151
|
Abstract
Aerobic glycolysis is a metabolic pathway utilized by human cancer cells and also by yeast cells when they ferment glucose to ethanol. Both cancer cells and yeast cells are inhibited by the presence of low concentrations of 2-deoxyglucose (2DG). Genetic screens in yeast used resistance to 2-deoxyglucose to identify a small set of genes that function in regulating glucose metabolism. A recent high throughput screen for 2-deoxyglucose resistance identified a much larger set of seemingly unrelated genes. Here, we demonstrate that these newly identified genes do not in fact confer significant resistance to 2-deoxyglucose. Further, we show that the relative toxicity of 2-deoxyglucose is carbon source dependent, as is the resistance conferred by gene deletions. Snf1 kinase, the AMP-activated protein kinase of yeast, is required for 2-deoxyglucose resistance in cells growing on glucose. Mutations in the SNF1 gene that reduce kinase activity render cells hypersensitive to 2-deoxyglucose, while an activating mutation in SNF1 confers 2-deoxyglucose resistance. Snf1 kinase activated by 2-deoxyglucose does not phosphorylate the Mig1 protein, a known Snf1 substrate during glucose limitation. Thus, different stimuli elicit distinct responses from the Snf1 kinase.
Collapse
|
152
|
Parker BL, Shepherd NE, Trefely S, Hoffman NJ, White MY, Engholm-Keller K, Hambly BD, Larsen MR, James DE, Cordwell SJ. Structural basis for phosphorylation and lysine acetylation cross-talk in a kinase motif associated with myocardial ischemia and cardioprotection. J Biol Chem 2014; 289:25890-906. [PMID: 25008320 DOI: 10.1074/jbc.m114.556035] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Myocardial ischemia and cardioprotection by ischemic pre-conditioning induce signal networks aimed at survival or cell death if the ischemic period is prolonged. These pathways are mediated by protein post-translational modifications that are hypothesized to cross-talk with and regulate each other. Phosphopeptides and lysine-acetylated peptides were quantified in isolated rat hearts subjected to ischemia or ischemic pre-conditioning, with and without splitomicin inhibition of lysine deacetylation. We show lysine acetylation (acetyl-Lys)-dependent activation of AMP-activated protein kinase, AKT, and PKA kinases during ischemia. Phosphorylation and acetyl-Lys sites mapped onto tertiary structures were proximal in >50% of proteins investigated, yet they were mutually exclusive in 50 ischemic pre-conditioning- and/or ischemia-associated peptides containing the KXXS basophilic protein kinase consensus motif. Modifications in this motif were modeled in the C terminus of muscle-type creatine kinase. Acetyl-Lys increased proximal dephosphorylation by 10-fold. Structural analysis of modified muscle-type creatine kinase peptide variants by two-dimensional NMR revealed stabilization via a lysine-phosphate salt bridge, which was disrupted by acetyl-Lys resulting in backbone flexibility and increased phosphatase accessibility.
Collapse
Affiliation(s)
- Benjamin L Parker
- From the Discipline of Pathology, School of Medical Sciences, University of Sydney, Sydney 2006, Australia, the Diabetes and Obesity Program, Biological Mass Spectrometry Unit, Garvan Institute of Medical Research, 2010 Australia
| | | | | | - Nolan J Hoffman
- the Diabetes and Obesity Program, Biological Mass Spectrometry Unit, Garvan Institute of Medical Research, 2010 Australia
| | - Melanie Y White
- the School of Molecular Bioscience and the Charles Perkins Centre, University of Sydney, Sydney 2006, Australia, and
| | | | - Brett D Hambly
- From the Discipline of Pathology, School of Medical Sciences, University of Sydney, Sydney 2006, Australia, the Charles Perkins Centre, University of Sydney, Sydney 2006, Australia, and
| | - Martin R Larsen
- the Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| | - David E James
- the Diabetes and Obesity Program, Biological Mass Spectrometry Unit, Garvan Institute of Medical Research, 2010 Australia, the Charles Perkins Centre, University of Sydney, Sydney 2006, Australia, and
| | - Stuart J Cordwell
- From the Discipline of Pathology, School of Medical Sciences, University of Sydney, Sydney 2006, Australia, the School of Molecular Bioscience and the Charles Perkins Centre, University of Sydney, Sydney 2006, Australia, and
| |
Collapse
|
153
|
Braun KA, Vaga S, Dombek KM, Fang F, Palmisano S, Aebersold R, Young ET. Phosphoproteomic analysis identifies proteins involved in transcription-coupled mRNA decay as targets of Snf1 signaling. Sci Signal 2014; 7:ra64. [PMID: 25005228 DOI: 10.1126/scisignal.2005000] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Stresses, such as glucose depletion, activate Snf1, the Saccharomyces cerevisiae ortholog of adenosine monophosphate-activated protein kinase (AMPK), enabling adaptive cellular responses. In addition to affecting transcription, Snf1 may also promote mRNA stability in a gene-specific manner. To understand Snf1-mediated signaling, we used quantitative mass spectrometry to identify proteins that were phosphorylated in a Snf1-dependent manner. We identified 210 Snf1-dependent phosphopeptides in 145 proteins. Thirteen of these proteins are involved in mRNA metabolism. Of these, we found that Ccr4 (the major cytoplasmic deadenylase), Dhh1 (an RNA helicase), and Xrn1 (an exoribonuclease) were required for the glucose-induced decay of Snf1-dependent mRNAs that were activated by glucose depletion. Unexpectedly, deletion of XRN1 reduced the accumulation of Snf1-dependent transcripts that were synthesized during glucose depletion. Deletion of SNF1 rescued the synthetic lethality of simultaneous deletion of XRN1 and REG1, which encodes a regulatory subunit of a phosphatase that inhibits Snf1. Mutation of three Snf1-dependent phosphorylation sites in Xrn1 reduced glucose-induced mRNA decay. Thus, Xrn1 is required for Snf1-dependent mRNA homeostasis in response to nutrient availability.
Collapse
Affiliation(s)
- Katherine A Braun
- Department of Biochemistry, University of Washington, 1705 Northeast Pacific Street, Seattle, WA 98195-7350, USA
| | - Stefania Vaga
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, CH-8057 Zurich, Switzerland
| | - Kenneth M Dombek
- Department of Biochemistry, University of Washington, 1705 Northeast Pacific Street, Seattle, WA 98195-7350, USA
| | - Fang Fang
- Department of Biochemistry, University of Washington, 1705 Northeast Pacific Street, Seattle, WA 98195-7350, USA
| | - Salvator Palmisano
- Department of Biochemistry, University of Washington, 1705 Northeast Pacific Street, Seattle, WA 98195-7350, USA
| | - Ruedi Aebersold
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, CH-8057 Zurich, Switzerland. Faculty of Science, University of Zurich, CH-8057 Zurich, Switzerland
| | - Elton T Young
- Department of Biochemistry, University of Washington, 1705 Northeast Pacific Street, Seattle, WA 98195-7350, USA.
| |
Collapse
|
154
|
Iesmantavicius V, Weinert BT, Choudhary C. Convergence of ubiquitylation and phosphorylation signaling in rapamycin-treated yeast cells. Mol Cell Proteomics 2014; 13:1979-92. [PMID: 24961812 PMCID: PMC4125731 DOI: 10.1074/mcp.o113.035683] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The target of rapamycin (TOR) kinase senses the availability of nutrients and coordinates cellular growth and proliferation with nutrient abundance. Inhibition of TOR mimics nutrient starvation and leads to the reorganization of many cellular processes, including autophagy, protein translation, and vesicle trafficking. TOR regulates cellular physiology by modulating phosphorylation and ubiquitylation signaling networks; however, the global scope of such regulation is not fully known. Here, we used a mass-spectrometry-based proteomics approach for the parallel quantification of ubiquitylation, phosphorylation, and proteome changes in rapamycin-treated yeast cells. Our data constitute a detailed proteomic analysis of rapamycin-treated yeast with 3590 proteins, 8961 phosphorylation sites, and 2299 di-Gly modified lysines (putative ubiquitylation sites) quantified. The phosphoproteome was extensively modulated by rapamycin treatment, with more than 900 up-regulated sites one hour after rapamycin treatment. Dynamically regulated phosphoproteins were involved in diverse cellular processes, prominently including transcription, membrane organization, vesicle-mediated transport, and autophagy. Several hundred ubiquitylation sites were increased after rapamycin treatment, and about half as many decreased in abundance. We found that proteome, phosphorylation, and ubiquitylation changes converged on the Rsp5-ubiquitin ligase, Rsp5 adaptor proteins, and Rsp5 targets. Putative Rsp5 targets were biased for increased ubiquitylation, suggesting activation of Rsp5 by rapamycin. Rsp5 adaptor proteins, which recruit target proteins for Rsp5-dependent ubiquitylation, were biased for increased phosphorylation. Furthermore, we found that permeases and transporters, which are often ubiquitylated by Rsp5, were biased for reduced ubiquitylation and reduced protein abundance. The convergence of multiple proteome-level changes on the Rsp5 system indicates a key role of this pathway in the response to rapamycin treatment. Collectively, these data reveal new insights into the global proteome dynamics in response to rapamycin treatment and provide a first detailed view of the co-regulation of phosphorylation- and ubiquitylation-dependent signaling networks by this compound.
Collapse
Affiliation(s)
- Vytautas Iesmantavicius
- From the ‡Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen, Denmark
| | - Brian T Weinert
- From the ‡Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen, Denmark
| | - Chunaram Choudhary
- From the ‡Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen, Denmark
| |
Collapse
|
155
|
Goldman A, Roy J, Bodenmiller B, Wanka S, Landry CR, Aebersold R, Cyert MS. The calcineurin signaling network evolves via conserved kinase-phosphatase modules that transcend substrate identity. Mol Cell 2014; 55:422-435. [PMID: 24930733 DOI: 10.1016/j.molcel.2014.05.012] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 04/02/2014] [Accepted: 05/07/2014] [Indexed: 10/25/2022]
Abstract
To define a functional network for calcineurin, the conserved Ca(2+)/calmodulin-regulated phosphatase, we systematically identified its substrates in S. cerevisiae using phosphoproteomics and bioinformatics, followed by copurification and dephosphorylation assays. This study establishes new calcineurin functions and reveals mechanisms that shape calcineurin network evolution. Analyses of closely related yeasts show that many proteins were recently recruited to the network by acquiring a calcineurin-recognition motif. Calcineurin substrates in yeast and mammals are distinct due to network rewiring but, surprisingly, are phosphorylated by similar kinases. We postulate that corecognition of conserved substrate features, including phosphorylation and docking motifs, preserves calcineurin-kinase opposition during evolution. One example we document is a composite docking site that confers substrate recognition by both calcineurin and MAPK. We propose that conserved kinase-phosphatase pairs define the architecture of signaling networks and allow other connections between kinases and phosphatases to develop that establish common regulatory motifs in signaling networks.
Collapse
Affiliation(s)
- Aaron Goldman
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Jagoree Roy
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Bernd Bodenmiller
- Institute of Molecular Life Sciences, University of Zürich, 8057 Zürich, Switzerland
| | - Stefanie Wanka
- Institute of Molecular Life Sciences, University of Zürich, 8057 Zürich, Switzerland
| | - Christian R Landry
- Institut de Biologie Intégrative et des Systèmes, PROTEO, Département de Biologie, Université Laval, Québec G1V 0A6, Canada
| | - Ruedi Aebersold
- Department of Biology, Institute of Molecular Systems Biology, ETH Zürich, 8093 Zürich, Switzerland.,Faculty of Science, University of Zürich, 8057 Zürich, Switzerland
| | - Martha S Cyert
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
156
|
Roberts AJ, Goodman BS, Reck-Peterson SL. Reconstitution of dynein transport to the microtubule plus end by kinesin. eLife 2014; 3:e02641. [PMID: 24916158 PMCID: PMC4046564 DOI: 10.7554/elife.02641] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Cytoplasmic dynein powers intracellular movement of cargo toward the microtubule minus end. The first step in a variety of dynein transport events is the targeting of dynein to the dynamic microtubule plus end, but the molecular mechanism underlying this spatial regulation is not understood. Here, we reconstitute dynein plus-end transport using purified proteins from S. cerevisiae and dissect the mechanism using single-molecule microscopy. We find that two proteins–homologs of Lis1 and Clip170–are sufficient to couple dynein to Kip2, a plus-end-directed kinesin. Dynein is transported to the plus end by Kip2, but is not a passive passenger, resisting its own plus-end-directed motion. Two microtubule-associated proteins, homologs of Clip170 and EB1, act as processivity factors for Kip2, helping it overcome dynein's intrinsic minus-end-directed motility. This reveals how a minimal system of proteins transports a molecular motor to the start of its track. DOI:http://dx.doi.org/10.7554/eLife.02641.001 Eukaryotic cells use transport systems to efficiently move materials from one location to another. Much transport in the cell interior is achieved using molecular motors, which carry cargoes along tracks called microtubules. Unlike roads of human construction, microtubules are very dynamic. One of their ends (the ‘plus’ end) explores the outskirts of the cell, growing and shrinking through the addition and loss of protein building blocks. The other microtubule end (the ‘minus’ end) typically lies in a hub near the center of the cell. There are two types of molecular motor that move on microtubules. Kinesin motors move toward the plus end of the microtubule, and dynein motors move in the opposite direction, toward the minus end. But if dynein only moves to the minus end of the microtubule, a problem arises: how would dynein initially reach the plus end of the microtubule and the outskirts of the cell, where it collects cargoes? Using purified yeast proteins, Roberts et al. reveal that a group of three proteins can solve this problem by transporting dynein to the plus end of the microtubule. The proteins comprise a kinesin motor, and two additional proteins that connect the dynein motor to the kinesin. Imaging the transport process shows that the dynein motor is not a passive passenger: it is able to resist against the kinesin. However, an additional microtubule-associated protein can help the kinesin motor to win this ‘tug of war’, and so the protein complex—including the dynein motor—moves toward the plus end of the microtubule. DOI:http://dx.doi.org/10.7554/eLife.02641.002
Collapse
Affiliation(s)
- Anthony J Roberts
- Department of Cell Biology, Harvard Medical School, Boston, United States Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, University of Leeds, Leeds, United Kingdom
| | - Brian S Goodman
- Department of Cell Biology, Harvard Medical School, Boston, United States
| | | |
Collapse
|
157
|
Renvoisé M, Bonhomme L, Davanture M, Valot B, Zivy M, Lemaire C. Quantitative variations of the mitochondrial proteome and phosphoproteome during fermentative and respiratory growth in Saccharomyces cerevisiae. J Proteomics 2014; 106:140-50. [DOI: 10.1016/j.jprot.2014.04.022] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Revised: 02/14/2014] [Accepted: 04/12/2014] [Indexed: 11/16/2022]
|
158
|
de Graaf EL, Giansanti P, Altelaar AFM, Heck AJR. Single-step enrichment by Ti4+-IMAC and label-free quantitation enables in-depth monitoring of phosphorylation dynamics with high reproducibility and temporal resolution. Mol Cell Proteomics 2014; 13:2426-34. [PMID: 24850871 DOI: 10.1074/mcp.o113.036608] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Quantitative phosphoproteomics workflows traditionally involve additional sample labeling and fractionation steps for accurate and in-depth analysis. Here we report a high-throughput, straightforward, and comprehensive label-free phosphoproteomics approach using the highly selective, reproducible, and sensitive Ti(4+)-IMAC phosphopeptide enrichment method. We demonstrate the applicability of this approach by monitoring the phosphoproteome dynamics of Jurkat T cells stimulated by prostaglandin E2 (PGE2) over six different time points, measuring in total 108 snapshots of the phosphoproteome. In total, we quantitatively monitored 12,799 unique phosphosites over all time points with very high quantitative reproducibility (average r > 0.9 over 100 measurements and a median cv < 0.2). PGE2 is known to increase cellular cAMP levels, thereby activating PKA. The in-depth analysis revealed temporal regulation of a wide variety of phosphosites associated not only with PKA, but also with a variety of other classes of kinases. Following PGE2 stimulation, several pathways became only transiently activated, revealing that in-depth dynamic profiling requires techniques with high temporal resolution. Moreover, the large publicly available dataset provides a valuable resource for downstream PGE2 signaling dynamics in T cells, and cAMP-mediated signaling in particular. More generally, our method enables in-depth, quantitative, high-throughput phosphoproteome screening on any system, requiring very little sample, sample preparation, and analysis time.
Collapse
Affiliation(s)
- Erik L de Graaf
- From the ‡Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands; §Netherlands Proteomics Centre, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Piero Giansanti
- From the ‡Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands; §Netherlands Proteomics Centre, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - A F Maarten Altelaar
- From the ‡Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands; §Netherlands Proteomics Centre, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Albert J R Heck
- From the ‡Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands; §Netherlands Proteomics Centre, Padualaan 8, 3584 CH Utrecht, The Netherlands
| |
Collapse
|
159
|
Aguilera-Romero A, Gehin C, Riezman H. Sphingolipid homeostasis in the web of metabolic routes. Biochim Biophys Acta Mol Cell Biol Lipids 2014; 1841:647-56. [DOI: 10.1016/j.bbalip.2013.10.014] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Revised: 10/17/2013] [Accepted: 10/19/2013] [Indexed: 10/26/2022]
|
160
|
Maiolica A, de Medina-Redondo M, Schoof EM, Chaikuad A, Villa F, Gatti M, Jeganathan S, Lou HJ, Novy K, Hauri S, Toprak UH, Herzog F, Meraldi P, Penengo L, Turk BE, Knapp S, Linding R, Aebersold R. Modulation of the chromatin phosphoproteome by the Haspin protein kinase. Mol Cell Proteomics 2014; 13:1724-40. [PMID: 24732914 DOI: 10.1074/mcp.m113.034819] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Recent discoveries have highlighted the importance of Haspin kinase activity for the correct positioning of the kinase Aurora B at the centromere. Haspin phosphorylates Thr(3) of the histone H3 (H3), which provides a signal for Aurora B to localize to the centromere of mitotic chromosomes. To date, histone H3 is the only confirmed Haspin substrate. We used a combination of biochemical, pharmacological, and mass spectrometric approaches to study the consequences of Haspin inhibition in mitotic cells. We quantified 3964 phosphorylation sites on chromatin-associated proteins and identified a Haspin protein-protein interaction network. We determined the Haspin consensus motif and the co-crystal structure of the kinase with the histone H3 tail. The structure revealed a unique bent substrate binding mode positioning the histone H3 residues Arg(2) and Lys(4) adjacent to the Haspin phosphorylated threonine into acidic binding pockets. This unique conformation of the kinase-substrate complex explains the reported modulation of Haspin activity by methylation of Lys(4) of the histone H3. In addition, the identification of the structural basis of substrate recognition and the amino acid sequence preferences of Haspin aided the identification of novel candidate Haspin substrates. In particular, we validated the phosphorylation of Ser(137) of the histone variant macroH2A as a target of Haspin kinase activity. MacroH2A Ser(137) resides in a basic stretch of about 40 amino acids that is required to stabilize extranucleosomal DNA, suggesting that phosphorylation of Ser(137) might regulate the interactions of macroH2A and DNA. Overall, our data suggest that Haspin activity affects the phosphorylation state of proteins involved in gene expression regulation and splicing.
Collapse
Affiliation(s)
- Alessio Maiolica
- From the ‡Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | - Maria de Medina-Redondo
- §Department of Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Erwin M Schoof
- ¶Cellular Signal Integration Group (C-SIG), Center for Biological Sequence Analysis (CBS), Department of Systems Biology, Technical University of Denmark (DTU), Lyngby, Denmark
| | - Apirat Chaikuad
- ‖Oxford University, Nuffield Department of Clinical Medicine, Target Discovery Institute (TDI) and Structural Genomics Consortium (SGC), Oxford OX3 7FZ, United Kingdom
| | - Fabrizio Villa
- **Department of Experimental Oncology, European Institute of Oncology, Milan, Italy
| | - Marco Gatti
- ‡‡Department of Pharmaceutical Sciences, University of Piemonte Orientale "A. Avogadro" Novara, Italy
| | - Siva Jeganathan
- §§Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Hua Jane Lou
- ¶¶Yale University School of Medicine, Department of Pharmacology, New Haven, Connecticut 06520, USA
| | - Karel Novy
- From the ‡Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | - Simon Hauri
- From the ‡Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | - Umut H Toprak
- §Department of Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Franz Herzog
- ‖‖Gene Center Munich Ludwig-Maximilians-Universität München, Munich, Germany
| | - Patrick Meraldi
- §Department of Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Lorenza Penengo
- ‡‡Department of Pharmaceutical Sciences, University of Piemonte Orientale "A. Avogadro" Novara, Italy
| | - Benjamin E Turk
- ¶¶Yale University School of Medicine, Department of Pharmacology, New Haven, Connecticut 06520, USA
| | - Stefan Knapp
- ‖Oxford University, Nuffield Department of Clinical Medicine, Target Discovery Institute (TDI) and Structural Genomics Consortium (SGC), Oxford OX3 7FZ, United Kingdom
| | - Rune Linding
- ¶Cellular Signal Integration Group (C-SIG), Center for Biological Sequence Analysis (CBS), Department of Systems Biology, Technical University of Denmark (DTU), Lyngby, Denmark
| | - Ruedi Aebersold
- From the ‡Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland; Faculty of Science, University of Zurich, Zurich, Switzerland
| |
Collapse
|
161
|
Stitt M, Gibon Y. Why measure enzyme activities in the era of systems biology? TRENDS IN PLANT SCIENCE 2014; 19:256-65. [PMID: 24332227 DOI: 10.1016/j.tplants.2013.11.003] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Revised: 11/05/2013] [Accepted: 11/08/2013] [Indexed: 05/22/2023]
Abstract
Information about the abundance and biological activities of proteins is essential to reveal how genes affect phenotypes. Over the past decade, mass spectrometry (MS)-based proteomics has revolutionized the identification and quantification of proteins, and the detection of post-translational modifications. Interpretation of proteomics data depends on information about the biological activities of proteins, which has created a bottleneck in research. This review focuses on enzymes in central metabolism. We examine the methods used for measuring enzyme activities, and discuss how these methods provide information about the kinetic and regulatory properties of enzymes, their turnover, and how this information can be integrated into metabolic models. We also discuss how robotized assays could enable the genetic networks that control enzyme abundance to be analyzed.
Collapse
Affiliation(s)
- Mark Stitt
- Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, 14476 Potsdam-Golm, Germany.
| | - Yves Gibon
- INRA, University of Bordeaux, UMR 1332 Fruit Biology and Pathology, F-33883 Villenave d'Ornon, France
| |
Collapse
|
162
|
Nuclear localization of Haa1, which is linked to its phosphorylation status, mediates lactic acid tolerance in Saccharomyces cerevisiae. Appl Environ Microbiol 2014; 80:3488-95. [PMID: 24682296 DOI: 10.1128/aem.04241-13] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Improvement of the lactic acid resistance of the yeast Saccharomyces cerevisiae is important for the application of the yeast in industrial production of lactic acid from renewable resources. However, we still do not know the precise mechanisms of the lactic acid adaptation response in yeast and, consequently, lack effective approaches for improving its lactic acid tolerance. To enhance our understanding of the adaptation response, we screened for S. cerevisiae genes that confer enhanced lactic acid resistance when present in multiple copies and identified the transcriptional factor Haa1 as conferring resistance to toxic levels of lactic acid when overexpressed. The enhanced tolerance probably results from increased expression of its target genes. When cells that expressed Haa1 only from the endogenous promoter were exposed to lactic acid stress, the main subcellular localization of Haa1 changed from the cytoplasm to the nucleus within 5 min. This nuclear accumulation induced upregulation of the Haa1 target genes YGP1, GPG1, and SPI1, while the degree of Haa1 phosphorylation observed under lactic acid-free conditions decreased. Disruption of the exportin gene MSN5 led to accumulation of Haa1 in the nucleus even when no lactic acid was present. Since Msn5 was reported to interact with Haa1 and preferentially exports phosphorylated cargo proteins, our results suggest that regulation of the subcellular localization of Haa1, together with alteration of its phosphorylation status, mediates the adaptation to lactic acid stress in yeast.
Collapse
|
163
|
Rajeeve V, Vendrell I, Wilkes E, Torbett N, Cutillas PR. Cross-species proteomics reveals specific modulation of signaling in cancer and stromal cells by phosphoinositide 3-kinase (PI3K) inhibitors. Mol Cell Proteomics 2014; 13:1457-70. [PMID: 24648465 DOI: 10.1074/mcp.m113.035204] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The tumor microenvironment plays key roles in cancer biology, but its impact on the regulation of signaling pathway activity in cancer cells has not been systemically investigated. We designed an analytical strategy that allows differential analysis of signaling between cancer and stromal cells present in tumor xenografts. We used this approach to investigate how in vivo growth conditions and PI3K inhibitors regulate pathway activities in both cancer and stromal cell populations. We found that, despite inducing more modest changes in protein expression, in vivo growing conditions extensively rewired protein kinase networks in cancer cells. As a result, different sets of phosphorylation sites were modulated by PI3K inhibitors in cancer cells growing in tumors relative to when these cells were in culture. The p110δ PI3K-selective compound CAL-101 (Idelalisib) did not inhibit markers of PI3K activity in cancer or stromal cells; however, unexpectedly, it induced phosphorylation on SQ motifs in both subpopulations of tumor cells in vivo but not in vitro. Thus, the interaction between cancer cells and the stroma modulated the ability of PI3K inhibitors to induce the activation of apoptosis in solid tumors. Our study provides proof-of-principle of a proteomics workflow for measuring signaling specifically in cancer and stromal cells and for investigating how cancer biochemistry is modulated in vivo.
Collapse
Affiliation(s)
- Vinothini Rajeeve
- From the ‡Integrative Cell Signalling and Proteomics, Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, Barts School of Medicine and Dentistry, UK
| | | | - Edmund Wilkes
- From the ‡Integrative Cell Signalling and Proteomics, Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, Barts School of Medicine and Dentistry, UK
| | - Neil Torbett
- §Activiomics Ltd, Charterhouse Square, London, UK
| | - Pedro R Cutillas
- From the ‡Integrative Cell Signalling and Proteomics, Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, Barts School of Medicine and Dentistry, UK;
| |
Collapse
|
164
|
Johnson C, Kweon HK, Sheidy D, Shively CA, Mellacheruvu D, Nesvizhskii AI, Andrews PC, Kumar A. The yeast Sks1p kinase signaling network regulates pseudohyphal growth and glucose response. PLoS Genet 2014; 10:e1004183. [PMID: 24603354 PMCID: PMC3945295 DOI: 10.1371/journal.pgen.1004183] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Accepted: 01/04/2014] [Indexed: 11/18/2022] Open
Abstract
The yeast Saccharomyces cerevisiae undergoes a dramatic growth transition from its unicellular form to a filamentous state, marked by the formation of pseudohyphal filaments of elongated and connected cells. Yeast pseudohyphal growth is regulated by signaling pathways responsive to reductions in the availability of nitrogen and glucose, but the molecular link between pseudohyphal filamentation and glucose signaling is not fully understood. Here, we identify the glucose-responsive Sks1p kinase as a signaling protein required for pseudohyphal growth induced by nitrogen limitation and coupled nitrogen/glucose limitation. To identify the Sks1p signaling network, we applied mass spectrometry-based quantitative phosphoproteomics, profiling over 900 phosphosites for phosphorylation changes dependent upon Sks1p kinase activity. From this analysis, we report a set of novel phosphorylation sites and highlight Sks1p-dependent phosphorylation in Bud6p, Itr1p, Lrg1p, Npr3p, and Pda1p. In particular, we analyzed the Y309 and S313 phosphosites in the pyruvate dehydrogenase subunit Pda1p; these residues are required for pseudohyphal growth, and Y309A mutants exhibit phenotypes indicative of impaired aerobic respiration and decreased mitochondrial number. Epistasis studies place SKS1 downstream of the G-protein coupled receptor GPR1 and the G-protein RAS2 but upstream of or at the level of cAMP-dependent PKA. The pseudohyphal growth and glucose signaling transcription factors Flo8p, Mss11p, and Rgt1p are required to achieve wild-type SKS1 transcript levels. SKS1 is conserved, and deletion of the SKS1 ortholog SHA3 in the pathogenic fungus Candida albicans results in abnormal colony morphology. Collectively, these results identify Sks1p as an important regulator of filamentation and glucose signaling, with additional relevance towards understanding stress-responsive signaling in C. albicans. Eukaryotic cells respond to nutritional and environmental stress through complex regulatory programs controlling cell metabolism, growth, and morphology. In the budding yeast Saccharomyces cerevisiae, conditions of limited nitrogen and/or glucose can initiate a dramatic growth transition wherein the yeast cells form extended multicellular filaments resembling the true hyphal tubes of filamentous fungi. The formation of these pseudohyphal filaments is governed by core regulatory pathways that have been studied for decades; however, the mechanism by which these signaling systems are integrated is less well understood. We find that the protein kinase Sks1p contributes to the integration of signals for nitrogen and/or glucose limitation, resulting in pseudohyphal growth. We implemented a mass spectrometry-based approach to profile phosphorylation events across the proteome dependent upon Sks1p kinase activity and identified phosphorylation sites important for mitochondrial function and pseudohyphal growth. Our studies place Sks1p in the regulatory context of a well-known pseudohyphal growth signaling pathway. We further find that SKS1 is conserved and required for stress-responsive colony morphology in the principal opportunistic human fungal pathogen Candida albicans. Thus, Sks1p is part of the mechanism integrating glucose-responsive cell signaling and pseudohyphal growth, and its function is required for colony morphology linked with virulence in C. albicans.
Collapse
Affiliation(s)
- Cole Johnson
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Hye Kyong Kweon
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Daniel Sheidy
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Christian A. Shively
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Dattatreya Mellacheruvu
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Alexey I. Nesvizhskii
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Philip C. Andrews
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Anuj Kumar
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
- * E-mail:
| |
Collapse
|
165
|
Hoheisel JD, Alhamdani MSS, Schröder C. Affinity-based microarrays for proteomic analysis of cancer tissues. Proteomics Clin Appl 2014; 7:8-15. [PMID: 23341233 DOI: 10.1002/prca.201200114] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2012] [Revised: 11/09/2012] [Accepted: 11/14/2012] [Indexed: 01/21/2023]
Abstract
Based on about a decade of technical developments in analysing the human proteome with antibody microarrays and experience in performing such analyses, now there are the means at hand for detailed and simultaneously global investigations of this kind. Many technical aspects have been dealt with of both the microarray format itself - such as overcoming kinetic and mass transport limitations and thus achieving accurate measurements - and ancillary processes - such as extraction procedures that provide good protein solubilisation, produce reproducible yields and preserve the native protein conformation as much as possible. The overall analysis process is robust and reproducible, highly sensitive down to the level of single-molecule detection and permits an analysis of several parameters on many molecules at a time. While the study of body liquids is widely applied, analyses of tissue proteomes are still scarce. However, conditions do exist to perform the latter at a quality level that meets the standards for clinical applications. This review highlights methodological aspects relevant for a biomedically useful analysis of cellular samples and discusses the potential of such studies, in particular, in view of personalised medicine approaches.
Collapse
Affiliation(s)
- Jörg D Hoheisel
- Division of Functional Genome Analysis, Deutsches Krebsforschungszentrum (DKFZ), Im Neuenheimer Feld 580, Heidelberg, Germany.
| | | | | |
Collapse
|
166
|
Saad S, Peter M, Dechant R. In scarcity and abundance: metabolic signals regulating cell growth. Physiology (Bethesda) 2014; 28:298-309. [PMID: 23997189 DOI: 10.1152/physiol.00005.2013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Although nutrient availability is a major driver of cell growth, and continuous adaptation to nutrient supply is critical for the development and survival of all organisms, the molecular mechanisms of nutrient sensing are only beginning to emerge. Here, we highlight recent advances in the field of nutrient sensing and discuss arising principles governing how metabolism might regulate growth-promoting pathways. In addition, we discuss signaling functions of metabolic enzymes not directly related to their metabolic activity.
Collapse
Affiliation(s)
- Shady Saad
- Institute of Biochemistry, ETH Zurich, Zurich, Switzerland
| | | | | |
Collapse
|
167
|
Sacristán-Reviriego A, Madrid M, Cansado J, Martín H, Molina M. A conserved non-canonical docking mechanism regulates the binding of dual specificity phosphatases to cell integrity mitogen-activated protein kinases (MAPKs) in budding and fission yeasts. PLoS One 2014; 9:e85390. [PMID: 24465549 PMCID: PMC3898958 DOI: 10.1371/journal.pone.0085390] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Accepted: 12/03/2013] [Indexed: 11/26/2022] Open
Abstract
Dual-specificity MAPK phosphatases (MKPs) are essential for the negative regulation of MAPK pathways. Similar to other MAPK-interacting proteins, most MKPs bind MAPKs through specific docking domains known as D-motifs. However, we found that the Saccharomyces cerevisiae MKP Msg5 binds the MAPK Slt2 within the cell wall integrity (CWI) pathway through a distinct motif (IYT). Here, we demonstrate that the IYT motif mediates binding of the Msg5 paralogue Sdp1 to Slt2 as well as of the MKP Pmp1 to its CWI MAPK counterpart Pmk1 in the evolutionarily distant yeast Schizosaccharomyces pombe. As a consequence, removal of the IYT site in Msg5, Sdp1 and Pmp1 reduces MAPK trapping caused by the overexpression of catalytically inactive versions of these phosphatases. Accordingly, an intact IYT site is necessary for inactive Sdp1 to prevent nuclear accumulation of Slt2. We also show that both Ile and Tyr but not Thr are essential for the functionality of the IYT motif. These results provide mechanistic insight into MKP-MAPK interplay and stress the relevance of this conserved non-canonical docking site in the regulation of the CWI pathway in fungi.
Collapse
Affiliation(s)
- Almudena Sacristán-Reviriego
- Departamento de Microbiología II, Facultad de Farmacia, Universidad Complutense de Madrid, and Instituto Ramón y Cajal de Investigaciones Sanitarias (IRYCIS), Madrid, Spain
| | - Marisa Madrid
- Yeast Physiology Group, Departamento de Genética y Microbiología, Facultad de Biología, Universidad de Murcia, Murcia, Spain
| | - José Cansado
- Yeast Physiology Group, Departamento de Genética y Microbiología, Facultad de Biología, Universidad de Murcia, Murcia, Spain
| | - Humberto Martín
- Departamento de Microbiología II, Facultad de Farmacia, Universidad Complutense de Madrid, and Instituto Ramón y Cajal de Investigaciones Sanitarias (IRYCIS), Madrid, Spain
- * E-mail:
| | - María Molina
- Departamento de Microbiología II, Facultad de Farmacia, Universidad Complutense de Madrid, and Instituto Ramón y Cajal de Investigaciones Sanitarias (IRYCIS), Madrid, Spain
| |
Collapse
|
168
|
Deletion of conserved protein phosphatases reverses defects associated with mitochondrial DNA damage in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 2014; 111:1473-8. [PMID: 24474773 DOI: 10.1073/pnas.1312399111] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Mitochondrial biogenesis is regulated by signaling pathways sensitive to extracellular conditions and to the internal environment of the cell. Therefore, treatments for disease caused by mutation of mtDNA may emerge from studies of how signal transduction pathways command mitochondrial function. We have examined the role of phosphatases under the control of the conserved α4/Tap42 protein in cells lacking a mitochondrial genome. We found that deletion of protein phosphatase 2A (PP2A) or of protein phosphatase 6 (PP6) protects cells from the reduced proliferation, mitochondrial protein import defects, lower mitochondrial electrochemical potential, and nuclear transcriptional response associated with mtDNA damage. Moreover, PP2A or PP6 deletion allows viability of a sensitized yeast strain after mtDNA loss. Interestingly, the Saccharomyces cerevisiae ortholog of the mammalian AMP-activated protein kinase was required for the full benefits of PP6 deletion and also for proliferation of otherwise wild-type cells lacking mtDNA. Our work highlights the important role that nutrient-responsive signaling pathways can play in determining the response to mitochondrial dysfunction.
Collapse
|
169
|
Marchini FK, de Godoy LMF, Batista M, Kugeratski FG, Krieger MA. Towards the phosphoproteome of trypanosomatids. Subcell Biochem 2014; 74:351-378. [PMID: 24264253 DOI: 10.1007/978-94-007-7305-9_15] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The identification and localization of protein phosphorylation sites provide clues to what proteins or pathways might be activated in a given condition, helping to improve our understanding about signaling networks. Advances in strategies for enrichment of phosphorylated peptides/proteins, mass spectrometry (MS) instrumentation, and specific MS techniques for identification and quantification of post-translational modifications have allowed for large-scale mapping of phosphorylation sites, promoting the field of phosphoproteomics. The great promise of phosphoproteomics is to unravel the dynamics of signaling networks, a layer of the emerging field of systems biology. Until a few years ago only a small number of phosphorylation sites had been described. Following large-scale trends, recent phosphoproteomic studies have reported the mapping of thousands of phosphorylation sites in trypanosomatids. However, quantitative information about the regulation of such sites in different conditions is still lacking. In this chapter, we provide a historical overview of phosphoproteomic studies for trypanosomatids and discuss some challenges and perspectives in the field.
Collapse
|
170
|
Chubukov V, Uhr M, Le Chat L, Kleijn RJ, Jules M, Link H, Aymerich S, Stelling J, Sauer U. Transcriptional regulation is insufficient to explain substrate-induced flux changes in Bacillus subtilis. Mol Syst Biol 2013; 9:709. [PMID: 24281055 PMCID: PMC4039378 DOI: 10.1038/msb.2013.66] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2013] [Accepted: 10/23/2013] [Indexed: 12/18/2022] Open
Abstract
Regulation of enzyme expression is one key mechanism by which cells control their metabolic programs. In this work, a quantitative analysis of metabolism in a model bacterium under different conditions shows that expression alone cannot explain the majority of the observed metabolic changes. ![]()
Most enzymes are indeed highly expressed in conditions where they are more active. Quantitatively, however, the observed changes in expression between conditions do not match the changes in activity for most enzymes. A good quantitative match is only observed for enzymes involved in the TCA cycle. Metabolomics reveals that increased substrate availability explains only a few instances of changes in activity.
One of the key ways in which microbes are thought to regulate their metabolism is by modulating the availability of enzymes through transcriptional regulation. However, the limited success of efforts to manipulate metabolic fluxes by rewiring the transcriptional network has cast doubt on the idea that transcript abundance controls metabolic fluxes. In this study, we investigate control of metabolic flux in the model bacterium Bacillus subtilis by quantifying fluxes, transcripts, and metabolites in eight metabolic states enforced by different environmental conditions. We find that most enzymes whose flux switches between on and off states, such as those involved in substrate uptake, exhibit large corresponding transcriptional changes. However, for the majority of enzymes in central metabolism, enzyme concentrations were insufficient to explain the observed fluxes—only for a number of reactions in the tricarboxylic acid cycle were enzyme changes approximately proportional to flux changes. Surprisingly, substrate changes revealed by metabolomics were also insufficient to explain observed fluxes, leaving a large role for allosteric regulation and enzyme modification in the control of metabolic fluxes.
Collapse
Affiliation(s)
- Victor Chubukov
- Institute of Molecular System Biology, ETH Zurich, Zurich, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
171
|
Poirel CL, Rodrigues RR, Chen KC, Tyson JJ, Murali TM. Top-down network analysis to drive bottom-up modeling of physiological processes. J Comput Biol 2013; 20:409-18. [PMID: 23641868 DOI: 10.1089/cmb.2012.0274] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Top-down analyses in systems biology can automatically find correlations among genes and proteins in large-scale datasets. However, it is often difficult to design experiments from these results. In contrast, bottom-up approaches painstakingly craft detailed models that can be simulated computationally to suggest wet lab experiments. However, developing the models is a manual process that can take many years. These approaches have largely been developed independently. We present LINKER, an efficient and automated data-driven method that can analyze molecular interactomes to propose extensions to models that can be simulated. LINKER combines teleporting random walks and k-shortest path computations to discover connections from a source protein to a set of proteins collectively involved in a particular cellular process. We evaluate the efficacy of LINKER by applying it to a well-known dynamic model of the cell division cycle in Saccharomyces cerevisiae. Compared to other state-of-the-art methods, subnetworks computed by LINKER are heavily enriched in Gene Ontology (GO) terms relevant to the cell cycle. Finally, we highlight how networks computed by LINKER elucidate the role of a protein kinase (Cdc5) in the mitotic exit network of a dynamic model of the cell cycle.
Collapse
|
172
|
Olsen JV, Mann M. Status of large-scale analysis of post-translational modifications by mass spectrometry. Mol Cell Proteomics 2013; 12:3444-52. [PMID: 24187339 PMCID: PMC3861698 DOI: 10.1074/mcp.o113.034181] [Citation(s) in RCA: 434] [Impact Index Per Article: 36.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Cellular function can be controlled through the gene expression program, but often protein post-translational modifications (PTMs) provide a more precise and elegant mechanism. Key functional roles of specific modification events—for instance, during the cell cycle—have been known for decades, but only in the past 10 years has mass-spectrometry-(MS)-based proteomics begun to reveal the true extent of the PTM universe. In this overview for the special PTM issue of Molecular and Cellular Proteomics, we take stock of where MS-based proteomics stands in the large-scale analysis of protein modifications. For many PTMs, including phosphorylation, ubiquitination, glycosylation, and acetylation, tens of thousands of sites can now be confidently identified and localized in the sequence of the protein. The quantification of PTM levels between different cellular states is likewise established, with label-free methods showing particular promise. It is also becoming possible to determine the absolute occupancy or stoichiometry of PTM sites on a large scale. Powerful software for the bioinformatic analysis of thousands of PTM sites has been developed. However, a complete inventory of sites has not been established for any PTM, and this situation will persist into the foreseeable future. Furthermore, although PTM coverage by MS-based methods is impressive, it still needs to be improved, especially in tissues and in clinically relevant systems. The central challenge for the field is to develop streamlined methods for determining biological functions for the myriad of modifications now known to exist.
Collapse
Affiliation(s)
- Jesper V Olsen
- Department of Proteomics, Faculty of Health and Medical Sciences, Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Blegdamsvej 3b, DK-2200 Copenhagen, Denmark
| | | |
Collapse
|
173
|
Ramsubramaniam N, Tao F, Li S, Marten MR. Cost-effective isobaric tagging for quantitative phosphoproteomics using DiART reagents. MOLECULAR BIOSYSTEMS 2013; 9:2981-7. [PMID: 24129742 DOI: 10.1039/c3mb70358d] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We describe the use of an isobaric tagging reagent, Deuterium isobaric Amine Reactive Tag (DiART), for quantitative phosphoproteomic experiments. Using DiART tagged custom mixtures of two phosphorylated peptides from alpha casein and their non-phosphorylated counterparts, we demonstrate the compatibility of DiART with TiO2 affinity purification of phosphorylated peptides. Comparison of theoretical vs. experimental reporter ion ratios reveals accurate quantification of phosphorylated peptides over a dynamic range of more than 15-fold. Using DiART labelling and TiO2 enrichment (DiART-TiO2) with large quantities of proteins (8 mg) from the cell lysate of model fungus Aspergillus nidulans, we quantified 744 unique phosphopeptides. Overlap of median values of TiO2 enriched phosphopeptides with theoretical values indicates accurate trends. Altogether these findings confirm the feasibility of performing quantitative phosphoproteomic experiments in a cost-effective manner using isobaric tagging reagents, DiART.
Collapse
Affiliation(s)
- Nikhil Ramsubramaniam
- Department of Chemical, Biochemical & Environmental Engineering, UMBC, Engineering Building, Room 314, 1000 Hilltop Circle, Baltimore, MD 21250, USA.
| | | | | | | |
Collapse
|
174
|
Wu XN, Sanchez Rodriguez C, Pertl-Obermeyer H, Obermeyer G, Schulze WX. Sucrose-induced receptor kinase SIRK1 regulates a plasma membrane aquaporin in Arabidopsis. Mol Cell Proteomics 2013; 12:2856-73. [PMID: 23820729 PMCID: PMC3790296 DOI: 10.1074/mcp.m113.029579] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2013] [Revised: 06/30/2013] [Indexed: 11/06/2022] Open
Abstract
The transmembrane receptor kinase family is the largest protein kinase family in Arabidopsis, and it contains the highest fraction of proteins with yet uncharacterized functions. Here, we present functions of SIRK1, a receptor kinase that was previously identified with rapid transient phosphorylation after sucrose resupply to sucrose-starved seedlings. SIRK1 was found to be an active kinase with increasing activity in the presence of an external sucrose supply. In sirk1 T-DNA insertional mutants, the sucrose-induced phosphorylation patterns of several membrane proteins were strongly reduced; in particular, pore-gating phosphorylation sites in aquaporins were affected. SIRK1-GFP fusions were found to directly interact with aquaporins in affinity pull-down experiments on microsomal membrane vesicles. Furthermore, protoplast swelling assays of sirk1 mutants and SIRK1-GFP expressing lines confirmed a direct functional interaction of receptor kinase SIRK1 and aquaporins as substrates for phosphorylation. A lack of SIRK1 expression resulted in the failure of mutant protoplasts to control water channel activity upon changes in external sucrose concentrations. We propose that SIRK1 is involved in the regulation of sucrose-specific osmotic responses through direct interaction with and activation of an aquaporin via phosphorylation and that the duration of this response is controlled by phosphorylation-dependent receptor internalization.
Collapse
Affiliation(s)
- Xu Na Wu
- Max Planck Institute for Molecular Plant Physiology, Am Mühlenberg 1, 14476 Golm, Germany
| | | | | | | | | |
Collapse
|
175
|
Fleitz A, Nieves E, Madrid-Aliste C, Fentress SJ, Sibley LD, Weiss LM, Angeletti RH, Che FY. Enhanced detection of multiply phosphorylated peptides and identification of their sites of modification. Anal Chem 2013; 85:8566-76. [PMID: 23889490 PMCID: PMC3841110 DOI: 10.1021/ac401691g] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Phosphorylation is an important post-translational modification that rapidly mediates many cellular events. A key to understanding the dynamics of the phosphoproteome is localization of the modification site(s), primarily determined using LC-MS/MS. A major technical challenge to analysis is the formation of phosphopeptide-metal ion complexes during LC which hampers phosphopeptide detection. We have devised a strategy that enhances analysis of phosphopeptides, especially multiply phosphorylated peptides. It involves treatment of the LC system with EDTA and 2D-RP/RP-nanoUPLC-MS/MS (high pH/low pH) analysis. A standard triphosphorylated peptide that could not be detected with 1D-RP-nanoUPLC-MS/MS, even if the column was treated with EDTA-Na2 or if 25 mM EDTA-Na2 was added to the sample, was detectable at less than 100 fmol using EDTA-2D-RP/RP-nanoUPLC-MS/MS. Digests of α-casein and ß-casein were analyzed by EDTA-1D-RP-nanoUPLC, 2D-RP/RP-nanoUPLC, and EDTA-2D-RP/RP-nanoUPLC to compare their performance in phosphopeptide analysis. With the first two approaches, no tri- and tetraphosphopeptides were identified in either α- or ß-casein sample. With the EDTA-2D-RP/RP approach, 13 mono-, 6 di-, and 3 triphosphopeptides were identified in the α-casein sample, while 19 mono-, 8 di-, 4 tri-, and 3 tetraphosphopeptides were identified in the ß-casein sample. Using EDTA-2D-RP/RP-nanoUPLC-MS/MS to examine 500 μg of a human foreskin fibroblast cell lysate a total of 1,944 unique phosphopeptides from 1,087 unique phosphoproteins were identified, and 2,164 unique phosphorylation sites were confidently localized (Ascore ≥20). Of these sites 79% were mono-, 20% di-, and ∼1% were tri- and tetraphosphopeptides, and 78 novel phosphorylation sites in human proteins were identified.
Collapse
Affiliation(s)
- Antoine Fleitz
- Program in Genomics and Proteomics, University of Lille, France
| | - Edward Nieves
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, New York 10461, United States
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461, United States
| | - Carlos Madrid-Aliste
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, New York 10461, United States
| | - Sarah J. Fentress
- Department of Molecular Microbiology, Washington University, St. Louis, Missouri 63110, United States
| | - L. David Sibley
- Department of Molecular Microbiology, Washington University, St. Louis, Missouri 63110, United States
| | - Louis M. Weiss
- Department of Pathology, Albert Einstein College of Medicine, Bronx, New York 10461, United States
- Department of Medicine (Infectious Diseases), Albert Einstein College of Medicine, Bronx, New York 10461, United States
| | - Ruth Hogue Angeletti
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, New York 10461, United States
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461, United States
| | - Fa-Yun Che
- Department of Pathology, Albert Einstein College of Medicine, Bronx, New York 10461, United States
| |
Collapse
|
176
|
Yeast haspin kinase regulates polarity cues necessary for mitotic spindle positioning and is required to tolerate mitotic arrest. Dev Cell 2013; 26:483-95. [PMID: 23973165 DOI: 10.1016/j.devcel.2013.07.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Revised: 04/15/2013] [Accepted: 07/16/2013] [Indexed: 01/05/2023]
Abstract
Haspin is an atypical protein kinase that in several organisms phosphorylates histone H3Thr3 and is involved in chromosome segregation. In Saccharomyces cerevisiae, H3Thr3 phosphorylation has never been observed and the function of haspin is unknown. We show that deletion of ALK1 and ALK2 haspin paralogs causes the mislocalization of polarisome components. Following a transient mitotic arrest, this leads to an overly polarized actin distribution in the bud where the mitotic spindle is pulled. Here it elongates, generating anucleated mothers and binucleated daughters. Reducing the intensity of the bud-directed pulling forces partially restores proper cell division. We propose that haspin controls the localization of polarity cues to preserve the coordination between polarization and the cell cycle and to tolerate transient mitotic arrests. The evolutionary conservation of haspin and of the polarization mechanisms suggests that this function of haspin is likely shared with other eukaryotes, in which haspin may regulate asymmetric cell division.
Collapse
|
177
|
Leadsham JE, Sanders G, Giannaki S, Bastow EL, Hutton R, Naeimi WR, Breitenbach M, Gourlay CW. Loss of cytochrome c oxidase promotes RAS-dependent ROS production from the ER resident NADPH oxidase, Yno1p, in yeast. Cell Metab 2013; 18:279-86. [PMID: 23931758 DOI: 10.1016/j.cmet.2013.07.005] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Revised: 05/14/2013] [Accepted: 06/25/2013] [Indexed: 10/26/2022]
Abstract
Many disease states, including the aging process, are associated with the accumulation of mitochondria harboring respiratory dysfunction. Mitochondrial dysfunction is often accompanied by increased ROS levels that can contribute to cellular dysfunction and disease etiology. Here we use the model eukaryote S. cerevisiae to investigate whether reduced cytochrome c oxidase (COX) activity, commonly reported in aging organisms and associated with neurodegenerative disorders, leads to ROS production from mitochondria. We provide evidence that although reduced COX complex activity correlates with ROS accumulation, mitochondria are not the major production center. Instead we show that COX-deficient mitochondria activate Ras upon their outer membrane that establishes a pro-ROS accumulation environment by suppressing antioxidant defenses and the ERAD-mediated turnover of the ER-localized NADPH oxidase Yno1p. Our data suggest that dysfunctional mitochondria can serve as a signaling platform to promote the loss of redox homeostasis, ROS accumulation, and accelerate aging in yeast.
Collapse
|
178
|
Cassani C, Raspelli E, Santo N, Chiroli E, Lucchini G, Fraschini R. Saccharomyces cerevisiae Dma proteins participate in cytokinesis by controlling two different pathways. Cell Cycle 2013; 12:2794-808. [PMID: 23966170 PMCID: PMC3899193 DOI: 10.4161/cc.25869] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Cytokinesis completion in the budding yeast S. cerevisiae is driven by tightly regulated pathways, leading to actomyosin ring contraction coupled to plasma membrane constriction and to centripetal growth of the primary septum, respectively. These pathways can partially substitute for each other, but their concomitant inactivation leads to cytokinesis block and cell death. Here we show that both the lack of the functionally redundant FHA-RING ubiquitin ligases Dma1 and Dma2 and moderate Dma2 overproduction affect actomyosin ring contraction as well as primary septum deposition, although they do not apparently alter cell cycle progression of otherwise wild-type cells. In addition, overproduction of Dma2 impairs the interaction between Tem1 and Iqg1, which is thought to be required for AMR contraction, and causes asymmetric primary septum deposition as well as mislocalization of the Cyk3-positive regulator of this process. In agreement with these multiple inhibitory effects, a Dma2 excess that does not cause any apparent defect in wild-type cells leads to lethal cytokinesis block in cells lacking the Hof1 protein, which is essential for primary septum formation in the absence of Cyk3. Altogether, these findings suggest that the Dma proteins act as negative regulators of cytokinesis.
Collapse
Affiliation(s)
- Corinne Cassani
- Università degli Studi di Milano-Bicocca; Dipartimento di Biotecnologie e Bioscienze; Milano, Italy
| | | | | | | | | | | |
Collapse
|
179
|
Shannon PT, Grimes M, Kutlu B, Bot JJ, Galas DJ. RCytoscape: tools for exploratory network analysis. BMC Bioinformatics 2013; 14:217. [PMID: 23837656 PMCID: PMC3751905 DOI: 10.1186/1471-2105-14-217] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Accepted: 06/17/2013] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Biomolecular pathways and networks are dynamic and complex, and the perturbations to them which cause disease are often multiple, heterogeneous and contingent. Pathway and network visualizations, rendered on a computer or published on paper, however, tend to be static, lacking in detail, and ill-equipped to explore the variety and quantities of data available today, and the complex causes we seek to understand. RESULTS RCytoscape integrates R (an open-ended programming environment rich in statistical power and data-handling facilities) and Cytoscape (powerful network visualization and analysis software). RCytoscape extends Cytoscape's functionality beyond what is possible with the Cytoscape graphical user interface. To illustrate the power of RCytoscape, a portion of the Glioblastoma multiforme (GBM) data set from the Cancer Genome Atlas (TCGA) is examined. Network visualization reveals previously unreported patterns in the data suggesting heterogeneous signaling mechanisms active in GBM Proneural tumors, with possible clinical relevance. CONCLUSIONS Progress in bioinformatics and computational biology depends upon exploratory and confirmatory data analysis, upon inference, and upon modeling. These activities will eventually permit the prediction and control of complex biological systems. Network visualizations--molecular maps--created from an open-ended programming environment rich in statistical power and data-handling facilities, such as RCytoscape, will play an essential role in this progression.
Collapse
Affiliation(s)
- Paul T Shannon
- Fred Hutchison Cancer Research Institute, Seattle Washington, and the Institute for Systems Biology, 401 Terry Ave. N, Seattle, WA, USA
- Institute for Systems Biology, 401 Terry Ave. N, Seattle, WA, USA
| | - Mark Grimes
- Division of Biological Sciences, Center for Structural and Functional Neuroscience, University of Montana, Missoula, MT, USA
| | - Burak Kutlu
- Institute for Systems Biology, 401 Terry Ave. N, Seattle, WA, USA
| | - Jan J Bot
- Delft University of Technology, Delft Bioinformatics Lab, Delft, The Netherlands
| | - David J Galas
- Pacific Northwest Diabetes Research Institute, 720 Broadway, Seattle, WA 98120, USA
| |
Collapse
|
180
|
Chen WM, Danziger SA, Chiang JH, Aitchison JD. PhosphoChain: a novel algorithm to predict kinase and phosphatase networks from high-throughput expression data. ACTA ACUST UNITED AC 2013; 29:2435-44. [PMID: 23832245 DOI: 10.1093/bioinformatics/btt387] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
MOTIVATION Protein phosphorylation is critical for regulating cellular activities by controlling protein activities, localization and turnover, and by transmitting information within cells through signaling networks. However, predictions of protein phosphorylation and signaling networks remain a significant challenge, lagging behind predictions of transcriptional regulatory networks into which they often feed. RESULTS We developed PhosphoChain to predict kinases, phosphatases and chains of phosphorylation events in signaling networks by combining mRNA expression levels of regulators and targets with a motif detection algorithm and optional prior information. PhosphoChain correctly reconstructed ∼78% of the yeast mitogen-activated protein kinase pathway from publicly available data. When tested on yeast phosphoproteomic data from large-scale mass spectrometry experiments, PhosphoChain correctly identified ∼27% more phosphorylation sites than existing motif detection tools (NetPhosYeast and GPS2.0), and predictions of kinase-phosphatase interactions overlapped with ∼59% of known interactions present in yeast databases. PhosphoChain provides a valuable framework for predicting condition-specific phosphorylation events from high-throughput data. AVAILABILITY PhosphoChain is implemented in Java and available at http://virgo.csie.ncku.edu.tw/PhosphoChain/ or http://aitchisonlab.com/PhosphoChain
Collapse
Affiliation(s)
- Wei-Ming Chen
- Institute for Systems Biology, Seattle, WA 98109-5234, USA, Department of Computer Science and Information Engineering, National Cheng Kung University, Tainan, Taiwan and Seattle Biomedical Research Institute, Seattle, WA 98109-5219, USA
| | | | | | | |
Collapse
|
181
|
Zhang Y, Kweon HK, Shively C, Kumar A, Andrews PC. Towards systematic discovery of signaling networks in budding yeast filamentous growth stress response using interventional phosphorylation data. PLoS Comput Biol 2013; 9:e1003077. [PMID: 23825934 PMCID: PMC3694812 DOI: 10.1371/journal.pcbi.1003077] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Accepted: 04/17/2013] [Indexed: 11/19/2022] Open
Abstract
Reversible phosphorylation is one of the major mechanisms of signal transduction, and signaling networks are critical regulators of cell growth and development. However, few of these networks have been delineated completely. Towards this end, quantitative phosphoproteomics is emerging as a useful tool enabling large-scale determination of relative phosphorylation levels. However, phosphoproteomics differs from classical proteomics by a more extensive sampling limitation due to the limited number of detectable sites per protein. Here, we propose a comprehensive quantitative analysis pipeline customized for phosphoproteome data from interventional experiments for identifying key proteins in specific pathways, discovering the protein-protein interactions and inferring the signaling network. We also made an effort to partially compensate for the missing value problem, a chronic issue for proteomics studies. The dataset used for this study was generated using SILAC (Stable Isotope Labeling with Amino acids in Cell culture) technique with interventional experiments (kinase-dead mutations). The major components of the pipeline include phosphopeptide meta-analysis, correlation network analysis and causal relationship discovery. We have successfully applied our pipeline to interventional experiments identifying phosphorylation events underlying the transition to a filamentous growth form in Saccharomyces cerevisiae. We identified 5 high-confidence proteins from meta-analysis, and 19 hub proteins from correlation analysis (Pbi2p and Hsp42p were identified by both analyses). All these proteins are involved in stress responses. Nine of them have direct or indirect evidence of involvement in filamentous growth. In addition, we tested four of our predicted proteins, Nth1p, Pbi2p, Pdr12p and Rcn2p, by interventional phenotypic experiments and all of them present differential invasive growth, providing prospective validation of our approach. This comprehensive pipeline presents a systematic way for discovering signaling networks using interventional phosphoproteome data and can suggest candidate proteins for further investigation. We anticipate the methodology to be applicable as well to other interventional studies via different experimental platforms.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Hye Kyong Kweon
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Christian Shively
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Anuj Kumar
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Philip C. Andrews
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
- * E-mail:
| |
Collapse
|
182
|
Xue L, Geahlen RL, Tao WA. Identification of direct tyrosine kinase substrates based on protein kinase assay-linked phosphoproteomics. Mol Cell Proteomics 2013; 12:2969-80. [PMID: 23793017 DOI: 10.1074/mcp.o113.027722] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Protein kinases are implicated in multiple diseases such as cancer, diabetes, cardiovascular diseases, and central nervous system disorders. Identification of kinase substrates is critical to dissecting signaling pathways and to understanding disease pathologies. However, methods and techniques used to identify bona fide kinase substrates have remained elusive. Here we describe a proteomic strategy suitable for identifying kinase specificity and direct substrates in high throughput. This approach includes an in vitro kinase assay-based substrate screening and an endogenous kinase dependent phosphorylation profiling. In the in vitro kinase reaction route, a pool of formerly phosphorylated proteins is directly extracted from whole cell extracts, dephosphorylated by phosphatase treatment, after which the kinase of interest is added. Quantitative proteomics identifies the rephosphorylated proteins as direct substrates in vitro. In parallel, the in vivo quantitative phosphoproteomics is performed in which cells are treated with or without the kinase inhibitor. Together, proteins phosphorylated in vitro overlapping with the kinase-dependent phosphoproteome in vivo represents the physiological direct substrates in high confidence. The protein kinase assay-linked phosphoproteomics was applied to identify 25 candidate substrates of the protein-tyrosine kinase SYK, including a number of known substrates and many novel substrates in human B cells. These shed light on possible new roles for SYK in multiple important signaling pathways. The results demonstrate that this integrated proteomic approach can provide an efficient strategy to screen direct substrates for protein tyrosine kinases.
Collapse
|
183
|
de Assis LJ, Zingali RB, Masuda CA, Rodrigues SP, Montero-Lomelí M. Pyruvate decarboxylase activity is regulated by the Ser/Thr protein phosphatase Sit4p in the yeastSaccharomyces cerevisiae. FEMS Yeast Res 2013; 13:518-28. [DOI: 10.1111/1567-1364.12052] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Revised: 05/15/2013] [Accepted: 05/16/2013] [Indexed: 11/30/2022] Open
Affiliation(s)
- Leandro José de Assis
- Instituto de Bioquímica Médica Programa de Biologia Molecular e Biotecnologia; Universidade Federal do Rio de Janeiro; Rio de Janeiro; Brazil
| | | | - Claudio Akio Masuda
- Instituto de Bioquímica Médica Programa de Biologia Molecular e Biotecnologia; Universidade Federal do Rio de Janeiro; Rio de Janeiro; Brazil
| | | | - Monica Montero-Lomelí
- Instituto de Bioquímica Médica Programa de Biologia Molecular e Biotecnologia; Universidade Federal do Rio de Janeiro; Rio de Janeiro; Brazil
| |
Collapse
|
184
|
Kweon HK, Andrews PC. Quantitative analysis of global phosphorylation changes with high-resolution tandem mass spectrometry and stable isotopic labeling. Methods 2013; 61:251-9. [PMID: 23611819 PMCID: PMC3700606 DOI: 10.1016/j.ymeth.2013.04.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Revised: 03/05/2013] [Accepted: 04/13/2013] [Indexed: 11/23/2022] Open
Abstract
Quantitative measurement of specific protein phosphorylation sites is a primary interest of biologists, as site-specific phosphorylation information provides insights into cell signaling networks and cellular dynamics at a system level. Over the last decade, selective phosphopeptide enrichment methods including IMAC and metal oxides (TiO₂ and ZrO₂) have been developed and greatly facilitate large scale phosphoproteome analysis of various cells, tissues and living organisms, in combination with modern mass spectrometers featuring high mass accuracy and high mass resolution. Various quantification strategies have been applied to detecting relative changes in expression of proteins, peptides, and specific modifications between samples. The combination of mass spectrometry-based phosphoproteome analysis with quantification strategies provides a straightforward and unbiased method to identify and quantify site-specific phosphorylation. We describe common strategies for mass spectrometric analysis of stable isotope labeled samples, as well as two widely applied phosphopeptide enrichment methods based on IMAC(NTA-Fe³⁺) and metal oxide (ZrO₂). Instrumental configurations for on-line LC-tandem mass spectrometric analysis and parameters of conventional bioinformatic analysis of large data sets are also considered for confident identification, localization, and reliable quantification of site-specific phosphorylation.
Collapse
Affiliation(s)
- Hye Kyong Kweon
- Department of Biological Chemistry, University of Michigan, USA.
| | | |
Collapse
|
185
|
Schwer B, Chang J, Shuman S. Structure-function analysis of the 5' end of yeast U1 snRNA highlights genetic interactions with the Msl5*Mud2 branchpoint-binding complex and other spliceosome assembly factors. Nucleic Acids Res 2013; 41:7485-500. [PMID: 23754852 PMCID: PMC3753624 DOI: 10.1093/nar/gkt490] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Yeast pre-mRNA splicing initiates via formation of a complex comprising U1 snRNP bound at the 5' splice site (5'SS) and the Msl5•Mud2 heterodimer engaged at the branchpoint (BP). Here, we present a mutational analysis of the U1 snRNA, which shows that although enlarging the 5' leader between the TMG cap and the (3)ACUUAC(8) motif that anneals to the 5'SS is tolerated, there are tight constraints on the downstream spacer between (3)ACUUAC(8) and helix 1 of the U1 fold. We exploit U1 alleles with 5' extensions, variations in the (3)ACUUAC(8) motif, downstream mutations and a longer helix 1 to discover new intra-snRNP synergies with U1 subunits Nam8 and Mud1 and the trimethylguanosine (TMG) cap. We describe novel mutations in U1 snRNA that bypass the essentiality of the DEAD-box protein Prp28. Structure-guided mutagenesis of Msl5 distinguished four essential amino acids that contact the BP sequence from nine other BP-binding residues that are inessential. We report new synthetic genetic interactions of the U1 snRNP with Msl5 and Mud2 and with the nuclear cap-binding subunit Cbc2. Our results fortify the idea that spliceosome assembly can occur via distinct genetically buffered microscopic pathways involving cross-intron-bridging interactions of the U1 snRNP•5'SS complex with the Mud2•Msl5•BP complex.
Collapse
Affiliation(s)
- Beate Schwer
- Microbiology and Immunology Department, Weill Cornell Medical College, New York, NY 10065, USA and Molecular Biology Program, Sloan-Kettering Institute, New York, NY 10065, USA
| | | | | |
Collapse
|
186
|
Csermely P, Korcsmáros T, Kiss HJM, London G, Nussinov R. Structure and dynamics of molecular networks: a novel paradigm of drug discovery: a comprehensive review. Pharmacol Ther 2013; 138:333-408. [PMID: 23384594 PMCID: PMC3647006 DOI: 10.1016/j.pharmthera.2013.01.016] [Citation(s) in RCA: 521] [Impact Index Per Article: 43.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Accepted: 01/22/2013] [Indexed: 02/02/2023]
Abstract
Despite considerable progress in genome- and proteome-based high-throughput screening methods and in rational drug design, the increase in approved drugs in the past decade did not match the increase of drug development costs. Network description and analysis not only give a systems-level understanding of drug action and disease complexity, but can also help to improve the efficiency of drug design. We give a comprehensive assessment of the analytical tools of network topology and dynamics. The state-of-the-art use of chemical similarity, protein structure, protein-protein interaction, signaling, genetic interaction and metabolic networks in the discovery of drug targets is summarized. We propose that network targeting follows two basic strategies. The "central hit strategy" selectively targets central nodes/edges of the flexible networks of infectious agents or cancer cells to kill them. The "network influence strategy" works against other diseases, where an efficient reconfiguration of rigid networks needs to be achieved by targeting the neighbors of central nodes/edges. It is shown how network techniques can help in the identification of single-target, edgetic, multi-target and allo-network drug target candidates. We review the recent boom in network methods helping hit identification, lead selection optimizing drug efficacy, as well as minimizing side-effects and drug toxicity. Successful network-based drug development strategies are shown through the examples of infections, cancer, metabolic diseases, neurodegenerative diseases and aging. Summarizing >1200 references we suggest an optimized protocol of network-aided drug development, and provide a list of systems-level hallmarks of drug quality. Finally, we highlight network-related drug development trends helping to achieve these hallmarks by a cohesive, global approach.
Collapse
Affiliation(s)
- Peter Csermely
- Department of Medical Chemistry, Semmelweis University, P.O. Box 260, H-1444 Budapest 8, Hungary.
| | | | | | | | | |
Collapse
|
187
|
Sadowski I, Breitkreutz BJ, Stark C, Su TC, Dahabieh M, Raithatha S, Bernhard W, Oughtred R, Dolinski K, Barreto K, Tyers M. The PhosphoGRID Saccharomyces cerevisiae protein phosphorylation site database: version 2.0 update. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2013; 2013:bat026. [PMID: 23674503 PMCID: PMC3653121 DOI: 10.1093/database/bat026] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
PhosphoGRID is an online database that curates and houses experimentally verified in vivo phosphorylation sites in the Saccharomyces cerevisiae proteome (www.phosphogrid.org). Phosphosites are annotated with specific protein kinases and/or phosphatases, along with the condition(s) under which the phosphorylation occurs and/or the effects on protein function. We report here an updated data set, including nine additional high-throughput (HTP) mass spectrometry studies. The version 2.0 data set contains information on 20 177 unique phosphorylated residues, representing a 4-fold increase from version 1.0, and includes 1614 unique phosphosites derived from focused low-throughput (LTP) studies. The overlap between HTP and LTP studies represents only ∼3% of the total unique sites, but importantly 45% of sites from LTP studies with defined function were discovered in at least two independent HTP studies. The majority of new phosphosites in this update occur on previously documented proteins, suggesting that coverage of phosphoproteins in the yeast proteome is approaching saturation. We will continue to update the PhosphoGRID data set, with the expectation that the integration of information from LTP and HTP studies will enable the development of predictive models of phosphorylation-based signaling networks. Database URL:http://www.phosphogrid.org/
Collapse
Affiliation(s)
- Ivan Sadowski
- Department of Biochemistry and Molecular Biology, Molecular Epigenetics, Life Sciences Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver, British Columbia, Canada V6T 1Z3.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
188
|
Bastajian N, Friesen H, Andrews BJ. Bck2 acts through the MADS box protein Mcm1 to activate cell-cycle-regulated genes in budding yeast. PLoS Genet 2013; 9:e1003507. [PMID: 23675312 PMCID: PMC3649975 DOI: 10.1371/journal.pgen.1003507] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Accepted: 03/27/2013] [Indexed: 11/19/2022] Open
Abstract
The Bck2 protein is a potent genetic regulator of cell-cycle-dependent gene expression in budding yeast. To date, most experiments have focused on assessing a potential role for Bck2 in activation of the G1/S-specific transcription factors SBF (Swi4, Swi6) and MBF (Mbp1, Swi6), yet the mechanism of gene activation by Bck2 has remained obscure. We performed a yeast two-hybrid screen using a truncated version of Bck2 and discovered six novel Bck2-binding partners including Mcm1, an essential protein that binds to and activates M/G1 promoters through Early Cell cycle Box (ECB) elements as well as to G2/M promoters. At M/G1 promoters Mcm1 is inhibited by association with two repressors, Yox1 or Yhp1, and gene activation ensues once repression is relieved by an unknown activating signal. Here, we show that Bck2 interacts physically with Mcm1 to activate genes during G1 phase. We used chromatin immunoprecipitation (ChIP) experiments to show that Bck2 localizes to the promoters of M/G1-specific genes, in a manner dependent on functional ECB elements, as well as to the promoters of G1/S and G2/M genes. The Bck2-Mcm1 interaction requires valine 69 on Mcm1, a residue known to be required for interaction with Yox1. Overexpression of BCK2 decreases Yox1 localization to the early G1-specific CLN3 promoter and rescues the lethality caused by overexpression of YOX1. Our data suggest that Yox1 and Bck2 may compete for access to the Mcm1-ECB scaffold to ensure appropriate activation of the initial suite of genes required for cell cycle commitment.
Collapse
Affiliation(s)
- Nazareth Bastajian
- The Donnelly Centre and the Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Helena Friesen
- The Donnelly Centre and the Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Brenda J. Andrews
- The Donnelly Centre and the Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- * E-mail:
| |
Collapse
|
189
|
Rother M, Münzner U, Thieme S, Krantz M. Information content and scalability in signal transduction network reconstruction formats. MOLECULAR BIOSYSTEMS 2013; 9:1993-2004. [PMID: 23636168 DOI: 10.1039/c3mb00005b] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
One of the first steps towards holistic understanding of cellular networks is the integration of the available information in a human and machine readable format. This network reconstruction process is well established for metabolic networks, and numerous genome wide metabolic reconstructions are already available. Extending these strategies to signalling networks has proven difficult, primarily due to the combinatorial nature of regulatory modifications. The combinatorial nature of possible protein-protein interactions and post translational modifications affects both network size and the correspondence between the reconstructed network and the underlying empirical data. Here, we discuss different approaches to reconstruction of signal transduction networks. We divide the current approaches into topological, specific state based and reaction-contingency based, and discuss their different information content and scalability. The discussion focusses on graphical formats but the points are in general applicable also to mathematical models and databases. While the formats have complementary strengths especially for small networks, reaction-contingency based formats have a number of advantages in the light of global network reconstruction. In particular, they minimise the need for assumptions, maximise the congruence with empirical data, and scale efficiently with network size.
Collapse
Affiliation(s)
- Magdalena Rother
- Theoretical Biophysics, Humboldt-Universität zu Berlin, Invalidenstr. 42, 10115 Berlin, Germany
| | | | | | | |
Collapse
|
190
|
Casado P, Alcolea MP, Iorio F, Rodríguez-Prados JC, Vanhaesebroeck B, Saez-Rodriguez J, Joel S, Cutillas PR. Phosphoproteomics data classify hematological cancer cell lines according to tumor type and sensitivity to kinase inhibitors. Genome Biol 2013; 14:R37. [PMID: 23628362 PMCID: PMC4054101 DOI: 10.1186/gb-2013-14-4-r37] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2012] [Accepted: 04/29/2013] [Indexed: 01/08/2023] Open
Abstract
Background Tumor classification based on their predicted responses to kinase inhibitors is a major goal for advancing targeted personalized therapies. Here, we used a phosphoproteomic approach to investigate biological heterogeneity across hematological cancer cell lines including acute myeloid leukemia, lymphoma, and multiple myeloma. Results Mass spectrometry was used to quantify 2,000 phosphorylation sites across three acute myeloid leukemia, three lymphoma, and three multiple myeloma cell lines in six biological replicates. The intensities of the phosphorylation sites grouped these cancer cell lines according to their tumor type. In addition, a phosphoproteomic analysis of seven acute myeloid leukemia cell lines revealed a battery of phosphorylation sites whose combined intensities correlated with the growth-inhibitory responses to three kinase inhibitors with remarkable correlation coefficients and fold changes (> 100 between the most resistant and sensitive cells). Modeling based on regression analysis indicated that a subset of phosphorylation sites could be used to predict response to the tested drugs. Quantitative analysis of phosphorylation motifs indicated that resistant and sensitive cells differed in their patterns of kinase activities, but, interestingly, phosphorylations correlating with responses were not on members of the pathway being targeted; instead, these mainly were on parallel kinase pathways. Conclusion This study reveals that the information on kinase activation encoded in phosphoproteomics data correlates remarkably well with the phenotypic responses of cancer cells to compounds that target kinase signaling and could be useful for the identification of novel markers of resistance or sensitivity to drugs that target the signaling network.
Collapse
|
191
|
Wippich F, Bodenmiller B, Trajkovska MG, Wanka S, Aebersold R, Pelkmans L. Dual specificity kinase DYRK3 couples stress granule condensation/dissolution to mTORC1 signaling. Cell 2013; 152:791-805. [PMID: 23415227 DOI: 10.1016/j.cell.2013.01.033] [Citation(s) in RCA: 453] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Revised: 10/08/2012] [Accepted: 01/10/2013] [Indexed: 12/14/2022]
Abstract
Cytosolic compartmentalization through liquid-liquid unmixing, such as the formation of RNA granules, is involved in many cellular processes and might be used to regulate signal transduction. However, specific molecular mechanisms by which liquid-liquid unmixing and signal transduction are coupled remain unknown. Here, we show that during cellular stress the dual specificity kinase DYRK3 regulates the stability of P-granule-like structures and mTORC1 signaling. DYRK3 displays a cyclic partitioning mechanism between stress granules and the cytosol via a low-complexity domain in its N terminus and its kinase activity. When DYRK3 is inactive, it prevents stress granule dissolution and the release of sequestered mTORC1. When DYRK3 is active, it allows stress granule dissolution, releasing mTORC1 for signaling and promoting its activity by directly phosphorylating the mTORC1 inhibitor PRAS40. This mechanism links cytoplasmic compartmentalization via liquid phase transitions with cellular signaling.
Collapse
Affiliation(s)
- Frank Wippich
- Institute of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | | | | | | | | | | |
Collapse
|
192
|
Towards systems biology of mycotoxin regulation. Toxins (Basel) 2013; 5:675-82. [PMID: 23598563 PMCID: PMC3705286 DOI: 10.3390/toxins5040675] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Revised: 03/22/2013] [Accepted: 04/10/2013] [Indexed: 11/16/2022] Open
Abstract
Systems biology is a scientific approach that integrates many scientific disciplines to develop a comprehensive understanding of biological phenomena, thus allowing the prediction and accurate simulation of complex biological behaviors. It may be presumptuous to write about toxin regulation at the level of systems biology, but the last decade of research is leading us closer than ever to this approach. Past research has delineated multiple levels of regulation in the pathways leading to the biosynthesis of secondary metabolites, including mycotoxins. At the top of this hierarchy, the global or master transcriptional regulators perceive various environmental cues such as climatic conditions, the availability of nutrients, and the developmental stages of the organism. Information accumulated from various inputs is integrated through a complex web of signalling networks to generate the eventual outcome. This review will focus on adapting techniques such as chemical and other genetic tools available in the model system Saccharomyces cerevisiae, to disentangle the various biological networks involved in the biosynthesis of mycotoxins in the Fusarium spp.
Collapse
|
193
|
Taylor NMI, Glatt S, Hennrich ML, von Scheven G, Grötsch H, Fernández-Tornero C, Rybin V, Gavin AC, Kolb P, Müller CW. Structural and functional characterization of a phosphatase domain within yeast general transcription factor IIIC. J Biol Chem 2013; 288:15110-20. [PMID: 23569204 DOI: 10.1074/jbc.m112.427856] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Saccharomyces cerevisiae τ55, a subunit of the RNA polymerase III-specific general transcription factor TFIIIC, comprises an N-terminal histidine phosphatase domain (τ55-HPD) whose catalytic activity and cellular function is poorly understood. We solved the crystal structures of τ55-HPD and its closely related paralogue Huf and used in silico docking methods to identify phosphoserine- and phosphotyrosine-containing peptides as possible substrates that were subsequently validated using in vitro phosphatase assays. A comparative phosphoproteomic study identified additional phosphopeptides as possible targets that show the involvement of these two phosphatases in the regulation of a variety of cellular functions. Our results identify τ55-HPD and Huf as bona fide protein phosphatases, characterize their substrate specificities, and provide a small set of regulated phosphosite targets in vivo.
Collapse
Affiliation(s)
- Nicholas M I Taylor
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
194
|
Multiplexed mass cytometry profiling of cellular states perturbed by small-molecule regulators. Nat Biotechnol 2013; 30:858-67. [PMID: 22902532 DOI: 10.1038/nbt.2317] [Citation(s) in RCA: 406] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Accepted: 07/02/2012] [Indexed: 12/11/2022]
Abstract
Mass cytometry facilitates high-dimensional, quantitative analysis of the effects of bioactive molecules on human samples at single-cell resolution, but instruments process only one sample at a time. Here we describe mass-tag cellular barcoding (MCB), which increases mass cytometry throughput by using n metal ion tags to multiplex up to 2n samples. We used seven tags to multiplex an entire 96-well plate, and applied MCB to characterize human peripheral blood mononuclear cell (PBMC) signaling dynamics and cell-to-cell communication, signaling variability between PBMCs from eight human donors, and the effects of 27 inhibitors on this system. For each inhibitor, we measured 14 phosphorylation sites in 14 PBMC types at 96 conditions, resulting in 18,816 quantified phosphorylation levels from each multiplexed sample. This high-dimensional, systems-level inquiry allowed analysis across cell-type and signaling space, reclassified inhibitors and revealed off-target effects. High-content, high-throughput screening with MCB should be useful for drug discovery, preclinical testing and mechanistic investigation of human disease.
Collapse
|
195
|
Hu J, Rho HS, Newman RH, Hwang W, Neiswinger J, Zhu H, Zhang J, Qian J. Global analysis of phosphorylation networks in humans. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1844:224-31. [PMID: 23524292 DOI: 10.1016/j.bbapap.2013.03.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Revised: 03/05/2013] [Accepted: 03/09/2013] [Indexed: 11/25/2022]
Abstract
Phosphorylation-mediated signaling plays a crucial role in nearly every aspect of cellular physiology. A recent study based on protein microarray experiments identified a large number of kinase-substrate relationships (KSRs), and built a comprehensive and reliable phosphorylation network in humans. Analysis of this network, in conjunction with additional resources, revealed several key features. First, comparison of the human and yeast phosphorylation networks uncovered an evolutionarily conserved signaling backbone dominated by kinase-to-kinase relationships. Second, although most of the KSRs themselves are not conserved, the functions enriched in the substrates for a given kinase are often conserved. Third, the prevalence of kinase-transcription factor regulatory modules suggests that phosphorylation and transcriptional regulatory networks are inherently wired together to form integrated regulatory circuits. Overall, the phosphorylation networks described in this work promise to offer new insights into the properties of kinase signaling pathways, at both the global and the protein levels. This article is part of a Special Issue entitled: Computational Proteomics, Systems Biology & Clinical Implications. Guest Editor: Yudong Cai.
Collapse
Affiliation(s)
- Jianfei Hu
- Department of Ophthalmology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | | | | | | | | | | | | | | |
Collapse
|
196
|
Breitwieser FP, Colinge J. Isobar(PTM): a software tool for the quantitative analysis of post-translationally modified proteins. J Proteomics 2013; 90:77-84. [PMID: 23470796 PMCID: PMC3759844 DOI: 10.1016/j.jprot.2013.02.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Revised: 02/21/2013] [Accepted: 02/21/2013] [Indexed: 12/26/2022]
Abstract
The establishment of extremely powerful proteomics platforms able to map thousands of modification sites, e.g. phosphorylations or acetylations, over entire proteomes calls for equally powerful software tools to effectively extract useful and reliable information from such complex datasets. We present a new quantitative PTM analysis platform aimed at processing iTRAQ or Tandem Mass Tags (TMT) labeled peptides. It covers a broad range of needs associated with proper PTM ratio analysis such as PTM localization validation, robust ratio computation and statistical assessment, and navigable user report generation. IsobarPTM is made available as an R Bioconductor package and it can be run from the command line by non R specialists. Biological significance “IsobarPTM is a new software tool facilitating the quantitative analysis of protein modification regulation streamlining important issues related to PTM localization and statistical modeling. Users are provided with a navigable spreadsheet report, which also annotate already public modification sites.” This article is part of a Special Issue entitled: From Genome to Proteome: Open Innovations. IsobarPTM is a new open source software tool to analyze PTM regulation. Quantitative iTRAQ and TMT data are supported. Whole set of functionalities from PTM size localization to statistical modeling Navigable user reports are generated automatically. Available as R Bioconductor package
Collapse
Affiliation(s)
| | - Jacques Colinge
- Corresponding author. Tel.: + 43 14016070020; fax: + 43 140160970000.
| |
Collapse
|
197
|
Goh WWB, Wong L. Networks in proteomics analysis of cancer. Curr Opin Biotechnol 2013; 24:1122-8. [PMID: 23481377 DOI: 10.1016/j.copbio.2013.02.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Revised: 01/07/2013] [Accepted: 02/09/2013] [Indexed: 01/08/2023]
Abstract
Proteomics provides direct biological information on proteins but is still a limited platform. Borrowing from genomics, its cancer-specific applications can be broadly categorized as (1) pure diagnostics, (2) biomarkers, (3) identification of root causes and (4) identification of cancer-specific network rewirings. Biological networks capture complex relationships between proteins and provide an appropriate means of contextualization. While playing significantly larger roles, especially in 1 and 3, progress in proteomics-specific network-based methods is lagging as compared to genomics. Rapid hardware advances and improvements in proteomic identification and quantification have given rise to much better quality data alongside advent of new network-based analysis methods. However, a tighter integration between analytics and hardware is still essential for network analysis to play more significant roles in proteomics analysis.
Collapse
Affiliation(s)
- Wilson Wen Bin Goh
- Department of Computer Science, National University of Singapore, COM1 Building, 13 Computing Drive, Singapore 117417, Singapore; Department of Computing, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom
| | | |
Collapse
|
198
|
Lewandowska A, Macfarlane J, Shaw JM. Mitochondrial association, protein phosphorylation, and degradation regulate the availability of the active Rab GTPase Ypt11 for mitochondrial inheritance. Mol Biol Cell 2013; 24:1185-95. [PMID: 23427260 PMCID: PMC3623639 DOI: 10.1091/mbc.e12-12-0848] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
There are conflicting models regarding the role of the Ypt11 GTPase in mitochondrial inheritance during yeast budding. This study demonstrates that Ypt11 function requires mitochondrial membrane targeting and GTPase domain–dependent effector interactions. In addition, the abundance of active Ypt11 forms is controlled by phosphorylation and degradation. The Rab GTPase Ypt11 is a Myo2-binding protein implicated in mother-to-bud transport of the cortical endoplasmic reticulum (ER), late Golgi, and mitochondria during yeast division. However, its reported subcellular localization does not reflect all of these functions. Here we show that Ypt11 is normally a low-abundance protein whose ER localization is only detected when the protein is highly overexpressed. Although it has been suggested that ER-localized Ypt11 and ER–mitochondrial contact sites might mediate passive transport of mitochondria into the bud, we found that mitochondrial, but not ER, association is essential for Ypt11 function in mitochondrial inheritance. Our studies also reveal that Ypt11 function is regulated at multiple levels. In addition to membrane targeting and GTPase domain–dependent effector interactions, the abundance of active Ypt11 forms is controlled by phosphorylation status and degradation. We present a model that synthesizes these new features of Ypt11 function and regulation in mitochondrial inheritance.
Collapse
Affiliation(s)
- Agnieszka Lewandowska
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | | | | |
Collapse
|
199
|
Picotti P, Clément-Ziza M, Lam H, Campbell DS, Schmidt A, Deutsch EW, Röst H, Sun Z, Rinner O, Reiter L, Shen Q, Michaelson JJ, Frei A, Alberti S, Kusebauch U, Wollscheid B, Moritz RL, Beyer A, Aebersold R. A complete mass-spectrometric map of the yeast proteome applied to quantitative trait analysis. Nature 2013; 494:266-70. [PMID: 23334424 PMCID: PMC3951219 DOI: 10.1038/nature11835] [Citation(s) in RCA: 228] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2011] [Accepted: 11/30/2012] [Indexed: 12/25/2022]
Abstract
Experience from different fields of life sciences suggests that accessible, complete reference maps of the components of the system under study are highly beneficial research tools. Examples of such maps include libraries of the spectroscopic properties of molecules, or databases of drug structures in analytical or forensic chemistry. Such maps, and methods to navigate them, constitute reliable assays to probe any sample for the presence and amount of molecules contained in the map. So far, attempts to generate such maps for any proteome have failed to reach complete proteome coverage. Here we use a strategy based on high-throughput peptide synthesis and mass spectrometry to generate an almost complete reference map (97% of the genome-predicted proteins) of the Saccharomyces cerevisiae proteome. We generated two versions of this mass-spectrometric map, one supporting discovery-driven (shotgun) and the other supporting hypothesis-driven (targeted) proteomic measurements. Together, the two versions of the map constitute a complete set of proteomic assays to support most studies performed with contemporary proteomic technologies. To show the utility of the maps, we applied them to a protein quantitative trait locus (QTL) analysis, which requires precise measurement of the same set of peptides over a large number of samples. Protein measurements over 78 S. cerevisiae strains revealed a complex relationship between independent genetic loci, influencing the levels of related proteins. Our results suggest that selective pressure favours the acquisition of sets of polymorphisms that adapt protein levels but also maintain the stoichiometry of functionally related pathway members.
Collapse
Affiliation(s)
- Paola Picotti
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich CH-8093, Switzerland.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
200
|
Oliveira AP, Ludwig C, Picotti P, Kogadeeva M, Aebersold R, Sauer U. Regulation of yeast central metabolism by enzyme phosphorylation. Mol Syst Biol 2013; 8:623. [PMID: 23149688 PMCID: PMC3531909 DOI: 10.1038/msb.2012.55] [Citation(s) in RCA: 122] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Accepted: 10/05/2012] [Indexed: 02/03/2023] Open
Abstract
As a frequent post-translational modification, protein phosphorylation regulates many cellular processes. Although several hundred phosphorylation sites have been mapped to metabolic enzymes in Saccharomyces cerevisiae, functionality was demonstrated for few of them. Here, we describe a novel approach to identify in vivo functionality of enzyme phosphorylation by combining flux analysis with proteomics and phosphoproteomics. Focusing on the network of 204 enzymes that constitute the yeast central carbon and amino-acid metabolism, we combined protein and phosphoprotein levels to identify 35 enzymes that change their degree of phosphorylation during growth under five conditions. Correlations between previously determined intracellular fluxes and phosphoprotein abundances provided first functional evidence for five novel phosphoregulated enzymes in this network, adding to nine known phosphoenzymes. For the pyruvate dehydrogenase complex E1 α subunit Pda1 and the newly identified phosphoregulated glycerol-3-phosphate dehydrogenase Gpd1 and phosphofructose-1-kinase complex β subunit Pfk2, we then validated functionality of specific phosphosites through absolute peptide quantification by targeted mass spectrometry, metabolomics and physiological flux analysis in mutants with genetically removed phosphosites. These results demonstrate the role of phosphorylation in controlling the metabolic flux realised by these three enzymes.
Collapse
Affiliation(s)
- Ana Paula Oliveira
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | | | | | | | | | | |
Collapse
|