151
|
Mohana AA, Islam MM, Rahman M, Pramanik SK, Haque N, Gao L, Pramanik BK. Generation and consequence of nano/microplastics from medical waste and household plastic during the COVID-19 pandemic. CHEMOSPHERE 2023; 311:137014. [PMID: 36328315 PMCID: PMC9619086 DOI: 10.1016/j.chemosphere.2022.137014] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 10/03/2022] [Accepted: 10/23/2022] [Indexed: 05/10/2023]
Abstract
Since the end of 2019, the world has faced a major crisis because of the outbreak of COVID-19 disease which has created a severe threat to humanity. To control this pandemic, the World Health Organization gave some guidelines like wearing PPE (personal protective equipment) (e.g., face masks, overshoes, gloves), social distancing, hand hygiene and shutting down all modes of public transport services. During this pandemic, plastic products (e.g., household plastics, PPE and sanitizer bottles) have substantially prevented the spread of this virus. Since the outbreak, approximately 1.6 million tons of plastic waste have been generated daily. However, single-use PPE like face masks (N95), surgical masks and hand gloves contain many non-biodegradable plastics materials. These abandoned products have created a huge number of plastic debris which ended up as microplastics (MPs) followed by nanoplastics (NPs) in nature that are hazardous to the eco-system. These MPs and NPs also act as vectors for the various pathogenic contaminants. The goal of this review is to offer an extensive discussion on the formation of NPs and MPs from all of these abandoned plastics and their long-term impact on the environment as well as human health. This review paper also attempts to assess the present global scenario and the main challenge of waste management to reduce the potential NP/MPs pollution to improve the eco-systems.
Collapse
Affiliation(s)
- Anika Amir Mohana
- School of Engineering, RMIT University, Melbourne, VIC, 3000, Australia
| | - Md Monjurul Islam
- Department of Earth Resources and Environmental Engineering, Hanyang University, South Korea
| | - Mahbubur Rahman
- Department of Civil Engineering, Chittagong University of Engineering and Technology, Chittagong, Bangladesh
| | - Sagor Kumar Pramanik
- Department of Civil and Structural Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
| | - Nawshad Haque
- CSIRO Mineral Resources, Clayton South, Melbourne, VIC, 3169, Australia
| | - Li Gao
- South East Water, Frankston, Victoria, 3199, Australia
| | | |
Collapse
|
152
|
Pan Y, Gao SH, Ge C, Gao Q, Huang S, Kang Y, Luo G, Zhang Z, Fan L, Zhu Y, Wang AJ. Removing microplastics from aquatic environments: A critical review. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2023; 13:100222. [PMID: 36483746 PMCID: PMC9722483 DOI: 10.1016/j.ese.2022.100222] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 11/03/2022] [Accepted: 11/06/2022] [Indexed: 05/13/2023]
Abstract
As one of the typical emerging contaminants, microplastics exist widely in the environment because of their small size and recalcitrance, which has caused various ecological problems. This paper summarizes current adsorption and removal technologies of microplastics in typical aquatic environments, including natural freshwater, marine, drinking water treatment plants (DWTPs), and wastewater treatment plants (WWTPs), and includes abiotic and biotic degradation technologies as one of the removal technologies. Recently, numerous studies have shown that enrichment technologies have been widely used to remove microplastics in natural freshwater environments, DWTPs, and WWTPs. Efficient removal of microplastics via WWTPs is critical to reduce the release to the natural environment as a key connection point to prevent the transfer of microplastics from society to natural water systems. Photocatalytic technology has outstanding pre-degradation effects on microplastics, and the isolated microbial strains or enriched communities can degrade up to 50% or more of pre-processed microplastics. Thus, more research focusing on microplastic degradation could be carried out by combining physical and chemical pretreatment with subsequent microbial biodegradation. In addition, the current recovery technologies of microplastics are introduced in this review. This is incredibly challenging because of the small size and dispersibility of microplastics, and the related technologies still need further development. This paper will provide theoretical support and advice for preventing and controlling the ecological risks mediated by microplastics in the aquatic environment and share recommendations for future research on the removal and recovery of microplastics in various aquatic environments, including natural aquatic environments, DWTPs, and WWTPs.
Collapse
Affiliation(s)
- Yusheng Pan
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150090, China
- State Key Laboratory of Urban Water Resource and Environment, School of Civil & Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, China
| | - Shu-Hong Gao
- State Key Laboratory of Urban Water Resource and Environment, School of Civil & Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, China
| | - Chang Ge
- State Key Laboratory of Urban Water Resource and Environment, School of Civil & Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, China
| | - Qun Gao
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Sijing Huang
- State Key Laboratory of Urban Water Resource and Environment, School of Civil & Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, China
| | - Yuanyuan Kang
- State Key Laboratory of Urban Water Resource and Environment, School of Civil & Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, China
| | - Gaoyang Luo
- State Key Laboratory of Urban Water Resource and Environment, School of Civil & Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, China
| | - Ziqi Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Civil & Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, China
| | - Lu Fan
- Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Yongming Zhu
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150090, China
| | - Ai-Jie Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Civil & Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, China
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| |
Collapse
|
153
|
López-Martínez S, Perez-Rubín C, Gavara R, Handcock RN, Rivas ML. Presence and implications of plastics in wild commercial fishes in the Alboran Sea (Mediterranean Sea). THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 850:158025. [PMID: 35973533 DOI: 10.1016/j.scitotenv.2022.158025] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 08/08/2022] [Accepted: 08/10/2022] [Indexed: 06/15/2023]
Abstract
The presence of plastic in the environment has become a major problem for marine ecosystems. The identification of the global micro and mesoplastic uptake by commercial fish populations may allow for a better understanding of their impact. This study aims to determine the presence and composition of plastic in two pelagic fish (Engraulis encrasicolus and Scomber scombrus) and two demersal species (Scyliorinus canicula and Mullus barbatus) from the Alboran Sea (western Mediterranean) to quantify the relationship between plastic prevalence and the environment and feeding behavior in the selected fish species. Samples of these four fish species from sites in the Alboran Sea were studied for ingested plastics. These localized samples were also compared to published values which covered a broader geographical range. Samples from the Alboran Sea study sites showed that the predominant fiber color was black and the predominant plastic polymers were polyethylene and cellulose. At the Alboran Sea study site the highest plastic occurrence was found in S. scombrus, whereas in the published literature the highest occurrence of plastics in digestive tracts was found in E. encrasicolus. The general prevalence of marine plastic pollution and levels of macro- and micro-plastic ingested by commercial fish species in this study support the idea that quantifying plastic presence and composition may be essential to understanding potential impacts on marine ecosystems.
Collapse
Affiliation(s)
| | | | | | - Rebecca N Handcock
- Curtin Institute for Computation, Curtin University, Bentley, WA 6102, Australia
| | - Marga L Rivas
- Biology Department, Campus of Excellence of Marine Science CEIMAR, University of Cádiz, Spain.
| |
Collapse
|
154
|
Walther BA, Bergmann M. Plastic pollution of four understudied marine ecosystems: a review of mangroves, seagrass meadows, the Arctic Ocean and the deep seafloor. Emerg Top Life Sci 2022; 6:371-387. [PMID: 36214383 DOI: 10.1042/etls20220017] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 09/14/2022] [Accepted: 09/15/2022] [Indexed: 02/06/2023]
Abstract
Plastic pollution is now a worldwide phenomenon affecting all marine ecosystems, but some ecosystems and regions remain understudied. Here, we review the presence and impacts of macroplastics and microplastics for four such ecosystems: mangroves, seagrass meadows, the Arctic Ocean and the deep seafloor. Plastic production has grown steadily, and thus the impact on species and ecosystems has increased, too. The accumulated evidence also indicates that plastic pollution is an additional and increasing stressor to these already ecosystems and many of the species living in them. However, laboratory or field studies, which provide strong correlational or experimental evidence of ecological harm due to plastic pollution remain scarce or absent for these ecosystems. Based on these findings, we give some research recommendations for the future.
Collapse
Affiliation(s)
- Bruno Andreas Walther
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
| | - Melanie Bergmann
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
| |
Collapse
|
155
|
Scardino G, Martella R, Mastronuzzi G, Rizzo A, Borracesi Q, Musolino F, Romanelli N, Zarcone S, Cipriano G, Retucci A. The nauticAttiva project: A mobile phone-based tool for the citizen science plastic monitoring in the marine and coastal environment. MARINE POLLUTION BULLETIN 2022; 185:114282. [PMID: 36327931 DOI: 10.1016/j.marpolbul.2022.114282] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 10/18/2022] [Accepted: 10/19/2022] [Indexed: 06/16/2023]
Abstract
Plastic pollution is involving large coastal areas of the Mediterranean Sea. Innovative methods of plastic monitoring can be addressed through the citizen science approaches integrated with mobile phones. On the other hand, the availability of mobile phones is increasing among several users. Mobile phones can be integrated with a web mobile app, which allows to collect a lot of data for extended areas and in a short temporal range. In this study, the web service of iNaturalist was applied to implement a mobile phone-based tool to collect pictures of plastic items. At present, the web mobile app has been used to collect pictures of plastic debris in the Mediterranean Sea. Results were compared with the Mediterranean hydrodynamic regime, to highlight the pathways and densities of the plastic items. The proposed mobile phone-based tool represented a citizen science approach useful for the acquisition of plastic observations in the marine and coastal environment.
Collapse
Affiliation(s)
- Giovanni Scardino
- Department of Earth and Geo-environmental Sciences, University of Bari Aldo Moro, 70125 Bari, Italy; Interdepartmental Research Center for Coastal Dynamics, University of Bari Aldo Moro, 70125 Bari, Italy
| | | | - Giuseppe Mastronuzzi
- Department of Earth and Geo-environmental Sciences, University of Bari Aldo Moro, 70125 Bari, Italy; Interdepartmental Research Center for Coastal Dynamics, University of Bari Aldo Moro, 70125 Bari, Italy
| | - Angela Rizzo
- Department of Earth and Geo-environmental Sciences, University of Bari Aldo Moro, 70125 Bari, Italy; Interdepartmental Research Center for Coastal Dynamics, University of Bari Aldo Moro, 70125 Bari, Italy.
| | | | | | | | | | - Giulia Cipriano
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, 70125 Bari, Italy
| | | |
Collapse
|
156
|
Noël M, Wong C, Ross PS, Patankar S, Etemadifar A, Morales-Caselles C, Lyons S, Delisle K. Microplastics distribution in sediment and mussels along the British Columbia Coast, Canada. MARINE POLLUTION BULLETIN 2022; 185:114273. [PMID: 36330939 DOI: 10.1016/j.marpolbul.2022.114273] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 10/12/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
Microplastics (MPs) were characterized in surficial marine sediment (n = 36) and mussel (n = 29) samples collected along the British Columbia (BC) coast, Canada, using visual identification and Fourier Transform Infrared Spectrometry. MPs counts averaged 32.6 ± 5.3 particles per kg in sediment and 0.38 ± 0.04 particles per individual mussel (0.24 ± 0.04 /g of tissue). Victoria Harbour and the North Coast (Prince Rupert area) were MP hotspots, likely resulting from a combination of local sources and oceanographic conditions. Microfibers <1000 μm dominated the pattern in both matrices (61.1 % in sediment; 65.4 % mussels) highlighting the suspected role of textiles in the widespread distribution of MPs in the marine environment. Overall, polyester was dominant in sediment and mussels (54.1 % and 63.5 %, respectively), followed by polyethylene (16.2 % and 11.5 %, respectively). This is the first report of MPs in sediment and mussels along the coast of BC using standardized methods.
Collapse
Affiliation(s)
- Marie Noël
- Ocean Wise, Vancouver, British Columbia, Canada.
| | | | - Peter S Ross
- Raincoast Conservation Foundation, Sidney, British Columbia, Canada
| | | | | | | | - Shirley Lyons
- Capital Regional District, Victoria, British Columbia, Canada
| | | |
Collapse
|
157
|
Sahoo PP, Singh S, Rout PK, Mishra S, Das AP. Microbial remediation of plastic pollutants generated from discarded and abandoned marine fishing nets. Biotechnol Genet Eng Rev 2022:1-16. [PMID: 36447335 DOI: 10.1080/02648725.2022.2152629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 11/14/2022] [Indexed: 12/03/2022]
Abstract
A wide range of plastic debris dumped into the ocean has recently gained concern of the marine ecosystems. Discarded and abandoned fishing nets, also known as ghost nets, are lost in the marine water and has no commercial significance. Additionally these fishing gear left out in the aquatic environment pose a severe risk to marine environment. Fishing nets, made up of synthetic plastic materials, are a major source of marine pollutants and act as a vector for transporting other toxic chemical pollutants. Approximately 10% of total marine plastic pollutants come from commercial fishing nets, and each year up to 1 million tons of fishing gear are discarded into the marine ecosystem. It can be estimated that by 2050 the amount will be doubled, adding 15-20 million metric tons of discarded lost fishing gears into ocean. The gradual and increased deposition of plastic pollutants in aquatic habitat also affects the whole food chain. Recently, microbial degradation of marine plastics has focussed the eyes of researchers and a lot of investigations on potential microbial degraders are under process. Microorganisms have developed the ability to grow under plastic stress condition and adapt to alter metabolic pathways by which they can directly feed upon marine plastic pollutants as sole carbon source. The present review compiles information on marine plastic pollution from discarded and abandoned fishing nets, their effect on aquatic ecosystems, marine animals and food chain and discusses microbial remediation strategies to control this pollution, especially and their implications in the marine ecosystems.
Collapse
Affiliation(s)
| | - Sikha Singh
- Department of Life Sciences, Rama Devi Women's University, Bhubaneswar, Odisha, India
| | - Prasanta Kumar Rout
- Department of Material Science and Engineering, Tripura Central University, Bhubaneswar, Odisha, India
| | - Sunanda Mishra
- Department of Botany, College of Basic Science and Humanities, Odisha University of Agriculture and Technology, Bhubaneswar, Odisha
| | - Alok Prasad Das
- Department of Life Sciences, Rama Devi Women's University, Bhubaneswar, Odisha, India
| |
Collapse
|
158
|
Rex M C, Mukherjee A. Prospects of TiO2-based photocatalytic degradation of microplastic leachates related disposable facemask, a major COVID-19 waste. FRONTIERS IN NANOTECHNOLOGY 2022. [DOI: 10.3389/fnano.2022.1072227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
COVID-19 is one of the serious catastrophes that have a substantial influence on human health and the environment. Diverse preventive actions were implemented globally to limit its spread and transmission. Personnel protective equipment (PPE) was an important part of these control approaches. But unfortunately, these types of PPE mainly comprise plastics, which sparked challenges in the management of plastic waste. Disposable face masks (DFM) are one of the efficient strategies used across the world to ward off disease transmission. DFMs can contribute to micro and nano plastic pollution as the plastic present in the mask may degrade when exposed to certain environmental conditions. Microplastics (MPs) can enter the food chain and devastate human health. Recognizing the possible environmental risks associated with the inappropriate disposal of masks, it is crucial to avert it from becoming the next plastic crisis. To address this environmental threat, titanium dioxide (TiO2)-based photocatalytic degradation (PCD) of MPs is one of the promising approaches. TiO2-based photocatalysts exhibit excellent plastic degradation potential due to their outstanding photocatalytic ability, cost efficiency, chemical, and thermal stability. In this review, we have discussed the reports on COVID-19 waste generation, the limitation of current waste management techniques, and the environmental impact of MPs leachates from DFMs. Mainly, the prominence of TiO2 in the PCD and the applications of TiO2-based photocatalysts in MPs degradation are the prime highlights of this review. Additionally, various synthesis methods to enhance the photocatalytic performance of TiO2 and the mechanism of PCD are also discussed. Furthermore, current challenges and the future research perspective on the improvement of this approach have been proposed.
Collapse
|
159
|
Al Harraq A, Brahana PJ, Arcemont O, Zhang D, Valsaraj KT, Bharti B. Effects of Weathering on Microplastic Dispersibility and Pollutant Uptake Capacity. ACS ENVIRONMENTAL AU 2022; 2:549-555. [PMID: 36411868 PMCID: PMC9673469 DOI: 10.1021/acsenvironau.2c00036] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/18/2022] [Accepted: 08/19/2022] [Indexed: 11/28/2022]
Abstract
Microplastics are ubiquitous in the environment, leading to a new form of plastic pollution crisis, which has reached an alarming level worldwide. Micron and nanoscale plastics may get integrated into ecological cycles with detrimental effects on various ecosystems. Commodity plastics are widely considered to be chemically inert, and alterations in their surface properties due to environmental weathering are often overlooked. This lack of knowledge on the dynamic changes in the surface chemistry and properties of (micro)plastics has impeded their life-cycle analysis and prediction of their fate in the environment. Through simulated weathering experiments, we delineate the role of sunlight in modifying the physicochemical properties of microplastics. Within 10 days of accelerated weathering, microplastics become dramatically more dispersible in the water column and can more than double the surface uptake of common chemical pollutants, such as malachite green and lead ions. The study provides the basis for identifying the elusive link between the surface properties of microplastics and their fate in the environment.
Collapse
Affiliation(s)
- Ahmed Al Harraq
- Cain
Department of Chemical Engineering, Louisiana
State University, Baton
Rouge, Louisiana 70803, United States
| | - Philip J. Brahana
- Cain
Department of Chemical Engineering, Louisiana
State University, Baton
Rouge, Louisiana 70803, United States
| | - Olivia Arcemont
- Cain
Department of Chemical Engineering, Louisiana
State University, Baton
Rouge, Louisiana 70803, United States
| | - Donghui Zhang
- Department
of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Kalliat T. Valsaraj
- Cain
Department of Chemical Engineering, Louisiana
State University, Baton
Rouge, Louisiana 70803, United States
| | - Bhuvnesh Bharti
- Cain
Department of Chemical Engineering, Louisiana
State University, Baton
Rouge, Louisiana 70803, United States
| |
Collapse
|
160
|
Occurrence of Anthropogenic Debris in Three Commercial Shrimp Species from South-Western Ionian Sea. BIOLOGY 2022; 11:biology11111616. [DOI: 10.3390/biology11111616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/27/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022]
Abstract
Deep Sea environments represent the final collector of anthropogenic debris mainly represented by both plastic and non-plastic materials with different size. This led to potential contamination of deep marine fauna due to direct and indirect ingestion, representing a potential hazard for the species itself and for the final consumer. In this framework, the present study explored the occurrence of anthropogenic debris in the gastrointestinal tract of three Decapoda species of high commercial and ecological value (Parapenaeus longirostris, Aristeus antennatus, and Aristaeomorpha foliacea) from south-western Ionian Sea. After morphometrical measurements and sex determination, the gastrointestinal tract of 136 specimens were extracted and then chemically digested. A total of 230 low density microparticles were isolated, with a high frequency of occurrence in all the analyzed species (76% in P. longirostris, 70% in A. antennatus, and 83% in A. foliacea) mainly represented by fibers (92.6%) with a size between 0.10 and 0.49 mm, and with a dominance of the blue color. The results of the present study report for the first time the anthropogenic debris presence in the studied Decapoda from south-western Ionian Sea, highlighting the necessity to broaden the knowledge about anthropogenic debris pollution status in Mediterranean deep-sea species.
Collapse
|
161
|
Long Z, Pan Z, Jin X, Zou Q, He J, Li W, Waters CN, Turner SD, do Sul JAI, Yu X, Chen J, Lin H, Ren J. Anthropocene microplastic stratigraphy of Xiamen Bay, China: A history of plastic production and waste management. WATER RESEARCH 2022; 226:119215. [PMID: 36240710 DOI: 10.1016/j.watres.2022.119215] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 09/13/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
Microplastics (MPs) are considered one of the significant stratigraphic markers of the onset of the Anthropocene Epoch; however, the interconnections between historic plastic production, waste management as well as social-economic and timing of MP accumulation are not well understood. Here, stratigraphic data of MPs from a sediment core from Xiamen Bay, China, was used to reconstruct the history of plastic pollution. Generalized Additive Modeling indicates a complex temporal evolution of MP accumulation. The oldest MPs deposited in 1952 was 30,332 ± 31,457 items/kg•dw, coincide with the infancy of the plastic industry and onset of the Anthropocene. The Cultural Revolution (1966-1976) curtailed these initial increases. Subsequent rapid growth in MPs during the late 1970s was peaked at 189,241 ± 29,495 items/kg•dw in 1988 and was followed by a drastic decline in the late 1980s to a low value in 1996 (16,626 ± 26,371 items/kg•dw), coinciding with proliferation of MP sources, coupled with evolution of plastic production, consumption, and regulation. Increasing MPs over the past decades implies that previous mitigation measures have been compromised by the escalated influx of MPs from increasing plastics production, legacy MPs remaining in circulation and insufficient waste management for a growing population. The present methodology and results represent a conceptual advance in understanding how changes in policy and economics over time correlate to changes in MP records in Anthropocene strata, which may help make decisions on plastic pollution mitigation strategies worldwide.
Collapse
Affiliation(s)
- Zouxia Long
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China; College of Marine Science and Technology, China University of Geosciences (Wuhan), Wuhan 430074, China
| | - Zhong Pan
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China.
| | - Xianglong Jin
- Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China; College of Marine Science and Technology, China University of Geosciences (Wuhan), Wuhan 430074, China.
| | - Qingping Zou
- The Lyell Centre for Earth and Marine Science and Technology, Institute for Infrastructure and Environment, Heriot-Watt University, Edinburgh EH14 4AS, UK.
| | - Jianhua He
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Weiwen Li
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Colin N Waters
- School of Geography, Geology and the Environment, University of Leicester, University Road, Leicester LE1 7RH, UK
| | - Simon D Turner
- Department of Geography, Environmental Change Research Centre, University College London, Gower Street, London WC1E 6BT, UK
| | - Juliana A Ivar do Sul
- Leibniz Institute for Baltic Sea Research Warnemünde (IOW), Seestrasse 15, Rostock 18119 , Germany
| | - Xingguang Yu
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Jian Chen
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Hui Lin
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China.
| | - Jianye Ren
- College of Marine Science and Technology, China University of Geosciences (Wuhan), Wuhan 430074, China.
| |
Collapse
|
162
|
Clere IK, Ahmmed F, Remoto PIJG, Fraser-Miller SJ, Gordon KC, Komyakova V, Allan BJM. Quantification and characterization of microplastics in commercial fish from southern New Zealand. MARINE POLLUTION BULLETIN 2022; 184:114121. [PMID: 36150226 DOI: 10.1016/j.marpolbul.2022.114121] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 09/05/2022] [Accepted: 09/06/2022] [Indexed: 06/16/2023]
Abstract
Plastics are ubiquitous throughout global marine ecosystems. To date, there has been limited research on the prevalence of microplastic ingestion by commercially important marine fish in the southern hemisphere, particularly in the South Pacific. Therefore, this research aimed to quantify ingested microplastics from ten commercially important fish species from southern New Zealand using microscopy and Raman spectroscopy. Overall, we found evidence of microplastic ingestion in 75 % of fish, with an average of 2.5 individual particles per fish. Microplastic fibers were the most commonly ingested. The most common colored microplastics ingested were blue, black and red, and 99.68 % of plastics identified were smaller than 5 mm. Raman spectroscopy of plastics recovered from nine fish species found polyethylene and polypropylene to be the most common plastic polymers ingested. Further research is necessary to ascertain the human ecological and health risks involved when exposed to microplastics through eating plastic contaminated fish.
Collapse
Affiliation(s)
- Isabella K Clere
- Department of Marine Science, University of Otago, Dunedin 9012, New Zealand.
| | - Fatema Ahmmed
- Department of Chemistry, University of Otago, Dunedin 9012, New Zealand
| | | | | | - Keith C Gordon
- Department of Chemistry, University of Otago, Dunedin 9012, New Zealand
| | - Valeriya Komyakova
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania 7001, Australia; Centre for Marine Socioecology, University of Tasmania, Hobart, Tasmania 7053, Australia
| | - Bridie J M Allan
- Department of Marine Science, University of Otago, Dunedin 9012, New Zealand
| |
Collapse
|
163
|
Parlapiano I, Biandolino F, Grattagliano A, Ruscito A, Lofrano G, Libralato G, Trifuoggi M, Albarano L, Prato E. Multi-endpoint effects of derelict tubular mussel plastic nets on Tigriopus fulvus. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:83554-83566. [PMID: 35764734 PMCID: PMC9643204 DOI: 10.1007/s11356-022-21569-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 06/15/2022] [Indexed: 06/15/2023]
Abstract
Microplastic debris from direct and indirect human activities is considered a major threat to the marine biodiversity mainly due to its abundance, durability, persistence, and ability to accumulate contaminants from the environment. Derelict tubular plastic nets of various colours (blue (BN), yellow (YN), green (GN), pink (PN), and white (WN) net), used to distinguish mussel farming owners, were collected by scuba-dive from the Mar Piccolo of Taranto (Ionian Sea). All nets were made of polypropylene. Investigations looked for potential acute (mortality) and sub-chronic (mortality, larval development and moult release number, and adult percentage after 5-9 days) effects on Tigriopus fulvus nauplii considering both whole plastics (microplastic (MP), 50 mg/L) and leachates (12.5-100%). Acute test determined a median lethal concentration (LC50) only for BN for both MPs (107 mg/L) and leachates (50.1%). The prolonged exposure (5 days) to microplastics did not affect the T. fulvus survival. After 9 days, YN and BN decreased of approximately 100% larval development.
Collapse
Affiliation(s)
- Isabella Parlapiano
- National Research Council, Water Research Institute (IRSA-CNR), Via Roma, 3, 74123, Taranto, Italy
| | - Francesca Biandolino
- National Research Council, Water Research Institute (IRSA-CNR), Via Roma, 3, 74123, Taranto, Italy
| | - Asia Grattagliano
- Department of Chemical Sciences and Technologies, University of Rome "Tor Vergata", Via della Ricerca Scientifica, 1 - 00133, Rome, Italy
| | - Andrea Ruscito
- Department of Chemical Sciences and Technologies, University of Rome "Tor Vergata", Via della Ricerca Scientifica, 1 - 00133, Rome, Italy
| | - Giusy Lofrano
- Centro Servizi Metrologici E Tecnologici Avanzati (CeSMA), University of Naples Federico II, Via Vicinale Cupa Cintia 26, 80126, Naples, Italy
- Dipartimento di Scienze Motorie, Umane e della Salute, Università degli Studi di Roma Foro Italico, Piazza Lauro De Bosis, 15, 00135, Rome, Italy
| | - Giovanni Libralato
- Department of Biology, University of Naples Federico II, Via Vicinale Cupa Cintia 26, 80126, Naples, Italy.
| | - Marco Trifuoggi
- Centro Servizi Metrologici E Tecnologici Avanzati (CeSMA), University of Naples Federico II, Via Vicinale Cupa Cintia 26, 80126, Naples, Italy
- Department of Chemical Sciences, University of Naples Federico II, Via Vicinale Cupa Cintia 26, 80126, Naples, Italy
| | - Luisa Albarano
- Department of Biology, University of Naples Federico II, Via Vicinale Cupa Cintia 26, 80126, Naples, Italy
| | - Ermelinda Prato
- National Research Council, Water Research Institute (IRSA-CNR), Via Roma, 3, 74123, Taranto, Italy
| |
Collapse
|
164
|
Rathinamoorthy R, Raja Balasaraswathi S. Mitigation of microfibers release from disposable masks - An analysis of structural properties. ENVIRONMENTAL RESEARCH 2022; 214:114106. [PMID: 35987377 PMCID: PMC9385379 DOI: 10.1016/j.envres.2022.114106] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 08/04/2022] [Accepted: 08/10/2022] [Indexed: 05/09/2023]
Abstract
The use of disposable face masks increased rapidly among the general public to control the COVID-19 spread. Eventually, it increased the disposal of masks and their associated impacts on environmental pollution. Hence, this study aims to analyze the impact of nonwoven fabric structural parameters and weathering on the microfiber release characteristics. Spunbond polypropylene nonwoven with four different weights and meltblown nonwoven with two different weights were used in this study to analyze microfiber release at dry, and wet conditions to simulate improper disposal in the environment. Exposure to sunlight significantly increases the microfiber release from 35 to 50% for spunbond fabric and 56-89% for meltblown fabric. Weathering in sunlight structurally affected the tensile properties of the polypropylene fibers due to photodegradation. The study showed that each mask can produce 1.5 × 102 and 3.45 × 101 mg of microfiber/mask respectively in dry and wet states. In the case of structural parameters, a higher GSM (grams per square meter), abrasion resistance, bursting strength, and thickness showed a positive correlation with microfiber release in both fabrics. Significantly a higher microfiber release was reported with meltblown fabric than the spunbond for a given GSM. The presence of finer fibers and more fibers per unit area in meltblown fabric was noted as the main cause. Nonwoven fabric GSM and the number of fibers in a specific area showed a higher influence on microfiber release. Based on the mask consumption reported in the literature, India alone can produce around 4.27 × 102 tons of microfibers/week as an average of dry and wet conditions. The study suggests that the proper selection of physical parameters can significantly reduce the microfiber fiber release at all stages.
Collapse
Affiliation(s)
- R Rathinamoorthy
- Department of Fashion Technology, PSG College of Technology, Coimbatore, India.
| | - S Raja Balasaraswathi
- Department of Fashion Technology, National Institute of Fashion Technology, Bengaluru, India
| |
Collapse
|
165
|
Jing S, Huang Y, Chen Y, He X, Chen Z, Lu X, Wu M, Wanger TC. Non-Destructive Extraction and Separation of Nano- and Microplastics from Environmental Samples by Density Gradient Ultracentrifugation. Anal Chem 2022; 94:15280-15287. [DOI: 10.1021/acs.analchem.2c02543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Siyuan Jing
- Department of Environmental Science and Engineering, Fudan University, 200438 Shanghai, China
- Sustainable Agricultural Systems & Engineering lab, School of Engineering, Westlake University, Hangzhou, 310024 Zhejiang Province, China
- Key Laboratory of Coastal Environment and Resources of Zhejiang Province, School of Engineering, Westlake University, 18 Shilongshan Road, Hangzhou, 310024 Zhejiang Province, China
| | - Yu Huang
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Instrumentation and Service Center for Molecular Sciences, Westlake University, Hangzhou, 310024 Zhejiang Province, China
| | - Yinjuan Chen
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Instrumentation and Service Center for Molecular Sciences, Westlake University, Hangzhou, 310024 Zhejiang Province, China
| | - Xueqing He
- Sustainable Agricultural Systems & Engineering lab, School of Engineering, Westlake University, Hangzhou, 310024 Zhejiang Province, China
- Key Laboratory of Coastal Environment and Resources of Zhejiang Province, School of Engineering, Westlake University, 18 Shilongshan Road, Hangzhou, 310024 Zhejiang Province, China
- ChinaRiceNetwork.org, Hangzhou, 310024 Zhejiang Province, China
| | - Zhong Chen
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Instrumentation and Service Center for Molecular Sciences, Westlake University, Hangzhou, 310024 Zhejiang Province, China
| | - Xingyu Lu
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Instrumentation and Service Center for Molecular Sciences, Westlake University, Hangzhou, 310024 Zhejiang Province, China
| | - Minghuo Wu
- School of Ocean Science and Technology, Dalian University of Technology, 124221 Panjin, China
| | - Thomas C. Wanger
- Sustainable Agricultural Systems & Engineering lab, School of Engineering, Westlake University, Hangzhou, 310024 Zhejiang Province, China
- Key Laboratory of Coastal Environment and Resources of Zhejiang Province, School of Engineering, Westlake University, 18 Shilongshan Road, Hangzhou, 310024 Zhejiang Province, China
- ChinaRiceNetwork.org, Hangzhou, 310024 Zhejiang Province, China
| |
Collapse
|
166
|
Zhang J, Zhang Q, Maa JPY, Shen X, Liang J, Yu L, Ge L, Wang G. Effects of organic matter on interaction forces between polystyrene microplastics: An experimental study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 844:157186. [PMID: 35809726 DOI: 10.1016/j.scitotenv.2022.157186] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 07/01/2022] [Accepted: 07/02/2022] [Indexed: 06/15/2023]
Abstract
The aggregation and deposition processes of marine microplastics are extremely important in marine ecosystems. The main effect of these two physical processes is the transfer of surface microplastics to the deep sea, and the underlying kinetics can be significantly affected by the organic matter in the ocean. The morphology of and interaction force on 20-μm polystyrene microplastics in the presence of organic matter were studied by using environmental scanning electron microscopy (ESEM) and atomic force microscopy (AFM), respectively. Experiments were performed using organic matter of various concentrations, and the results showed that humic acid formed a translucent organic film around polystyrene microplastics. With increasing total organic content (TOC), the average overall size of the microplastic coated with biofilm increased up to 11 % (at a TOC of 50 mg/L) and then decreased slightly. The biofilm formed by humic acid decreases the repulsion force between two particles and thus could promote the aggregation process significantly. A modified formulation of eXtended Derjaguin-Landau-Verwey-Overbeek (XDLVO) theory, describing the interaction force of microplastics with the influences of biofilms was proposed based on the measured results.
Collapse
Affiliation(s)
- Jinfeng Zhang
- State Key Laboratory of Hydraulic Engineering Simulation and Safety Tianjin University, Tianjin 300072, China.
| | - Qinghe Zhang
- State Key Laboratory of Hydraulic Engineering Simulation and Safety Tianjin University, Tianjin 300072, China
| | - Jerome P-Y Maa
- Department of Physical Sciences, Virginia Institute of Marine Science, School of Marine Science, College of William and Mary, Gloucester Point, VA 23062, USA
| | - Xiaoteng Shen
- State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing 210024, China
| | - Jiaxiong Liang
- State Key Laboratory of Hydraulic Engineering Simulation and Safety Tianjin University, Tianjin 300072, China
| | - Lixin Yu
- State Key Laboratory of Hydraulic Engineering Simulation and Safety Tianjin University, Tianjin 300072, China
| | - Lin Ge
- NT-MDT Spectrum Instrument, China office, Beijing 100031, China
| | - Guangyao Wang
- State Key Laboratory of Hydraulic Engineering Simulation and Safety Tianjin University, Tianjin 300072, China
| |
Collapse
|
167
|
Compa M, Alomar C, López Cortès MF, Rios-Fuster B, Morató M, Capó X, Fagiano V, Deudero S. Multispecies Assessment of Anthropogenic Particle Ingestion in a Marine Protected Area. BIOLOGY 2022; 11:1375. [PMID: 36290281 PMCID: PMC9598462 DOI: 10.3390/biology11101375] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/16/2022] [Accepted: 09/08/2022] [Indexed: 06/16/2023]
Abstract
We have applied a multispecies ecosystem approach to analyse the ingestion of anthropogenic particles (AP) in the gastrointestinal tract of 313 individuals (17 fish species and 8 invertebrate species) from pelagic, demersal and benthic habitats in a marine protected area off the Western Mediterranean (Cabrera National Park). We have quantified and characterized the ingestion at several taxonomic levels of fish, sea urchins, sea cucumbers, bivalves, and jellyfish in relation to biotic/abiotic factors based on taxonomic groups, trophic guilds (functional groups) and habitats. AP ingestion occurrence ranged from 26 to 100% with no significant differences among taxonomic groups. The fish within the MPA showed an overall ingestion occurrence ranging from 0 to 100%, the echinoderms from 29 to 100%, the bivalves from 72 to 96% and the jellyfish 36% ingestion. The ecosystem approach applied to evaluate overall AP ingestion within the species reported that for trophic guilds, the omnivorous species ingested the highest amounts of anthropogenic items, while herbivores ingested significantly fewer items than all other trophic guilds. Moreover, no significant differences were found amongst habitats, indicating a homogeneous spatial distribution of APs at all studied habitats. The multispecies approach provided insight into the high APs exposure to species within Cabrera MPA, highlighting the potential harm linked with marine litter that threatens marine biodiversity.
Collapse
Affiliation(s)
- Montserrat Compa
- Centro Oceanográfico de Baleares (IEO-CSIC), Muelle de Poniente s/n, 07015 Palma, Spain
| | - Carme Alomar
- Centro Oceanográfico de Baleares (IEO-CSIC), Muelle de Poniente s/n, 07015 Palma, Spain
| | - María Francesca López Cortès
- Dirección General de Espacios Naturales y Biodiversidad, Parque Nacional Marítimo-Terrestre del Archipiélago de Cabrera, Gremi de Corredors 10, Polígon de Son Rossinyol, 07009 Palma, Spain
| | - Beatriz Rios-Fuster
- Centro Oceanográfico de Baleares (IEO-CSIC), Muelle de Poniente s/n, 07015 Palma, Spain
| | - Mercè Morató
- Centro Oceanográfico de Baleares (IEO-CSIC), Muelle de Poniente s/n, 07015 Palma, Spain
| | - Xavier Capó
- Centro Oceanográfico de Baleares (IEO-CSIC), Muelle de Poniente s/n, 07015 Palma, Spain
| | - Valentina Fagiano
- Centro Oceanográfico de Baleares (IEO-CSIC), Muelle de Poniente s/n, 07015 Palma, Spain
| | - Salud Deudero
- Centro Oceanográfico de Baleares (IEO-CSIC), Muelle de Poniente s/n, 07015 Palma, Spain
| |
Collapse
|
168
|
Ding Y, Zou X, Chen H, Yuan F, Liao Q, Feng Z, Fan Q, Wang Y, Fu G, Yu W. Distribution pattern and influencing factors for the microplastics in continental shelf, slope, and deep-sea surface sediments from the South China Sea. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 309:119824. [PMID: 35870526 DOI: 10.1016/j.envpol.2022.119824] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/18/2022] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
Marine microplastic pollution has become a major global concern in recent years and the fate of microplastics in the ocean is a hot issue of research. We investigated microplastic pollution in surface sediments in the northern South China Sea to explore its distribution characteristics and influencing factors across the continental shelf, continental slope, and deep-sea environments. It was found that the microplastic abundance of surface sediments was 130.56 ± 40.48 items/kg. The average abundance of microplastics in all three topographic areas gradually decreased with increasing distance offshore. However, the differences in microplastic diversity indices between the three areas were not significant and were higher than those in other seas of the world, indicating that the waters of the northern South China Sea are rich in microplastics from complex sources, with more pollution input channels. In the continental shelf, fibrous and low density microplastics accounted for the largest amount, with a low degree of microplastic aging, and were mostly transported by suspended-load. These microplastics were mainly influenced by human activities. In the deep sea, microplastics with higher density were the most abundant and the number of fibrous microplastics was fewer, while the average size was larger, mainly influenced by the bottom currents. These microplastics underwent long-term bedload transport. In the continental slope, the main factors affecting the distribution of microplastics were more complex. In addition to pollution by human activities, the slope also receives microplastic materials carried by bottom currents; therefore, the composition of microplastics in the slope combines those characteristics of microplastics in both the continental shelf and deep-sea areas. The findings of this study indicate that the South China Sea is affected by complex pollution sources under the dual effects of human activities and natural conditions; in particular, the pollution situation in the deep-sea area needs extensive attention.
Collapse
Affiliation(s)
- Yongcheng Ding
- School of Geography and Ocean Science, Nanjing University, Nanjing, 210023, China; Ministry of Education Key Laboratory for Coastal and Island Development, Nanjing University, Nanjing, 210023, China
| | - Xinqing Zou
- School of Geography and Ocean Science, Nanjing University, Nanjing, 210023, China; Ministry of Education Key Laboratory for Coastal and Island Development, Nanjing University, Nanjing, 210023, China; Collaborative Innovation Center of South China Sea Studies, Nanjing University, Nanjing, 210023, China.
| | - Hongyu Chen
- School of Geography and Ocean Science, Nanjing University, Nanjing, 210023, China; Ministry of Education Key Laboratory for Coastal and Island Development, Nanjing University, Nanjing, 210023, China
| | - Feng Yuan
- School of Geography and Ocean Science, Nanjing University, Nanjing, 210023, China; Ministry of Education Key Laboratory for Coastal and Island Development, Nanjing University, Nanjing, 210023, China
| | - Qihang Liao
- School of Geography and Ocean Science, Nanjing University, Nanjing, 210023, China; Ministry of Education Key Laboratory for Coastal and Island Development, Nanjing University, Nanjing, 210023, China
| | - Ziyue Feng
- School of Geography and Ocean Science, Nanjing University, Nanjing, 210023, China; Ministry of Education Key Laboratory for Coastal and Island Development, Nanjing University, Nanjing, 210023, China
| | - Qinya Fan
- School of Geography and Ocean Science, Nanjing University, Nanjing, 210023, China; Ministry of Education Key Laboratory for Coastal and Island Development, Nanjing University, Nanjing, 210023, China
| | - Ying Wang
- School of Geography and Ocean Science, Nanjing University, Nanjing, 210023, China; Ministry of Education Key Laboratory for Coastal and Island Development, Nanjing University, Nanjing, 210023, China
| | - Guanghe Fu
- School of Geography and Ocean Science, Nanjing University, Nanjing, 210023, China; Ministry of Education Key Laboratory for Coastal and Island Development, Nanjing University, Nanjing, 210023, China; Collaborative Innovation Center of South China Sea Studies, Nanjing University, Nanjing, 210023, China
| | - Wenwen Yu
- Marine Fisheries Research Institute of Jiangsu Province, Nantong, 226007, China
| |
Collapse
|
169
|
Deep-sea organisms research oriented by deep-sea technologies development. Sci Bull (Beijing) 2022; 67:1802-1816. [PMID: 36546066 DOI: 10.1016/j.scib.2022.07.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 04/30/2022] [Accepted: 05/05/2022] [Indexed: 01/07/2023]
Abstract
Deep-sea environment, characterized by high pressures, extremely high/low temperatures, limited photosynthesis-generated organic matter, darkness, and high levels of corrosion, is home to flourishing special ecosystems in the world. Here, we illustrate how the deep-sea equipment offers insights into the study of life in the deep sea based on the work in the past five decades. We first describe how organisms in the deep sea are studied, even though it is highly difficult to get access to such extreme environments. We then explain the role of deep-sea technologies in advancing research on the evolution of organisms in hydrothermal vents, cold seeps, seamounts, oceanic trenches, and whale falls from the following perspectives: biological diversity, mechanisms of environmental adaptation, biological evolution, and ecosystem connectivity. Finally, to better understand the function and service of deep-sea organisms, and further conserve the special creatures under anthropologic activity and climate change, we highlight the importance of innovative deep-sea technologies to promote cutting-edge research on deep-sea organisms, and note the remaining challenges and developing directions for deep-sea equipment.
Collapse
|
170
|
Huang D, Chen H, Shen M, Tao J, Chen S, Yin L, Zhou W, Wang X, Xiao R, Li R. Recent advances on the transport of microplastics/nanoplastics in abiotic and biotic compartments. JOURNAL OF HAZARDOUS MATERIALS 2022; 438:129515. [PMID: 35816806 DOI: 10.1016/j.jhazmat.2022.129515] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 06/27/2022] [Accepted: 06/30/2022] [Indexed: 05/14/2023]
Abstract
Plastics enter the environment and break up into microplastics (MPs) and even nanoplastics (NPs) by biotic and abiotic weathering. These small particles are widely distributed in the environmental media and extremely mobile and reactive, easily suspending in the air, infiltrating into the soil, and interacting with biota. Current research on MPs/NPs is either in the abiotic or biotic compartments, with little attention paid to the fact that the biosphere as a whole. To better understand the complex and continuous movement of plastics from biological to planetary scales, this review firstly discusses the transport processes and drivers of microplastics in the macroscopic compartment. We then summarize insightfully the uptake pathways of MPs/NPs by different species in the ecological compartment and analyze the internalization mechanisms of NPs in the organism. Finally, we highlight the bioaccumulation potential, biomagnification effects and trophic transfer of MPs/NPs in the food chain. This work is expected to provide a meaningful theoretical body of knowledge for understanding the biogeochemical cycles of plastics.
Collapse
Affiliation(s)
- Danlian Huang
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China.
| | - Haojie Chen
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Maocai Shen
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Jiaxi Tao
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Sha Chen
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Lingshi Yin
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Wei Zhou
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Xinya Wang
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Ruihao Xiao
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Ruijin Li
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| |
Collapse
|
171
|
Abel SM, Primpke S, Wu F, Brandt A, Gerdts G. Human footprints at hadal depths: interlayer and intralayer comparison of sediment cores from the Kuril Kamchatka trench. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156035. [PMID: 35598673 DOI: 10.1016/j.scitotenv.2022.156035] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 05/11/2022] [Accepted: 05/14/2022] [Indexed: 06/15/2023]
Abstract
Microplastic (MP) pollution affects almost all ecosystems on Earth. Given the increasing plastic production worldwide and the durability of these polymers, concerns arise about the fate of this material in the environment. A candidate to consider as a depositional final sink of MP is the sea floor and its deepest representatives, hadal trenches, as ultimate sinks. In this study, 13 sediment samples were collected with a multiple-corer at depths between 5740 and 9450 m from the Kuril Kamchatka trench (KKT), in the Northwest (NW) Pacific Ocean. These samples were analysed for MP presence in the upper sediment layer, by slicing the first 5 cm of sediment cores into 1 cm horizontal layers. These were compared against each other and between the sampling areas, in order to achieve a detailed picture of the depositional system of the trench and small-scale perturbations such as bioturbation. The analyses revealed the presence of 215 to 1596 MP particles per kg -1 sediment (dry weight), with a polymer composition represented by 14 polymer types and the prevalence of particles smaller than 25 μm. A heterogeneous microplastic distribution through the sediment column and different microplastic concentration and polymer types among sampling stations located in different areas of the trench reflects the dynamics of this environment and the numerous forces that drive the deposition processes and the in situ recast of this pollutant at the trench floor.
Collapse
Affiliation(s)
- Serena M Abel
- Senckenberg Research Institute and Natural History Museum, Department of Marine Zoology, Senckenberganlage 25, 60325 Frankfurt am Main, Germany; Department of Microbial Ecology, Biologische Anstalt Helgoland, Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Kurpromenade 201, 27498 Helgoland, Germany; Goethe University Frankfurt, Institute for Ecology, Diversity and Evolution, Max-von-Laue-Straße 13, 60438 Frankfurt am Main, Germany.
| | - Sebastian Primpke
- Department of Microbial Ecology, Biologische Anstalt Helgoland, Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Kurpromenade 201, 27498 Helgoland, Germany
| | - Fangzhu Wu
- Department of Microbial Ecology, Biologische Anstalt Helgoland, Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Kurpromenade 201, 27498 Helgoland, Germany
| | - Angelika Brandt
- Senckenberg Research Institute and Natural History Museum, Department of Marine Zoology, Senckenberganlage 25, 60325 Frankfurt am Main, Germany; Goethe University Frankfurt, Institute for Ecology, Diversity and Evolution, Max-von-Laue-Straße 13, 60438 Frankfurt am Main, Germany
| | - Gunnar Gerdts
- Department of Microbial Ecology, Biologische Anstalt Helgoland, Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Kurpromenade 201, 27498 Helgoland, Germany
| |
Collapse
|
172
|
Menicagli V, Castiglione MR, Balestri E, Giorgetti L, Bottega S, Sorce C, Spanò C, Lardicci C. Early evidence of the impacts of microplastic and nanoplastic pollution on the growth and physiology of the seagrass Cymodocea nodosa. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156514. [PMID: 35679937 DOI: 10.1016/j.scitotenv.2022.156514] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/31/2022] [Accepted: 06/02/2022] [Indexed: 06/15/2023]
Abstract
Microplastics (MPs) and nanoplastics (NPs) are ubiquitous in natural habitats and the risks their presence poses to marine environments and organisms are of increasing concern. There is evidence that seagrass meadows are particularly prone to accumulate plastic debris, including polystyrene particles, but the impacts of this pollutant on seagrass performance are currently unknown. This is a relevant knowledge gap as seagrasses provide multiple ecosystem services and are declining globally due to anthropogenic impact and climate-change-related stressors. Here, we explored the potential effects of a 12 day-exposure of seagrasses to one concentration (68 μg/L) of polystyrene MPs and NPs on the growth, oxidative status, and photosynthetic efficiency of plants using the foundation species Cymodocea nodosa as a model. Among plant organs, adventitious roots were particularly affected by MPs and NPs showing complete degeneration. The number of leaves per shoot was lower in MPs- and NPs-treated plants compared to control plants, and leaf loss exceeded new leaf production in MPs-treated plants. MPs also reduced photochemical efficiency and increased pigment content compared to control plants. Shoots of NPs-treated plants showed a greater oxidative damage and phenol content than those of control plants and MPs-treated plants. Biochemical data about oxidative stress markers were consistent with histochemical results. The effects of MPs on C. nodosa could be related to their adhesion to plant surface while those of NPs to entering tissues. Our study provides the first experimental evidence of the potential harmful effects of MPs/NPs on seagrass development. It also suggests that the exposure of seagrasses to MPs/NPs in natural environments could have negative consequences on the functioning of seagrass ecosystems. This stresses the importance of implementing cleaning programs to remove all plastics already present in marine habitats as well as of undertaking specific actions to prevent the introduction of these pollutants within seagrass meadows.
Collapse
Affiliation(s)
- Virginia Menicagli
- Department of Biology, University of Pisa, via Derna 1, 56126 Pisa, Italy; Center for Instrument Sharing University of Pisa (CISUP), University of Pisa, via S. Maria 53, Pisa, Italy
| | - Monica Ruffini Castiglione
- Department of Biology, University of Pisa, via L. Ghini 13, 56126 Pisa, Italy; Center for Climate Change Impact, University of Pisa, Via Del Borghetto 80, Pisa, Italy
| | - Elena Balestri
- Department of Biology, University of Pisa, via Derna 1, 56126 Pisa, Italy.
| | - Lucia Giorgetti
- Institute of Agricultural Biology and Biotechnology (IBBA-CNR), Pisa, Italy
| | - Stefania Bottega
- Department of Biology, University of Pisa, via L. Ghini 13, 56126 Pisa, Italy
| | - Carlo Sorce
- Department of Biology, University of Pisa, via L. Ghini 13, 56126 Pisa, Italy; Center for Climate Change Impact, University of Pisa, Via Del Borghetto 80, Pisa, Italy
| | - Carmelina Spanò
- Department of Biology, University of Pisa, via L. Ghini 13, 56126 Pisa, Italy; Center for Climate Change Impact, University of Pisa, Via Del Borghetto 80, Pisa, Italy
| | - Claudio Lardicci
- Center for Instrument Sharing University of Pisa (CISUP), University of Pisa, via S. Maria 53, Pisa, Italy; Center for Climate Change Impact, University of Pisa, Via Del Borghetto 80, Pisa, Italy; Department of Earth Sciences, University of Pisa, via S. Maria 53, Pisa, Italy
| |
Collapse
|
173
|
Hou Z, Meng R, Chen G, Lai T, Qing R, Hao S, Deng J, Wang B. Distinct accumulation of nanoplastics in human intestinal organoids. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:155811. [PMID: 35597345 DOI: 10.1016/j.scitotenv.2022.155811] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/30/2022] [Accepted: 05/05/2022] [Indexed: 06/15/2023]
Abstract
Plastic particles, especially nanoplastics, represent an emerging concern of threat to human health, oral uptake is an important pathway for the plastic particles ingestion by human. While their fate and adverse effects in animal gastrointestinal tract are increasingly investigated, knowledge about their uptake and toxicity in human intestine is still limited. Here, by exposing human intestinal organoids to polystyrene nanoplastics (PS-NPs, ~50 nm in size) with concentrations of 10 and 100 μg/mL, we present evidence of their distinct accumulation in various type cells in intestinal organoids, then causing the cell apoptosis and inflammatory response. Our results further revealed that the effective inhibition of PS-NPs accumulation in secretive cells through co-exposure to a clathrin-mediated endocytosis inhibitor (chlorpromazine), and proved the essential role of active endocytosis in the PS-NPs uptaking into enterocyte cells. Our work not only elucidated the potential uptake and toxicity of PS-NPs in human intestinal cells and the underlying mechanism, but also provide a potential therapeutic approach to relieve the toxicity of PS-NPs to human through the endocytosis inhibition.
Collapse
Affiliation(s)
- Zongkun Hou
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China
| | - Run Meng
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China
| | - Ganghua Chen
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China
| | - Tangmin Lai
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China
| | - Rui Qing
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shilei Hao
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China.
| | - Jia Deng
- College of Environment and Resources, Chongqing Technology and Business University, Chongqing, China.
| | - Bochu Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China.
| |
Collapse
|
174
|
Wu X, Liu P, Zhao X, Wang J, Teng M, Gao S. Critical effect of biodegradation on long-term microplastic weathering in sediment environments: A systematic review. JOURNAL OF HAZARDOUS MATERIALS 2022; 437:129287. [PMID: 35714544 DOI: 10.1016/j.jhazmat.2022.129287] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/30/2022] [Accepted: 05/31/2022] [Indexed: 06/15/2023]
Abstract
Microplastic (MP) pollution in global sediment has been intensely studied and recognized as the ultimate sink for residual MPs in terrestrial and aquatic ecosystems. During MP long-term retention in sediments, plastic-degrading bacteria (i.e., Flavobacteriaceae, Bacillus, Rhodobacteraceae, and Desulfobacteraceae) can utilize those MPs as their carbon and energy sources through enzyme (hydrolase and oxidoreductase) reactions, which further alter or transform high molecular weight MP polymers into lower molecular weight biodegradation byproducts (i.e., monomers and oligomers) and release toxic additives. In other words, MPs can act as durable substrates for plastic-degrading bacteria in sediments. However, to date, the biodegradation rates of MPs in sediment environments are still poorly understood due to their limited degradation efficiency. Herein, we review the enzyme-induced biodegradation processes of MPs in sediment environments, which is important for accessing the alteration of MP properties and their potential ecological risks after undergoing long-term weathering processes. In addition, the factors associated with the MP properties (polymer type, molecular weight, crystallinity, and hydrophobicity) and sediment conditions (sediment type, temperature, pH, salinity, and oxygen content) that influence plastic degradation processes are also reviewed. The mechanisms may relate to the MP properties and sediment conditions that can influence microbial abundance, enzyme concentrations, and enzyme activities, thus altering MP biodegradation ratios. We anticipate that the observations reviewed in this study will pose a new issue to better understand the formation process, fate, and potential ecological risks associated with aged MPs in sediment environments.
Collapse
Affiliation(s)
- Xiaowei Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Peng Liu
- Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, College of Natural Resources and Environment, Northwest A & F University, Xianyang 712100, China
| | - Xiaoli Zhao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Junyu Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Miaomiao Teng
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Shixiang Gao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093, China
| |
Collapse
|
175
|
Lincoln S, Andrews B, Birchenough SNR, Chowdhury P, Engelhard GH, Harrod O, Pinnegar JK, Townhill BL. Marine litter and climate change: Inextricably connected threats to the world's oceans. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 837:155709. [PMID: 35525371 DOI: 10.1016/j.scitotenv.2022.155709] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/29/2022] [Accepted: 05/01/2022] [Indexed: 06/14/2023]
Abstract
The global issues of climate change and marine litter are interlinked and understanding these connections is key to managing their combined risks to marine biodiversity and ultimately society. For example, fossil fuel-based plastics cause direct emissions of greenhouse gases and therefore are an important contributing factor to climate change, while other impacts of plastics can manifest as alterations in key species and habitats in coastal and marine environments. Marine litter is acknowledged as a threat multiplier that acts with other stressors such as climate change to cause far greater damage than if they occurred in isolation. On the other hand, while climate change can lead to increased inputs of litter into the marine environment, the presence of marine litter can also undermine the climate resilience of marine ecosystems. There is increasing evidence that that climate change and marine litter are inextricably linked, although these interactions and the resulting effects vary widely across oceanic regions and depend on the particular characteristics of specific marine environments. Ecosystem resilience approaches, that integrate climate change with other local stressors, offer a suitable framework to incorporate the consideration of marine litter where that is deemed to be a risk, and to steer, coordinate and prioritise research and monitoring, as well as management, policy, planning and action to effectively tackle the combined risks and impacts from climate change and marine litter.
Collapse
Affiliation(s)
- Susana Lincoln
- International Marine Climate Change Centre (iMC3), The Centre for Environment, Fisheries and Aquaculture Sciences (Cefas), Lowestoft, Suffolk NR33 0HT, United Kingdom.
| | - Barnaby Andrews
- International Marine Climate Change Centre (iMC3), The Centre for Environment, Fisheries and Aquaculture Sciences (Cefas), Lowestoft, Suffolk NR33 0HT, United Kingdom
| | - Silvana N R Birchenough
- International Marine Climate Change Centre (iMC3), The Centre for Environment, Fisheries and Aquaculture Sciences (Cefas), Lowestoft, Suffolk NR33 0HT, United Kingdom
| | - Piyali Chowdhury
- International Marine Climate Change Centre (iMC3), The Centre for Environment, Fisheries and Aquaculture Sciences (Cefas), Lowestoft, Suffolk NR33 0HT, United Kingdom
| | - Georg H Engelhard
- International Marine Climate Change Centre (iMC3), The Centre for Environment, Fisheries and Aquaculture Sciences (Cefas), Lowestoft, Suffolk NR33 0HT, United Kingdom
| | - Olivia Harrod
- International Marine Climate Change Centre (iMC3), The Centre for Environment, Fisheries and Aquaculture Sciences (Cefas), Lowestoft, Suffolk NR33 0HT, United Kingdom
| | - John K Pinnegar
- International Marine Climate Change Centre (iMC3), The Centre for Environment, Fisheries and Aquaculture Sciences (Cefas), Lowestoft, Suffolk NR33 0HT, United Kingdom
| | - Bryony L Townhill
- International Marine Climate Change Centre (iMC3), The Centre for Environment, Fisheries and Aquaculture Sciences (Cefas), Lowestoft, Suffolk NR33 0HT, United Kingdom
| |
Collapse
|
176
|
Vaksmaa A, Egger M, Lüke C, Martins PD, Rosselli R, Asbun AA, Niemann H. Microbial communities on plastic particles in surface waters differ from subsurface waters of the North Pacific Subtropical Gyre. MARINE POLLUTION BULLETIN 2022; 182:113949. [PMID: 35932724 DOI: 10.1016/j.marpolbul.2022.113949] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/08/2022] [Accepted: 07/11/2022] [Indexed: 06/15/2023]
Abstract
The long-term fate of plastics in the ocean and their interactions with marine microorganisms remain poorly understood. In particular, the role of sinking plastic particles as a transport vector for surface microbes towards the deep sea has not been investigated. Here, we present the first data on the composition of microbial communities on floating and suspended plastic particles recovered from the surface to the bathypelagic water column (0-2000 m water depth) of the North Pacific Subtropical Gyre. Microbial community composition of suspended plastic particles differed from that of plastic particles afloat at the sea surface. However, in both compartments, a diversity of hydrocarbon-degrading bacteria was identified. These findings indicate that microbial community members initially present on floating plastics are quickly replaced by microorganisms acquired from deeper water layers, thus suggesting a limited efficiency of sinking plastic particles to vertically transport microorganisms in the North Pacific Subtropical Gyre.
Collapse
Affiliation(s)
- Annika Vaksmaa
- Department of Marine Microbiology & Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, 't Horntje, the Netherlands.
| | - Matthias Egger
- The Ocean Cleanup, Rotterdam, the Netherlands; Egger Research and Consulting, St. Gallen, Switzerland
| | - Claudia Lüke
- Radboud University, Department of Microbiology, Nijmegen, the Netherlands
| | | | - Riccardo Rosselli
- Departamento de Fisiología, Genética y Microbiología, Facultad de Ciencias, Universidad de Alicante, Spain; LABAQUA S.A.U, C/Dracma 16-18, Pol. Ind. Las Atalayas, 03114 Alicante, Spain
| | - Alejandro Abdala Asbun
- Department of Marine Microbiology & Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, 't Horntje, the Netherlands
| | - Helge Niemann
- Department of Marine Microbiology & Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, 't Horntje, the Netherlands; Department of Earth Sciences, Faculty of Geosciences, Utrecht University, Utrecht, the Netherlands
| |
Collapse
|
177
|
Spindola Vilela CL, Damasceno TL, Thomas T, Peixoto RS. Global qualitative and quantitative distribution of micropollutants in the deep sea. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 307:119414. [PMID: 35598814 DOI: 10.1016/j.envpol.2022.119414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 04/28/2022] [Accepted: 05/01/2022] [Indexed: 06/15/2023]
Abstract
Micropollutants (MPs) include a wide range of biological disruptors that can be toxic to wildlife and humans at very low concentrations (<1 μg/L). These mainly anthropogenic pollutants have been widely detected in different areas of the planet, including the deep sea, and have impacts on marine life. Because of this potential toxicity, the global distribution, quantity, incidence, and potential impacts of deep-sea MPs were investigated in a systematic review of the literature. The results showed that MPs have reached different zones of the ocean and are more frequently reported in the Northern Hemisphere, where higher concentrations are found. MPs are also concentrated in depths up to 3000 m, where they are also more frequently studied, but also extend deeper than 10,000 m. Potentially toxic metals (PTMs), polychlorinated biphenyls (PCBs), dichlorodiphenyltrichloroethane (DDTs), organotins, and polycyclic aromatic hydrocarbons (PAHs) were identified as the most prevalent and widely distributed MPs at ≥200 m depth. PTMs are widely distributed in the deep sea in high concentrations; aluminum is the most prevalent up to 3000 m depth, followed by zinc and copper. PCBs, organotins, hexachlorocyclohexanes (HCHs), PAHs, and phenols were detected accumulated in both organisms and environmental samples above legislated thresholds or known toxicity levels. Our assessment indicated that the deep sea can be considered a sink for MPs.
Collapse
Affiliation(s)
- Caren Leite Spindola Vilela
- Department of General Microbiology, Paulo de Goes Institute of Microbiology, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Taissa Lopes Damasceno
- Department of General Microbiology, Paulo de Goes Institute of Microbiology, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Torsten Thomas
- Centre for Marine Science and Innovation & School of Biological, Earth and Environmental Sciences, The University of New South Wales, Sydney, NSW, Australia
| | - Raquel Silva Peixoto
- Department of General Microbiology, Paulo de Goes Institute of Microbiology, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; Red Sea Research Center (RSRC), Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.
| |
Collapse
|
178
|
Chen Y, Ouyang L, Liu N, Li F, Li P, Sun M, Qin H, Li Y, Xiang X, Wu L. pH-responsive magnetic artificial melanin with tunable aggregation-induced stronger magnetism for rapid remediation of plastic fragments. JOURNAL OF HAZARDOUS MATERIALS 2022; 435:128962. [PMID: 35472546 DOI: 10.1016/j.jhazmat.2022.128962] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 04/15/2022] [Accepted: 04/16/2022] [Indexed: 05/23/2023]
Abstract
The global occurrence of plastic fragment pollutants in water resources has raised concerns about food safety, drinking water security, and long-term ecological impacts worldwide. The different chemical nature, the persistence, and the smaller size make micro-plastics accumulators for toxins that pose a potential threat to human health. Generally, the smaller the size of the plastic fragments is, the more difficult it is to remove them from the aquatic environment. Methods to remove plastics from water or other media are highly needed. Here, we develop core-shell superparamagnetic melanin nanoparticles, which can put magnetism on nano-/micro-plastics within 30 s and then rapidly remove them from water by applying an external magnetic field. The shell material (artificial nano-melanin) provides simultaneously attractive electrostatic, hydrophobic interaction, and van der Waals' forces to attract nano-/micro-plastics, which plays a key role in the rapid remediation of the plastic fragments. With this principle applied to a simple method, the average removal efficiency achieves 89.3%. We show a method for high-throughput remediation of various micro-plastics with simple materials and processes, which have the potential for rapid, green, and large-scale remediation in the future.
Collapse
Affiliation(s)
- Yuange Chen
- Chinese Academy of Fishery Sciences, Beijing 100141, China; East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China
| | - Longling Ouyang
- Chinese Academy of Fishery Sciences, Beijing 100141, China; East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China
| | - Na Liu
- Chinese Academy of Fishery Sciences, Beijing 100141, China
| | - Fang Li
- Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences, China
| | - Peiyi Li
- Chinese Academy of Fishery Sciences, Beijing 100141, China
| | - Mengmeng Sun
- Chinese Academy of Fishery Sciences, Beijing 100141, China
| | - Haiyang Qin
- Chinese Academy of Fishery Sciences, Beijing 100141, China
| | - Yang Li
- Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences, China
| | - Xueping Xiang
- Department of Pathology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Lidong Wu
- Chinese Academy of Fishery Sciences, Beijing 100141, China.
| |
Collapse
|
179
|
Wu X, Zhao X, Chen R, Liu P, Liang W, Wang J, Teng M, Wang X, Gao S. Wastewater treatment plants act as essential sources of microplastic formation in aquatic environments: A critical review. WATER RESEARCH 2022; 221:118825. [PMID: 35949074 DOI: 10.1016/j.watres.2022.118825] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 06/21/2022] [Accepted: 07/03/2022] [Indexed: 06/15/2023]
Abstract
According to extensive in situ investigations, the microplastics (MPs) determined in current wastewater treatment plants (WWTPs) are mostly aged, with roughened surfaces and varied types of oxygen-containing functional groups (i.e., carbonyl and hydroxyl). However, the formation mechanism of aged MPs in WWTPs is still unclear. This paper systematically reviewed MP fragmentation and generation mechanisms in WWTPs at different treatment stages. The results highlight that MPs are prone to undergo physical abrasion, biofouling, and chemical oxidation-associated weathering in WWTPs at different treatment stages and can be further decomposed into smaller secondary MPs, including in nanoplastics (less than 1000 nm or 100 nm in size), suggesting that WWTPs can act as a formation source for MPs in aquatic environments. Sand associated mechanical crashes in the primary stage, microbes in active sewage sludge-related biodegradation in the secondary stage, and oxidant-relevant chemical oxidation processes (light photons, Cl2, and O3) in the tertiary stage are the dominant causes of MP formation in WWTPs. For MP formation mechanisms in WWTPs, external environmental forces (shear and stress forces, UV radiation, and biodegradation) can first induce plastic chain scission, destroy the plastic molecular arrangement, and create abundant pores and cracks on the MP surface. Then, the physicochemical properties (modulus of elasticity, tensile strength and elongation at break) of MPs shift consequently and finally breakdown into smaller secondary MPs or nanoscale plastics. Overall, this review provides new insights to better understand the formation mechanism, occurrence, fate, and adverse effects of aged microplastics/nanoplastics in current WWTPs.
Collapse
Affiliation(s)
- Xiaowei Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xiaoli Zhao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Rouzheng Chen
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Peng Liu
- Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China
| | - Weigang Liang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Junyu Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Miaomiao Teng
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xia Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Shixiang Gao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093, China
| |
Collapse
|
180
|
Albignac M, Ghiglione JF, Labrune C, Ter Halle A. Determination of the microplastic content in Mediterranean benthic macrofauna by pyrolysis-gas chromatography-tandem mass spectrometry. MARINE POLLUTION BULLETIN 2022; 181:113882. [PMID: 35816819 DOI: 10.1016/j.marpolbul.2022.113882] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/20/2022] [Accepted: 06/21/2022] [Indexed: 06/15/2023]
Abstract
The Mediterranean Sea water bodies are ones of the most polluted, especially with microplastics. As the seafloor is the ultimate sink for litter, it is considered a hotspot for microplastic pollution. We provide an original analytical development based on the coupling of tandem mass spectrometry to pyrolysis-gas chromatography to improve the detection of plastic contamination in marine organisms. Due to the high selectivity of the mass spectrometer, a straightforward sample preparation consists uniquely of potassium hydroxide digestion. The quantification of six common polymers is possible in one run. The method was applied to analyze the plastic content from 500 μm down to 0.7 μm in the whole body of seven benthic species with variable feeding modes. Plastic was detected in all samples, with an almost systematic detection of polypropylene and polyethylene. Our method presents a major development in determining the levels of plastic contaminations in samples with rich organic matter content.
Collapse
Affiliation(s)
- Magali Albignac
- CNRS, Université de Toulouse, Laboratoire des Interactions Moléculaires et Réactivité Chimique et Photochimique (IMRCP), UMR 5623, Toulouse, France
| | - Jean François Ghiglione
- CNRS, Sorbonne Université, Laboratoire d'Océanographie Microbienne (LOMIC), UMR 7621, Observatoire Océanologique de Banyuls, Banyuls sur mer, France
| | - Céline Labrune
- CNRS, Sorbonne Université, Laboratoire d'Ecogéochimie des Environnements Benthiques (LECOB), UMR 8222, Observatoire Océanologique de Banyuls, Banyuls sur mer, France
| | - Alexandra Ter Halle
- CNRS, Université de Toulouse, Laboratoire des Interactions Moléculaires et Réactivité Chimique et Photochimique (IMRCP), UMR 5623, Toulouse, France.
| |
Collapse
|
181
|
Ye X, Cheng Z, Wu M, Hao Y, Hu BX, Mo C, Li Q, Xiang L, Zhao H, Wu J, Wu J, Lu G. Investigating transport kinetics of polystyrene nanoplastics in saturated porous media. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 241:113820. [PMID: 36068748 DOI: 10.1016/j.ecoenv.2022.113820] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 06/22/2022] [Accepted: 06/25/2022] [Indexed: 06/15/2023]
Abstract
Understanding the fate and transport of polystyrene nanoparticles (PSNPs) in porous media under various conditions is necessary for evaluating and predicting environmental risks caused by microplastics. The transport kinetics of PSNPs are investigated by column experiment and numerical model. The surface of DLVO interaction energy is calculated to analyze and predict the adsorption and aggregation of PSNPs in porous media, which the critical ionic strength of PSNPs can be accurately investigated. The results of the DLVO energy surface suggest that when the concentration of Na+ increases from 1 mM to 50 mM, the DLVO energy barrier of PSNPs-silica sand (SS) decreases from 78.37 kT to 5.46 kT. As a result, PSNPs are easily adsorbed on the surface of SS and the mobility of PSNPs is reduced under the condition of a high concentration of Na+ (PSNPs recovery rate decreases from 62.16% to 3.65%). When the concentration of Ca2+ increases from 0.1 mM to 5 mM, the DLVO energy barrier of PSNPs-SS decreases from 12.10 kT to 1.90 kT, and PSNPs recovery rate decreases from 82.46% to 4.27%. Experimental and model results showed that PSNPs mobility is enhanced by increasing initial concentration, flow velocity and grain size of SS, while the mobility of PSNPs with larger particle diameter is lower. Regression analysis suggests that kinetic parameters related to PSNPs mobility are correlated with DLVO energy barriers. The environmental behavior and mechanism of PSNPs transport in porous media are further investigated in this study, which provides a scientific basis for the systematic and comprehensive evaluation of the environmental risk and ecological safety of nano-plastic particles in the groundwater system.
Collapse
Affiliation(s)
- Xinyao Ye
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Zhou Cheng
- Guangdong Provincial Academy of Environmental Science, Guangzhou 510045, China
| | - Ming Wu
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China; Department of Hydrosciences, School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, China; Key Laboratory of Surficial Geochemistry, Ministry of Education, School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, China.
| | - Yanru Hao
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Bill X Hu
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China; School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China
| | - Cehui Mo
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Qusheng Li
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, China
| | - Lei Xiang
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Haiming Zhao
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Jianfeng Wu
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Jichun Wu
- Department of Hydrosciences, School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, China; Key Laboratory of Surficial Geochemistry, Ministry of Education, School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, China
| | - Guoping Lu
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| |
Collapse
|
182
|
Pierdomenico M, Ridente D, Casalbore D, Di Bella L, Milli S, Chiocci FL. Plastic burial by flash-flood deposits in a prodelta environment (Gulf of Patti, Southern Tyrrhenian Sea). MARINE POLLUTION BULLETIN 2022; 181:113819. [PMID: 35714547 DOI: 10.1016/j.marpolbul.2022.113819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 05/30/2022] [Accepted: 05/31/2022] [Indexed: 06/15/2023]
Abstract
Plastic pollution affects all oceans and sequestration of plastics in sediments is considered its ultimate sink. We report evidence of macroplastic burial retrieved within a sediment core collected at 38 m depth at the mouth of the Mazzarrà River, a torrential river able to carry a large amount of sediment during seasonal flash-floods. Two macroplastic items were found at 68 and 255 cm below the core top (corresponding to the seafloor). Their association with terrestrial vegetal debris and their inclusion in decimetre-thick sandy/silty intervals showing coarsening- and fining-upward trends, suggest that they were deposited by hyperpycnal flows possibly triggered by flood events. These findings testify the potential of sedimentary flows in burying macroplastic at depth below the seafloor, especially in nearshore prodelta environments. Furthermore they raise the quest on the magnitude of macroplastic storage in the subsurface and on the lack of specific devices and strategies for their reckoning.
Collapse
Affiliation(s)
- Martina Pierdomenico
- Istituto per lo studio degli impatti Antropici e Sostenibilità in ambiente marino, Consiglio Nazionale delle Ricerche (IAS-CNR), Italy.
| | - Domenico Ridente
- Istituto di Geologia Ambientale e Geoingegneria, Consiglio Nazionale delle Ricerche (IGAG-CNR), Sede Sapienza Università di Roma, Italy
| | - Daniele Casalbore
- Istituto di Geologia Ambientale e Geoingegneria, Consiglio Nazionale delle Ricerche (IGAG-CNR), Sede Sapienza Università di Roma, Italy; Dipartimento di Scienze della Terra, Sapienza Università di Roma, Italy
| | - Letizia Di Bella
- Dipartimento di Scienze della Terra, Sapienza Università di Roma, Italy
| | - Salvatore Milli
- Istituto di Geologia Ambientale e Geoingegneria, Consiglio Nazionale delle Ricerche (IGAG-CNR), Sede Sapienza Università di Roma, Italy; Dipartimento di Scienze della Terra, Sapienza Università di Roma, Italy
| | - Francesco Latino Chiocci
- Istituto di Geologia Ambientale e Geoingegneria, Consiglio Nazionale delle Ricerche (IGAG-CNR), Sede Sapienza Università di Roma, Italy; Dipartimento di Scienze della Terra, Sapienza Università di Roma, Italy
| |
Collapse
|
183
|
Zhou H, Wang Y, Ren Y, Li Z, Kong X, Shao M, Duan H. Plastic Waste Valorization by Leveraging Multidisciplinary Catalytic Technologies. ACS Catal 2022. [DOI: 10.1021/acscatal.2c02775] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Hua Zhou
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| | - Ye Wang
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Yue Ren
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zhenhua Li
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xianggui Kong
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Mingfei Shao
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Haohong Duan
- Department of Chemistry, Tsinghua University, Beijing 100084, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| |
Collapse
|
184
|
Liu S, Huang Y, Luo D, Wang X, Wang Z, Ji X, Chen Z, Dahlgren RA, Zhang M, Shang X. Integrated effects of polymer type, size and shape on the sinking dynamics of biofouled microplastics. WATER RESEARCH 2022; 220:118656. [PMID: 35635917 DOI: 10.1016/j.watres.2022.118656] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/28/2022] [Accepted: 05/23/2022] [Indexed: 06/15/2023]
Abstract
Sinking of microplastics (MPs) after biofouling is considered an important mechanisms responsible for the downward transport/sedimentation of MPs in the ocean and freshwaters. Previous studies demonstrated MP sinking caused by an increase in the composite density of MPs after biofouling, while MPs with smaller size or shapes with higher surface area to volume ratios (SA:V), such as films, are speculated to sink faster. In this study, we designed an in situ microcosm to simulate the ambient environmental conditions experienced by floating MPs to elucidate the biofouling and sinking of polyethylene (PE), polypropylene (PP), and expanded-polystyrene (EPS) MPs of various sizes and shapes. Our results showed smaller PE and PP MP granules sank faster than large ones. Even EPS granules of 100 μm diameter, having a much lower density (0.02 mg/mm3) than water, started to sink after 2 weeks of biofouling. Moreover, PE film and fiber MPs with higher SA:V did not sink faster than PE MP granules of the same mass, implying that mechanisms other than SA:V, such as fouling contact area and drag coefficient, play a role in the regulation of biofouling and sinking of MPs.
Collapse
Affiliation(s)
- Siguang Liu
- Key Laboratory of Watershed Sciences and Health of Zhejiang Province, School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, China; Fujian Institute of Oceanography, Xiamen 361013, China
| | - Yifeng Huang
- Key Laboratory of Watershed Sciences and Health of Zhejiang Province, School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, China; State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, China
| | - Dehua Luo
- Key Laboratory of Watershed Sciences and Health of Zhejiang Province, School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, China
| | - Xiao Wang
- Key Laboratory of Watershed Sciences and Health of Zhejiang Province, School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, China
| | - Zhenfeng Wang
- Key Laboratory of Watershed Sciences and Health of Zhejiang Province, School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, China
| | - Xiaoliang Ji
- Key Laboratory of Watershed Sciences and Health of Zhejiang Province, School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, China
| | - Zheng Chen
- Key Laboratory of Watershed Sciences and Health of Zhejiang Province, School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, China
| | - Randy A Dahlgren
- Key Laboratory of Watershed Sciences and Health of Zhejiang Province, School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, China; Department of Land, Air and Water Resources, University of California Davis, CA 95616, USA
| | - Minghua Zhang
- Key Laboratory of Watershed Sciences and Health of Zhejiang Province, School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, China; Department of Land, Air and Water Resources, University of California Davis, CA 95616, USA
| | - Xu Shang
- Key Laboratory of Watershed Sciences and Health of Zhejiang Province, School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, China.
| |
Collapse
|
185
|
Ranjani M, Veerasingam S, Venkatachalapathy R, Jinoj TPS, Guganathan L, Mugilarasan M, Vethamony P. Seasonal variation, polymer hazard risk and controlling factors of microplastics in beach sediments along the southeast coast of India. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 305:119315. [PMID: 35439596 DOI: 10.1016/j.envpol.2022.119315] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/08/2022] [Accepted: 04/13/2022] [Indexed: 05/26/2023]
Abstract
Microplastics (MPs) and its associated organic and inorganic contaminants are one among the significant health hazards to almost all biota, including human. We investigated the polymer hazard risk and its adsorbed contaminants in MPs at six prominent beaches of Chennai on the southeast coast of India. The spatial variation of MPs during the northeast (NE) monsoon (range: 76-720 items/kg, mean: 247.4 items/kg) was higher than that during southwest (SW) monsoon (range: 84-498 items/kg, mean: 302.7 items/kg). In both the seasons, polyethylene (PE) and polypropylene (PP) were the dominant polymers and fibre was the predominant shape of MPs, likely to be derived from fishing, textile and urban activities in this region. Scanning electron microscope (SEM) images exhibited various surface weathering features including grooves, cracks, fractures, adhering particles, pits, vermiculate textures and fibre reinforcements. Energy dispersive X-ray spectrometer (EDS) results showed that MPs have adsorbed major (Si, Al, Na, Mg, Ca, Fe and Ti) and trace (Cu, Cr, Ni, Pb and Zn) metals. Though pollution load index (PLI) presented low degree of MP contamination in the beach sediments, hazardous polymers such as polyvinyl chloride (PVC), polyamide (PA) and polystyrene (PS) contributed to high polymer hazard index (PHI) and potential ecological risk index (PERI), posing very high risk to the biota. The trajectories obtained from particle-tracking coupled with hydrodynamic simulation clearly showed that 20% of MPs settled along the coast and the remaining moved towards north, alongshore and offshore (∼50 km) within 30 days, and in NE monsoon due to current reversal, the floating debris and MPs have drifted towards south, ∼40 km in 30 days, indicating the role of circulation in the fate and transport pathways of plastic debris.
Collapse
Affiliation(s)
- M Ranjani
- Department of Physics, Annamalai University, Annamalai Nagar, 608 002, Tamil Nadu, India
| | - S Veerasingam
- Environmental Science Center, Qatar University, P.O. Box: 2713, Qatar.
| | - R Venkatachalapathy
- Department of Physics, Annamalai University, Annamalai Nagar, 608 002, Tamil Nadu, India
| | - T P S Jinoj
- National Centre for Coastal Research, Ministry of Earth Sciences, Government of India, Chennai, 600 100, Tamil Nadu, India
| | - L Guganathan
- Department of Physics, Annamalai University, Annamalai Nagar, 608 002, Tamil Nadu, India
| | - M Mugilarasan
- National Centre for Sustainable Coastal Management, Ministry of Environment, Forest and Climate Change, Chennai, 600 025, Tamil Nadu, India
| | - P Vethamony
- Environmental Science Center, Qatar University, P.O. Box: 2713, Qatar
| |
Collapse
|
186
|
Qi H, Li H, Meng X, Peng L, Zheng H, Wang L, Wang W, Chen K, Zhang J, Zhang H, Cai M. Fate of microplastics in deep-sea sediments and its influencing factors: Evidence from the Eastern Indian Ocean. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 828:154266. [PMID: 35248633 DOI: 10.1016/j.scitotenv.2022.154266] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 02/11/2022] [Accepted: 02/27/2022] [Indexed: 06/14/2023]
Abstract
Although microplastics (MPs) are known to be found in global oceans, their influencing factors and abundance in the deep sea remain largely unknown. Twenty-six surface sediment samples were collected in the deep basin of the Eastern Indian Ocean (EIO). This study showed that MPs abundance ranged from 30.30 particles/kg to 701.7 particles/kg, with an average of 170.5 ± 140.2 particles/kg. The MPs found in the sediment of the EIO mainly contain fragments and fibers, which account for 47.5% and 45.6%. The MPs were measured in a size range of 44-5000 μm, and the most frequently detected MPs in size of 200-500 μm. MPs were in various compositions, but most of them were found in rayon (62.2%) and polyester (25.7%). The spatial distribution of MPs in the sediments shows a decreasing trend from nearshore to the open sea. In the Bay of Bengal (BOB) and the coast of Sri Lanka (COSL), the abundance of MPs was relatively high, indicating that the spatial distribution of MPs is affected by land source input, river input, and anthropogenic activities. Principal component analysis indicated daily commodities and packaging applications/fishing accounted for 36.9% and 12.9% of the MPs occurrence in the EIO, respectively. Average MPs diversity indices for the BOB (0.87 ± 0.38), the COSL (0.64 ± 0.56), and the Eastern Indian Ocean Basin (EIOB) (0.60 ± 0.24) revealed the BOB had the most complicated MPs sources. In addition, we found that the abundance of MPs has no significant effect on organic carbon and sediment grain size. This study is the first report of MPs detection in the deep-sea sediment in the EIO and can provide a baseline of MPs pollution in this area.
Collapse
Affiliation(s)
- Huaiyuan Qi
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, China; Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, Xiamen University, Xiamen 361102, China; College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Hongliang Li
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310000, China
| | - Xiangliang Meng
- Coastal and Ocean Management Institute, Xiamen University, Xiamen 361102, China
| | - Licheng Peng
- College of Ecology and Environment, Hainan University, Haikou 570228, China
| | - Haowen Zheng
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, China; Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, Xiamen University, Xiamen 361102, China; College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Lirong Wang
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, China; Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, Xiamen University, Xiamen 361102, China; College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Weimin Wang
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, China; Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, Xiamen University, Xiamen 361102, China; College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Kai Chen
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, China; College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; Coastal and Ocean Management Institute, Xiamen University, Xiamen 361102, China
| | - Jingjing Zhang
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310000, China
| | - Haifeng Zhang
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310000, China
| | - Minggang Cai
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, China; Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, Xiamen University, Xiamen 361102, China; College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; Coastal and Ocean Management Institute, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
187
|
Yang S, Cheng Y, Liu T, Huang S, Yin L, Pu Y, Liang G. Impact of waste of COVID-19 protective equipment on the environment, animals and human health: a review. ENVIRONMENTAL CHEMISTRY LETTERS 2022; 20:2951-2970. [PMID: 35791338 PMCID: PMC9247942 DOI: 10.1007/s10311-022-01462-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 05/10/2022] [Indexed: 05/06/2023]
Abstract
During the Corona Virus Disease 2019 (COVID-19) pandemic, protective equipment, such as masks, gloves and shields, has become mandatory to prevent person-to-person transmission of coronavirus. However, the excessive use and abandoned protective equipment is aggravating the world's growing plastic problem. Moreover, above protective equipment can eventually break down into microplastics and enter the environment. Here we review the threat of protective equipment associated plastic and microplastic wastes to environments, animals and human health, and reveal the protective equipment associated microplastic cycle. The major points are the following:1) COVID-19 protective equipment is the emerging source of plastic and microplastic wastes in the environment. 2) protective equipment associated plastic and microplastic wastes are polluting aquatic, terrestrial, and atmospheric environments. 3) Discarded protective equipment can harm animals by entrapment, entanglement and ingestion, and derived microplastics can also cause adverse implications on animals and human health. 4) We also provide several recommendations and future research priority for the sustainable environment. Therefore, much importance should be attached to potential protective equipment associated plastic and microplastic pollution to protect the environment, animals and humans.
Collapse
Affiliation(s)
- Sheng Yang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Yanping Cheng
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Tong Liu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Shaoping Huang
- Department of Histology and Embryology, Medical School, Southeast University, Nanjing, China
| | - Lihong Yin
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Yuepu Pu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Geyu Liang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| |
Collapse
|
188
|
Tsudome M, Tachioka M, Miyazaki M, Uchimura K, Tsuda M, Takaki Y, Deguchi S. An ultrasensitive nanofiber-based assay for enzymatic hydrolysis and deep-sea microbial degradation of cellulose. iScience 2022; 25:104732. [PMID: 36039358 PMCID: PMC9418596 DOI: 10.1016/j.isci.2022.104732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/10/2022] [Accepted: 07/02/2022] [Indexed: 11/18/2022] Open
Affiliation(s)
- Mikiko Tsudome
- Research Center for Bioscience and Nanoscience, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka 237-0061, Japan
| | - Mikako Tachioka
- Research Center for Bioscience and Nanoscience, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka 237-0061, Japan
| | - Masayuki Miyazaki
- SUGAR Program, JAMSTEC, 2-15 Natsushima-cho, Yokosuka 237-0061, Japan
| | - Kohsuke Uchimura
- Research Center for Bioscience and Nanoscience, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka 237-0061, Japan
| | - Miwako Tsuda
- SUGAR Program, JAMSTEC, 2-15 Natsushima-cho, Yokosuka 237-0061, Japan
| | - Yoshihiro Takaki
- SUGAR Program, JAMSTEC, 2-15 Natsushima-cho, Yokosuka 237-0061, Japan
| | - Shigeru Deguchi
- Research Center for Bioscience and Nanoscience, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka 237-0061, Japan
- Corresponding author
| |
Collapse
|
189
|
Ponomarev A, Gohs U, T Ratnam C, Horak C. Keystone and stumbling blocks in the use of ionizing radiation for recycling plastics. Radiat Phys Chem Oxf Engl 1993 2022. [DOI: 10.1016/j.radphyschem.2022.110397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
190
|
Dey S, Rout AK, Behera BK, Ghosh K. Plastisphere community assemblage of aquatic environment: plastic-microbe interaction, role in degradation and characterization technologies. ENVIRONMENTAL MICROBIOME 2022; 17:32. [PMID: 35739580 PMCID: PMC9230103 DOI: 10.1186/s40793-022-00430-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 06/14/2022] [Indexed: 05/03/2023]
Abstract
It is undeniable that plastics are ubiquitous and a threat to global ecosystems. Plastic waste is transformed into microplastics (MPs) through physical and chemical disruption processes within the aquatic environment. MPs are detected in almost every environment due to their worldwide transportability through ocean currents or wind, which allows them to reach even the most remote regions of our planet. MPs colonized by biofilm-forming microbial communities are known as the ''plastisphere". The revelation that this unique substrate can aid microbial dispersal has piqued interest in the ground of microbial ecology. MPs have synergetic effects on the development, transportation, persistence, and ecology of microorganisms. This review summarizes the studies of plastisphere in recent years and the microbial community assemblage (viz. autotrophs, heterotrophs, predators, and pathogens). We also discussed plastic-microbe interactions and the potential sources of plastic degrading microorganisms. Finally, it also focuses on current technologies used to characterize those microbial inhabitants and recommendations for further research.
Collapse
Affiliation(s)
- Sujata Dey
- Aquatic Environmental Biotechnology and Nanotechnology Division, ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata, West Bengal, 700120, India
| | - Ajaya Kumar Rout
- Aquatic Environmental Biotechnology and Nanotechnology Division, ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata, West Bengal, 700120, India
| | - Bijay Kumar Behera
- Aquatic Environmental Biotechnology and Nanotechnology Division, ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata, West Bengal, 700120, India.
| | - Koushik Ghosh
- Aquaculture Laboratory, Department of Zoology, The University of Burdwan, Golapbag, Burdwan, West Bengal, 713104, India.
| |
Collapse
|
191
|
Joyce H, Frias J, Kavanagh F, Lynch R, Pagter E, White J, Nash R. Plastics, prawns, and patterns: Microplastic loadings in Nephrops norvegicus and surrounding habitat in the North East Atlantic. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 826:154036. [PMID: 35202687 DOI: 10.1016/j.scitotenv.2022.154036] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 02/14/2022] [Accepted: 02/16/2022] [Indexed: 06/14/2023]
Abstract
The presence of microplastics (MPs), a contaminant of emerging concern, has attracted increasing attention in commercially important seafood species such as Nephrops norvegicus. This species lend themselves well as bioindicators of environmental contamination owing to their availability, spatial and depth distribution, interactions with seafloor sediment and position in the ecosystem and food chain. This study assesses the abundance of MPs in N. norvegicus and in benthic sediments across six functional units in the North East Atlantic. Assessment of the relationship between MP abundance in N. norvegicus, their biological parameters and their surrounding environment was examined. Despite the lack of statistical significance, MP abundances, size, shape, and polymer type recorded in N. norvegicus mirrored those found in the surrounding environment samples. The three main polymers identified in both organisms and sediment were polystyrene, polyamide (nylons), and polypropylene. The level of MP contamination in N. norvegicus could be related to local sources, with relatively low abundances recorded in this study for the North East Atlantic in comparison to other regional studies. Furthermore, larger organisms contained a lower abundance of MPs, demonstrating no accumulation of MPs in N. norvegicus. Based on the results of this study, data on MP ingestion could be used to study trends in the amount and composition of litter ingested by marine animals towards fulfilling requirements of descriptor 10 of the Marine Strategy Framework Directive.
Collapse
Affiliation(s)
- Haleigh Joyce
- Marine and Freshwater Research Centre (MFRC), Galway-Mayo Institute of Technology (GMIT), Dublin Rd., Galway H91 T8NW, Ireland.
| | - João Frias
- Marine and Freshwater Research Centre (MFRC), Galway-Mayo Institute of Technology (GMIT), Dublin Rd., Galway H91 T8NW, Ireland
| | - Fiona Kavanagh
- Marine and Freshwater Research Centre (MFRC), Galway-Mayo Institute of Technology (GMIT), Dublin Rd., Galway H91 T8NW, Ireland
| | - Rachel Lynch
- Marine and Freshwater Research Centre (MFRC), Galway-Mayo Institute of Technology (GMIT), Dublin Rd., Galway H91 T8NW, Ireland
| | - Elena Pagter
- Marine and Freshwater Research Centre (MFRC), Galway-Mayo Institute of Technology (GMIT), Dublin Rd., Galway H91 T8NW, Ireland
| | - Jonathan White
- Marine Institute, Rinville, Oranmore, Galway H91 R673, Ireland
| | - Róisín Nash
- Marine and Freshwater Research Centre (MFRC), Galway-Mayo Institute of Technology (GMIT), Dublin Rd., Galway H91 T8NW, Ireland
| |
Collapse
|
192
|
Gao R, Liu R, Sun C. A marine fungus Alternaria alternata FB1 efficiently degrades polyethylene. JOURNAL OF HAZARDOUS MATERIALS 2022; 431:128617. [PMID: 35359103 DOI: 10.1016/j.jhazmat.2022.128617] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/21/2022] [Accepted: 02/28/2022] [Indexed: 06/14/2023]
Abstract
Huge quantities of plastic wastes have been accumulating in the environment causing serious ecological problems and significantly impacting the global carbon cycling. Plastic pollutions have been recognized as the most common and durable marine contaminants. Consequently, the marine environment is becoming a hot spot to screen microorganisms possessing potential plastic degradation capabilities. Here, by screening hundreds of plastic waste-associated samples, we isolated a fungus (named Alternaria alternata FB1) that possessing a prominent capability of colonizing on the polyethylene (PE) film. Through Scanning Electron Microscope (SEM) observation, we found this fungus could efficiently degrade the PE film and formed numerous obvious holes in the plastic surface. Moreover, the Fourier Transform Infrared (FTIR) imaging detected absorption peak in the vicinity of 1715 cm-1, indicating the formation of carbonyl bonds (-CO-). Through X-Ray Diffraction (XRD) analysis, we found that the PE film treated by strain FB1 for 28 days showed an evident reduced relative crystallinity degree, resulting in a decrease from 62.79% to 52.02%. Strikingly, the molecular weight of PE film decreased 95% after 120 days treatment by strain FB1. Using GC-MS, we further clarified that a four-carbon product (named Diglycolamine) accounted for 93.28% of all degradation products. We defined 153 enzymes that potentially involved in the degradation of PE through a transcriptomic method. The degradation capabilities of two representative enzymes including a laccase (with a molecular weight about 59.49 kDa) and a peroxidase (with a molecular weight about 36.7 kDa) were verified. Lastly, a complete biodegradation process of PE was proposed. Given the extreme paucity of microorganisms and enzymes for effective degradation of PE in the present time, our study provides a compelling candidate for further investigation of degradation mechanisms and development of biodegradation products of PE.
Collapse
Affiliation(s)
- Rongrong Gao
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology & Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China; College of Earth Science, University of Chinese Academy of Sciences, Beijing, China; Center of Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Rui Liu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology & Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China; Center of Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Chaomin Sun
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology & Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China; College of Earth Science, University of Chinese Academy of Sciences, Beijing, China; Center of Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China.
| |
Collapse
|
193
|
Zhou C, Bi R, Su C, Liu W, Wang T. The emerging issue of microplastics in marine environment: A bibliometric analysis from 2004 to 2020. MARINE POLLUTION BULLETIN 2022; 179:113712. [PMID: 35525060 DOI: 10.1016/j.marpolbul.2022.113712] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 04/05/2022] [Accepted: 04/26/2022] [Indexed: 06/14/2023]
Abstract
Microplastic pollution in marine environment has been a growing public concern in recent years. This article analyzed the scientific literatures related to marine microplastics through a combination of social network analysis and bibliometrics. Researches related to microplastics have grown rapidly since 2011, with approximately two-thirds of the total number of articles published in the last three years. Researchers in United States and Europe have provided tremendous support, however, the efforts and progress of Chinese researchers cannot be ignored. Moreover, the international cooperation is getting closer, and related strategies are launched continuously. The results showed that Marine Pollution Bulletin is the most active journal. Through keyword analysis, we understand the development history and current hotspots of the whole microplastics researches, including ecological risks, interrelationship between microplastics and other pollutants, and detection methodology. Finally, some suggestions and perspectives for future microplastics research are provided.
Collapse
Affiliation(s)
- Chongyu Zhou
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou 515063, China; Institute of Marine Sciences, Shantou University, Shantou 515063, China
| | - Ran Bi
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou 515063, China; Institute of Marine Sciences, Shantou University, Shantou 515063, China
| | - Chuanghong Su
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou 515063, China; Institute of Marine Sciences, Shantou University, Shantou 515063, China
| | - Wenhua Liu
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou 515063, China; Institute of Marine Sciences, Shantou University, Shantou 515063, China; Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou 511458, China
| | - Tieyu Wang
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou 515063, China; Institute of Marine Sciences, Shantou University, Shantou 515063, China.
| |
Collapse
|
194
|
Eo S, Hong SH, Song YK, Han GM, Seo S, Park YG, Shim WJ. Underwater hidden microplastic hotspots: Historical ocean dumping sites. WATER RESEARCH 2022; 216:118254. [PMID: 35316677 DOI: 10.1016/j.watres.2022.118254] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 02/15/2022] [Accepted: 03/04/2022] [Indexed: 06/14/2023]
Abstract
Three ocean dumping sites located in the Yellow Sea (YS) and East Sea (ES) of South Korea have accumulated terrestrial waste from 1988 to 2015. Most of this waste comprised industrial wastewater and sewage sludge, which are sources of microplastics. In this study, we investigated the spatiotemporal distribution and characteristics of microplastics in surface and core sediments of the YS, South Sea (SS) and ES, including at dumping sites (YDP and EDP). The mean abundance of microplastics in surface sediments was ranked in order of EDP (59,457 ± 49,130 particles/kg d.w.), ES (5,047 ± 9,404 particles/kg d.w.), YDP (3,965 ± 3,213 particles/kg d.w.), SS (314 ± 488 particles/kg d.w.) and YS (288 ± 400 particles/kg d.w.). EDP and YDP showed about 14- and 12-fold higher microplastic abundances, and more diverse polymer compositions, than the ES and YS, respectively. The historical trend of microplastic pollution in age-dated core sediments from EDP and YDP aligned well with the amount of historical ocean dumping. As the level of ocean dumping has gradually reduced since 2006, and was finally banned in 2015, the microplastic abundance decreased accordingly. Interestingly, spherical polystyrene (PS) primary microplastic was the dominant type in EDP sediments (78%) and other surface sediments in the ES (52%). More than 60 million tons of sewage and wastewater sludge were dumped at EDP, and extremely high abundances of up to 130,000 particles/kg d.w. were observed in EDP surface sediments. PS primary microplastics were continuously present in the EDP and ES sediment cores in the dumping period and are suspected to have originated from industrial wastewater sludge. The particle transportation model results showed that PS was dispersed throughout the ES during ocean dumping. In addition, deep circulation can contribute to the dispersion of particles after sinking. These results indicate that ocean dumping sites represent an underwater hotspot and source of microplastics in seafloor sediments.
Collapse
Affiliation(s)
- Soeun Eo
- Risk Assessment Research Center, Korea Institute of Ocean Science and Technology, Geoje 53201, Republic of Korea; Department of Ocean Science, Korea University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Sang Hee Hong
- Risk Assessment Research Center, Korea Institute of Ocean Science and Technology, Geoje 53201, Republic of Korea; Department of Ocean Science, Korea University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Young Kyoung Song
- Risk Assessment Research Center, Korea Institute of Ocean Science and Technology, Geoje 53201, Republic of Korea
| | - Gi Myung Han
- Risk Assessment Research Center, Korea Institute of Ocean Science and Technology, Geoje 53201, Republic of Korea
| | - Seongbong Seo
- Future Business Development Department, Korea Marine Environment Management Corporation, Seoul 05718, Republic of Korea
| | - Young-Gyu Park
- Department of Ocean Science, Korea University of Science and Technology, Daejeon 34113, Republic of Korea; Ocean Circulation Research Center, Korea Institute of Ocean Science and Technology, Busan 49111, Republic of Korea
| | - Won Joon Shim
- Risk Assessment Research Center, Korea Institute of Ocean Science and Technology, Geoje 53201, Republic of Korea; Department of Ocean Science, Korea University of Science and Technology, Daejeon 34113, Republic of Korea.
| |
Collapse
|
195
|
Munyaneza J, Jia Q, Qaraah FA, Hossain MF, Wu C, Zhen H, Xiu G. A review of atmospheric microplastics pollution: In-depth sighting of sources, analytical methods, physiognomies, transport and risks. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 822:153339. [PMID: 35077799 DOI: 10.1016/j.scitotenv.2022.153339] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 01/16/2022] [Accepted: 01/18/2022] [Indexed: 06/14/2023]
Abstract
Micro-sized plastics were first examined for atmospheric environment in 2016. From then on, they have been detected in both indoor and outdoor atmospheric samples, with indoor environments demonstrated as containing a big proportion of these particles. The sparse distribution of these particles, is attributed to their swift and long distance transportation that is mainly eased by their tiny size (1 μm to 5 mm) and low density. Due to ongoing limitation on detectable size, analysis methods together with a lack of standardized sampling and analytical procedures, few studies were conducted on airborne microplastics (MPs). Thus, the facts regarding the occurrence, global spatial distribution, fate, and threats to ecosystem and human health of airborne MPs, are still far from being fully clarified. This literature review is a broad depiction of a state of knowledge on atmospheric MPs. Within it, robust and concise information on the sources, inspection, transport, and threats pertaining to airborne MPs are presented. Particularly, the paper entails some information concerning traffic-generated MPs pollution, which has not been frequently discussed within previously published reports. In addition, this paper has widely unveiled sectors and aspects in need of further attention, with the gaps to be filled pinpointed.
Collapse
Affiliation(s)
- Janvier Munyaneza
- Shanghai Environmental Protection Key Laboratory on Environmental Standard and Risk Management of Chemical Pollutants, School of Resources & Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China; State Environmental Protection Key Lab of Environmental Risk Assessment and Control on Chemical Processes, School of Resources & Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Qilong Jia
- Shanghai Environmental Protection Key Laboratory on Environmental Standard and Risk Management of Chemical Pollutants, School of Resources & Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Fahim A Qaraah
- Shanghai Environmental Protection Key Laboratory on Environmental Standard and Risk Management of Chemical Pollutants, School of Resources & Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Md Faysal Hossain
- Shanghai Environmental Protection Key Laboratory on Environmental Standard and Risk Management of Chemical Pollutants, School of Resources & Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Chengzi Wu
- Shanghai Environmental Protection Key Laboratory on Environmental Standard and Risk Management of Chemical Pollutants, School of Resources & Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Huajun Zhen
- Shanghai Environmental Protection Key Laboratory on Environmental Standard and Risk Management of Chemical Pollutants, School of Resources & Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China; State Environmental Protection Key Lab of Environmental Risk Assessment and Control on Chemical Processes, School of Resources & Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Guangli Xiu
- Shanghai Environmental Protection Key Laboratory on Environmental Standard and Risk Management of Chemical Pollutants, School of Resources & Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China; State Environmental Protection Key Lab of Environmental Risk Assessment and Control on Chemical Processes, School of Resources & Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
196
|
Chen L, Qiang T, Chen X, Ren W, Zhang HJ. Gelatin from leather waste to tough biodegradable packaging film: One valuable recycling solution for waste gelatin from leather industry. WASTE MANAGEMENT (NEW YORK, N.Y.) 2022; 145:10-19. [PMID: 35490538 DOI: 10.1016/j.wasman.2022.04.023] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/18/2022] [Accepted: 04/15/2022] [Indexed: 06/14/2023]
Abstract
Large amount of gelatin can be extracted from the solid waste in leather industry. The advanced application of such gelatin is always desired by the leather industry, but remains challenging. Considering the urgent requirement of biodegradable plastic film, in this study, the gelatin extracted from waste skin scrap in the leather industry was used to fabricate a waste gelatin-based film with a high gelatin content, excellent mechanical performance, and autonomous biodegradability in natural soil. The film was prepared by introducing covalent bonds and metal-ligand bonds to the gelatin matrix. These covalent bonds, metal-ligand bonds, and inherent hydrogen bonds in the gelatin matrix serve as multiple sacrificial bonds for effective energy dissipation giving the waste gelatin-based film excellent mechanical parameters with the highest fracture stress of ≈ 32 MPa, maximum fracture strain of ≈1.25 mm/mm, and a high Young's modulus of ≈ 471 MPa, which are significantly higher than those of the original gelatin film (fracture stress ≈ 4 MPa, fracture strain ≈ 0.70 mm/mm, and Young's modulus ≈ 22 MPa). Owing to the water resistance of covalent bonds and metal-ligand bonds existed in gelatin matrix, the gelatin film possesses good water resistance. Additionally, after use, the fabricated film can completely biodegrade in natural soil in approximately 7 weeks. This strategy not only provides a valuable recycling solution for the gelatin from the unwelcome solid waste of the leather industry, but it also broadens the range of ecofriendly and cost effective biodegradable films available.
Collapse
Affiliation(s)
- Liang Chen
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China; National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Taotao Qiang
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China; National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science & Technology, Xi'an 710021, China.
| | - Xuejun Chen
- Glorious Sun Guangdong School of Fashion, Huizhou University, Huizhou 516007, China
| | - Wenqi Ren
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China; National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Hui Jie Zhang
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China; National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science & Technology, Xi'an 710021, China.
| |
Collapse
|
197
|
Wu X, Liu Z, Li M, Bartlam M, Wang Y. Integrated metagenomic and metatranscriptomic analysis reveals actively expressed antibiotic resistomes in the plastisphere. JOURNAL OF HAZARDOUS MATERIALS 2022; 430:128418. [PMID: 35144012 DOI: 10.1016/j.jhazmat.2022.128418] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 01/03/2022] [Accepted: 02/01/2022] [Indexed: 06/14/2023]
Abstract
The plastisphere is viewed as a reservoir for the antibiotic resistome in water environments and may pose health concerns. However, the expression profiles of the resistome in the plastisphere are largely unknown. Here, we profiled the occurrence, abundance, and transcriptional level of antibiotic resistance genes (ARGs), plasmid associated ARGs, microbial composition and ARG bacterial hosts in the plastisphere and urban river water using 16S rRNA gene sequencing, metagenomic sequencing, and metatranscriptomic sequencing methods. A total of 173 ARGs conferring resistance to 24 major classes of antibiotics commonly prescribed to humans and animals were detected in the plastisphere. Of these, 75 genes were observed with transcriptional activity, indicating that the antibiotic resistome in the plastisphere was not only present, but also actively expressed. Human pathogens belonging to family Enterobacteriaceae were identified as bacterial hosts of ARGs in the plastisphere. The opportunistic and multidrug resistant human pathogen Enterobacter cloacae was found to actively express tetG and confer tetracycline resistance to the plastisphere. Furthermore, 39 genes were identified as "plasmid associated ARGs" in the plastisphere, displaying a higher proportion of transcript abundance compared with water. The above results suggest that the plastisphere is a hotspot for antibiotic resistome acquisition, expression, and dissemination.
Collapse
Affiliation(s)
- Xiaojian Wu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai International Advanced Research Institute (Shenzhen Futian), Nankai University, Tianjin 300350, China
| | - Zongbao Liu
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Meng Li
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Mark Bartlam
- College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Nankai International Advanced Research Institute (Shenzhen Futian), Nankai University, Tianjin 300071, China.
| | - Yingying Wang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai International Advanced Research Institute (Shenzhen Futian), Nankai University, Tianjin 300350, China.
| |
Collapse
|
198
|
Microplastic Variations in Land-Based Sources of Coastal Water Affected by Tropical Typhoon Events in Zhanjiang Bay, China. WATER 2022. [DOI: 10.3390/w14091455] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Increasingly serious microplastic pollution in coastal areas and the ecological threats associated with plastics have attracted global attention. The frequency and intensity of typhoons have increased owing to global warming, strongly influencing the distribution and composition of microplastics in coastal ecosystems. In this study, the abundance, composition, diversity, and flux of microplastics in three estuaries and one sewage outlet in Zhanjiang Bay (ZJB) were analyzed. The average abundance of microplastics from land-based sources increased 3.6-fold from 14.19 ± 3.60 items/L before Typhoon Kompasu to 51.19 ± 28.53 items/L after the typhoon (p < 0.05). In addition, the proportion of fiber and large microplastics increased after the typhoon. In all samples, microplastics 100–330 μm in size were predominant, and blue was the most abundant color. The diversity in the color and size of microplastics increased after Typhoon Kompasu. The total daily flux of microplastics at the four stations entering ZJB was 3.95 × 1011 items before the typhoon and 9.93 × 1011 items after the typhoon, showing a 2.5-fold increase. This study demonstrated the influence of Typhoon Kompasu on microplastics from land-based sources of ZJB coastal waters and provided vital data for further study on MP pollution in coastal water ecosystems and the impact of typhoons on microplastics.
Collapse
|
199
|
Microplastics in the Deep: Comparing Dietary and Plastic Ingestion Data between Two Mediterranean Bathyal Opportunistic Feeder Species, Galeus melastomus, Rafinesque, 1810 and Coelorinchus caelorhincus (Risso, 1810), through Stomach Content Analysis. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2022. [DOI: 10.3390/jmse10050624] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Marine plastic pollution is currently an issue of mounting concern around the world. Stomach content of marine fish has been increasingly used as a valid proxy for detecting the presence of such a pollutant in marine biota, both for coastal and deep-water environments. Although ingestion of microplastics has been reported in an increasing number of species, the patterns of ingestion still remain unclear, depending closely on the interaction between the species and types of microplastics involved. In this context, we analysed and compared the stomach contents of two bathyal dwelling opportunistic feeder species namely Galeus melastomus and Coelorinchus caelorhincus. In particular, we analysed microplastic items according to their dimension, morphology and colour, and diet’s variation with size obtained through prey identification. Both species showed a higher frequency of occurrence of the blue filament-like middle-sized microplastics (1.01–4.75 mm) compared with the other categories, although this pattern was much more marked in C. caelorhincus than in G. melastomus. The latter conversely showed a larger array of ingested plastic items in terms of shape and colour. Matching plastic ingestion with dietary data suggested potential predator confusion occurring in C. caelorhincus through active mis-selection of a defined type of microplastic instead of some particular family of polychaetes, which resemble in shape, size, and color to that type. Otherwise, G. melastomus appeared more prone to a random ingestion of a larger array of microplastic items because of a more generalistic and less selective feeding strategy. Although further validation is needed, stomach contents of the two species showed evidence strong enough to be considered as potential bioindicator species of microplastic pollution, as required by the Marine Strategy Framework Directive for monitoring this pollutant in the marine environment.
Collapse
|
200
|
Gong K, Hou L, Wu P. Hydrogen-Bonding Affords Sustainable Plastics with Ultrahigh Robustness and Water-Assisted Arbitrarily Shape Engineering. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2201065. [PMID: 35261086 DOI: 10.1002/adma.202201065] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/24/2022] [Indexed: 06/14/2023]
Abstract
Herein, the supramolecular plastic-like hydrogel (SPH) is introduced as a platform to fabricate sustainable plastics with ultrahigh stiffness and strength as well as water-assisted arbitrarily shapeable capability. The transparent plastics are constructed from SPHs of cellulose ether/polycarboxylic acid complexes and demonstrate mechanical robustness with Young's modulus up to 3.4 GPa and tensile strength up to 124.0 MPa, superior or comparable to most common plastics. Meanwhile, the shape of the plastics can be reversibly engineered by air drying of the SPHs with diverse 2D/3D shapes and structures, which are generated conveniently via origami, kirigami, embossing, etc., in virtue of plastic deformation and shape memory effect of SPHs. On the basis of multi-dimensional infrared-spectral analysis, it is revealed that the dense acid-acid and acid-ether hydrogen (H)-bonding network in the plastic is responsible for the mechanical robustness while the evolution of water-polymer H-bonds into polymer-polymer H-bonds during air drying contributes to the shape fixing. This work provides a novel method of manufacturing sustainable plastics with simultaneous strong mechanical performance and convenient processibility from hydrogels with plastic-like mechanical behavior.
Collapse
Affiliation(s)
- Kai Gong
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, P. R. China
| | - Lei Hou
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, P. R. China
| | - Peiyi Wu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, P. R. China
| |
Collapse
|