151
|
Lehner M, Rieth S, Höllmüller E, Spliesgar D, Mertes B, Stengel F, Marx A. Profiling of the ADP-Ribosylome in Living Cells. Angew Chem Int Ed Engl 2022; 61:e202200977. [PMID: 35188710 PMCID: PMC9315028 DOI: 10.1002/anie.202200977] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Indexed: 12/12/2022]
Abstract
Post-translational modification (PTM) with ADP-ribose and poly(ADP-ribose) using nicotinamide adenine dinucleotide (NAD+ ) as substrate is involved in the regulation of numerous cellular pathways in eukaryotes, notably the response to DNA damage caused by cellular stress. Nevertheless, due to intrinsic properties of NAD+ e.g., high polarity and associated poor cell passage, these PTMs are difficult to characterize in cells. Here, two new NAD+ derivatives are presented, which carry either a fluorophore or an affinity tag and, in combination with developed methods for mild cell delivery, allow studies in living human cells. We show that this approach allows not only the imaging of ADP-ribosylation in living cells but also the proteome-wide analysis of cellular adaptation by protein ADP-ribosylation as a consequence of environmental changes such as H2 O2 -induced oxidative stress or the effect of the approved anti-cancer drug olaparib. Our results therefore pave the way for further functional and clinical studies of the ADP-ribosylated proteome in living cells in health and disease.
Collapse
Affiliation(s)
- Maike Lehner
- Departments of Chemistry and BiologyKonstanz Research School Chemical BiologyUniversitätsstraße 1078457KonstanzGermany
| | - Sonja Rieth
- Departments of Chemistry and BiologyKonstanz Research School Chemical BiologyUniversitätsstraße 1078457KonstanzGermany
| | - Eva Höllmüller
- Departments of Chemistry and BiologyKonstanz Research School Chemical BiologyUniversitätsstraße 1078457KonstanzGermany
| | - Daniel Spliesgar
- Departments of Chemistry and BiologyKonstanz Research School Chemical BiologyUniversitätsstraße 1078457KonstanzGermany
| | - Bastian Mertes
- Departments of Chemistry and BiologyKonstanz Research School Chemical BiologyUniversitätsstraße 1078457KonstanzGermany
| | - Florian Stengel
- Departments of Chemistry and BiologyKonstanz Research School Chemical BiologyUniversitätsstraße 1078457KonstanzGermany
| | - Andreas Marx
- Departments of Chemistry and BiologyKonstanz Research School Chemical BiologyUniversitätsstraße 1078457KonstanzGermany
| |
Collapse
|
152
|
Lin X, Jiang W, Rudolph J, Lee BJ, Luger K, Zha S. PARP inhibitors trap PARP2 and alter the mode of recruitment of PARP2 at DNA damage sites. Nucleic Acids Res 2022; 50:3958-3973. [PMID: 35349716 PMCID: PMC9023293 DOI: 10.1093/nar/gkac188] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 02/24/2022] [Accepted: 03/23/2022] [Indexed: 12/11/2022] Open
Abstract
Dual-inhibitors of PARP1 and PARP2 are promising anti-cancer drugs. In addition to blocking PARP1&2 enzymatic activity, PARP inhibitors also extend the lifetime of DNA damage-induced PARP1&2 foci, termed trapping. Trapping is important for the therapeutic effects of PARP inhibitors. Using live-cell imaging, we found that PARP inhibitors cause persistent PARP2 foci by switching the mode of PARP2 recruitment from a predominantly PARP1- and PAR-dependent rapid exchange to a WGR domain-mediated stalling of PARP2 on DNA. Specifically, PARP1-deletion markedly reduces but does not abolish PARP2 foci. The residual PARP2 foci in PARP1-deficient cells are DNA-dependent and abrogated by the R140A mutation in the WGR domain. Yet, PARP2-R140A forms normal foci in PARP1-proficient cells. In PARP1-deficient cells, PARP inhibitors - niraparib, talazoparib, and, to a lesser extent, olaparib - enhance PARP2 foci by preventing PARP2 exchange. This trapping of PARP2 is independent of auto-PARylation and is abolished by the R140A mutation in the WGR domain and the H415A mutation in the catalytic domain. Taken together, we found that PARP inhibitors trap PARP2 by physically stalling PARP2 on DNA via the WGR-DNA interaction while suppressing the PARP1- and PAR-dependent rapid exchange of PARP2.
Collapse
Affiliation(s)
- Xiaohui Lin
- Institute for Cancer Genetics, Vagelos College for Physicians and Surgeons, Columbia University, New York City, NY10032, USA
| | - Wenxia Jiang
- Institute for Cancer Genetics, Vagelos College for Physicians and Surgeons, Columbia University, New York City, NY10032, USA
| | - Johannes Rudolph
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO80309, USA
| | - Brian J Lee
- Institute for Cancer Genetics, Vagelos College for Physicians and Surgeons, Columbia University, New York City, NY10032, USA
| | - Karolin Luger
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO80309, USA
- Howard Hughes Medical Institute, University of Colorado Boulder, Boulder, CO80309, USA
| | - Shan Zha
- Institute for Cancer Genetics, Vagelos College for Physicians and Surgeons, Columbia University, New York City, NY10032, USA
- Department of Pathology and Cell Biology, Herbert Irvine Comprehensive Cancer Center, Vagelos College for Physicians and Surgeons, Columbia University, New York City, NY10032, USA
- Division of Pediatric Hematology, Oncology and Stem Cell Transplantation, Department of Pediatrics, Vagelos College for Physicians and Surgeons, Columbia University, New York City, NY10032, USA
- Department of Immunology and Microbiology, Vagelos College for Physicians and Surgeons, Columbia University, New York City, NY10032, USA
| |
Collapse
|
153
|
Blum JL, Laird AD, Litton JK, Rugo HS, Ettl J, Hurvitz SA, Martin M, Roché HH, Lee KH, Goodwin A, Chen Y, Lanzalone S, Chelliserry J, Czibere A, Hopkins JF, Albacker LA, Mina LA. Determinants of Response to Talazoparib in Patients with HER2-Negative, Germline BRCA1/2-Mutated Breast Cancer. Clin Cancer Res 2022; 28:1383-1390. [PMID: 35091441 PMCID: PMC9365365 DOI: 10.1158/1078-0432.ccr-21-2080] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 10/18/2021] [Accepted: 01/25/2022] [Indexed: 01/07/2023]
Abstract
PURPOSE PARP inhibitors (PARPi) have demonstrated efficacy in tumors with germline breast cancer susceptibility genes (gBRCA) 1 and 2 mutations, but further factors influencing response to PARPi are poorly understood. EXPERIMENTAL DESIGN Breast cancer tumor tissue from patients with gBRCA1/2 mutations from the phase III EMBRACA trial of the PARPi talazoparib versus chemotherapy was sequenced using FoundationOne CDx. RESULTS In the evaluable intent-to-treat population, 96.1% (296/308) had ≥1 tumor BRCA (tBRCA) mutation and there was strong concordance (95.3%) between tBRCA and gBRCA mutational status. Genetic/genomic characteristics including BRCA loss of heterozygosity (LOH; identified in 82.6% of evaluable patients), DNA damage response (DDR) gene mutational burden, and tumor homologous recombination deficiency [assessed by genomic LOH (gLOH)] demonstrated no association with talazoparib efficacy. CONCLUSIONS Overall, BRCA LOH status, DDR gene mutational burden, and gLOH were not associated with talazoparib efficacy; however, these conclusions are qualified by population heterogeneity and low patient numbers in some subgroups. Further investigation in larger patient populations is warranted.
Collapse
Affiliation(s)
- Joanne L. Blum
- Baylor Charles A. Sammons Cancer Center, Texas Oncology, US Oncology, Dallas, Texas.,Corresponding Author: Joanne L. Blum, Baylor Charles A. Sammons Cancer Center, Texas Oncology, US Oncology, 3410 Worth Street, Suite 400, Dallas, TX 75246. Phone: 214-370-1050; E-mail:
| | | | | | - Hope S. Rugo
- University of California, San Francisco, Helen Diller Family Comprehensive Cancer Center, San Francisco, California
| | - Johannes Ettl
- Department of Obstetrics and Gynecology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Sara A. Hurvitz
- University of California, Los Angeles, Jonsson Comprehensive Cancer Center, Los Angeles, California
| | - Miguel Martin
- Instituto de Investigación Sanitaria Gregorio Marañón, CIBERONC, GEICAM, Universidad Complutense, Madrid, Spain
| | - Henri H. Roché
- Institut Claudius Regaud, Institut Universitaire du Cancer Toulouse, Toulouse, France
| | - Kyung-Hun Lee
- Cancer Research Institute, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea
| | | | | | | | | | | | | | | | - Lida A. Mina
- Banner MD Anderson Cancer Center at Banner Gateway Medical Center, Gilbert, Arizona
| |
Collapse
|
154
|
Wu K, Chen M, Peng X, Li Y, Tang G, Peng J, Cao X. Recent Progress of the research on the benzimidazole PARP-1 inhibitors. Mini Rev Med Chem 2022; 22:2438-2462. [PMID: 35319364 DOI: 10.2174/1389557522666220321150700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/20/2021] [Accepted: 01/07/2022] [Indexed: 11/22/2022]
Abstract
Poly (ADP-ribose) polymerase-1 (PARP-1) is a multifunctional protein that plays an important role in DNA repair and genome integrity. PARP-1 inhibitors can be used as effective drugs not only to treat BRCA-1/2 deficient cancers because of the effect of synthetically lethal, but also to treat non-BRCA1/2 deficient tumours because of the effect of PARP capture. Therefore, the PARP inhibitors have become a focus of compelling research. Among these inhibitors, substituted benzimidazole derivatives were mainly concerned lead compounds. However, the commercial available benzimidazole PARP-1 inhibitors have some shortcomings such as serious toxicity in combination with chemotherapy drugs, in vivo cardiovascular side effects such as anemia. Therefore it's crucial for scientists to explore more structure-activity relationships of the benzimidazole PARP-1 inhibitors and access safer and more effective PARP inhibitors. As the binding region of PARP-1 and the substrates is usually characterized as NI site and AD site, the modification of benzimidazoles mainly occurs on the benzimidazole skeleton (NI site), and the side chain of benzimidazole on 2-C position (AD site). Herein, the recent progresses of the researches of benzamides PARP inhibitors were introduced. We noticed that even though many efforts were taken to the modification of NI sites, there were still lacks of optimistic and impressive results. However, the structure-activity relationships of the modification of AD sites have not thoroughly discovered yet. We hope that enlightened by the previous researches, more researches of AD site should be occurred and more effective benzimidazole PARP-1 inhibitors could be designed, synthesized, and applied to clinics.
Collapse
Affiliation(s)
- Kaiyue Wu
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, College of Pharmacy, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Miaojia Chen
- Department of Pharmacy, the first People\'s Hospital, Pingjiang, Yueyang, Hunan, China
| | - Xiaoyu Peng
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, College of Pharmacy, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Yang Li
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, College of Pharmacy, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Guotao Tang
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, College of Pharmacy, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Junmei Peng
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, College of Pharmacy, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Xuan Cao
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, College of Pharmacy, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| |
Collapse
|
155
|
Rudolph J, Jung K, Luger K. Inhibitors of PARP: Number crunching and structure gazing. Proc Natl Acad Sci U S A 2022; 119:e2121979119. [PMID: 35259019 PMCID: PMC8931346 DOI: 10.1073/pnas.2121979119] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 01/26/2022] [Indexed: 02/07/2023] Open
Abstract
SignificancePARP is an important target in the treatment of cancers, particularly in patients with breast, ovarian, or prostate cancer that have compromised homologous recombination repair (i.e., BRCA-/-). This review about inhibitors of PARP (PARPi) is for readers interested in the development of next-generation drugs for the treatment of cancer, providing insights into structure-activity relationships, in vitro vs. in vivo potency, PARP trapping, and synthetic lethality.
Collapse
Affiliation(s)
- Johannes Rudolph
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO 80309
| | - Karen Jung
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO 80309
| | - Karolin Luger
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO 80309
- HHMI, University of Colorado Boulder, Boulder, CO 80309
| |
Collapse
|
156
|
Lehner M, Rieth S, Höllmüller E, Spliesgar D, Mertes B, Stengel F, Marx A. Profiling of the ADP‐Ribosylome in Living Cells. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202200977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Maike Lehner
- Departments of Chemistry and Biology Konstanz Research School Chemical Biology Universitätsstraße 10 78457 Konstanz Germany
| | - Sonja Rieth
- Departments of Chemistry and Biology Konstanz Research School Chemical Biology Universitätsstraße 10 78457 Konstanz Germany
| | - Eva Höllmüller
- Departments of Chemistry and Biology Konstanz Research School Chemical Biology Universitätsstraße 10 78457 Konstanz Germany
| | - Daniel Spliesgar
- Departments of Chemistry and Biology Konstanz Research School Chemical Biology Universitätsstraße 10 78457 Konstanz Germany
| | - Bastian Mertes
- Departments of Chemistry and Biology Konstanz Research School Chemical Biology Universitätsstraße 10 78457 Konstanz Germany
| | - Florian Stengel
- Departments of Chemistry and Biology Konstanz Research School Chemical Biology Universitätsstraße 10 78457 Konstanz Germany
| | - Andreas Marx
- Departments of Chemistry and Biology Konstanz Research School Chemical Biology Universitätsstraße 10 78457 Konstanz Germany
| |
Collapse
|
157
|
Dual-target inhibitors based on PARP1: new trend in the development of anticancer research. Future Med Chem 2022; 14:511-525. [PMID: 35257598 DOI: 10.4155/fmc-2021-0292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
PARP1 is a hot target, and its inhibitors have been approved for cancer therapy. However, some undesirable properties restrict the application of PARP1 inhibitors, including drug resistance, side effects and low efficiency. For multifactorial diseases, dual-target drugs have exhibited excellent synergistic effects, such as reduced drug resistance, low side effects and high therapeutic efficacy, by simultaneously regulating the main pathogenic and compensatory signal pathways of diseases. In recent years, several dual-target inhibitors based on PARP1 have been reported and have demonstrated unique advantages. In this review we summarize the research progress in dual-target inhibitors based on PARP1 and discuss the related drug design strategies and structure-activity relationships. This work is expected to provide references for the development of PARP1 inhibitors.
Collapse
|
158
|
Huang D, Kraus WL. The expanding universe of PARP1-mediated molecular and therapeutic mechanisms. Mol Cell 2022; 82:2315-2334. [PMID: 35271815 DOI: 10.1016/j.molcel.2022.02.021] [Citation(s) in RCA: 136] [Impact Index Per Article: 45.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 02/03/2022] [Accepted: 02/10/2022] [Indexed: 12/25/2022]
Abstract
ADP-ribosylation (ADPRylation) is a post-translational modification of proteins catalyzed by ADP-ribosyl transferase (ART) enzymes, including nuclear PARPs (e.g., PARP1 and PARP2). Historically, studies of ADPRylation and PARPs have focused on DNA damage responses in cancers, but more recent studies elucidate diverse roles in a broader array of biological processes. Here, we summarize the expanding array of molecular mechanisms underlying the biological functions of nuclear PARPs with a focus on PARP1, the founding member of the family. This includes roles in DNA repair, chromatin regulation, gene expression, ribosome biogenesis, and RNA biology. We also present new concepts in PARP1-dependent regulation, including PAR-dependent post-translational modifications, "ADPR spray," and PAR-mediated biomolecular condensate formation. Moreover, we review advances in the therapeutic mechanisms of PARP inhibitors (PARPi) as well as the progress on the mechanisms of PARPi resistance. Collectively, the recent progress in the field has yielded new insights into the expanding universe of PARP1-mediated molecular and therapeutic mechanisms in a variety of biological processes.
Collapse
Affiliation(s)
- Dan Huang
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Division of Basic Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China.
| | - W Lee Kraus
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Division of Basic Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
159
|
Lengyel-Zhanda Z, Puentes LN, Mach RH. PARkinson's: From cellular mechanisms to potential therapeutics. Pharmacol Ther 2022; 230:107968. [PMID: 34391789 PMCID: PMC8821123 DOI: 10.1016/j.pharmthera.2021.107968] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/13/2021] [Accepted: 07/14/2021] [Indexed: 02/03/2023]
Abstract
Our understanding of the progression and mechanisms underlying the onset of Parkinson's disease (PD) has grown enormously in the past few decades. There is growing evidence suggesting that poly (ADP-ribose) polymerase 1 (PARP-1) hyperactivation is involved in various neurodegenerative disorders, including PD, and that poly (ADP-ribose) (PAR)-dependent cell death is responsible for neuronal loss. In this review, we discuss the contribution of PARP-1 and PAR in the pathological process of PD. We describe the potential pathways regulated by the enzyme, review clinically relevant PARP-1 inhibitors as potential disease-modifying therapeutics for PD, and outline important factors that need to be considered for repurposing PARP-1 inhibitors for use in PD.
Collapse
Affiliation(s)
| | - Laura N. Puentes
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Robert H. Mach
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA,Corresponding author at: Vagelos Building, Room 1012, 231 S. 34th Street, Philadelphia, PA 19104
| |
Collapse
|
160
|
Wu K, Peng X, Chen M, Li Y, Tang G, Peng J, Peng Y, Cao X. Recent progress of research on anti‐tumor agents using benzimidazole as the structure unit. Chem Biol Drug Des 2022; 99:736-757. [DOI: 10.1111/cbdd.14022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 01/10/2022] [Accepted: 01/15/2022] [Indexed: 11/26/2022]
Affiliation(s)
- Kaiyue Wu
- Institute of Pharmacy and Pharmacology Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study College of Pharmacy Hengyang Medical School University of South China Hengyang China
| | - Xiaoyu Peng
- Institute of Pharmacy and Pharmacology Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study College of Pharmacy Hengyang Medical School University of South China Hengyang China
| | - Miaojia Chen
- Department of Pharmacy the first People's Hospital Pingjiang Yueyang Hunan China
| | - Yang Li
- Institute of Pharmacy and Pharmacology Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study College of Pharmacy Hengyang Medical School University of South China Hengyang China
| | - Guotao Tang
- Institute of Pharmacy and Pharmacology Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study College of Pharmacy Hengyang Medical School University of South China Hengyang China
| | - Junmei Peng
- Institute of Pharmacy and Pharmacology Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study College of Pharmacy Hengyang Medical School University of South China Hengyang China
| | - Yuanyuan Peng
- School of Electrical and Automation Engineering East China Jiaotong University Nanchang 330000 China
| | - Xuan Cao
- Institute of Pharmacy and Pharmacology Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study College of Pharmacy Hengyang Medical School University of South China Hengyang China
| |
Collapse
|
161
|
Unsprung traps keep PARP inhibitors effective. Nat Cell Biol 2022; 24:2-4. [PMID: 35013555 DOI: 10.1038/s41556-021-00819-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
162
|
Rosenberg DJ, Syed A, Tainer JA, Hura GL. Monitoring Nuclease Activity by X-Ray Scattering Interferometry Using Gold Nanoparticle-Conjugated DNA. Methods Mol Biol 2022; 2444:183-205. [PMID: 35290639 PMCID: PMC9512051 DOI: 10.1007/978-1-0716-2063-2_12] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The biologically critical, exquisite specificity and efficiency of nucleases, such as those acting in DNA repair and replication, often emerge in the context of multiple other macromolecules. The evolved complexity also makes biologically relevant nuclease assays challenging and low-throughput. Meiotic recombination 11 homolog 1 (MRE11) is an exemplary nuclease that initiates DNA double-strand break (DSB) repair and processes stalled DNA replication forks. Thus, DNA resection by MRE11 nuclease activity is critical for multiple DSB repair pathways as well as in replication. Traditionally, in vitro nuclease activity of purified enzymes is studied either through gel-based assays or fluorescence-based assays like fluorescence resonance energy transfer (FRET). However, adapting these methods for a high-throughput application such as inhibitor screening can be challenging. Gel-based approaches are slow, and FRET assays can suffer from interference and distance limitations. Here we describe an alternative methodology to monitor nuclease activity by measuring the small-angle X-ray scattering (SAXS) interference pattern from gold nanoparticles (Au NPs) conjugated to 5'-ends of dsDNA using X-ray scattering interferometry (XSI). In addition to reporting on the enzyme activity, XSI can provide insight into DNA-protein interactions, aiding in the development of inhibitors that trap enzymes on the DNA substrate. Enabled by efficient access to synchrotron beamlines, sample preparation, and the feasibility of high-throughput XSI data collection and processing pipelines, this method allows for far greater speeds with less sample consumption than conventional SAXS techniques. The reported metrics and methods can be generalized to monitor not only other nucleases but also most other DNA-protein interactions.
Collapse
Affiliation(s)
- Daniel J Rosenberg
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Graduate Group in Biophysics, University of California, Berkeley, Berkeley, CA, USA
| | - Aleem Syed
- Department of Molecular and Cellular Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - John A Tainer
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
- Department of Molecular and Cellular Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA.
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Greg L Hura
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
- Chemistry and Biochemistry Department, University of California Santa Cruz, Santa Cruz, CA, USA.
| |
Collapse
|
163
|
Krastev DB, Li S, Sun Y, Wicks AJ, Hoslett G, Weekes D, Badder LM, Knight EG, Marlow R, Pardo MC, Yu L, Talele TT, Bartek J, Choudhary JS, Pommier Y, Pettitt SJ, Tutt ANJ, Ramadan K, Lord CJ. The ubiquitin-dependent ATPase p97 removes cytotoxic trapped PARP1 from chromatin. Nat Cell Biol 2022; 24:62-73. [PMID: 35013556 PMCID: PMC8760077 DOI: 10.1038/s41556-021-00807-6] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 11/03/2021] [Indexed: 12/12/2022]
Abstract
Poly (ADP-ribose) polymerase (PARP) inhibitors elicit antitumour activity in homologous recombination-defective cancers by trapping PARP1 in a chromatin-bound state. How cells process trapped PARP1 remains unclear. Using wild-type and a trapping-deficient PARP1 mutant combined with rapid immunoprecipitation mass spectrometry of endogenous proteins and Apex2 proximity labelling, we delineated mass spectrometry-based interactomes of trapped and non-trapped PARP1. These analyses identified an interaction between trapped PARP1 and the ubiquitin-regulated p97 ATPase/segregase. We found that following trapping, PARP1 is SUMOylated by PIAS4 and subsequently ubiquitylated by the SUMO-targeted E3 ubiquitin ligase RNF4, events that promote recruitment of p97 and removal of trapped PARP1 from chromatin. Small-molecule p97-complex inhibitors, including a metabolite of the clinically used drug disulfiram (CuET), prolonged PARP1 trapping and enhanced PARP inhibitor-induced cytotoxicity in homologous recombination-defective tumour cells and patient-derived tumour organoids. Together, these results suggest that p97 ATPase plays a key role in the processing of trapped PARP1 and the response of tumour cells to PARP inhibitors.
Collapse
Affiliation(s)
- Dragomir B Krastev
- The CRUK Gene Function Laboratory, London, UK
- Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK
| | - Shudong Li
- MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, UK
| | - Yilun Sun
- Developmental Therapeutics Branch, Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Andrew J Wicks
- The CRUK Gene Function Laboratory, London, UK
- Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK
| | - Gwendoline Hoslett
- MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, UK
| | - Daniel Weekes
- Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK
| | - Luned M Badder
- The Breast Cancer Now Research Unit, King's College London, London, UK
| | - Eleanor G Knight
- Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK
| | - Rebecca Marlow
- Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK
| | | | - Lu Yu
- Functional Proteomics Laboratory, The Institute of Cancer Research, London, UK
| | - Tanaji T Talele
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, USA
| | - Jiri Bartek
- Danish Cancer Society Research Center, Copenhagen, Denmark
- Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Science for Life Laboratory, Karolinska Institute, Stockholm, Sweden
| | - Jyoti S Choudhary
- Functional Proteomics Laboratory, The Institute of Cancer Research, London, UK
| | - Yves Pommier
- Developmental Therapeutics Branch, Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Stephen J Pettitt
- The CRUK Gene Function Laboratory, London, UK.
- Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK.
| | - Andrew N J Tutt
- Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK.
| | - Kristijan Ramadan
- MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, UK.
| | - Christopher J Lord
- The CRUK Gene Function Laboratory, London, UK.
- Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK.
| |
Collapse
|
164
|
Tsutakawa SE, Bacolla A, Katsonis P, Bralić A, Hamdan SM, Lichtarge O, Tainer JA, Tsai CL. Decoding Cancer Variants of Unknown Significance for Helicase-Nuclease-RPA Complexes Orchestrating DNA Repair During Transcription and Replication. Front Mol Biosci 2021; 8:791792. [PMID: 34966786 PMCID: PMC8710748 DOI: 10.3389/fmolb.2021.791792] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 11/16/2021] [Indexed: 01/13/2023] Open
Abstract
All tumors have DNA mutations, and a predictive understanding of those mutations could inform clinical treatments. However, 40% of the mutations are variants of unknown significance (VUS), with the challenge being to objectively predict whether a VUS is pathogenic and supports the tumor or whether it is benign. To objectively decode VUS, we mapped cancer sequence data and evolutionary trace (ET) scores onto crystallography and cryo-electron microscopy structures with variant impacts quantitated by evolutionary action (EA) measures. As tumors depend on helicases and nucleases to deal with transcription/replication stress, we targeted helicase–nuclease–RPA complexes: (1) XPB-XPD (within TFIIH), XPF-ERCC1, XPG, and RPA for transcription and nucleotide excision repair pathways and (2) BLM, EXO5, and RPA plus DNA2 for stalled replication fork restart. As validation, EA scoring predicts severe effects for most disease mutations, but disease mutants with low ET scores not only are likely destabilizing but also disrupt sophisticated allosteric mechanisms. For sites of disease mutations and VUS predicted to be severe, we found strong co-localization to ordered regions. Rare discrepancies highlighted the different survival requirements between disease and tumor mutations, as well as the value of examining proteins within complexes. In a genome-wide analysis of 33 cancer types, we found correlation between the number of mutations in each tumor and which pathways or functional processes in which the mutations occur, revealing different mutagenic routes to tumorigenesis. We also found upregulation of ancient genes including BLM, which supports a non-random and concerted cancer process: reversion to a unicellular, proliferation-uncontrolled, status by breaking multicellular constraints on cell division. Together, these genes and global analyses challenge the binary “driver” and “passenger” mutation paradigm, support a gradient impact as revealed by EA scoring from moderate to severe at a single gene level, and indicate reduced regulation as well as activity. The objective quantitative assessment of VUS scoring and gene overexpression in the context of functional interactions and pathways provides insights for biology, oncology, and precision medicine.
Collapse
Affiliation(s)
- Susan E Tsutakawa
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Albino Bacolla
- Department of Molecular and Cellular Oncology, University of Texas M.D. Anderson Cancer Center, Houston, TX, United States
| | - Panagiotis Katsonis
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
| | - Amer Bralić
- Laboratory of DNA Replication and Recombination, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Samir M Hamdan
- Laboratory of DNA Replication and Recombination, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Olivier Lichtarge
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
| | - John A Tainer
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, United States.,Department of Molecular and Cellular Oncology, University of Texas M.D. Anderson Cancer Center, Houston, TX, United States.,Department of Cancer Biology, University of Texas M.D. Anderson Cancer Center, Houston, TX, United States
| | - Chi-Lin Tsai
- Department of Molecular and Cellular Oncology, University of Texas M.D. Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
165
|
Zong C, Zhu T, He J, Huang R, Jia R, Shen J. PARP mediated DNA damage response, genomic stability and immune responses. Int J Cancer 2021; 150:1745-1759. [PMID: 34952967 DOI: 10.1002/ijc.33918] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 12/09/2021] [Accepted: 12/17/2021] [Indexed: 11/11/2022]
Abstract
Poly (ADP-ribose) polymerase (PARP) enzymes, especially PARP1, play important roles in the DNA damage response and in the maintenance of genome stability, which makes PARPis a classic synthetic lethal therapy for BRCA-deficient tumors. Conventional mechanisms suggest that PARPis exert their effects via catalytic inhibition and PARP-DNA trapping. Recently, PARP1 has been found to play a role in the immune modulation of tumors. The blockade of PARP1 is able to induce innate immunity through a series of molecular mechanisms, thus allowing the prediction of the feasibility of PARPis combined with immune agents in the treatment of tumors. PARPis combined with immunomodulators may have a stronger tumor suppressive effect on inhibiting tumor growth and blocking immune escape. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Chunyan Zong
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, P. R. China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Tianyu Zhu
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, P. R. China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Jie He
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, P. R. China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Rui Huang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, P. R. China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Renbing Jia
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, P. R. China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Jianfeng Shen
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, P. R. China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| |
Collapse
|
166
|
|
167
|
Swisher EM, Aghajanian C, O'Malley DM, Fleming GF, Kaufmann SH, Levine DA, Birrer MJ, Moore KN, Spirtos NM, Shahin MS, Reid TJ, Friedlander M, Steffensen KD, Okamoto A, Sehgal V, Ansell PJ, Dinh MH, Bookman MA, Coleman RL. Impact of homologous recombination status and responses with veliparib combined with first-line chemotherapy in ovarian cancer in the Phase 3 VELIA/GOG-3005 study. Gynecol Oncol 2021; 164:245-253. [PMID: 34906376 DOI: 10.1016/j.ygyno.2021.12.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 11/16/2021] [Accepted: 12/01/2021] [Indexed: 11/18/2022]
Abstract
OBJECTIVE In the Phase 3 VELIA trial (NCT02470585), PARP inhibitor (PARPi) veliparib was combined with first-line chemotherapy and continued as maintenance for patients with ovarian carcinoma enrolled regardless of chemotherapy response or biomarker status. Here, we report exploratory analyses of the impact of homologous recombination deficient (HRD) or proficient (HRP) status on progression-free survival (PFS) and objective response rates during chemotherapy. METHODS Women with Stage III-IV ovarian carcinoma were randomized to veliparib-throughout, veliparib-combination-only, or placebo. Stratification factors included timing of surgery and germline BRCA mutation status. HRD status was dichotomized at genomic instability score 33. During combination therapy, CA-125 levels were measured at baseline and each cycle; radiographic responses were assessed every 9 weeks. RESULTS Of 1140 patients randomized, 742 had BRCA wild type (BRCAwt) tumors (HRP, n = 373; HRD/BRCAwt, n = 329). PFS hazard ratios between veliparib-throughout versus control were similar in both BRCAwt populations (HRD/BRCAwt: 22.9 vs 19.8 months; hazard ratio 0.76; 95% confidence interval [CI] 0.53-1.09; HRP: 15.0 vs 11.5 months; hazard ratio 0.765; 95% CI 0.56-1.04). By Cycle 3, the proportion with ≥90% CA-125 reduction from baseline was higher in those receiving veliparib (pooled arms) versus control (34% vs 23%; P = 0.0004); particularly in BRCAwt and HRP subgroups. Complete response rates among patients with measurable disease after surgery were 24% with veliparib (pooled arms) and 18% with control. CONCLUSIONS These results potentially broaden opportunities for PARPi utilization among patients who would not qualify for frontline PARPi maintenance based on other trials.
Collapse
Affiliation(s)
- Elizabeth M Swisher
- Department of Obstetrics and Gynecology, University of Washington, 1959 NE Pacific Street, Seattle, WA 98195-6460, USA.
| | - Carol Aghajanian
- Memorial Sloan Kettering Cancer Center, 300 East 66th Street, New York, NY 10065, USA
| | - David M O'Malley
- The Ohio State University and James CCC, 460 W. 10th Avenue, Columbus, OH 43210, USA
| | - Gini F Fleming
- The University of Chicago Medicine, 5841 S. Maryland Avenue, Chicago, IL, USA
| | - Scott H Kaufmann
- Division of Oncology Research, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | | | - Michael J Birrer
- Winthrop P Rockefeller Cancer Institute, 4301 W. Markham Street, Little Rock, AR 72205-7199, USA
| | - Kathleen N Moore
- Stephenson Cancer Center at the University of Oklahoma Health Sciences Center, 800 N.E. 10th Street, Oklahoma City, OK 73104, USA
| | - Nick M Spirtos
- Women's Cancer Center of Nevada, 2460 Augusta, Las Vegas NV89109, USA
| | - Mark S Shahin
- Abington Jefferson Hospital, Asplundh Cancer Center of Sidney Kimmel Cancer Center, 3941 Commerce Ave, Willow Grove, PA 19090, USA
| | - Thomas J Reid
- University of Cincinnati College of Medicine, 3230 Eden Avenue, Cincinnati, OH 45267, USA
| | - Michael Friedlander
- Prince of Wales Clinical School UNSW and Prince of Wales Hospital and ANZGOG, Corner High Street and Avoca Street, Randwick, NSW 2031, Australia
| | - Karina Dahl Steffensen
- Lillebaelt University Hospital of Southern Denmark, Winsløwparken 19, 3, DK-5000 Odense C, Vejle, Denmark
| | - Aikou Okamoto
- The Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-ku, Tokyo 105-8461, Japan
| | - Vasudha Sehgal
- AbbVie Inc., 1 North Waukegan Road, North Chicago, IL 60064-6124, USA
| | - Peter J Ansell
- AbbVie Inc., 1 North Waukegan Road, North Chicago, IL 60064-6124, USA
| | - Minh H Dinh
- AbbVie Inc., 1 North Waukegan Road, North Chicago, IL 60064-6124, USA
| | - Michael A Bookman
- Kaiser Permanente Northern California, 2238 Geary Blvd, San Francisco, CA 94115, USA
| | - Robert L Coleman
- US Oncology Research, 9180 Pinecroft, The Woodlands, TX 77380, USA
| |
Collapse
|
168
|
Zhang D, Wei W, Liu Y, Pu Y, Liu S. Dual Imaging of Poly(ADP-ribose) Polymerase-1 and Endogenous H 2O 2 for the Diagnosis of Cancer Cells Using Silver-Coated Gold Nanorods. Anal Chem 2021; 93:16248-16256. [PMID: 34839666 DOI: 10.1021/acs.analchem.1c04155] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The imaging of tumor-related multitarget molecules is of great significance to raise the diagnostic accuracy for malignant tumors. Poly(ADP-ribose) polymerase-1 (PARP-1) has emerged as a potential clinical biomarker for tumor diagnosis due to its specific overexpression in cancer cells. High levels of H2O2 in the tumor microenvironment play vital roles in driving cancer progression. Inspired by these achievements, we employed a silver-coated gold nanorod (Au@Ag NR) as a plasmonic probe for dual imaging of intracellular PARP-1 and H2O2 under a dark-field microscope (DFM). Au@Ag NR was used not only to distinguish tumor cells from normal cells but also to induce the apoptosis of cancer cells owing to the etching of Ag shell by H2O2, accompanied by the color change from green to orange. On the other hand, Au@Ag NRs modified with active double-stranded DNA (dsDNA) could be utilized to image PARP-1 in cancer cells and quantitatively detect PARP-1 in vitro by naked eyes or DFM. The reason is that PARP-1 polymerized nicotinamideadenine dinucleotide (NAD+) into large and hyperbranched poly(ADP-ribose) polymer (PAR) on the surface of Au@Ag NRs, preventing the Ag shell from being etched by H2O2. As the PARP-1 activity increased, a blue-shift of the adsorption peak occurred along with a color change from pale pink to green, which could be recognized by naked eyes. Under DFM, its scattering light varied obviously from red to green. The proposed dual-imaging strategy holds good prospects in cancer diagnosis.
Collapse
Affiliation(s)
- Duoduo Zhang
- State Key Laboratory of Bioelectronics, Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P. R. China
| | - Wei Wei
- State Key Laboratory of Bioelectronics, Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P. R. China
| | - Yong Liu
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, P. R. China
| | - Yuepu Pu
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, P. R. China
| | - Songqin Liu
- State Key Laboratory of Bioelectronics, Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P. R. China
| |
Collapse
|
169
|
Palazzo L, Suskiewicz MJ, Ahel I. Serine ADP-ribosylation in DNA-damage response regulation. Curr Opin Genet Dev 2021; 71:106-113. [PMID: 34340015 DOI: 10.1016/j.gde.2021.07.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 07/01/2021] [Accepted: 07/05/2021] [Indexed: 11/23/2022]
Abstract
PARP1 and PARP2 govern the DNA-damage response by catalysing the reversible post-translational modification ADP-ribosylation. During the repair of DNA lesions, PARP1 and PARP2 combine with an accessory factor HPF1, which is required for the modification of target proteins on serine residues. Although the physiological role of individual ADP-ribosylation sites is still unclear, serine ADP-ribosylation at damage sites leads to the recruitment of chromatin remodellers and repair factors to ensure efficient DNA repair. ADP-ribosylation signalling is tightly controlled by the coordinated activities of (ADP-ribosyl)glycohydrolases PARG and ARH3 that, by reversing the modification, guarantee proper kinetics of DNA repair and cell cycle re-entry. The recent advances in the structural and mechanistic understanding of ADP-ribosylation provide new insights into human physiopathology and cancer therapy.
Collapse
Affiliation(s)
- Luca Palazzo
- Institute for the Experimental Endocrinology and Oncology, National Research Council of Italy, Via Tommaso de Amicis 95, 80145 Naples, Italy
| | - Marcin J Suskiewicz
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Ivan Ahel
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK.
| |
Collapse
|
170
|
Understanding and overcoming resistance to PARP inhibitors in cancer therapy. Nat Rev Clin Oncol 2021; 18:773-791. [PMID: 34285417 DOI: 10.1038/s41571-021-00532-x] [Citation(s) in RCA: 300] [Impact Index Per Article: 75.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/10/2021] [Indexed: 02/07/2023]
Abstract
Developing novel targeted anticancer therapies is a major goal of current research. The use of poly(ADP-ribose) polymerase (PARP) inhibitors in patients with homologous recombination-deficient tumours provides one of the best examples of a targeted therapy that has been successfully translated into the clinic. The success of this approach has so far led to the approval of four different PARP inhibitors for the treatment of several types of cancers and a total of seven different compounds are currently under clinical investigation for various indications. Clinical trials have demonstrated promising response rates among patients receiving PARP inhibitors, although the majority will inevitably develop resistance. Preclinical and clinical data have revealed multiple mechanisms of resistance and current efforts are focused on developing strategies to address this challenge. In this Review, we summarize the diverse processes underlying resistance to PARP inhibitors and discuss the potential strategies that might overcome these mechanisms such as combinations with chemotherapies, targeting the acquired vulnerabilities associated with resistance to PARP inhibitors or suppressing genomic instability.
Collapse
|
171
|
Gopal AK, Popat R, Mattison RJ, Menne T, Bloor A, Gaymes T, Khwaja A, Juckett M, Chen Y, Cotter MJ, Mufti GJ. A Phase I trial of talazoparib in patients with advanced hematologic malignancies. Int J Hematol Oncol 2021; 10:IJH35. [PMID: 34840720 PMCID: PMC8609999 DOI: 10.2217/ijh-2021-0004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 07/30/2021] [Indexed: 11/24/2022] Open
Abstract
Aim: The objective of this study was to establish the maximum tolerated dose (MTD), safety, pharmacokinetics, and anti-leukemic activity of talazoparib. Patients & methods: This Phase I, two-cohort, dose-escalation trial evaluated talazoparib monotherapy in advanced hematologic malignancies (cohort 1: acute myeloid leukemia/myelodysplastic syndrome; cohort 2: chronic lymphocytic leukemia/mantle cell lymphoma). Results: Thirty-three (cohort 1: n = 25; cohort 2: n = 8) patients received talazoparib (0.1–2.0 mg once daily). The MTD was exceeded at 2.0 mg/day in cohort 1 and at 0.9 mg/day in cohort 2. Grade ≥3 adverse events were primarily hematologic. Eighteen (54.5%) patients reported stable disease. Conclusion: Talazoparib is relatively well tolerated in hematologic malignancies, with a similar MTD as in solid tumors, and shows preliminary anti leukemic activity. Clinical trial registration: NCT01399840 (ClinicalTrials.gov) The objective of this study was to define the highest dose of talazoparib that people with various types of leukemia (mainly various blood cancers) could tolerate. People were assigned into two cohorts based on their type of leukemia: cohort 1 included 25 people with acute myeloid leukemia or myelodysplastic syndrome; cohort 2 included 8 people with chronic lymphocytic leukemia or mantle cell lymphoma. Similar to what researchers observed for people with solid tumors, the highest tolerated dose was 1.35 mg per day in cohort 1, and it was estimated to be ∼0.9 mg per day in cohort 2. Side effects that occurred during the study were expected, given the types of leukemia being treated. Talazoparib also showed promising anti leukemic effects in some patients. In this Phase I talazoparib trial in hematologic malignancies (cohort 1: AML/MDS, n = 25; cohort 2: CLL/MCL, n = 8), the maximum tolerated dose was exceeded at 2.0 and 0.9 mg/day in cohorts 1 and 2, respectively. Stable disease and transfusion independence were also observed.
Collapse
Affiliation(s)
- Ajay K Gopal
- Division of Medical Oncology, Department of Medicine, University of Washington, Seattle, Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Rakesh Popat
- National Institute for Health Research University College London Hospitals Clinical Research Facility, University College London Hospitals NHS Foundation Trust, London, UK
| | - Ryan J Mattison
- Carbone Cancer Center, University of Wisconsin, Madison, WI, USA
| | - Tobias Menne
- Department of Hematology, Freeman Hospital, Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle Upon Tyne, UK
| | - Adrian Bloor
- The Christie NHS Foundation Trust, University of Manchester, Manchester, UK
| | - Terry Gaymes
- Department of Biomolecular Science, Kingston University, London, UK
| | - Asim Khwaja
- University College London Cancer Institute & University College London Hospitals NHS Foundation Trust, London, UK
| | - Mark Juckett
- Carbone Cancer Center, University of Wisconsin, Madison, WI, USA
| | | | | | - Ghulam J Mufti
- Department of Hematology, King's College London, King's College Hospital NHS Foundation Trust, London, UK
| |
Collapse
|
172
|
HPF1 dynamically controls the PARP1/2 balance between initiating and elongating ADP-ribose modifications. Nat Commun 2021; 12:6675. [PMID: 34795260 PMCID: PMC8602370 DOI: 10.1038/s41467-021-27043-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 10/29/2021] [Indexed: 11/21/2022] Open
Abstract
PARP1 and PARP2 produce poly(ADP-ribose) in response to DNA breaks. HPF1 regulates PARP1/2 catalytic output, most notably permitting serine modification with ADP-ribose. However, PARP1 is substantially more abundant in cells than HPF1, challenging whether HPF1 can pervasively modulate PARP1. Here, we show biochemically that HPF1 efficiently regulates PARP1/2 catalytic output at sub-stoichiometric ratios matching their relative cellular abundances. HPF1 rapidly associates/dissociates from multiple PARP1 molecules, initiating serine modification before modification initiates on glutamate/aspartate, and accelerating initiation to be more comparable to elongation reactions forming poly(ADP-ribose). This “hit and run” mechanism ensures HPF1 contributions to PARP1/2 during initiation do not persist and interfere with PAR chain elongation. We provide structural insights into HPF1/PARP1 assembled on a DNA break, and assess HPF1 impact on PARP1 retention on DNA. Our data support the prevalence of serine-ADP-ribose modification in cells and the efficiency of serine-ADP-ribose modification required for an acute DNA damage response. HPF1 controls the ADP-ribosylation activity of PARP1/2 in response to DNA breaks. Here, the authors show that HPF1 regulates the balance between ADP-ribose initiation and elongation through a dynamic interaction that accelerates the initiation rate on serine residues.
Collapse
|
173
|
Krastev DB, Wicks AJ, Lord CJ. PARP Inhibitors - Trapped in a Toxic Love Affair. Cancer Res 2021; 81:5605-5607. [PMID: 34782321 DOI: 10.1158/0008-5472.can-21-3201] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 09/28/2021] [Indexed: 11/16/2022]
Abstract
It is often the case that when an investigational cancer drug first enters clinical development, its precise mechanism of action is unclear. This was the case for PARP inhibitors (PARPi) used to treat homologous recombination-defective cancers. In 2012, nearly a decade after the first PARPi entered clinical development, work from Murai and colleagues demonstrated that clinical PARPi not only inhibit the catalytic activity of PARP1, PARylation, but also "trap" PARP1 on DNA; this latter effect being responsible for much of the tumor cell cytotoxicity caused by these drugs. We discuss how this work not only changed our understanding about how PARPi work, but also stimulated subsequent dissection of how PARP1 carries out its normal function in the absence of inhibitor.See related article by Murai and colleagues, Cancer Res 2012;72:5588-99.
Collapse
Affiliation(s)
- Dragomir B Krastev
- The CRUK Gene Function Laboratory, The Institute of Cancer Research, London, United Kingdom
- Breast Cancer Now Toby Robins Breast Cancer Research Centre, The Institute of Cancer Research, London, United Kingdom
| | - Andrew J Wicks
- The CRUK Gene Function Laboratory, The Institute of Cancer Research, London, United Kingdom
- Breast Cancer Now Toby Robins Breast Cancer Research Centre, The Institute of Cancer Research, London, United Kingdom
| | - Christopher J Lord
- The CRUK Gene Function Laboratory, The Institute of Cancer Research, London, United Kingdom.
- Breast Cancer Now Toby Robins Breast Cancer Research Centre, The Institute of Cancer Research, London, United Kingdom.
| |
Collapse
|
174
|
Cheng X, Zhao JX, Dong F, Cao XC. ARID1A Mutation in Metastatic Breast Cancer: A Potential Therapeutic Target. Front Oncol 2021; 11:759577. [PMID: 34804958 PMCID: PMC8599951 DOI: 10.3389/fonc.2021.759577] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 10/15/2021] [Indexed: 12/05/2022] Open
Abstract
Distant metastasis is the principal cause of mortality for breast cancer patients. Targeting specific mutations that have been acquired during the evolution process of advanced breast cancer is a potential means of enhancing the clinical efficacy of treatment strategies. In metastatic breast cancer, ARID1A is the most prevalent mutation of the SWI/SNF complex, which regulates DNA repair, recombination, and gene transcription. The low expression of ARID1A is associated with poor disease-free survival and overall survival of patients with luminal A or HER2-rich breast cancer. In addition, ARID1A plays a prominent role in maintaining luminal characteristics and has an advantage for identifying responses to treatment, including endocrine therapies, HDAC inhibitors and CDK4/6 inhibitors. The therapeutic vulnerabilities initiated by ARID1A alterations encourage us to explore new approaches to cope with ARID1A mutant-related drug resistance or metastasis. In this review, we describe the mutation profiles of ARID1A in metastatic breast cancer and the structure and function of ARID1A and the SWI/SNF complex as well as discuss the potential mechanisms of ARID1A-mediated endocrine resistance and therapeutic potential.
Collapse
Affiliation(s)
- Xuan Cheng
- The First Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
- Tianjin’s Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China
| | - Jian-Xiong Zhao
- The First Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
- Tianjin’s Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China
| | - Feng Dong
- Department of Neurosurgery, Tianjin Medical University General Hospital and Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Tianjin, China
- State Key Laboratory of Experimental Hematology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory of Cellular Homeostasis and Human Diseases, Department of Cell Biology, Tianjin Medical University, Tianjin, China
| | - Xu-Chen Cao
- The First Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
- Tianjin’s Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China
| |
Collapse
|
175
|
Singh DD, Parveen A, Yadav DK. Role of PARP in TNBC: Mechanism of Inhibition, Clinical Applications, and Resistance. Biomedicines 2021; 9:biomedicines9111512. [PMID: 34829741 PMCID: PMC8614648 DOI: 10.3390/biomedicines9111512] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/05/2021] [Accepted: 10/18/2021] [Indexed: 12/13/2022] Open
Abstract
Triple-negative breast cancer is a combative cancer type with a highly inflated histological grade that leads to poor theragnostic value. Gene, protein, and receptor-specific targets have shown effective clinical outcomes in patients with TNBC. Cells are frequently exposed to DNA-damaging agents. DNA damage is repaired by multiple pathways; accumulations of mutations occur due to damage to one or more pathways and lead to alterations in normal cellular mechanisms, which lead to development of tumors. Advances in target-specific cancer therapies have shown significant momentum; most treatment options cause off-target toxicity and side effects on healthy tissues. PARP (poly(ADP-ribose) polymerase) is a major protein and is involved in DNA repair pathways, base excision repair (BER) mechanisms, homologous recombination (HR), and nonhomologous end-joining (NEJ) deficiency-based repair mechanisms. DNA damage repair deficits cause an increased risk of tumor formation. Inhibitors of PARP favorably kill cancer cells in BRCA-mutations. For a few years, PARPi has shown promising activity as a chemotherapeutic agent in BRCA1- or BRCA2-associated breast cancers, and in combination with chemotherapy in triple-negative breast cancer. This review covers the current results of clinical trials testing and future directions for the field of PARP inhibitor development.
Collapse
Affiliation(s)
- Desh Deepak Singh
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur 303002, India;
| | - Amna Parveen
- College of Pharmacy, Gachon University of Medicine and Science, Hambakmoeiro 191, Yeonsu-gu, Incheon 21924, Korea
- Correspondence: (A.P.); (D.K.Y.); Tel.: +82-32-820-4948 (D.K.Y.)
| | - Dharmendra Kumar Yadav
- College of Pharmacy, Gachon University of Medicine and Science, Hambakmoeiro 191, Yeonsu-gu, Incheon 21924, Korea
- Correspondence: (A.P.); (D.K.Y.); Tel.: +82-32-820-4948 (D.K.Y.)
| |
Collapse
|
176
|
Saha LK, Murai Y, Saha S, Jo U, Tsuda M, Takeda S, Pommier Y. Replication-dependent cytotoxicity and Spartan-mediated repair of trapped PARP1-DNA complexes. Nucleic Acids Res 2021; 49:10493-10506. [PMID: 34551432 DOI: 10.1093/nar/gkab777] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 07/28/2021] [Accepted: 09/02/2021] [Indexed: 11/13/2022] Open
Abstract
The antitumor activity of poly(ADP-ribose) polymerase inhibitors (PARPis) has been ascribed to PARP trapping, which consists in tight DNA-protein complexes. Here we demonstrate that the cytotoxicity of talazoparib and olaparib results from DNA replication. To elucidate the repair of PARP1-DNA complexes associated with replication in human TK6 and chicken DT40 lymphoblastoid cells, we explored the role of Spartan (SPRTN), a metalloprotease associated with DNA replication, which removes proteins forming DPCs. We find that SPRTN-deficient cells are hypersensitive to talazoparib and olaparib, but not to veliparib, a weak PARP trapper. SPRTN-deficient cells exhibit delayed clearance of trapped PARP1 and increased replication fork stalling upon talazoparib and olaparib treatment. We also show that SPRTN interacts with PARP1 and forms nuclear foci that colocalize with the replicative cell division cycle 45 protein (CDC45) in response to talazoparib. Additionally, SPRTN is deubiquitinated and epistatic with translesion synthesis (TLS) in response to talazoparib. Our results demonstrate that SPRTN is recruited to trapped PARP1 in S-phase to assist in the excision and replication bypass of PARP1-DNA complexes.
Collapse
Affiliation(s)
- Liton Kumar Saha
- Developmental Therapeutics Branch & Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Yasuhisa Murai
- Developmental Therapeutics Branch & Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Sourav Saha
- Developmental Therapeutics Branch & Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Ukhyun Jo
- Developmental Therapeutics Branch & Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Masataka Tsuda
- Department of Radiation Genetics, Kyoto University, Graduate School of Medicine, Yoshida Konoe, Sakyo-ku, Kyoto 606-8501, Japan.,Program of Mathematical and Life Sciences, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
| | - Shunichi Takeda
- Department of Radiation Genetics, Kyoto University, Graduate School of Medicine, Yoshida Konoe, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yves Pommier
- Developmental Therapeutics Branch & Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| |
Collapse
|
177
|
Liu JCY, Kühbacher U, Larsen NB, Borgermann N, Garvanska DH, Hendriks IA, Ackermann L, Haahr P, Gallina I, Guérillon C, Branigan E, Hay RT, Azuma Y, Nielsen ML, Duxin JP, Mailand N. Mechanism and function of DNA replication-independent DNA-protein crosslink repair via the SUMO-RNF4 pathway. EMBO J 2021; 40:e107413. [PMID: 34346517 PMCID: PMC8441304 DOI: 10.15252/embj.2020107413] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 07/03/2021] [Accepted: 07/12/2021] [Indexed: 11/09/2022] Open
Abstract
DNA-protein crosslinks (DPCs) obstruct essential DNA transactions, posing a serious threat to genome stability and functionality. DPCs are proteolytically processed in a ubiquitin- and DNA replication-dependent manner by SPRTN and the proteasome but can also be resolved via targeted SUMOylation. However, the mechanistic basis of SUMO-mediated DPC resolution and its interplay with replication-coupled DPC repair remain unclear. Here, we show that the SUMO-targeted ubiquitin ligase RNF4 defines a major pathway for ubiquitylation and proteasomal clearance of SUMOylated DPCs in the absence of DNA replication. Importantly, SUMO modifications of DPCs neither stimulate nor inhibit their rapid DNA replication-coupled proteolysis. Instead, DPC SUMOylation provides a critical salvage mechanism to remove DPCs formed after DNA replication, as DPCs on duplex DNA do not activate interphase DNA damage checkpoints. Consequently, in the absence of the SUMO-RNF4 pathway cells are able to enter mitosis with a high load of unresolved DPCs, leading to defective chromosome segregation and cell death. Collectively, these findings provide mechanistic insights into SUMO-driven pathways underlying replication-independent DPC resolution and highlight their critical importance in maintaining chromosome stability and cellular fitness.
Collapse
Affiliation(s)
- Julio C Y Liu
- Protein Signaling ProgramNovo Nordisk Foundation Center for Protein ResearchUniversity of CopenhagenCopenhagenDenmark
| | - Ulrike Kühbacher
- Protein Signaling ProgramNovo Nordisk Foundation Center for Protein ResearchUniversity of CopenhagenCopenhagenDenmark
| | - Nicolai B Larsen
- Protein Signaling ProgramNovo Nordisk Foundation Center for Protein ResearchUniversity of CopenhagenCopenhagenDenmark
| | - Nikoline Borgermann
- Protein Signaling ProgramNovo Nordisk Foundation Center for Protein ResearchUniversity of CopenhagenCopenhagenDenmark
| | - Dimitriya H Garvanska
- Protein Signaling ProgramNovo Nordisk Foundation Center for Protein ResearchUniversity of CopenhagenCopenhagenDenmark
| | - Ivo A Hendriks
- Protein Signaling ProgramNovo Nordisk Foundation Center for Protein ResearchUniversity of CopenhagenCopenhagenDenmark
| | - Leena Ackermann
- Protein Signaling ProgramNovo Nordisk Foundation Center for Protein ResearchUniversity of CopenhagenCopenhagenDenmark
| | - Peter Haahr
- Netherlands Cancer InstituteAmsterdamThe Netherlands
| | - Irene Gallina
- Protein Signaling ProgramNovo Nordisk Foundation Center for Protein ResearchUniversity of CopenhagenCopenhagenDenmark
| | - Claire Guérillon
- Protein Signaling ProgramNovo Nordisk Foundation Center for Protein ResearchUniversity of CopenhagenCopenhagenDenmark
| | - Emma Branigan
- Centre for Gene Regulation and ExpressionSchool of Life SciencesUniversity of DundeeDundeeUK
| | - Ronald T Hay
- Centre for Gene Regulation and ExpressionSchool of Life SciencesUniversity of DundeeDundeeUK
| | - Yoshiaki Azuma
- Department of Molecular BiosciencesUniversity of KansasLawrenceKSUSA
| | - Michael Lund Nielsen
- Protein Signaling ProgramNovo Nordisk Foundation Center for Protein ResearchUniversity of CopenhagenCopenhagenDenmark
| | - Julien P Duxin
- Protein Signaling ProgramNovo Nordisk Foundation Center for Protein ResearchUniversity of CopenhagenCopenhagenDenmark
| | - Niels Mailand
- Protein Signaling ProgramNovo Nordisk Foundation Center for Protein ResearchUniversity of CopenhagenCopenhagenDenmark
- Center for Chromosome StabilityDepartment of Cellular and Molecular MedicineUniversity of CopenhagenCopenhagenDenmark
| |
Collapse
|
178
|
Stotz S, Kinzler J, Nies AT, Schwab M, Maurer A. Two experts and a newbie: [ 18F]PARPi vs [ 18F]FTT vs [ 18F]FPyPARP-a comparison of PARP imaging agents. Eur J Nucl Med Mol Imaging 2021; 49:834-846. [PMID: 34486071 PMCID: PMC8803746 DOI: 10.1007/s00259-021-05436-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 05/26/2021] [Indexed: 12/30/2022]
Abstract
Purpose Imaging of PARP expression has emerged as valuable strategy for prediction of tumor malignancy. While [18F]PARPi and [18F]FTT are already in clinical translation, both suffer from mainly hepatobiliary clearance hampering their use for detection of abdominal lesions, e.g., liver metastases. Our novel radiotracer [18F]FPyPARP aims to bridge this gap with a higher renal clearance and an easily translatable synthesis route for potential clinical application. Methods We developed a less lipophilic variant of [18F]PARPi by exchange of the fluorobenzoyl residue with a fluoronicotinoyl group and automated the radiosyntheses of the three radiotracers. We then conducted a comparative side-by-side study of [18F]PARPi, [18F]FPyPARP, and [18F]FTT in NOD.CB17-Prkdcscid/J mice bearing HCC1937 xenografts to assess xenograft uptake and pharmacokinetics focusing on excretion pathways. Results Together with decent uptake of all three radiotracers in the xenografts (tumor-to-blood ratios 3.41 ± 0.83, 3.99 ± 0.99, and 2.46 ± 0.35, respectively, for [18F]PARPi, [18F]FPyPARP, and [18F]FTT), a partial shift from hepatobiliary to renal clearance of [18F]FPyPARP was observed, whereas [18F]PARPi and [18F]FTT show almost exclusive hepatobiliary clearance. Conclusion These findings imply that [18F]FPyPARP is an alternative to [18F]PARPi and [18F]FTT for PET imaging of PARP enzymes. Supplementary Information The online version contains supplementary material available at 10.1007/s00259-021-05436-7.
Collapse
Affiliation(s)
- Sophie Stotz
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tuebingen, Roentgenweg 15, 72076, Tuebingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image Guided and Functionally Instructed Tumor Therapies", Eberhard Karls University Tuebingen, Tuebingen, Germany
| | - Johannes Kinzler
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tuebingen, Roentgenweg 15, 72076, Tuebingen, Germany
| | - Anne T Nies
- Cluster of Excellence iFIT (EXC 2180) "Image Guided and Functionally Instructed Tumor Therapies", Eberhard Karls University Tuebingen, Tuebingen, Germany
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, and Eberhard Karls University Tuebingen, Tuebingen, Germany
| | - Matthias Schwab
- Cluster of Excellence iFIT (EXC 2180) "Image Guided and Functionally Instructed Tumor Therapies", Eberhard Karls University Tuebingen, Tuebingen, Germany
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, and Eberhard Karls University Tuebingen, Tuebingen, Germany
- Departments of Clinical Pharmacology, and of Biochemistry and Pharmacy, Eberhard Karls University Tuebingen, Tuebingen, Germany
| | - Andreas Maurer
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tuebingen, Roentgenweg 15, 72076, Tuebingen, Germany.
- Cluster of Excellence iFIT (EXC 2180) "Image Guided and Functionally Instructed Tumor Therapies", Eberhard Karls University Tuebingen, Tuebingen, Germany.
| |
Collapse
|
179
|
Franchet C, Hoffmann JS, Dalenc F. Recent Advances in Enhancing the Therapeutic Index of PARP Inhibitors in Breast Cancer. Cancers (Basel) 2021; 13:cancers13164132. [PMID: 34439286 PMCID: PMC8392832 DOI: 10.3390/cancers13164132] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/10/2021] [Accepted: 08/11/2021] [Indexed: 12/27/2022] Open
Abstract
Simple Summary Two to three percent of breast cancer patients harbor germline mutation of either BRCA1 or BRCA2 genes. Their tumor cells are deficient in homologous recombination, a BRCA-dependent DNA repair machinery. These deficient cells survive thanks to the PARP-mediated alternative pathway. Therefore, PARP inhibitors have already shown some level of efficiency in the treatment of metastatic breast cancer patients. Unfortunately, some tumor cells inevitably resist PARP inhibitors by different mechanisms. In this review, we (i) present the notion of homologous recombination deficiency and its evaluation methods, (ii) detail the PARP inhibitor clinical trials in breast cancer, (iii) briefly describe the mechanisms to PARP inhibitors resistance, and (iv) discuss some strategies currently under evaluation to enhance the therapeutic index of PARP inhibitors in breast cancer. Abstract As poly-(ADP)-ribose polymerase (PARP) inhibition is synthetic lethal with the deficiency of DNA double-strand (DSB) break repair by homologous recombination (HR), PARP inhibitors (PARPi) are currently used to treat breast cancers with mutated BRCA1/2 HR factors. Unfortunately, the increasingly high rate of PARPi resistance in clinical practice has dented initial hopes. Multiple resistance mechanisms and acquired vulnerabilities revealed in vitro might explain this setback. We describe the mechanisms and vulnerabilities involved, including newly identified modes of regulation of DSB repair that are now being tested in large cohorts of patients and discuss how they could lead to novel treatment strategies to improve the therapeutic index of PARPi.
Collapse
Affiliation(s)
- Camille Franchet
- Laboratoire de Pathologie and Institut Claudius Regaud, Institut Universitaire du Cancer de Toulouse-Oncopole, 1 Av. Irène Joliot-Curie, 31100 Toulouse, France;
| | - Jean-Sébastien Hoffmann
- Laboratoire d’Excellence Toulouse Cancer (TOUCAN), Laboratoire de Pathologie, Institut Universitaire du Cancer-Toulouse, 31037 Toulouse, France;
| | - Florence Dalenc
- Institut Claudius Regaud, Institut Universitaire du Cancer de Toulouse-Oncopole, 1 Av. Irène Joliot-Curie, 31100 Toulouse, France
- Correspondence:
| |
Collapse
|
180
|
Zhang Y, Jiang J, Zhang J, Shen H, Wang M, Guo Z, Zang X, Shi H, Gao J, Cai H, Fang X, Qian H, Xu W, Zhang X. CircDIDO1 inhibits gastric cancer progression by encoding a novel DIDO1-529aa protein and regulating PRDX2 protein stability. Mol Cancer 2021; 20:101. [PMID: 34384442 PMCID: PMC8359101 DOI: 10.1186/s12943-021-01390-y] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 07/02/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Circular RNAs (circRNAs) play important roles in cancer development and progression. The purpose of this study is to identify aberrantly expressed circRNAs in gastric cancer (GC), unravel their roles in GC progression, and provide new targets for GC diagnosis and therapy. METHODS Bioinformatic analyses were performed to identify the aberrantly expression of hsa_circ_0061137 (termed as circDIDO1) in GC. Gain- and loss-of-function studies were performed to examine the biological roles of circDIDO1 in GC progression. Tagged RNA affinity purification, mass spectrometry, immunofluorescence, co-immunoprecipitation, and Western blot were used to identify circRNA-interacting and circRNA-encoded proteins. RNA sequencing, qRT-PCR, and Western blot were performed to analyze circRNA-regulated downstream target genes and signaling pathways. Mouse tumor models were used to analyze the effects of circDIDO1 on GC growth and metastasis. RESULTS CircDIDO1 was transcribed from human DIDO1 (death-inducer obliterator 1) gene and formed by back-splicing of exons 2-6 of the linear transcript. circDIDO1 was down-regulated in GC tissues and its low levels were associated with larger tumor size, distal metastasis, and poor prognosis. CircDIDO1 overexpression inhibited while knockdown promoted GC cell proliferation, migration and invasion. CircDIDO1 overexpression suppressed GC growth and metastasis in mouse tumor models. Mechanistically, circDIDO1 encoded a novel 529aa protein that directly interacted with poly ADP-ribose polymerase 1 (PARP1) and inhibited its activity. CircDIDO1 also specifically bound to peroxiredoxin 2 (PRDX2) and promoted RBX1-mediated ubiquitination and degradation of PRDX2, which led to the inactivation of its downstream signaling pathways. CONCLUSIONS CircDIDO1 is a new circRNA that has tumor suppressor function in GC and it may serve as a potential prognostic biomarker and therapeutic target for GC.
Collapse
Affiliation(s)
- Yu Zhang
- Aoyang Cancer Institute, Affiliated Aoyang Hospital of Jiangsu University, Zhangjiagang, 215600, Jiangsu, China
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, 210009, Jiangsu, China
| | - Jiajia Jiang
- Aoyang Cancer Institute, Affiliated Aoyang Hospital of Jiangsu University, Zhangjiagang, 215600, Jiangsu, China
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Jiayin Zhang
- Aoyang Cancer Institute, Affiliated Aoyang Hospital of Jiangsu University, Zhangjiagang, 215600, Jiangsu, China
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Han Shen
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, 210009, Jiangsu, China
| | - Maoye Wang
- Aoyang Cancer Institute, Affiliated Aoyang Hospital of Jiangsu University, Zhangjiagang, 215600, Jiangsu, China
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Zhen Guo
- Aoyang Cancer Institute, Affiliated Aoyang Hospital of Jiangsu University, Zhangjiagang, 215600, Jiangsu, China
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Xueyan Zang
- Aoyang Cancer Institute, Affiliated Aoyang Hospital of Jiangsu University, Zhangjiagang, 215600, Jiangsu, China
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Hui Shi
- Aoyang Cancer Institute, Affiliated Aoyang Hospital of Jiangsu University, Zhangjiagang, 215600, Jiangsu, China
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
- Department of Oncology, Lianyungang Hospital Affiliated To Jiangsu University, Lianyungang, 222000, Jiangsu, China
- Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu Province, Gansu Hospital of Jiangsu University, Lanzhou, 730000, Gansu, China
| | - Jiayan Gao
- Aoyang Cancer Institute, Affiliated Aoyang Hospital of Jiangsu University, Zhangjiagang, 215600, Jiangsu, China
| | - Hui Cai
- Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu Province, Gansu Hospital of Jiangsu University, Lanzhou, 730000, Gansu, China
| | - Xinjian Fang
- Department of Oncology, Lianyungang Hospital Affiliated To Jiangsu University, Lianyungang, 222000, Jiangsu, China
| | - Hui Qian
- Aoyang Cancer Institute, Affiliated Aoyang Hospital of Jiangsu University, Zhangjiagang, 215600, Jiangsu, China
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Wenrong Xu
- Aoyang Cancer Institute, Affiliated Aoyang Hospital of Jiangsu University, Zhangjiagang, 215600, Jiangsu, China.
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China.
| | - Xu Zhang
- Aoyang Cancer Institute, Affiliated Aoyang Hospital of Jiangsu University, Zhangjiagang, 215600, Jiangsu, China.
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China.
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, 210009, Jiangsu, China.
- Department of Oncology, Lianyungang Hospital Affiliated To Jiangsu University, Lianyungang, 222000, Jiangsu, China.
- Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu Province, Gansu Hospital of Jiangsu University, Lanzhou, 730000, Gansu, China.
| |
Collapse
|
181
|
de Bono JS, Mehra N, Scagliotti GV, Castro E, Dorff T, Stirling A, Stenzl A, Fleming MT, Higano CS, Saad F, Buttigliero C, van Oort IM, Laird AD, Mata M, Chen HC, Healy CG, Czibere A, Fizazi K. Talazoparib monotherapy in metastatic castration-resistant prostate cancer with DNA repair alterations (TALAPRO-1): an open-label, phase 2 trial. Lancet Oncol 2021; 22:1250-1264. [PMID: 34388386 DOI: 10.1016/s1470-2045(21)00376-4] [Citation(s) in RCA: 201] [Impact Index Per Article: 50.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 06/10/2021] [Accepted: 06/17/2021] [Indexed: 12/14/2022]
Abstract
BACKGROUND Poly(ADP-ribose) polymerase (PARP) inhibitors have antitumour activity against metastatic castration-resistant prostate cancers with DNA damage response (DDR) alterations in genes involved directly or indirectly in homologous recombination repair (HRR). In this study, we assessed the PARP inhibitor talazoparib in metastatic castration-resistant prostate cancers with DDR-HRR alterations. METHODS In this open-label, phase 2 trial (TALAPRO-1), participants were recruited from 43 hospitals, cancer centres, and medical centres in Australia, Austria, Belgium, Brazil, France, Germany, Hungary, Italy, the Netherlands, Poland, Spain, South Korea, the UK, and the USA. Patients were eligible if they were men aged 18 years or older with progressive, metastatic, castration-resistant prostate cancers of adenocarcinoma histology, measurable soft-tissue disease (per Response Evaluation Criteria in Solid Tumors version 1.1 [RECIST 1.1]), an Eastern Cooperative Oncology Group performance status of 0-2, DDR-HRR gene alterations reported to sensitise to PARP inhibitors (ie, ATM, ATR, BRCA1, BRCA2, CHEK2, FANCA, MLH1, MRE11A, NBN, PALB2, RAD51C), had received one or two taxane-based chemotherapy regimens for metastatic disease, and progressed on enzalutamide or abiraterone, or both, for metastatic castration-resistant prostate cancers. Eligible patients were given oral talazoparib (1 mg per day; or 0·75 mg per day in patients with moderate renal impairment) until disease progression, unacceptable toxicity, investigator decision, withdrawal of consent, or death. The primary endpoint was confirmed objective response rate, defined as best overall soft-tissue response of complete or partial response per RECIST 1.1, by blinded independent central review. The primary endpoint was assessed in patients who received study drug, had measurable soft-tissue disease, and had a gene alteration in one of the predefined DDR-HRR genes. Safety was assessed in all patients who received at least one dose of the study drug. This study is registered with ClinicalTrials.gov, NCT03148795, and is ongoing. FINDINGS Between Oct 18, 2017, and March 20, 2020, 128 patients were enrolled, of whom 127 received at least one dose of talazoparib (safety population) and 104 had measurable soft-tissue disease (antitumour activity population). Data cutoff for this analysis was Sept 4, 2020. After a median follow-up of 16·4 months (IQR 11·1-22·1), the objective response rate was 29·8% (31 of 104 patients; 95% CI 21·2-39·6). The most common grade 3-4 treatment-emergent adverse events were anaemia (39 [31%] of 127 patients), thrombocytopenia (11 [9%]), and neutropenia (ten [8%]). Serious treatment-emergent adverse events were reported in 43 (34%) patients. There were no treatment-related deaths. INTERPRETATION Talazoparib showed durable antitumour activity in men with advanced metastatic castration-resistant prostate cancers with DDR-HRR gene alterations who had been heavily pretreated. The favourable benefit-risk profile supports the study of talazoparib in larger, randomised clinical trials, including in patients with non-BRCA alterations. FUNDING Pfizer/Medivation.
Collapse
Affiliation(s)
- Johann S de Bono
- The Institute of Cancer Research and Royal Marsden Hospital, London, UK.
| | - Niven Mehra
- Department of Medical Oncology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Giorgio V Scagliotti
- Department of Oncology, University of Turin, San Luigi Gonzaga Hospital, Orbassano, Turin, Italy
| | - Elena Castro
- Hospital Universitario Virgen de la Victoria and Instituto de Investigación Biomédica de Málaga (IBIMA), Malaga, Spain
| | - Tanya Dorff
- City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | | | - Arnulf Stenzl
- Department of Urology, University Hospital Tübingen, Tübingen, Germany
| | - Mark T Fleming
- Virginia Oncology Associates, US Oncology Research, Norfolk, VA, USA
| | - Celestia S Higano
- University of Washington and Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Fred Saad
- Division of Urology, Centre Hospitalier de l'Université de Montréal (CHUM/CRCHUM), Montréal, QC, Canada
| | - Consuelo Buttigliero
- Department of Oncology, University of Turin, San Luigi Gonzaga Hospital, Orbassano, Turin, Italy
| | - Inge M van Oort
- Department of Urology, Radboud University Medical Center, Nijmegen, Netherlands
| | | | | | | | | | | | - Karim Fizazi
- Institut Gustave Roussy, University of Paris Saclay, Villejuif, France
| |
Collapse
|
182
|
Bell NAW, Haynes PJ, Brunner K, de Oliveira TM, Flocco MM, Hoogenboom BW, Molloy JE. Single-molecule measurements reveal that PARP1 condenses DNA by loop stabilization. SCIENCE ADVANCES 2021; 7:7/33/eabf3641. [PMID: 34380612 PMCID: PMC8357241 DOI: 10.1126/sciadv.abf3641] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 06/22/2021] [Indexed: 05/11/2023]
Abstract
Poly(ADP-ribose) polymerase 1 (PARP1) is an abundant nuclear enzyme that plays important roles in DNA repair, chromatin organization and transcription regulation. Although binding and activation of PARP1 by DNA damage sites has been extensively studied, little is known about how PARP1 binds to long stretches of undamaged DNA and how it could shape chromatin architecture. Here, using single-molecule techniques, we show that PARP1 binds and condenses undamaged, kilobase-length DNA subject to sub-piconewton mechanical forces. Stepwise decondensation at high force and DNA braiding experiments show that the condensation activity is due to the stabilization of DNA loops by PARP1. PARP inhibitors do not affect the level of condensation of undamaged DNA but act to block condensation reversal for damaged DNA in the presence of NAD+ Our findings suggest a mechanism for PARP1 in the organization of chromatin structure.
Collapse
Affiliation(s)
- Nicholas A W Bell
- The Francis Crick Institute, London NW1 1AT, UK.
- London Centre for Nanotechnology, University College London, London WC1H 0AH, UK
| | - Philip J Haynes
- London Centre for Nanotechnology, University College London, London WC1H 0AH, UK
- Molecular Sciences Research Hub, Department of Chemistry, Imperial College London, London W12 0BZ, UK
- Department of Physics and Astronomy, University College London, London WC1E 6BT, UK
| | - Katharina Brunner
- The Francis Crick Institute, London NW1 1AT, UK
- Discovery Biology, Discovery Sciences, R&D, AstraZeneca, Cambridge, UK
| | - Taiana Maia de Oliveira
- Mechanistic and Structural Biology, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Maria M Flocco
- Mechanistic and Structural Biology, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Bart W Hoogenboom
- London Centre for Nanotechnology, University College London, London WC1H 0AH, UK
- Department of Physics and Astronomy, University College London, London WC1E 6BT, UK
| | | |
Collapse
|
183
|
Brosey CA, Houl JH, Katsonis P, Balapiti-Modarage LPF, Bommagani S, Arvai A, Moiani D, Bacolla A, Link T, Warden LS, Lichtarge O, Jones DE, Ahmed Z, Tainer JA. Targeting SARS-CoV-2 Nsp3 macrodomain structure with insights from human poly(ADP-ribose) glycohydrolase (PARG) structures with inhibitors. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2021; 163:171-186. [PMID: 33636189 PMCID: PMC7901392 DOI: 10.1016/j.pbiomolbio.2021.02.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 01/25/2021] [Accepted: 02/10/2021] [Indexed: 01/08/2023]
Abstract
Arrival of the novel SARS-CoV-2 has launched a worldwide effort to identify both pre-approved and novel therapeutics targeting the viral proteome, highlighting the urgent need for efficient drug discovery strategies. Even with effective vaccines, infection is possible, and at-risk populations would benefit from effective drug compounds that reduce the lethality and lasting damage of COVID-19 infection. The CoV-2 MacroD-like macrodomain (Mac1) is implicated in viral pathogenicity by disrupting host innate immunity through its mono (ADP-ribosyl) hydrolase activity, making it a prime target for antiviral therapy. We therefore solved the structure of CoV-2 Mac1 from non-structural protein 3 (Nsp3) and applied structural and sequence-based genetic tracing, including newly determined A. pompejana MacroD2 and GDAP2 amino acid sequences, to compare and contrast CoV-2 Mac1 with the functionally related human DNA-damage signaling factor poly (ADP-ribose) glycohydrolase (PARG). Previously, identified targetable features of the PARG active site allowed us to develop a pharmacologically useful PARG inhibitor (PARGi). Here, we developed a focused chemical library and determined 6 novel PARGi X-ray crystal structures for comparative analysis. We applied this knowledge to discovery of CoV-2 Mac1 inhibitors by combining computation and structural analysis to identify PARGi fragments with potential to bind the distal-ribose and adenosyl pockets of the CoV-2 Mac1 active site. Scaffold development of these PARGi fragments has yielded two novel compounds, PARG-345 and PARG-329, that crystallize within the Mac1 active site, providing critical structure-activity data and a pathway for inhibitor optimization. The reported structural findings demonstrate ways to harness our PARGi synthesis and characterization pipeline to develop CoV-2 Mac1 inhibitors targeting the ADP-ribose active site. Together, these structural and computational analyses reveal a path for accelerating development of antiviral therapeutics from pre-existing drug optimization pipelines.
Collapse
Affiliation(s)
- Chris A Brosey
- Department of Molecular and Cellular Oncology, M. D. Anderson Cancer Center, Houston, TX, 77030, USA.
| | - Jerry H Houl
- Department of Molecular and Cellular Oncology, M. D. Anderson Cancer Center, Houston, TX, 77030, USA
| | - Panagiotis Katsonis
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | | | - Shobanbabu Bommagani
- Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Andy Arvai
- Integrative Structural & Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Davide Moiani
- Department of Molecular and Cellular Oncology, M. D. Anderson Cancer Center, Houston, TX, 77030, USA
| | - Albino Bacolla
- Department of Molecular and Cellular Oncology, M. D. Anderson Cancer Center, Houston, TX, 77030, USA
| | - Todd Link
- Department of Molecular and Cellular Oncology, M. D. Anderson Cancer Center, Houston, TX, 77030, USA
| | - Leslie S Warden
- Department of Molecular and Cellular Oncology, M. D. Anderson Cancer Center, Houston, TX, 77030, USA
| | - Olivier Lichtarge
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Darin E Jones
- Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Zamal Ahmed
- Department of Molecular and Cellular Oncology, M. D. Anderson Cancer Center, Houston, TX, 77030, USA.
| | - John A Tainer
- Department of Molecular and Cellular Oncology, M. D. Anderson Cancer Center, Houston, TX, 77030, USA; Department of Cancer Biology, M.D. Anderson Cancer Center, Houston, TX, 77030, USA; Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
| |
Collapse
|
184
|
Hobbs EA, Litton JK, Yap TA. Development of the PARP inhibitor talazoparib for the treatment of advanced BRCA1 and BRCA2 mutated breast cancer. Expert Opin Pharmacother 2021; 22:1825-1837. [PMID: 34309473 DOI: 10.1080/14656566.2021.1952181] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
INTRODUCTION BRCA1 and BRCA2 (BRCA1/2) mutation breast cancers constitute an uncommon, but unique group of breast cancers that present at a younger age, and are underscored by genomic instability and accumulation of DNA damage. Talazoparib is a potent poly(ADP-ribose) polymerase (PARP) inhibitor that exploits impaired DNA damage response mechanisms in this population of patients and results in significant efficacy. Based on the results of the EMBRACA trial, talazoparib was approved for the treatment of patients with advanced germline BRCA1/2 mutant breast cancer. AREAS COVERED In this review, the authors highlight the relevant clinical trials of talazoparib, as well as, safety, tolerability, and quality of life considerations. They also examine putative response and resistance mechanisms, and rational combinatorial therapeutic strategies under development. EXPERT OPINION Talazoparib has been a major advance in the treatment of germline BRCA1/2 mutation breast cancer with both clinical efficacy and improvement in quality of life compared to standard cytotoxic chemotherapy. To date, the optimal sequencing of talazoparib administration in the metastatic setting has not yet been established. A deeper understanding of response and resistance mechanisms, and more broadly, the DNA repair pathway, will lead to additional opportunities in targeting this pathway and open up therapeutic indications to a broader patient population.
Collapse
Affiliation(s)
- Evthokia A Hobbs
- Division of Cancer Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jennifer K Litton
- Breast Medical Oncology Department, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Timothy A Yap
- Department of Investigational Cancer Therapeutics (Phase I Program), University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Khalifa Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,The Institute for Applied Cancer Science, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
185
|
Vanacker H, Harter P, Labidi-Galy SI, Banerjee S, Oaknin A, Lorusso D, Ray-Coquard I. PARP-inhibitors in epithelial ovarian cancer: Actual positioning and future expectations. Cancer Treat Rev 2021; 99:102255. [PMID: 34332292 DOI: 10.1016/j.ctrv.2021.102255] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 06/22/2021] [Accepted: 06/22/2021] [Indexed: 12/11/2022]
Abstract
Poly-(ADP)-ribose polymerase inhibitors (PARPi) are a class of oral anticancer drugs first developed as "synthetically lethal" in cancers harboring BRCA1/BRCA2 inactivating mutations. In high-grade serous or endometrioid ovarian cancers (HGOC), PARPi demonstrated benefit as maintenance therapy in relapsing BRCA-mutated and non-mutated tumors. Recently, they extended their indications to frontline maintenance therapy. This review summarizes the current place of PARPi (i) as maintenance or single agent in recurrent disease and (ii) frontline maintenance with different settings. We reviewed the course of biomarker identification, the challenge of overcoming resistance to PARPi and future combinations with targeted therapies, including anti-angiogenic, immune checkpoint inhibitors and DNA damage response inhibitors.
Collapse
Affiliation(s)
- Hélène Vanacker
- Centre Léon Bérard, Lyon, France; University Claude Bernard Lyon 1, France.
| | - Philipp Harter
- Department of Gynecology & Gynecologic Oncology, Ev. Kliniken Essen-Mitte, Essen, Germany.
| | - Sana Intidhar Labidi-Galy
- Department of Oncology, Hôpitaux Universitaires de Genève, Switzerland; Faculty of Medicine, Swiss Cancer Center Leman, Geneva, Switzerland.
| | - Susana Banerjee
- Royal Marsden NHS Foundation Trust and Institute of Cancer Research, London, United Kingdom.
| | - Ana Oaknin
- Vall d'Hebron Institute of Oncology, Barcelona, Spain.
| | | | | |
Collapse
|
186
|
McFarland TR, Kessel A, Swami U, Agarwal N. Development of PARP inhibitor combinations for castration resistant prostate cancer unselected for homologous recombination repair mutations. Am J Transl Res 2021; 13:7427-7439. [PMID: 34377227 PMCID: PMC8340210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 05/10/2021] [Indexed: 06/13/2023]
Abstract
Genetic instability is a hallmark of cancer and, with the introduction of poly (ADP-ribose) polymerase (PARP) inhibitors, is a targetable feature of many tumors. Currently, two PARP inhibitors, olaparib and rucaparib, have received approval as monotherapy by the Food and Drug Administration for the treatment of men with castration resistant prostate cancer with selected mutations involving the homologous recombination (HR) pathway. However, it is currently debated whether an HR mutation is a prerequisite for response or if patients with HR-proficient mCRPC may also benefit from their use when combined with other targeted or immunotherapeutic agents. Several large phase III trials of PARP inhibitors with novel androgen axis inhibitors in groups of unselected patients are underway. Additionally, there are several early phase trials combining PARP inhibitors with radioligands or immunecheckpoint inhibitors. Here we discuss the currently ongoing or recently concluded trials of PARP inhibitor based combinatorial therapies in unselected patients with mCRPC, the rationale behind these trials, and how these may impact the treatment paradigm in men with mCRPC.
Collapse
Affiliation(s)
- Taylor Ryan McFarland
- Division of Oncology, Department of Internal Medicine, Huntsman Cancer Institute, University of Utah Salt Lake, UT, USA
| | - Adam Kessel
- Division of Oncology, Department of Internal Medicine, Huntsman Cancer Institute, University of Utah Salt Lake, UT, USA
| | - Umang Swami
- Division of Oncology, Department of Internal Medicine, Huntsman Cancer Institute, University of Utah Salt Lake, UT, USA
| | - Neeraj Agarwal
- Division of Oncology, Department of Internal Medicine, Huntsman Cancer Institute, University of Utah Salt Lake, UT, USA
| |
Collapse
|
187
|
Spiegel JO, Van Houten B, Durrant JD. PARP1: Structural insights and pharmacological targets for inhibition. DNA Repair (Amst) 2021; 103:103125. [PMID: 33940558 PMCID: PMC8206044 DOI: 10.1016/j.dnarep.2021.103125] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/24/2021] [Accepted: 04/09/2021] [Indexed: 12/25/2022]
Abstract
Poly(ADP-ribose) polymerase 1 (PARP1, also known as ADPRT1) is a multifunctional human ADP-ribosyltransferase. It plays a role in multiple DNA repair pathways, including the base excision repair (BER), non-homologous end joining (NHEJ), homologous recombination (HR), and Okazaki-fragment processing pathways. In response to DNA strand breaks, PARP1 covalently attaches ADP-ribose moieties to arginine, glutamate, aspartate, cysteine, lysine, and serine acceptor sites on both itself and other proteins. This signal recruits DNA repair proteins to the site of DNA damage. PARP1 binding to these sites enhances ADP-ribosylation via allosteric communication between the distant DNA binding and catalytic domains. In this review, we provide a general overview of PARP1 and emphasize novel potential approaches for pharmacological inhibition. Clinical PARP1 inhibitors bind the catalytic pocket, where they directly interfere with ADP-ribosylation. Some inhibitors may further enhance potency by "trapping" PARP1 on DNA via an allosteric mechanism, though this proposed mode of action remains controversial. PARP1 inhibitors are used clinically to treat some cancers, but resistance is common, so novel pharmacological approaches are urgently needed. One approach may be to design novel small molecules that bind at inter-domain interfaces that are essential for PARP1 allostery. To illustrate these points, this review also includes instructive videos showing PARP1 structures and mechanisms.
Collapse
Affiliation(s)
- Jacob O Spiegel
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Bennett Van Houten
- UPMC-Hillman Cancer Center, Pittsburgh, PA, 15232, USA; Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Jacob D Durrant
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, 15260, USA.
| |
Collapse
|
188
|
Prokhorova E, Zobel F, Smith R, Zentout S, Gibbs-Seymour I, Schützenhofer K, Peters A, Groslambert J, Zorzini V, Agnew T, Brognard J, Nielsen ML, Ahel D, Huet S, Suskiewicz MJ, Ahel I. Serine-linked PARP1 auto-modification controls PARP inhibitor response. Nat Commun 2021; 12:4055. [PMID: 34210965 PMCID: PMC8249464 DOI: 10.1038/s41467-021-24361-9] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 06/17/2021] [Indexed: 12/28/2022] Open
Abstract
Poly(ADP-ribose) polymerase 1 (PARP1) and PARP2 are recruited and activated by DNA damage, resulting in ADP-ribosylation at numerous sites, both within PARP1 itself and in other proteins. Several PARP1 and PARP2 inhibitors are currently employed in the clinic or undergoing trials for treatment of various cancers. These drugs act primarily by trapping PARP1 on damaged chromatin, which can lead to cell death, especially in cells with DNA repair defects. Although PARP1 trapping is thought to be caused primarily by the catalytic inhibition of PARP-dependent modification, implying that ADP-ribosylation (ADPr) can counteract trapping, it is not known which exact sites are important for this process. Following recent findings that PARP1- or PARP2-mediated modification is predominantly serine-linked, we demonstrate here that serine ADPr plays a vital role in cellular responses to PARP1/PARP2 inhibitors. Specifically, we identify three serine residues within PARP1 (499, 507, and 519) as key sites whose efficient HPF1-dependent modification counters PARP1 trapping and contributes to inhibitor tolerance. Our data implicate genes that encode serine-specific ADPr regulators, HPF1 and ARH3, as potential PARP1/PARP2 inhibitor therapy biomarkers.
Collapse
Affiliation(s)
| | - Florian Zobel
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Rebecca Smith
- Univ Rennes, CNRS, Structure Fédérative de Recherche Biosit, IGDR (Institut de Génétique et Développement de Rennes) - UMR 6290, Rennes, France
| | - Siham Zentout
- Univ Rennes, CNRS, Structure Fédérative de Recherche Biosit, IGDR (Institut de Génétique et Développement de Rennes) - UMR 6290, Rennes, France
| | - Ian Gibbs-Seymour
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
- Department of Biochemistry, University of Oxford, Oxford, UK
| | | | - Alessandra Peters
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | | | - Valentina Zorzini
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Thomas Agnew
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - John Brognard
- Laboratory of Cell and Developmental Signaling, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Michael L Nielsen
- Proteomics Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Dragana Ahel
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Sébastien Huet
- Univ Rennes, CNRS, Structure Fédérative de Recherche Biosit, IGDR (Institut de Génétique et Développement de Rennes) - UMR 6290, Rennes, France
- Institut Universitaire de France, Paris, France
| | | | - Ivan Ahel
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK.
| |
Collapse
|
189
|
Parp mutations protect from mitochondrial toxicity in Alzheimer's disease. Cell Death Dis 2021; 12:651. [PMID: 34172715 PMCID: PMC8233423 DOI: 10.1038/s41419-021-03926-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 06/11/2021] [Accepted: 06/14/2021] [Indexed: 11/08/2022]
Abstract
Alzheimer's disease is the most common age-related neurodegenerative disorder. Familial forms of Alzheimer's disease associated with the accumulation of a toxic form of amyloid-β (Aβ) peptides are linked to mitochondrial impairment. The coenzyme nicotinamide adenine dinucleotide (NAD+) is essential for both mitochondrial bioenergetics and nuclear DNA repair through NAD+-consuming poly (ADP-ribose) polymerases (PARPs). Here we analysed the metabolomic changes in flies overexpressing Aβ and showed a decrease of metabolites associated with nicotinate and nicotinamide metabolism, which is critical for mitochondrial function in neurons. We show that increasing the bioavailability of NAD+ protects against Aβ toxicity. Pharmacological supplementation using NAM, a form of vitamin B that acts as a precursor for NAD+ or a genetic mutation of PARP rescues mitochondrial defects, protects neurons against degeneration and reduces behavioural impairments in a fly model of Alzheimer's disease. Next, we looked at links between PARP polymorphisms and vitamin B intake in patients with Alzheimer's disease. We show that polymorphisms in the human PARP1 gene or the intake of vitamin B are associated with a decrease in the risk and severity of Alzheimer's disease. We suggest that enhancing the availability of NAD+ by either vitamin B supplements or the inhibition of NAD+-dependent enzymes such as PARPs are potential therapies for Alzheimer's disease.
Collapse
|
190
|
Thompson MK, Sobol RW, Prakash A. Exploiting DNA Endonucleases to Advance Mechanisms of DNA Repair. BIOLOGY 2021; 10:530. [PMID: 34198612 PMCID: PMC8232306 DOI: 10.3390/biology10060530] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/09/2021] [Accepted: 06/11/2021] [Indexed: 12/17/2022]
Abstract
The earliest methods of genome editing, such as zinc-finger nucleases (ZFN) and transcription activator-like effector nucleases (TALENs), utilize customizable DNA-binding motifs to target the genome at specific loci. While these approaches provided sequence-specific gene-editing capacity, the laborious process of designing and synthesizing recombinant nucleases to recognize a specific target sequence, combined with limited target choices and poor editing efficiency, ultimately minimized the broad utility of these systems. The discovery of clustered regularly interspaced short palindromic repeat sequences (CRISPR) in Escherichia coli dates to 1987, yet it was another 20 years before CRISPR and the CRISPR-associated (Cas) proteins were identified as part of the microbial adaptive immune system, by targeting phage DNA, to fight bacteriophage reinfection. By 2013, CRISPR/Cas9 systems had been engineered to allow gene editing in mammalian cells. The ease of design, low cytotoxicity, and increased efficiency have made CRISPR/Cas9 and its related systems the designer nucleases of choice for many. In this review, we discuss the various CRISPR systems and their broad utility in genome manipulation. We will explore how CRISPR-controlled modifications have advanced our understanding of the mechanisms of genome stability, using the modulation of DNA repair genes as examples.
Collapse
Affiliation(s)
- Marlo K. Thompson
- Mitchell Cancer Institute, University of South Alabama Health, Mobile, AL 36604, USA; (M.K.T.); (R.W.S.)
- Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, AL 36688, USA
| | - Robert W. Sobol
- Mitchell Cancer Institute, University of South Alabama Health, Mobile, AL 36604, USA; (M.K.T.); (R.W.S.)
- Department of Pharmacology, University of South Alabama, Mobile, AL 36688, USA
| | - Aishwarya Prakash
- Mitchell Cancer Institute, University of South Alabama Health, Mobile, AL 36604, USA; (M.K.T.); (R.W.S.)
- Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, AL 36688, USA
| |
Collapse
|
191
|
Activation of PARP2/ARTD2 by DNA damage induces conformational changes relieving enzyme autoinhibition. Nat Commun 2021; 12:3479. [PMID: 34108479 PMCID: PMC8190142 DOI: 10.1038/s41467-021-23800-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 05/11/2021] [Indexed: 02/01/2023] Open
Abstract
Human PARP2/ARTD2 is an ADP-ribosyltransferase which, when activated by 5'-phosphorylated DNA ends, catalyses poly-ADP-ribosylation of itself, other proteins and DNA. In this study, a crystal structure of PARP2 in complex with an activating 5'-phosphorylated DNA shows that the WGR domain bridges the dsDNA gap and joins the DNA ends. This DNA binding results in major conformational changes, including reorganization of helical fragments, in the PARP2 regulatory domain. A comparison of PARP1 and PARP2 crystal structures reveals how binding to a DNA damage site leads to formation of a catalytically competent conformation. In this conformation, PARP2 is capable of binding substrate NAD+ and histone PARylation factor 1 that changes PARP2 residue specificity from glutamate to serine when initiating DNA repair processes. The structure also reveals how the conformational changes in the autoinhibitory regulatory domain would promote the flexibility needed by the enzyme to reach the target macromolecule for ADP-ribosylation.
Collapse
|
192
|
Base excision repair and its implications to cancer therapy. Essays Biochem 2021; 64:831-843. [PMID: 32648895 PMCID: PMC7588666 DOI: 10.1042/ebc20200013] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/16/2020] [Accepted: 06/19/2020] [Indexed: 12/15/2022]
Abstract
Base excision repair (BER) has evolved to preserve the integrity of DNA following cellular oxidative stress and in response to exogenous insults. The pathway is a coordinated, sequential process involving 30 proteins or more in which single strand breaks are generated as intermediates during the repair process. While deficiencies in BER activity can lead to high mutation rates and tumorigenesis, cancer cells often rely on increased BER activity to tolerate oxidative stress. Targeting BER has been an attractive strategy to overwhelm cancer cells with DNA damage, improve the efficacy of radiotherapy and/or chemotherapy, or form part of a lethal combination with a cancer specific mutation/loss of function. We provide an update on the progress of inhibitors to enzymes involved in BER, and some of the challenges faced with targeting the BER pathway.
Collapse
|
193
|
Hammel M, Tainer JA. X-ray scattering reveals disordered linkers and dynamic interfaces in complexes and mechanisms for DNA double-strand break repair impacting cell and cancer biology. Protein Sci 2021; 30:1735-1756. [PMID: 34056803 PMCID: PMC8376411 DOI: 10.1002/pro.4133] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 05/23/2021] [Accepted: 05/25/2021] [Indexed: 12/17/2022]
Abstract
Evolutionary selection ensures specificity and efficiency in dynamic metastable macromolecular machines that repair DNA damage without releasing toxic and mutagenic intermediates. Here we examine non‐homologous end joining (NHEJ) as the primary conserved DNA double‐strand break (DSB) repair process in human cells. NHEJ has exemplary key roles in networks determining the development, outcome of cancer treatments by DSB‐inducing agents, generation of antibody and T‐cell receptor diversity, and innate immune response for RNA viruses. We determine mechanistic insights into NHEJ structural biochemistry focusing upon advanced small angle X‐ray scattering (SAXS) results combined with X‐ray crystallography (MX) and cryo‐electron microscopy (cryo‐EM). SAXS coupled to atomic structures enables integrated structural biology for objective quantitative assessment of conformational ensembles and assemblies in solution, intra‐molecular distances, structural similarity, functional disorder, conformational switching, and flexibility. Importantly, NHEJ complexes in solution undergo larger allosteric transitions than seen in their cryo‐EM or MX structures. In the long‐range synaptic complex, X‐ray repair cross‐complementing 4 (XRCC4) plus XRCC4‐like‐factor (XLF) form a flexible bridge and linchpin for DNA ends bound to KU heterodimer (Ku70/80) and DNA‐PKcs (DNA‐dependent protein kinase catalytic subunit). Upon binding two DNA ends, auto‐phosphorylation opens DNA‐PKcs dimer licensing NHEJ via concerted conformational transformations of XLF‐XRCC4, XLF–Ku80, and LigIVBRCT–Ku70 interfaces. Integrated structures reveal multifunctional roles for disordered linkers and modular dynamic interfaces promoting DSB end processing and alignment into the short‐range complex for ligation by LigIV. Integrated findings define dynamic assemblies fundamental to designing separation‐of‐function mutants and allosteric inhibitors targeting conformational transitions in multifunctional complexes.
Collapse
Affiliation(s)
- Michal Hammel
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - John A Tainer
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, California, USA.,Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
194
|
Oh SY, Rahman S, Sparano JA. Perspectives on PARP inhibitors as pharmacotherapeutic strategies for breast cancer. Expert Opin Pharmacother 2021; 22:981-1003. [PMID: 33646064 PMCID: PMC9047307 DOI: 10.1080/14656566.2021.1876662] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 01/12/2021] [Indexed: 12/17/2022]
Abstract
Introduction Approximately 10% of all breast cancer cases occur in individuals who have germline pathogenic variants of the BRCA 1, BRCA 2, and other genes associated with impaired DNA damage repair that is associated with an increased risk of breast, ovarian, and other cancers. Inhibitors of poly-ADP ribose polymerase (PARP) induce synthetic lethality in cancer cells harboring such pathogenic variants.Area covered In this review, the authors review the mechanisms of action, antitumor activity, and adverse events associated with PARP inhibitors for the treatment of advanced breast cancer. The authors then summarize the area and provide their expert perspectives on the area.Expert opinion Two PARP inhibitors are approved in metastatic breast cancer, including olaparib and talozaparib. Both agents were approved based on phase III trials demonstrating that they were associated with improved progression-free survival compared with treatment of physician's choice in patients receiving second-third line therapy for locally advanced, inoperable, or metastatic breast cancer in patients with germline pathogenic BRCA 1 or BRCA2 variants.
Collapse
Affiliation(s)
- Sun Young Oh
- Department of Hematology and Oncology, Montefiore-Einstein center for cancer care, Albert Einstein College of Medicine, Bronx, NY
| | - Shafia Rahman
- Department of Hematology and Oncology, Montefiore-Einstein center for cancer care, Albert Einstein College of Medicine, Bronx, NY
| | - Joseph A Sparano
- Department of Hematology and Oncology, Montefiore-Einstein center for cancer care, Albert Einstein College of Medicine, Bronx, NY
| |
Collapse
|
195
|
Jhanji M, Rao CN, Sajish M. Towards resolving the enigma of the dichotomy of resveratrol: cis- and trans-resveratrol have opposite effects on TyrRS-regulated PARP1 activation. GeroScience 2021; 43:1171-1200. [PMID: 33244652 PMCID: PMC7690980 DOI: 10.1007/s11357-020-00295-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 10/28/2020] [Indexed: 02/07/2023] Open
Abstract
Unlike widely perceived, resveratrol (RSV) decreased the average lifespan and extended only the replicative lifespan in yeast. Similarly, although not widely discussed, RSV is also known to evoke neurite degeneration, kidney toxicity, atherosclerosis, premature senescence, and genotoxicity through yet unknown mechanisms. Nevertheless, in vivo animal models of diseases and human clinical trials demonstrate inconsistent protective and beneficial effects. Therefore, the mechanism of action of RSV that elicits beneficial effects remains an enigma. In a previously published work, we demonstrated structural similarities between RSV and tyrosine amino acid. RSV acts as a tyrosine antagonist and competes with it to bind to human tyrosyl-tRNA synthetase (TyrRS). Interestingly, although both isomers of RSV bind to TyrRS, only the cis-isomer evokes a unique structural change at the active site to promote its interaction with poly-ADP-ribose polymerase 1 (PARP1), a major determinant of cellular NAD+-dependent stress response. However, retention of trans-RSV in the active site of TyrRS mimics its tyrosine-bound conformation that inhibits the auto-poly-ADP-ribos(PAR)ylation of PARP1. Therefore, we proposed that cis-RSV-induced TyrRS-regulated auto-PARylation of PARP1 would contribute, at least in part, to the reported health benefits of RSV through the induction of protective stress response. This observation suggested that trans-RSV would inhibit TyrRS/PARP1-mediated protective stress response and would instead elicit an opposite effect compared to cis-RSV. Interestingly, most recent studies also confirmed the conversion of trans-RSV and its metabolites to cis-RSV in the physiological context. Therefore, the finding that cis-RSV and trans-RSV induce two distinct conformations of TyrRS with opposite effects on the auto-PARylation of PARP1 provides a potential molecular basis for the observed dichotomic effects of RSV under different experimental paradigms. However, the fact that natural RSV exists as a diastereomeric mixture of its cis and trans isomers and cis-RSV is also a physiologically relevant isoform has not yet gained much scientific attention.
Collapse
Affiliation(s)
- Megha Jhanji
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, 29208, USA
| | - Chintada Nageswara Rao
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, 29208, USA
| | - Mathew Sajish
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, 29208, USA.
| |
Collapse
|
196
|
Zhou D, Chen H, Mpoy C, Afrin S, Rogers BE, Garbow JR, Katzenellenbogen JA, Xu J. Radiosynthesis and Evaluation of Talazoparib and Its Derivatives as PARP-1-Targeting Agents. Biomedicines 2021; 9:biomedicines9050565. [PMID: 34069967 PMCID: PMC8157854 DOI: 10.3390/biomedicines9050565] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/13/2021] [Accepted: 05/14/2021] [Indexed: 12/30/2022] Open
Abstract
Poly (ADP-ribose) polymerase-1 (PARP-1) is a critical enzyme in the DNA repair process and the target of several FDA-approved inhibitors. Several of these inhibitors have been radiolabeled for non-invasive imaging of PARP-1 expression or targeted radiotherapy of PARP-1 expressing tumors. In particular, derivatives of olaparib and rucaparib, which have reduced trapping potency by PARP-1 compared to talazoparib, have been radiolabeled for these purposes. Here, we report the first radiosynthesis of [18F]talazoparib and its in vitro and in vivo evaluation. Talazoparib (3a″) and its bromo- or iodo-derivatives were synthesized as racemic mixtures (3a, 3b and 3c), and these compounds exhibit high affinity to PARP-1 (Ki for talazoparib (3a″): 0.65 ± 0.07 nM; 3a: 2.37 ± 0.56 nM; 3b: 1.92 ± 0.41 nM; 3c: 1.73 ± 0.43 nM; known PARP-1 inhibitor Olaparib: 1.87 ± 0.10 nM; non-PARP-1 compound Raclopride: >20,000 nM) in a competitive binding assay using a tritium-labeled PARP-1 radioligand [3H]WC-DZ for screening. [18F]Talazoparib (3a″) was radiosynthesized via a multiple-step procedure with good radiochemical and chiral purities (98%) and high molar activity (28 GBq/μmol). The preliminary biodistribution studies in the murine PC-3 tumor model showed that [18F]talazoparib had a good level of tumor uptake that persisted for over 8 h (3.78 ± 0.55 %ID/gram at 4 h and 4.52 ± 0.32 %ID/gram at 8 h). These studies show the potential for the bromo- and iodo- derivatives for PARP-1 targeted radiotherapy studies using therapeutic radionuclides.
Collapse
Affiliation(s)
- Dong Zhou
- Department of Radiology, School of Medicine, Washington University in Saint Louis, Saint Louis, MO 63110, USA; (H.C.); (S.A.); (J.R.G.)
- Correspondence: (D.Z.); (J.X.)
| | - Huaping Chen
- Department of Radiology, School of Medicine, Washington University in Saint Louis, Saint Louis, MO 63110, USA; (H.C.); (S.A.); (J.R.G.)
| | - Cedric Mpoy
- Department of Radiation Oncology, School of Medicine, Washington University in Saint Louis, Saint Louis, MO 63110, USA; (C.M.); (B.E.R.)
| | - Sadia Afrin
- Department of Radiology, School of Medicine, Washington University in Saint Louis, Saint Louis, MO 63110, USA; (H.C.); (S.A.); (J.R.G.)
| | - Buck E. Rogers
- Department of Radiation Oncology, School of Medicine, Washington University in Saint Louis, Saint Louis, MO 63110, USA; (C.M.); (B.E.R.)
| | - Joel R. Garbow
- Department of Radiology, School of Medicine, Washington University in Saint Louis, Saint Louis, MO 63110, USA; (H.C.); (S.A.); (J.R.G.)
| | - John A. Katzenellenbogen
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA;
- Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Jinbin Xu
- Department of Radiology, School of Medicine, Washington University in Saint Louis, Saint Louis, MO 63110, USA; (H.C.); (S.A.); (J.R.G.)
- Correspondence: (D.Z.); (J.X.)
| |
Collapse
|
197
|
van Beek L, McClay É, Patel S, Schimpl M, Spagnolo L, Maia de Oliveira T. PARP Power: A Structural Perspective on PARP1, PARP2, and PARP3 in DNA Damage Repair and Nucleosome Remodelling. Int J Mol Sci 2021; 22:ijms22105112. [PMID: 34066057 PMCID: PMC8150716 DOI: 10.3390/ijms22105112] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/04/2021] [Accepted: 05/06/2021] [Indexed: 12/30/2022] Open
Abstract
Poly (ADP-ribose) polymerases (PARP) 1-3 are well-known multi-domain enzymes, catalysing the covalent modification of proteins, DNA, and themselves. They attach mono- or poly-ADP-ribose to targets using NAD+ as a substrate. Poly-ADP-ribosylation (PARylation) is central to the important functions of PARP enzymes in the DNA damage response and nucleosome remodelling. Activation of PARP happens through DNA binding via zinc fingers and/or the WGR domain. Modulation of their activity using PARP inhibitors occupying the NAD+ binding site has proven successful in cancer therapies. For decades, studies set out to elucidate their full-length molecular structure and activation mechanism. In the last five years, significant advances have progressed the structural and functional understanding of PARP1-3, such as understanding allosteric activation via inter-domain contacts, how PARP senses damaged DNA in the crowded nucleus, and the complementary role of histone PARylation factor 1 in modulating the active site of PARP. Here, we review these advances together with the versatility of PARP domains involved in DNA binding, the targets and shape of PARylation and the role of PARPs in nucleosome remodelling.
Collapse
Affiliation(s)
- Lotte van Beek
- Structure and Biophysics, Discovery Sciences, R&D, AstraZeneca, Cambridge CB4 0WG, UK; (L.v.B.); (M.S.)
| | - Éilís McClay
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, Garscube Campus, University of Glasgow, Glasgow G61 1QQ, UK;
| | - Saleha Patel
- Discovery Biology, Discovery Sciences, R&D, AstraZeneca, Cambridge CB4 0WG, UK;
| | - Marianne Schimpl
- Structure and Biophysics, Discovery Sciences, R&D, AstraZeneca, Cambridge CB4 0WG, UK; (L.v.B.); (M.S.)
| | - Laura Spagnolo
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, Garscube Campus, University of Glasgow, Glasgow G61 1QQ, UK;
- Correspondence: (L.S.); (T.M.d.O.)
| | - Taiana Maia de Oliveira
- Structure and Biophysics, Discovery Sciences, R&D, AstraZeneca, Cambridge CB4 0WG, UK; (L.v.B.); (M.S.)
- Correspondence: (L.S.); (T.M.d.O.)
| |
Collapse
|
198
|
Mukherjee J, Pandita A, Kamalakar C, Johannessen TC, Ohba S, Tang Y, Dalle-Ore CL, Bjerkvig R, Pieper RO. RETRACTED: A subset of PARP inhibitors induces lethal telomere fusion in ALT-dependent tumor cells. Sci Transl Med 2021; 13:13/592/eabc7211. [PMID: 33952676 DOI: 10.1126/scitranslmed.abc7211] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 10/07/2020] [Accepted: 02/26/2021] [Indexed: 12/30/2022]
Abstract
About 10% of all tumors, including most lower-grade astrocytoma, rely on the alternative lengthening of telomere (ALT) mechanism to resolve telomeric shortening and avoid limitations on their growth. Here, we found that dependence on the ALT mechanism made cells hypersensitive to a subset of poly(ADP-ribose) polymerase inhibitors (PARPi). We found that this hypersensitivity was not associated with PARPi-created genomic DNA damage as in most PARPi-sensitive populations but rather with PARPi-induced telomere fusion. Mechanistically, we determined that PARP1 was recruited to the telomeres of ALT-dependent cells as part of a DNA damage response. By recruiting MRE11 and BRCC3 to stabilize TRF2 at the ends of telomeres, PARP1 blocked chromosomal fusion. Exposure of ALT-dependent tumor cells to a subset of PARPi induced a conformational change in PARP1 that limited binding to MRE11 and BRCC3 and delayed release of the TRF2-mediated block on lethal telomeric fusion. These results therefore provide a basis for PARPi treatment of ALT-dependent tumors, as well as establish chromosome fusion as a biomarker of their activity.
Collapse
Affiliation(s)
- Joydeep Mukherjee
- Department of Neurosurgery and The Brain Tumor Center, University of California-San Francisco, San Francisco, CA 94158, USA
| | - Ajay Pandita
- Core Diagnostics, 3535 Breakwater Avenue, Hayward, CA 94545, USA
| | - Chatla Kamalakar
- Department of Integrative Biology, University of California-Berkeley, Berkeley, CA 94720, USA
| | - Tor-Christian Johannessen
- The Kristian Gerhard Jebsen Brain Tumor Research Centre, Department of Biomedicine, University of Bergen, Jonas Lies Vei 91, 5019, Bergen, Norway
| | - Shigeo Ohba
- Department of Neurosurgery, Fujita Health University, Toyoake 4701192, Aichi, Japan
| | - Yongjian Tang
- Department of Neurosurgery and The Brain Tumor Center, University of California-San Francisco, San Francisco, CA 94158, USA
| | - Cecilia L Dalle-Ore
- Department of Neurosurgery and The Brain Tumor Center, University of California-San Francisco, San Francisco, CA 94158, USA
| | - Rolf Bjerkvig
- The Kristian Gerhard Jebsen Brain Tumor Research Centre, Department of Biomedicine, University of Bergen, Jonas Lies Vei 91, 5019, Bergen, Norway.,Department of Oncology, Luxembourg Institute of Health, 84, Val Fleuri, L-1526, Luxembourg
| | - Russell O Pieper
- Department of Neurosurgery and The Brain Tumor Center, University of California-San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
199
|
Modeling DNA trapping of anticancer therapeutic targets using missense mutations identifies dominant synthetic lethal interactions. Proc Natl Acad Sci U S A 2021; 118:2100240118. [PMID: 33782138 DOI: 10.1073/pnas.2100240118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Genetic screens can identify synthetic lethal (SL) interactions and uncover potential anticancer therapeutic targets. However, most SL screens have utilized knockout or knockdown approaches that do not accurately mimic chemical inhibition of a target protein. Here, we test whether missense mutations can be utilized as a model for a type of protein inhibition that creates a dominant gain-of-function cytotoxicity. We expressed missense mutations in the FEN1 endonuclease and the replication-associated helicase, CHL1, that inhibited enzymatic activity but retained substrate binding, and found that these mutations elicited a dominant SL phenotype consistent with the generation of cytotoxic protein-DNA or protein-protein intermediates. Genetic screens with nuclease-defective hFEN1 and helicase-deficient yCHL1 captured dominant SL interactions, in which ectopic expression of the mutant form, in the presence of the wild-type form, caused SL in specific mutant backgrounds. Expression of nuclease-defective hFEN1 in yeast elicited DNA binding-dependent dominant SL with homologous recombination mutants. In contrast, dominant SL interactions with helicase-deficient yCHL1 were observed in spindle-associated, Ctf18-alternative replication factor C (Ctf18-RFC) clamp loader complex, and cohesin mutant backgrounds. These results highlight the different mechanisms underlying SL interactions that occur in the presence of an inhibited form of the target protein and point to the utility of modeling trapping mutations in pursuit of more clinically relevant SL interactions.
Collapse
|
200
|
Puentes LN, Lengyel-Zhand Z, Reilly SW, Mach RH. Evaluation of a Low-Toxicity PARP Inhibitor as a Neuroprotective Agent for Parkinson's Disease. Mol Neurobiol 2021; 58:3641-3652. [PMID: 33788167 DOI: 10.1007/s12035-021-02371-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 03/22/2021] [Indexed: 10/21/2022]
Abstract
Repurposing PARP-1 inhibitors (PARPi) for non-oncological applications offers an attractive therapeutic strategy for pathological conditions characterized by PARP-1 hyperactivity. In the context of Parkinson's disease (PD), PARP-1 hyperactivity has been linked to neuronal death and disease progression. From a therapy perspective, the evaluation of PARPi as neuroprotective agents may offer a new therapeutic alternative for neurodegenerative disorders. An ideal PARPi needs to inhibit PARP-1 hyperactivity while also limiting downstream DNA damage and cellular toxicity-an effect that is attractive in cancer but far from ideal in neurological disease applications. Consequently, in this study, we set out to evaluate the neuroprotective properties of a previously reported low-toxicity PARPi (10e) using in vitro neuronal models of PD. 10e is a structural analogue of FDA-approved PARPi olaparib, with high PARP-1 affinity and selectivity. Our studies revealed that 10e protects neuronal cells from oxidative stress and DNA damage. In addition, 10e exhibits neuroprotective properties against α-synuclein pre-formed fibrils (αSyn PFF) mediated effects, including reduction in the levels of phosphorylated αSyn and protection against abnormal changes in NAD+ levels. Our in vitro studies with 10e provide support for repurposing high-affinity and low-toxicity PARPi for neurological applications and lay the groundwork for long-term therapeutic studies in animal models of PD.
Collapse
Affiliation(s)
- Laura N Puentes
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Zsofia Lengyel-Zhand
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Sean W Reilly
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Robert H Mach
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|