity of cellular responses in these models. However, the single-cell quantitative assessment based on 3D-microscopic data of the subcellular distribution of fluorescence markers, such as the nuclear/cytoplasm ratio of transcription factors, has largely remained elusive. For spheroid generation, ultra-low attachment plates are noteworthy due to their simplicity, compatibility with automation, and experimental and commercial accessibility. However, it is unknown whether and to what degree the plate type impacts spheroid formation and biology. This study developed a novel AI-based pipeline for the analysis of 3D-confocal data of optically cleared large spheroids at the wholemount, single-cell, and sub-cellular levels. To identify relevant samples for the pipeline, automated brightfield microscopy was employed to systematically compare the size and eccentricity of spheroids formed in six different plate types using four distinct human cell lines. This showed that all plate types exhibited similar spheroid-forming capabilities and the gross patterns of growth or shrinkage during 4 days after seeding were comparable. Yet, size and eccentricity varied systematically among specific cell lines and plate types. Based on this prescreen, spheroids of HaCaT keratinocytes and HT-29 cancer cells were further assessed. In HaCaT spheroids, the in-depth analysis revealed a correlation between spheroid size, cell proliferation, and the nuclear/cytoplasm ratio of the transcriptional coactivator, YAP1, as well as an inverse correlation with respect to cell differentiation. These findings, yielded with a spheroid model and at a single-cell level, corroborate earlier concepts of the role of YAP1 in cell proliferation and differentiation of keratinocytes in human skin. Further, the results show that the plate type may influence the outcome of experimental campaigns and that it is advisable to scan different plate types for the optimal configuration during a specific investigation.
Collapse
Affiliation(s)
- Mario Vitacolonna
- CeMOS, Mannheim University of Applied Sciences, Mannheim, Germany
- Institute of Molecular and Cell Biology, Mannheim University of Applied Sciences, Mannheim, Germany
| | - Roman Bruch
- Institute for Automation and Applied Informatics, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Ane Agaçi
- CeMOS, Mannheim University of Applied Sciences, Mannheim, Germany
- Institute of Molecular and Cell Biology, Mannheim University of Applied Sciences, Mannheim, Germany
| | - Elina Nürnberg
- CeMOS, Mannheim University of Applied Sciences, Mannheim, Germany
- Institute of Molecular and Cell Biology, Mannheim University of Applied Sciences, Mannheim, Germany
- Faculty of Biotechnology, Mannheim University of Applied Sciences, Mannheim, Germany
| | - Tiziana Cesetti
- CeMOS, Mannheim University of Applied Sciences, Mannheim, Germany
- Institute of Molecular and Cell Biology, Mannheim University of Applied Sciences, Mannheim, Germany
| | - Florian Keller
- CeMOS, Mannheim University of Applied Sciences, Mannheim, Germany
- Institute of Molecular and Cell Biology, Mannheim University of Applied Sciences, Mannheim, Germany
| | - Francesco Padovani
- Institute of Functional Epigenetics (IFE), Molecular Targets and Therapeutics Center (MTTC), Helmholtz Center München, München-Neuherberg, Germany
| | - Simeon Sauer
- Faculty of Biotechnology, Mannheim University of Applied Sciences, Mannheim, Germany
| | - Kurt M. Schmoller
- Institute of Functional Epigenetics (IFE), Molecular Targets and Therapeutics Center (MTTC), Helmholtz Center München, München-Neuherberg, Germany
| | - Markus Reischl
- Institute for Automation and Applied Informatics, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Mathias Hafner
- Institute of Molecular and Cell Biology, Mannheim University of Applied Sciences, Mannheim, Germany
- Institute of Medical Technology, Medical Faculty Mannheim of Heidelberg University and Mannheim University of Applied Sciences, Mannheim, Germany
| | - Rüdiger Rudolf
- CeMOS, Mannheim University of Applied Sciences, Mannheim, Germany
- Institute of Molecular and Cell Biology, Mannheim University of Applied Sciences, Mannheim, Germany
- Institute of Medical Technology, Medical Faculty Mannheim of Heidelberg University and Mannheim University of Applied Sciences, Mannheim, Germany
| |
Collapse
|
164
|
Shi X, Wang X, Yao W, Shi D, Shao X, Lu Z, Chai Y, Song J, Tang W, Wang X. Mechanism insights and therapeutic intervention of tumor metastasis: latest developments and perspectives. Signal Transduct Target Ther 2024; 9:192. [PMID: 39090094 PMCID: PMC11294630 DOI: 10.1038/s41392-024-01885-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 05/29/2024] [Accepted: 06/10/2024] [Indexed: 08/04/2024] Open
Abstract
Metastasis remains a pivotal characteristic of cancer and is the primary contributor to cancer-associated mortality. Despite its significance, the mechanisms governing metastasis are not fully elucidated. Contemporary findings in the domain of cancer biology have shed light on the molecular aspects of this intricate process. Tumor cells undergoing invasion engage with other cellular entities and proteins en route to their destination. Insights into these engagements have enhanced our comprehension of the principles directing the movement and adaptability of metastatic cells. The tumor microenvironment plays a pivotal role in facilitating the invasion and proliferation of cancer cells by enabling tumor cells to navigate through stromal barriers. Such attributes are influenced by genetic and epigenetic changes occurring in the tumor cells and their surrounding milieu. A profound understanding of the metastatic process's biological mechanisms is indispensable for devising efficacious therapeutic strategies. This review delves into recent developments concerning metastasis-associated genes, important signaling pathways, tumor microenvironment, metabolic processes, peripheral immunity, and mechanical forces and cancer metastasis. In addition, we combine recent advances with a particular emphasis on the prospect of developing effective interventions including the most popular cancer immunotherapies and nanotechnology to combat metastasis. We have also identified the limitations of current research on tumor metastasis, encompassing drug resistance, restricted animal models, inadequate biomarkers and early detection methods, as well as heterogeneity among others. It is anticipated that this comprehensive review will significantly contribute to the advancement of cancer metastasis research.
Collapse
Affiliation(s)
- Xiaoli Shi
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences; NHC Key Laboratory of Hepatobiliary Cancers, Nanjing, Jiangsu, China
- School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Xinyi Wang
- The First Clinical Medical College, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Wentao Yao
- Department of Urology, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, Jiangsu, China
| | - Dongmin Shi
- Department of Medical Oncology, Shanghai Changzheng Hospital, Shanghai, China
| | - Xihuan Shao
- The Fourth Clinical Medical College, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zhengqing Lu
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences; NHC Key Laboratory of Hepatobiliary Cancers, Nanjing, Jiangsu, China
| | - Yue Chai
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences; NHC Key Laboratory of Hepatobiliary Cancers, Nanjing, Jiangsu, China
| | - Jinhua Song
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences; NHC Key Laboratory of Hepatobiliary Cancers, Nanjing, Jiangsu, China.
| | - Weiwei Tang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences; NHC Key Laboratory of Hepatobiliary Cancers, Nanjing, Jiangsu, China.
| | - Xuehao Wang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences; NHC Key Laboratory of Hepatobiliary Cancers, Nanjing, Jiangsu, China.
- School of Medicine, Southeast University, Nanjing, Jiangsu, China.
| |
Collapse
|
165
|
Vitale S, Calapà F, Colonna F, Luongo F, Biffoni M, De Maria R, Fiori ME. Advancements in 3D In Vitro Models for Colorectal Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2405084. [PMID: 38962943 PMCID: PMC11348154 DOI: 10.1002/advs.202405084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Indexed: 07/05/2024]
Abstract
The process of drug discovery and pre-clinical testing is currently inefficient, expensive, and time-consuming. Most importantly, the success rate is unsatisfactory, as only a small percentage of tested drugs are made available to oncological patients. This is largely due to the lack of reliable models that accurately predict drug efficacy and safety. Even animal models often fail to replicate human-specific pathologies and human body's complexity. These factors, along with ethical concerns regarding animal use, urge the development of suitable human-relevant, translational in vitro models.
Collapse
Affiliation(s)
- Sara Vitale
- Department of Oncology and Molecular Medicine (OMM)Istituto Superiore di SanitàViale Regina Elena 299Rome00161Italy
| | - Federica Calapà
- Dipartimento di Medicina e Chirurgia traslazionaleUniversità Cattolica del Sacro CuoreLargo F. Vito 1RomeItaly
| | - Francesca Colonna
- Department of Oncology and Molecular Medicine (OMM)Istituto Superiore di SanitàViale Regina Elena 299Rome00161Italy
| | - Francesca Luongo
- Dipartimento di Medicina e Chirurgia traslazionaleUniversità Cattolica del Sacro CuoreLargo F. Vito 1RomeItaly
| | - Mauro Biffoni
- Department of Oncology and Molecular Medicine (OMM)Istituto Superiore di SanitàViale Regina Elena 299Rome00161Italy
| | - Ruggero De Maria
- Dipartimento di Medicina e Chirurgia traslazionaleUniversità Cattolica del Sacro CuoreLargo F. Vito 1RomeItaly
- Fondazione Policlinico Universitario “A. Gemelli” – IRCCSLargo F. Vito 1RomeItaly
| | - Micol E. Fiori
- Department of Oncology and Molecular Medicine (OMM)Istituto Superiore di SanitàViale Regina Elena 299Rome00161Italy
| |
Collapse
|
166
|
Abstract
Metastasis is the ultimate and often lethal stage of cancer. Metastasis occurs in three phases that may vary across individuals: First, dissemination from the primary tumor. Second, tumor dormancy at the metastatic site where micrometastatic cancer cells remain quiescent or, in dynamic cycles of proliferation and elimination, remaining clinically undetectable. Finally, cancer cells are able to overcome microenvironmental constraints for outgrowth, or the formation of clinically detectable macrometastases that colonize distant organs and are largely incurable. A variety of approaches have been used to model metastasis to elucidate molecular mechanisms and identify putative therapeutic targets. In particular, metastatic dormancy has been challenging to model in vivo due to the sparse numbers of cancer cells in micrometastasis nodules and the long latency times required for tumor outgrowth. Here, we review state-of-the art genetically engineered mouse, syngeneic, and patient-derived xenograft approaches for modeling metastasis and dormancy. We describe the advantages and limitations of various metastasis models, novel findings enabled by such approaches, and highlight opportunities for future improvement.
Collapse
Affiliation(s)
- Ahmed Mahmoud
- Program in Pharmacology, Weill Cornell Graduate School of Medical Sciences, New York, New York 10065, USA
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Karuna Ganesh
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| |
Collapse
|
167
|
Ehlen L, Schmueck-Henneresse M. The rise of patient avatars in precision oncology. Nat Biotechnol 2024; 42:1173-1174. [PMID: 39060349 DOI: 10.1038/s41587-024-02335-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Affiliation(s)
- Lukas Ehlen
- Berlin Institute of Health (BIH) at Charité - Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Experimental Immunotherapy, Berlin, Germany.
- Department of Anesthesiology and Intensive Care Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany.
| | - Michael Schmueck-Henneresse
- Berlin Institute of Health (BIH) at Charité - Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Experimental Immunotherapy, Berlin, Germany.
| |
Collapse
|
168
|
Wang G, Mao X, Wang W, Wang X, Li S, Wang Z. Bioprinted research models of urological malignancy. EXPLORATION (BEIJING, CHINA) 2024; 4:20230126. [PMID: 39175884 PMCID: PMC11335473 DOI: 10.1002/exp.20230126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 01/08/2024] [Indexed: 08/24/2024]
Abstract
Urological malignancy (UM) is among the leading threats to health care worldwide. Recent years have seen much investment in fundamental UM research, including mechanistic investigation, early diagnosis, immunotherapy, and nanomedicine. However, the results are not fully satisfactory. Bioprinted research models (BRMs) with programmed spatial structures and functions can serve as powerful research tools and are likely to disrupt traditional UM research paradigms. Herein, a comprehensive review of BRMs of UM is presented. It begins with a brief introduction and comparison of existing UM research models, emphasizing the advantages of BRMs, such as modeling real tissues and organs. Six kinds of mainstream bioprinting techniques used to fabricate such BRMs are summarized with examples. Thereafter, research advances in the applications of UM BRMs, such as culturing tumor spheroids and organoids, modeling cancer metastasis, mimicking the tumor microenvironment, constructing organ chips for drug screening, and isolating circulating tumor cells, are comprehensively discussed. At the end of this review, current challenges and future development directions of BRMs and UM are highlighted from the perspective of interdisciplinary science.
Collapse
Affiliation(s)
- Guanyi Wang
- Department of UrologyCancer Precision Diagnosis and Treatment and Translational Medicine Hubei Engineering Research CenterZhongnan Hospital of Wuhan UniversityWuhanChina
- Department of Biomedical Engineering and Hubei Province Key Laboratory of Allergy and Immune Related DiseaseTaiKang Medical School (School of Basic Medical Sciences)Wuhan UniversityWuhanChina
| | - Xiongmin Mao
- Department of UrologyCancer Precision Diagnosis and Treatment and Translational Medicine Hubei Engineering Research CenterZhongnan Hospital of Wuhan UniversityWuhanChina
| | - Wang Wang
- Department of UrologyCancer Precision Diagnosis and Treatment and Translational Medicine Hubei Engineering Research CenterZhongnan Hospital of Wuhan UniversityWuhanChina
| | - Xiaolong Wang
- Lewis Katz School of MedicineTemple UniversityPhiladelphiaPennsylvaniaUSA
| | - Sheng Li
- Department of UrologyCancer Precision Diagnosis and Treatment and Translational Medicine Hubei Engineering Research CenterZhongnan Hospital of Wuhan UniversityWuhanChina
| | - Zijian Wang
- Department of UrologyCancer Precision Diagnosis and Treatment and Translational Medicine Hubei Engineering Research CenterZhongnan Hospital of Wuhan UniversityWuhanChina
- Department of Biomedical Engineering and Hubei Province Key Laboratory of Allergy and Immune Related DiseaseTaiKang Medical School (School of Basic Medical Sciences)Wuhan UniversityWuhanChina
| |
Collapse
|
169
|
Polak R, Zhang ET, Kuo CJ. Cancer organoids 2.0: modelling the complexity of the tumour immune microenvironment. Nat Rev Cancer 2024; 24:523-539. [PMID: 38977835 DOI: 10.1038/s41568-024-00706-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/09/2024] [Indexed: 07/10/2024]
Abstract
The development of neoplasia involves a complex and continuous interplay between malignantly transformed cells and the tumour microenvironment (TME). Cancer immunotherapies targeting the immune TME have been increasingly validated in clinical trials but response rates vary substantially between tumour histologies and are often transient, idiosyncratic and confounded by resistance. Faithful experimental models of the patient-specific tumour immune microenvironment, capable of recapitulating tumour biology and immunotherapy effects, would greatly improve patient selection, target identification and definition of resistance mechanisms for immuno-oncology therapeutics. In this Review, we discuss currently available and rapidly evolving 3D tumour organoid models that capture important immune features of the TME. We highlight diverse opportunities for organoid-based investigations of tumour immunity, drug development and precision medicine.
Collapse
Affiliation(s)
- Roel Polak
- Department of Medicine, Division of Hematology, Stanford University School of Medicine, Stanford, CA, USA
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
| | - Elisa T Zhang
- Department of Medicine, Division of Hematology, Stanford University School of Medicine, Stanford, CA, USA
| | - Calvin J Kuo
- Department of Medicine, Division of Hematology, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
170
|
Khorsandi D, Yang JW, Foster S, Khosravi S, Hoseinzadeh N, Zarei F, Lee YB, Runa F, Gangrade A, Voskanian L, Adnan D, Zhu Y, Wang Z, Jucaud V, Dokmeci MR, Shen X, Bishehsari F, Kelber JA, Khademhosseini A, de Barros NR. Patient-Derived Organoids as Therapy Screening Platforms in Cancer Patients. Adv Healthc Mater 2024; 13:e2302331. [PMID: 38359321 PMCID: PMC11324859 DOI: 10.1002/adhm.202302331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 11/28/2023] [Indexed: 02/17/2024]
Abstract
Patient-derived organoids (PDOs) developed ex vivo and in vitro are increasingly used for therapeutic screening. They provide a more physiologically relevant model for drug discovery and development compared to traditional cell lines. However, several challenges remain to be addressed to fully realize the potential of PDOs in therapeutic screening. This paper summarizes recent advancements in PDO development and the enhancement of PDO culture models. This is achieved by leveraging materials engineering and microfabrication technologies, including organs-on-a-chip and droplet microfluidics. Additionally, this work discusses the application of PDOs in therapy screening to meet diverse requirements and overcome bottlenecks in cancer treatment. Furthermore, this work introduces tools for data processing and analysis of organoids, along with their microenvironment. These tools aim to achieve enhanced readouts. Finally, this work explores the challenges and future perspectives of using PDOs in drug development and personalized screening for cancer patients.
Collapse
Affiliation(s)
- Danial Khorsandi
- Terasaki Institute for Biomedical Innovation (TIBI), 1018 Westwood Blvd, Los Angeles, California, USA
| | - Jia-Wei Yang
- Terasaki Institute for Biomedical Innovation (TIBI), 1018 Westwood Blvd, Los Angeles, California, USA
| | - Samuel Foster
- Terasaki Institute for Biomedical Innovation (TIBI), 1018 Westwood Blvd, Los Angeles, California, USA
| | - Safoora Khosravi
- Terasaki Institute for Biomedical Innovation (TIBI), 1018 Westwood Blvd, Los Angeles, California, USA
| | - Negar Hoseinzadeh
- Terasaki Institute for Biomedical Innovation (TIBI), 1018 Westwood Blvd, Los Angeles, California, USA
| | - Fahimeh Zarei
- Terasaki Institute for Biomedical Innovation (TIBI), 1018 Westwood Blvd, Los Angeles, California, USA
| | - Yun Bin Lee
- Terasaki Institute for Biomedical Innovation (TIBI), 1018 Westwood Blvd, Los Angeles, California, USA
| | - Farhana Runa
- California State University Northridge, 18111 Nordhoff Street, Northridge, California, USA
| | - Ankit Gangrade
- Terasaki Institute for Biomedical Innovation (TIBI), 1018 Westwood Blvd, Los Angeles, California, USA
| | - Leon Voskanian
- Terasaki Institute for Biomedical Innovation (TIBI), 1018 Westwood Blvd, Los Angeles, California, USA
| | - Darbaz Adnan
- Rush Center for Integrated Microbiome and Chronobiology Research, Rush Medical College, Rush University Medical Center, Chicago, IL, 60612, USA
| | - Yangzhi Zhu
- Terasaki Institute for Biomedical Innovation (TIBI), 1018 Westwood Blvd, Los Angeles, California, USA
| | - Zhaohui Wang
- Terasaki Institute for Biomedical Innovation (TIBI), 1018 Westwood Blvd, Los Angeles, California, USA
- Department of Pathology, Duke University School of Medicine, Durham, NC, 27710 USA
| | - Vadim Jucaud
- Terasaki Institute for Biomedical Innovation (TIBI), 1018 Westwood Blvd, Los Angeles, California, USA
| | - Mehmet Remzi Dokmeci
- Terasaki Institute for Biomedical Innovation (TIBI), 1018 Westwood Blvd, Los Angeles, California, USA
| | - Xiling Shen
- Terasaki Institute for Biomedical Innovation (TIBI), 1018 Westwood Blvd, Los Angeles, California, USA
| | - Faraz Bishehsari
- Rush Center for Integrated Microbiome and Chronobiology Research, Rush Medical College, Rush University Medical Center, Chicago, IL, 60612, USA
- Division of Digestive Diseases, Rush Center for Integrated Microbiome & Chronobiology Research, Rush University Medical Center, Chicago, IL, 60612, USA
| | - Jonathan A. Kelber
- California State University Northridge, 18111 Nordhoff Street, Northridge, California, USA
- Baylor University, 101 Bagby Ave, Waco, Texas, USA
| | - Ali Khademhosseini
- Terasaki Institute for Biomedical Innovation (TIBI), 1018 Westwood Blvd, Los Angeles, California, USA
| | - Natan Roberto de Barros
- Terasaki Institute for Biomedical Innovation (TIBI), 1018 Westwood Blvd, Los Angeles, California, USA
| |
Collapse
|
171
|
Yu J, Wang K, Tang Y, Zheng D. Applications and perspectives of tumor organoids in radiobiology (Review). Oncol Rep 2024; 52:100. [PMID: 38904192 PMCID: PMC11223011 DOI: 10.3892/or.2024.8759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 06/10/2024] [Indexed: 06/22/2024] Open
Abstract
Radiotherapy exhibits significant versatility and efficacy in cancer treatment, thereby playing a crucial role in the field of oncology. However, there remains an urgent need for extensive research on various aspects of radiotherapy, including target selection, damage repair and its combination with immunotherapy. Particularly, the development of in vitro models to replicate in vivo tumor lesion responses is vital. The present study provides a thorough review of the establishment and application of tumor organoids in radiotherapy, aiming to explore their potential impact on cancer treatment.
Collapse
Affiliation(s)
- Jin Yu
- Department of Hematology, Panzhihua Central Hospital, Panzhihua, Sichuan 617067, P.R. China
| | - Kailun Wang
- Emergency Department, Panshihua Central Hospital, Panzhihua, Sichuan 617067, P.R. China
| | - Yongjiang Tang
- Department of Vascular Surgery, Panzhihua Central Hospital, Panzhihua, Sichuan 617067, P.R. China
| | - Dalin Zheng
- Department of Hematology, Panzhihua Central Hospital, Panzhihua, Sichuan 617067, P.R. China
| |
Collapse
|
172
|
Kim R, Sung JH. Recent Advances in Gut- and Gut-Organ-Axis-on-a-Chip Models. Adv Healthc Mater 2024; 13:e2302777. [PMID: 38243887 DOI: 10.1002/adhm.202302777] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 12/21/2023] [Indexed: 01/22/2024]
Abstract
The human gut extracts nutrients from the diet while forming the largest barrier against the outer environment. In addition, the gut actively maintains homeostasis through intricate interactions with the gut microbes, the immune system, the enteric nervous system, and other organs. These interactions influence digestive health and, furthermore, play crucial roles in systemic health and disease. Given its primary role in absorbing and metabolizing orally administered drugs, there is significant interest in the development of preclinical in vitro model systems that can accurately emulate the intestine in vivo. A gut-on-a-chip system holds great potential as a testing and screening platform because of its ability to emulate the physiological aspects of in vivo tissues and expandability to incorporate and combine with other organs. This review aims to identify the key physiological features of the human gut that need to be incorporated to build more accurate preclinical models and highlights the recent progress in gut-on-a-chip systems and competing technologies toward building more physiologically relevant preclinical model systems. Furthermore, various efforts to construct multi-organ systems with the gut, called gut-organ-axis-on-a-chip models, are discussed. In vitro gut models with physiological relevance can provide valuable platforms for bridging the gap between preclinical and clinical studies.
Collapse
Affiliation(s)
- Raehyun Kim
- Department of Biological and Chemical Engineering, Hongik University, Sejong, 30016, Republic of Korea
| | - Jong Hwan Sung
- Department of Chemical Engineering, Hongik University, Seoul, 04066, Republic of Korea
| |
Collapse
|
173
|
Wang Z, Hulikova A, Swietach P. Innovating cancer drug discovery with refined phenotypic screens. Trends Pharmacol Sci 2024; 45:723-738. [PMID: 39013672 DOI: 10.1016/j.tips.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/10/2024] [Accepted: 06/17/2024] [Indexed: 07/18/2024]
Abstract
Before molecular pathways in cancer were known to a depth that could predict targets, drug development relied on phenotypic screening, where the effectiveness of candidate chemicals is judged from functional readouts without considering the mechanisms of action. The unraveling of tumor-specific pathways has brought targets for molecularly driven drug discovery, but precedents in the field have shown that awareness of pathways does not necessarily predict therapeutic efficacy, and many cancers still lack druggable targets. Phenotypic screening therefore retains a niche in drug development where a targeted approach is not informative. We analyze the unique advantages of phenotypic screens, and how technological advances have improved their discovery power. Notable advances include the use of larger biological panels and refined protocols that address the disease-relevance and increase data content with imaging and omic approaches.
Collapse
Affiliation(s)
- Zhenyi Wang
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Sherrington Building, Parks Road, Oxford OX1 3PT, UK
| | - Alzbeta Hulikova
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Sherrington Building, Parks Road, Oxford OX1 3PT, UK
| | - Pawel Swietach
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Sherrington Building, Parks Road, Oxford OX1 3PT, UK.
| |
Collapse
|
174
|
Safri F, Nguyen R, Zerehpooshnesfchi S, George J, Qiao L. Heterogeneity of hepatocellular carcinoma: from mechanisms to clinical implications. Cancer Gene Ther 2024; 31:1105-1112. [PMID: 38499648 PMCID: PMC11327108 DOI: 10.1038/s41417-024-00764-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/06/2024] [Accepted: 03/08/2024] [Indexed: 03/20/2024]
Abstract
Hepatocellular Carcinoma (HCC) is one of the most common types of primary liver cancer. Current treatment options have limited efficacy against this malignancy, primarily owing to difficulties in early detection and the inherent resistance to existing drugs. Tumor heterogeneity is a pivotal factor contributing significantly to treatment resistance and recurrent manifestations of HCC. Intratumoral heterogeneity is an important aspect of the spectrum of complex tumor heterogeneity and contributes to late diagnosis and treatment failure. Therefore, it is crucial to thoroughly understand the molecular mechanisms of how tumor heterogeneity develops. This review aims to summarize the possible molecular dimensions of tumor heterogeneity with an emphasis on intratumoral heterogeneity, evaluate its profound impact on the diagnosis and therapeutic strategies for HCC, and explore the suitability of appropriate pre-clinical models that can be used to best study tumor heterogeneity; thus, opening new avenues for cancer treatment.
Collapse
Affiliation(s)
- Fatema Safri
- Storr Liver Centre, The Westmead Institute for Medical Research, The University of Sydney, Westmead, NSW, 2145, Australia
| | - Romario Nguyen
- Storr Liver Centre, The Westmead Institute for Medical Research, The University of Sydney, Westmead, NSW, 2145, Australia
| | - Shadi Zerehpooshnesfchi
- Storr Liver Centre, The Westmead Institute for Medical Research, The University of Sydney, Westmead, NSW, 2145, Australia
| | - Jacob George
- Storr Liver Centre, The Westmead Institute for Medical Research, The University of Sydney, Westmead, NSW, 2145, Australia.
| | - Liang Qiao
- Storr Liver Centre, The Westmead Institute for Medical Research, The University of Sydney, Westmead, NSW, 2145, Australia.
| |
Collapse
|
175
|
Wang J, Sui Z, Huang W, Yu Z, Guo L. Biomimetic hydrogels with mesoscale collagen architecture for patient-derived tumor organoids culture. Bioact Mater 2024; 38:384-398. [PMID: 38764448 PMCID: PMC11101944 DOI: 10.1016/j.bioactmat.2024.04.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 04/29/2024] [Accepted: 04/30/2024] [Indexed: 05/21/2024] Open
Abstract
Patient-derived tumor organoids (PDTOs) shows great potential as a preclinical model. However, the current methods for establishing PDTOs primarily focus on modulating local properties, such as sub-micrometer topographies. Nevertheless, they neglect to capture the global millimeter or intermediate mesoscale architecture that have been demonstrated to influence tumor response to therapeutic treatment and tumor progression. In this study, we present a rapid technique for generating collagen bundles with an average length of 90 ± 27 μm and a mean diameter of 5 ± 1.5 μm from tumor tissue debris that underwent mechanical agitation following enzymatic digestion. The collagen bundles were subsequently utilized for the fabrication of biomimetic hydrogels, incorporating microbial transglutaminase (mTG) crosslinked gelatin. These biomimetic hydrogels, referred to as MC-gel, were specifically designed for patient-derived tumor organoids. The lung cancer organoids cultured in MC-gel exhibited larger diameters and higher cell viability compared to those cultured in gels lacking the mesoscale collagen bundle; moreover, their irregular morphology more closely resembled that observed in vivo. The MC-gel-based lung cancer organoids effectively replicated the histology and mutational landscapes observed in the original donor patient's tumor tissue. Additionally, these lung cancer organoids showed a remarkable similarity in their gene expression and drug response across different matrices. This recently developed model holds great potential for investigating the occurrence, progression, metastasis, and management of tumors, thereby offering opportunities for personalized medicine and customized treatment options.
Collapse
Affiliation(s)
- Jiaxin Wang
- Shenzhen Key Laboratory of Epigenetics and Precision Medicine for Cancers, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academic of Medical Sciences & Peking Union Medical College, Shenzhen, 518116, China
| | - Zhilin Sui
- Shenzhen Key Laboratory of Epigenetics and Precision Medicine for Cancers, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academic of Medical Sciences & Peking Union Medical College, Shenzhen, 518116, China
| | - Wei Huang
- Center for Cell and Gene Circuit Design, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, Guangdong, China
- Department of Biology, Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen, China
| | - Zhentao Yu
- Shenzhen Key Laboratory of Epigenetics and Precision Medicine for Cancers, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academic of Medical Sciences & Peking Union Medical College, Shenzhen, 518116, China
| | - Ling Guo
- Shenzhen Key Laboratory of Epigenetics and Precision Medicine for Cancers, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academic of Medical Sciences & Peking Union Medical College, Shenzhen, 518116, China
- Department of Biology, Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
176
|
Toh TB, Thng DKH, Bolem N, Vellayappan BA, Tan BWQ, Shen Y, Soon SY, Ang YLE, Dinesh N, Teo K, Nga VDW, Low SW, Khong PL, Chow EKH, Ho D, Yeo TT, Wong ALA. Evaluation of ex vivo drug combination optimization platform in recurrent high grade astrocytic glioma: An interventional, non-randomized, open-label trial protocol. PLoS One 2024; 19:e0307818. [PMID: 39058662 PMCID: PMC11280195 DOI: 10.1371/journal.pone.0307818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
INTRODUCTION High grade astrocytic glioma (HGG) is a lethal solid malignancy with high recurrence rates and limited survival. While several cytotoxic agents have demonstrated efficacy against HGG, drug sensitivity testing platforms to aid in therapy selection are lacking. Patient-derived organoids (PDOs) have been shown to faithfully preserve the biological characteristics of several cancer types including HGG, and coupled with the experimental-analytical hybrid platform Quadratic Phenotypic Optimization Platform (QPOP) which evaluates therapeutic sensitivity at a patient-specific level, may aid as a tool for personalized medical decisions to improve treatment outcomes for HGG patients. METHODS This is an interventional, non-randomized, open-label study, which aims to enroll 10 patients who will receive QPOP-guided chemotherapy at the time of first HGG recurrence following progression on standard first-line therapy. At the initial presentation of HGG, tumor will be harvested for primary PDO generation during the first biopsy/surgery. At the point of tumor recurrence, patients will be enrolled onto the main study to receive systemic therapy as second-line treatment. Subjects who undergo surgery at the time of recurrence will have a second harvest of tissue for PDO generation. Established PDOs will be subject to QPOP analyses to determine their therapeutic sensitivities to specific panels of drugs. A QPOP-guided treatment selection algorithm will then be used to select the most appropriate drug combination. The primary endpoint of the study is six-month progression-free survival. The secondary endpoints include twelve-month overall survival, RANO criteria and toxicities. In our radiological biomarker sub-study, we plan to evaluate novel radiopharmaceutical-based neuroimaging in determining blood-brain barrier permeability and to assess in vivo drug effects on tumor vasculature over time. TRIAL REGISTRATION This trial was registered on 8th September 2022 with ClinicalTrials.gov Identifier: NCT05532397.
Collapse
Affiliation(s)
- Tan Boon Toh
- The N.1 Institute for Health (N.1), National University of Singapore, Singapore, Singapore
- The Institute for Digital Medicine (WisDM), National University of Singapore, Singapore, Singapore
| | - Dexter Kai Hao Thng
- The N.1 Institute for Health (N.1), National University of Singapore, Singapore, Singapore
- Cancer Science Institute of Singapore (CSI), National University of Singapore, Singapore, Singapore
| | - Nagarjun Bolem
- Division of Neurosurgery, Department of Surgery, National University Hospital, Singapore, Singapore
| | | | - Bryce Wei Quan Tan
- Cancer Science Institute of Singapore (CSI), National University of Singapore, Singapore, Singapore
| | - Yating Shen
- The N.1 Institute for Health (N.1), National University of Singapore, Singapore, Singapore
- Cancer Science Institute of Singapore (CSI), National University of Singapore, Singapore, Singapore
| | - Sou Yen Soon
- Department of Haematology-Oncology, National University Hospital, Singapore, Singapore
| | - Yvonne Li En Ang
- Department of Haematology-Oncology, National University Hospital, Singapore, Singapore
| | - Nivedh Dinesh
- Division of Neurosurgery, Department of Surgery, National University Hospital, Singapore, Singapore
| | - Kejia Teo
- Division of Neurosurgery, Department of Surgery, National University Hospital, Singapore, Singapore
| | - Vincent Diong Weng Nga
- Division of Neurosurgery, Department of Surgery, National University Hospital, Singapore, Singapore
| | - Shiong Wen Low
- Division of Neurological Surgery, Ng Teng Fong General Hospital, Singapore, Singapore
| | - Pek Lan Khong
- Department of Diagnostic Imaging, National University Hospital, Singapore, Singapore
- Clinical Imaging Research Centre (CIRC), National University of Singapore, Singapore, Singapore
| | - Edward Kai-Hua Chow
- The N.1 Institute for Health (N.1), National University of Singapore, Singapore, Singapore
- The Institute for Digital Medicine (WisDM), National University of Singapore, Singapore, Singapore
- Cancer Science Institute of Singapore (CSI), National University of Singapore, Singapore, Singapore
| | - Dean Ho
- The N.1 Institute for Health (N.1), National University of Singapore, Singapore, Singapore
- The Institute for Digital Medicine (WisDM), National University of Singapore, Singapore, Singapore
| | - Tseng Tsai Yeo
- Division of Neurosurgery, Department of Surgery, National University Hospital, Singapore, Singapore
| | - Andrea Li Ann Wong
- Cancer Science Institute of Singapore (CSI), National University of Singapore, Singapore, Singapore
- Department of Haematology-Oncology, National University Hospital, Singapore, Singapore
| |
Collapse
|
177
|
van der Graaff D, Seghers S, Vanclooster P, Deben C, Vandamme T, Prenen H. Advancements in Research and Treatment Applications of Patient-Derived Tumor Organoids in Colorectal Cancer. Cancers (Basel) 2024; 16:2671. [PMID: 39123399 PMCID: PMC11311786 DOI: 10.3390/cancers16152671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 07/20/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024] Open
Abstract
Colorectal cancer (CRC) remains a significant health burden globally, being the second leading cause of cancer-related mortality. Despite significant therapeutic advancements, resistance to systemic antineoplastic agents remains an important obstacle, highlighting the need for innovative screening tools to tailor patient-specific treatment. This review explores the application of patient-derived tumor organoids (PDTOs), three-dimensional, self-organizing models derived from patient tumor samples, as screening tools for drug resistance in CRC. PDTOs offer unique advantages over traditional models by recapitulating the tumor architecture, cellular heterogeneity, and genomic landscape and are a valuable ex vivo predictive drug screening tool. This review provides an overview of the current literature surrounding the use of PDTOs as an instrument for predicting therapy responses in CRC. We also explore more complex models, such as co-cultures with important stromal cells, such as cancer-associated fibroblasts, and organ-on-a-chip models. Furthermore, we discuss the use of PDTOs for drug repurposing, offering a new approach to identify the existing drugs effective against drug-resistant CRC. Additionally, we explore how PDTOs serve as models to gain insights into drug resistance mechanisms, using newer techniques, such as single-cell RNA sequencing and CRISPR-Cas9 genome editing. Through this review, we aim to highlight the potential of PDTOs in advancing our understanding of predicting therapy responses, drug resistance, and biomarker identification in CRC management.
Collapse
Affiliation(s)
| | - Sofie Seghers
- Department of Medical Oncology, University Hospital Antwerp, 2650 Edegem, Belgium
- Center for Oncological Research (CORE), University of Antwerp, 2610 Wilrijk, Belgium
| | | | - Christophe Deben
- Center for Oncological Research (CORE), University of Antwerp, 2610 Wilrijk, Belgium
| | - Timon Vandamme
- Department of Medical Oncology, University Hospital Antwerp, 2650 Edegem, Belgium
- Center for Oncological Research (CORE), University of Antwerp, 2610 Wilrijk, Belgium
| | - Hans Prenen
- Department of Medical Oncology, University Hospital Antwerp, 2650 Edegem, Belgium
- Center for Oncological Research (CORE), University of Antwerp, 2610 Wilrijk, Belgium
| |
Collapse
|
178
|
Majumder B, Nataraj NB, Maitreyi L, Datta S. Mismatch repair-proficient tumor footprints in the sands of immune desert: mechanistic constraints and precision platforms. Front Immunol 2024; 15:1414376. [PMID: 39100682 PMCID: PMC11294168 DOI: 10.3389/fimmu.2024.1414376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 06/17/2024] [Indexed: 08/06/2024] Open
Abstract
Mismatch repair proficient (MMRp) tumors of colorectal origin are one of the prevalent yet unpredictable clinical challenges. Despite earnest efforts, optimal treatment modalities have yet to emerge for this class. The poor prognosis and limited actionability of MMRp are ascribed to a low neoantigen burden and a desert-like microenvironment. This review focuses on the critical roadblocks orchestrated by an immune evasive mechanistic milieu in the context of MMRp. The low density of effector immune cells, their weak spatiotemporal underpinnings, and the high-handedness of the IL-17-TGF-β signaling are intertwined and present formidable challenges for the existing therapies. Microbiome niche decorated by Fusobacterium nucleatum alters the metabolic program to maintain an immunosuppressive state. We also highlight the evolving strategies to repolarize and reinvigorate this microenvironment. Reconstruction of anti-tumor chemokine signaling, rational drug combinations eliciting T cell activation, and reprograming the maladapted microbiome are exciting developments in this direction. Alternative vulnerability of other DNA damage repair pathways is gaining momentum. Integration of liquid biopsy and ex vivo functional platforms provide precision oncology insights. We illustrated the perspectives and changing landscape of MMRp-CRC. The emerging opportunities discussed in this review can turn the tide in favor of fighting the treatment dilemma for this elusive cancer.
Collapse
|
179
|
Wang W, Wang H. Modular formation of in vitro tumor models for oncological research/therapeutic drug screening. Adv Cancer Res 2024; 163:223-250. [PMID: 39271264 DOI: 10.1016/bs.acr.2024.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
In recognition of the lethal nature of cancer, extensive efforts have been made to understand the mechanistic causation while identifying the effective therapy modality in hope to eradicate cancerous cells with minimal damage to healthy cells. In search of such effective therapeutics, establishing pathophysiologically relevant in vitro models would be of importance in empowering our capabilities of truly identifying those potent ones with significantly reduction of the preclinical periods for rapid translation. In this regard, wealthy progresses have been achieved over past decades in establishing various in vitro and in vivo tumor models. Ideally, the tumor models should maximally recapture the key pathophysiological attributes of their native counterparts. Many of the current models have demonstrated their utilities but also showed some noticeable limitations. This book chapter will briefly review some of the mainstream platforms for in vitro tumor models followed by detailed elaboration on the modular strategies to form in vitro tumor models with complex structures and spatial organization of cellular components. Clearly, with the ability to modulate the building modules it becomes a new trend to form in vitro tumor models following a bottom-up approach, which offers a high flexibility to satisfy the needs for pathophysiological study, anticancer drug screening or design of personalized treatment.
Collapse
Affiliation(s)
- Weiwei Wang
- Department of Biomedical Engineering, Stevens Institute of Technology, Hoboken, NJ, United States; School of Life Sciences, Yantai University, Yantai, Shandong, P.R. China
| | - Hongjun Wang
- Department of Biomedical Engineering, Stevens Institute of Technology, Hoboken, NJ, United States; Semcer Center for Healthcare Innovation, Stevens Institute of Technology, Hoboken, NJ, United States.
| |
Collapse
|
180
|
Tao XY, Li QQ, Zeng Y. Clinical application of liquid biopsy in colorectal cancer: detection, prediction, and treatment monitoring. Mol Cancer 2024; 23:145. [PMID: 39014366 PMCID: PMC11250976 DOI: 10.1186/s12943-024-02063-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 07/09/2024] [Indexed: 07/18/2024] Open
Abstract
Colorectal cancer (CRC) is one of the most prevalent malignancies affecting the gastrointestinal tract and is ranked third among cancers with the highest incidence and second-highest mortality rate worldwide. CRC exhibits a slow progression providing a wide treatment window. The currently employed CRC screening methods have shown great potential to prevent CRC and reduce CRC-related morbidity and mortality. The diagnosis of CRC is achieved by colonoscopy and tissue biopsy, with studies showing that liquid biopsy is more effective in detecting and diagnosing early CRC patients. Increasing number of studies have shown that the tumor components shed into circulating blood can be detected in liquid form, and can be applied in the clinical management of CRC. Analysis of circulating tumor cells (CTCs), circulating tumor DNA (ctDNA), or tumor-associated platelets (TEPs) in the blood can be used for early screening and diagnosis of CRC, aid tumor staging, treatment response monitoring, and prediction of CRC recurrence and metastasis in a minimally invasive manner. This chapter provides an updated review of CTCs, ctDNA, and TEPs as novel biomarkers for CRC, highlighting their strengths and limitations.
Collapse
Affiliation(s)
- Xiang-Yuan Tao
- Translational Medicine Center, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- School of Pharmacy, University of South China, Hengyang, China
| | - Qian-Qian Li
- Translational Medicine Center, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- School of Pharmacy, University of South China, Hengyang, China
| | - Yong Zeng
- Translational Medicine Center, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.
- School of Pharmacy, University of South China, Hengyang, China.
| |
Collapse
|
181
|
Zhao Y, Li S, Zhu L, Huang M, Xie Y, Song X, Chen Z, Lau HCH, Sung JJY, Xu L, Yu J, Li X. Personalized drug screening using patient-derived organoid and its clinical relevance in gastric cancer. Cell Rep Med 2024; 5:101627. [PMID: 38964315 PMCID: PMC11293329 DOI: 10.1016/j.xcrm.2024.101627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 03/16/2024] [Accepted: 06/07/2024] [Indexed: 07/06/2024]
Abstract
The efficacy of chemotherapy varies significantly among patients with gastric cancer (GC), and there is currently no effective strategy to predict chemotherapeutic outcomes. In this study, we successfully establish 57 GC patient-derived organoids (PDOs) from 73 patients with GC (78%). These organoids retain histological characteristics of their corresponding primary GC tissues. GC PDOs show varied responses to different chemotherapeutics. Through RNA sequencing, the upregulation of tumor suppression genes/pathways is identified in 5-fluorouracil (FU)- or oxaliplatin-sensitive organoids, whereas genes/pathways associated with proliferation and invasion are enriched in chemotherapy-resistant organoids. Gene expression biomarker panels, which could distinguish sensitive and resistant patients to 5-FU and oxaliplatin (area under the dose-response curve [AUC] >0.8), are identified. Moreover, the drug-response results in PDOs are validated in patient-derived organoids-based xenograft (PDOX) mice and are consistent with the actual clinical response in 91.7% (11/12) of patients with GC. Assessing chemosensitivity in PDOs can be utilized as a valuable tool for screening chemotherapeutic drugs in patients with GC.
Collapse
Affiliation(s)
- Yi Zhao
- Department of Oncology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Shangru Li
- Department of Oncology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Lefan Zhu
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Mingle Huang
- Department of Oncology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yubin Xie
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xinming Song
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhihui Chen
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Harry Cheuk-Hay Lau
- Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Joseph Jao-Yiu Sung
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Lixia Xu
- Department of Oncology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| | - Jun Yu
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong SAR, China.
| | - Xiaoxing Li
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
182
|
Zhang F, Sahu V, Peng K, Wang Y, Li T, Bala P, Aitymbayev D, Sahgal P, Schaefer A, Der CJ, Ryeom S, Yoon S, Sethi N, Bass AJ, Zhang H. Recurrent RhoGAP gene fusion CLDN18-ARHGAP26 promotes RHOA activation and focal adhesion kinase and YAP-TEAD signalling in diffuse gastric cancer. Gut 2024; 73:1280-1291. [PMID: 38621923 PMCID: PMC11287566 DOI: 10.1136/gutjnl-2023-329686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 02/08/2024] [Indexed: 04/17/2024]
Abstract
OBJECTIVE Genomic studies of gastric cancer have identified highly recurrent genomic alterations impacting RHO signalling, especially in the diffuse gastric cancer (DGC) histological subtype. Among these alterations are interchromosomal translations leading to the fusion of the adhesion protein CLDN18 and RHO regulator ARHGAP26. It remains unclear how these fusion constructs impact the activity of the RHO pathway and what is their broader impact on gastric cancer development. Herein, we developed a model to allow us to study the function of this fusion protein in the pathogenesis of DGC and to identify potential therapeutic targets for DGC tumours with these alterations. DESIGN We built a transgenic mouse model with LSL-CLDN18-ARHGAP26 fusion engineered into the Col1A1 locus where its expression can be induced by Cre recombinase. Using organoids generated from this model, we evaluated its oncogenic activity and the biochemical effects of the fusion protein on the RHOA pathway and its downstream cell biological effects in the pathogenesis of DGC. RESULTS We demonstrated that induction of CLDN18-ARHGAP26 expression in gastric organoids induced the formation of signet ring cells, characteristic features of DGC and was able to cooperatively transform gastric cells when combined with the loss of the tumour suppressor geneTrp53. CLDN18-ARHGAP26 promotes the activation of RHOA and downstream effector signalling. Molecularly, the fusion promotes activation of the focal adhesion kinase (FAK) and induction of the YAP pathway. A combination of FAK and YAP/TEAD inhibition can significantly block tumour growth. CONCLUSION These results indicate that the CLDN18-ARHGAP26 fusion is a gain-of-function DGC oncogene that leads to activation of RHOA and activation of FAK and YAP signalling. These results argue for further evaluation of emerging FAK and YAP-TEAD inhibitors for these deadly cancers.
Collapse
Affiliation(s)
- Feifei Zhang
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Varun Sahu
- Department of Medicine, Columbia University Irving Medical Center, New York, New York, USA
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, New York, USA
| | - Ke Peng
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Medical Oncology, Fudan University, Shanghai, China
| | - Yichen Wang
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Tianxia Li
- Department of Medicine, Columbia University Irving Medical Center, New York, New York, USA
| | - Pratyusha Bala
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Daulet Aitymbayev
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Pranshu Sahgal
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Antje Schaefer
- Universty of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Channing J Der
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Sandra Ryeom
- Department of Surgery, Columbia University Irving Medical Center, New York, New York, USA
| | - Sam Yoon
- Department of Surgery, Columbia University Irving Medical Center, New York, New York, USA
| | - Nilay Sethi
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Adam J Bass
- Department of Medicine, Columbia University Irving Medical Center, New York, New York, USA
- Columbia University Vagelos College of Physicians and Surgeons, New York, New York, USA
| | - Haisheng Zhang
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Signet Therapeutics, Shenzhen, China
| |
Collapse
|
183
|
Li D, Zhang R, Le Y, Zhang T, Luo D, Zhang H, Li J, Zhao R, Hu Y, Kong X. Organoid-Based Assessment of Metal-Organic Framework (MOF) Nanomedicines for Ex Vivo Cancer Therapy. ACS APPLIED MATERIALS & INTERFACES 2024; 16:33070-33080. [PMID: 38904394 DOI: 10.1021/acsami.4c05172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Nanomaterials have been extensively exploited in tumor treatment, leading to numerous innovative strategies for cancer therapy. While nanomedicines present immense potential, their application in cancer therapy is characterized by significant complexity and unpredictability, especially regarding biocompatibility and anticancer efficiency. These considerations underscore the essential need for the development of ex vivo research models, which provide invaluable insights and understanding into the biosafety and efficacy of nanomedicines in oncology. Fortunately, the emergence of organoid technology offers a novel approach to the preclinical evaluation of the anticancer efficacy of nanomedicines in vitro. Hence, in this study, we constructed intestine and hepatocyte organoid models (Intestine-orgs and Hep-orgs) for assessing intestinal and hepatic toxicity at the microtissue level. We utilized three typical metal-organic frameworks (MOFs), ZIF-8, ZIF-67, and MIL-125, as nanomedicines to further detect their interactions with organoids. Subsequently, the MIL-125 with biocompatibility loaded methotrexate (MTX), forming the nanomedicine (MIL-125-PEG-MTX), indicated a high loading efficiency (82%) and a well-release capability in an acid microenvironment. More importantly, the anticancer effect of the nanomedicine was investigated using an in vitro patient-derived organoids (PDOs) model, achieving inhibition rates of 48% and 78% for PDO-1 and PDO-2, respectively, demonstrating that PDOs could predict clinical response and facilitate prospective therapeutic selection. These achievements presented great potential for organoid-based ex vivo models for nano theragnostic evaluation in biosafety and function.
Collapse
Affiliation(s)
- Dan Li
- Institute for Smart Biomedical Materials, School of Materials Science & Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
- Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Rui Zhang
- Institute for Smart Biomedical Materials, School of Materials Science & Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
- Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Yinpeng Le
- Institute for Smart Biomedical Materials, School of Materials Science & Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
- Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Ting Zhang
- Institute for Smart Biomedical Materials, School of Materials Science & Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
- Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Dandan Luo
- Institute for Smart Biomedical Materials, School of Materials Science & Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
- Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Han Zhang
- Institute for Smart Biomedical Materials, School of Materials Science & Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
- Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Jun Li
- Department of Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, PR China
| | - Ruibo Zhao
- Institute for Smart Biomedical Materials, School of Materials Science & Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
- Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Yeting Hu
- Department of Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, PR China
| | - Xiangdong Kong
- Institute for Smart Biomedical Materials, School of Materials Science & Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
- Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| |
Collapse
|
184
|
Bond MJG, van Smeden M, Degeling K, Cremolini C, Schmoll HJ, Antoniotti C, Lonardi S, Murgioni S, Rossini D, Ibach S, Koopman M, Swijnenburg RJ, Punt CJA, May AM, Kwakman JJM. Predicting Benefit From FOLFOXIRI Plus Bevacizumab in Patients With Metastatic Colorectal Cancer. JCO Clin Cancer Inform 2024; 8:e2400037. [PMID: 39018510 DOI: 10.1200/cci.24.00037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/18/2024] [Accepted: 05/24/2024] [Indexed: 07/19/2024] Open
Abstract
PURPOSE Patient outcomes may differ from randomized trial averages. We aimed to predict benefit from FOLFOXIRI versus infusional fluorouracil, leucovorin, and oxaliplatin/fluorouracil, leucovorin, and irinotecan (FOLFOX/FOLFIRI), both plus bevacizumab, in patients with metastatic colorectal cancer (mCRC). METHODS A Cox model with prespecified clinical, molecular, and laboratory variables was developed in 639 patients from the TRIBE2 trial for predicting 2-year mortality. Data from the CHARTA (n = 232), TRIBE1 (n = 504), and CAIRO5 (liver-only mCRC, n = 287) trials were used for external validation and heterogeneity of treatment effects (HTE) analysis. This involves categorizing patients into risk groups and assessing treatment effects across these groups. Performance was assessed by the C-index and calibration plots. The C-for-benefit was calculated to assess evidence for HTE. The c-for-benefit is specifically designed for HTE analysis. Like the commonly known c-statistic, it summarizes the discrimination of a model. Values over 0.5 indicate evidence for HTE. RESULTS In TRIBE2, the overoptimism-corrected C-index was 0.66 (95% CI, 0.63 to 0.69). At external validation, the C-index was 0.69 (95% CI, 0.64 to 0.75), 0.68 (95% CI, 0.64 to 0.72), and 0.65 (95% CI, 0.65 to 0.66), in CHARTA, TRIBE1, and CAIRO5, respectively. Calibration plots indicated slight underestimation of mortality. The c-for-benefit indicated evidence for HTE in CHARTA (0.56, 95% CI, 0.48 to 0.65), but not in TRIBE1 (0.49, 95% CI, 0.44 to 0.55) and CAIRO5 (0.40, 95% CI, 0.32 to 0.48). CONCLUSION Although 2-year mortality could be reasonably estimated, the HTE analysis showed that clinically available variables did not reliably identify which patients with mCRC benefit from FOLFOXIRI versus FOLFOX/FOLFIRI, both plus bevacizumab, across the three studies.
Collapse
Affiliation(s)
- Marinde J G Bond
- Department of Epidemiology, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Maarten van Smeden
- Department of Epidemiology, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Koen Degeling
- Cancer Health Services Research, Centre for Cancer Research, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, VIC, Australia
- Cancer Health Services Research, Centre for Health Policy, Melbourne School of Population and Global Health, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, VIC, Australia
| | - Chiara Cremolini
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, University Hospital of Pisa, Pisa, Italy
- Department of Oncology, University Hospital of Pisa, Pisa, Italy
| | - Hans-Joachim Schmoll
- Department of Clinical Hematology-Oncology, University Clinic Halle, Martin Luther University, Halle, Germany
| | - Carlotta Antoniotti
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, University Hospital of Pisa, Pisa, Italy
- Department of Oncology, University Hospital of Pisa, Pisa, Italy
| | - Sara Lonardi
- Department of Oncology, Veneto Institute of Oncology IOV -IRCCS, Padua, Italy
| | - Sabina Murgioni
- Department of Oncology, Veneto Institute of Oncology IOV -IRCCS, Padua, Italy
| | - Daniele Rossini
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, University Hospital of Pisa, Pisa, Italy
- Department of Oncology, University Hospital of Pisa, Pisa, Italy
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Florence, Italy
| | - Stefan Ibach
- X-act Cologne Clinical Research GmbH, Cologne, Germany
| | - Miriam Koopman
- Department of Medical Oncology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Rutger-Jan Swijnenburg
- Department of Surgical Oncology, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, the Netherlands
| | - Cornelis J A Punt
- Department of Epidemiology, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Anne M May
- Department of Epidemiology, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Johannes J M Kwakman
- Department of Medical Oncology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, the Netherlands
| |
Collapse
|
185
|
Mi L, Liu J, Zhang Y, Su A, Tang M, Xing Z, He T, Wei T, Li Z, Wu W. The EPRS-ATF4-COLI pathway axis is a potential target for anaplastic thyroid carcinoma therapy. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 129:155670. [PMID: 38704915 DOI: 10.1016/j.phymed.2024.155670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 03/29/2024] [Accepted: 04/21/2024] [Indexed: 05/07/2024]
Abstract
BACKGROUND Anaplastic thyroid carcinoma (ATC) is recognized as the most aggressive and malignant form of thyroid cancer, underscoring the critical need for effective therapeutic strategies to curb its progression and improve patient prognosis. Halofuginone (HF), a derivative of febrifugine, has displayed antitumor properties across various cancer types. However, there is a paucity of published research focused on the potential of HF to enhance the clinical efficacy of treating ATC. OBJECTIVE In this study, we thoroughly investigated the antitumor effects and mechanisms of HF in ATC, aiming to discover lead compounds for treating ATC and reveal novel therapeutic targets for ATC tumors. METHODS A series of assays, including CCK8, colony formation, tumor xenograft models, and ATC tumor organoid experiments, were conducted to evaluate the anticancer properties of HF both in vitro and in vivo. Techniques such as drug affinity responsive target stability (DARTS), western blot, immunofluorescence, and immunohistochemistry were employed to pinpoint HF target proteins within ATC. Furthermore, we harnessed the GEPIA and GEO databases and performed immunohistochemistry to validate the therapeutic potential of the glutamyl-prolyl-tRNA-synthetase (EPRS)- activating transcription factor 4 (ATF4)- type I collagen (COLI) pathway axis in the context of ATC. The study also incorporated RNA sequencing analysis, confocal imaging, and flow cytometry to delve into the molecular mechanisms of HF in ATC. RESULTS HF exhibited a substantial inhibitory impact on cell proliferation in vitro and on tumor growth in vivo. The DARTS results highlighted HF's influence on EPRS within ATC cells, triggering an amino acid starvation response (AASR) by suppressing EPRS expression, consequently leading to a reduction in COLI expression in ATC cells. The introduction of proline mitigated the effect of HF on ATF4 and COLI expression, indicating that the EPRS-ATF4-COLI pathway axis was a focal target of HF in ATC. Analysis of the expression levels of the EPRS, ATF4, and COLI proteins in thyroid tumors, along with an examination of the relationship between COLI expression and thyroid tumor stage, revealed that HF significantly inhibited the growth of ATC tumor organoids, demonstrating the therapeutic potential of targeting the EPRS-ATF4-COLI pathway axis in ATC. RNA sequencing analysis revealed significant differences in the pathways associated with metastasis and apoptosis between control and HF-treated cells. Transwell assays and flow cytometry experiments provided evidence of the capacity of HF to impede cell migration and induce apoptosis in ATC cells. Furthermore, HF hindered cell metastasis by suppressing the epithelial-mesenchymal transition (EMT) pathway, acting through the inhibition of FAK-AKT-NF-κB/Wnt-β-catenin signaling and restraining angiogenesis via the VEGF pathway. HF also promoted apoptosis through the mitochondrial apoptotic pathway. CONCLUSION This study provided inaugural evidence suggesting that HF could emerge as a promising therapeutic agent for the treatment of ATC. The EPRS-ATF4-COLI pathway axis stood out as a prospective biomarker and therapeutic target for ATC.
Collapse
Affiliation(s)
- Li Mi
- Division of Thyroid Surgery, Department of General Surgery and Laboratory of Thyroid and Parathyroid Disease, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, PR China
| | - Jiaye Liu
- Division of Thyroid Surgery, Department of General Surgery and Laboratory of Thyroid and Parathyroid Disease, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, PR China
| | - Yujie Zhang
- Division of Thyroid Surgery, Department of General Surgery and Laboratory of Thyroid and Parathyroid Disease, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, PR China
| | - Anping Su
- Division of Thyroid Surgery, Department of General Surgery and Laboratory of Thyroid and Parathyroid Disease, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, PR China
| | - Minghai Tang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, PR China
| | - Zhichao Xing
- Division of Thyroid Surgery, Department of General Surgery and Laboratory of Thyroid and Parathyroid Disease, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, PR China
| | - Ting He
- Division of Thyroid Surgery, Department of General Surgery and Laboratory of Thyroid and Parathyroid Disease, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, PR China
| | - Tao Wei
- Division of Thyroid Surgery, Department of General Surgery and Laboratory of Thyroid and Parathyroid Disease, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, PR China
| | - Zhihui Li
- Division of Thyroid Surgery, Department of General Surgery and Laboratory of Thyroid and Parathyroid Disease, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, PR China.
| | - Wenshuang Wu
- Division of Thyroid Surgery, Department of General Surgery and Laboratory of Thyroid and Parathyroid Disease, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, PR China.
| |
Collapse
|
186
|
Thorel L, Perréard M, Florent R, Divoux J, Coffy S, Vincent A, Gaggioli C, Guasch G, Gidrol X, Weiswald LB, Poulain L. Patient-derived tumor organoids: a new avenue for preclinical research and precision medicine in oncology. Exp Mol Med 2024; 56:1531-1551. [PMID: 38945959 PMCID: PMC11297165 DOI: 10.1038/s12276-024-01272-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 03/18/2024] [Accepted: 04/14/2024] [Indexed: 07/02/2024] Open
Abstract
Over the past decade, the emergence of patient-derived tumor organoids (PDTOs) has broadened the repertoire of preclinical models and progressively revolutionized three-dimensional cell culture in oncology. PDTO can be grown from patient tumor samples with high efficiency and faithfully recapitulates the histological and molecular characteristics of the original tumor. Therefore, PDTOs can serve as invaluable tools in oncology research, and their translation to clinical practice is exciting for the future of precision medicine in oncology. In this review, we provide an overview of methods for establishing PDTOs and their various applications in cancer research, starting with basic research and ending with the identification of new targets and preclinical validation of new anticancer compounds and precision medicine. Finally, we highlight the challenges associated with the clinical implementation of PDTO, such as its representativeness, success rate, assay speed, and lack of a tumor microenvironment. Technological developments and autologous cocultures of PDTOs and stromal cells are currently ongoing to meet these challenges and optimally exploit the full potential of these models. The use of PDTOs as standard tools in clinical oncology could lead to a new era of precision oncology in the coming decade.
Collapse
Grants
- AP-RM-19-020 Fondation de l'Avenir pour la Recherche Médicale Appliquée (Fondation de l'Avenir)
- PJA20191209649 Fondation ARC pour la Recherche sur le Cancer (ARC Foundation for Cancer Research)
- TRANSPARANCE Fondation ARC pour la Recherche sur le Cancer (ARC Foundation for Cancer Research)
- TRANSPARANCE Ligue Contre le Cancer
- ORGAPRED Ligue Contre le Cancer
- 3D-Hub Canceropôle PACA (Canceropole PACA)
- Pré-néo 2019-188 Institut National Du Cancer (French National Cancer Institute)
- Conseil Régional de Haute Normandie (Upper Normandy Regional Council)
- GIS IBiSA, Cancéropôle Nord-Ouest (ORGRAFT project), the Groupement des Entreprises Françaises dans la Lutte contre le Cancer (ORGAVADS project), the Fonds de dotation Patrick de Brou de Laurière (ORGAVADS project),and Normandy County Council (ORGATHEREX project).
- GIS IBiSA, Cancéropôle Nord-Ouest (OrgaNO project), Etat-région
- GIS IBiSA, Region Sud
- GIS IBiSA, Cancéropôle Nord-Ouest (OrgaNO project), and Normandy County Council (ORGAPRED, PLATONUS ONE, POLARIS, and EQUIP’INNOV projects).
Collapse
Affiliation(s)
- Lucie Thorel
- INSERM U1086 ANTICIPE (Interdisciplinary Research Unit for Cancers Prevention and Treatment), BioTICLA Laboratory (Precision Medicine for Ovarian Cancers), Université de Caen Normandie, Caen, France
- Comprehensive Cancer Center François Baclesse, UNICANCER, Caen, France
| | - Marion Perréard
- INSERM U1086 ANTICIPE (Interdisciplinary Research Unit for Cancers Prevention and Treatment), BioTICLA Laboratory (Precision Medicine for Ovarian Cancers), Université de Caen Normandie, Caen, France
- Department of Head and Neck Surgery, Caen University Hospital, Caen, France
| | - Romane Florent
- ORGAPRED core facility, US PLATON, Université de Caen Normandie, Caen, France
| | - Jordane Divoux
- INSERM U1086 ANTICIPE (Interdisciplinary Research Unit for Cancers Prevention and Treatment), BioTICLA Laboratory (Precision Medicine for Ovarian Cancers), Université de Caen Normandie, Caen, France
- Comprehensive Cancer Center François Baclesse, UNICANCER, Caen, France
- ORGAPRED core facility, US PLATON, Université de Caen Normandie, Caen, France
| | - Sophia Coffy
- Biomics, CEA, Inserm, IRIG, UA13 BGE, Univ. Grenoble Alpes, Grenoble, France
| | - Audrey Vincent
- CNRS UMR9020, INSERM U1277, CANTHER Cancer Heterogeneity Plasticity and Resistance to Therapies, Univ. Lille, CNRS, Inserm, CHU Lille, Lille, France
| | - Cédric Gaggioli
- CNRS UMR7284, INSERM U1081, Institute for Research on Cancer and Aging, Nice (IRCAN), 3D-Hub-S Facility, CNRS University Côte d'Azur, Nice, France
| | - Géraldine Guasch
- CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Epithelial Stem Cells and Cancer Team, Aix-Marseille University, Marseille, France
| | - Xavier Gidrol
- Biomics, CEA, Inserm, IRIG, UA13 BGE, Univ. Grenoble Alpes, Grenoble, France
| | - Louis-Bastien Weiswald
- INSERM U1086 ANTICIPE (Interdisciplinary Research Unit for Cancers Prevention and Treatment), BioTICLA Laboratory (Precision Medicine for Ovarian Cancers), Université de Caen Normandie, Caen, France.
- Comprehensive Cancer Center François Baclesse, UNICANCER, Caen, France.
- ORGAPRED core facility, US PLATON, Université de Caen Normandie, Caen, France.
| | - Laurent Poulain
- INSERM U1086 ANTICIPE (Interdisciplinary Research Unit for Cancers Prevention and Treatment), BioTICLA Laboratory (Precision Medicine for Ovarian Cancers), Université de Caen Normandie, Caen, France.
- Comprehensive Cancer Center François Baclesse, UNICANCER, Caen, France.
- ORGAPRED core facility, US PLATON, Université de Caen Normandie, Caen, France.
| |
Collapse
|
187
|
Hompe ED, Sachdeva UM. Updates in Translational Science for Esophageal and Gastric Cancers. Surg Oncol Clin N Am 2024; 33:571-581. [PMID: 38789199 DOI: 10.1016/j.soc.2023.12.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2024]
Abstract
In this article, the authors summarize the current state of translational science for esophageal and gastric cancers. The available targeted therapies, immunotherapies, and recently discovered molecular targets are reviewed. The authors introduce circulating tumor deoxyribonucleic acid and its promise as a biomarker to detect disease recurrence. The authors present patient-derived organoids as a new model for studying carcinogenesis and treatment responses. Finally, we discuss the implications of organoid models for precision oncology and describe exciting new work applying gene editing technology to organoids and studying tumor-microenvironment interactions using 3-dimensional co-culture systems.
Collapse
Affiliation(s)
- Eliza D Hompe
- Division of Thoracic Surgery, Massachusetts General Hospital, 55 Fruit Street, Austen 7, Boston, MA 02114, ISA
| | - Uma M Sachdeva
- Division of Thoracic Surgery, Massachusetts General Hospital, 55 Fruit Street, Austen 7, Boston, MA 02114, ISA; Department of Surgery, Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA.
| |
Collapse
|
188
|
Alieva M, Barrera Román M, de Blank S, Petcu D, Zeeman AL, Dautzenberg NMM, Cornel AM, van de Ven C, Pieters R, den Boer ML, Nierkens S, Calkoen FGJ, Clevers H, Kuball J, Sebestyén Z, Wehrens EJ, Dekkers JF, Rios AC. BEHAV3D: a 3D live imaging platform for comprehensive analysis of engineered T cell behavior and tumor response. Nat Protoc 2024; 19:2052-2084. [PMID: 38504137 DOI: 10.1038/s41596-024-00972-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 01/04/2024] [Indexed: 03/21/2024]
Abstract
Modeling immuno-oncology by using patient-derived material and immune cell co-cultures can advance our understanding of immune cell tumor targeting in a patient-specific manner, offering leads to improve cellular immunotherapy. However, fully exploiting these living cultures requires analysis of the dynamic cellular features modeled, for which protocols are currently limited. Here, we describe the application of BEHAV3D, a platform that implements multi-color live 3D imaging and computational tools for: (i) analyzing tumor death dynamics at both single-organoid or cell and population levels, (ii) classifying T cell behavior and (iii) producing data-informed 3D images and videos for visual inspection and further insight into obtained results. Together, this enables a refined assessment of how solid and liquid tumors respond to cellular immunotherapy, critically capturing both inter- and intratumoral heterogeneity in treatment response. In addition, BEHAV3D uncovers T cell behavior involved in tumor targeting, offering insight into their mode of action. Our pipeline thereby has strong implications for comparing, prioritizing and improving immunotherapy products by highlighting the behavioral differences between individual tumor donors, distinct T cell therapy concepts or subpopulations. The protocol describes critical wet lab steps, including co-culture preparations and fast 3D imaging with live cell dyes, a segmentation-based image processing tool to track individual organoids, tumor and immune cells and an analytical pipeline for behavioral profiling. This 1-week protocol, accessible to users with basic cell culture, imaging and programming expertise, can easily be adapted to any type of co-culture to visualize and exploit cell behavior, having far-reaching implications for the immuno-oncology field and beyond.
Collapse
Affiliation(s)
- Maria Alieva
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands.
- Instituto de Investigaciones Biomédicas Sols-Morreale (IIBM), CSIC-UAM, Madrid, Spain.
| | - Mario Barrera Román
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
| | - Sam de Blank
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
| | - Diana Petcu
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
| | - Amber L Zeeman
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
| | | | - Annelisa M Cornel
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
- Center for Translational Immunology, University Medical Centre (UMC) Utrecht, Utrecht, the Netherlands
| | - Cesca van de Ven
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
| | - Rob Pieters
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Monique L den Boer
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
| | - Stefan Nierkens
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
- Center for Translational Immunology, University Medical Centre (UMC) Utrecht, Utrecht, the Netherlands
| | - Friso G J Calkoen
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Hans Clevers
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, Utrecht, the Netherlands
- Pharma, Research and Early Development (pRED), F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Jürgen Kuball
- Center for Translational Immunology, University Medical Centre (UMC) Utrecht, Utrecht, the Netherlands
- Department of Hematology, UMC Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Zsolt Sebestyén
- Center for Translational Immunology, University Medical Centre (UMC) Utrecht, Utrecht, the Netherlands
| | - Ellen J Wehrens
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
| | - Johanna F Dekkers
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
| | - Anne C Rios
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands.
- Oncode Institute, Utrecht, the Netherlands.
| |
Collapse
|
189
|
Wang Q, Guo F, Zhang Q, Hu T, Jin Y, Yang Y, Ma Y. Organoids in gastrointestinal diseases: from bench to clinic. MedComm (Beijing) 2024; 5:e574. [PMID: 38948115 PMCID: PMC11214594 DOI: 10.1002/mco2.574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 04/15/2024] [Accepted: 04/26/2024] [Indexed: 07/02/2024] Open
Abstract
The etiology of gastrointestinal (GI) diseases is intricate and multifactorial, encompassing complex interactions between genetic predisposition and gut microbiota. The cell fate change, immune function regulation, and microenvironment composition in diseased tissues are governed by microorganisms and mutated genes either independently or through synergistic interactions. A comprehensive understanding of GI disease etiology is imperative for developing precise prevention and treatment strategies. However, the existing models used for studying the microenvironment in GI diseases-whether cancer cell lines or mouse models-exhibit significant limitations, which leads to the prosperity of organoids models. This review first describes the development history of organoids models, followed by a detailed demonstration of organoids application from bench to clinic. As for bench utilization, we present a layer-by-layer elucidation of organoid simulation on host-microbial interactions, as well as the application in molecular mechanism analysis. As for clinical adhibition, we provide a generalized interpretation of organoid application in GI disease simulation from inflammatory disorders to malignancy diseases, as well as in GI disease treatment including drug screening, immunotherapy, and microbial-targeting and screening treatment. This review draws a comprehensive and systematical depiction of organoids models, providing a novel insight into the utilization of organoids models from bench to clinic.
Collapse
Affiliation(s)
- Qinying Wang
- Department of Colorectal SurgeryFudan University Shanghai Cancer CenterShanghaiChina
- Department of Cancer InstituteFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghaiChina
| | - Fanying Guo
- Department of Colorectal SurgeryFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghaiChina
| | - Qinyuan Zhang
- Department of Colorectal SurgeryFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghaiChina
| | - TingTing Hu
- Department of Colorectal SurgeryFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghaiChina
| | - YuTao Jin
- Department of Colorectal SurgeryFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghaiChina
| | - Yongzhi Yang
- Department of Colorectal SurgeryFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghaiChina
| | - Yanlei Ma
- Department of Colorectal SurgeryFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghaiChina
| |
Collapse
|
190
|
Wan Y, Ding J, Jia Z, Hong Y, Tian G, Zheng S, Pan P, Wang J, Liang H. Current trends and research topics regarding organoids: A bibliometric analysis of global research from 2000 to 2023. Heliyon 2024; 10:e32965. [PMID: 39022082 PMCID: PMC11253259 DOI: 10.1016/j.heliyon.2024.e32965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 06/06/2024] [Accepted: 06/12/2024] [Indexed: 07/20/2024] Open
Abstract
The use of animal models for biological experiments is no longer sufficient for research related to human life and disease. The development of organ tissues has replaced animal models by mimicking the structure, function, development and homeostasis of natural organs. This provides more opportunities to study human diseases such as cancer, infectious diseases and genetic disorders. In this study, bibliometric methods were used to analyze organoid-related articles published over the last 20+ years to identify emerging trends and frontiers in organoid research. A total of 13,143 articles from 4125 institutions in 86 countries or regions were included in the analysis. The number of papers increased steadily over the 20-year period. The United States was the leading country in terms of number of papers and citations. Harvard Medical School had the highest number of papers published. Keyword analysis revealed research trends and focus areas such as organ tissues, stem cells, 3D culture and tissue engineering. In conclusion, this study used bibliometric and visualization methods to explore the field of organoid research and found that organ tissues are receiving increasing attention in areas such as cancer, drug discovery, personalized medicine, genetic disease modelling and gene repair, making them a current research hotspot and a future research trend.
Collapse
Affiliation(s)
- Yantong Wan
- Department of Urology, People's Hospital of Longhua, Shenzhen, Guangdong, 518109, China
- Guangdong Provincial Key Laboratory of Proteomics, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Jianan Ding
- School of Basic Medical Sciences, Southern Medical University Guangzhou, China
| | - Zixuan Jia
- School of Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Yinghao Hong
- Guangdong Provincial Key Laboratory of Proteomics, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Guijie Tian
- School of Laboratory Medicine and Biotechnology, Southern Medical University Guangzhou, China
| | - Shuqian Zheng
- School of Basic Medical Sciences, Southern Medical University Guangzhou, China
| | - Pinfei Pan
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Jieyan Wang
- Department of Urology, People's Hospital of Longhua, Shenzhen, Guangdong, 518109, China
| | - Hui Liang
- Department of Urology, People's Hospital of Longhua, Shenzhen, Guangdong, 518109, China
| |
Collapse
|
191
|
Xie Y, Zhang Y, Wu Y, Xie X, Lin X, Tang Q, Zhou C, Xie Z. Analysis of the resistance profile of real-world alectinib first-line therapy in patients with ALK rearrangement-positive advanced non-small cell lung cancer using organoid technology in one case of lung cancer. J Thorac Dis 2024; 16:3854-3863. [PMID: 38983150 PMCID: PMC11228735 DOI: 10.21037/jtd-23-1964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 05/10/2024] [Indexed: 07/11/2024]
Abstract
Background Alectinib has achieved excellent therapeutic efficacy in anaplastic lymphoma kinase (ALK) fusion gene-positive non-small cell lung cancer (NSCLC) patients, however, patients eventually develop resistance to it. Exploring the gene variant mapping after alectinib resistance provides a basis for the whole management of ALK-positive advanced NSCLC. This study aimed to characterize the mutation profiles of real-world ALK rearrangement-positive advanced NSCLC patients after first-line alectinib treatment resistance. The research also investigated the treatment options and coping strategies after resistance. Methods Clinical data of patients with advanced NSCLC who received first-line alectinib treatment in the First Affiliated Hospital of Guangzhou Medical University between November 2018 and April 2022 were collected. Moreover, next-generation sequencing (NGS) data of the patient's baseline and post-resistance tissues were gathered. One patient underwent lung cancer organoid culture and drug sensitivity testing. Results Out of 35 first-line alectinib-treated patients with advanced NSCLC, 31 are presently in progression-free survival (PFS; 4.3-35.0 months). Four patients experienced progressive disease, and all of them were sequentially treated with ceritinib. Tissue NGS results before sequential treatment in three patients indicated an echinoderm microtubule-associated protein-like 4-ALK fusion that remained at the original baseline, and the PFS for ceritinib treatment was 0.5-1.3 months. One patient developed acquired resistance mutations in the structural domain of ALK protein kinase (V1180L and E1161D), and the PFS for ceritinib treatment was 6.7 months. For one patient who maintained original baseline ALK rearrangement positive without acquired mutation after progression of ceritinib resistance, lung cancer-like organ culture with sequential brigatinib and lorlatinib led to a PFS of 3.2 and 1.9 months, respectively, which aligned with the corresponding drug susceptibility testing results for this patient. Conclusions For ALK rearrangement-positive patients, blind sequencing of other second-generation tyrosine kinase inhibitors (TKIs) or third-generation lorlatinib may not guarantee satisfactory tumor suppression following first-line second-generation ALK-TKI alectinib administration for treatment progression. NGS testing of patients' blood or tissue samples after disease progression may provide insight into the etiology of alectinib resistance. Patient-sourced drug sensitivity testing of lung cancer-like organs selects drug-sensitive medications based on NGS results and provides a reference for subsequent drug therapy for patients after drug resistance, particularly those who remain ALK rearrangement-positive at baseline.
Collapse
Affiliation(s)
- Yingbo Xie
- Department of Respiratory and Critical Care Medicine, State Key Laboratory of Respiratory Diseases, the First Affiliated Hospital of Guangzhou Medical University, National Clinical Research Center for Respiratory, Guangzhou Institute of Respiratory Health, Guangzhou, China
| | - Yuxin Zhang
- Department of Ultrasound Medicine, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yongqing Wu
- Department of Respiratory and Critical Care Medicine, State Key Laboratory of Respiratory Diseases, the First Affiliated Hospital of Guangzhou Medical University, National Clinical Research Center for Respiratory, Guangzhou Institute of Respiratory Health, Guangzhou, China
| | - Xiaohong Xie
- Department of Respiratory and Critical Care Medicine, State Key Laboratory of Respiratory Diseases, the First Affiliated Hospital of Guangzhou Medical University, National Clinical Research Center for Respiratory, Guangzhou Institute of Respiratory Health, Guangzhou, China
| | - Xinqing Lin
- Department of Respiratory and Critical Care Medicine, State Key Laboratory of Respiratory Diseases, the First Affiliated Hospital of Guangzhou Medical University, National Clinical Research Center for Respiratory, Guangzhou Institute of Respiratory Health, Guangzhou, China
| | - Qing Tang
- Department of Ultrasound Medicine, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Chengzhi Zhou
- Department of Respiratory and Critical Care Medicine, State Key Laboratory of Respiratory Diseases, the First Affiliated Hospital of Guangzhou Medical University, National Clinical Research Center for Respiratory, Guangzhou Institute of Respiratory Health, Guangzhou, China
| | - Zhanhong Xie
- Department of Respiratory and Critical Care Medicine, State Key Laboratory of Respiratory Diseases, the First Affiliated Hospital of Guangzhou Medical University, National Clinical Research Center for Respiratory, Guangzhou Institute of Respiratory Health, Guangzhou, China
| |
Collapse
|
192
|
Tardito S, Matis S, Zocchi MR, Benelli R, Poggi A. Epidermal Growth Factor Receptor Targeting in Colorectal Carcinoma: Antibodies and Patient-Derived Organoids as a Smart Model to Study Therapy Resistance. Int J Mol Sci 2024; 25:7131. [PMID: 39000238 PMCID: PMC11241078 DOI: 10.3390/ijms25137131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 06/22/2024] [Accepted: 06/25/2024] [Indexed: 07/16/2024] Open
Abstract
Colorectal cancer (CRC) is the second leading cause of cancer-related death worldwide. Therefore, the need for new therapeutic strategies is still a challenge. Surgery and chemotherapy represent the first-line interventions; nevertheless, the prognosis for metastatic CRC (mCRC) patients remains unacceptable. An important step towards targeted therapy came from the inhibition of the epidermal growth factor receptor (EGFR) pathway, by the anti-EGFR antibody, Cetuximab, or by specific tyrosine kinase inhibitors (TKI). Cetuximab, a mouse-human chimeric monoclonal antibody (mAb), binds to the extracellular domain of EGFR thus impairing EGFR-mediated signaling and reducing cell proliferation. TKI can affect the EGFR biochemical pathway at different steps along the signaling cascade. Apart from Cetuximab, other anti-EGFR mAbs have been developed, such as Panitumumab. Both antibodies have been approved for the treatment of KRAS-NRAS wild type mCRC, alone or in combination with chemotherapy. These antibodies display strong differences in activating the host immune system against CRC, due to their different immunoglobulin isotypes. Although anti-EGFR antibodies are efficient, drug resistance occurs with high frequency. Resistant tumor cell populations can either already be present before therapy or develop later by biochemical adaptations or new genomic mutations in the EGFR pathway. Numerous efforts have been made to improve the efficacy of the anti-EGFR mAbs or to find new agents that are able to block downstream EGFR signaling cascade molecules. Indeed, we examined the importance of analyzing the anti-EGFR antibody-drug conjugates (ADC) developed to overcome resistance and/or stimulate the tumor host's immunity against CRC growth. Also, patient-derived CRC organoid cultures represent a useful and feasible in vitro model to study tumor behavior and therapy response. Organoids can reflect tumor genetic heterogeneity found in the tissue of origin, representing a unique tool for personalized medicine. Thus, CRC-derived organoid cultures are a smart model for studying the tumor microenvironment and for the preclinical assay of anti-EGFR drugs.
Collapse
Affiliation(s)
- Samuele Tardito
- Center for Cancer and Immunology Research, Children’s National Hospital, Washington, DC 20010, USA;
| | - Serena Matis
- Molecular Oncology and Angiogenesis Unit, IRRCS Ospedale Policlinico San Martino, 16132 Genoa, Italy;
| | - Maria Raffaella Zocchi
- Department of Immunology, Transplant and Infectious Diseases, IRCCS Scientific Institute San Raffaele, 20132 Milan, Italy;
| | - Roberto Benelli
- Molecular Oncology and Angiogenesis Unit, IRRCS Ospedale Policlinico San Martino, 16132 Genoa, Italy;
| | - Alessandro Poggi
- Molecular Oncology and Angiogenesis Unit, IRRCS Ospedale Policlinico San Martino, 16132 Genoa, Italy;
| |
Collapse
|
193
|
de Kort WWB, Millen R, Driehuis E, Devriese LA, van Es RJJ, Willems SM. Clinicopathological Factors as Predictors for Establishment of Patient Derived Head and Neck Squamous Cell Carcinoma Organoids. Head Neck Pathol 2024; 18:59. [PMID: 38940869 PMCID: PMC11213837 DOI: 10.1007/s12105-024-01658-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 05/23/2024] [Indexed: 06/29/2024]
Abstract
INTRODUCTION Patient derived organoids (PDOs) are 3D in vitro models and have shown to better reflect patient and tumor heterogeneity than conventional 2D cell lines. To utilize PDOs in clinical settings and trials for biomarker discovery or drug response evaluation, it is valuable to determine the best way to optimize sample selection for maximum PDO establishment. In this study, we assess patient, tumor and tissue sampling factors and correlate them with successful PDO establishment in a well-documented cohort of patients with head and neck squamous cell carcinoma (HNSCC). METHODS Tumor and non-tumorous adjacent tissue samples were obtained from HNSCC patients during routine biopsy or resection procedures at the University Medical Center Utrecht. The tissue was subsequently processed to establish PDOs. The sample purity was determined as the presence of epithelial cells in the culture on the day of organoid isolation as visualized microscopically by the researcher. PDO establishment was recorded for all samples. Clinical data was obtained from the medical records and was correlated to PDO establishment and presence of epithelial cells. RESULTS Organoids could be established in 133/250 (53.2%) primary tumor site tissues. HNSCC organoid establishment tended to be more successful if patients were younger than the median age of 68 years (74/123 (60.2%) vs. 59/127 (46.5%), p = 0.03). For a subset of samples, the presence of epithelial cells in the organoid culture on the day of organoid isolation was recorded in 112/149 (75.2%) of these samples. When cultures were selected for presence of epithelial cells, organoid establishment increased to 76.8% (86/112 samples). CONCLUSION This study found a trend between age and successful organoid outgrowth in patients with HNSCC younger than 68 years and emphasizes the value of efficient sampling regarding PDO establishment.
Collapse
Affiliation(s)
- W W B de Kort
- Department of Oral and Maxillofacial Surgery, University Medical Center Utrecht, 3584 CX, Utrecht, The Netherlands.
| | - R Millen
- Oncode Institute, Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, 3584 CT, Utrecht, The Netherlands
| | - E Driehuis
- Oncode Institute, Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, 3584 CT, Utrecht, The Netherlands
| | - L A Devriese
- Department of Medical Oncology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - R J J van Es
- Department of Oral and Maxillofacial Surgery, University Medical Center Utrecht, 3584 CX, Utrecht, The Netherlands
- Department of Head and Neck Surgical Oncology, Utrecht Cancer Center, University Medical Center Utrecht, 3584 CX, Utrecht, The Netherlands
| | - S M Willems
- Department of Pathology and Medical Biology, University Medical Center Groningen, 9713 GZ, Groningen, The Netherlands
| |
Collapse
|
194
|
Chen Y, Liu X, Ainiwan Y, Li M, Pan J, Chen Y, Xiao Z, Wang Z, Xiao X, Tang J, Zeng G, Liang J, Su X, Kungulli R, Fan Y, Lin Q, Liya A, Zheng Y, Chen Z, Xu C, Zhang H, Chen G. Axl as a potential therapeutic target for adamantinomatous craniopharyngiomas: Based on single nucleus RNA-seq and spatial transcriptome profiling. Cancer Lett 2024; 592:216905. [PMID: 38677641 DOI: 10.1016/j.canlet.2024.216905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 04/07/2024] [Accepted: 04/16/2024] [Indexed: 04/29/2024]
Abstract
Craniopharyngiomas (CPs), particularly Adamantinomatous Craniopharyngiomas (ACPs), often exhibit a heightened risk of postoperative recurrence and severe complications of the endocrine and hypothalamic function. The primary objective of this study is to investigate potential novel targeted therapies within the microenvironment of ACP tumors. Cancer-Associated Fibroblasts (CAFs) were identified in the craniopharyngioma microenvironment, notably in regions characterized by cholesterol clefts, wet keratin, ghost cells, and fibrous stroma in ACPs. CAFs, alongside ghost cells, basaloid-like epithelium cells and calcifications, were found to secrete PROS1 and GAS6, which can activate AXL receptors on the surface of tumor epithelium cells, promoting immune suppression and tumor progression in ACPs. Additionally, the AXL inhibitor Bemcentinib effectively inhibited the proliferation organoids and enhanced the immunotherapeutic efficacy of Atezolizumab. Furthermore, neural crest-like cells were observed in the glial reactive tissue surrounding finger-like protrusions. Overall, our results revealed that the AXL might be a potentially effective therapeutic target for ACPs.
Collapse
Affiliation(s)
- Yiguang Chen
- Department of Neurosurgery, Xuanwu Hospital Capital Medical University, Beijing, 100053, China; China International Neuroscience Institute (China-INI), Xuanwu Hospital, Capital Medical University, Beijing, 100053, China; Department of Neurosurgery, Nanfang Hospital, Southern Medical University, No. 1838, Guangzhou North Road, Guangzhou, Guangdong, 510515, China
| | - Xiaohai Liu
- Department of Neurosurgery, Xuanwu Hospital Capital Medical University, Beijing, 100053, China; China International Neuroscience Institute (China-INI), Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Yilamujiang Ainiwan
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, No. 1838, Guangzhou North Road, Guangzhou, Guangdong, 510515, China
| | - Mingchu Li
- Department of Neurosurgery, Xuanwu Hospital Capital Medical University, Beijing, 100053, China; China International Neuroscience Institute (China-INI), Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Jun Pan
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, No. 1838, Guangzhou North Road, Guangzhou, Guangdong, 510515, China
| | - Yongjian Chen
- Dermatology and Venereology Division, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institute, Stockholm, 10005, Sweden
| | - Zebin Xiao
- Department of Pathology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
| | - Ziyu Wang
- Cell Therapy Center, Beijing Institute of Geriatrics, Xuanwu Hospital Capital Medical University, National Clinical Research Center for Geriatric Diseases and Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing, 100053, China
| | - Xinru Xiao
- Department of Neurosurgery, Xuanwu Hospital Capital Medical University, Beijing, 100053, China; China International Neuroscience Institute (China-INI), Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Jie Tang
- Department of Neurosurgery, Xuanwu Hospital Capital Medical University, Beijing, 100053, China; China International Neuroscience Institute (China-INI), Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Gao Zeng
- Department of Neurosurgery, Xuanwu Hospital Capital Medical University, Beijing, 100053, China; China International Neuroscience Institute (China-INI), Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Jiantao Liang
- Department of Neurosurgery, Xuanwu Hospital Capital Medical University, Beijing, 100053, China; China International Neuroscience Institute (China-INI), Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Xin Su
- Department of Neurosurgery, Xuanwu Hospital Capital Medical University, Beijing, 100053, China; China International Neuroscience Institute (China-INI), Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Roberta Kungulli
- Department of Neurosurgery, Xuanwu Hospital Capital Medical University, Beijing, 100053, China; China International Neuroscience Institute (China-INI), Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Yuxiang Fan
- Department of Neurosurgery, Xuanwu Hospital Capital Medical University, Beijing, 100053, China; China International Neuroscience Institute (China-INI), Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Qingtang Lin
- Department of Neurosurgery, Xuanwu Hospital Capital Medical University, Beijing, 100053, China; China International Neuroscience Institute (China-INI), Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - A Liya
- Guangdong Research Center of Organoid Engineering and Technology, Guangzhou, 510535, China
| | - Yifeng Zheng
- Guangdong Research Center of Organoid Engineering and Technology, Guangzhou, 510535, China
| | - Zexin Chen
- Guangdong Research Center of Organoid Engineering and Technology, Guangzhou, 510535, China
| | - Canli Xu
- Guangdong Research Center of Organoid Engineering and Technology, Guangzhou, 510535, China
| | - Hongqi Zhang
- Department of Neurosurgery, Xuanwu Hospital Capital Medical University, Beijing, 100053, China; China International Neuroscience Institute (China-INI), Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
| | - Ge Chen
- Department of Neurosurgery, Xuanwu Hospital Capital Medical University, Beijing, 100053, China; China International Neuroscience Institute (China-INI), Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
| |
Collapse
|
195
|
Liu Y, Wang D, Luan Y, Tao B, Li Q, Feng Q, Zhou H, Mu J, Yu J. The application of organoids in colorectal diseases. Front Pharmacol 2024; 15:1412489. [PMID: 38983913 PMCID: PMC11231380 DOI: 10.3389/fphar.2024.1412489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 06/07/2024] [Indexed: 07/11/2024] Open
Abstract
Intestinal organoids are a three-dimensional cell culture model derived from colon or pluripotent stem cells. Intestinal organoids constructed in vitro strongly mimic the colon epithelium in cell composition, tissue architecture, and specific functions, replicating the colon epithelium in an in vitro culture environment. As an emerging biomedical technology, organoid technology has unique advantages over traditional two-dimensional culture in preserving parental gene expression and mutation, cell function, and biological characteristics. It has shown great potential in the research and treatment of colorectal diseases. Organoid technology has been widely applied in research on colorectal topics, including intestinal tumors, inflammatory bowel disease, infectious diarrhea, and intestinal injury regeneration. This review focuses on the application of organoid technology in colorectal diseases, including the basic principles and preparation methods of organoids, and explores the pathogenesis of and personalized treatment plans for various colorectal diseases to provide a valuable reference for organoid technology development and application.
Collapse
Affiliation(s)
- Yanxin Liu
- Department of Gastric and Colorectal Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, China
| | - Dongxu Wang
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Yanhong Luan
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Boqiang Tao
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun, China
| | - Qirong Li
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Qiang Feng
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Hengzong Zhou
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Jianfeng Mu
- Department of Gastric and Colorectal Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, China
| | - Jinhai Yu
- Department of Gastric and Colorectal Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
196
|
Coronel R, García-Moreno E, Siendones E, Barrero MJ, Martínez-Delgado B, Santos-Ocaña C, Liste I, Cascajo-Almenara MV. Brain organoid as a model to study the role of mitochondria in neurodevelopmental disorders: achievements and weaknesses. Front Cell Neurosci 2024; 18:1403734. [PMID: 38978706 PMCID: PMC11228165 DOI: 10.3389/fncel.2024.1403734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 05/13/2024] [Indexed: 07/10/2024] Open
Abstract
Mitochondrial diseases are a group of severe pathologies that cause complex neurodegenerative disorders for which, in most cases, no therapy or treatment is available. These organelles are critical regulators of both neurogenesis and homeostasis of the neurological system. Consequently, mitochondrial damage or dysfunction can occur as a cause or consequence of neurodevelopmental or neurodegenerative diseases. As genetic knowledge of neurodevelopmental disorders advances, associations have been identified between genes that encode mitochondrial proteins and neurological symptoms, such as neuropathy, encephalomyopathy, ataxia, seizures, and developmental delays, among others. Understanding how mitochondrial dysfunction can alter these processes is essential in researching rare diseases. Three-dimensional (3D) cell cultures, which self-assemble to form specialized structures composed of different cell types, represent an accessible manner to model organogenesis and neurodevelopmental disorders. In particular, brain organoids are revolutionizing the study of mitochondrial-based neurological diseases since they are organ-specific and model-generated from a patient's cell, thereby overcoming some of the limitations of traditional animal and cell models. In this review, we have collected which neurological structures and functions recapitulate in the different types of reported brain organoids, focusing on those generated as models of mitochondrial diseases. In addition to advancements in the generation of brain organoids, techniques, and approaches for studying neuronal structures and physiology, drug screening and drug repositioning studies performed in brain organoids with mitochondrial damage and neurodevelopmental disorders have also been reviewed. This scope review will summarize the evidence on limitations in studying the function and dynamics of mitochondria in brain organoids.
Collapse
Affiliation(s)
- Raquel Coronel
- Neural Regeneration Unit, Functional Unit for Research on Chronic Diseases (UFIEC), National Institute of Health Carlos III (ISCIII), Madrid, Spain
- Department of Systems Biology, Faculty of Medicine and Health Sciences, University of Alcalá (UAH), Alcalá de Henares, Spain
| | - Enrique García-Moreno
- Andalusian Centre for Developmental Biology, CIBERER, National Institute of Health Carlos III (ISCIII), Pablo de Olavide University-CSIC-JA, Seville, Spain
| | - Emilio Siendones
- Andalusian Centre for Developmental Biology, CIBERER, National Institute of Health Carlos III (ISCIII), Pablo de Olavide University-CSIC-JA, Seville, Spain
| | - Maria J. Barrero
- Models and Mechanisms Unit, Institute of Rare Diseases Research (IIER), Spanish National Institute of Health Carlos III (ISCIII), Madrid, Spain
| | - Beatriz Martínez-Delgado
- Molecular Genetics Unit, Institute of Rare Diseases Research (IIER), CIBER of Rare Diseases (CIBERER), Institute of Health Carlos III (ISCIII), Madrid, Spain
| | - Carlos Santos-Ocaña
- Andalusian Centre for Developmental Biology, CIBERER, National Institute of Health Carlos III (ISCIII), Pablo de Olavide University-CSIC-JA, Seville, Spain
| | - Isabel Liste
- Neural Regeneration Unit, Functional Unit for Research on Chronic Diseases (UFIEC), National Institute of Health Carlos III (ISCIII), Madrid, Spain
| | - M. V. Cascajo-Almenara
- Andalusian Centre for Developmental Biology, CIBERER, National Institute of Health Carlos III (ISCIII), Pablo de Olavide University-CSIC-JA, Seville, Spain
| |
Collapse
|
197
|
Tan T, Mouradov D, Gibbs P, Sieber OM. Protocol for generation of and high-throughput drug testing with patient-derived colorectal cancer organoids. STAR Protoc 2024; 5:103090. [PMID: 38809757 PMCID: PMC11166870 DOI: 10.1016/j.xpro.2024.103090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/07/2024] [Accepted: 05/02/2024] [Indexed: 05/31/2024] Open
Abstract
Drug sensitivity testing of patient-derived tumor organoids (PDTOs) is a promising tool for personalizing cancer treatment. Here, we present a protocol for generation of and high-throughput drug testing with PDTOs. We describe detailed steps for PDTO establishment from colorectal cancer tissues, preparation of PDTOs for high-throughput drug testing, and quantification of drug testing results using image analysis. This protocol provides a standardized workflow for PDTO testing of standard-of-care therapies, along with exploring the activity of new agents, for translational research. For complete details on the use and execution of this protocol, please refer to Tan et al.1.
Collapse
Affiliation(s)
- Tao Tan
- Personalised Oncology Division, The Walter and Eliza Hall Institute of Medial Research, Parkville, Melbourne, VIC 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, Melbourne, VIC 3052, Australia.
| | - Dmitri Mouradov
- Personalised Oncology Division, The Walter and Eliza Hall Institute of Medial Research, Parkville, Melbourne, VIC 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, Melbourne, VIC 3052, Australia
| | - Peter Gibbs
- Personalised Oncology Division, The Walter and Eliza Hall Institute of Medial Research, Parkville, Melbourne, VIC 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, Melbourne, VIC 3052, Australia; Department of Medical Oncology, Western Health, Footscray, Melbourne, VIC 3011, Australia
| | - Oliver M Sieber
- Personalised Oncology Division, The Walter and Eliza Hall Institute of Medial Research, Parkville, Melbourne, VIC 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, Melbourne, VIC 3052, Australia; Department of Surgery, The University of Melbourne, Parkville, Melbourne, VIC 3052, Australia; Department of Biochemistry and Molecular Biology, Monash University, Clayton, Melbourne, VIC 3168, Australia.
| |
Collapse
|
198
|
Tran TQ, Grein J, Selman M, Annamalai L, Yearley JH, Blumenschein WM, Sadekova S, Chackerian AA, Phan U, Wong JC. Oncolytic virus V937 in combination with PD-1 blockade therapy to target immunologically quiescent liver and colorectal cancer. MOLECULAR THERAPY. ONCOLOGY 2024; 32:200807. [PMID: 38745749 PMCID: PMC11090910 DOI: 10.1016/j.omton.2024.200807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 02/28/2024] [Accepted: 04/21/2024] [Indexed: 05/16/2024]
Abstract
V937 is an investigational, genetically unmodified Kuykendall strain of coxsackievirus A21, which has been evaluated in the clinic for advanced solid tumor malignancies. V937 specifically infects and lyses tumor cells that overexpress intercellular adhesion molecule-1 (ICAM-1). Intratumoral V937 as a monotherapy and in combination with anti-PD-1 antibody pembrolizumab has shown clinical response in patients with metastatic melanoma, which overexpresses ICAM-1. Here, we investigate in preclinical studies the potential bidirectional cross-talk between hepatocellular carcinomas (HCC) or colorectal carcinomas (CRC) and immune cells when treated with V937 alone or in combination with pembrolizumab. We show that while V937 treatment of tumor cell lines or organoids or peripheral blood mononuclear cells (PBMCs) alone induced a minimal immunological response, V937 treatment of non-contact co-cultures of tumor cell lines or CRC organoids with PBMCs led to robust production of proinflammatory cytokines and immune cell activation. In addition, both recombinant interferon-gamma and pembrolizumab increased ICAM-1 on tumor cell lines or organoids and, in turn, amplified V937-mediated oncolysis and immunogenicity. These findings provide critical mechanistic insights on the cross-talk between V937-mediated oncolysis and immune responses, demonstrating the therapeutic potential of V937 in combination with PD-1 blockade to treat immunologically quiescent cancers.
Collapse
Affiliation(s)
- Thai Q. Tran
- Discovery Oncology, Merck & Co., Inc, South San Francisco, CA 94080, USA
| | - Jeff Grein
- Quantitative Biosciences, Merck & Co., Inc, South San Francisco, CA 94080, USA
| | - Mohammed Selman
- Discovery Oncology, Merck & Co., Inc, South San Francisco, CA 94080, USA
| | | | - Jennifer H. Yearley
- Quantitative Biosciences, Merck & Co., Inc, South San Francisco, CA 94080, USA
| | | | - Svetlana Sadekova
- Discovery Oncology, Merck & Co., Inc, South San Francisco, CA 94080, USA
| | | | - Uyen Phan
- Discovery Oncology, Merck & Co., Inc, South San Francisco, CA 94080, USA
| | - Janica C. Wong
- Discovery Oncology, Merck & Co., Inc, South San Francisco, CA 94080, USA
| |
Collapse
|
199
|
Piraino F, Costa M, Meyer M, Cornish G, Ceroni C, Garnier V, Hoehnel-Ka S, Brandenberg N. Organoid models: the future companions of personalized drug development. Biofabrication 2024; 16:032009. [PMID: 38608454 DOI: 10.1088/1758-5090/ad3e30] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 04/12/2024] [Indexed: 04/14/2024]
Abstract
High failure rates of the current drug development process are driving exemplary changes toward methodologies centered on human diseasein-vitromodeling. Organoids are self-organized tissue sub-units resembling their organ of origin and are widely acknowledged for their unique potential in recapitulating human physio-pathological mechanisms. They are transformative for human health by becoming the platform of choice to probe disease mechanisms and advance new therapies. Furthermore, the compounds' validation as therapeutics represents another point of the drug development pipeline where organoids may provide key understandings and help pharma organizations replace or reduce animal research. In this review, we focus on gastrointestinal organoid models, which are currently the most advanced organoid models in drug development. We focus on experimental validations of their value, and we propose avenues to enhance their use in drug discovery and development, as well as precision medicine and diagnostics.
Collapse
Affiliation(s)
| | - Mariana Costa
- Doppl SA, EPFL Innovation Park, Lausanne, Switzerland
| | - Marine Meyer
- Doppl SA, EPFL Innovation Park, Lausanne, Switzerland
| | | | | | | | | | | |
Collapse
|
200
|
Ma W, Zheng Y, Yang G, Zhang H, Lu M, Ma H, Wu C, Lu H. A bioactive calcium silicate nanowire-containing hydrogel for organoid formation and functionalization. MATERIALS HORIZONS 2024; 11:2957-2973. [PMID: 38586926 DOI: 10.1039/d4mh00228h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Organoids, which are 3D multicellular constructs, have garnered significant attention in recent years. Existing organoid culture methods predominantly utilize natural and synthetic polymeric hydrogels. This study explored the potential of a composite hydrogel mainly consisting of calcium silicate (CS) nanowires and methacrylated gelatin (GelMA) as a substrate for organoid formation and functionalization, specifically for intestinal and liver organoids. Furthermore, the research delved into the mechanisms by which CS nanowires promote the structure formation and development of organoids. It was discovered that CS nanowires can influence the stiffness of the hydrogel, thereby regulating the expression of the mechanosensory factor yes-associated protein (YAP). Additionally, the bioactive ions released by CS nanowires in the culture medium could accelerate Wnt/β-catenin signaling, further stimulating organoid development. Moreover, bioactive ions were found to enhance the nutrient absorption and ATP metabolic activity of intestinal organoids. Overall, the CS/GelMA composite hydrogel proves to be a promising substrate for organoid formation and development. This research suggested that inorganic biomaterials hold significant potential in organoid research, offering bioactivities, biosafety, and cost-effectiveness.
Collapse
Affiliation(s)
- Wenping Ma
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
| | - Yi Zheng
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
| | - Guangzhen Yang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China.
| | - Hongjian Zhang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
| | - Mingxia Lu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
| | - Hongshi Ma
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
| | - Chengtie Wu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
| | - Hongxu Lu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
| |
Collapse
|