151
|
Wei H, Li X. Deep mutational scanning: A versatile tool in systematically mapping genotypes to phenotypes. Front Genet 2023; 14:1087267. [PMID: 36713072 PMCID: PMC9878224 DOI: 10.3389/fgene.2023.1087267] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 01/02/2023] [Indexed: 01/13/2023] Open
Abstract
Unveiling how genetic variations lead to phenotypic variations is one of the key questions in evolutionary biology, genetics, and biomedical research. Deep mutational scanning (DMS) technology has allowed the mapping of tens of thousands of genetic variations to phenotypic variations efficiently and economically. Since its first systematic introduction about a decade ago, we have witnessed the use of deep mutational scanning in many research areas leading to scientific breakthroughs. Also, the methods in each step of deep mutational scanning have become much more versatile thanks to the oligo-synthesizing technology, high-throughput phenotyping methods and deep sequencing technology. However, each specific possible step of deep mutational scanning has its pros and cons, and some limitations still await further technological development. Here, we discuss recent scientific accomplishments achieved through the deep mutational scanning and describe widely used methods in each step of deep mutational scanning. We also compare these different methods and analyze their advantages and disadvantages, providing insight into how to design a deep mutational scanning study that best suits the aims of the readers' projects.
Collapse
Affiliation(s)
- Huijin Wei
- Zhejiang University—University of Edinburgh Institute, Zhejiang University, Haining, Zhejiang, China
| | - Xianghua Li
- Zhejiang University—University of Edinburgh Institute, Zhejiang University, Haining, Zhejiang, China
- Deanery of Biomedical Sciences, University of Edinburgh, Edinburgh, United Kingdom
- The Second Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang, China
- Biomedical and Health Translational Centre of Zhejiang Province, Haining, Zhejiang, China
| |
Collapse
|
152
|
Wang X, Hu M, Liu B, Xu H, Jin Y, Wang B, Zhao Y, Wu J, Yue J, Ren H. Evaluating the effect of SARS-CoV-2 spike mutations with a linear doubly robust learner. Front Cell Infect Microbiol 2023; 13:1161445. [PMID: 37153142 PMCID: PMC10154619 DOI: 10.3389/fcimb.2023.1161445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 04/03/2023] [Indexed: 05/09/2023] Open
Abstract
Driven by various mutations on the viral Spike protein, diverse variants of SARS-CoV-2 have emerged and prevailed repeatedly, significantly prolonging the pandemic. This phenomenon necessitates the identification of key Spike mutations for fitness enhancement. To address the need, this manuscript formulates a well-defined framework of causal inference methods for evaluating and identifying key Spike mutations to the viral fitness of SARS-CoV-2. In the context of large-scale genomes of SARS-CoV-2, it estimates the statistical contribution of mutations to viral fitness across lineages and therefore identifies important mutations. Further, identified key mutations are validated by computational methods to possess functional effects, including Spike stability, receptor-binding affinity, and potential for immune escape. Based on the effect score of each mutation, individual key fitness-enhancing mutations such as D614G and T478K are identified and studied. From individual mutations to protein domains, this paper recognizes key protein regions on the Spike protein, including the receptor-binding domain and the N-terminal domain. This research even makes further efforts to investigate viral fitness via mutational effect scores, allowing us to compute the fitness score of different SARS-CoV-2 strains and predict their transmission capacity based solely on their viral sequence. This prediction of viral fitness has been validated using BA.2.12.1, which is not used for regression training but well fits the prediction. To the best of our knowledge, this is the first research to apply causal inference models to mutational analysis on large-scale genomes of SARS-CoV-2. Our findings produce innovative and systematic insights into SARS-CoV-2 and promotes functional studies of its key mutations, serving as reliable guidance about mutations of interest.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jun Wu
- *Correspondence: Hongguang Ren, ; Junjie Yue, ; Jun Wu,
| | - Junjie Yue
- *Correspondence: Hongguang Ren, ; Junjie Yue, ; Jun Wu,
| | - Hongguang Ren
- *Correspondence: Hongguang Ren, ; Junjie Yue, ; Jun Wu,
| |
Collapse
|
153
|
Jankowiak M, Obermeyer FH, Lemieux JE. Inferring selection effects in SARS-CoV-2 with Bayesian Viral Allele Selection. PLoS Genet 2022; 18:e1010540. [PMID: 36508459 PMCID: PMC9779722 DOI: 10.1371/journal.pgen.1010540] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 12/22/2022] [Accepted: 11/23/2022] [Indexed: 12/14/2022] Open
Abstract
The global effort to sequence millions of SARS-CoV-2 genomes has provided an unprecedented view of viral evolution. Characterizing how selection acts on SARS-CoV-2 is critical to developing effective, long-lasting vaccines and other treatments, but the scale and complexity of genomic surveillance data make rigorous analysis challenging. To meet this challenge, we develop Bayesian Viral Allele Selection (BVAS), a principled and scalable probabilistic method for inferring the genetic determinants of differential viral fitness and the relative growth rates of viral lineages, including newly emergent lineages. After demonstrating the accuracy and efficacy of our method through simulation, we apply BVAS to 6.9 million SARS-CoV-2 genomes. We identify numerous mutations that increase fitness, including previously identified mutations in the SARS-CoV-2 Spike and Nucleocapsid proteins, as well as mutations in non-structural proteins whose contribution to fitness is less well characterized. In addition, we extend our baseline model to identify mutations whose fitness exhibits strong dependence on vaccination status as well as pairwise interaction effects, i.e. epistasis. Strikingly, both these analyses point to the pivotal role played by the N501 residue in the Spike protein. Our method, which couples Bayesian variable selection with a diffusion approximation in allele frequency space, lays a foundation for identifying fitness-associated mutations under the assumption that most alleles are neutral.
Collapse
Affiliation(s)
- Martin Jankowiak
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts, United States of America
| | - Fritz H. Obermeyer
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts, United States of America
- Generate Biomedicines, Cambridge, Massachusetts, United States of America
| | - Jacob E. Lemieux
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts, United States of America
- Division of Infectious Diseases, Massachusetts General Hospital, Cambridge, Massachusetts, United States of America
| |
Collapse
|
154
|
Evolution of SARS-CoV-2: BA.4/BA.5 Variants Continues to Pose New Challenges. Viruses 2022; 14:v14122610. [PMID: 36560614 PMCID: PMC9781647 DOI: 10.3390/v14122610] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/25/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022] Open
Abstract
The acquisition of a high number of mutations, notably, the gain of two mutations L452R and F486V in RBD, and the ability to evade vaccine/natural infection-induced immunity suggests that Omicron is continuing to use "immune-escape potential" as an evolutionary space to maintain a selection advantage within the population. Despite the low hospitalizations and lower death rate, the surges by these variants may offset public health measures and disrupt health care facilities as seen recently in Portugal and the USA. Interestingly these BA.4/BA.5 variants have been found to be more severe than the earlier-emerged Omicron variants. We believe that aggressive COVID-19 surveillance using affordable testing strategies might actually help understand the evolution and transmission pattern of new variants. The sudden dip in reporting of new cases in some of the low- and middle-income countries is an alarming situation and needs to be addressed as this could lead to undetected transmission of future variants of interest/concern of SARS-CoV-2 in large population settings, including advent of a 'super' virus. It would be interesting to examine the possible role/influence, if any, of the two different kinds of vaccines, the spike protein-based versus the inactivated whole virus, in the evolution of BA.4/BA.5.
Collapse
|
155
|
Starr TN, Greaney AJ, Stewart CM, Walls AC, Hannon WW, Veesler D, Bloom JD. Deep mutational scans for ACE2 binding, RBD expression, and antibody escape in the SARS-CoV-2 Omicron BA.1 and BA.2 receptor-binding domains. PLoS Pathog 2022; 18:e1010951. [PMID: 36399443 PMCID: PMC9674177 DOI: 10.1371/journal.ppat.1010951] [Citation(s) in RCA: 115] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 10/26/2022] [Indexed: 11/19/2022] Open
Abstract
SARS-CoV-2 continues to acquire mutations in the spike receptor-binding domain (RBD) that impact ACE2 receptor binding, folding stability, and antibody recognition. Deep mutational scanning prospectively characterizes the impacts of mutations on these biochemical properties, enabling rapid assessment of new mutations seen during viral surveillance. However, the effects of mutations can change as the virus evolves, requiring updated deep mutational scans. We determined the impacts of all single amino acid mutations in the Omicron BA.1 and BA.2 RBDs on ACE2-binding affinity, RBD folding, and escape from binding by the LY-CoV1404 (bebtelovimab) monoclonal antibody. The effects of some mutations in Omicron RBDs differ from those measured in the ancestral Wuhan-Hu-1 background. These epistatic shifts largely resemble those previously seen in the Alpha variant due to the convergent epistatically modifying N501Y substitution. However, Omicron variants show additional lineage-specific shifts, including examples of the epistatic phenomenon of entrenchment that causes the Q498R and N501Y substitutions present in Omicron to be more favorable in that background than in earlier viral strains. In contrast, the Omicron substitution Q493R exhibits no sign of entrenchment, with the derived state, R493, being as unfavorable for ACE2 binding in Omicron RBDs as in Wuhan-Hu-1. Likely for this reason, the R493Q reversion has occurred in Omicron sub-variants including BA.4/BA.5 and BA.2.75, where the affinity buffer from R493Q reversion may potentiate concurrent antigenic change. Consistent with prior studies, we find that Omicron RBDs have reduced expression, and identify candidate stabilizing mutations that ameliorate this deficit. Last, our maps highlight a broadening of the sites of escape from LY-CoV1404 antibody binding in BA.1 and BA.2 compared to the ancestral Wuhan-Hu-1 background. These BA.1 and BA.2 deep mutational scanning datasets identify shifts in the RBD mutational landscape and inform ongoing efforts in viral surveillance.
Collapse
Affiliation(s)
- Tyler N. Starr
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Department of Biochemistry, University of Utah, Salt Lake City, Utah, United States of America
| | - Allison J. Greaney
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
- Medical Scientist Training Program, University of Washington, Seattle, Washington, United States of America
| | - Cameron M. Stewart
- Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
| | - Alexandra C. Walls
- Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
| | - William W. Hannon
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, Washington, United States of America
| | - David Veesler
- Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
- Howard Hughes Medical Institute, Seattle, Washington, United States of America
| | - Jesse D. Bloom
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
- Howard Hughes Medical Institute, Seattle, Washington, United States of America
| |
Collapse
|
156
|
Planchais C, Reyes‐Ruiz A, Lacombe R, Zarantonello A, Lecerf M, Revel M, Roumenina LT, Atanasov BP, Mouquet H, Dimitrov JD. Evolutionary trajectory of receptor binding specificity and promiscuity of the spike protein of SARS-CoV-2. Protein Sci 2022; 31:e4447. [PMID: 36305765 PMCID: PMC9597384 DOI: 10.1002/pro.4447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/08/2022] [Accepted: 09/12/2022] [Indexed: 01/27/2023]
Abstract
SARS-CoV-2 infects cells by attachment to its receptor-the angiotensin converting enzyme 2 (ACE2). Regardless of the wealth of structural data, little is known about the physicochemical mechanism of interactions of the viral spike (S) protein with ACE2 and how this mechanism has evolved during the pandemic. Here, we applied experimental and computational approaches to characterize the molecular interaction of S proteins from SARS-CoV-2 variants of concern (VOC). Data on kinetics, activation-, and equilibrium thermodynamics of binding of the receptor binding domain (RBD) from VOC with ACE2 as well as data from computational protein electrostatics revealed a profound remodeling of the physicochemical characteristics of the interaction during the evolution. Thus, as compared to RBDs from Wuhan strain and other VOC, Omicron RBD presented as a unique protein in terms of conformational dynamics and types of non-covalent forces driving the complex formation with ACE2. Viral evolution resulted in a restriction of the RBD structural dynamics, and a shift to a major role of polar forces for ACE2 binding. Further, we investigated how the reshaping of the physicochemical characteristics of interaction affects the binding specificity of S proteins. Data from various binding assays revealed that SARS-CoV-2 Wuhan and Omicron RBDs manifest capacity for promiscuous recognition of unrelated human proteins, but they harbor distinct reactivity patterns. These findings might contribute for mechanistic understanding of the viral tropism and capacity to evade immune responses during evolution.
Collapse
Affiliation(s)
- Cyril Planchais
- Laboratory of Humoral ImmunologyInstitut Pasteur, Université Paris Cité, INSERM U1222ParisFrance
| | - Alejandra Reyes‐Ruiz
- Centre de Recherche des CordeliersINSERM, CNRS, Sorbonne Université, Université de ParisParisFrance
| | - Robin Lacombe
- Centre de Recherche des CordeliersINSERM, CNRS, Sorbonne Université, Université de ParisParisFrance
| | - Alessandra Zarantonello
- Centre de Recherche des CordeliersINSERM, CNRS, Sorbonne Université, Université de ParisParisFrance
| | - Maxime Lecerf
- Centre de Recherche des CordeliersINSERM, CNRS, Sorbonne Université, Université de ParisParisFrance
| | - Margot Revel
- Centre de Recherche des CordeliersINSERM, CNRS, Sorbonne Université, Université de ParisParisFrance
| | - Lubka T. Roumenina
- Centre de Recherche des CordeliersINSERM, CNRS, Sorbonne Université, Université de ParisParisFrance
| | - Boris P. Atanasov
- Institute of Organic Chemistry, Bulgarian Academy of SciencesSofiaBulgaria
| | - Hugo Mouquet
- Laboratory of Humoral ImmunologyInstitut Pasteur, Université Paris Cité, INSERM U1222ParisFrance
| | - Jordan D. Dimitrov
- Centre de Recherche des CordeliersINSERM, CNRS, Sorbonne Université, Université de ParisParisFrance
| |
Collapse
|
157
|
Xu Z, Ismanto HS, Zhou H, Saputri DS, Sugihara F, Standley DM. Advances in antibody discovery from human BCR repertoires. FRONTIERS IN BIOINFORMATICS 2022; 2:1044975. [PMID: 36338807 PMCID: PMC9631452 DOI: 10.3389/fbinf.2022.1044975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022] Open
Abstract
Antibodies make up an important and growing class of compounds used for the diagnosis or treatment of disease. While traditional antibody discovery utilized immunization of animals to generate lead compounds, technological innovations have made it possible to search for antibodies targeting a given antigen within the repertoires of B cells in humans. Here we group these innovations into four broad categories: cell sorting allows the collection of cells enriched in specificity to one or more antigens; BCR sequencing can be performed on bulk mRNA, genomic DNA or on paired (heavy-light) mRNA; BCR repertoire analysis generally involves clustering BCRs into specificity groups or more in-depth modeling of antibody-antigen interactions, such as antibody-specific epitope predictions; validation of antibody-antigen interactions requires expression of antibodies, followed by antigen binding assays or epitope mapping. Together with innovations in Deep learning these technologies will contribute to the future discovery of diagnostic and therapeutic antibodies directly from humans.
Collapse
Affiliation(s)
- Zichang Xu
- Department of Genome Informatics, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Hendra S. Ismanto
- Department of Genome Informatics, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Hao Zhou
- Department of Genome Informatics, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Dianita S. Saputri
- Department of Genome Informatics, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Fuminori Sugihara
- Core Instrumentation Facility, Immunology Frontier Research Center, Osaka University, Suita, Japan
| | - Daron M. Standley
- Department of Genome Informatics, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
- Department Systems Immunology, Immunology Frontier Research Center, Osaka University, Suita, Japan
| |
Collapse
|
158
|
Taft JM, Weber CR, Gao B, Ehling RA, Han J, Frei L, Metcalfe SW, Overath MD, Yermanos A, Kelton W, Reddy ST. Deep mutational learning predicts ACE2 binding and antibody escape to combinatorial mutations in the SARS-CoV-2 receptor-binding domain. Cell 2022; 185:4008-4022.e14. [PMID: 36150393 PMCID: PMC9428596 DOI: 10.1016/j.cell.2022.08.024] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 06/22/2022] [Accepted: 08/25/2022] [Indexed: 01/26/2023]
Abstract
The continual evolution of SARS-CoV-2 and the emergence of variants that show resistance to vaccines and neutralizing antibodies threaten to prolong the COVID-19 pandemic. Selection and emergence of SARS-CoV-2 variants are driven in part by mutations within the viral spike protein and in particular the ACE2 receptor-binding domain (RBD), a primary target site for neutralizing antibodies. Here, we develop deep mutational learning (DML), a machine-learning-guided protein engineering technology, which is used to investigate a massive sequence space of combinatorial mutations, representing billions of RBD variants, by accurately predicting their impact on ACE2 binding and antibody escape. A highly diverse landscape of possible SARS-CoV-2 variants is identified that could emerge from a multitude of evolutionary trajectories. DML may be used for predictive profiling on current and prospective variants, including highly mutated variants such as Omicron, thus guiding the development of therapeutic antibody treatments and vaccines for COVID-19.
Collapse
Affiliation(s)
- Joseph M Taft
- Department of Biosystems Science and Engineering, ETH Zurich, Basel 4058, Switzerland; Botnar Research Centre for Child Health, Basel 4058, Switzerland
| | - Cédric R Weber
- Alloy Therapeutics (Switzerland) AG, Basel 4058, Switzerland
| | - Beichen Gao
- Department of Biosystems Science and Engineering, ETH Zurich, Basel 4058, Switzerland; Botnar Research Centre for Child Health, Basel 4058, Switzerland
| | - Roy A Ehling
- Department of Biosystems Science and Engineering, ETH Zurich, Basel 4058, Switzerland
| | - Jiami Han
- Department of Biosystems Science and Engineering, ETH Zurich, Basel 4058, Switzerland; Botnar Research Centre for Child Health, Basel 4058, Switzerland
| | - Lester Frei
- Department of Biosystems Science and Engineering, ETH Zurich, Basel 4058, Switzerland; Botnar Research Centre for Child Health, Basel 4058, Switzerland
| | - Sean W Metcalfe
- Department of Biosystems Science and Engineering, ETH Zurich, Basel 4058, Switzerland
| | - Max D Overath
- Department of Biosystems Science and Engineering, ETH Zurich, Basel 4058, Switzerland
| | - Alexander Yermanos
- Department of Biosystems Science and Engineering, ETH Zurich, Basel 4058, Switzerland; Botnar Research Centre for Child Health, Basel 4058, Switzerland; Department of Biology, Institute of Microbiology and Immunology, ETH Zurich, Zurich 8093, Switzerland; Department of Pathology and Immunology, University of Geneva, Geneva 1211, Switzerland
| | - William Kelton
- Te Huataki Waiora School of Health, University of Waikato, Hamilton 3240, New Zealand
| | - Sai T Reddy
- Department of Biosystems Science and Engineering, ETH Zurich, Basel 4058, Switzerland; Botnar Research Centre for Child Health, Basel 4058, Switzerland.
| |
Collapse
|
159
|
Hussein BK, Ibrahium OM, Alamin MF, Ahmed LAM, Abuswar SAE, Abdelraheem MH, Ibrahim ME. The Spike Protein of SARS-coV2 19B (S) Clade Mirrors Critical Features of Viral Adaptation and Coevolution. Microorganisms 2022; 10:2017. [PMID: 36296293 PMCID: PMC9609303 DOI: 10.3390/microorganisms10102017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 09/27/2022] [Accepted: 10/02/2022] [Indexed: 12/01/2022] Open
Abstract
Pathogens including viruses evolve in tandem with diversity in their animal and human hosts. For SARS-coV2, the focus is generally for understanding such coevolution on the virus spike protein, since it demonstrates high mutation rates compared to other genome regions, particularly in the receptor-binding domain (RBD). Viral sequences of the SARS-coV2 19B (S) clade and variants of concern from different continents were investigated, with a focus on the A.29 lineage, which presented with different mutational patterns within the 19B (S) lineages in order to learn more about how SARS-coV2 may have evolved and adapted to widely diverse populations globally. Results indicated that SARS-coV2 went through evolutionary constrains and intense selective pressure, particularly in Africa. This was manifested in a departure from neutrality with excess nonsynonymous mutations and a negative Tajima D consistent with rapid expansion and directional selection as well as deletion and deletion-frameshifts in the N-terminal domain (NTD region) of the spike protein. In conclusion, we hypothesize that viral transmission during epidemics through populations of diverse genomic structures and marked complexity may be a significant factor for the virus to acquire distinct patterns of mutations within these populations in order to ensure its survival and fitness, explaining the emergence of novel variants and strains.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Muntaser E. Ibrahim
- Unit of Disease and Diversity, Department of Molecular Biology, Institute of Endemic Diseases, Khartoum University, Khartoum P.O Box 102, Sudan
| |
Collapse
|
160
|
Suddhapas K, Choi MH, Shortreed MR, Timperman A. Evaluation of Variant-Specific Peptides for Detection of SARS-CoV-2 Variants of Concern. J Proteome Res 2022; 21:2443-2452. [PMID: 36108102 PMCID: PMC10318299 DOI: 10.1021/acs.jproteome.2c00325] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The SARS-CoV-2 omicron variant presented significant challenges to the global effort to counter the pandemic. SARS-CoV-2 is predicted to remain prevalent for the foreseeable future, making the ability to identify SARS-CoV-2 variants imperative in understanding and controlling the pandemic. The predominant variant discovery method, genome sequencing, is time-consuming, insensitive, and expensive. Ultraperformance liquid chromatography-mass spectrometry (UPLC-MS) offers an exciting alternative detection modality provided that variant-containing peptide markers are sufficiently detectable from their tandem mass spectra (MS/MS). We have synthesized model tryptic peptides of SARS-CoV-2 variants alpha, beta, gamma, delta, and omicron and evaluated their signal intensity, HCD spectra, and reverse phase retention time. Detection limits of 781, 781, 65, and 65 amol are obtained for the molecular ions of the proteotypic peptides, beta (QIAPGQTGNIADYNYK), gamma (TQLPSAYTNSFTR), delta (VGGNYNYR), and omicron (TLVKQLSSK), from neat solutions. These detection limits are on par with the detection limits of a previously reported proteotypic peptide from the SARS-CoV-2 spike protein, HTPINLVR. This study demonstrates the potential to differentiate SARS-CoV-2 variants through their proteotypic peptides with an approach that is broadly applicable across a wide range of pathogens.
Collapse
Affiliation(s)
- Kantaphon Suddhapas
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - M Hannah Choi
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Michael R Shortreed
- Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53706, United States
| | - AaronT Timperman
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
161
|
Alemrajabi M, Macias Calix K, Assis R. Epistasis-Driven Evolution of the SARS-CoV-2 Secondary Structure. J Mol Evol 2022; 90:429-437. [PMID: 36178491 PMCID: PMC9523185 DOI: 10.1007/s00239-022-10073-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 09/02/2022] [Indexed: 11/25/2022]
Abstract
Epistasis is an evolutionary phenomenon whereby the fitness effect of a mutation depends on the genetic background in which it arises. A key source of epistasis in an RNA molecule is its secondary structure, which contains functionally important topological motifs held together by hydrogen bonds between Watson–Crick (WC) base pairs. Here we study epistasis in the secondary structure of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) by examining properties of derived alleles arising from substitution mutations at ancestral WC base-paired and unpaired (UP) sites in 15 conserved topological motifs across the genome. We uncover fewer derived alleles and lower derived allele frequencies at WC than at UP sites, supporting the hypothesis that modifications to the secondary structure are often deleterious. At WC sites, we also find lower derived allele frequencies for mutations that abolish base pairing than for those that yield G·U “wobbles,” illustrating that weak base pairing can partially preserve the integrity of the secondary structure. Last, we show that WC sites under the strongest epistatic constraint reside in a three-stemmed pseudoknot motif that plays an essential role in programmed ribosomal frameshifting, whereas those under the weakest epistatic constraint are located in 3’ UTR motifs that regulate viral replication and pathogenicity. Our findings demonstrate the importance of epistasis in the evolution of the SARS-CoV-2 secondary structure, as well as highlight putative structural and functional targets of different forms of natural selection.
Collapse
Affiliation(s)
- Mahsa Alemrajabi
- Department of Physics, Florida Atlantic University, Boca Raton, FL, 33431, USA
| | - Ksenia Macias Calix
- Department of Electrical Engineering and Computer Science, Florida Atlantic University, Boca Raton, FL, 33431, USA
| | - Raquel Assis
- Department of Electrical Engineering and Computer Science, Florida Atlantic University, Boca Raton, FL, 33431, USA.
- Institute for Human Health and Disease Intervention, Florida Atlantic University, Boca Raton, FL, 33431, USA.
| |
Collapse
|
162
|
Schiepers A, van 't Wout MFL, Greaney AJ, Zang T, Muramatsu H, Lin PJC, Tam YK, Mesin L, Starr TN, Bieniasz PD, Pardi N, Bloom JD, Victora GD. Molecular fate-mapping of serum antibodies reveals the effects of antigenic imprinting on repeated immunization. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.08.29.505743. [PMID: 36093344 PMCID: PMC9460965 DOI: 10.1101/2022.08.29.505743] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The ability of serum antibody to protect against pathogens arises from the interplay of antigen-specific B cell clones of different affinities and fine specificities. These cellular dynamics are ultimately responsible for serum-level phenomena such as antibody imprinting or "Original Antigenic Sin" (OAS), a proposed propensity of the immune system to rely repeatedly on the first cohort of B cells that responded to a stimulus upon exposure to related antigens. Imprinting/OAS is thought to pose a barrier to vaccination against rapidly evolving viruses such as influenza and SARS-CoV-2. Precise measurement of the extent to which imprinting/OAS inhibits the recruitment of new B cell clones by boosting is challenging because cellular and temporal origins cannot readily be assigned to antibodies in circulation. Thus, the extent to which imprinting/OAS impacts the induction of new responses in various settings remains unclear. To address this, we developed a "molecular fate-mapping" approach in which serum antibodies derived from specific cohorts of B cells can be differentially detected. We show that, upon sequential homologous boosting, the serum antibody response strongly favors reuse of the first cohort of B cell clones over the recruitment of new, naÏve-derived B cells. This "primary addiction" decreases as a function of antigenic distance, allowing secondary immunization with divergent influenza virus or SARS-CoV-2 glycoproteins to overcome imprinting/OAS by targeting novel epitopes absent from the priming variant. Our findings have implications for the understanding of imprinting/OAS, and for the design and testing of vaccines aimed at eliciting antibodies to evolving antigens.
Collapse
|
163
|
Munnink BBO, Nijhuis RHT, Worp N, Boter M, Weller B, Verstrepen BE, GeurtsvanKessel C, Corsten MF, Russcher A, Koopmans M. Highly Divergent SARS-CoV-2 Alpha Variant in Chronically Infected Immunocompromised Person. Emerg Infect Dis 2022; 28:1920-1923. [PMID: 35925013 PMCID: PMC9423911 DOI: 10.3201/eid2809.220875] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
We detected a highly divergent SARS-CoV-2 Alpha variant in an immunocompromised person several months after the latest detection of the Alpha variant in the Netherlands. The patient was infected for 42 weeks despite several treatment regimens and disappearance of most clinical symptoms. We identified several potential immune escape mutations in the spike protein.
Collapse
|
164
|
Bowen JE, Addetia A, Dang HV, Stewart C, Brown JT, Sharkey WK, Sprouse KR, Walls AC, Mazzitelli IG, Logue JK, Franko NM, Czudnochowski N, Powell AE, Dellota E, Ahmed K, Ansari AS, Cameroni E, Gori A, Bandera A, Posavad CM, Dan JM, Zhang Z, Weiskopf D, Sette A, Crotty S, Iqbal NT, Corti D, Geffner J, Snell G, Grifantini R, Chu HY, Veesler D. Omicron spike function and neutralizing activity elicited by a comprehensive panel of vaccines. Science 2022; 377:890-894. [PMID: 35857529 PMCID: PMC9348749 DOI: 10.1126/science.abq0203] [Citation(s) in RCA: 128] [Impact Index Per Article: 42.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 07/12/2022] [Indexed: 12/23/2022]
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron variant of concern comprises several sublineages, with BA.2 and BA.2.12.1 having replaced the previously dominant BA.1 and with BA.4 and BA.5 increasing in prevalence worldwide. We show that the large number of Omicron sublineage spike mutations leads to enhanced angiotensin-converting enzyme 2 (ACE2) binding, reduced fusogenicity, and severe dampening of plasma neutralizing activity elicited by infection or seven clinical vaccines relative to the ancestral virus. Administration of a homologous or heterologous booster based on the Wuhan-Hu-1 spike sequence markedly increased neutralizing antibody titers and breadth against BA.1, BA.2, BA.2.12.1, BA.4, and BA.5 across all vaccines evaluated. Our data suggest that although Omicron sublineages evade polyclonal neutralizing antibody responses elicited by primary vaccine series, vaccine boosters may provide sufficient protection against Omicron-induced severe disease.
Collapse
Affiliation(s)
- John E. Bowen
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Amin Addetia
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Ha V. Dang
- Vir Biotechnology, San Francisco, CA 94158, USA
| | - Cameron Stewart
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Jack T. Brown
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - William K. Sharkey
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Kaitlin R. Sprouse
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Alexandra C. Walls
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA
| | - Ignacio G. Mazzitelli
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Facultad de Medicina, Buenos Aires C1121ABG, Argentina
| | - Jennifer K. Logue
- Division of Allergy and Infectious Diseases, University of Washington, Seattle, WA 98195, USA
| | - Nicholas M. Franko
- Division of Allergy and Infectious Diseases, University of Washington, Seattle, WA 98195, USA
| | | | | | | | - Kumail Ahmed
- Departments of Paediatrics and Child Health and Biological and Biomedical Sciences, Aga Khan University, Karachi 74800, Pakistan
| | - Asefa Shariq Ansari
- Departments of Paediatrics and Child Health and Biological and Biomedical Sciences, Aga Khan University, Karachi 74800, Pakistan
| | - Elisabetta Cameroni
- Humabs Biomed SA, a subsidiary of Vir Biotechnology, 6500 Bellinzona, Switzerland
| | - Andrea Gori
- Infectious Diseases Unit, Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
- Centre for Multidisciplinary Research in Health Science (MACH), University of Milan, Milan, Italy
| | - Alessandra Bandera
- Infectious Diseases Unit, Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
- Centre for Multidisciplinary Research in Health Science (MACH), University of Milan, Milan, Italy
| | - Christine M. Posavad
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Jennifer M. Dan
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego, La Jolla, CA 92037, USA
| | - Zeli Zhang
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Daniela Weiskopf
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Alessandro Sette
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego, La Jolla, CA 92037, USA
| | - Shane Crotty
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego, La Jolla, CA 92037, USA
| | - Najeeha Talat Iqbal
- Departments of Paediatrics and Child Health and Biological and Biomedical Sciences, Aga Khan University, Karachi 74800, Pakistan
| | - Davide Corti
- Humabs Biomed SA, a subsidiary of Vir Biotechnology, 6500 Bellinzona, Switzerland
| | - Jorge Geffner
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Facultad de Medicina, Buenos Aires C1121ABG, Argentina
| | | | - Renata Grifantini
- INGM, Istituto Nazionale Genetica Molecolare “Romeo ed Enrica Invernizzi,” Milan, Italy
| | - Helen Y. Chu
- Division of Allergy and Infectious Diseases, University of Washington, Seattle, WA 98195, USA
| | - David Veesler
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
165
|
Javanmardi K, Segall-Shapiro TH, Chou CW, Boutz DR, Olsen RJ, Xie X, Xia H, Shi PY, Johnson CD, Annapareddy A, Weaver S, Musser JM, Ellington AD, Finkelstein IJ, Gollihar JD. Antibody escape and cryptic cross-domain stabilization in the SARS-CoV-2 Omicron spike protein. Cell Host Microbe 2022; 30:1242-1254.e6. [PMID: 35988543 PMCID: PMC9350683 DOI: 10.1016/j.chom.2022.07.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/17/2022] [Accepted: 07/27/2022] [Indexed: 12/03/2022]
Abstract
The worldwide spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has led to the repeated emergence of variants of concern. For the Omicron variant, sub-lineages BA.1 and BA.2, respectively, contain 33 and 29 nonsynonymous and indel spike protein mutations. These amino acid substitutions and indels are implicated in increased transmissibility and enhanced immune evasion. By reverting individual spike mutations of BA.1 or BA.2, we characterize the molecular effects of the Omicron spike mutations on expression, ACE2 receptor affinity, and neutralizing antibody recognition. We identified key mutations enabling escape from neutralizing antibodies at a variety of epitopes. Stabilizing mutations in the N-terminal and S2 domains of the spike protein can compensate for destabilizing mutations in the receptor binding domain, enabling the record number of mutations in Omicron. Our results provide a comprehensive account of the mutational effects in the Omicron spike protein and illustrate previously uncharacterized mechanisms of host evasion.
Collapse
Affiliation(s)
- Kamyab Javanmardi
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA.
| | - Thomas H Segall-Shapiro
- Laboratory of Antibody Discovery and Accelerated Protein Therapeutics, Center for Infectious Diseases, Houston Methodist Research Institute and Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX, USA
| | - Chia-Wei Chou
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Daniel R Boutz
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA; Laboratory of Antibody Discovery and Accelerated Protein Therapeutics, Center for Infectious Diseases, Houston Methodist Research Institute and Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX, USA
| | - Randall J Olsen
- Laboratory of Antibody Discovery and Accelerated Protein Therapeutics, Center for Infectious Diseases, Houston Methodist Research Institute and Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX, USA; Laboratory of Molecular and Translational Human Infectious Diseases Research, Center for Infectious Diseases, HMRI and Department of Pathology and Genomic Medicine, HMH, Houston, TX, USA; Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Xuping Xie
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Hongjie Xia
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Pei-Yong Shi
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Charlie D Johnson
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Ankur Annapareddy
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Scott Weaver
- University of Texas Medical Branch, World Reference Center for Emerging Viruses and Arboviruses, Galveston, TX, USA
| | - James M Musser
- Laboratory of Molecular and Translational Human Infectious Diseases Research, Center for Infectious Diseases, HMRI and Department of Pathology and Genomic Medicine, HMH, Houston, TX, USA; Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Andrew D Ellington
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA; Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, TX, USA
| | - Ilya J Finkelstein
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA; Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, TX, USA.
| | - Jimmy D Gollihar
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA; Laboratory of Antibody Discovery and Accelerated Protein Therapeutics, Center for Infectious Diseases, Houston Methodist Research Institute and Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX, USA.
| |
Collapse
|
166
|
Cao Y, Yisimayi A, Jian F, Song W, Xiao T, Wang L, Du S, Wang J, Li Q, Chen X, Yu Y, Wang P, Zhang Z, Liu P, An R, Hao X, Wang Y, Wang J, Feng R, Sun H, Zhao L, Zhang W, Zhao D, Zheng J, Yu L, Li C, Zhang N, Wang R, Niu X, Yang S, Song X, Chai Y, Hu Y, Shi Y, Zheng L, Li Z, Gu Q, Shao F, Huang W, Jin R, Shen Z, Wang Y, Wang X, Xiao J, Xie XS. BA.2.12.1, BA.4 and BA.5 escape antibodies elicited by Omicron infection. Nature 2022; 608:593-602. [PMID: 35714668 DOI: 10.21203/rs.3.rs-1611421/v1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 06/15/2022] [Indexed: 05/28/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron sublineages BA.2.12.1, BA.4 and BA.5 exhibit higher transmissibility than the BA.2 lineage1. The receptor binding and immune-evasion capability of these recently emerged variants require immediate investigation. Here, coupled with structural comparisons of the spike proteins, we show that BA.2.12.1, BA.4 and BA.5 (BA.4 and BA.5 are hereafter referred collectively to as BA.4/BA.5) exhibit similar binding affinities to BA.2 for the angiotensin-converting enzyme 2 (ACE2) receptor. Of note, BA.2.12.1 and BA.4/BA.5 display increased evasion of neutralizing antibodies compared with BA.2 against plasma from triple-vaccinated individuals or from individuals who developed a BA.1 infection after vaccination. To delineate the underlying antibody-evasion mechanism, we determined the escape mutation profiles2, epitope distribution3 and Omicron-neutralization efficiency of 1,640 neutralizing antibodies directed against the receptor-binding domain of the viral spike protein, including 614 antibodies isolated from people who had recovered from BA.1 infection. BA.1 infection after vaccination predominantly recalls humoral immune memory directed against ancestral (hereafter referred to as wild-type (WT)) SARS-CoV-2 spike protein. The resulting elicited antibodies could neutralize both WT SARS-CoV-2 and BA.1 and are enriched on epitopes on spike that do not bind ACE2. However, most of these cross-reactive neutralizing antibodies are evaded by spike mutants L452Q, L452R and F486V. BA.1 infection can also induce new clones of BA.1-specific antibodies that potently neutralize BA.1. Nevertheless, these neutralizing antibodies are largely evaded by BA.2 and BA.4/BA.5 owing to D405N and F486V mutations, and react weakly to pre-Omicron variants, exhibiting narrow neutralization breadths. The therapeutic neutralizing antibodies bebtelovimab4 and cilgavimab5 can effectively neutralize BA.2.12.1 and BA.4/BA.5, whereas the S371F, D405N and R408S mutations undermine most broadly sarbecovirus-neutralizing antibodies. Together, our results indicate that Omicron may evolve mutations to evade the humoral immunity elicited by BA.1 infection, suggesting that BA.1-derived vaccine boosters may not achieve broad-spectrum protection against new Omicron variants.
Collapse
MESH Headings
- Angiotensin-Converting Enzyme 2/metabolism
- Antibodies, Monoclonal/immunology
- Antibodies, Neutralizing/immunology
- Antibodies, Viral/immunology
- Antigenic Drift and Shift/genetics
- Antigenic Drift and Shift/immunology
- COVID-19/immunology
- COVID-19/transmission
- COVID-19/virology
- COVID-19 Vaccines/immunology
- Epitopes, B-Lymphocyte/chemistry
- Epitopes, B-Lymphocyte/genetics
- Epitopes, B-Lymphocyte/immunology
- Humans
- Immune Tolerance
- Immunity, Humoral
- Immunization, Secondary
- Mutation
- Neutralization Tests
- SARS-CoV-2/classification
- SARS-CoV-2/genetics
- SARS-CoV-2/immunology
- SARS-CoV-2/metabolism
- Spike Glycoprotein, Coronavirus/genetics
- Spike Glycoprotein, Coronavirus/immunology
- Spike Glycoprotein, Coronavirus/metabolism
Collapse
Affiliation(s)
- Yunlong Cao
- Biomedical Pioneering Innovation Center (BIOPIC), Peking University, Beijing, P. R. China.
- Changping Laboratory, Beijing, P. R. China.
| | - Ayijiang Yisimayi
- Biomedical Pioneering Innovation Center (BIOPIC), Peking University, Beijing, P. R. China
- School of Life Sciences, Peking University, Beijing, P. R. China
| | - Fanchong Jian
- Biomedical Pioneering Innovation Center (BIOPIC), Peking University, Beijing, P. R. China
- College of Chemistry and Molecular Engineering, Peking University, Beijing, P. R. China
| | - Weiliang Song
- Biomedical Pioneering Innovation Center (BIOPIC), Peking University, Beijing, P. R. China
- School of Life Sciences, Peking University, Beijing, P. R. China
| | - Tianhe Xiao
- Biomedical Pioneering Innovation Center (BIOPIC), Peking University, Beijing, P. R. China
- Joint Graduate Program of Peking-Tsinghua-NIBS, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, P. R. China
| | - Lei Wang
- CAS Key Laboratory of Infection and Immunity, National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, P. R. China
| | - Shuo Du
- School of Life Sciences, Peking University, Beijing, P. R. China
| | - Jing Wang
- Biomedical Pioneering Innovation Center (BIOPIC), Peking University, Beijing, P. R. China
- School of Life Sciences, Peking University, Beijing, P. R. China
| | - Qianqian Li
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), Beijing, P. R. China
| | - Xiaosu Chen
- Institute for Immunology, College of Life Sciences, Nankai University, Tianjin, P. R. China
| | - Yuanling Yu
- Changping Laboratory, Beijing, P. R. China
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), Beijing, P. R. China
| | - Peng Wang
- Changping Laboratory, Beijing, P. R. China
| | - Zhiying Zhang
- School of Life Sciences, Peking University, Beijing, P. R. China
| | - Pulan Liu
- School of Life Sciences, Peking University, Beijing, P. R. China
| | - Ran An
- Biomedical Pioneering Innovation Center (BIOPIC), Peking University, Beijing, P. R. China
| | - Xiaohua Hao
- Beijing Ditan Hospital, Capital Medical University, Beijing, P. R. China
| | - Yao Wang
- Changping Laboratory, Beijing, P. R. China
| | - Jing Wang
- Changping Laboratory, Beijing, P. R. China
| | - Rui Feng
- CAS Key Laboratory of Infection and Immunity, National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, P. R. China
| | - Haiyan Sun
- Changping Laboratory, Beijing, P. R. China
| | | | - Wen Zhang
- Beijing Ditan Hospital, Capital Medical University, Beijing, P. R. China
| | - Dong Zhao
- Beijing Ditan Hospital, Capital Medical University, Beijing, P. R. China
| | | | | | - Can Li
- Changping Laboratory, Beijing, P. R. China
| | - Na Zhang
- Changping Laboratory, Beijing, P. R. China
| | - Rui Wang
- Changping Laboratory, Beijing, P. R. China
| | - Xiao Niu
- Biomedical Pioneering Innovation Center (BIOPIC), Peking University, Beijing, P. R. China
- College of Chemistry and Molecular Engineering, Peking University, Beijing, P. R. China
| | - Sijie Yang
- Biomedical Pioneering Innovation Center (BIOPIC), Peking University, Beijing, P. R. China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, P. R. China
| | | | - Yangyang Chai
- Institute for Immunology, College of Life Sciences, Nankai University, Tianjin, P. R. China
| | - Ye Hu
- Institute for Immunology, College of Life Sciences, Nankai University, Tianjin, P. R. China
| | - Yansong Shi
- Institute for Immunology, College of Life Sciences, Nankai University, Tianjin, P. R. China
| | | | - Zhiqiang Li
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, P. R. China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, P. R. China
| | | | - Fei Shao
- Changping Laboratory, Beijing, P. R. China
| | - Weijin Huang
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), Beijing, P. R. China
| | - Ronghua Jin
- Beijing Ditan Hospital, Capital Medical University, Beijing, P. R. China
| | - Zhongyang Shen
- Organ Transplant Center, NHC Key Laboratory for Critical Care Medicine, Tianjin First Central Hospital, Nankai University, Tianjin, P. R. China.
| | - Youchun Wang
- Changping Laboratory, Beijing, P. R. China.
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), Beijing, P. R. China.
| | - Xiangxi Wang
- Changping Laboratory, Beijing, P. R. China.
- CAS Key Laboratory of Infection and Immunity, National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, P. R. China.
| | - Junyu Xiao
- Changping Laboratory, Beijing, P. R. China.
- School of Life Sciences, Peking University, Beijing, P. R. China.
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, P. R. China.
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, P. R. China.
| | - Xiaoliang Sunney Xie
- Biomedical Pioneering Innovation Center (BIOPIC), Peking University, Beijing, P. R. China.
- Changping Laboratory, Beijing, P. R. China.
| |
Collapse
|
167
|
Wang Q, Guo Y, Iketani S, Nair MS, Li Z, Mohri H, Wang M, Yu J, Bowen AD, Chang JY, Shah JG, Nguyen N, Chen Z, Meyers K, Yin MT, Sobieszczyk ME, Sheng Z, Huang Y, Liu L, Ho DD. Antibody evasion by SARS-CoV-2 Omicron subvariants BA.2.12.1, BA.4 and BA.5. Nature 2022; 608:603-608. [PMID: 35790190 PMCID: PMC9385487 DOI: 10.1038/s41586-022-05053-w] [Citation(s) in RCA: 557] [Impact Index Per Article: 185.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 06/30/2022] [Indexed: 11/09/2022]
Abstract
SARS-CoV-2 Omicron subvariants BA.2.12.1 and BA.4/5 have surged notably to become dominant in the United States and South Africa, respectively1,2. These new subvariants carrying further mutations in their spike proteins raise concerns that they may further evade neutralizing antibodies, thereby further compromising the efficacy of COVID-19 vaccines and therapeutic monoclonals. We now report findings from a systematic antigenic analysis of these surging Omicron subvariants. BA.2.12.1 is only modestly (1.8-fold) more resistant to sera from vaccinated and boosted individuals than BA.2. However, BA.4/5 is substantially (4.2-fold) more resistant and thus more likely to lead to vaccine breakthrough infections. Mutation at spike residue L452 found in both BA.2.12.1 and BA.4/5 facilitates escape from some antibodies directed to the so-called class 2 and 3 regions of the receptor-binding domain3. The F486V mutation found in BA.4/5 facilitates escape from certain class 1 and 2 antibodies but compromises the spike affinity for the viral receptor. The R493Q reversion mutation, however, restores receptor affinity and consequently the fitness of BA.4/5. Among therapeutic antibodies authorized for clinical use, only bebtelovimab retains full potency against both BA.2.12.1 and BA.4/5. The Omicron lineage of SARS-CoV-2 continues to evolve, successively yielding subvariants that are not only more transmissible but also more evasive to antibodies.
Collapse
Affiliation(s)
- Qian Wang
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Yicheng Guo
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Sho Iketani
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Department of Microbiology and Immunology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Manoj S Nair
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Zhiteng Li
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Hiroshi Mohri
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Maple Wang
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Jian Yu
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Anthony D Bowen
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Division of Infectious Diseases, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Jennifer Y Chang
- Division of Infectious Diseases, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Jayesh G Shah
- Division of Infectious Diseases, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Nadia Nguyen
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Zhiwei Chen
- AIDS Institute and Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Kathrine Meyers
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Division of Infectious Diseases, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Michael T Yin
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Division of Infectious Diseases, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Magdalena E Sobieszczyk
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Division of Infectious Diseases, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Zizhang Sheng
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Yaoxing Huang
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Lihong Liu
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA.
| | - David D Ho
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA.
- Department of Microbiology and Immunology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA.
- Division of Infectious Diseases, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA.
| |
Collapse
|
168
|
Nielsen BF, Li Y, Sneppen K, Simonsen L, Viboud C, Levin SA, Grenfell BT. Immune Heterogeneity and Epistasis Explain Punctuated Evolution of SARS-CoV-2. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2022:2022.07.27.22278129. [PMID: 35982659 PMCID: PMC9387145 DOI: 10.1101/2022.07.27.22278129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Identifying drivers of viral diversity is key to understanding the evolutionary as well as epidemiological dynamics of the COVID-19 pandemic. Using rich viral genomic data sets, we show that periods of steadily rising diversity have been punctuated by sudden, enormous increases followed by similarly abrupt collapses of diversity. We introduce a mechanistic model of saltational evolution with epistasis and demonstrate that these features parsimoniously account for the observed temporal dynamics of inter-genomic diversity. Our results provide support for recent proposals that saltational evolution may be a signature feature of SARS-CoV-2, allowing the pathogen to more readily evolve highly transmissible variants. These findings lend theoretical support to a heightened awareness of biological contexts where increased diversification may occur. They also underline the power of pathogen genomics and other surveillance streams in clarifying the phylodynamics of emerging and endemic infections. In public health terms, our results further underline the importance of equitable distribution of up-to-date vaccines.
Collapse
Affiliation(s)
- Bjarke Frost Nielsen
- PandemiX Center, Roskilde University
- Niels Bohr Institute, University of Copenhagen
| | - Yimei Li
- Department of Ecology & Evolutionary Biology, Princeton University
| | - Kim Sneppen
- Niels Bohr Institute, University of Copenhagen
| | | | - Cécile Viboud
- Fogarty International Center, National Institutes of Health
| | - Simon A. Levin
- Department of Ecology & Evolutionary Biology, Princeton University
| | | |
Collapse
|
169
|
Balloux F, Tan C, Swadling L, Richard D, Jenner C, Maini M, van Dorp L. The past, current and future epidemiological dynamic of SARS-CoV-2. OXFORD OPEN IMMUNOLOGY 2022; 3:iqac003. [PMID: 35872966 PMCID: PMC9278178 DOI: 10.1093/oxfimm/iqac003] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/11/2022] [Accepted: 06/15/2022] [Indexed: 02/07/2023] Open
Abstract
SARS-CoV-2, the agent of the COVID-19 pandemic, emerged in late 2019 in China, and rapidly spread throughout the world to reach all continents. As the virus expanded in its novel human host, viral lineages diversified through the accumulation of around two mutations a month on average. Different viral lineages have replaced each other since the start of the pandemic, with the most successful Alpha, Delta and Omicron variants of concern (VoCs) sequentially sweeping through the world to reach high global prevalence. Neither Alpha nor Delta was characterized by strong immune escape, with their success coming mainly from their higher transmissibility. Omicron is far more prone to immune evasion and spread primarily due to its increased ability to (re-)infect hosts with prior immunity. As host immunity reaches high levels globally through vaccination and prior infection, the epidemic is expected to transition from a pandemic regime to an endemic one where seasonality and waning host immunization are anticipated to become the primary forces shaping future SARS-CoV-2 lineage dynamics. In this review, we consider a body of evidence on the origins, host tropism, epidemiology, genomic and immunogenetic evolution of SARS-CoV-2 including an assessment of other coronaviruses infecting humans. Considering what is known so far, we conclude by delineating scenarios for the future dynamic of SARS-CoV-2, ranging from the good-circulation of a fifth endemic 'common cold' coronavirus of potentially low virulence, the bad-a situation roughly comparable with seasonal flu, and the ugly-extensive diversification into serotypes with long-term high-level endemicity.
Collapse
Affiliation(s)
- François Balloux
- UCL Genetics Institute, University College London, London WC1E 6BT, UK
| | - Cedric Tan
- UCL Genetics Institute, University College London, London WC1E 6BT, UK
- Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), 138672 Singapore, Singapore
| | - Leo Swadling
- Division of Infection and Immunity, University College London, London NW3 2PP, UK
| | - Damien Richard
- UCL Genetics Institute, University College London, London WC1E 6BT, UK
- Division of Infection and Immunity, University College London, London NW3 2PP, UK
| | - Charlotte Jenner
- UCL Genetics Institute, University College London, London WC1E 6BT, UK
| | - Mala Maini
- Division of Infection and Immunity, University College London, London NW3 2PP, UK
| | - Lucy van Dorp
- UCL Genetics Institute, University College London, London WC1E 6BT, UK
| |
Collapse
|