151
|
Efficient site-directed mutagenesis using an overlap extension-PCR method for expressing Mycoplasma hyopneumoniae genes in Escherichia coli. J Microbiol Methods 2009; 79:101-5. [DOI: 10.1016/j.mimet.2009.08.016] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2009] [Revised: 08/10/2009] [Accepted: 08/25/2009] [Indexed: 11/18/2022]
|
152
|
|
153
|
Li YZ, Ho YP, Chen ST, Shiuan D. Proteomic Analysis of the Interactions between Mycoplasma hyopneumoniae and Porcine Tracheal Ciliated Cells. Appl Biochem Biotechnol 2009; 160:2248-55. [DOI: 10.1007/s12010-009-8713-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2009] [Accepted: 07/07/2009] [Indexed: 11/30/2022]
|
154
|
Machado CX, Pinto PM, Zaha A, Ferreira HB. A peroxiredoxin from Mycoplasma hyopneumoniae with a possible role in H2O2 detoxification. MICROBIOLOGY-SGM 2009; 155:3411-3419. [PMID: 19589831 DOI: 10.1099/mic.0.030643-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Mycoplasma hyopneumoniae is the causative agent of porcine enzootic pneumonia, which affects pig farms worldwide, causing heavy economic losses. In the infection process, this bacterium is exposed to reactive oxygen species (ROS) from its own metabolism or generated by the host as one of the strategies used to neutralize the pathogen. Although the presence of classical antioxidant enzymes would be expected in M. hyopneumoniae, important genes directly related to protection against ROS, such as superoxide dismutase, catalases and glutathione peroxidase, have not been identified by sequence homology in the genome sequence annotation. Among the few identified M. hyopneumoniae genes coding for proteins possibly involved with suppression of ROS-mediated damage, one (tpx) coding for a peroxiredoxin (MhPrx) has been recognized. The sequence and phylogenetic analyses perfomed in this study indicate that MhPrx is closely related to the atypical 2-Cys peroxiredoxin subfamily, although it has only one cysteine in its sequence. The MhPrx coding DNA sequence was cloned and expressed in Escherichia coli to produce a recombinant MhPrx (rMhPrx), which was purified and used to immunize mice and produce an anti-MhPrx polyclonal antiserum. Probing of M. hyopneumoniae extracts with this antiserum demonstrated that MhPrx is expressed in all three tested strains (J, 7422 and 7448). Cross-linking assays and size-exclusion chromatography indicate that rMhPrx forms dimers, as has been established for atypical 2-Cys peroxiredoxins. Furthermore, a metal-catalysed oxidation system was used to assay the activity of rMhPrx, showing that it can protect DNA from ROS-mediated damage and may play an essential role during infection.
Collapse
Affiliation(s)
- Cláudio X Machado
- Laboratório de Genômica Estrutural e Funcional, Centro de Biotecnologia, UFRGS, Porto Alegre, RS, Brazil
| | - Paulo M Pinto
- Laboratório de Genômica Estrutural e Funcional, Centro de Biotecnologia, UFRGS, Porto Alegre, RS, Brazil
| | - Arnaldo Zaha
- Departamento de Biologia Molecular e Biotecnologia, Instituto de Biociências, UFRGS, Porto Alegre-RS, Brazil.,Laboratório de Genômica Estrutural e Funcional, Centro de Biotecnologia, UFRGS, Porto Alegre, RS, Brazil
| | - Henrique B Ferreira
- Departamento de Biologia Molecular e Biotecnologia, Instituto de Biociências, UFRGS, Porto Alegre-RS, Brazil.,Laboratório de Genômica Estrutural e Funcional, Centro de Biotecnologia, UFRGS, Porto Alegre, RS, Brazil
| |
Collapse
|
155
|
Markov AV, Zakharov IA. Evolution of gene orders in mycoplasmas (Bacteria, Firmicutes, Mollicutes). RUSS J GENET+ 2009. [DOI: 10.1134/s1022795409070035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
156
|
Calus D, Maes D, Meyns T, Pasmans F, Haesebrouck F. In vivovirulence ofMycoplasma hyopneumoniaeisolates does not correlate within vitroadhesion assessed by a microtitre plate adherence assay. J Appl Microbiol 2009; 106:1951-6. [DOI: 10.1111/j.1365-2672.2009.04172.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
157
|
Almagro-Moreno S, Boyd EF. Insights into the evolution of sialic acid catabolism among bacteria. BMC Evol Biol 2009; 9:118. [PMID: 19470179 PMCID: PMC2693436 DOI: 10.1186/1471-2148-9-118] [Citation(s) in RCA: 154] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2008] [Accepted: 05/26/2009] [Indexed: 11/11/2022] Open
Abstract
Background Sialic acids comprise a family of nine-carbon amino sugars that are prevalent in mucus rich environments. Sialic acids from the human host are used by a number of pathogens as an energy source. Here we explore the evolution of the genes involved in the catabolism of sialic acid. Results The cluster of genes encoding the enzymes N-acetylneuraminate lyase (NanA), epimerase (NanE), and kinase (NanK), necessary for the catabolism of sialic acid (the Nan cluster), are confined 46 bacterial species, 42 of which colonize mammals, 33 as pathogens and 9 as gut commensals. We found a putative sialic acid transporter associated with the Nan cluster in most species. We reconstructed the phylogenetic history of the NanA, NanE, and NanK proteins from the 46 species and compared them to the species tree based on 16S rRNA. Within the NanA phylogeny, Gram-negative and Gram-positive bacteria do not form distinct clades. NanA from Yersinia and Vibrio species was most closely related to the NanA clade from eukaryotes. To examine this further, we reconstructed the phylogeny of all NanA homologues in the databases. In this analysis of 83 NanA sequences, Bacteroidetes, a human commensal group formed a distinct clade with Verrucomicrobia, and branched with the Eukaryotes and the Yersinia/Vibrio clades. We speculate that pathogens such as V. cholerae may have acquired NanA from a commensal aiding their colonization of the human gut. Both the NanE and NanK phylogenies more closely represented the species tree but numerous incidences of incongruence are noted. We confirmed the predicted function of the sialic acid catabolism cluster in members the major intestinal pathogens Salmonella enterica, Vibrio cholerae, V. vulnificus, Yersinia enterocolitica and Y. pestis. Conclusion The Nan cluster among bacteria is confined to human pathogens and commensals conferring them the ability to utilize a ubiquitous carbon source in mucus rich surfaces of the human body. The Nan region shows a mosaic evolution with NanA from Bacteroidetes, Vibrio and Yersinia branching closely together with NanA from eukaryotes.
Collapse
|
158
|
Li YZ, Ho YP, Chen ST, Chiou TW, Li ZS, Shiuan D. Proteomic comparative analysis of pathogenic strain 232 and avirulent strain J of Mycoplasma hyopneumoniae. BIOCHEMISTRY (MOSCOW) 2009; 74:215-20. [PMID: 19267678 DOI: 10.1134/s0006297909020138] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mycoplasma hyopneumoniae is an important pathogen of pigs causing enzootic pneumonia of swine. The pathogen remains largely enigmatic as far as the host-pathogen interactions are concerned. In the present study, the protein profiles of two strains of M. hyopneumoniae were compared by two-dimensional gel electrophoresis and mass spectrometry. The results indicate that the major adhesin P97, the 50-kDa protein derived from P159 adhesin, and the 43-kDa cleavage product of P102 are expressed at much higher levels in the pathogenic strain 232. In contrast, the avirulent strain J switches its focus to metabolism and expresses more glyceraldehyde 3-phosphate dehydrogenase in gluconeogenesis and lactate dehydrogenase, pyruvate dehydrogenase, and phosphate acetyltransferase in the pyruvate metabolism pathway. We speculate that the avirulent strain may have developed better capabilities to cope with the rich environment during repeated inoculations. Simultaneously, the capability to infect host cells may become less important so that the adhesion-related protein genes are down-regulated.
Collapse
Affiliation(s)
- Yuan-Zuo Li
- Department of Life Science and Institute of Biotechnology, National Dong Hwa University, Hualien, Taiwan, ROC
| | | | | | | | | | | |
Collapse
|
159
|
Sippel KH, Robbins AH, Reutzel R, Boehlein SK, Namiki K, Goodison S, Agbandje-McKenna M, Rosser CJ, McKenna R. Structural insights into the extracytoplasmic thiamine-binding lipoprotein p37 of Mycoplasma hyorhinis. J Bacteriol 2009; 191:2585-92. [PMID: 19233924 PMCID: PMC2668404 DOI: 10.1128/jb.01680-08] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2008] [Accepted: 02/09/2009] [Indexed: 01/07/2023] Open
Abstract
The Mycoplasma hyorhinis protein p37 has been implicated in tumorigenic transformation for more than 20 years. Though there are many speculations as to its function, based solely on sequence homology, the issue has remained unresolved. Presented here is the 1.6-A-resolution refined crystal structure of M. hyorhinis p37, renamed the extracytoplasmic thiamine-binding lipoprotein (Cypl). The structure shows thiamine pyrophosphate (TPP) and two calcium ions are bound to Cypl and give the first insights into possible functions of the Cypl-like family of proteins. Sequence alignments of Cypl-like proteins between several different species of mycoplasma show that the thiamine-binding site is likely conserved and structural alignments reveal the similarity of Cypl to various binding proteins. While the experimentally determined function of Cypl remains unknown, the structure shows that the protein is a TPP-binding protein, opening up many avenues for future mechanistic studies and making Cypl a possible target for combating mycoplasma infections and tumorigenic transformation.
Collapse
Affiliation(s)
- Katherine H Sippel
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
160
|
Diversifying and stabilizing selection of sialidase and N-acetylneuraminate catabolism in Mycoplasma synoviae. J Bacteriol 2009; 191:3588-93. [PMID: 19329630 DOI: 10.1128/jb.00142-09] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Sialidase activity varies widely among strains and tends to correlate with strain virulence in the avian pathogen Mycoplasma synoviae. To characterize the forms of selection acting on enzymes required for sialic acid scavenging and catabolism, the ratios of nonsynonymous (K(a)) to synonymous (K(s)) mutation frequency were calculated for codons in the sialidase gene of 16 strains of M. synoviae and for its nearly identical homolog in four strains of Mycoplasma gallisepticum. The K(a)/K(s) (omega) values for the linked genes required for nutritive N-acetylneuraminate catabolism (nanA, nagC, nanE, nagA, and nagB) from nine strains of M. synoviae were also determined. To provide context, omega was determined for all corresponding genes of 26 strains of Clostridium perfringens and Streptococcus pneumoniae. Bayesian models of sequence evolution showed that only the sialidase of M. synoviae was under significant (P < 0.001) diversifying selection, while the M. synoviae genes for N-acetylneuraminate catabolism and all genes examined from M. gallisepticum, C. perfringens, and S. pneumoniae were under neutral to stabilizing selection. Diversifying selection acting on the sialidase of M. synoviae, but not on the sialidase of M. gallisepticum or the sialidases or other enzymes essential for sialic acid scavenging in other Firmicutes, is evidence that variation in specific activity of the enzyme is perpetuated by a nonnutritive function in M. synoviae that is influenced by the genomic context of the organism.
Collapse
|
161
|
Cytoskeletal asymmetrical dumbbell structure of a gliding mycoplasma, Mycoplasma gallisepticum, revealed by negative-staining electron microscopy. J Bacteriol 2009; 191:3256-64. [PMID: 19286806 DOI: 10.1128/jb.01823-08] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Several mycoplasma species feature a membrane protrusion at a cell pole, and unknown mechanisms provide gliding motility in the direction of the pole defined by the protrusion. Mycoplasma gallisepticum, an avian pathogen, is known to form a membrane protrusion composed of bleb and infrableb and to glide. Here, we analyzed the gliding motility of M. gallisepticum cells in detail. They glided in the direction of the bleb at an average speed of 0.4 microm/s and remained attached around the bleb to a glass surface, suggesting that the gliding mechanism is similar to that of a related species, Mycoplasma pneumoniae. Next, to elucidate the cytoskeletal structure of M. gallisepticum, we stripped the envelopes by treatment with Triton X-100 under various conditions and observed the remaining structure by negative-staining transmission electron microscopy. A unique cytoskeletal structure, about 300 nm long and 100 nm wide, was found in the bleb and infrableb. The structure, resembling an asymmetrical dumbbell, is composed of five major parts from the distal end: a cap, a small oval, a rod, a large oval, and a bowl. Sonication likely divided the asymmetrical dumbbell into a core and other structures. The cytoskeletal structures of M. gallisepticum were compared with those of M. pneumoniae in detail, and the possible protein components of these structures were considered.
Collapse
|
162
|
Wilton J, Jenkins C, Cordwell SJ, Falconer L, Minion FC, Oneal DC, Djordjevic MA, Connolly A, Barchia I, Walker MJ, Djordjevic SP. Mhp493 (P216) is a proteolytically processed, cilium and heparin binding protein of Mycoplasma hyopneumoniae. Mol Microbiol 2008; 71:566-82. [PMID: 19040640 DOI: 10.1111/j.1365-2958.2008.06546.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Mycoplasma hyopneumoniae induces respiratory disease in swine by colonizing cilia causing ciliostasis, cilial loss and epithelial cell death. Heparin binds to M. hyopneumoniae cells in a dose-dependent manner and blocks its ability to adhere to porcine cilia. We show here that Mhp493 (P216), a paralogue of the cilium adhesin P97 (Mhp183), is cleaved between amino acids 1040 and 1089 generating surface-accessible, heparin-binding proteins P120 and P85. Antiphosphoserine antibodies recognized P85 in 2-D immunoblotting studies and TiO(2) chromatography of trypsin digests of P85 isolated a single peptide with an m/z of 917.3. A phosphoserine residue in the tryptic peptide (90)VSELpSFR(96) (position 94 in P85) was identified by MALDI-MS/MS. Polyhistidine fusion proteins (F1(P216), F2(P216), F3(P216)) spanning Mhp493 bound heparin with biologically significant Kd values, and heparin, fucoidan and mucin inhibited this interaction. Latex beads coated with F1(P216), F2(P216) and F3(P216) adhered to and entered porcine kidney epithelial-like (PK15) cell monolayers. Microtitre plate-based assays showed that sequences within P120 and P85 bind to porcine cilia and are recognized by serum antibodies elicited during infection by M. hyopneumoniae. Mhp493 contributes significantly to the surface architecture of M. hyopneumoniae and is the first cilium adhesin to be described that lacks an R1 cilium-binding domain.
Collapse
Affiliation(s)
- Jody Wilton
- NSW Department of Primary Industries, Elizabeth Macarthur Agricultural Institute, Camden, NSW 2570, Australia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
163
|
Oneal MJ, Schafer ER, Madsen ML, Minion FC. Global transcriptional analysis of Mycoplasma hyopneumoniae following exposure to norepinephrine. MICROBIOLOGY-SGM 2008; 154:2581-2588. [PMID: 18757792 DOI: 10.1099/mic.0.2008/020230-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Mycoplasma hyopneumoniae, a component of the porcine respiratory disease complex, colonizes the respiratory tract of swine by binding to the cilia of the bronchial epithelial cells. Mechanisms of pathogenesis are poorly understood for M. hyopneumoniae, but previous work has indicated that it responds to the environmental stressors heat shock, iron deprivation and oxidative compounds. For successful infection, M. hyopneumoniae must effectively resist host responses to the colonization of the respiratory tract. Among these are changes in hormonal levels in the mucosal secretions. Recent work in the stress responses of other bacteria has included the response to the catecholamine norepinephrine. The idea that M. hyopneumoniae can respond to a host hormone, however, is novel and has not previously been demonstrated. To test this, organisms in the early exponential phase of growth were exposed to 100 muM norepinephrine for 4 h, and RNA samples from these cultures were collected and compared to RNA samples from control cultures using two-colour PCR-based M. hyopneumoniae microarrays. The M. hyopneumoniae response included slowed growth and changes in mRNA transcript levels of 84 genes, 53 of which were upregulated in response to norepinephrine. A larger proportion of the genes upregulated than those downregulated were involved with transcription and translation. The downregulated genes were mostly involved with metabolism, which correlated with the reduction in growth of the mycoplasma. Approximately 51 % of the genes were hypothetical with no known function. Thus, in response to norepinephrine, M. hyopneumoniae appears to upregulate protein expression while downregulating general metabolism.
Collapse
Affiliation(s)
- Michael J Oneal
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA 50011, USA
| | - Erin R Schafer
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA 50011, USA
| | - Melissa L Madsen
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA 50011, USA
| | - F Chris Minion
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
164
|
|
165
|
Berčič RL, Slavec B, Lavrič M, Narat M, Zorman-Rojs O, Dovč P, Benčina D. A survey of avian Mycoplasma species for neuraminidase enzymatic activity. Vet Microbiol 2008; 130:391-7. [DOI: 10.1016/j.vetmic.2008.02.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2007] [Revised: 02/06/2008] [Accepted: 02/08/2008] [Indexed: 11/17/2022]
|
166
|
Kügler J, Nieswandt S, Gerlach GF, Meens J, Schirrmann T, Hust M. Identification of immunogenic polypeptides from a Mycoplasma hyopneumoniae genome library by phage display. Appl Microbiol Biotechnol 2008; 80:447-58. [PMID: 18636254 DOI: 10.1007/s00253-008-1576-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2008] [Revised: 06/11/2008] [Accepted: 06/11/2008] [Indexed: 10/21/2022]
Abstract
The identification of immunogenic polypeptides of pathogens is helpful for the development of diagnostic assays and therapeutic applications like vaccines. Routinely, these proteins are identified by two-dimensional polyacrylamide gel electrophoresis and Western blot using convalescent serum, followed by mass spectrometry. This technology, however, is limited, because low or differentially expressed proteins, e.g. dependent on pathogen-host interaction, cannot be identified. In this work, we developed and improved a M13 genomic phage display-based method for the selection of immunogenic polypeptides of Mycoplasma hyopneumoniae, a pathogen causing porcine enzootic pneumonia. The fragmented genome of M. hyopneumoniae was cloned into a phage display vector, and the genomic library was packaged using the helperphage Hyperphage to enrich open reading frames (ORFs). Afterwards, the phage display library was screened by panning using convalescent serum. The analysis of individual phage clones resulted in the identification of five genes encoding immunogenic proteins, only two of which had been previously identified and described as immunogenic. This M13 genomic phage display, directly combining ORF enrichment and the presentation of the corresponding polypeptide on the phage surface, complements proteome-based methods for the identification of immunogenic polypeptides and is particularly well suited for the use in mycoplasma species.
Collapse
Affiliation(s)
- Jonas Kügler
- Abteilung Biotechnologie, Institut für Biochemie und Biotechnologie, Technische Universität Braunschweig, Braunschweig, Germany
| | | | | | | | | | | |
Collapse
|
167
|
Wels M, Groot Kormelink T, Kleerebezem M, Siezen RJ, Francke C. An in silico analysis of T-box regulated genes and T-box evolution in prokaryotes, with emphasis on prediction of substrate specificity of transporters. BMC Genomics 2008; 9:330. [PMID: 18625071 PMCID: PMC2494555 DOI: 10.1186/1471-2164-9-330] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2008] [Accepted: 07/14/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND T-box anti-termination is an elegant and sensitive mechanism by which many bacteria maintain constant levels of amino acid-charged tRNAs. The amino acid specificity of the regulatory element is related to a so-called specifier codon and can in principle be used to guide the functional annotation of the genes controlled via the T-box anti-termination mechanism. RESULTS Hidden Markov Models were defined to search the T-box regulatory element and were applied to all completed prokaryotic genomes. The vast majority of the genes found downstream of the retrieved elements encoded functionalities related to transport and synthesis of amino acids and the charging of tRNA. This is completely in line with findings reported in literature and with the proposed biological role of the regulatory element. For several species, the functional annotation of a large number of genes encoding proteins involved in amino acid transport could be improved significantly on basis of the amino acid specificity of the identified T-boxes. In addition, these annotations could be extrapolated to a larger number of orthologous systems in other species. Analysis of T-box distribution confirmed that the element is restricted predominantly to species of the phylum Firmicutes. Furthermore, it appeared that the distribution was highly species specific and that in the case of amino acid transport some boxes seemed to "pop-up" only recently. CONCLUSION We have demonstrated that the identification of the molecular specificity of a regulatory element can be of great help in solving notoriously difficult annotation issues, e.g. by defining the substrate specificity of genes encoding amino acid transporters on basis of the amino acid specificity of the regulatory T-box. Furthermore, our analysis of the species-dependency of the occurrence of specific T-boxes indicated that these regulatory elements propagate in a semi-independent way from the genes that they control.
Collapse
Affiliation(s)
- Michiel Wels
- TI Food and Nutrition, Wageningen, The Netherlands.
| | | | | | | | | |
Collapse
|
168
|
Malembic-Maher S, Constable F, Cimerman A, Arnaud G, Carle P, Foissac X, Boudon-Padieu E. A chromosome map of the Flavescence doree phytoplasma. MICROBIOLOGY-SGM 2008; 154:1454-1463. [PMID: 18451054 DOI: 10.1099/mic.0.2007/013888-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The Flavescence dorée phytoplasma (FD-P), a non-cultivable, plant-pathogenic bacterium of the class Mollicutes, is the causal agent of a quarantine disease affecting vineyards of southern Europe, mainly in southern France and northern Italy. To investigate FD-P diversity and phytoplasma genetic determinants governing the FD-P life cycle, a genome project has been initiated. A physical map of the chromosome of FD-P strain FD92, purified from infected broad beans, was constructed by performing restriction digests of the chromosome and resolving the fragments by PFGE. Single and double digestions of the chromosome with the enzymes SalI, BssHII, MluI and EagI were performed and used to map 13 restriction sites on the FD-P chromosome. The size of the chromosome was calculated to be 671 kbp. Southern blot analyses using cloned phytoplasma probes were carried out to assist in the arrangement of contiguous restriction fragments and to map eight genetic loci, including the two rRNA operons, the tuf, uvrB-degV and secY-map (FD9) genes, the FD2 marker and two orphan sequences (FDDH29 and FDSH05) isolated through subtractive suppression hybridization.
Collapse
Affiliation(s)
- Sylvie Malembic-Maher
- Université Bordeaux 2, UMR1090 Génomique Diversité Pouvoir Pathogène, F-33076 Bordeaux, France.,INRA, UMR1090 Génomique Diversité Pouvoir Pathogène, F-33883 Villenave d'Ornon, France
| | - Fiona Constable
- INRA, UMR1088 Plante Microbe Environnement, F-21065 Dijon, France.,Université de Bourgogne, UMR1088 Plante Microbe Environnement, F-21000 Dijon, France.,CNRS, UMR1088 Plante Microbe Environnement, F-21000 Dijon, France
| | - Agnès Cimerman
- Université Bordeaux 2, UMR1090 Génomique Diversité Pouvoir Pathogène, F-33076 Bordeaux, France.,INRA, UMR1090 Génomique Diversité Pouvoir Pathogène, F-33883 Villenave d'Ornon, France
| | - Guillaume Arnaud
- Université Bordeaux 2, UMR1090 Génomique Diversité Pouvoir Pathogène, F-33076 Bordeaux, France.,INRA, UMR1090 Génomique Diversité Pouvoir Pathogène, F-33883 Villenave d'Ornon, France
| | - Patricia Carle
- Université Bordeaux 2, UMR1090 Génomique Diversité Pouvoir Pathogène, F-33076 Bordeaux, France.,INRA, UMR1090 Génomique Diversité Pouvoir Pathogène, F-33883 Villenave d'Ornon, France
| | - Xavier Foissac
- Université Bordeaux 2, UMR1090 Génomique Diversité Pouvoir Pathogène, F-33076 Bordeaux, France.,INRA, UMR1090 Génomique Diversité Pouvoir Pathogène, F-33883 Villenave d'Ornon, France
| | - Elisabeth Boudon-Padieu
- CNRS, UMR1088 Plante Microbe Environnement, F-21000 Dijon, France.,Université de Bourgogne, UMR1088 Plante Microbe Environnement, F-21000 Dijon, France.,INRA, UMR1088 Plante Microbe Environnement, F-21065 Dijon, France
| |
Collapse
|
169
|
May M, Brown DR. Genetic variation in sialidase and linkage to N-acetylneuraminate catabolism in Mycoplasma synoviae. Microb Pathog 2008; 45:38-44. [PMID: 18490131 PMCID: PMC2507593 DOI: 10.1016/j.micpath.2008.02.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2007] [Revised: 02/12/2008] [Accepted: 02/22/2008] [Indexed: 10/22/2022]
Abstract
We explored the genetic basis for intraspecific variation in mycoplasmal sialidase activity that correlates with virulence, and its potentially advantageous linkage to nutrient catabolism. Polymorphism in N-acetylneuraminate scavenging and degradation genes (sialidase, N-acetylneuraminate lyase, N-acetylmannosamine kinase, N-acetylmannosamine-6-phosphate epimerase, N-acetylglucosamine-6-phosphate deacetylase, and glucosamine-6-phosphate deaminase) was evident among eight strains of the avian pathogen Mycoplasma synoviae. Most differences were single nucleotide polymorphisms, ranging from 0.34+/-0.04 substitutions per 100 bp for N-acetylmannosamine kinase to 0.65+/-0.03 for the single-copy sialidase gene nanI. Missense mutations were twice as common as silent mutations in nanI; 26% resulted in amino acids dissimilar to consensus; and there was a 12-base deletion near the nanI promoter in strain WVU1853(T), supporting a complex genetic basis for differences in sialidase activity. Two strains had identical frameshifts in the N-acetylneuraminate lyase gene nanA, resulting in nonsense mutations, and both had downstream deletions in nanA. Such genetic lesions uncouple extracellular liberation of sialic acid from generation of fructose-6-phosphate and pyruvate via intracellular N-acetylneuraminate degradation. Retention of nanI by such strains, but not others in the M. synoviae phylogenetic cluster, is evidence that sialidase has an important non-nutritional role in the ecology of M. synoviae and certain other mycoplasmas.
Collapse
Affiliation(s)
- Meghan May
- Department of Infectious Diseases and Pathology, College of Veterinary Medicine, University of Florida, Gainesville, Florida 32611-0880, USA
| | - Daniel R. Brown
- Department of Infectious Diseases and Pathology, College of Veterinary Medicine, University of Florida, Gainesville, Florida 32611-0880, USA
| |
Collapse
|
170
|
Abstract
The genomes of several species of mycoplasma have been sequenced. Most of these species rely on the glycolytic pathway for energy production, with the one exception of Ureaplasma, a species that breaks down urea as its principle source of acquiring energy. Several species, including as Mycoplasma arthritidis, are nonglycolytic and can use arginine as their source of energy. Described here are the genome sequence and a transposon library of M. arthritidis. The genome of 820,453 bp is typical in size for a mycoplasma and contains two large families of genes that are predicted to code for phase-variable proteins. The transposon library was constructed using a minitransposon that inserts stably into the mycoplasma genome. Of the 635 predicted coding regions, 218 were disrupted in a library of 1,100 members. Dispensable genes included the gene coding for the MAM superantigen and genes coding for ribosomal proteins S15, S18, and L15.
Collapse
|
171
|
Real-time PCR assays to address genetic diversity among strains of Mycoplasma hyopneumoniae. J Clin Microbiol 2008; 46:2491-8. [PMID: 18524960 DOI: 10.1128/jcm.02366-07] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mycoplasma hyopneumoniae is an important cause of pneumonia in pigs around the world, but confirming its presence in (or absence from) pigs can be difficult. Culture for diagnosis is impractical, and seroconversion is often delayed after natural infection, limiting the use of serology. Numerous PCR assays for the detection of M. hyopneumoniae have been developed, targeting several different genes. Recently, genetic diversity among strains of M. hyopneumoniae was demonstrated. The effect of this diversity on the accuracy and sensitivity of the M. hyopneumoniae PCR assays could result in false-negative results in current PCR tests. In this study, a panel of isolates of M. hyopneumoniae, M. flocculare, M. hyorhinis, and M. hyosynoviae were tested with a number of M. hyopneumoniae-specific PCR assays. Some M. hyopneumoniae PCR assays tested did not detect all isolates of M. hyopneumoniae. To increase the efficiency of PCR testing, two new real-time PCR assays that are specific and capable of detecting all of the M. hyopneumoniae isolates used in this study were developed.
Collapse
|
172
|
The relaxing ori-ter balance of Mycoplasma genomes. ACTA ACUST UNITED AC 2008; 51:182-9. [PMID: 18239897 DOI: 10.1007/s11427-008-0017-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2006] [Accepted: 12/05/2007] [Indexed: 10/22/2022]
Abstract
Mycoplasma are wall-less bacteria with small genomes, which are thought to have resulted from massive genome reductive processes, during which the ori-ter balance may be disrupted. For technical difficulties, ori and ter have been located only in a few Mycoplasma strains. Using the Z curve method, we were able to locate turning points on the Mycoplasma genomes, with the minimum and maximum points co-locating with ori or ter in the reference genomes. Assuming Z curve correctly located ori and ter, we calculated the distances from ori to ter in both directions on the circular genome and calculated the ori-ter balance status. The Mycoplasma genomes were not balanced, possibly as a result of close association of Mycoplasma with hosts, where there would be no other microbes for Mycoplasma to compete with for nutrients, so fastest possible growth related to balanced genomes might not be needed by Mycoplasma, leading to a relaxing ori-ter balance.
Collapse
|
173
|
Bercic RL, Slavec B, Lavric M, Narat M, Bidovec A, Dovc P, Bencina D. Identification of major immunogenic proteins of Mycoplasma synoviae isolates. Vet Microbiol 2008; 127:147-54. [PMID: 17720337 DOI: 10.1016/j.vetmic.2007.07.020] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2007] [Revised: 07/19/2007] [Accepted: 07/20/2007] [Indexed: 11/20/2022]
Abstract
Mycoplasma synoviae isolates differ in patterns of immunogenic proteins, but most of them have not been identified yet. The main aim of this study was their identification in two closely related M. synoviae isolates, ULB 02/P4 and ULB 02/OV6, recovered recently from chickens in Slovenia. N-terminal sequencing identified 17 M. synoviae proteins. Amongst them were 14 major, highly expressed but previously unidentified proteins, including enzymes, chaperones and putative lipoproteins. ULB 02/P4 proteins with increasing molecular weight (M(w)) in the region above the lipoprotein MSPB (approximately 40 kDa) were elongation factor EF-Tu, enolase, NADH oxidase, haemagglutinin MSPA, ATP synthase beta chain, trigger factor, pyruvate kinase and chaperone DnaK. Enolase (approximately 47 kDa) seemed to be immunogenic for chickens infected with M. synoviae, whereas EF-Tu, which might cross-react with antibodies to the P1 adhesin of Mycoplasma pneumoniae, was not. ULB 02/OV6 synthesized several immunogenic proteins and those with M(w) of approximately 70, 78, 82, 90, 110 and 160 kDa, cross-reacted with antibodies to Mycoplasma gallisepticum. They remain to be identified, because besides putative lipoproteins, protein bands of 78, 82, 85 and 110 kDa contained also dehydrogenase PdhD, elongation factor EF-G, enzyme PtsG and putative neuraminidase, respectively.
Collapse
Affiliation(s)
- Rebeka Lucijana Bercic
- Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Groblje 3, Domzale, Slovenia
| | | | | | | | | | | | | |
Collapse
|
174
|
Mayor D, Jores J, Korczak BM, Kuhnert P. Multilocus sequence typing (MLST) of Mycoplasma hyopneumoniae: A diverse pathogen with limited clonality. Vet Microbiol 2008; 127:63-72. [PMID: 17884308 DOI: 10.1016/j.vetmic.2007.08.010] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2007] [Revised: 07/31/2007] [Accepted: 08/06/2007] [Indexed: 11/15/2022]
Abstract
A multilocus sequence typing (MLST) scheme was established and evaluated for Mycoplasma hyopneumoniae, the etiologic agent of enzootic pneumonia in swine with the aim of defining strains. Putative target genes were selected by genome sequence comparisons. Out of 12 housekeeping genes chosen and experimentally validated, the 7 genes efp, metG, pgiB, recA, adk, rpoB, and tpiA were finally used to establish the MLST scheme. Their usefulness was assessed individually and in combination using a set of well-defined field samples and strains of M. hyopneumoniae. A reduction to the three targets showing highest variation (adk, rpoB, and tpiA) was possible resulting in the same number of sequence types as using the seven targets. The established MLST approach was compared with the recently described typing method using the serine-rich repeat motif-encoding region of the p146 gene. There was coherence between the two methods, but MLST resulted in a slightly higher resolution. Farms recognized to be affected by enzootic pneumonia were always associated with a single M. hyopneumoniae clone, which in most cases differed from farm to farm. However, farms in close geographic or operational contact showed identical clones as defined by MLST typing. Population analysis showed that recombination in M. hyopneumoniae occurs and that strains are very diverse with only limited clonality observed. Elaborate classical MLST schemes using multiple targets for M. hyopneumoniae might therefore be of limited value. In contrast, MLST typing of M. hyopneumoniae using the three genes adk, rpoB, and tpiA seems to be sufficient for epidemiological investigations by direct amplification of target genes from lysate of clinical material without prior cultivation.
Collapse
Affiliation(s)
- Désirée Mayor
- Institute of Veterinary Bacteriology, University of Bern, Bern, Switzerland
| | | | | | | |
Collapse
|
175
|
Maes D, Segales J, Meyns T, Sibila M, Pieters M, Haesebrouck F. Control of Mycoplasma hyopneumoniae infections in pigs. Vet Microbiol 2008; 126:297-309. [PMID: 17964089 PMCID: PMC7130725 DOI: 10.1016/j.vetmic.2007.09.008] [Citation(s) in RCA: 264] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2007] [Revised: 08/24/2007] [Accepted: 09/17/2007] [Indexed: 11/18/2022]
Abstract
Mycoplasma hyopneumoniae, the primary pathogen of enzootic pneumonia, occurs worldwide and causes major economic losses to the pig industry. The organism adheres to and damages the ciliated epithelium of the respiratory tract. Affected pigs show chronic coughing, are more susceptible to other respiratory infections and have a reduced performance. Control of the disease can be accomplished in a number of ways. First, management practices and housing conditions in the herd should be optimized. These include all-in/all-out production, limiting factors that may destabilize herd immunity, maintaining optimal stocking densities, prevention of other respiratory diseases, and optimal housing and climatic conditions. Strategic medication with antimicrobials active against M. hyopneumoniae and, preferably, also against major secondary bacteria may be useful during periods when the pigs are at risk for respiratory disease. Finally, commercial bacterins are widely used to control M. hyopneumoniae infections. The main effects of vaccination include less clinical symptoms, lung lesions and medication use, and improved performance. However, bacterins provide only partial protection and do not prevent colonization of the organism. Different vaccination strategies (timing of vaccination, vaccination of sows, vaccination combined with antimicrobial medication) can be used, depending on the type of herd, the production system and management practices, the infection pattern and the preferences of the pig producer. Research on new vaccines is actively occurring, including aerosol and feed-based vaccines as well as subunit and DNA vaccines. Eradication of the infection at herd level based on age-segregation and medication is possible, but there is a permanent risk for re-infections.
Collapse
Affiliation(s)
- D Maes
- Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium.
| | | | | | | | | | | |
Collapse
|
176
|
De Palmenaer D, Siguier P, Mahillon J. IS4 family goes genomic. BMC Evol Biol 2008; 8:18. [PMID: 18215304 PMCID: PMC2266710 DOI: 10.1186/1471-2148-8-18] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2007] [Accepted: 01/23/2008] [Indexed: 01/29/2023] Open
Abstract
Background Insertion sequences (ISs) are small, mobile DNA entities able to expand in prokaryotic genomes and trigger important rearrangements. To understand their role in evolution, accurate IS taxonomy is essential. The IS4 family is composed of ~70 elements and, like some other families, displays extremely elevated levels of internal divergence impeding its classification. The increasing availability of complete genome sequences provides a valuable source for the discovery of additional IS4 elements. In this study, this genomic database was used to update the structural and functional definition of the IS4 family. Results A total of 227 IS4-related sequences were collected among more than 500 sequenced bacterial and archaeal genomes, representing more than a three fold increase of the initial inventory. A clear division into seven coherent subgroups was discovered as well as three emerging families, which displayed distinct structural and functional properties. The IS4 family was sporadically present in 17 % of analyzed genomes, with most of them displaying single or a small number of IS4 elements. Significant expansions were detected only in some pathogens as well as among certain extremophiles, suggesting the probable involvement of some elements in bacterial and archaeal adaptation and/or evolution. Finally, it should be noted that some IS4 subgroups and two emerging families occurred preferentially in specific phyla or exclusively inside a specific genus. Conclusion The present taxonomic update of IS4 and emerging families will facilitate the classification of future elements as they arise from ongoing genome sequencing. Their narrow genomic impact and the existence of both IS-poor and IS-rich thriving prokaryotes suggested that these families, and probably ISs in general, are occasionally used as a tool for genome flexibility and evolution, rather than just representing self sustaining DNA entities.
Collapse
Affiliation(s)
- Daniel De Palmenaer
- Laboratoire de microbiologie alimentaire et environnementale, Université catholique de Louvain, Croix du Sud 2/12, B-1348 Louvain-la-Neuve, Belgium.
| | | | | |
Collapse
|
177
|
Mycoplasmas regulate the expression of heat-shock protein genes through CIRCE-HrcA interactions. Biochem Biophys Res Commun 2007; 367:213-8. [PMID: 18164681 DOI: 10.1016/j.bbrc.2007.12.124] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2007] [Accepted: 12/20/2007] [Indexed: 11/21/2022]
Abstract
Mycoplasmas in general are rarely exposed to severe environmental changes except during its colonization and infection processes. Genomic analysis indicates that Mycoplasma hyopneumoniae possesses the genes of a single sigma factor and the HrcA repressor of negative regulation of the heat-shock response. A perfect inverted repeat sequence (5'-CTGGCACTT-N(9)-AAGTGCCAA-3') upstream of the DnaK gene has also been identified. In the present study, we demonstrate the functionality of HrcA-CIRCE interactions using the gel electrophoretic mobility shift assay. The presence of the unique sigma factor, HrcA repressor, and the CIRCE-like sequences reveals that mycoplasmal species may all use the negative regulatory mechanism in the heat-shock response. It is conceivable that mycoplasmas may have evolved a single HrcA repressor-based mechanism which might be the most simple and economical way of controlling HSP gene expression.
Collapse
|
178
|
Miyata M. Centipede and inchworm models to explain Mycoplasma gliding. Trends Microbiol 2007; 16:6-12. [PMID: 18083032 DOI: 10.1016/j.tim.2007.11.002] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2007] [Revised: 11/01/2007] [Accepted: 11/01/2007] [Indexed: 11/29/2022]
Abstract
The twelve Mycoplasma species known to glide on solid surfaces all lack surface flagella or pili, and no genes homologous to known motility systems have been found in the five genomes sequenced to date. Recent studies on the fastest of these species, M. mobile, examined novel proteins involved in the gliding mechanism, binding targets on the solid surfaces, energy sources and mechanical characteristics of the movements. Accordingly, I propose a working model for the gliding mechanism, called the centipede (power stroke) model, in which the 'leg' proteins repeat a cycle of binding to and release from the solid surface, using energy from ATP. Another 'inchworm model' suggested from the structural studies of a human pathogen, M. pneumoniae, is also discussed.
Collapse
Affiliation(s)
- Makoto Miyata
- Department of Biology, Graduate School of Science, Osaka City University, Japan.
| |
Collapse
|
179
|
Abstract
Fast-sequencing throughput methods have increased the number of completely sequenced bacterial genomes to about 400 by December 2006, with the number increasing rapidly. These include several strains. In silico methods of comparative genomics are of use in categorizing and phylogenetically sorting these bacteria. Various word-based tools have been used for quantifying the similarities and differences between entire genomes. The simple di-nucleotide frequency comparison, codon specificity and k-mer repeat detection are among some of the well-known methods. In this paper, we show that the Mutual Information function, which is a measure of correlations and a concept from Information Theory, is very effective in determining the similarities and differences among genome sequences of various strains of bacteria such as the plant pathogen Xylella fastidiosa, marine Cyanobacteria Prochlorococcus marinus or animal and human pathogens such as species of Ehrlichia and Legionella. The short-range three-base periodicity, small sequence repeats and long-range correlations taken together constitute a genome signature that can be used as a technique for identifying new bacterial strains with the help of strains already catalogued in the database. There have been several applications of using the Mutual Information function as a measure of correlations in genomics but this is the first whole genome analysis done to detect strain similarities and differences.
Collapse
Affiliation(s)
- D Swati
- Department of Physics, MMV, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
180
|
Abstract
Mycoplasma hyopneumoniae causes swine pneumonia and contributes significantly to the porcine respiratory disease complex. The mechanisms of pathogenesis are difficult to address, since there is a lack of genetic tools, but microarrays are available and can be used to study transcriptional changes that occur during disease as a way to identify important virulence-related genes. Mycoplasmas were collected from bronchial alveolar lavage samples and compared to broth-grown cells using microarrays. Bronchial alveolar lavage was performed on pigs 28 days postinfection, and mycoplasmas were isolated by differential centrifugation. Mycoplasma RNA-enriched preparations were then obtained from total RNA by subtracting eucaryotic ribosomal and messenger RNAs. Labeled cDNAs were generated with mycoplasma open reading frame-specific primers. Nine biological replicates were analyzed. During lung infection, our analysis indicated that 79 M. hyopneumoniae genes were differentially expressed (P < 0.01), at a false-discovery rate of <2.7%. Of the down-regulated genes, 28 of 46 (61%) lacked an assigned function, in comparison to 21 of 33 (63%) of up-regulated genes. Four down-regulated genes and two up-regulated genes encoded putative lipoproteins. secA (mhp295) (P = 0.003) and two glycerol transport permease genes (potA [mhp380; P = 0.006] and ugpA [mhp381; P = 0.003]) were up-regulated in vivo. Elongation factor EF-G (fusA [mhp083]) (P = 0.002), RNA polymerase beta chain (rpoC [mhp635]) (P = 0.003), adenylate kinase (adk [mhp208]) (P = 0.001), prolyl aminoacyl tRNA synthetase (proS [mhp397]) (P = 0.009), and cysteinyl-tRNA synthetase (cysS [mhp661]) (P < 0.001) were down-regulated in vivo.
Collapse
|
181
|
Abstract
Eleven strains of the avian pathogen Mycoplasma synoviae were evaluated for the presence of sialidase activity with the use of the fluorogenic substrate 2'-(4-methylumbelliferyl)-alpha-D-N-acetylneuraminic acid and the sialidase inhibitor 2-deoxy-2,3- didehydro-N-acetylneuraminic acid. The kinetics of in vitro growth in modified Frey medium were also assessed for each strain. Five strains had been isolated from clinically symptomatic chickens, and strains WVU 1853T and K3344 have been demonstrated to be capable of reproducing disease in specific-pathogen-free chickens. All strains exhibited sialidase activity, although the amount varied 65-fold among strains (P < 0.0001) from 1.3 x 10(-7) to 2.0 x 10(-9) activity units per colony-forming unit. Strains originally isolated from clinically symptomatic birds had more (P < 0.05) sialidase activity than strains from asymptomatic birds. Strain WVU1853T exhibited the most sialidase activity (P < 0.0001) and grew to the highest culture density (P < 0.0001) among strains, but across strains, the rank correlation of growth rate with sialidase activity was not significant. Negligible activity was detected in conditioned culture supernatant fluid. This is the first report of sialidase activity in pathogenic strains of M. synoviae, which suggests a potential enzymatic basis for virulence of the organism.
Collapse
Affiliation(s)
- Meghan May
- Department of Infectious Diseases and Pathology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611-0880, USA
| | | | | |
Collapse
|
182
|
Quantitative determination of gene strand bias in prokaryotic genomes. Genomics 2007; 90:733-40. [DOI: 10.1016/j.ygeno.2007.07.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2007] [Revised: 07/09/2007] [Accepted: 07/23/2007] [Indexed: 11/19/2022]
|
183
|
Noormohammadi AH. Role of phenotypic diversity in pathogenesis of avian mycoplasmosis. Avian Pathol 2007; 36:439-44. [DOI: 10.1080/03079450701687078] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
184
|
Pilo P, Frey J, Vilei EM. Molecular mechanisms of pathogenicity of Mycoplasma mycoides subsp. mycoides SC. Vet J 2007; 174:513-21. [PMID: 17157043 PMCID: PMC2628566 DOI: 10.1016/j.tvjl.2006.10.016] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2006] [Revised: 10/06/2006] [Accepted: 10/13/2006] [Indexed: 12/31/2022]
Abstract
Mycoplasma mycoides subsp. mycoides SC, the aetiological agent of contagious bovine pleuropneumonia (CBPP), is considered the most pathogenic of the Mycoplasma species. Its virulence is probably the result of a coordinated action of various components of an antigenically and functionally dynamic surface architecture. The different virulence attributes allow the pathogen to evade the host's immune defence, adhere tightly to the host cell surface, persist and disseminate in the host causing mycoplasmaemia, efficiently import energetically valuable nutrients present in the environment, and release and simultaneously translocate toxic metabolic pathway products to the host cell where they cause cytotoxic effects that are known to induce inflammatory processes and disease. This strategy enables the mycoplasma to exploit the minimal genetic information in its small genome, not only to fulfil the basic functions for its replication but also to damage host cells in intimate proximity thereby acquiring the necessary bio-molecules, such as amino acids and nucleic acid precursors, for its own biosynthesis and survival.
Collapse
Affiliation(s)
| | - Joachim Frey
- Institute of Veterinary Bacteriology, University of Bern, Langgass-strasse 122, 3012 Bern, Switzerland
| | | |
Collapse
|
185
|
Sirand-Pugnet P, Citti C, Barré A, Blanchard A. Evolution of mollicutes: down a bumpy road with twists and turns. Res Microbiol 2007; 158:754-66. [PMID: 18023150 DOI: 10.1016/j.resmic.2007.09.007] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2007] [Revised: 09/03/2007] [Accepted: 09/17/2007] [Indexed: 11/29/2022]
Abstract
Mollicute evolution has been marked by significant changes in genome structure and use of their genetic information. These include a reduction in their genome G+C content and the use by most mollicutes of the UGA universal stop codon as tryptophan. More striking is the size reduction in their genome which, for some species, is now close to the minimal requirement for sustaining cell life. With the growing body of sequence data, a new picture has recently begun to emerge in which the evolution of these simple bacteria cannot be reduced to a race for the smallest genome.
Collapse
Affiliation(s)
- Pascal Sirand-Pugnet
- INRA Université Victor Segalen Bordeaux 2, UMR 1090 Génomique Diversité Pouvoir Pathogène, BP 81, 71 avenue Edouard Bourlaux, 33883 Villenave d'Ornon cedex, France
| | | | | | | |
Collapse
|
186
|
Madsen ML, Oneal MJ, Gardner SW, Strait EL, Nettleton D, Thacker EL, Minion FC. Array-based genomic comparative hybridization analysis of field strains of Mycoplasma hyopneumoniae. J Bacteriol 2007; 189:7977-82. [PMID: 17873054 PMCID: PMC2168680 DOI: 10.1128/jb.01068-07] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mycoplasma hyopneumoniae is the causative agent of porcine enzootic pneumonia and a major factor in the porcine respiratory disease complex. A clear understanding of the mechanisms of pathogenesis does not exist, although it is clear that M. hyopneumoniae adheres to porcine ciliated epithelium by action of a protein called P97. Previous studies have shown variation in the gene encoding the P97 cilium adhesin in different strains of M. hyopneumoniae, but the extent of genetic variation among field strains across the genome is not known. Since M. hyopneumoniae is a worldwide problem, it is reasonable to expect that a wide range of genetic variability may exist given all of the different breeds and housing conditions. This variation may impact the overall virulence of a single strain. Using microarray technology, this study examined the potential variation of 14 field strains compared to strain 232, on which the array was based. Genomic DNA was obtained, amplified with TempliPhi, and labeled indirectly with Alexa dyes. After genomic hybridization, the arrays were scanned and data were analyzed using a linear statistical model. The results indicated that genetic variation could be detected in all 14 field strains but across different loci, suggesting that variation occurs throughout the genome. Fifty-nine percent of the variable loci were hypothetical genes. Twenty-two percent of the lipoprotein genes showed variation in at least one field strain. A permutation test identified a location in the M. hyopneumoniae genome where there is spatial clustering of variability between the field strains and strain 232.
Collapse
Affiliation(s)
- Melissa L Madsen
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA 50011, USA
| | | | | | | | | | | | | |
Collapse
|
187
|
Oshima K, Nishida H. Phylogenetic relationships among mycoplasmas based on the whole genomic information. J Mol Evol 2007; 65:249-58. [PMID: 17687503 DOI: 10.1007/s00239-007-9010-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2006] [Accepted: 04/17/2007] [Indexed: 10/23/2022]
Abstract
With the rapid increase in available bacterial whole-genome information, comparison of bacteria at the whole-genome level has proven to be highly useful in microbial phylogenetic research. Here we constructed a phylogenetic tree based on 15 whole genomes of Mycoplasma and the related bacteria. First, 143 orthologous gene families that are shared by all of the 15 bacteria were selected and 143 multiple alignments were generated. Next, a concatenated multiple alignment inferred from the 143 multiple alignments was generated. A total of 43,370 amino acid sites were considered in the neighbor-joining analysis. The phylogenetic tree based on the whole-genomic information indicated that the 15 bacteria were divided into four major groups with 100% bootstrap support, i.e., the M. hyopneumoniae (Mhy) group, the M. mycoides (Mmy) group, the M. pneumoniae (Mpn) group, and the Bacillus-Phytoplasma (BP) group. In the phylogenetic tree, the Mhy group was more closely related to the Mpn group than the Mmy group. The relationships among the Mhy, Mmy, Mpn, and BP groups were supported with 100% in bootstrap analysis. The phylogenetic tree based on the whole-genome comparison is different from the 16S rRNA tree. Thirty-nine of the 143 phylogenetic trees had the same type of the topology based on the whole-genome comparison. However, we could not identify a gene family contributing or solely belonging to the topology of the 39 proteins. In this study, we showed that some proteins, such as RpoA, RpoB, RpoC, and RpoD, are not suitable for evolutionary studies on relationships among major groups of mycoplasmas. We also showed that glycolysis-related genes of Ureaplasma have a higher substitution rate than the other bacteria. The phylogenetic approaches at the whole-genome level are very important and will be essential for microbial evolutionary studies.
Collapse
Affiliation(s)
- Kenro Oshima
- Agricultural Bioinformatics Research Unit, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | | |
Collapse
|
188
|
de Crécy-Lagard V, El Yacoubi B, de la Garza RD, Noiriel A, Hanson AD. Comparative genomics of bacterial and plant folate synthesis and salvage: predictions and validations. BMC Genomics 2007; 8:245. [PMID: 17645794 PMCID: PMC1971073 DOI: 10.1186/1471-2164-8-245] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2006] [Accepted: 07/23/2007] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Folate synthesis and salvage pathways are relatively well known from classical biochemistry and genetics but they have not been subjected to comparative genomic analysis. The availability of genome sequences from hundreds of diverse bacteria, and from Arabidopsis thaliana, enabled such an analysis using the SEED database and its tools. This study reports the results of the analysis and integrates them with new and existing experimental data. RESULTS Based on sequence similarity and the clustering, fusion, and phylogenetic distribution of genes, several functional predictions emerged from this analysis. For bacteria, these included the existence of novel GTP cyclohydrolase I and folylpolyglutamate synthase gene families, and of a trifunctional p-aminobenzoate synthesis gene. For plants and bacteria, the predictions comprised the identities of a 'missing' folate synthesis gene (folQ) and of a folate transporter, and the absence from plants of a folate salvage enzyme. Genetic and biochemical tests bore out these predictions. CONCLUSION For bacteria, these results demonstrate that much can be learnt from comparative genomics, even for well-explored primary metabolic pathways. For plants, the findings particularly illustrate the potential for rapid functional assignment of unknown genes that have prokaryotic homologs, by analyzing which genes are associated with the latter. More generally, our data indicate how combined genomic analysis of both plants and prokaryotes can be more powerful than isolated examination of either group alone.
Collapse
Affiliation(s)
- Valérie de Crécy-Lagard
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611, USA
| | - Basma El Yacoubi
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611, USA
| | | | - Alexandre Noiriel
- Department of Horticultural Sciences, University of Florida, Gainesville, FL 32611, USA
| | - Andrew D Hanson
- Department of Horticultural Sciences, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
189
|
Sirand-Pugnet P, Lartigue C, Marenda M, Jacob D, Barré A, Barbe V, Schenowitz C, Mangenot S, Couloux A, Segurens B, de Daruvar A, Blanchard A, Citti C. Being pathogenic, plastic, and sexual while living with a nearly minimal bacterial genome. PLoS Genet 2007; 3:e75. [PMID: 17511520 PMCID: PMC1868952 DOI: 10.1371/journal.pgen.0030075] [Citation(s) in RCA: 141] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2006] [Accepted: 04/02/2007] [Indexed: 11/18/2022] Open
Abstract
Mycoplasmas are commonly described as the simplest self-replicating organisms, whose evolution was mainly characterized by genome downsizing with a proposed evolutionary scenario similar to that of obligate intracellular bacteria such as insect endosymbionts. Thus far, analysis of mycoplasma genomes indicates a low level of horizontal gene transfer (HGT) implying that DNA acquisition is strongly limited in these minimal bacteria. In this study, the genome of the ruminant pathogen Mycoplasma agalactiae was sequenced. Comparative genomic data and phylogenetic tree reconstruction revealed that ∼18% of its small genome (877,438 bp) has undergone HGT with the phylogenetically distinct mycoides cluster, which is composed of significant ruminant pathogens. HGT involves genes often found as clusters, several of which encode lipoproteins that usually play an important role in mycoplasma–host interaction. A decayed form of a conjugative element also described in a member of the mycoides cluster was found in the M. agalactiae genome, suggesting that HGT may have occurred by mobilizing a related genetic element. The possibility of HGT events among other mycoplasmas was evaluated with the available sequenced genomes. Our data indicate marginal levels of HGT among Mycoplasma species except for those described above and, to a lesser extent, for those observed in between the two bird pathogens, M. gallisepticum and M. synoviae. This first description of large-scale HGT among mycoplasmas sharing the same ecological niche challenges the generally accepted evolutionary scenario in which gene loss is the main driving force of mycoplasma evolution. The latter clearly differs from that of other bacteria with small genomes, particularly obligate intracellular bacteria that are isolated within host cells. Consequently, mycoplasmas are not only able to subvert complex hosts but presumably have retained sexual competence, a trait that may prevent them from genome stasis and contribute to adaptation to new hosts. Mycoplasmas are cell wall–lacking prokaryotes that evolved from ancestors common to Gram-positive bacteria by way of massive losses of genetic material. With their minimal genome, mycoplasmas are considered to be the simplest free-living organisms, yet several species are successful pathogens of man and animal. In this study, we challenged the commonly accepted view in which mycoplasma evolution is driven only by genome down-sizing. Indeed, we showed that a significant amount of genes underwent horizontal transfer among different mycoplasma species that share the same ruminant hosts. In these species, the occurrence of a genetic element that can promote DNA transfer via cell-to-cell contact suggests that some mycoplasmas may have retained or acquired sexual competence. Transferred genes were found to encode proteins that are likely to be associated with mycoplasma–host interactions. Sharing genetic resources via horizontal gene transfer may provide mycoplasmas with a means for adapting to new niches or to new hosts and for avoiding irreversible genome erosion.
Collapse
Affiliation(s)
- Pascal Sirand-Pugnet
- Université Bordeaux 2, UMR1090, Villenave d'Ornon, France
- INRA, UMR1090, Villenave d'Ornon, France
| | - Carole Lartigue
- Université Bordeaux 2, UMR1090, Villenave d'Ornon, France
- INRA, UMR1090, Villenave d'Ornon, France
| | | | - Daniel Jacob
- Centre de Bioinformatique de Bordeaux, Université Bordeaux 2, Bordeaux, France
| | - Aurélien Barré
- Centre de Bioinformatique de Bordeaux, Université Bordeaux 2, Bordeaux, France
| | - Valérie Barbe
- Genoscope, Centre National de Séquençage, Evry, France
| | | | | | | | | | - Antoine de Daruvar
- Centre de Bioinformatique de Bordeaux, Université Bordeaux 2, Bordeaux, France
| | - Alain Blanchard
- Université Bordeaux 2, UMR1090, Villenave d'Ornon, France
- INRA, UMR1090, Villenave d'Ornon, France
| | - Christine Citti
- INRA, ENVT, UMR1225, Toulouse, France
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
190
|
Hess M, Neubauer C, Hackl R. Interlaboratory comparison of ability to detect nucleic acid of Mycoplasma gallisepticum and Mycoplasma synoviae by polymerase chain reaction. Avian Pathol 2007; 36:127-33. [PMID: 17479373 DOI: 10.1080/03079450701203082] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
In recent years polymerase chain reaction (PCR) assays have become widely used as methods to confirm the presence of Mycoplasma gallisepticum and Mycoplasma synoviae in poultry flocks, but there has been limited standardization of the protocols used. Thirteen laboratories from five different countries participated in an interlaboratory comparison of detection of M. gallisepticum and M. synoviae DNA by PCR in samples that contained 10-fold dilutions of these bacteria. The concentration of bacteria ranged from 10(5) to 10(2) genome copies/100 microl sample, as quantified by real-time PCR, and the samples were supplied on dry cotton swabs. Each laboratory was asked to use its standard method for PCR testing of these pathogens. A questionnaire was supplied with the samples to obtain details of the methods that were used in testing. One-half of the laboratories used a commercially available test kit, while the others used an in-house protocol. The protocols used for DNA extraction varied greatly, even among those using commercially available test kits. Two laboratories had developed the primers for nucleic acid amplification themselves, and one of these used real-time PCR for amplification. While the majority of the laboratories detected M. synoviae down to the 100 copy limit of the comparison, the detection limit for M. gallisepticum was somewhat higher. Furthermore, different results were obtained from laboratories that used the same commercial test kit. To the best of our knowledge this is the first investigation of its kind in the field of avian diseases.
Collapse
MESH Headings
- DNA, Bacterial/analysis
- DNA, Bacterial/genetics
- DNA, Bacterial/isolation & purification
- Laboratories/standards
- Mycoplasma gallisepticum/genetics
- Mycoplasma gallisepticum/isolation & purification
- Mycoplasma synoviae/genetics
- Mycoplasma synoviae/isolation & purification
- Polymerase Chain Reaction/methods
- Polymerase Chain Reaction/veterinary
- RNA, Bacterial/genetics
- RNA, Bacterial/isolation & purification
- RNA, Ribosomal/genetics
- RNA, Ribosomal/isolation & purification
- RNA, Ribosomal, 16S/genetics
- RNA, Ribosomal, 16S/isolation & purification
- Reagent Kits, Diagnostic/veterinary
- Sensitivity and Specificity
Collapse
Affiliation(s)
- M Hess
- Clinic for Avian, Reptile and Fish Medicine, University of Veterinary Medicine Vienna, Vienna, Austria.
| | | | | |
Collapse
|
191
|
Donadio S, Monciardini P, Sosio M. Polyketide synthases and nonribosomal peptide synthetases: the emerging view from bacterial genomics. Nat Prod Rep 2007; 24:1073-109. [PMID: 17898898 DOI: 10.1039/b514050c] [Citation(s) in RCA: 217] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
A total of 223 complete bacterial genomes are analyzed, with 281 citations, for the presence of genes encoding modular polyketide synthases (PKS) and nonribosomal peptide synthetases (NRPS). We report on the distribution of these systems in different bacterial taxa and, whenever known, the metabolites they synthesize. We also highlight, in the different bacterial lineages, the PKS and NRPS genes and, whenever known, the corresponding products.
Collapse
|
192
|
Ohtani N, Miyata M. Identification of a novel nucleoside triphosphatase from Mycoplasma mobile: a prime candidate motor for gliding motility. Biochem J 2007; 403:71-7. [PMID: 17083328 PMCID: PMC1828890 DOI: 10.1042/bj20061439] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A protein with a molecular mass of 42 kDa (P42) from Mycoplasma mobile, one of several mycoplasmas that exhibit gliding motility, was shown to be a novel NTPase (nucleoside triphosphatase). Although the P42 protein lacks a common ATP-binding sequence motif (Walker A), the recombinant proteins expressed in Escherichia coli certainly hydrolysed some nucleoside triphosphates, including ATP. The results of photoaffinity labelling by an ATP analogue supported that the P42 protein contains a specific binding site for ATP (or another nucleoside triphosphate). In the M. mobile genome, the P42 gene is located downstream of gli123, gli349 and gli521 genes, and they have been reported to be polycis-tronically transcribed. As the huge proteins encoded by gli123, gli349 and gli521 play a role in gliding motility of M. mobile, P42 might also have some kind of function in the gliding motility. The gliding motility of M. mobile is driven directly by ATP hydrolysis, but the key ATPase has not been identified. Our results showed that, among these four proteins, only P42 exhibited ATPase activity. Biochemical characteristics--optimal conditions for activity, substrate specificities, and inhibiting effects by ATP analogues--of the recombinant P42 proteins were very similar to those of a putative ATPase speculated from a previous analysis with a gliding 'ghost' whose cell membrane was permeabilized by Triton X-100. These results support the hypothesis that the P42 protein is the key ATPase in the gliding motility of M. mobile.
Collapse
Affiliation(s)
- Naoto Ohtani
- Graduate School of Science, Osaka City University, Sumiyoshi-ku, Osaka 558-8585, Japan.
| | | |
Collapse
|
193
|
Schmidt JA, Browning GF, Markham PF. Mycoplasma hyopneumoniae mhp379 is a Ca2+-dependent, sugar-nonspecific exonuclease exposed on the cell surface. J Bacteriol 2007; 189:3414-24. [PMID: 17307846 PMCID: PMC1855908 DOI: 10.1128/jb.01835-06] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2006] [Accepted: 02/09/2007] [Indexed: 12/30/2022] Open
Abstract
Mycoplasma hyopneumoniae mhp379 is a putative lipoprotein that shares significant amino acid sequence similarity with a family of bacterial thermostable nucleases. To examine the nuclease activity of mhp379, the gene was cloned and expressed in Escherichia coli following the deletion of the amino-terminal signal sequence and prokaryotic lipoprotein cleavage site and mutagenesis of the mycoplasma TGA tryptophan codons to TGG. The recombinant fusion protein yielded a 33-kDa thrombin cleavage product, corresponding in size to the mature mhp379 protein. Exonuclease activity was indicated by agarose gel electrophoresis analysis of the reaction products that were released when different nucleic acid substrates were used. Endonuclease activity was also indicated by the digestion of closed circular plasmid DNA. The recombinant mhp379 fusion protein completely digested single-stranded DNA, double-stranded DNA (dsDNA), and RNA. The optimal reaction conditions were determined with a novel nuclease assay based on the enhancement of fluorescence of SYBR green I bound to dsDNA. Optimal activity was observed in the presence of calcium ions at a concentration of 15 mM and a pH of 9.5. No nuclease activity was observed in the absence of calcium ions. Mycoplasmas do not have the ability to synthesize nucleic acid precursors, and thus, nucleases are likely to be important in the acquisition of precursors for the synthesis of nucleic acids. Homologs of an ATP-binding cassette (ABC) transport system were identified immediately downstream of the gene encoding mhp379, and two homologs of M. pneumoniae lipoprotein multigene family 2 were also identified immediately upstream. Homologs of mhp379 were identified in the sequenced genomes of a number of mycoplasma species, and in most cases the homologous ABC transport system was identified immediately downstream of the homologous gene; in several cases a homolog of M. pneumoniae lipoprotein multigene family 2 was also identified immediately upstream. These observations suggest that mhp379 comprises part of a conserved ABC transport operon in mycoplasmas and that the exonuclease activity of mhp379 may be associated with the conserved function of the ABC transport system in the import of nucleic acid precursors. This is the first study to identify the gene and characterize the activity of a mycoplasma exonuclease.
Collapse
Affiliation(s)
- Jonathan A Schmidt
- Veterinary Preclinical Centre, Department of Veterinary Science, The University of Melbourne, Parkville, Victoria 3010, Australia
| | | | | |
Collapse
|
194
|
Pinto PM, Chemale G, de Castro LA, Costa APM, Kich JD, Vainstein MH, Zaha A, Ferreira HB. Proteomic survey of the pathogenic Mycoplasma hyopneumoniae strain 7448 and identification of novel post-translationally modified and antigenic proteins. Vet Microbiol 2007; 121:83-93. [PMID: 17182197 DOI: 10.1016/j.vetmic.2006.11.018] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2006] [Revised: 11/13/2006] [Accepted: 11/20/2006] [Indexed: 12/11/2022]
Abstract
Mycoplasma hyopneumoniae is an important pathogen for pigs, being the causative agent of enzootic pneumonia. Recently, the genome sequences of three strains, J, 7448 and 232 have been reported. Here, we describe the results of a proteomic analysis, based on two-dimensional gel electrophoresis of soluble protein extracts, immunoblot and mass spectrometry, which was carried out aiming the identification of gene products and antigenic proteins from the M. hyopneumoniae pathogenic strain 7448. A preliminary M. hyopneumoniae proteome map in two pH ranges (3-10 and 4-7) was produced. A total of 31 different coding DNA sequences (CDSs), including three hypothetical ones, were experimentally verified with the identification of the corresponding protein products by matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry. According to the Clusters of Orthologous Groups (COG) functional classification, the identified proteins were assigned to the groups of metabolism (13), cellular processes (5) and information and storage processing (4). Nine of the identified proteins were not classifiable by COG, including some related to cytoadherence and possibly involved in pathogenicity. Moreover, at least five highly antigenic proteins of M. hyopneumoniae were identified by immunoblots, including four novel ones (a heat shock protein 70, an elongation factor Tu, a pyruvate dehydrogenase E1-beta subunit and the P76 membrane protein). The now available proteome map is expected to serve as a reference for comparative analyses between M. hyopneumoniae pathogenic and non-pathogenic strains, and for methabolic studies based on cells cultured under modified conditions.
Collapse
Affiliation(s)
- Paulo Marcos Pinto
- Laboratório de Genômica Estrutural e Funcional, Centro de Biotecnologia, UFRGS, Porto Alegre, RS, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
195
|
Jeffery N, Browning GF, Noormohammadi AH. Organization of theMycoplasma synoviaeWVU 1853TvlhAgene locus. Avian Pathol 2007; 35:53-7. [PMID: 16493814 DOI: 10.1080/03079450500465775] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Mycoplasma synoviae cause respiratory disease and synovitis in poultry. It has two major membrane antigens of approximately 45 to 50 kDa, MSPA and MSPB. Both MSPA and MSPB ar encoded by a single gene, vlhA (variable lipoprotein and haemagglutinin), possibly with a post-translational cleavage generating the two proteins. The vlhA gene belongs to a large multigene family, but only one vlhA gene is expressed in any single cell; the other vlhA genes/fragments are transcriptionally silent. In order to characterize the vlhA gene locus, DNA fragments were cloned from three different M. synoviae WVU 1853(T) genomic DNA libraries and their nucleotide sequences were fully or partially determined. Analysis of the resultant nucleotide sequences identified a transcriptional termination signal for the expressed vlhA gene, determined the genes located downstream of the expressed vlhA gene and revealed that vlhA pseudogenes were arranged as tandem repeats upstream of the expressed vlhA gene. In order to determine whether vlhA was expressed as a monocistronic or polycistronic message, RNA from two M. synoviae clones expressing truncated or full-length versions of the vlhA gene product were purified and examined by northern blotting. Messages corresponding to the full length of the vlhA gene (approximately 2.4 kb) were detected in both clones, suggesting that truncation of the vlhA gene product was probably post-transcriptional. These studies have revealed the organization of the M. synoviae vlhA gene locus and established that the vlhA gene transcript is monocistronic.
Collapse
Affiliation(s)
- Nathan Jeffery
- CSIRO Livestock Indstries, F.D. McMaster Laboratory Chiswick, Armidale, NSW 2350, Australia
| | | | | |
Collapse
|
196
|
|
197
|
Nicolás MF, Barcellos FG, Nehab Hess P, Hungria M. ABC transporters in Mycoplasma hyopneumoniae and Mycoplasma synoviae: insights into evolution and pathogenicity. Genet Mol Biol 2007. [DOI: 10.1590/s1415-47572007000200006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
198
|
Santos MDO, Castro NDS, Pereira M, Soares CMDA. Genes involved in translation of Mycoplasma hyopneumoniae and Mycoplasma synoviae. Genet Mol Biol 2007. [DOI: 10.1590/s1415-47572007000200010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
199
|
Souza RC, Almeida DFD, Zaha A, Morais DADL, Vasconcelos ATRD. In search of essentiality: Mollicute-specific genes shared by twelve genomes. Genet Mol Biol 2007. [DOI: 10.1590/s1415-47572007000200002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
| | | | - Arnaldo Zaha
- Universidade Federal do Rio Grande do Sul, Brazil
| | | | | |
Collapse
|
200
|
Staats CC, Boldo J, Broetto L, Vainstein M, Schrank A. Comparative genome analysis of proteases, oligopeptide uptake and secretion systems in Mycoplasma spp. Genet Mol Biol 2007. [DOI: 10.1590/s1415-47572007000200009] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2023] Open
|