151
|
Gissendanner CR, Sluder AE. nhr-25, the Caenorhabditis elegans ortholog of ftz-f1, is required for epidermal and somatic gonad development. Dev Biol 2000; 221:259-72. [PMID: 10772806 DOI: 10.1006/dbio.2000.9679] [Citation(s) in RCA: 114] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have analyzed the expression and function of the Caenorhabditis elegans gene nhr-25, a member of the widely conserved FTZ-F1 family of nuclear receptors. The gene encodes two protein isoforms, only one of which has a DNA binding domain. nhr-25 is transcribed during embryonic and larval development. A nhr-25::GFP fusion gene is expressed in the epidermis, the developing somatic gonad, and a subset of other epithelial cells. RNA-mediated interference indicates a requirement for nhr-25 function during development: disruption of nhr-25 function leads to embryonic arrest due to failure of the epidermally mediated process of embryo elongation. Animals that survive to hatching arrest as misshapen larvae that occasionally exhibit defects in shedding molted cuticle. In addition, somatic gonad development is defective in these larvae. These results further establish the importance of FTZ-F1 nuclear receptors in molting and developmental control across evolutionarily distant phyla.
Collapse
Affiliation(s)
- C R Gissendanner
- Department of Cellular Biology, University of Georgia, Athens, Georgia 30602, USA
| | | |
Collapse
|
152
|
Abstract
Collagen is a structural protein used in the generation of a wide variety of animal extracellular matrices. The exoskeleton of the free-living nematode, Caenorhabditis elegans, is a complex collagen matrix that is tractable to genetic research. Mutations in individual cuticle collagen genes can cause exoskeletal defects that alter the shape of the animal. The complete sequence of the C. elegans genome indicates upwards of 150 distinct collagen genes that probably contribute to this structure. During the synthesis of this matrix, individual collagen genes are expressed in distinct temporal periods, which might facilitate the formation of specific interactions between distinct collagens.
Collapse
Affiliation(s)
- I L Johnstone
- Wellcome Centre for Molecular Parasitology, Anderson College, University of Glasgow, UK.
| |
Collapse
|
153
|
Miyabayashi T, Palfreyman MT, Sluder AE, Slack F, Sengupta P. Expression and function of members of a divergent nuclear receptor family in Caenorhabditis elegans. Dev Biol 1999; 215:314-31. [PMID: 10545240 DOI: 10.1006/dbio.1999.9470] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Nuclear receptors (NRs) are a large class of ligand-regulated transcriptional modulators that have been shown to play roles in many developmental processes. The Caenorhabditis elegans genome is predicted to encode a large and divergent family of NR proteins. The functions of most of these genes are unknown. As a first step toward defining their roles, we have initiated an expression and functional survey of a subset of these genes. In this study, we demonstrate expression of 21 of 28 NR genes examined, indicating that a large fraction of the predicted genes likely encode functional gene products. We show that five genes are expressed predominantly in neuronal cells, while others are expressed in multiple cell types. Interestingly, we find that eight genes are expressed exclusively in the lateral hypodermal (seam) cells. These eight genes share a high degree of overall homology and cluster in a neighbor-joining tree derived from sequence analysis of the NRs, suggesting that they arose by gene duplication from a common ancestor. We show that overexpression of each of three members of this subfamily results in similar developmental defects, consistent with a redundant role for these genes in the function of the lateral hypodermal cells.
Collapse
Affiliation(s)
- T Miyabayashi
- Department of Biology and Volen Center for Complex Systems, Brandeis University, Waltham, Massachusetts 02454, USA
| | | | | | | | | |
Collapse
|
154
|
Culetto E, Combes D, Fedon Y, Roig A, Toutant JP, Arpagaus M. Structure and promoter activity of the 5' flanking region of ace-1, the gene encoding acetylcholinesterase of class A in Caenorhabditis elegans. J Mol Biol 1999; 290:951-66. [PMID: 10438595 DOI: 10.1006/jmbi.1999.2937] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We report the structure and the functional activity of the promoter region of ace-1, the gene encoding acetylcholinesterase of class A in the nematode Caenorhabditis elegans. We found that ace-1 was trans -spliced to the SL1 spliced leader and that transcription was initiated at a cluster of multiple starts. There was neither a TATA nor a CAAT box at consensus distances from these starts. Interspecies sequence comparison of the 5' regions of ace-1 in C. elegans and in the related nematode Caenorhabditis briggsae identified four blocks of conserved sequences located within a sequence of 2.4 kilobases upstream from the initiator ATG. In vitro expression of CAT reporter genes in mammalian cells allowed the determination of a minimal promoter in the first 288 nucleotides. In phenotype rescue experiments in vivo, the ace-1 gene containing 2.4 kilobases of 5' flanking region of either C. elegans or C. briggsae was found to restore a coordinated mobility to the uncoordinated double mutants ace-1(-);ace-2(-)of C. elegans. This showed that the ace-1 promoter was contained in 2.4 kilobases of the 5' region, and indicated that cis -regulatory elements as well as coding sequences of ace-1 were functionally conserved between the two nematode species. The pattern of ace-1 expression was established through microinjection of Green Fluorescent Protein reporter gene constructs and showed a major mesodermal expression. Deletion analysis showed that two of the four blocks of conserved sequences act as tissue-specific activators. The distal block is a mesodermal enhancer responsible for the expression in body wall muscle cells, anal sphincter and vulval muscle cells. Another block of conserved sequence directs expression in pharyngeal muscle cells pm5 and three pairs of cephalic sensory neurons.
Collapse
Affiliation(s)
- E Culetto
- Différenciation Cellulaire et Croissance, INRA, 2 place Viala, Montpellier, 34060, France
| | | | | | | | | | | |
Collapse
|
155
|
Page AP. A highly conserved nematode protein folding operon in Caenorhabditis elegans and Caenorhabditis briggsae. Gene 1999; 230:267-75. [PMID: 10216266 DOI: 10.1016/s0378-1119(99)00102-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
In the free-living model nematode, Caenorhabditis elegans, a protein-folding co-transcribed gene pair has previously been described. The degree and form of trans-splicing, orientation and spacing of the genes, and the co-ordinate co-expression of protein folding catalysts in the nematode's hypodermis indicated this to be a functionally important operon. This gene pair has now been cloned and compared in the related organism Caenorhabditis briggsae to identify evolutionarily conserved, functionally important features. The corresponding C. briggsae gene pair was found to share the operon-specific features, including sequence homology blocks in the upstream 5' flanking regions. The intergenic regions were not conserved. The homology block closest to the translational initiation codon of the upstream gene was found to contain a known Ceanorhabbitis promoter element site, and may therefore be an important cis-regulatory region directing the hypodermis-specific expression of this operon gene of C. elegans. This study also provides further confirmation of the high degree of chromosomal synteny between these nematode species.
Collapse
Affiliation(s)
- A P Page
- Wellcome Centre of Molecular Parasitology, The University of Glasgow, The Anderson College, 56 Dumbarton Road, Glasgow G11 6NU, UK.
| |
Collapse
|
156
|
Vatcher GP, Barbazuk WB, O'Neil NJ, Marra MA, Ha T, Baillie DL. Identification and characterization of a serine hydroxymethyltransferase isoform in Caenorhabditis briggsae. Gene X 1999; 230:137-44. [PMID: 10216251 DOI: 10.1016/s0378-1119(99)00076-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In the nematode Caenorhabditis elegans, the maternal effect lethal gene mel-32 encodes a serine hydroxymethyltransferase isoform. Since interspecies DNA comparison is a valuable tool for identifying sequences that have been conserved because of their functional importance or role in regulating gene activity, mel-32(SHMT) genomic DNA from C. elegans was used to screen a genomic library from the closely related nematode Caenorhabditis briggsae. The C. briggsae genomic clone identified fully rescues the Mel-32 phenotype in C. elegans, indicating functional and regulatory conservation. Computer analysis reveals that CbMEL-32(SHMT) is 92% identical (97% similar) to CeMEL-32(SHMT) at the amino acid level over the entire length of the protein (484 amino acids), whereas the coding DNA is 82.5% identical (over 1455 nucleotides). Several highly conserved non-coding regions upstream and downstream of the mel-32(SHMT) gene reveal potential regulatory sites that may bind trans-acting protein factors.
Collapse
Affiliation(s)
- G P Vatcher
- Institute of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | | | | | | | | | | |
Collapse
|
157
|
Gilleard JS, Shafi Y, Barry JD, McGhee JD. ELT-3: A Caenorhabditis elegans GATA factor expressed in the embryonic epidermis during morphogenesis. Dev Biol 1999; 208:265-80. [PMID: 10191044 DOI: 10.1006/dbio.1999.9202] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
We have identified a gene encoding a new member of the Caenorhabditis elegans GATA transcription factor family, elt-3. The predicted ELT-3 polypeptide contains a single GATA-type zinc finger (C-X2-C-X17-C-X2-C) along with a conserved adjacent basic region. elt-3 mRNA is present in all stages of C. elegans development but is most abundant in embryos. Reporter gene analysis and antibody staining show that elt-3 is first expressed in the dorsal and ventral hypodermal cells, and in hypodermal cells of the head and tail, immediately after the final embryonic cell division that gives rise to these cells. No expression is seen in the lateral hypodermal (seam) cells. elt-3 expression is maintained at a constant level in the epidermis until the 2(1/2)-fold stage of development, after which reporter gene expression declines to a low level and endogenous protein can no longer be detected by specific antibody. A second phase of elt-3 expression in cells immediately anterior and posterior to the gut begins in pretzel-stage embryos. elt-1 and lin-26 are two genes known to be important in specification and maintenance of hypodermal cell fates. We have found that elt-1 is required for the formation of most, but not all, elt-3-expressing cells. In contrast, lin-26 function does not appear necessary for elt-3 expression. Finally, we have characterised the candidate homologue of elt-3 in the nematode Caenorhabditis briggsae. Many features of the elt-3 genomic and transcript structure are conserved between the two species, suggesting that elt-3 is likely to perform an evolutionarily significant function during development.
Collapse
Affiliation(s)
- J S Gilleard
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta, T2N 4N1, Canada.
| | | | | | | |
Collapse
|
158
|
Abstract
Caenorhabditis elegans is a rhabditid nematode. What relevance does this have for the interpretation of the complete genome sequence, and how will it affect the exploitation of the sequence for scientific and social ends? Nematodes are only distantly related to humans and other animal groups; will this limit the universality of the C. elegans story? Many nematodes are parasites; can knowledge of the C. elegans sequence aid in the prevention and treatment of disease?
Collapse
Affiliation(s)
- M Blaxter
- Institute of Cell, Animal, and Population Biology, University of Edinburgh, Edinburgh EH9 3JT, UK
| |
Collapse
|
159
|
Britton C, McKerrow JH, Johnstone IL. Regulation of the Caenorhabditis elegans gut cysteine protease gene cpr-1: requirement for GATA motifs. J Mol Biol 1998; 283:15-27. [PMID: 9761670 DOI: 10.1006/jmbi.1998.2093] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Expression of the Caenorhabditis elegans cysteine protease gene cpr-1 is regulated both spatially and temporally. In situ hybridisation and Northern blot analysis have shown that this gene is expressed exclusively in gut cells of all developmental stages except the embryo. We now show by transgenic transformation with cpr-1/lac Z reporter gene constructs that a sequence contained within the cpr-1 5' flanking region can direct this spatial and temporal expression. Deletion analysis of the cpr-1 promoter indicates that as little as 212 bp of upstream sequence is sufficient for this expression, although more upstream sequence may be involved in quantitative regulation of expression. Mutation of two GATA-like sequence elements at positions -51 and -147 upstream of the transcription start site ablates all expression, indicating an essential role in cpr-1 regulation. A concatemer of the cpr-1 -147 GATA motif placed upstream of minimal promoter/lac Z reporter gene constructs results in strong reporter gene expression in gut cells of larval stages and also in embryos. Weak expression is also detected in hypodermal cells. This pattern is reversed in the adult stage with strong expression in hypodermal cells and weaker expression in gut cells. Our findings suggest that spatial and temporal regulation of the cpr-1 gene is complex and involves activation by a GATA-like transcription factor.
Collapse
Affiliation(s)
- C Britton
- Wellcome Unit of Molecular Parasitology, University of Glasgow, Anderson College, 56 Dumbarton Road, Glasgow, G11 6NU, UK.
| | | | | |
Collapse
|
160
|
Abrahante JE, Miller EA, Rougvie AE. Identification of heterochronic mutants in Caenorhabditis elegans. Temporal misexpression of a collagen::green fluorescent protein fusion gene. Genetics 1998; 149:1335-51. [PMID: 9649524 PMCID: PMC1460241 DOI: 10.1093/genetics/149.3.1335] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The heterochronic genes lin-4, lin-14, lin-28, and lin-29 specify the timing of lateral hypodermal seam cell terminal differentiation in Caenorhabditis elegans. We devised a screen to identify additional genes involved in this developmental timing mechanism based on identification of mutants that exhibit temporal misexpression from the col-19 promoter, a downstream target of the heterochronic gene pathway. We fused the col-19 promoter to the green fluorescent protein gene (gfp) and demonstrated that hypodermal expression of the fusion gene is adult-specific in wild-type animals and temporally regulated by the heterochronic gene pathway. We generated a transgenic strain in which the col-19::gfp fusion construct is not expressed because of mutation of lin-4, which prevents seam cell terminal differentiation. We have identified and characterized 26 mutations that restore col-19::gfp expression in the lin-4 mutant background. Most of the mutations also restore other aspects of the seam cell terminal differentiation program that are defective in lin-4 mutant animals. Twelve mutations are alleles of three previously identified genes known to be required for proper timing of hypodermal terminal differentiation. Among these are four new alleles of lin-42, a heterochronic gene for which a single allele had been described previously. Two mutations define a new gene, lin-58. When separated from lin-4, the lin-58 mutations cause precocious seam cell terminal differentiation and thus define a new member of the heterochronic gene pathway.
Collapse
Affiliation(s)
- J E Abrahante
- Department of Genetics and Cell Biology, University of Minnesota, St. Paul, Minnesota 55108, USA
| | | | | |
Collapse
|
161
|
Kostrouchova M, Krause M, Kostrouch Z, Rall JE. CHR3: a Caenorhabditis elegans orphan nuclear hormone receptor required for proper epidermal development and molting. Development 1998; 125:1617-26. [PMID: 9521900 DOI: 10.1242/dev.125.9.1617] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
CHR3 is a Caenorhabditis elegans orphan nuclear hormone receptor highly homologous to Drosophila DHR3, an ecdysone-inducible gene product involved in metamorphosis. Related vertebrate factors include RORalpha/RZRalpha, RZRbeta and RevErb. Gel-shift studies show that CHR3 can bind the DR5-type hormone response sequence. CHR3 is a nuclear protein present in all blastomeres during early embryogenesis. During morphogenesis, both CHR3 protein and zygotically active reporter genes are detectable in epidermal cells and their precursors. Inhibition of the gene encoding CHR3 results in several larval defects associated with abnormal epidermal cell function, including molting and body size regulation, suggesting that CHR3 is an essential epidermal factor required for proper postembryonic development.
Collapse
MESH Headings
- Animals
- Animals, Genetically Modified
- Caenorhabditis elegans/embryology
- Caenorhabditis elegans/genetics
- Caenorhabditis elegans/growth & development
- Cloning, Molecular
- DNA, Complementary/genetics
- DNA, Helminth/genetics
- DNA, Helminth/metabolism
- Epidermis/chemistry
- Epidermis/embryology
- Gene Expression Regulation, Developmental/physiology
- Genes, Helminth/physiology
- Heat-Shock Proteins/genetics
- Larva
- Molting
- Promoter Regions, Genetic/genetics
- RNA, Antisense
- RNA, Helminth/analysis
- RNA, Messenger/analysis
- Receptors, Cytoplasmic and Nuclear/genetics
- Receptors, Cytoplasmic and Nuclear/metabolism
- Receptors, Cytoplasmic and Nuclear/physiology
- Recombinant Fusion Proteins
Collapse
|
162
|
Robertson HM. Two large families of chemoreceptor genes in the nematodes Caenorhabditis elegans and Caenorhabditis briggsae reveal extensive gene duplication, diversification, movement, and intron loss. Genome Res 1998; 8:449-63. [PMID: 9582190 DOI: 10.1101/gr.8.5.449] [Citation(s) in RCA: 119] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The str family of genes encoding seven-transmembrane G-protein-coupled or serpentine receptors related to the ODR-10 diacetyl chemoreceptor is very large, with at least 197 members in the Caenorhabditis elegans genome. The closely related stl family has 43 genes, and both families are distantly related to the srd family with 55 genes. Analysis of the structures of these genes indicates that a third of them are clearly or likely pseudogenes. Preliminary surveys of other candidate chemoreceptor families indicates that as many as 800 genes and pseudogenes or 6% of the genome might encode 550 functional chemoreceptors constituting 4% of the C. elegans protein complement. Phylogenetic analyses of the str and stl families, and comparisons with a few orthologs in Caenorhabditis briggsae, reveal ongoing processes of gene duplication, diversification, and movement. The reconstructed ancestral gene structures for these two families have eight introns each, four of which are homologous. Mapping of intron distributions on the phylogenetic tree reveals that each intron has been lost many times independently. Most of these introns were lost individually, which might best be explained by precise in-frame deletions involving nonhomologous recombination between short direct repeats at their termini. [Alignment of the putatively functional proteins in the str and stl families is available from Pfam (http://genome. wustl.edu/Pfam); alignments of all translations are available at http://cshl.org/gr; alignments of the genes are available from the author at hughrobe@uiuc.edu]
Collapse
Affiliation(s)
- H M Robertson
- Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA.
| |
Collapse
|
163
|
Gilleard JS, Henderson DK, Ulla N. Conservation of the Caenorhabditis elegans cuticle collagen gene col-12 in Caenorhabditis briggsae. Gene 1997; 193:181-6. [PMID: 9256075 DOI: 10.1016/s0378-1119(97)00112-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The functional importance of the majority of Caenorhabditis elegans cuticle collagen genes is unknown. We have identified, cloned and sequenced the Caenorhabditis briggsae homologue of the C. elegans gene col-12, a cuticle collagen for which no mutants have yet been identified. Homology in the flanking sequence has allowed us to unambiguously identify this gene as the col-12 homologue, as opposed to some other closely related member of this large multigene family. The whole of the predicted polypeptide is highly conserved (94.9% identical), including those regions not yet shown by mutational analysis to be important for C. elegans cuticle collagen function. These include the whole of the N-terminal non-Gly-X-Y domain and the X and Y positions of the Gly-X-Y domain. This may be a consequence of the requirement of cuticle collagens to participate in intermolecular interactions throughout the full length of the polypeptide. There is increasing evidence to suggest that conservation between C. elegans and C. briggsae is confined to functionally significant sequence. Hence, the conservation of col-12 between these two species provides evidence that this member of the cuticle collagen family has a significant structural function.
Collapse
Affiliation(s)
- J S Gilleard
- Wellcome Unit of Molecular Parasitology, University of Glasgow, Anderson College, UK.
| | | | | |
Collapse
|