151
|
Abstract
Cancer is ubiquitous in wildlife, affecting animals from bivalves to pachyderms and cetaceans. Reports of increasing frequency demonstrate that neoplasia is associated with substantial mortality in wildlife species. Anthropogenic activities and global weather changes are shaping new geographical limitations for many species, and alterations in living niches are associated with visible examples of genetic bottlenecks, toxin exposures, oncogenic pathogens, stress and immunosuppression, which can all contribute to cancers in wild species. Nations that devote resources to monitoring the health of wildlife often do so for human-centric reasons, including for the prediction of the potential for zoonotic disease, shared contaminants, chemicals and medications, and for observing the effect of exposure from crowding and loss of habitat. Given the increasing human footprint on land and in the sea, wildlife conservation should also become a more important motivating factor. Greater attention to the patterns of the emergence of wildlife cancer is imperative because growing numbers of species are existing at the interface between humans and the environment, making wildlife sentinels for both animal and human health. Therefore, monitoring wildlife cancers could offer interesting and novel insights into potentially unique non-age-related mechanisms of carcinogenesis across species.
Collapse
Affiliation(s)
- Patricia A Pesavento
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, CA, USA.
| | - Dalen Agnew
- Veterinary Diagnostic Laboratory, Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, MI, USA
| | - Michael K Keel
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - Kevin D Woolard
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, CA, USA
| |
Collapse
|
152
|
Peel T. Disseminated Infection of Encephalitozoon cuniculi Associated With Osteolysis of Hip Periprosthetic Tissue: Association Versus Causation. Clin Infect Dis 2018; 67:1235-1236. [PMID: 29659776 DOI: 10.1093/cid/ciy263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 04/02/2018] [Indexed: 11/13/2022] Open
Affiliation(s)
- Trisha Peel
- Department of Infectious Diseases, Monash University and Alfred Health, Melbourne, Victoria, Australia
| |
Collapse
|
153
|
Harris KG, Chang EB. The intestinal microbiota in the pathogenesis of inflammatory bowel diseases: new insights into complex disease. Clin Sci (Lond) 2018; 132:2013-2028. [PMID: 30232239 PMCID: PMC6907688 DOI: 10.1042/cs20171110] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 08/30/2018] [Accepted: 09/04/2018] [Indexed: 12/16/2022]
Abstract
Inflammatory bowel diseases (IBD) are a group of chronic diseases of increasing worldwide prevalence characterized by gastrointestinal (GI) inflammation leading to debilitating symptoms and complications. The contribution of the intestinal microbiota to the pathogenesis and etiology of these diseases is an area of active research interest. Here, we discuss key mechanisms underlying the chronic inflammation seen in IBD as well as evidence implicating the intestinal microbiota in the development and potentiation of that inflammation. We also discuss recently published work in areas of interest within the field of microbial involvement in IBD pathogenesis - the importance of proper microecology within the GI tract, the evidence that the intestinal microbiota transduces environmental and genetic risk factors for IBD, and the mechanisms by which microbial products contribute to communication between microbe and host. There is an extensive body of published research on the evidence for microbial involvement in IBD; the goal of this review is to highlight the growing edges of the field where exciting and innovative research is pushing the boundaries of the conceptual framework of the role of the intestinal microbiota in IBD pathogenesis.
Collapse
Affiliation(s)
| | - Eugene B Chang
- Department of Medicine, University of Chicago, Chicago, IL 60637, U.S.A.
| |
Collapse
|
154
|
Epstein-Barr Virus-Positive Cancers Show Altered B-Cell Clonality. mSystems 2018; 3:mSystems00081-18. [PMID: 30271878 PMCID: PMC6156273 DOI: 10.1128/msystems.00081-18] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 08/29/2018] [Indexed: 12/14/2022] Open
Abstract
Around 20% of human cancers are associated with viruses. Epstein-Barr virus (EBV) contributes to gastric cancer, nasopharyngeal carcinoma, and certain lymphomas, but its role in other cancer types remains controversial. We assessed the prevalence of EBV in RNA-seq from 32 tumor types in the Cancer Genome Atlas Project (TCGA) and found EBV to be present in >5% of samples in 12 tumor types. EBV infects epithelial cells and B cells and in B cells causes proliferation. We hypothesized that the low expression of EBV in most of the tumor types was due to infiltration of B cells into the tumor. The increase in B-cell abundance and diversity in subjects where EBV was detected in the tumors strengthens this hypothesis. Overall, we found that EBV was associated with an increased and altered immune response. This result is not evidence of causality, but a potential novel biomarker for tumor immune status. Epstein-Barr virus (EBV) is convincingly associated with gastric cancer, nasopharyngeal carcinoma, and certain lymphomas, but its role in other cancer types remains controversial. To test the hypothesis that there are additional cancer types with high prevalence of EBV, we determined EBV viral expression in all the Cancer Genome Atlas Project (TCGA) mRNA sequencing (mRNA-seq) samples (n = 10,396) from 32 different tumor types. We found that EBV was present in gastric adenocarcinoma and lymphoma, as expected, and was also present in >5% of samples in 10 additional tumor types. For most samples, EBV transcript levels were low, which suggests that EBV was likely present due to infected infiltrating B cells. In order to determine if there was a difference in the B-cell populations, we assembled B-cell receptors for each sample and found B-cell receptor abundance (P ≤ 1.4 × 10−20) and diversity (P ≤ 8.3 × 10−27) were significantly higher in EBV-positive samples. Moreover, diversity was independent of B-cell abundance, suggesting that the presence of EBV was associated with an increased and altered B-cell population. IMPORTANCE Around 20% of human cancers are associated with viruses. Epstein-Barr virus (EBV) contributes to gastric cancer, nasopharyngeal carcinoma, and certain lymphomas, but its role in other cancer types remains controversial. We assessed the prevalence of EBV in RNA-seq from 32 tumor types in the Cancer Genome Atlas Project (TCGA) and found EBV to be present in >5% of samples in 12 tumor types. EBV infects epithelial cells and B cells and in B cells causes proliferation. We hypothesized that the low expression of EBV in most of the tumor types was due to infiltration of B cells into the tumor. The increase in B-cell abundance and diversity in subjects where EBV was detected in the tumors strengthens this hypothesis. Overall, we found that EBV was associated with an increased and altered immune response. This result is not evidence of causality, but a potential novel biomarker for tumor immune status.
Collapse
|
155
|
Prasad N, Singh K, Gupta A, Prasad KN. Isolation of bacterial DNA followed by sequencing and differing cytokine response in peritoneal dialysis effluent help in identifying bacteria in culture negative peritonitis. Nephrology (Carlton) 2018; 23:148-154. [PMID: 27859980 DOI: 10.1111/nep.12969] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 10/26/2016] [Accepted: 11/13/2016] [Indexed: 11/26/2022]
Abstract
AIM The treatment of peritoneal dialysis related culture negative peritonitis is empirical which increases the cost of therapy and moreover antibiotic resistance. We aimed the study to isolate bacterial DNA from PD effluent and indentify bacteria causing peritonitis in culture negative situations. We have also studied the cytokine response with different bacteria causing peritonitis. METHODS We have isolated bacterial DNA from PD effluent of culture negative and culture positive peritonitis patients. Bacterial DNA was subjected to polymerase chain reaction using universal bacteria specific primers and subsequently to Gram type specific primers for the differentiation of the etiologic agents into Gram-positive and Gram-negative. The amplified products were sequenced and subjected to blast search to identify agent at genus/ species level. RESULTS Of the 30 molecular method positive samples, 16 (53.33%) samples were positive for Gram-negative bacteria and 4 (13.33%) for Gram-positive, while the remaining10 (33.33%) were positive for both Gram-positive and Gram-negative bacteria. We have found organisms that usually do not grow on normal culture methods. TNF-α was significantly associated with Gram-positive peritonitis and regulatory cytokine IL-10 with Gram-negative peritonitis. CONCLUSIONS The molecular techniques are helpful in detecting and identifying organisms from culture negative PD effluent.
Collapse
Affiliation(s)
- Narayan Prasad
- Department of Nephrology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - Kamini Singh
- Department of Microbiology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - Amit Gupta
- Department of Nephrology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - Kashi Nath Prasad
- Department of Microbiology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| |
Collapse
|
156
|
Whitmer SLM, Yadav PD, Sarkale P, Chaubal GY, Francis A, Klena J, Nichol ST, Ströher U, Mourya DT. Characterization of Unknown Orthobunya-Like Viruses from India. Viruses 2018; 10:v10090451. [PMID: 30149496 PMCID: PMC6165560 DOI: 10.3390/v10090451] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 08/20/2018] [Accepted: 08/21/2018] [Indexed: 12/31/2022] Open
Abstract
Next-generation sequencing (NGS) of agents causing idiopathic human diseases has been crucial in the identification of novel viruses. This study describes the isolation and characterization of two novel orthobunyaviruses obtained from a jungle myna and a paddy bird from Karnataka State, India. Using an NGS approach, these isolates were classified as Cat Que and Balagodu viruses belonging to the Manzanilla clade of the Simbu serogroup. Closely related viruses in the Manzanilla clade have been isolated from mosquitos, humans, birds, and pigs across a wide geographic region. Since Orthobunyaviruses exhibit high reassortment frequency and can cause acute, self-limiting febrile illness, these data suggest that human and livestock infections of the Oya/Cat Que/Manzanilla virus may be more widespread and/or under-reported than anticipated. It therefore becomes imperative to identify novel and unknown viruses in order to understand their role in human and animal pathogenesis. The current study is a step forward in this regard and would act as a prototype method for isolation, identification and detection of several other emerging viruses.
Collapse
Affiliation(s)
- Shannon L M Whitmer
- Viral Special Pathogens Branch, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA.
| | | | | | | | - Alicia Francis
- School of Biology, Georgia Institute of Technology, Atlanta, GA 30322, USA.
| | - John Klena
- Viral Special Pathogens Branch, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA.
| | - Stuart T Nichol
- Viral Special Pathogens Branch, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA.
| | - Ute Ströher
- Viral Special Pathogens Branch, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA.
| | | |
Collapse
|
157
|
Variability of core microbiota in newly diagnosed treatment-naïve paediatric inflammatory bowel disease patients. PLoS One 2018; 13:e0197649. [PMID: 30102706 PMCID: PMC6089417 DOI: 10.1371/journal.pone.0197649] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 07/24/2018] [Indexed: 12/30/2022] Open
Abstract
Background & aims Intestinal microbiota is considered to play a crucial role in the aetiology of inflammatory bowel disease (IBD). We aimed to describe faecal microbiota composition and dynamics in a large cohort of children with de novo (naïve) IBD, in comparison to healthy paediatric controls (HC). Methods In this prospective study, performed at two tertiary centres, faecal samples from newly diagnosed, treatment-naïve paediatric IBD patients were collected prior to bowel cleansing for colonoscopy (t0) and 1, 3 and 6 weeks and 3 months after initiation of therapy. The microbial profiles of Crohn’s disease (CD) and Ulcerative colitis (UC) patients were compared with HC and linked to therapeutic response. Microbiota composition was analysed by IS-pro technology. Results Microbial profiles of 104 new IBD-patients (63 CD, 41 UC, median age 14.0 years) were compared to 61 HC (median 7.8 years). IBD was mainly characterised by decreased abundance of Alistipes finegoldii and Alistipes putredinis, which characterize a healthy state microbial core. The classifier including these core species as predictors achieved an AUC of the ROC curve of .87. Core bacteria tended to regain abundance during treatment, but did not reach healthy levels. Conclusion Faecal microbiota profiles of children with de novo CD and UC can be discriminated from HC with high accuracy, mainly driven by a decreased abundance of species shaping the microbial core in the healthy state. Paediatric IBD can therefore be characterized by decreased abundance of certain bacterial species reflecting the healthy state rather than by the introduction of pathogens.
Collapse
|
158
|
Kell DB, Pretorius E. No effects without causes: the Iron Dysregulation and Dormant Microbes hypothesis for chronic, inflammatory diseases. Biol Rev Camb Philos Soc 2018; 93:1518-1557. [PMID: 29575574 PMCID: PMC6055827 DOI: 10.1111/brv.12407] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 02/12/2018] [Accepted: 02/15/2018] [Indexed: 12/11/2022]
Abstract
Since the successful conquest of many acute, communicable (infectious) diseases through the use of vaccines and antibiotics, the currently most prevalent diseases are chronic and progressive in nature, and are all accompanied by inflammation. These diseases include neurodegenerative (e.g. Alzheimer's, Parkinson's), vascular (e.g. atherosclerosis, pre-eclampsia, type 2 diabetes) and autoimmune (e.g. rheumatoid arthritis and multiple sclerosis) diseases that may appear to have little in common. In fact they all share significant features, in particular chronic inflammation and its attendant inflammatory cytokines. Such effects do not happen without underlying and initially 'external' causes, and it is of interest to seek these causes. Taking a systems approach, we argue that these causes include (i) stress-induced iron dysregulation, and (ii) its ability to awaken dormant, non-replicating microbes with which the host has become infected. Other external causes may be dietary. Such microbes are capable of shedding small, but functionally significant amounts of highly inflammagenic molecules such as lipopolysaccharide and lipoteichoic acid. Sequelae include significant coagulopathies, not least the recently discovered amyloidogenic clotting of blood, leading to cell death and the release of further inflammagens. The extensive evidence discussed here implies, as was found with ulcers, that almost all chronic, infectious diseases do in fact harbour a microbial component. What differs is simply the microbes and the anatomical location from and at which they exert damage. This analysis offers novel avenues for diagnosis and treatment.
Collapse
Affiliation(s)
- Douglas B. Kell
- School of ChemistryThe University of Manchester, 131 Princess StreetManchesterLancsM1 7DNU.K.
- The Manchester Institute of BiotechnologyThe University of Manchester, 131 Princess StreetManchesterLancsM1 7DNU.K.
- Department of Physiological SciencesStellenbosch University, Stellenbosch Private Bag X1Matieland7602South Africa
| | - Etheresia Pretorius
- Department of Physiological SciencesStellenbosch University, Stellenbosch Private Bag X1Matieland7602South Africa
| |
Collapse
|
159
|
Messacar K, Asturias EJ, Hixon AM, Van Leer-Buter C, Niesters HGM, Tyler KL, Abzug MJ, Dominguez SR. Enterovirus D68 and acute flaccid myelitis-evaluating the evidence for causality. THE LANCET. INFECTIOUS DISEASES 2018; 18:e239-e247. [PMID: 29482893 PMCID: PMC6778404 DOI: 10.1016/s1473-3099(18)30094-x] [Citation(s) in RCA: 168] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 09/19/2017] [Accepted: 11/09/2017] [Indexed: 01/11/2023]
Abstract
Increased circulation of enterovirus D68 in 2014 and 2016 temporally and geographically coincided with increases in cases of acute flaccid myelitis, an uncommon condition of paralysis due to lesions in the anterior horn of the spinal cord. The identification of enterovirus D68 in respiratory specimens from cases of acute flaccid myelitis worldwide further supports an association, yet the absence of direct virus isolation from affected tissues, infrequent detection in cerebrospinal fluid, and the absence, until recently, of an animal model has left the causal nature of the relationship unproven. In this Personal View we evaluate epidemiological and biological evidence linking enterovirus D68 and acute flaccid myelitis. We applied the Bradford Hill criteria to investigate the evidence for a causal relationship and highlight the importance of comprehensive surveillance and research to further characterise the role of enterovirus D68 in acute flaccid myelitis and pursue effective therapies and prevention strategies.
Collapse
Affiliation(s)
- Kevin Messacar
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, USA; Department of Neurology, University of Colorado School of Medicine, Aurora, CO, USA; Children's Hospital Colorado, Aurora, CO, USA.
| | - Edwin J Asturias
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, USA; Children's Hospital Colorado, Aurora, CO, USA; Center for Global Health and Department of Epidemiology, Colorado School of Public Health, Aurora, CO, USA
| | - Alison M Hixon
- University of Colorado School of Medicine Medical Scientist Training Program, Aurora, CO, USA
| | - Coretta Van Leer-Buter
- Division of Clinical Virology, Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Hubert G M Niesters
- Division of Clinical Virology, Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Kenneth L Tyler
- Department of Neurology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Mark J Abzug
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, USA; Children's Hospital Colorado, Aurora, CO, USA
| | - Samuel R Dominguez
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, USA; Children's Hospital Colorado, Aurora, CO, USA
| |
Collapse
|
160
|
|
161
|
Li W, Gudipaty P, Li C, Henderson KK, Ramsey KH, Murthy AK. Intranasal immunization with recombinant chlamydial protease-like activity factor attenuates atherosclerotic pathology following Chlamydia pneumoniae infection in mice. Immunol Cell Biol 2018; 97:85-91. [PMID: 30051926 DOI: 10.1111/imcb.12192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 07/23/2018] [Accepted: 07/23/2018] [Indexed: 12/17/2022]
Abstract
We have shown previously that intranasal vaccination with recombinant chlamydial protease-like activity factor (rCPAF: antigen) and interleukin-12 (IL-12) as an adjuvant induces robust protection against pathological consequences of female genital tract infection with Chlamydia muridarum, a closely related species and a rodent model for the human pathogen Chlamydia trachomatis. Another related species Chlamydia pneumoniae, a human respiratory pathogen, has been associated with exacerbation of atherosclerotic pathology. CPAF is highly conserved among Chlamydia spp. leading us to hypothesize that immunization with rCPAF with IL-12 will protect against high-fat diet (HFD) and C. pneumoniae-induced acceleration of atherosclerosis. rCPAF ± IL-12 immunization induced robust splenic antigen (Ag)-specific IFN-γ and TNF-α production and significantly elevated serum total anti-CPAF Ab, IgG2c, and IgG1 antibody levels compared to mock or IL-12 alone groups. The addition of IL-12 to rCPAF significantly elevated splenic Ag-specific IFN-γ production and IgG2c/IgG1 anti-CPAF antibody ratio. Following intranasal C. pneumoniae challenge and HFD feeding, rCPAF ± IL-12-immunized mice displayed significantly enhanced splenic IFN-γ, not TNF-α, response on days 6 and 9 after challenge, and significantly reduced lung chlamydial burden on day 9 post-challenge compared to mock- or IL-12-immunized mice. Importantly, rCPAF ± IL-12-immunized mice displayed significantly reduced atherosclerotic pathology in the aortas after C. pneumoniae challenge. Serum cholesterol levels were comparable between the groups suggesting that the observed differences in pathology were due to protective immunity against the infection. Together, these results confirm and extend our previous observations that CPAF is a promising candidate antigen for a multisubunit vaccine regimen to protect against Chlamydia-induced pathologies, including atherosclerosis.
Collapse
Affiliation(s)
- Weidang Li
- College of Veterinary Medicine, Midwestern University, Glendale, CA, USA
| | - Pareesha Gudipaty
- College of Health Sciences, Midwestern University, Glendale, CA, USA
| | - Chuxi Li
- Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, IL, USA.,College of Pharmacy, The University of Texas at Austin, Austin, TX, USA
| | - Kyle K Henderson
- Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, IL, USA
| | - Kyle H Ramsey
- College of Veterinary Medicine, Midwestern University, Glendale, CA, USA.,Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, IL, USA
| | - Ashlesh K Murthy
- College of Veterinary Medicine, Midwestern University, Glendale, CA, USA
| |
Collapse
|
162
|
Comparison of Different In Situ Hybridization Techniques for the Detection of Various RNA and DNA Viruses. Viruses 2018; 10:v10070384. [PMID: 30037026 PMCID: PMC6071121 DOI: 10.3390/v10070384] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 07/13/2018] [Accepted: 07/18/2018] [Indexed: 12/14/2022] Open
Abstract
In situ hybridization (ISH) is a technique to determine potential correlations between viruses and lesions. The aim of the study was to compare ISH techniques for the detection of various viruses in different tissues. Tested RNA viruses include atypical porcine pestivirus (APPV) in the cerebellum of pigs, equine and bovine hepacivirus (EqHV, BovHepV) in the liver of horses and cattle, respectively, and Schmallenberg virus (SBV) in the cerebrum of goats. Examined DNA viruses comprise canine bocavirus 2 (CBoV-2) in the intestine of dogs, porcine bocavirus (PBoV) in the spinal cord of pigs and porcine circovirus 2 (PCV-2) in cerebrum, lymph node, and lung of pigs. ISH with self-designed digoxigenin-labelled RNA probes revealed a positive signal for SBV, CBoV-2, and PCV-2, whereas it was lacking for APPV, BovHepV, EqHV, and PBoV. Commercially produced digoxigenin-labelled DNA probes detected CBoV-2 and PCV-2, but failed to detect PBoV. ISH with a commercially available fluorescent ISH (FISH)-RNA probe mix identified nucleic acids of all tested viruses. The detection rate and the cell-associated positive area using the FISH-RNA probe mix was highest compared to the results using other probes and protocols, representing a major benefit of this method. Nevertheless, there are differences in costs and procedure time.
Collapse
|
163
|
Yepes LM, Cieniewicz E, Krenz B, McLane H, Thompson JR, Perry KL, Fuchs M. Causative Role of Grapevine Red Blotch Virus in Red Blotch Disease. PHYTOPATHOLOGY 2018; 108:902-909. [PMID: 29436986 DOI: 10.1094/phyto-12-17-0419-r] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Grapevine red blotch virus (GRBV) has a monopartite single-stranded DNA genome and is the type species of the genus Grablovirus in the family Geminiviridae. To address the etiological role of GRBV in the recently recognized red blotch disease of grapevine, infectious GRBV clones were engineered from the genome of each of the two previously identified phylogenetic clades for Agrobacterium tumefaciens-mediated inoculations of tissue culture-grown Vitis spp. plants. Following agroinoculation and one or two dormancy cycles, systemic GRBV infection was detected by multiplex polymerase chain reaction (PCR) in Vitis vinifera exhibiting foliar disease symptoms but not in asymptomatic vines. Infected rootstock genotype SO4 (V. berlandieri × V. riparia) exhibited leaf chlorosis and cupping, while infection was asymptomatic in agroinoculated 110R (V. berlandieri × V. rupestris), 3309C (V. riparia × V. rupestris), and V. rupestris. Spliced GRBV transcripts of the replicase-associated protein coding region accumulated in leaves of agroinfected vines, as shown by reverse-transcription PCR; this was consistent with systemic infection resulting from virus replication. Additionally, a virus progeny identical in nucleotide sequence to the infectious GRBV clones was recovered from agroinfected vines by rolling circle amplification, cloning, and sequencing. Concomitantly, subjecting naturally infected grapevines to microshoot tip culture resulted in an asymptomatic plant progeny that tested negative for GRBV in multiplex PCR. Altogether, our agroinoculation and therapeutic experiments fulfilled Koch's postulates and revealed the causative role of GRBV in red blotch disease.
Collapse
Affiliation(s)
- Luz Marcela Yepes
- First, second, and seventh authors: Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, New York State Agricultural Experiment Station, Geneva, NY 14456; and third, fourth, fifth, and sixth authors: Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, 334 Plant Science, Ithaca, NY 14853
| | - Elizabeth Cieniewicz
- First, second, and seventh authors: Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, New York State Agricultural Experiment Station, Geneva, NY 14456; and third, fourth, fifth, and sixth authors: Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, 334 Plant Science, Ithaca, NY 14853
| | - Björn Krenz
- First, second, and seventh authors: Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, New York State Agricultural Experiment Station, Geneva, NY 14456; and third, fourth, fifth, and sixth authors: Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, 334 Plant Science, Ithaca, NY 14853
| | - Heather McLane
- First, second, and seventh authors: Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, New York State Agricultural Experiment Station, Geneva, NY 14456; and third, fourth, fifth, and sixth authors: Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, 334 Plant Science, Ithaca, NY 14853
| | - Jeremy R Thompson
- First, second, and seventh authors: Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, New York State Agricultural Experiment Station, Geneva, NY 14456; and third, fourth, fifth, and sixth authors: Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, 334 Plant Science, Ithaca, NY 14853
| | - Keith Lloyd Perry
- First, second, and seventh authors: Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, New York State Agricultural Experiment Station, Geneva, NY 14456; and third, fourth, fifth, and sixth authors: Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, 334 Plant Science, Ithaca, NY 14853
| | - Marc Fuchs
- First, second, and seventh authors: Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, New York State Agricultural Experiment Station, Geneva, NY 14456; and third, fourth, fifth, and sixth authors: Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, 334 Plant Science, Ithaca, NY 14853
| |
Collapse
|
164
|
Frisch K, Småge SB, Vallestad C, Duesund H, Brevik ØJ, Klevan A, Olsen RH, Sjaatil ST, Gauthier D, Brudeseth B, Nylund A. Experimental induction of mouthrot in Atlantic salmon smolts using Tenacibaculum maritimum from Western Canada. JOURNAL OF FISH DISEASES 2018; 41:1247-1258. [PMID: 29761493 DOI: 10.1111/jfd.12818] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 04/10/2018] [Accepted: 04/11/2018] [Indexed: 06/08/2023]
Abstract
Mouthrot, or bacterial stomatitis, is a disease which mainly affects farmed Atlantic salmon, (Salmo salar, L.), smolts recently transferred into salt water in both British Columbia (BC), Canada, and Washington State, USA. It is a significant fish welfare issue which results in economic losses due to mortality and antibiotic treatments. The associated pathogen is Tenacibaculum maritimum, a bacterium which causes significant losses in many species of farmed fish worldwide. This bacterium has not been proven to be the causative agent of mouthrot in BC despite being isolated from affected Atlantic salmon. In this study, challenge experiments were performed to determine whether mouthrot could be induced with T. maritimum isolates collected from outbreaks in Western Canada and to attempt to develop a bath challenge model. A secondary objective was to use this model to test inactivated whole-cell vaccines for T. maritimum in Atlantic salmon smolts. This study shows that T. maritimum is the causative agent of mouthrot and that the bacteria can readily transfer horizontally within the population. Although the whole-cell oil-adjuvanted vaccines produced an antibody response that was partially cross-reactive with several of the T. maritimum isolates, the vaccines did not protect the fish under the study's conditions.
Collapse
Affiliation(s)
- K Frisch
- Cermaq Group AS, Oslo, Norway
- Fish Disease Research Group, Department of Biology, University of Bergen, Bergen, Norway
| | - S B Småge
- Cermaq Group AS, Oslo, Norway
- Fish Disease Research Group, Department of Biology, University of Bergen, Bergen, Norway
| | - C Vallestad
- Fish Disease Research Group, Department of Biology, University of Bergen, Bergen, Norway
| | | | | | | | | | | | | | | | - A Nylund
- Fish Disease Research Group, Department of Biology, University of Bergen, Bergen, Norway
| |
Collapse
|
165
|
Hasche D, Vinzón SE, Rösl F. Cutaneous Papillomaviruses and Non-melanoma Skin Cancer: Causal Agents or Innocent Bystanders? Front Microbiol 2018; 9:874. [PMID: 29770129 PMCID: PMC5942179 DOI: 10.3389/fmicb.2018.00874] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 04/16/2018] [Indexed: 12/12/2022] Open
Abstract
There is still controversy in the scientific field about whether certain types of cutaneous human papillomaviruses (HPVs) are causally involved in the development of non-melanoma skin cancer (NMSC). Deciphering the etiological role of cutaneous HPVs requires - besides tissue culture systems - appropriate preclinical models to match the obtained results with clinical data from affected patients. Clear scientific evidence about the etiology and underlying mechanisms involved in NMSC development is fundamental to provide reasonable arguments for public health institutions to classify at least certain cutaneous HPVs as group 1 carcinogens. This in turn would have implications on fundraising institutions and health care decision makers to force - similarly as for anogenital cancer - the implementation of a broad vaccination program against "high-risk" cutaneous HPVs to prevent NMSC as the most frequent cancer worldwide. Precise knowledge of the multi-step progression from normal cells to cancer is a prerequisite to understand the functional and clinical impact of cofactors that affect the individual outcome and the personalized treatment of a disease. This overview summarizes not only recent arguments that favor the acceptance of a viral etiology in NMSC development but also reflects aspects of causality in medicine, the use of empirically meaningful model systems and strategies for prevention.
Collapse
Affiliation(s)
- Daniel Hasche
- Division of Viral Transformation Mechanisms, Research Program "Infection, Inflammation and Cancer", German Cancer Research Center, Heidelberg, Germany
| | - Sabrina E Vinzón
- Laboratory of Molecular and Cellular Therapy, Fundación Instituto Leloir, IIBBA-CONICET, Buenos Aires, Argentina
| | - Frank Rösl
- Division of Viral Transformation Mechanisms, Research Program "Infection, Inflammation and Cancer", German Cancer Research Center, Heidelberg, Germany
| |
Collapse
|
166
|
Uilenberg G, Gray J, Kahl O. Research on Piroplasmorida and other tick-borne agents: Are we going the right way? Ticks Tick Borne Dis 2018; 9:860-863. [DOI: 10.1016/j.ttbdis.2018.03.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 03/02/2018] [Accepted: 03/02/2018] [Indexed: 11/27/2022]
|
167
|
Kosoy M, Kosoy R. Complexity and biosemiotics in evolutionary ecology of zoonotic infectious agents. Evol Appl 2018; 11:394-403. [PMID: 29636794 PMCID: PMC5891042 DOI: 10.1111/eva.12503] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 06/01/2017] [Indexed: 02/02/2023] Open
Abstract
More is not automatically better. Generation and accumulation of information reflecting the complexity of zoonotic diseases as ecological systems do not necessarily lead to improved interpretation of the obtained information and understanding of these complex systems. The traditional conceptual framework for analysis of diseases ecology is neither designed for, nor adaptable enough, to absorb the mass of diverse sources of relevant information. The multidirectional and multidimensional approaches to analyses form an inevitable part in defining a role of zoonotic pathogens and animal hosts considering the complexity of their inter-relations. And the more data we have, the more involved the interpretation needs to be. The keyword for defining the roles of microbes as pathogens, animals as hosts, and environmental parameters as infection drivers is "functional importance." Microbes can act as pathogens toward their host only if/when they recognize the animal organism as the target. The same is true when the host recognizes the microbe as a pathogen rather than harmless symbiont based on the context of its occurrence in that host. Here, we propose conceptual tools developed in the realm of the interdisciplinary sciences of complexity and biosemiotics for extending beyond the currently dominant mindset in ecology and evolution of infectious diseases. We also consider four distinct hierarchical levels of perception guiding how investigators can approach zoonotic agents, as a subject of their research, representing differences in emphasizing particular elements and their relations versus more unified systemic approaches.
Collapse
Affiliation(s)
- Michael Kosoy
- Division of Vector‐Borne DiseasesCenters for Disease Control and PreventionFort CollinsCOUSA
- Global Health AsiaMahidol UniversityBangkokThailand
| | - Roman Kosoy
- Department of Genetics and Genomic SciencesIcahn School of Medicine at Mount SinaiNew YorkNYUSA
| |
Collapse
|
168
|
Detection of Human Bocavirus Species 2 and 3 in Bivalve Shellfish in Italy. Appl Environ Microbiol 2018; 84:AEM.02754-17. [PMID: 29352084 DOI: 10.1128/aem.02754-17] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 01/12/2018] [Indexed: 12/16/2022] Open
Abstract
Human bocavirus (HBoV) has been shown to be a common cause of respiratory infections and gastroenteritis in children. Recently, HBoVs have been detected in sewage and river waters in Italy and worldwide. However, studies on their presence in other water environments and in bivalve mollusks are not yet available. In this study, 316 bivalve shellfish samples collected in three Italian regions over a 6-year period (2012 to 2017) were analyzed by nested PCR and sequencing using broad-range primer pairs targeting the capsid proteins VP1 and VP2 of HBoV. The virus was detected in 27 samples (8.5% of the total samples), and a statistically significant difference was found within the three regions. A further 13 samples, collected in geographic and temporal proximity to positive samples, were included in the study to assess the spread of HBoV in shellfish production areas at the time of contamination. Twelve of these additional samples were found to be positive for HBoV. All positive samples in this study were characterized as HBoV species 2 (17 samples; 8 different sequences) or species 3 (22 samples; 4 different sequences). This study reports the occurrence of HBoV in bivalve shellfish and shows evidence of considerable spatial spread of the virus throughout shellfish production areas. Further studies are needed to elucidate both the role of HBoV as an agent of gastroenteritis and the risk for foodborne transmission of this virus.IMPORTANCE Human bocavirus is recognized as an important cause of acute respiratory tract infections and has recently been considered an etiological agent of gastroenteritis in the pediatric population. Our findings document that HBoVs are detected in bivalve shellfish with a relevant prevalence and suggest that an assessment of the risk for foodborne transmission of these viruses should be undertaken.
Collapse
|
169
|
Affiliation(s)
- Jean-Christophe Lagier
- Aix Marseille Université, URMITE, UM63, CNRS 7278, IRD 198, INSERM 1095, Institut Hospitalo-Universitaire Méditerranée-Infection, Faculté de médecine, Marseille, France
| | - Grégory Dubourg
- Aix Marseille Université, URMITE, UM63, CNRS 7278, IRD 198, INSERM 1095, Institut Hospitalo-Universitaire Méditerranée-Infection, Faculté de médecine, Marseille, France
| | - Sophie Amrane
- Aix Marseille Université, URMITE, UM63, CNRS 7278, IRD 198, INSERM 1095, Institut Hospitalo-Universitaire Méditerranée-Infection, Faculté de médecine, Marseille, France
| | - Didier Raoult
- Aix Marseille Université, URMITE, UM63, CNRS 7278, IRD 198, INSERM 1095, Institut Hospitalo-Universitaire Méditerranée-Infection, Faculté de médecine, Marseille, France.
| |
Collapse
|
170
|
Mugimba KK, Chengula AA, Wamala S, Mwega ED, Kasanga CJ, Byarugaba DK, Mdegela RH, Tal S, Bornstein B, Dishon A, Mutoloki S, David L, Evensen Ø, Munang'andu HM. Detection of tilapia lake virus (TiLV) infection by PCR in farmed and wild Nile tilapia (Oreochromis niloticus) from Lake Victoria. JOURNAL OF FISH DISEASES 2018; 41:1181-1189. [PMID: 29473649 DOI: 10.1111/jfd.12790] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 12/30/2017] [Accepted: 01/02/2018] [Indexed: 06/08/2023]
Abstract
Tilapia lake virus disease (TiLVD) has emerged to be an important viral disease of farmed Nile tilapia (Oreochromis niloticus) having the potential to impede expansion of aquaculture production. There is a need for rapid diagnostic tools to identify infected fish to limit the spread in individual farms. We report the first detection of TiLV infection by PCR in farmed and wild Nile tilapia from Lake Victoria. There was no difference in prevalence between farmed and wild fish samples (p = .65), and of the 442 samples examined from 191 fish, 28 were positive for TiLV by PCR. In terms of tissue distribution, the head kidney (7.69%, N = 65) and spleen (10.99%, N = 191), samples had the highest prevalence (p < .0028) followed by heart samples (3.45%, N = 29). Conversely, the prevalence was low in the liver (0.71%, N = 140) and absent in brain samples (0.0%, N = 17), which have previously been shown to be target organs during acute infections. Phylogenetic analysis showed homology between our sequences and those from recent outbreaks in Israel and Thailand. Given that these findings were based on nucleic acid detection by PCR, future studies should seek to isolate the virus from fish in Lake Victoria and show its ability to cause disease and virulence in susceptible fish.
Collapse
Affiliation(s)
- K K Mugimba
- Faculty of Veterinary Medicine and Biosciences, Department of Basic Sciences and Aquatic Medicine, Section of Aquatic Medicine and Nutrition, Norwegian University of Life Sciences, Oslo, Norway
- Department of Biotechnical and Diagnostic Sciences, College of Veterinary Medicine Animal Resources and Biosecurity, Makerere University, Kampala, Uganda
| | - A A Chengula
- Faculty of Veterinary Medicine and Biosciences, Department of Basic Sciences and Aquatic Medicine, Section of Aquatic Medicine and Nutrition, Norwegian University of Life Sciences, Oslo, Norway
- Department of Microbiology, Parasitology and Immunology, College of Veterinary Medicine and Biomedical Sciences, Sokoine University of Agriculture, Morogoro, Tanzania
| | - S Wamala
- Faculty of Veterinary Medicine and Biosciences, Department of Basic Sciences and Aquatic Medicine, Section of Aquatic Medicine and Nutrition, Norwegian University of Life Sciences, Oslo, Norway
- Department of Biotechnical and Diagnostic Sciences, College of Veterinary Medicine Animal Resources and Biosecurity, Makerere University, Kampala, Uganda
| | - E D Mwega
- Faculty of Veterinary Medicine and Biosciences, Department of Basic Sciences and Aquatic Medicine, Section of Aquatic Medicine and Nutrition, Norwegian University of Life Sciences, Oslo, Norway
- Department of Microbiology, Parasitology and Immunology, College of Veterinary Medicine and Biomedical Sciences, Sokoine University of Agriculture, Morogoro, Tanzania
| | - C J Kasanga
- Department of Microbiology, Parasitology and Immunology, College of Veterinary Medicine and Biomedical Sciences, Sokoine University of Agriculture, Morogoro, Tanzania
| | - D K Byarugaba
- Department of Biotechnical and Diagnostic Sciences, College of Veterinary Medicine Animal Resources and Biosecurity, Makerere University, Kampala, Uganda
| | - R H Mdegela
- Department of Microbiology, Parasitology and Immunology, College of Veterinary Medicine and Biomedical Sciences, Sokoine University of Agriculture, Morogoro, Tanzania
| | - S Tal
- KoVaX Ltd., Jerusalem, Israel
| | | | | | - S Mutoloki
- Faculty of Veterinary Medicine and Biosciences, Department of Basic Sciences and Aquatic Medicine, Section of Aquatic Medicine and Nutrition, Norwegian University of Life Sciences, Oslo, Norway
| | - L David
- R.H. Smith Faculty of Agriculture, Food and Environment, Department of Animal Sciences, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Ø Evensen
- Faculty of Veterinary Medicine and Biosciences, Department of Basic Sciences and Aquatic Medicine, Section of Aquatic Medicine and Nutrition, Norwegian University of Life Sciences, Oslo, Norway
| | - H M Munang'andu
- Faculty of Veterinary Medicine and Biosciences, Department of Basic Sciences and Aquatic Medicine, Section of Aquatic Medicine and Nutrition, Norwegian University of Life Sciences, Oslo, Norway
| |
Collapse
|
171
|
Gannon OM, Antonsson A, Bennett IC, Saunders NA. Viral infections and breast cancer - A current perspective. Cancer Lett 2018; 420:182-189. [PMID: 29410005 DOI: 10.1016/j.canlet.2018.01.076] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 01/08/2018] [Accepted: 01/31/2018] [Indexed: 01/25/2023]
Abstract
Sporadic human breast cancer is the most common cancer to afflict women. Since the discovery, decades ago, of the oncogenic mouse mammary tumour virus, there has been significant interest in the potential aetiologic role of infectious agents in sporadic human breast cancer. To address this, many studies have examined the presence of viruses (e.g. papillomaviruses, herpes viruses and retroviruses), endogenous retroviruses and more recently, microbes, as a means of implicating them in the aetiology of human breast cancer. Such studies have generated conflicting experimental and clinical reports of the role of infection in breast cancer. This review evaluates the current evidence for a productive oncogenic viral infection in human breast cancer, with a focus on the integration of sensitive and specific next generation sequencing technologies with pathogen discovery. Collectively, the majority of the recent literature using the more powerful next generation sequencing technologies fail to support an oncogenic viral infection being involved in disease causality in breast cancer. In balance, the weight of the current experimental evidence supports the conclusion that viral infection is unlikely to play a significant role in the aetiology of breast cancer.
Collapse
Affiliation(s)
- O M Gannon
- University of Queensland Diamantina Institute, The Faculty of Medicine, The University of Queensland, Brisbane, Australia
| | - A Antonsson
- Department of Population Health, QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, Queensland 4006, Australia; School of Medicine, The University of Queensland, Herston Road, Herston, Queensland 4006, Australia
| | - I C Bennett
- School of Medicine, The University of Queensland, Herston Road, Herston, Queensland 4006, Australia; Private Practice, The Wesley and St Andrews Hospital, Auchenflower 4066, Australia
| | - N A Saunders
- University of Queensland Diamantina Institute, The Faculty of Medicine, The University of Queensland, Brisbane, Australia.
| |
Collapse
|
172
|
Pretorius E, Bester J, Kell DB. A Bacterial Component to Alzheimer's-Type Dementia Seen via a Systems Biology Approach that Links Iron Dysregulation and Inflammagen Shedding to Disease. J Alzheimers Dis 2018; 53:1237-56. [PMID: 27340854 PMCID: PMC5325058 DOI: 10.3233/jad-160318] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The progression of Alzheimer's disease (AD) is accompanied by a great many observable changes, both molecular and physiological. These include oxidative stress, neuroinflammation, and (more proximal to cognitive decline) the death of neuronal and other cells. A systems biology approach seeks to organize these observed variables into pathways that discriminate those that are highly involved (i.e., causative) from those that are more usefully recognized as bystander effects. We review the evidence that iron dysregulation is one of the central causative pathway elements here, as this can cause each of the above effects. In addition, we review the evidence that dormant, non-growing bacteria are a crucial feature of AD, that their growth in vivo is normally limited by a lack of free iron, and that it is this iron dysregulation that is an important factor in their resuscitation. Indeed, bacterial cells can be observed by ultrastructural microscopy in the blood of AD patients. A consequence of this is that the growing cells can shed highly inflammatory components such as lipopolysaccharides (LPS). These too are known to be able to induce (apoptotic and pyroptotic) neuronal cell death. There is also evidence that these systems interact with elements of vitamin D metabolism. This integrative systems approach has strong predictive power, indicating (as has indeed been shown) that both natural and pharmaceutical iron chelators might have useful protective roles in arresting cognitive decline, and that a further assessment of the role of microbes in AD development is more than highly warranted.
Collapse
Affiliation(s)
- Etheresia Pretorius
- Department of Physiology, Faculty of Health Sciences, University of Pretoria, Arcadia, South Africa
| | - Janette Bester
- Department of Physiology, Faculty of Health Sciences, University of Pretoria, Arcadia, South Africa
| | - Douglas B Kell
- School of Chemistry, The University of Manchester, Manchester, Lancs, UK.,The Manchester Institute of Biotechnology, The University of Manchester, Manchester, Lancs, UK.,Centre for Synthetic Biology of Fine and Speciality Chemicals, The University of Manchester, Manchester, Lancs, UK
| |
Collapse
|
173
|
Jindal SK. Koch's postulates - Pitfalls and relevance in the 21st century. Indian J Tuberc 2018; 65:6-7. [PMID: 29332651 DOI: 10.1016/j.ijtb.2017.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 12/09/2017] [Indexed: 11/30/2022]
Affiliation(s)
- Surinder K Jindal
- Emeritus-Professor, Postgrad Instt Med Edu & Research, Chandigarh, India.
| |
Collapse
|
174
|
Tennant P, Fermin G. Viruses as Targets for Biotechnology. Viruses 2018. [DOI: 10.1016/b978-0-12-811257-1.00013-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
|
175
|
Bendix C, Lewis JD. The enemy within: phloem-limited pathogens. MOLECULAR PLANT PATHOLOGY 2018; 19:238-254. [PMID: 27997761 PMCID: PMC6638166 DOI: 10.1111/mpp.12526] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 12/06/2016] [Accepted: 12/08/2016] [Indexed: 05/06/2023]
Abstract
The growing impact of phloem-limited pathogens on high-value crops has led to a renewed interest in understanding how they cause disease. Although these pathogens cause substantial crop losses, many are poorly characterized. In this review, we present examples of phloem-limited pathogens that include intracellular bacteria with and without cell walls, and viruses. Phloem-limited pathogens have small genomes and lack many genes required for core metabolic processes, which is, in part, an adaptation to the unique phloem environment. For each pathogen class, we present multiple case studies to highlight aspects of disease caused by phloem-limited pathogens. The pathogens presented include Candidatus Liberibacter asiaticus (citrus greening), Arsenophonus bacteria, Serratia marcescens (cucurbit yellow vine disease), Candidatus Phytoplasma asteris (Aster Yellows Witches' Broom), Spiroplasma kunkelii, Potato leafroll virus and Citrus tristeza virus. We focus on commonalities in the virulence strategies of these pathogens, and aim to stimulate new discussions in the hope that widely applicable disease management strategies can be found.
Collapse
Affiliation(s)
- Claire Bendix
- United States Department of AgriculturePlant Gene Expression CenterAlbanyCA94710USA
| | - Jennifer D. Lewis
- United States Department of AgriculturePlant Gene Expression CenterAlbanyCA94710USA
- Department of Plant and Microbial BiologyUniversity of California, BerkeleyBerkeleyCA94720USA
| |
Collapse
|
176
|
Moving beyond microbiome-wide associations to causal microbe identification. Nature 2017; 552:244-247. [PMID: 29211710 PMCID: PMC5730484 DOI: 10.1038/nature25019] [Citation(s) in RCA: 173] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 11/07/2017] [Indexed: 12/30/2022]
Abstract
Microbiome-wide association studies have established that numerous diseases are associated with changes in the microbiota1,2. These studies typically generate a long list of commensals implicated as biomarkers of disease, with no clear relevance to disease pathogenesis1–5. If the field is to move beyond correlations and begin to address causation, an effective system is needed for refining this catalog of differentially abundant microbes and allow for subsequent mechanistic studies1,4. Herein, we demonstrate that triangulation of microbe–phenotype relationships is an effective method for reducing the noise inherent in microbiota studies and enabling identification of causal microbes. We found that gnotobiotic mice harboring different microbial communities exhibited differential survival in a colitis model. Co-housing of these mice generated animals that had hybrid microbiotas and displayed intermediate susceptibility to colitis. Mapping of microbe–phenotype relationships in parental mouse strains and in mice with hybrid microbiotas identified the bacterial family Lachnospiraceae as a correlate for protection from disease. Using directed microbial culture techniques, we discovered Clostridium immunis, a previously unknown bacterial species from this family, that—when administered to colitis-prone mice—protected them against colitis-associated death. To demonstrate the generalizability of our approach, we used it to identify several commensal organisms that induce intestinal expression of an antimicrobial peptide. Thus, we have used microbe–phenotype triangulation to move beyond the standard correlative microbiome study and identify causal microbes for two completely distinct phenotypes. Identification of disease-modulating commensals by microbe–phenotype triangulation may be more broadly applicable to human microbiome studies.
Collapse
|
177
|
O'Hara SP, Karlsen TH, LaRusso NF. Cholangiocytes and the environment in primary sclerosing cholangitis: where is the link? Gut 2017; 66:1873-1877. [PMID: 28733279 PMCID: PMC5739855 DOI: 10.1136/gutjnl-2017-314249] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 06/26/2017] [Accepted: 06/27/2017] [Indexed: 12/12/2022]
Affiliation(s)
- Steven P O'Hara
- Division of Gastroenterology and Hepatology and the Mayo Clinic Center for Cell Signaling in Gastroenterology, Mayo Clinic, Rochester, Minnesota, USA
| | - Tom H Karlsen
- Division of Surgery, Inflammatory Diseases and Transplantation, Department of Transplantation Medicine, Norwegian PSC Research Center, Oslo University Hospital Rikshospitalet, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Nicholas F LaRusso
- Division of Gastroenterology and Hepatology and the Mayo Clinic Center for Cell Signaling in Gastroenterology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
178
|
Abstract
PURPOSE To better estimate relative biological effectiveness (RBE) in therapeutic proton beams by using a modeled approach, in order to improve their clinical safety and effectiveness. INTRODUCTION Concerns exist about the 1.1 RBE used in proton therapy, since it may lead to unintentional over- and under-dosage in patients and so lead to unexpected clinical outcomes. Late reacting normal tissues (with low α/β values), might be overdosed if RBE >1.1; very radiosensitive tumors (with high α/β), might be under-dosed if RBE <1.1. Some physicists recommend ignoring RBE in favor of a LET × dose product to predict effects. MATERIAL AND METHODS Extensive linear-quadratic based modeling is scaled between a standard hospital megavoltage photon reference radiation (low LET of 0.22 keV μm-1) α and β values and their values at higher LETs, representative of the middle and end of the SOBPs. A previously published energy-efficiency model provide RBE estimates for different α/β (2-27 Gy). The concept of using a LET × dose product is assessed by comparing it with surviving fraction and the equivalent dose in 2 Gy fractions (EQD-2). RESULTS Low α/β value biosystems have the widest RBE ranges with dose per fraction changes and increasing LET, often above 1.1 even within the SOBP LET range, with lower values at higher dose per fraction. Highly radiosensitive tumors (α/β 10-27 Gy) have the lowest RBEs, often below 1.1, and are not fraction-sensitive. RBE's generally increase with LET, so curtailment of LET in normal tissues is important. The LET × dose product is insufficiently discriminating when compared with surviving fraction and biological effective dose (BED) or EQD-2. CONCLUSIONS An overall research framework is suggested. Proton therapy advantages will only be fully realized if reasonably correct RBE values are used.
Collapse
Affiliation(s)
- B. Jones
- Gray Laboratory, CRUK/MRC Oxford Oncology Institute, The University of Oxford, Oxford, UK
| |
Collapse
|
179
|
Microbiome and infectivity studies reveal complex polyspecies tree disease in Acute Oak Decline. ISME JOURNAL 2017; 12:386-399. [PMID: 29028005 PMCID: PMC5776452 DOI: 10.1038/ismej.2017.170] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 08/11/2017] [Accepted: 08/14/2017] [Indexed: 12/21/2022]
Abstract
Decline-diseases are complex and becoming increasingly problematic to tree health globally. Acute Oak Decline (AOD) is characterized by necrotic stem lesions and galleries of the bark-boring beetle, Agrilus biguttatus, and represents a serious threat to oak. Although multiple novel bacterial species and Agrilus galleries are associated with AOD lesions, the causative agent(s) are unknown. The AOD pathosystem therefore provides an ideal model for a systems-based research approach to address our hypothesis that AOD lesions are caused by a polymicrobial complex. Here we show that three bacterial species, Brenneria goodwinii, Gibbsiella quercinecans and Rahnella victoriana, are consistently abundant in the lesion microbiome and possess virulence genes used by canonical phytopathogens that are expressed in AOD lesions. Individual and polyspecies inoculations on oak logs and trees demonstrated that B. goodwinii and G. quercinecans cause tissue necrosis and, in combination with A. biguttatus, produce the diagnostic symptoms of AOD. We have proved a polybacterial cause of AOD lesions, providing new insights into polymicrobial interactions and tree disease. This work presents a novel conceptual and methodological template for adapting Koch’s postulates to address the role of microbial communities in disease.
Collapse
|
180
|
Baek K, Choi Y. The microbiology of oral lichen planus: Is microbial infection the cause of oral lichen planus? Mol Oral Microbiol 2017; 33:22-28. [PMID: 28869787 DOI: 10.1111/omi.12197] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/25/2017] [Indexed: 12/15/2022]
Abstract
Oral lichen planus (OLP) is a variant of lichen planus (LP), a common chronic mucocutaneous inflammatory disease. Cutaneous lesions of LP are self-limiting, but OLP lesions are non-remissive, alternating periods of exacerbation and quiescence, and only symptomatic treatments exist for OLP. The precise etiology and pathogenesis of OLP are hardly understood, which is a major obstacle to the development of new therapeutics for this disease. OLP is considered a T-cell-mediated inflammatory disease. Although various antigens have been considered, what actually triggers the inflammatory response of T cells is unknown. Suggested predisposing factors include genetic factors, stress, trauma, and infection. The aim of this review was to determine whether microbial infection can cause OLP. We first reviewed the association between OLP and microbial factors, including viral, fungal, and bacterial infections. In addition, each microbial factor associated with OLP was assessed by modified guidelines of Fredricks and Relman to determine whether it establishes a causal relationship. In conclusion, no microbial factor yet fulfills the guidelines to establish the causality of OLP. By focusing on the unclarified issues, however, the potential roles of microbial factors in the pathogenesis of OLP will be soon elucidated.
Collapse
Affiliation(s)
- K Baek
- Department of Immunology and Molecular Microbiology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Korea
| | - Y Choi
- Department of Immunology and Molecular Microbiology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Korea
| |
Collapse
|
181
|
Abstract
PURPOSE OF REVIEW Giardia is a common intestinal parasite worldwide, and infection can be associated with clear and sometimes persistent symptomatology. However, in children in high-prevalence settings, it is not associated with or is perhaps even protective against acute diarrhea, and the association with long-term outcomes has been difficult to discern. RECENT FINDINGS Recent studies have made progress in helping us disentangle this apparent paradox. First, prospective, well-characterized cohort studies have added to the data on the association between Giardia and diarrhea in these settings and have further characterized associations between Giardia infection and nutrition, gut function, and growth. Second, animal models have further characterized the host response to Giardia and helped elucidate mechanisms by which Giardia could impair child development. Finally, new work has shed light on the heterogeneity of human Giardia strains, which may both explain discrepant findings in the literature and help guide higher-resolution analyses of this pathogen in the future. SUMMARY The true clinical impact of endemic pediatric giardiasis remains unclear, but recent prospective studies have confirmed a high prevalence of persistent, subclinical Giardia infections and associated growth shortfalls. Integrating how nutritional, microbial, metabolic, and pathogen-strain variables influence these outcomes could sharpen delineations between pathogenic and potentially beneficial attributes of this enigmatic parasite.
Collapse
|
182
|
Heidrich N, Bauriedl S, Barquist L, Li L, Schoen C, Vogel J. The primary transcriptome of Neisseria meningitidis and its interaction with the RNA chaperone Hfq. Nucleic Acids Res 2017; 45:6147-6167. [PMID: 28334889 PMCID: PMC5449619 DOI: 10.1093/nar/gkx168] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 03/02/2017] [Indexed: 12/15/2022] Open
Abstract
Neisseria meningitidis is a human commensal that can also cause life-threatening meningitis and septicemia. Despite growing evidence for RNA-based regulation in meningococci, their transcriptome structure and output of regulatory small RNAs (sRNAs) are incompletely understood. Using dRNA-seq, we have mapped at single-nucleotide resolution the primary transcriptome of N. meningitidis strain 8013. Annotation of 1625 transcriptional start sites defines transcription units for most protein-coding genes but also reveals a paucity of classical σ70-type promoters, suggesting the existence of activators that compensate for the lack of −35 consensus sequences in N. meningitidis. The transcriptome maps also reveal 65 candidate sRNAs, a third of which were validated by northern blot analysis. Immunoprecipitation with the RNA chaperone Hfq drafts an unexpectedly large post-transcriptional regulatory network in this organism, comprising 23 sRNAs and hundreds of potential mRNA targets. Based on this data, using a newly developed gfp reporter system we validate an Hfq-dependent mRNA repression of the putative colonization factor PrpB by the two trans-acting sRNAs RcoF1/2. Our genome-wide RNA compendium will allow for a better understanding of meningococcal transcriptome organization and riboregulation with implications for colonization of the human nasopharynx.
Collapse
Affiliation(s)
- Nadja Heidrich
- RNA Biology Group, Institute for Molecular Infection Biology (IMIB), University of Würzburg, D-97080 Würzburg, Germany
| | - Saskia Bauriedl
- Institute for Hygiene and Microbiology (IHM), University of Würzburg, D-97080 Würzburg, Germany
| | - Lars Barquist
- RNA Biology Group, Institute for Molecular Infection Biology (IMIB), University of Würzburg, D-97080 Würzburg, Germany
| | - Lei Li
- Division of Biostatistics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Christoph Schoen
- Institute for Hygiene and Microbiology (IHM), University of Würzburg, D-97080 Würzburg, Germany
| | - Jörg Vogel
- RNA Biology Group, Institute for Molecular Infection Biology (IMIB), University of Würzburg, D-97080 Würzburg, Germany.,Helmholtz Institute for RNA-based Infection Research (HIRI), D-97080 Würzburg, Germany
| |
Collapse
|
183
|
Tengs T, Rimstad E. Emerging pathogens in the fish farming industry and sequencing-based pathogen discovery. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 75:109-119. [PMID: 28167074 DOI: 10.1016/j.dci.2017.01.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 01/27/2017] [Accepted: 01/31/2017] [Indexed: 06/06/2023]
Abstract
The use of large scale DNA/RNA sequencing has become an integral part of biomedical research. Reduced sequencing costs and the availability of efficient computational resources has led to a revolution in how problems concerning genomics and transcriptomics are addressed. Sequencing-based pathogen discovery represents one example of how genetic data can now be used in ways that were previously considered infeasible. Emerging pathogens affect both human and animal health due to a multitude of factors, including globalization, a shifting environment and an increasing human population. Fish farming represents a relevant, interesting and challenging system to study emerging pathogens. This review summarizes recent progress in pathogen discovery using sequence data, with particular emphasis on viruses in Atlantic salmon (Salmo salar).
Collapse
Affiliation(s)
- Torstein Tengs
- Department of Chemistry, Biotechnology and Food Sciences, Faculty of Veterinary Medicine and Biosciences, Norwegian University of Life Sciences, 1430 Aas, Norway.
| | - Espen Rimstad
- Department of Food Safety and Infectious Biology, Faculty of Veterinary Medicine and Biosciences, Norwegian University of Life Sciences, 0033 Oslo, Norway
| |
Collapse
|
184
|
Ferris RA, Palmer BA, Borlee BR, McCue PM. Ability of Chromogenic Agar, MALDI-TOF, API 20E and 20 Strep Strips, and BBL Crystal Enteric and Gram-Positive Identification Kits to Precisely Identify Common Equine Uterine Pathogens. J Equine Vet Sci 2017. [DOI: 10.1016/j.jevs.2017.06.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
185
|
Abstract
Fungi and mammals share a co-evolutionary history and are involved in a complex web of interactions. Studies focused on commensal bacteria suggest that pathological changes in the microbiota, historically known as dysbiosis, are at the root of many inflammatory diseases of non-infectious origin. However, the importance of dysbiosis in the fungal community - the mycobiota - was only recently acknowledged to have a pathological role, as novel findings have suggested that mycobiota disruption can have detrimental effects on host immunity. Fungal dysbiosis and homeostasis are dynamic processes that are probably more common than actual fungal infections, and therefore constantly shape the immune response. In this Review, we summarize specific mycobiota patterns that are associated with fungal dysbiosis, and discuss how mucosal immunity has evolved to distinguish fungal infections from dysbiosis and how it responds to these different conditions. We propose that gut microbiota dysbiosis is a collective feature of complex interactions between prokaryotic and eukaryotic microbial communities that can affect immunity and that can influence health and disease.
Collapse
Affiliation(s)
- Iliyan D Iliev
- Gastroenterology and Hepatology Division, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, NY 10021, USA
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY 10065, USA
- The Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, New York, NY 10021, USA
| | - Irina Leonardi
- Gastroenterology and Hepatology Division, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, NY 10021, USA
- The Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, New York, NY 10021, USA
| |
Collapse
|
186
|
Kuenstner JT, Naser S, Chamberlin W, Borody T, Graham DY, McNees A, Hermon-Taylor J, Hermon-Taylor A, Dow CT, Thayer W, Biesecker J, Collins MT, Sechi LA, Singh SV, Zhang P, Shafran I, Weg S, Telega G, Rothstein R, Oken H, Schimpff S, Bach H, Bull T, Grant I, Ellingson J, Dahmen H, Lipton J, Gupta S, Chaubey K, Singh M, Agarwal P, Kumar A, Misri J, Sohal J, Dhama K, Hemati Z, Davis W, Hier M, Aitken J, Pierce E, Parrish N, Goldberg N, Kali M, Bendre S, Agrawal G, Baldassano R, Linn P, Sweeney RW, Fecteau M, Hofstaedter C, Potula R, Timofeeva O, Geier S, John K, Zayanni N, Malaty HM, Kahlenborn C, Kravitz A, Bulfon A, Daskalopoulos G, Mitchell H, Neilan B, Timms V, Cossu D, Mameli G, Angermeier P, Jelic T, Goethe R, Juste RA, Kuenstner L. The Consensus from the Mycobacterium avium ssp. paratuberculosis (MAP) Conference 2017. Front Public Health 2017; 5:208. [PMID: 29021977 PMCID: PMC5623710 DOI: 10.3389/fpubh.2017.00208] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Accepted: 07/28/2017] [Indexed: 01/29/2023] Open
Abstract
On March 24 and 25, 2017 researchers and clinicians from around the world met at Temple University in Philadelphia to discuss the current knowledge of Mycobacterium avium ssp. paratuberculosis (MAP) and its relationship to human disease. The conference was held because of shared concern that MAP is a zoonotic bacterium that poses a threat not only to animal health but also human health. In order to further study this problem, the conferees discussed ways to improve MAP diagnostic tests and discussed potential future anti-MAP clinical trials. The conference proceedings may be viewed on the www.Humanpara.org website. A summary of the salient work in this field is followed by recommendations from a majority of the conferees.
Collapse
Affiliation(s)
- J Todd Kuenstner
- Temple University Health System, Philadelphia, PA, United States
| | - Saleh Naser
- Temple University Health System, Philadelphia, PA, United States
| | | | - Thomas Borody
- Temple University Health System, Philadelphia, PA, United States
| | - David Y Graham
- Temple University Health System, Philadelphia, PA, United States
| | - Adrienne McNees
- Temple University Health System, Philadelphia, PA, United States
| | | | | | - C Thomas Dow
- Temple University Health System, Philadelphia, PA, United States
| | - Walter Thayer
- Temple University Health System, Philadelphia, PA, United States
| | - James Biesecker
- Temple University Health System, Philadelphia, PA, United States
| | | | - Leonardo A Sechi
- Temple University Health System, Philadelphia, PA, United States
| | - Shoor Vir Singh
- Temple University Health System, Philadelphia, PA, United States
| | - Peilin Zhang
- Temple University Health System, Philadelphia, PA, United States
| | - Ira Shafran
- Temple University Health System, Philadelphia, PA, United States
| | - Stuart Weg
- Temple University Health System, Philadelphia, PA, United States
| | - Grzegorz Telega
- Temple University Health System, Philadelphia, PA, United States
| | - Robert Rothstein
- Temple University Health System, Philadelphia, PA, United States
| | - Harry Oken
- Temple University Health System, Philadelphia, PA, United States
| | - Stephen Schimpff
- Temple University Health System, Philadelphia, PA, United States
| | - Horacio Bach
- Temple University Health System, Philadelphia, PA, United States
| | - Tim Bull
- Temple University Health System, Philadelphia, PA, United States
| | - Irene Grant
- Temple University Health System, Philadelphia, PA, United States
| | - Jay Ellingson
- Temple University Health System, Philadelphia, PA, United States
| | - Heinrich Dahmen
- Temple University Health System, Philadelphia, PA, United States
| | - Judith Lipton
- Temple University Health System, Philadelphia, PA, United States
| | - Saurabh Gupta
- Temple University Health System, Philadelphia, PA, United States
| | - Kundan Chaubey
- Temple University Health System, Philadelphia, PA, United States
| | - Manju Singh
- Temple University Health System, Philadelphia, PA, United States
| | - Prabhat Agarwal
- Temple University Health System, Philadelphia, PA, United States
| | - Ashok Kumar
- Temple University Health System, Philadelphia, PA, United States
| | - Jyoti Misri
- Temple University Health System, Philadelphia, PA, United States
| | - Jagdip Sohal
- Temple University Health System, Philadelphia, PA, United States
| | - Kuldeep Dhama
- Temple University Health System, Philadelphia, PA, United States
| | - Zahra Hemati
- Temple University Health System, Philadelphia, PA, United States
| | - William Davis
- Temple University Health System, Philadelphia, PA, United States
| | - Michael Hier
- Temple University Health System, Philadelphia, PA, United States
| | - John Aitken
- Temple University Health System, Philadelphia, PA, United States
| | - Ellen Pierce
- Temple University Health System, Philadelphia, PA, United States
| | - Nicole Parrish
- Temple University Health System, Philadelphia, PA, United States
| | - Neil Goldberg
- Temple University Health System, Philadelphia, PA, United States
| | - Maher Kali
- Temple University Health System, Philadelphia, PA, United States
| | - Sachin Bendre
- Temple University Health System, Philadelphia, PA, United States
| | - Gaurav Agrawal
- Temple University Health System, Philadelphia, PA, United States
| | | | - Preston Linn
- Temple University Health System, Philadelphia, PA, United States
| | | | - Marie Fecteau
- Temple University Health System, Philadelphia, PA, United States
| | | | - Raghava Potula
- Temple University Health System, Philadelphia, PA, United States
| | - Olga Timofeeva
- Temple University Health System, Philadelphia, PA, United States
| | - Steven Geier
- Temple University Health System, Philadelphia, PA, United States
| | - Kuruvilla John
- Temple University Health System, Philadelphia, PA, United States
| | - Najah Zayanni
- Temple University Health System, Philadelphia, PA, United States
| | - Hoda M Malaty
- Temple University Health System, Philadelphia, PA, United States
| | | | - Amanda Kravitz
- Temple University Health System, Philadelphia, PA, United States
| | - Adriano Bulfon
- Temple University Health System, Philadelphia, PA, United States
| | | | - Hazel Mitchell
- Temple University Health System, Philadelphia, PA, United States
| | - Brett Neilan
- Temple University Health System, Philadelphia, PA, United States
| | - Verlaine Timms
- Temple University Health System, Philadelphia, PA, United States
| | - Davide Cossu
- Temple University Health System, Philadelphia, PA, United States
| | - Giuseppe Mameli
- Temple University Health System, Philadelphia, PA, United States
| | - Paul Angermeier
- Temple University Health System, Philadelphia, PA, United States
| | - Tomislav Jelic
- Temple University Health System, Philadelphia, PA, United States
| | - Ralph Goethe
- Temple University Health System, Philadelphia, PA, United States
| | - Ramon A Juste
- Temple University Health System, Philadelphia, PA, United States
| | - Lauren Kuenstner
- Temple University Health System, Philadelphia, PA, United States
| |
Collapse
|
187
|
Abstract
The use of culture-independent techniques has allowed us to appreciate that the upper and lower respiratory tract contain a diverse community of microbes in health and disease. Research has only recently explored the effects of the microbiome on the host immune response. The exposure of the human body to the bacterial environment is an important factor for immunological development; thus, the interaction between the microbiome and its host is critical to understanding the pathogenesis of disease. In this article, we discuss the mechanisms that determine the composition of the airway microbiome and its effects on the host immune response. With the use of ecological principles, we have learned how the lower airways constitute a unique niche subjected to frequent microbial migration (e.g., through aspiration) and constant immunological pressure. The discussion will focus on the possible inflammatory pathways that are up- and downregulated when the immune system is challenged by dysbiosis. Identification of potential markers and microbial targets to address the modulation of inflammation in early disease, when changes may have the most effect, will be critical for future therapies.
Collapse
|
188
|
Abstract
The history of virology is a history of conceptual and technological inventions and breakthroughs. The development of filters made of porcelain or kieselgur by the end of the 19th century which withheld bacteria allowed the identification of infectious agents smaller than bacteria and noncultivable on the media known at that time and used to grow bacteria. Even finer-grain filters resulted in the observation that the ultravisible novel infectious agents are in fact of particulate nature. Infections of plants and animals were the first to be attributed to these tiny entities. Proof resulted from experimental infection of the natural hosts (including humans). Thus, of the first 30 viruses identified, 20 are veterinary viruses, i.e. infectious agents of poultry and livestock. The discovery that bacteria also have viruses in the 1910s expanded the viral universe which continues today. Filterability and ultravisibility remained a hallmark for the identification of viruses until the advent of the electron microscope in the late 1930s marking another technological breakthrough in virology. Cell culture techniques allowed virus propagation outside the infected organism. In the past decades, the advent and development of molecular biology has brought more innovations culminating in the rapid and accurate determination of genomic material of a variety of living beings including viruses in a hitherto unknown speed and depth using next-generation sequencing and metagenomic analyses. Thus, it is no surprise that new viruses are detected constantly including specimens of unprecedented size and shape. Virologists agree that the viral universe is immense, and only a small fraction has been explored yet.
Collapse
|
189
|
Wessel Ø, Braaen S, Alarcon M, Haatveit H, Roos N, Markussen T, Tengs T, Dahle MK, Rimstad E. Infection with purified Piscine orthoreovirus demonstrates a causal relationship with heart and skeletal muscle inflammation in Atlantic salmon. PLoS One 2017; 12:e0183781. [PMID: 28841684 PMCID: PMC5571969 DOI: 10.1371/journal.pone.0183781] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 08/10/2017] [Indexed: 01/07/2023] Open
Abstract
Viral diseases pose a significant threat to the productivity in aquaculture. Heart- and skeletal muscle inflammation (HSMI) is an emerging disease in Atlantic salmon (Salmo salar) farming. HSMI is associated with Piscine orthoreovirus (PRV) infection, but PRV is ubiquitous in farmed Atlantic salmon and thus present also in apparently healthy individuals. This has brought speculations if additional etiological factors are required, and experiments focusing on the causal relationship between PRV and HSMI are highly warranted. A major bottleneck in PRV research has been the lack of cell lines that allow propagation of the virus. To bypass this, we propagated PRV in salmon, bled the fish at the peak of the infection, and purified virus particles from blood cells. Electron microscopy, western blot and high-throughput sequencing all verified the purity of the viral particles. Purified PRV particles were inoculated into naïve Atlantic salmon. The purified virus replicated in inoculated fish, spread to naïve cohabitants, and induced histopathological changes consistent with HSMI. PRV specific staining was demonstrated in the pathological lesions. A dose-dependent response was observed; a high dose of virus gave earlier peak of the viral load and development of histopathological changes compared to a lower dose, but no difference in the severity of the disease. The experiment demonstrated that PRV can be purified from blood cells, and that PRV is the etiological agent of HSMI in Atlantic salmon.
Collapse
Affiliation(s)
- Øystein Wessel
- Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
- * E-mail:
| | - Stine Braaen
- Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
| | | | - Hanne Haatveit
- Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
| | - Norbert Roos
- Department of Biosciences, University of Oslo, Oslo, Norway
| | - Turhan Markussen
- Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
| | - Torstein Tengs
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | | | - Espen Rimstad
- Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
| |
Collapse
|
190
|
Abstract
The standard paradigm for microbiological testing is dependent on the presentation of a patient to a clinician. Tests are then requested based on differential diagnoses using the patient's symptoms as a guide. The era of high-throughput genomic methods has the potential to replace this model for the first time with what could be referred to as "hypothesis-free testing." This approach utilizes one of a variety of methodologies to obtain a sequence from potentially any nucleic acid in a clinical sample, without prior knowledge of its content. We discuss the advantages of such an approach and the challenges in making this a reality.
Collapse
|
191
|
Hovhannisyan VA, Bazukyan IL, Gasparyan VK. Application of silver nanoparticles and CdSe quantum dots sensitized with of C-like lectin for detection of St. aureus. Comparison of various approaches. Talanta 2017; 175:366-369. [PMID: 28842004 DOI: 10.1016/j.talanta.2017.07.062] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 07/19/2017] [Accepted: 07/20/2017] [Indexed: 01/08/2023]
Abstract
C-type lectin from hen egg shell as a recognition ligand for detection of St. aureus was applied. Three approaches for detection of bacteria were used and the sensitivities of the assays were compared. Two of them included spherical and anisotropic silver nanoparticles sensitized by lectin. In these cases the optical changes as a result of interaction of sensitized nanoparticles with bacteria were measured. In the third approach hybrid system of CdSe quantum dots-anisotropic silver nanoparticles sensitized by lectin was applied. Here fluorescent changes as a result of resonance energy transfer between nanoparticles as consequence of their interaction with bacteria were measured. The data demonstrate that assays with spherical silver nanoparticles permit to detect St. aureus in the range of 6 × 104/mL-2 × 107/mL, anisotropic silver nanoparticles in the range of 2 × 105/mL-1 × 108/mL, CdSe-Ag hybrid system in the range of 6 × 103/mL-2 × 107/mL. The data demonstrate that hybrid system CdSe-Ag with resonance energy transfer provides the best sensitivity.
Collapse
Affiliation(s)
- Varduhi A Hovhannisyan
- Laboratory of Medical Biotechnology, Institute of Biochemistry, National Academy of Sciences, Yerevan 0014, Armenia
| | | | - Vardan K Gasparyan
- Laboratory of Medical Biotechnology, Institute of Biochemistry, National Academy of Sciences, Yerevan 0014, Armenia.
| |
Collapse
|
192
|
The Human Virome: Implications for Clinical Practice in Transplantation Medicine. J Clin Microbiol 2017; 55:2884-2893. [PMID: 28724557 DOI: 10.1128/jcm.00489-17] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Advances in DNA sequencing technology have provided an unprecedented opportunity to study the human virome. Transplant recipients and other immunocompromised hosts are at particular risk for developing virus-related pathology; thus, the impact of the virome on health and disease may be even more relevant in this population. Here, we discuss technical considerations in studying the human virome, the current literature on the virome in transplant recipients, and near-future applications of sequence-based findings that can further our understanding of viruses in transplantation medicine.
Collapse
|
193
|
Jiménez E, Arroyo R, Cárdenas N, Marín M, Serrano P, Fernández L, Rodríguez JM. Mammary candidiasis: A medical condition without scientific evidence? PLoS One 2017; 12:e0181071. [PMID: 28704470 PMCID: PMC5509296 DOI: 10.1371/journal.pone.0181071] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Accepted: 06/26/2017] [Indexed: 01/10/2023] Open
Abstract
Many physicians, midwives and lactation consultants still believe that yeasts (particularly Candida spp.) play an important role as an agent of nipple and breast pain despite the absolute absence of scientific proofs to establish such association. In this context, the objective of this study was to investigate the microorganisms involved in sore nipples and/or painful "shooting" breastfeeding by using a variety of microscopy techniques, as well as culture-dependent and-independent identification methods. Initially, 60 women (30 diagnosed as suffering "mammary candidiasis" and 30 with no painful breastfeeding) were recruited to elucidate the role of their pumps on the milk microbial profiles. After realizing the bias introduced by using such devices, manual expression was selected as the collection method for the microbiological analysis of milk samples provided by 529 women with symptoms compatible with "mammary candidiasis". Nipple swabs and nipple biopsy samples were also collected from the participating women. Results showed that the role played by yeasts in breast and nipple pain is, if any, marginal. In contrast, our results strongly support that coagulase-negative staphylococci and streptococci (mainly from the mitis and salivarius groups) are the agents responsible for such cases. As a consequence, and following the recommendations of the US Library of Medicine for the nomenclature of infectious diseases, the term "mammary candidiasis" or "nipple thrush" should be avoided when referring to such condition and replaced by "subacute mastitis".
Collapse
Affiliation(s)
- Esther Jiménez
- Dpt. Nutrition, Food Science and Food Technology, Complutense University of Madrid, Madrid, Spain
| | - Rebeca Arroyo
- Dpt. Nutrition, Food Science and Food Technology, Complutense University of Madrid, Madrid, Spain
| | - Nivia Cárdenas
- Dpt. Nutrition, Food Science and Food Technology, Complutense University of Madrid, Madrid, Spain
| | - María Marín
- Dpt. Nutrition, Food Science and Food Technology, Complutense University of Madrid, Madrid, Spain
| | - Pilar Serrano
- Unidadde Endocrinología y Nutrición, Hospital Virgen del Rocío, Seville, Spain
| | - Leonides Fernández
- Dpt. Nutrition, Food Science and Food Technology, Complutense University of Madrid, Madrid, Spain
| | - Juan M. Rodríguez
- Dpt. Nutrition, Food Science and Food Technology, Complutense University of Madrid, Madrid, Spain
| |
Collapse
|
194
|
Abstract
Candida species are the most common infectious fungal species in humans; out of the approximately 150 known species, Candida albicans is the leading pathogenic species, largely affecting immunocompromised individuals. Apart from its role as the primary etiology for various types of candidiasis, C. albicans is known to contribute to polymicrobial infections. Polymicrobial interactions, particularly between C. albicans and bacterial species, have gained recent interest in which polymicrobial biofilm virulence mechanisms have been studied including adhesion, invasion, quorum sensing, and development of antimicrobial resistance. These trans-kingdom interactions, either synergistic or antagonistic, may help modulate the virulence and pathogenicity of both Candida and bacteria while uniquely impacting the pathogen-host immune response. As antibiotic and antifungal resistance increases, there is a great need to explore the intermicrobial cross-talk with a focus on the treatment of Candida-associated polymicrobial infections. This article explores the current literature on the interactions between Candida and clinically important bacteria and evaluates these interactions in the context of pathogenesis, diagnosis, and disease management.
Collapse
|
195
|
The role of ticks in the maintenance and transmission of Crimean-Congo hemorrhagic fever virus: A review of published field and laboratory studies. Antiviral Res 2017; 144:93-119. [PMID: 28579441 DOI: 10.1016/j.antiviral.2017.05.010] [Citation(s) in RCA: 174] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 05/21/2017] [Accepted: 05/30/2017] [Indexed: 10/19/2022]
Abstract
This manuscript is part of a series of reviews that aim to cover published research on Crimean-Congo hemorrhagic fever (CCHF) and its etiological agent, CCHF virus (CCHFV). The virus is maintained and transmitted in a vertical and horizontal transmission cycle involving a variety of wild and domestic vertebrate species that act as amplification hosts, without showing signs of illness. These vertebrates have traditionally been considered reservoirs of CCHFV, but in fact they develop only a transient viremia, while the virus can persist in ticks for their entire lifespan, and can also be transmitted vertically to the next generation. As a result, ticks are now considered to be both the vector and the reservoir for the virus. CCHFV has been detected in a wide range of tick species, but only a few have been proven to be vectors and reservoirs, mainly because most published studies have been performed under a broad variety of conditions, precluding definitive characterization. This article reviews the published literature, summarizes current knowledge of the role of ticks in CCHFV maintenance and transmission and provides guidance for how to fill the knowledge gaps. Special focus is given to existing data on tick species in which vertical passage has been demonstrated under natural or experimental conditions. At the same time, we identify earlier reports that used unreliable methods and perceptions to ascribe a vector role to some species of ticks, and have contributed to confusion regarding viral transmission. We also examine epidemiological pathways of CCHFV circulation and discuss priority areas for future research.
Collapse
|
196
|
Sultana S, Sarker SA, Brüssow H. What happened toKoch's postulates in diarrhoea? Environ Microbiol 2017; 19:2926-2934. [DOI: 10.1111/1462-2920.13787] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 04/28/2017] [Indexed: 01/18/2023]
Affiliation(s)
- Shamima Sultana
- Clinical Sciences DepartmentInternational Center for Diarrhoeal Disease ResearchDhaka Bangladesh
| | - Shafiqul A. Sarker
- Clinical Sciences DepartmentInternational Center for Diarrhoeal Disease ResearchDhaka Bangladesh
| | - Harald Brüssow
- Department of Gut Ecology, Host‐Microbe Interaction GroupNestlé Research CenterLausanne Switzerland
| |
Collapse
|
197
|
Doggett NA, Mukundan H, Lefkowitz EJ, Slezak TR, Chain PS, Morse S, Anderson K, Hodge DR, Pillai S. Culture-Independent Diagnostics for Health Security. Health Secur 2017; 14:122-42. [PMID: 27314653 DOI: 10.1089/hs.2015.0074] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The past decade has seen considerable development in the diagnostic application of nonculture methods, including nucleic acid amplification-based methods and mass spectrometry, for the diagnosis of infectious diseases. The implications of these new culture-independent diagnostic tests (CIDTs) include bypassing the need to culture organisms, thus potentially affecting public health surveillance systems, which continue to use isolates as the basis of their surveillance programs and to assess phenotypic resistance to antimicrobial agents. CIDTs may also affect the way public health practitioners detect and respond to a bioterrorism event. In response to a request from the Department of Homeland Security, Los Alamos National Laboratory and the Centers for Disease Control and Prevention cosponsored a workshop to review the impact of CIDTs on the rapid detection and identification of biothreat agents. Four panel discussions were held that covered nucleic acid amplification-based diagnostics, mass spectrometry, antibody-based diagnostics, and next-generation sequencing. Exploiting the extensive expertise available at this workshop, we identified the key features, benefits, and limitations of the various CIDT methods for providing rapid pathogen identification that are critical to the response and mitigation of a bioterrorism event. After the workshop we conducted a thorough review of the literature, investigating the current state of these 4 culture-independent diagnostic methods. This article combines information from the literature review and the insights obtained at the workshop.
Collapse
|
198
|
Brüssow H. Is chronic rhinosinusitis an infectious disease? Insights from a microbiota meta-analysis. Environ Microbiol 2017; 19:1359-1362. [PMID: 28256064 DOI: 10.1111/1462-2920.13715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 02/27/2017] [Indexed: 11/30/2022]
Affiliation(s)
- Harald Brüssow
- Nestlé Research Center Lausanne, Institute of Nutritional Science, Gut Ecology Department, Host-Microbe Interaction Group, CH-1000, Lausanne 26, Switzerland
| |
Collapse
|
199
|
Taylor-Brown A, Pillonel T, Bridle A, Qi W, Bachmann NL, Miller TL, Greub G, Nowak B, Seth-Smith HMB, Vaughan L, Polkinghorne A. Culture-independent genomics of a novel chlamydial pathogen of fish provides new insight into host-specific adaptations utilized by these intracellular bacteria. Environ Microbiol 2017; 19:1899-1913. [PMID: 28205377 DOI: 10.1111/1462-2920.13694] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 02/02/2017] [Accepted: 02/07/2017] [Indexed: 12/12/2022]
Abstract
Several Chlamydiales families are associated with epitheliocystis, a common condition of the fish gill epithelium. These families share common ancestors with the Chlamydiaceae and environmental Chlamydiae. Due to the lack of culture systems, little is known about the biology of these chlamydial fish pathogens. We investigated epitheliocystis in cultured Orange-spotted grouper (Epinephelus coioides) from North Queensland, Australia. Basophilic inclusions were present in the gills of 22/31 fish and the presence of the chlamydial pathogen in the cysts was confirmed by in situ hybridization. Giant grouper (Epinephelus lanceolatus) cultured in the same systems were epitheliocystis free. 16S rRNA gene sequencing revealed a novel member of the Candidatus Parilichlamydiaceae: Ca. Similichlamydia epinephelii. Using metagenomic approaches, we obtained an estimated 68% of the chlamydial genome, revealing that this novel chlamydial pathogen shares a number of key pathogenic hallmarks with the Chlamydiaceae, including an intact Type III Secretion system and several chlamydial virulence factors. This provides additional evidence that these pathogenic mechanisms were acquired early in the evolution of this unique bacterial phylum. The identification and genomic characterization of Ca. S. epinephelii provides new opportunities to study the biology of distantly-related chlamydial pathogens while shining a new light on the evolution of pathogenicity of the Chlamydiaceae.
Collapse
Affiliation(s)
- Alyce Taylor-Brown
- Centre for Animal Health Innovation, Faculty of Science, Engineering and Education, University of the Sunshine Coast, Sippy Downs, Queensland, 4556, Australia
| | - Trestan Pillonel
- Institute of Microbiology, University of Lausanne, Lausanne, CH-1011, Switzerland
| | - Andrew Bridle
- Institute of Marine and Antarctic Studies, University of Tasmania, Newnham, Tasmania, 7248, Australia
| | - Weihong Qi
- Functional Genomics Centre, University of Zurich, Zurich, CH-8057, Switzerland
| | - Nathan L Bachmann
- Centre for Animal Health Innovation, Faculty of Science, Engineering and Education, University of the Sunshine Coast, Sippy Downs, Queensland, 4556, Australia
| | - Terrence L Miller
- Centre for Sustainable Tropical Fisheries and Aquaculture, College of Marine and Environmental Sciences, James Cook University, Cairns, Queensland, 4878, Australia
| | - Gilbert Greub
- Institute of Microbiology, University of Lausanne, Lausanne, CH-1011, Switzerland
| | - Barbara Nowak
- Institute of Marine and Antarctic Studies, University of Tasmania, Newnham, Tasmania, 7248, Australia
| | - Helena M B Seth-Smith
- Functional Genomics Centre, University of Zurich, Zurich, CH-8057, Switzerland.,Institute of Veterinary Pathology, University of Zurich, Zurich, CH-8057, Switzerland
| | - Lloyd Vaughan
- Institute of Veterinary Pathology, University of Zurich, Zurich, CH-8057, Switzerland
| | - Adam Polkinghorne
- Centre for Animal Health Innovation, Faculty of Science, Engineering and Education, University of the Sunshine Coast, Sippy Downs, Queensland, 4556, Australia
| |
Collapse
|
200
|
Marshall NC, Finlay BB, Overall CM. Sharpening Host Defenses during Infection: Proteases Cut to the Chase. Mol Cell Proteomics 2017; 16:S161-S171. [PMID: 28179412 PMCID: PMC5393396 DOI: 10.1074/mcp.o116.066456] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 02/03/2017] [Indexed: 01/14/2023] Open
Abstract
The human immune system consists of an intricate network of tightly controlled pathways, where proteases are essential instigators and executioners at multiple levels. Invading microbial pathogens also encode proteases that have evolved to manipulate and dysregulate host proteins, including host proteases during the course of disease. The identification of pathogen proteases as well as their substrates and mechanisms of action have empowered significant developments in therapeutics for infectious diseases. Yet for many pathogens, there remains a great deal to be discovered. Recently, proteomic techniques have been developed that can identify proteolytically processed proteins across the proteome. These “degradomics” approaches can identify human substrates of microbial proteases during infection in vivo and expose the molecular-level changes that occur in the human proteome during infection as an operational network to develop hypotheses for further research as well as new therapeutics. This Perspective Article reviews how proteases are utilized during infection by both the human host and invading bacterial pathogens, including archetypal virulence-associated microbial proteases, such as the Clostridia spp. botulinum and tetanus neurotoxins. We highlight the potential knowledge that degradomics studies of host–pathogen interactions would uncover, as well as how degradomics has been successfully applied in similar contexts, including use with a viral protease. We review how microbial proteases have been targeted in current therapeutic approaches and how microbial proteases have shaped and even contributed to human therapeutics beyond infectious disease. Finally, we discuss how, moving forward, degradomics research can greatly contribute to our understanding of how microbial pathogens cause disease in vivo and lead to the identification of novel substrates in vivo, and the development of improved therapeutics to counter these pathogens.
Collapse
Affiliation(s)
- Natalie C Marshall
- From the ‡Department of Microbiology & Immunology.,§Michael Smith Laboratories
| | - B Brett Finlay
- From the ‡Department of Microbiology & Immunology.,§Michael Smith Laboratories.,¶Department of Biochemistry & Molecular Biology
| | - Christopher M Overall
- ¶Department of Biochemistry & Molecular Biology, .,**Department of Oral Biological & Medical Sciences, Centre for Blood Research, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|