151
|
Houghtaling S, Newell A, Akkari Y, Taniguchi T, Olson S, Grompe M. Fancd2 functions in a double strand break repair pathway that is distinct from non-homologous end joining. Hum Mol Genet 2005; 14:3027-33. [PMID: 16135554 DOI: 10.1093/hmg/ddi334] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Fanconi anemia (FA) is a multigenic recessive disease resulting in bone marrow failure and increased cancer susceptibility. Cells from FA patients and mouse models are sensitive to DNA interstrand crosslinks (ICLs) and FA mice are moderately sensitive to ionizing radiation (IR). Both kinds of damage induce DNA double strand breaks (DSBs). To date, nine genes in 11 complementation groups have been identified; however, the precise function of the FA pathway remains unclear. Many of the proteins form a nuclear complex necessary for the mono-ubiquitination of the downstream protein, Fancd2. To further investigate the role of the FA pathway in repair of DSBs, we generated Fancd2(-/-)/Prkdc(sc/sc) double mutant mice. Prkdc(sc/sc) mutant mice have a defect in non-homologous end joining (NHEJ) and are sensitive to IR-induced DNA damage. Double mutant animals and primary cells were more sensitive to IR than either single mutant, suggesting that Fancd2 operates in DSB repair pathway distinct from NHEJ. Fancd2(-/-)/Prkdc(sc/sc) double mutant cells were also more sensitive to DSBs generated by a restriction endonuclease. The role of Fancd2 in DSB repair may account for the moderate sensitivity of FA cells to irradiation and FA cells sensitivity to ICLs that are repaired via a DSB intermediate.
Collapse
Affiliation(s)
- Scott Houghtaling
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, 97239, USA.
| | | | | | | | | | | |
Collapse
|
152
|
Jonnalagadda VS, Matsuguchi T, Engelward BP. Interstrand crosslink-induced homologous recombination carries an increased risk of deletions and insertions. DNA Repair (Amst) 2005; 4:594-605. [PMID: 15811631 DOI: 10.1016/j.dnarep.2005.02.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2005] [Accepted: 02/04/2005] [Indexed: 10/25/2022]
Abstract
Homology directed repair (HDR) defends cells against the toxic effects of two-ended double strand breaks (DSBs) and one-ended DSBs that arise when replication progression is inhibited, for example by encounter with DNA lesions such as interstrand crosslinks (ICLs). HDR can occur via various mechanisms, some of which are associated with an increased risk of concurrent sequence rearrangements that can lead to deletions, insertions, translocations and loss of heterozygosity. Here, we compared the risk of HDR-associated sequence rearrangements that occur spontaneously versus in response to exposure to an agent that induces ICLs. We describe the creation of two fluorescence-based direct repeat recombination substrates that have been targeted to the ROSA26 locus of embryonic stem cells, and that detect the major pathways of homologous recombination events, e.g., gene conversions with or without crossing over, repair of broken replication forks, and single strand annealing (SSA). SSA can be distinguished from other pathways by application of a matched pair of site-specifically integrated substrates, one of which allows detection of SSA, and one that does not. We show that SSA is responsible for a significant proportion of spontaneous homologous recombination events at these substrates, suggesting that two-ended DSBs are a common spontaneous recombinogenic lesion. Interestingly, exposure to mitomycin C (an agent that induces ICLs) increases the proportion of HDR events associated with deletions and insertions. Given that many chemotherapeutics induce ICLs, these results have important implications in terms of the risk of chemotherapy-induced deleterious sequence rearrangements that could potentially contribute to secondary tumors.
Collapse
Affiliation(s)
- Vidya S Jonnalagadda
- Biological Engineering Division, Massachusetts Institute of Technology, 77 Massachusetts Ave., 56-631, Cambridge, MA 02139, USA
| | | | | |
Collapse
|
153
|
Schärer OD. DNA interstrand crosslinks: natural and drug-induced DNA adducts that induce unique cellular responses. Chembiochem 2005; 6:27-32. [PMID: 15637664 DOI: 10.1002/cbic.200400287] [Citation(s) in RCA: 153] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Orlando D Schärer
- Institute of Molecular Cancer Research, University of Zürich, August Forel Strasse 7, 8008 Zürich, Switzerland.
| |
Collapse
|
154
|
Yang YG, Herceg Z, Nakanishi K, Demuth I, Piccoli C, Michelon J, Hildebrand G, Jasin M, Digweed M, Wang ZQ. The Fanconi anemia group A protein modulates homologous repair of DNA double-strand breaks in mammalian cells. Carcinogenesis 2005; 26:1731-40. [PMID: 15905196 DOI: 10.1093/carcin/bgi134] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Fanconi anemia (FA) cells exhibit hypersensitivity to DNA interstrand cross-links (ICLs) and high levels of chromosome instability. FA gene products have been shown to functionally or physically interact with BRCA1, RAD51 and the MRE11/RAD50/NBS1 complex, suggesting that the FA complex may be involved in the repair of DNA double-strand breaks (DSBs). Here, we have investigated specifically the function of the FA group A protein (FANCA) in the repair of DSBs in mammalian cells. We show that the targeted deletion of Fanca exons 37-39 generates a null for Fanca in mice and abolishes ubiquitination of Fancd2, the downstream effector of the FA complex. Cells lacking Fanca exhibit increased chromosomal aberrations and attenuated accumulation of Brca1 and Rad51 foci in response to DNA damage. The absence of Fanca greatly reduces gene-targeting efficiency in mouse embryonic stem (ES) cells and compromises the survival of fibroblast cells in response to ICL agent treatment. Fanca-null cells exhibit compromised homology-directed repair (HDR) of DSBs, particularly affecting the single-strand annealing pathway. These data identify the Fanca protein as an integral component in the early step of HDR of DSBs and thereby minimizing the genomic instability.
Collapse
Affiliation(s)
- Yun-Gui Yang
- International Agency for Research on Cancer (IARC), 150 cours Albert Thomas, F-69008 Lyon, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
155
|
Tebbs RS, Hinz JM, Yamada NA, Wilson JB, Salazar EP, Thomas CB, Jones IM, Jones NJ, Thompson LH. New insights into the Fanconi anemia pathway from an isogenic FancG hamster CHO mutant. DNA Repair (Amst) 2005; 4:11-22. [PMID: 15533833 DOI: 10.1016/j.dnarep.2004.06.013] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2004] [Revised: 06/21/2004] [Accepted: 06/21/2004] [Indexed: 01/09/2023]
Abstract
The Fanconi anemia (FA) proteins overlap with those of homologous recombination through FANCD1/BRCA2, but the biochemical functions of other FA proteins are largely unknown. By constructing and characterizing a null fancg mutant (KO40) of hamster CHO cells, we show that FancG protects cells against a broad spectrum of genotoxic agents. KO40 is consistently hypersensitive to both alkylating agents that produce monoadducts and those that produce interstrand crosslinks. KO40 cells were no more sensitive to mitomycin C (3x) and diepoxybutane (2x) than to 6-thioguanine (5x), ethylnitrosourea (3x), or methyl methanesulfonate (MMS) (3x). These results contrast with the pattern of selective sensitivity to DNA crosslinking agents seen historically with cell lines from FA patients. The hypersensitivity of KO40 to MMS was not associated with a higher level of initial DNA single-strand breaks; nor was there a defect in removing MNU-induced methyl groups from DNA. Both control and MMS-treated synchronized G1-phase KO40 cells progressed through S phase at a normal rate but showed a lengthening of G2 phase compared with wild type. MMS-treated and untreated early S-phase KO40 cells had increased levels of Rad51 foci compared with wild type. Asynchronous KO40 treated with ionizing radiation (IR) exhibited a normal Rad51 focus response, consistent with KO40 having only slight sensitivity to killing by IR. The plating efficiency and doubling time of KO40 cells were nearly normal, and they showed no increase in spontaneous chromosomal aberrations or sister chromatid exchanges. Collectively, our results do not support a role for FancG during DNA replication that deals specifically with processing DNA crosslinks. Nor do they suggest that the main function of the FA protein "pathway" is to promote efficient homologous recombination. We propose that the primary function of FA proteins is to maintain chromosomal continuity by stabilizing replication forks that encounter nicks, gaps, or replication-blocking lesions.
Collapse
Affiliation(s)
- Robert S Tebbs
- Biology and Biotechnology Research Program, Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, CA 94551-0808, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
156
|
Venkitaraman AR. DUBing down a tumour suppressor. Nat Cell Biol 2005; 7:332-3. [PMID: 15803129 DOI: 10.1038/ncb0405-332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
157
|
Chen Q, Van der Sluis PC, Boulware D, Hazlehurst LA, Dalton WS. The FA/BRCA pathway is involved in melphalan-induced DNA interstrand cross-link repair and accounts for melphalan resistance in multiple myeloma cells. Blood 2005; 106:698-705. [PMID: 15802532 PMCID: PMC1895179 DOI: 10.1182/blood-2004-11-4286] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Melphalan, a DNA cross-linker, is one of the most widely used and effective drugs in the treatment of multiple myeloma (MM). In this report, we demonstrate that enhanced interstrand cross-link (ICL) repair via the Fanconi anemia (FA)/BRCA pathway contributes to acquired drug resistance in melphalan-resistant myeloma cell lines, and disruption of this pathway reverses drug resistance. Using the alkaline comet assay (single-cell gel electrophoresis), we observed that melphalan-resistant cells have reduced ICL formation and enhanced ICL repair compared with melphalan-sensitive cells. Cell-cycle studies demonstrated that enhanced ICL repair released cells from melphalan-induced cell-cycle delay. Using siRNA to knock down FANCF in 8226/LR5 and U266/LR6 drug-resistant cells demonstrated a direct relationship between ICL repair capacity and drug sensitivity. Overexpression of FANCF in 8226/S and U266/S drug-sensitive cells partially reproduced the drug-resistant phenotype. These data show that enhanced DNA repair via the Fanconi anemia/BRCA pathway is involved in acquired melphalan resistance. Our findings provide for a new target to enhance response to DNA cross-linking agents in cancer treatment.
Collapse
Affiliation(s)
- Qing Chen
- Department of Interdisciplinary Oncology and Experimental Therapeutics Program, Biostatistics Core Facility, H. Lee Moffitt Cancer Center & Research Institute at University of South Florida, 12902 Magnolia Dr, Tampa, FL 33612, USA
| | | | | | | | | |
Collapse
|
158
|
Abdel-Halim HI, Natarajan AT, Mullenders LHF, Boei JJWA. Mitomycin C-induced pairing of heterochromatin reflects initiation of DNA repair and chromatid exchange formation. J Cell Sci 2005; 118:1757-67. [PMID: 15797924 DOI: 10.1242/jcs.02306] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Chromatid interchanges induced by the DNA cross-linking agent mitomycin C (MMC) are over-represented in human chromosomes containing large heterochromatic regions. We found that nearly all exchange breakpoints of chromosome 9 are located within the paracentromeric heterochromatin and over 70% of exchanges involving chromosome 9 are between its homologues. We provide evidence that the required pairing of chromosome 9 heterochromatic regions occurs in G(0)/G(1) and S-phase cells as a result of an active cellular process initiated upon MMC treatment. By contrast, no pairing was observed for a euchromatic paracentromeric region of the equal-sized chromosome 8. The MMC-induced pairing of chromosome 9 heterochromatin is observed in a subset of cells; its percentage closely mimics the frequency of homologous interchanges found at metaphase. Moreover, the absence of pairing in cells derived from XPF patients correlates with an altered spectrum of MMC-induced exchanges. Together, the data suggest that the heterochromatin-specific pairing following MMC treatment reflects the initiation of DNA cross-link repair and the formation of exchanges.
Collapse
MESH Headings
- Cells, Cultured
- Chromosome Pairing/drug effects
- Chromosome Pairing/physiology
- Chromosomes, Human, Pair 8/drug effects
- Chromosomes, Human, Pair 8/physiology
- Chromosomes, Human, Pair 9/drug effects
- Chromosomes, Human, Pair 9/physiology
- Cross-Linking Reagents/pharmacology
- DNA Damage/drug effects
- DNA Damage/physiology
- DNA Repair/drug effects
- DNA Repair/physiology
- G1 Phase/drug effects
- G1 Phase/physiology
- Heterochromatin/drug effects
- Heterochromatin/physiology
- Humans
- Interphase/physiology
- Metaphase/physiology
- Mitomycin/pharmacology
- Resting Phase, Cell Cycle/drug effects
- Resting Phase, Cell Cycle/physiology
- S Phase/drug effects
- S Phase/physiology
- Sequence Homology, Nucleic Acid
- Sister Chromatid Exchange/drug effects
- Sister Chromatid Exchange/physiology
- Xeroderma Pigmentosum/genetics
Collapse
Affiliation(s)
- H I Abdel-Halim
- Department of Toxicogenetics, Leiden University Medical Center, PO Box 9503, 2300 RA Leiden, The Netherlands
| | | | | | | |
Collapse
|
159
|
Drabløs F, Feyzi E, Aas PA, Vaagbø CB, Kavli B, Bratlie MS, Peña-Diaz J, Otterlei M, Slupphaug G, Krokan HE. Alkylation damage in DNA and RNA--repair mechanisms and medical significance. DNA Repair (Amst) 2005; 3:1389-407. [PMID: 15380096 DOI: 10.1016/j.dnarep.2004.05.004] [Citation(s) in RCA: 462] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2004] [Indexed: 12/13/2022]
Abstract
Alkylation lesions in DNA and RNA result from endogenous compounds, environmental agents and alkylating drugs. Simple methylating agents, e.g. methylnitrosourea, tobacco-specific nitrosamines and drugs like temozolomide or streptozotocin, form adducts at N- and O-atoms in DNA bases. These lesions are mainly repaired by direct base repair, base excision repair, and to some extent by nucleotide excision repair (NER). The identified carcinogenicity of O(6)-methylguanine (O(6)-meG) is largely caused by its miscoding properties. Mutations from this lesion are prevented by O(6)-alkylG-DNA alkyltransferase (MGMT or AGT) that repairs the base in one step. However, the genotoxicity and cytotoxicity of O(6)-meG is mainly due to recognition of O(6)-meG/T (or C) mispairs by the mismatch repair system (MMR) and induction of futile repair cycles, eventually resulting in cytotoxic double-strand breaks. Therefore, inactivation of the MMR system in an AGT-defective background causes resistance to the killing effects of O(6)-alkylating agents, but not to the mutagenic effect. Bifunctional alkylating agents, such as chlorambucil or carmustine (BCNU), are commonly used anti-cancer drugs. DNA lesions caused by these agents are complex and require complex repair mechanisms. Thus, primary chloroethyl adducts at O(6)-G are repaired by AGT, while the secondary highly cytotoxic interstrand cross-links (ICLs) require nucleotide excision repair factors (e.g. XPF-ERCC1) for incision and homologous recombination to complete repair. Recently, Escherichia coli protein AlkB and human homologues were shown to be oxidative demethylases that repair cytotoxic 1-methyladenine (1-meA) and 3-methylcytosine (3-meC) residues. Numerous AlkB homologues are found in viruses, bacteria and eukaryotes, including eight human homologues (hABH1-8). These have distinct locations in subcellular compartments and their functions are only starting to become understood. Surprisingly, AlkB and hABH3 also repair RNA. An evaluation of the biological effects of environmental mutagens, as well as understanding the mechanism of action and resistance to alkylating drugs require a detailed understanding of DNA repair processes.
Collapse
Affiliation(s)
- Finn Drabløs
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, N-7489 Trondheim, Norway
| | | | | | | | | | | | | | | | | | | |
Collapse
|
160
|
Yun J, Zhong Q, Kwak JY, Lee WH. Hypersensitivity of Brca1-deficient MEF to the DNA interstrand crosslinking agent mitomycin C is associated with defect in homologous recombination repair and aberrant S-phase arrest. Oncogene 2005; 24:4009-16. [PMID: 15782115 DOI: 10.1038/sj.onc.1208575] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Hypersensitivity of Brca1-deficient cells to interstrand crosslinking (ICL) agents such as cisplatin and mitomycin C (MMC) implicates an important role for Brca1 in cellular response to the ICL DNA damage repair. However, the detailed mechanism of how Brca1 is involved in the ICL response remains unclear. In this study, we analysed the cellular response to MMC treatment using isogenic mouse embryonic fibroblasts (MEFs) including wild type, p53-/- and p53-/-Brca1-/-. Marked hypersensitivity of p53-/- Brca1-/- MEFs to MMC was found, and the reconstitution of Brca1 expression in these cells restored resistance to MMC. Upon MMC treatment, wild-type MEF was temporarily arrested at G2/M phase but subsequently resumed a normal cell cycle progression. In contrast, Brca1-deficient MEF exhibited a marked time-dependent accumulation of cells arrested at S phase and a prolonged increase in the G2/M population, followed by extensive cell deaths. Importantly, DNA damage-induced Rad51 foci were not formed in these cells, suggesting a defect in homologous recombination. Such defects are fully rescued by reconstitution of Brca1 expression in Brca1-deficient MEF, suggesting that Brca1 directly plays an essential role in ICL repair, which depends on homologous recombination during S phase.
Collapse
Affiliation(s)
- Jeanho Yun
- Medical Research Center for Cancer Molecular Therapy, College of Medicine, Dong-A University, Busan 602-714, South Korea
| | | | | | | |
Collapse
|
161
|
Friesner JD, Liu B, Culligan K, Britt AB. Ionizing radiation-dependent gamma-H2AX focus formation requires ataxia telangiectasia mutated and ataxia telangiectasia mutated and Rad3-related. Mol Biol Cell 2005; 16:2566-76. [PMID: 15772150 PMCID: PMC1087258 DOI: 10.1091/mbc.e04-10-0890] [Citation(s) in RCA: 172] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The histone variant H2AX is rapidly phosphorylated at the sites of DNA double-strand breaks (DSBs). This phosphorylated H2AX (gamma-H2AX) is involved in the retention of repair and signaling factor complexes at sites of DNA damage. The dependency of this phosphorylation on the various PI3K-related protein kinases (in mammals, ataxia telangiectasia mutated and Rad3-related [ATR], ataxia telangiectasia mutated [ATM], and DNA-PKCs) has been a subject of debate; it has been suggested that ATM is required for the induction of foci at DSBs, whereas ATR is involved in the recognition of stalled replication forks. In this study, using Arabidopsis as a model system, we investigated the ATR and ATM dependency of the formation of gamma-H2AX foci in M-phase cells exposed to ionizing radiation (IR). We find that although the majority of these foci are ATM-dependent, approximately 10% of IR-induced gamma-H2AX foci require, instead, functional ATR. This indicates that even in the absence of DNA replication, a distinct subset of IR-induced damage is recognized by ATR. In addition, we find that in plants, gamma-H2AX foci are induced at only one-third the rate observed in yeasts and mammals. This result may partly account for the relatively high radioresistance of plants versus yeast and mammals.
Collapse
Affiliation(s)
- Joanna D Friesner
- Genetics Graduate Group, University of California, Davis, Davis, CA 95616, USA
| | | | | | | |
Collapse
|
162
|
Thompson LH, Hinz JM, Yamada NA, Jones NJ. How Fanconi anemia proteins promote the four Rs: replication, recombination, repair, and recovery. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2005; 45:128-142. [PMID: 15668941 DOI: 10.1002/em.20109] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The genetically complex disease Fanconi anemia (FA) comprises cancer predisposition, developmental defects, and bone marrow failure due to elevated apoptosis. The FA cellular phenotype includes universal sensitivity to DNA crosslinking damage, symptoms of oxidative stress, and reduced mutability at the X-linked HPRT gene. In this review article, we present a new heuristic molecular model that accommodates these varied features of FA cells. In our view, the FANCA, -C, and -G proteins, which are both cytoplasmic and nuclear, have an integrated dual role in which they sense and convey information about cytoplasmic oxidative stress to the nucleus, where they participate in the further assembly and functionality of the nuclear core complex (NCCFA= FANCA/B/C/E/F/G/L). In turn, NCCFA facilitates DNA replication at sites of base damage and strand breaks by performing the critical monoubiquitination of FANCD2, an event that somehow helps stabilize blocked and broken replication forks. This stabilization facilitates two kinds of processes: translesion synthesis at sites of blocking lesions (e.g., oxidative base damage), which produces point mutations by error-prone polymerases, and homologous recombination-mediated restart of broken forks, which arise spontaneously and when crosslinks are unhooked by the ERCC1-XPF endonuclease. In the absence of the critical FANCD2 monoubiquitination step, broken replication forks further lose chromatid continuity by collapsing into a configuration that is more difficult to restart through recombination and prone to aberrant repair through nonhomologous end joining. Thus, the FA regulatory pathway promotes chromosome integrity by monitoring oxidative stress and coping efficiently with the accompanying oxidative DNA damage during DNA replication.
Collapse
Affiliation(s)
- Larry H Thompson
- Biology and Biotechnology Research Program, Lawrence Livermore National Laboratory, Livermore, California 94551, USA.
| | | | | | | |
Collapse
|
163
|
Wojcik A, Stoilov L, Szumiel I, Legerski R, Obe G. Rad51C-deficient CL-V4B cells exhibit normal levels of mitomycin C-induced SCEs but reduced levels of UVC-induced SCEs. Biochem Biophys Res Commun 2005; 326:805-10. [PMID: 15607741 DOI: 10.1016/j.bbrc.2004.11.113] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2004] [Indexed: 11/24/2022]
Abstract
The mechanisms of sister chromatid exchanges (SCEs) are not known. One hypothesis is that SCE is a manifestation of Rad51-dependent homologous recombination repair. In order to test this hypothesis, we have compared the frequencies of SCEs induced by mitomycin C (MMC) and 254nm ultraviolet radiation (UVC) in wt V79B and the Rad51C-deficient CL-V4B cells. SCEs were analysed in the first (M1) and second (M2) post-treatment mitoses. In M1 MMC induced the same frequencies of SCEs in CL-V4B and V79B cells, while the UVC-induced SCE frequencies were lower in CL-V4B than V79B cells. In CL-V4B cells, MMC-induced SCEs were higher in M2 than in M1, suggesting that interstrand cross-links (ICL) are either not removed completely or are transformed into another form of DNA damage that persists until the next cell cycle. We suggest that SCEs may represent a mechanism to bypass MMC-induced ICL without their removal.
Collapse
Affiliation(s)
- Andrzej Wojcik
- Institute of Nuclear Chemistry and Technology, 03-195 Warszawa, Poland.
| | | | | | | | | |
Collapse
|
164
|
Houghtaling S, Granville L, Akkari Y, Torimaru Y, Olson S, Finegold M, Grompe M. Heterozygosity for p53 ( Trp53
+/−) Accelerates Epithelial Tumor Formation in Fanconi Anemia Complementation Group D2 ( Fancd2) Knockout Mice. Cancer Res 2005. [DOI: 10.1158/0008-5472.85.65.1] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Abstract
Fanconi anemia (FA) is an autosomal recessive disease characterized by progressive bone marrow failure and an increased susceptibility to cancer. FA is genetically heterogeneous, consisting of at least 11 complementation groups, FA-A through L, including FA-D1 (BRCA2) and D2. We have previously reported an increased incidence of epithelial tumors in Fancd2 knockout mice. To further investigate the role of the FA pathway in tumor prevention, Fancd2 mutant mice were crossed to mice with a null mutation in the tumor suppressor gene, Trp53. The tumor spectrum in Fancd2−/−/Trp53+/− mice included sarcomas expected in Trp53 heterozygotes, as well as mammary and lung adenocarcinomas that occur rarely in Trp53 heterozygotes. These tumors occurred earlier than in Fancd2−/− control mice. Therefore, the Fancd2−/−/Trp53+/− mice represent an improved model for the study of adenocarcinoma in FA. In addition, it was found that Fancd2−/− mouse embryonic fibroblasts but not Fancd2−/−/Trp53−/− mouse embryonic fibroblasts arrest following DNA damage. Therefore, Trp53 is required for the S phase checkpoint activation observed in Fancd2 mutant cells. Fancd2−/−/Trp53−/− cells showed an increase in aneuploidy and had multiple gross chromosomal rearrangements.
Collapse
Affiliation(s)
- Scott Houghtaling
- 1Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, Oregon and
| | - Laura Granville
- 2Department of Pathology, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas
| | - Yassmine Akkari
- 1Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, Oregon and
| | - Yumi Torimaru
- 1Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, Oregon and
| | - Susan Olson
- 1Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, Oregon and
| | - Milton Finegold
- 2Department of Pathology, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas
| | - Markus Grompe
- 1Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, Oregon and
| |
Collapse
|
165
|
Reardon JT, Sancar A. Nucleotide Excision Repair. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2005; 79:183-235. [PMID: 16096029 DOI: 10.1016/s0079-6603(04)79004-2] [Citation(s) in RCA: 230] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Joyce T Reardon
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599, USA
| | | |
Collapse
|
166
|
Atanassov B, Gospodinov A, Stoimenov I, Mladenov E, Russev G, Tsaneva I, Anachkova B. Repair of DNA interstrand crosslinks may take place at the nuclear matrix. J Cell Biochem 2005; 96:126-36. [PMID: 16052506 DOI: 10.1002/jcb.20518] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Host cell reactivation assay using Trioxsalen-crosslinked plasmid pEGFP-N1 showed that human cells were able to repair Trioxsalen interstrand crosslinks (ICL). To study the mechanism of this repair pathway, cells were transfected with the plasmids pEGFP-1, which did not contain the promoter of the egfp gene, and with pEGFP-G-, which did not contain the egfp gene. Neither of these plasmids alone was able to express the green fluorescent protein. After cotransfection with the two plasmids, 1%-2% of the cells developed fluorescent signal, which showed that recombination events had taken place in these cells to create DNA constructs containing the promoter and the gene properly aligned. When one or both of the plasmids were crosslinked with Trioxsalen, the recombination rate increased several fold. To identify the nuclear compartment where recombination takes place, cells were transfected with crosslinked pEGFP-N1 and the amount of plasmid DNA in the different nuclear fractions was determined. The results showed that Trioxsalen crosslinking increased the percentage of matrix attached plasmid DNA in a dose-dependent way. Immunoblotting experiments showed that after transfection with Trioxsalen crosslinked plasmids the homologous recombination protein Rad51 also associated with the nuclear matrix fraction. These studies provide a model system for investigating the precise molecular mechanisms that appear to couple repair of DNA ICL with nuclear matrix attachment.
Collapse
Affiliation(s)
- Boyko Atanassov
- Institute of Molecular Biology, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria
| | | | | | | | | | | | | |
Collapse
|
167
|
Ishiai M, Kimura M, Namikoshi K, Yamazoe M, Yamamoto K, Arakawa H, Agematsu K, Matsushita N, Takeda S, Buerstedde JM, Takata M. DNA cross-link repair protein SNM1A interacts with PIAS1 in nuclear focus formation. Mol Cell Biol 2004; 24:10733-41. [PMID: 15572677 PMCID: PMC533992 DOI: 10.1128/mcb.24.24.10733-10741.2004] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2004] [Revised: 08/27/2004] [Accepted: 09/21/2004] [Indexed: 11/20/2022] Open
Abstract
The yeast SNM1/PSO2 gene specifically functions in DNA interstrand cross-link (ICL) repair, and its role has been suggested to be separate from other DNA repair pathways. In vertebrates, there are three homologs of SNM1 (SNM1A, SNM1B, and SNM1C/Artemis; SNM1 family proteins) whose functions are largely unknown. We disrupted each of the SNM1 family genes in the chicken B-cell line DT40. Both SNM1A- and SNM1B-deficient cells were sensitive to cisplatin but not to X-rays, whereas SNM1C/Artemis-deficient cells exhibited sensitivity to X-rays but not to cisplatin. SNM1A was nonepistatic with XRCC3 (homologous recombination), RAD18 (translesion synthesis), FANCC (Fanconi anemia), and SNM1B in ICL repair. SNM1A protein formed punctate nuclear foci depending on the conserved SNM1 (metallo-beta-lactamase) domain. PIAS1 was found to physically interact with SNM1A, and they colocalized at nuclear foci. Point mutations in the SNM1 domain, which disrupted the interaction with PIAS1, led to mislocalization of SNM1A in the nucleus and loss of complementation of snm1a cells. These results suggest that interaction between SNM1A and PIAS1 is required for ICL repair.
Collapse
Affiliation(s)
- Masamichi Ishiai
- Department of Immunology and Molecular Genetics, Kawasaki Medical School, 577 Matsushima, Kurashiki, Okayama 701-0192, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
168
|
Abstract
A subset of human cancer syndromes result from inherited defects in genes responsible for DNA repair. During the past few years, discoveries concerning the intersection of certain DNA repair processes have increased our understanding of how the disruption of specific DNA repair mechanisms leads to genomic instability and tumorigenesis. This review focuses on the human genes MUTYH, BRCA2/FANCD1, and BLM.
Collapse
Affiliation(s)
- Mary A Risinger
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, 231 Albert Sabin Way, Cincinnati, OH 45267, USA
| | | |
Collapse
|
169
|
Mi J, Qiao F, Wilson JB, High AA, Schroeder MJ, Stukenberg PT, Moss A, Shabanowitz J, Hunt DF, Jones NJ, Kupfer GM. FANCG is phosphorylated at serines 383 and 387 during mitosis. Mol Cell Biol 2004; 24:8576-85. [PMID: 15367677 PMCID: PMC516759 DOI: 10.1128/mcb.24.19.8576-8585.2004] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Fanconi anemia (FA) is an autosomal recessive disease marked by congenital defects, bone marrow failure, and high incidence of leukemia and solid tumors. Eight genes have been cloned, with the accompanying protein products participating in at least two complexes, which appear to be functionally dependent upon one another. Previous studies have described chromatin localization of the FA core complex, except at mitosis, which is associated with phosphorylation of the FANCG protein (F. Qiao, A. Moss, and G. M. Kupfer, J. Biol. Chem. 276:23391-23396, 2001). The phosphorylation of FANCG at serine 7 by using mass spectrometry was previously mapped. The purpose of this study was to map the phosphorylation sites of FANCG at mitosis and to assess their functional importance. Reasoning that a potential kinase might be cdc2, which was previously reported to bind to FANCC, we showed that cdc2 chiefly phosphorylated a 14-kDa fragment of the C-terminal half of FANCG. Mass spectrometry analysis demonstrated that this fragment contains amino acids 374 to 504. Kinase motif analysis demonstrated that three amino acids in this fragment were leading candidates for phosphorylation. By using PCR-directed in vitro mutagenesis we mutated S383, S387, and T487 to alanine. Mutation of S383 and S387 abolished the phosphorylation of FANCG at mitosis. These results were confirmed by use of phosphospecific antibodies directed against phosphoserine 383 and phosphoserine 387. Furthermore, the ability to correct FA-G mutant cells of human or hamster (where S383 and S387 are conserved) origin was also impaired by these mutations, demonstrating the functional importance of these amino acids. S387A mutant abolished FANCG fusion protein phosphorylation by cdc2. The FA pathway, of which FANCG is a part, is highly regulated by a series of phosphorylation steps that are important to its overall function.
Collapse
Affiliation(s)
- Jun Mi
- Department of Microbiology, University of Virginia Health System, Charlottesville, VA, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
170
|
Niedzwiedz W, Mosedale G, Johnson M, Ong CY, Pace P, Patel KJ. The Fanconi anaemia gene FANCC promotes homologous recombination and error-prone DNA repair. Mol Cell 2004; 15:607-20. [PMID: 15327776 DOI: 10.1016/j.molcel.2004.08.009] [Citation(s) in RCA: 243] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2004] [Revised: 05/04/2004] [Accepted: 06/24/2004] [Indexed: 01/01/2023]
Abstract
The Fanconi anemia (FA) protein FANCC is essential for chromosome stability in vertebrate cells, a feature underscored by the extreme sensitivity of FANCC-deficient cells to agents that crosslink DNA. However, it is not known how this FA protein facilitates the repair of both endogenously acquired and mutagen-induced DNA damage. Here, we use the model vertebrate cell line DT40 to address this question. We discover that apart from functioning in homologous recombination, FANCC also promotes the mutational repair of endogenously generated abasic sites. Moreover in these vertebrate cells, the efficient repair of crosslinks requires the combined functions of FANCC, translesion synthesis, and homologous recombination. These studies reveal that the FA proteins cooperate with key mutagenesis and repair processes that enable replication of damaged DNA.
Collapse
Affiliation(s)
- Wojciech Niedzwiedz
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, United Kingdom
| | | | | | | | | | | |
Collapse
|
171
|
Demuth I, Digweed M, Concannon P. Human SNM1B is required for normal cellular response to both DNA interstrand crosslink-inducing agents and ionizing radiation. Oncogene 2004; 23:8611-8. [PMID: 15467758 DOI: 10.1038/sj.onc.1207895] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
DNA interstrand crosslinks (ICLs) are critical lesions for the mammalian cell since they affect both DNA strands and block transcription and replication. The repair of ICLs in the mammalian cell involves components of different repair pathways such as nucleotide-excision repair and the double-strand break/homologous recombination repair pathways. However, the mechanistic details of mammalian ICL repair have not been fully delineated. We describe here the complete coding sequence and the genomic organization of hSNM1B, one of at least three human homologs of the Saccharomyces cerevisiae PSO2 gene. Depletion of hSNM1B by RNA interference rendered cells hypersensitive to ICL-inducing agents. This requirement for hSNM1B in the cellular response to ICL has been hypothesized before but never experimentally verified. In addition, siRNA knockdown of hSNM1B rendered cells sensitive to ionizing radiation, suggesting the possibility of hSNM1B involvement in homologous recombination repair of double-strand breaks arising as intermediates of ICL repair. Monoubiquitination of FANCD2, a key step in the FANC/BRCA pathway, is not affected in hSNM1B-depleted HeLa cells, indicating that hSNM1B is probably not a part of the Fanconi anemia core complex. Nonetheless, similarities in the phenotype of hSNM1B-depleted cells and cultured cells from patients suffering from Fanconi anemia make hSNM1B a candidate for one of the as yet unidentified Fanconi anemia genes not involved in monoubiquitination of FANCD2.
Collapse
Affiliation(s)
- Ilja Demuth
- Molecular Genetics Program, Benaroya Research Institute, Seattle, WA 98101-2795, USA
| | | | | |
Collapse
|
172
|
Abstract
Germline mutations in the BRCA1, BRCA2 and Fanconi anaemia genes confer cancer susceptibility, and the proteins encoded by these genes have distinct functions in related DNA-repair processes. Emerging evidence indicates that these processes are disrupted by numerous mechanisms in sporadic cancers. Collectively, there are properties that define 'BRCAness' - that is, traits that some sporadic cancers share with those occurring in either BRCA1- or BRCA2-mutation carriers. These common properties might have important implications for the clinical management of these cancers.
Collapse
Affiliation(s)
- Nicholas Turner
- The Breakthrough Breast Cancer Research Centre, Institute of Cancer Research, Fulham Road, London SW3 6JB, UK
| | | | | |
Collapse
|
173
|
Freie BW, Ciccone SLM, Li X, Plett PA, Orschell CM, Srour EF, Hanenberg H, Schindler D, Lee SH, Clapp DW. A role for the Fanconi anemia C protein in maintaining the DNA damage-induced G2 checkpoint. J Biol Chem 2004; 279:50986-93. [PMID: 15377654 DOI: 10.1074/jbc.m407160200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Fanconi anemia (FA) is a complex, heterogeneous genetic disorder composed of at least 11 complementation groups. The FA proteins have recently been found to functionally interact with the cell cycle regulatory proteins ATM and BRCA1; however, the function of the FA proteins in cell cycle control remains incompletely understood. Here we show that the Fanconi anemia complementation group C protein (Fancc) is necessary for proper function of the DNA damage-induced G2/M checkpoint in vitro and in vivo. Despite apparently normal induction of the G2/M checkpoint after ionizing radiation, murine and human cells lacking functional FANCC did not maintain the G2 checkpoint as compared with wild-type cells. The increased rate of mitotic entry seen in Fancc-/-mouse embryo fibroblasts correlated with decreased inhibitory phosphorylation of cdc2 kinase on tyrosine 15. An increased inability to maintain the DNA damage-induced G2 checkpoint was observed in Fancc -/-; Trp53 -/-cells compared with Fancc -/-cells, indicating that Fancc and p53 cooperated to maintain the G2 checkpoint. In contrast, genetic disruption of both Fancc and Atm did not cooperate in the G2 checkpoint. These data indicate that Fancc and p53 in separate pathways converge to regulate the G2 checkpoint. Finally, fibroblasts lacking FANCD2 were found to have a G2 checkpoint phenotype similar to FANCC-deficient cells, indicating that FANCD2, which is activated by the FA complex, was also required to maintain the G2 checkpoint. Because a proper checkpoint function is critical for the maintenance of genomic stability and is intricately related to the function and integrity of the DNA repair process, these data have implications in understanding both the function of FA proteins and the mechanism of genomic instability in FA.
Collapse
Affiliation(s)
- Brian W Freie
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
174
|
Andreassen PR, D'Andrea AD, Taniguchi T. ATR couples FANCD2 monoubiquitination to the DNA-damage response. Genes Dev 2004; 18:1958-63. [PMID: 15314022 PMCID: PMC514175 DOI: 10.1101/gad.1196104] [Citation(s) in RCA: 313] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Fanconi anemia (FA) is a multigenic autosomal recessive cancer susceptibility syndrome. The FA pathway regulates the monoubiquitination of FANCD2 and the assembly of damage-associated FANCD2 nuclear foci. How FANCD2 monoubiquitination is coupled to the DNA-damage response has remained undetermined. Here, we demonstrate that the ATR checkpoint kinase and RPA1 are required for efficient FANCD2 monoubiquitination. Deficiency of ATR function, either in Seckel syndrome, which clinically resembles Fanconi anemia, or by siRNA silencing, results in the formation of radial chromosomes in response to the DNA cross-linker, mitomycin C (MMC), thus mimicking the chromosome instability of FA cells.
Collapse
Affiliation(s)
- Paul R Andreassen
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
175
|
Franco S, van de Vrugt HJ, Fernández P, Aracil M, Arwert F, Blasco MA. Telomere dynamics in Fancg-deficient mouse and human cells. Blood 2004; 104:3927-35. [PMID: 15319283 DOI: 10.1182/blood-2003-10-3626] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
A number of DNA repair proteins also play roles in telomere metabolism. To investigate whether the accelerated telomere shortening reported in Fanconi anemia (FA) hematopoietic cells relates to a direct role of the FA pathway in telomere maintenance, we have analyzed telomere dynamics in Fancg-deficient mouse and human cells. We show here that both hematopoietic (stem and differentiated bone marrow cells, B and T lymphocytes) and nonhematopoietic (germ cells, mouse embryonic fibroblasts [MEFs]) Fancg(-/-) mouse cells display normal telomere length, normal telomerase activity, and normal chromosome end-capping, even in the presence of extensive clastogen-induced cytogenetic instability (mitomycin C [MMC], gamma-radiation). In addition, telomerase-deficient MEFs with humanlike telomere length and decreased Fancg expression (G5 Terc(-/-)/Fancg shRNA3 MEFs) display normal telomere maintenance. Finally, early-passage primary fibroblasts from patients with FA of complementation group G as well as primary human cells with reduced FANCG expression (FANCG shRNA IMR90 cells) show no signs of telomere dysfunction. Our observations indicate that accelerated telomere shortening in patients with FA is not due to a role of FANCG at telomeres but instead may be secondary to the disease. These findings suggest that telomerase-based therapies could be useful prophylactic agents in FA aplastic anemia by preserving their telomere reserve in the context of the disease.
Collapse
Affiliation(s)
- Sonia Franco
- Molecular Oncology Program, Spanish National Cancer Centre, 3 Melchor Fernández Almagro, 28029 Madrid, Spain
| | | | | | | | | | | |
Collapse
|
176
|
Pichierri P, Franchitto A, Rosselli F. BLM and the FANC proteins collaborate in a common pathway in response to stalled replication forks. EMBO J 2004; 23:3154-63. [PMID: 15257300 PMCID: PMC514912 DOI: 10.1038/sj.emboj.7600277] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2004] [Accepted: 05/25/2004] [Indexed: 12/28/2022] Open
Abstract
Fanconi anaemia (FA) and Bloom syndrome (BS) are autosomal recessive diseases characterised by chromosome fragility and cancer proneness. Here, we report that BLM and the FA pathway are activated in response to both crosslinked DNA and replication fork stall. We provide evidence that BLM and FANCD2 colocalise and co-immunoprecipitate following treatment with either DNA crosslinkers or agents inducing replication arrest. We also find that the FA core complex is necessary for BLM phosphorylation and assembly in nuclear foci in response to crosslinked DNA. Moreover, we show that knock-down of the MRE11 complex, whose function is also under the control of the FA core complex, enhances cellular and chromosomal sensitivity to DNA interstrand crosslinks in BS cells. These findings suggest the existence of a functional link between BLM and the FA pathway and that BLM and the MRE11 complex are in two separated branches of a pathway resulting in S-phase checkpoint activation, chromosome integrity and cell survival in response to crosslinked DNA.
Collapse
Affiliation(s)
- Pietro Pichierri
- UPR2169 CNRS, ‘Genetic Instability and Cancer', Institut Gustave Roussy, Pavillon de Recherche, Rue Camille Desmoulins, Villejuif, France
| | - Annapaola Franchitto
- UPR2169 CNRS, ‘Genetic Instability and Cancer', Institut Gustave Roussy, Pavillon de Recherche, Rue Camille Desmoulins, Villejuif, France
| | - Filippo Rosselli
- UPR2169 CNRS, ‘Genetic Instability and Cancer', Institut Gustave Roussy, Pavillon de Recherche, Rue Camille Desmoulins, Villejuif, France
| |
Collapse
|
177
|
Abstract
Fanconi anemia (FA) is a rare autosomal recessive disease characterized by chromosome instability and cancer predisposition. At least 11 complementation groups for FA have been identified, and eight FA genes have been cloned. Interestingly, the eight known FA proteins cooperate in a common pathway leading to the interaction of monoubiquitinated FANCD2 and BRCA2 in damaged chromatin. Disruption of this pathway results in the clinical and cellular abnormalities common to all FA subtypes. This review will examine the interaction of the cloned FA proteins with each other and with other DNA damage response proteins (i.e., ATM, ATR, and NBS1). Also, somatic (acquired) disruption of the FA pathway in human tumors appears to account for their chromosome instability and crosslinker hypersensitivity.
Collapse
Affiliation(s)
- XiaoZhe Wang
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, 44 Binney Street, Boston, MA 02115, USA
| | | |
Collapse
|
178
|
Abstract
Fanconi anemia (FA) is an autosomal recessive disease marked by bone marrow failure, birth defects, and cancer. The FA proteins FANCA, FANCC, FANCE, FANCF, FANCG, and FANCL participate in a core complex. We previously have shown that several members of this complex bind to chromatin until mitosis and that this binding increases after DNA damage. The purpose of the present study was to determine the dynamics of complex movement between cytoplasm and nuclear compartments. Fluorescent-tagged versions of FANCA, FANCC, and FANCG colocalize in cytoplasm and nucleus, chiefly in chromatin. At the G1-S border, the FA core complex exists as foci on chromatin, progressively diffusing and migrating to the nuclear periphery and becoming completely excluded from condensed chromosomes by mitosis. Chromatin fiber analysis shows FA proteins diffusely staining along chromatin fibers during G1-S and S phase. Treatment with the DNA cross-linker mitomycin C results in a diffusion of foci and increased binding of complex proteins to chromatin, as well as diffuse and increased complex binding to chromatin fibers. These data are consistent with the idea that the FA proteins function at the level of chromatin during S phase to regulate and maintain genomic stability.
Collapse
Affiliation(s)
- Jun Mi
- Department of Microbiology, the University of Virginia Health System, University of Virginia, Charlottesville, VA 22908, USA
| | | |
Collapse
|
179
|
Niedernhofer LJ, Odijk H, Budzowska M, van Drunen E, Maas A, Theil AF, de Wit J, Jaspers NGJ, Beverloo HB, Hoeijmakers JHJ, Kanaar R. The structure-specific endonuclease Ercc1-Xpf is required to resolve DNA interstrand cross-link-induced double-strand breaks. Mol Cell Biol 2004; 24:5776-87. [PMID: 15199134 PMCID: PMC480908 DOI: 10.1128/mcb.24.13.5776-5787.2004] [Citation(s) in RCA: 391] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2003] [Revised: 01/07/2004] [Accepted: 04/06/2004] [Indexed: 11/20/2022] Open
Abstract
Interstrand cross-links (ICLs) are an extremely toxic class of DNA damage incurred during normal metabolism or cancer chemotherapy. ICLs covalently tether both strands of duplex DNA, preventing the strand unwinding that is essential for polymerase access. The mechanism of ICL repair in mammalian cells is poorly understood. However, genetic data implicate the Ercc1-Xpf endonuclease and proteins required for homologous recombination-mediated double-strand break (DSB) repair. To examine the role of Ercc1-Xpf in ICL repair, we monitored the phosphorylation of histone variant H2AX (gamma-H2AX). The phosphoprotein accumulates at DSBs, forming foci that can be detected by immunostaining. Treatment of wild-type cells with mitomycin C (MMC) induced gamma-H2AX foci and increased the amount of DSBs detected by pulsed-field gel electrophoresis. Surprisingly, gamma-H2AX foci were also induced in Ercc1(-/-) cells by MMC treatment. Thus, DSBs occur after cross-link damage via an Ercc1-independent mechanism. Instead, ICL-induced DSB formation required cell cycle progression into S phase, suggesting that DSBs are an intermediate of ICL repair that form during DNA replication. In Ercc1(-/-) cells, MMC-induced gamma-H2AX foci persisted at least 48 h longer than in wild-type cells, demonstrating that Ercc1 is required for the resolution of cross-link-induced DSBs. MMC triggered sister chromatid exchanges in wild-type cells but chromatid fusions in Ercc1(-/-) and Xpf mutant cells, indicating that in their absence, repair of DSBs is prevented. Collectively, these data support a role for Ercc1-Xpf in processing ICL-induced DSBs so that these cytotoxic intermediates can be repaired by homologous recombination.
Collapse
Affiliation(s)
- Laura J Niedernhofer
- Department of Cell Biology and Genetics, Erasmus Medical Center, Rotterdam, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
180
|
Saffran WA, Ahmed S, Bellevue S, Pereira G, Patrick T, Sanchez W, Thomas S, Alberti M, Hearst JE. DNA repair defects channel interstrand DNA cross-links into alternate recombinational and error-prone repair pathways. J Biol Chem 2004; 279:36462-9. [PMID: 15213235 DOI: 10.1074/jbc.m402323200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The repair of psoralen interstrand cross-links in the yeast Saccharomyces cerevisiae involves the DNA repair groups nucleotide excision repair (NER), homologous recombination (HR), and post-replication repair (PRR). In repair-proficient yeast cells cross-links induce double-strand breaks, in an NER-dependent process; the double-strand breaks are then repaired by HR. An alternate error-prone repair pathway generates mutations at cross-link sites. We have characterized the repair of plasmid molecules carrying a single psoralen cross-link, psoralen monoadduct, or double-strand break in yeast cells with deficiencies in NER, HR, or PRR genes, measuring the repair efficiencies and the levels of gene conversions, crossing over, and mutations. Strains with deficiencies in the NER genes RAD1, RAD3, RAD4, and RAD10 had low levels of cross-link-induced recombination but higher mutation frequencies than repair-proficient cells. Deletion of the HR genes RAD51, RAD52, RAD54, RAD55, and RAD57 also decreased induced recombination and increased mutation frequencies above those of NER-deficient yeast. Strains lacking the PRR genes RAD5, RAD6, and RAD18 did not have any cross-link-induced mutations but showed increased levels of recombination; rad5 and rad6 cells also had altered patterns of cross-link-induced gene conversion in comparison with repair-proficient yeast. Our observations suggest that psoralen cross-links can be repaired by three pathways: an error-free recombinational pathway requiring NER and HR and two PRR-dependent error-prone pathways, one NER-dependent and one NER-independent.
Collapse
Affiliation(s)
- Wilma A Saffran
- Department of Chemistry and Biochemistry, Queens College of the City University of New York, 65-30 Kissena Boulevard, Flushing, NY 11367, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|