151
|
Clerissi C, Guillou L, Escoubas JM, Toulza E. Unveiling protist diversity associated with the Pacific oyster Crassostrea gigas using blocking and excluding primers. BMC Microbiol 2020; 20:193. [PMID: 32620152 PMCID: PMC7333408 DOI: 10.1186/s12866-020-01860-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 06/16/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Microbiome of macroorganisms might directly or indirectly influence host development and homeostasis. Many studies focused on the diversity and distribution of prokaryotes within these assemblages, but the eukaryotic microbial compartment remains underexplored so far. RESULTS To tackle this issue, we compared blocking and excluding primers to analyze microeukaryotic communities associated with Crassostrea gigas oysters. High-throughput sequencing of 18S rRNA genes variable loops revealed that excluding primers performed better by not amplifying oyster DNA, whereas the blocking primer did not totally prevent host contaminations. However, blocking and excluding primers showed similar pattern of alpha and beta diversities when protist communities were sequenced using metabarcoding. Alveolata, Stramenopiles and Archaeplastida were the main protist phyla associated with oysters. In particular, Codonellopsis, Cyclotella, Gymnodinium, Polarella, Trichodina, and Woloszynskia were the dominant genera. The potential pathogen Alexandrium was also found in high abundances within some samples. CONCLUSIONS Our study revealed the main protist taxa within oysters as well as the occurrence of potential oyster pathogens. These new primer sets are promising tools to better understand oyster homeostasis and disease development, such as the Pacific Oyster Mortality Syndrome (POMS) targeting juveniles.
Collapse
Affiliation(s)
- Camille Clerissi
- IHPE, Univ. Montpellier, CNRS, Ifremer, Univ. Perpignan Via Domitia, Perpignan, France. .,PSL Université Paris: EPHE-UPVD-CNRS, USR 3278 CRIOBE, Université de Perpignan, 52 Avenue Paul Alduy, 66860, Perpignan Cedex, France.
| | - Laure Guillou
- Sorbonne Université, CNRS, UMR7144 Adaptation et Diversité en Milieu Marin, Ecology of Marine Plankton (ECOMAP), Station Biologique de Roscoff SBR, Roscoff, France
| | - Jean-Michel Escoubas
- IHPE, Univ. Montpellier, CNRS, Ifremer, Univ. Perpignan Via Domitia, Montpellier, France
| | - Eve Toulza
- IHPE, Univ. Montpellier, CNRS, Ifremer, Univ. Perpignan Via Domitia, Perpignan, France
| |
Collapse
|
152
|
Arora J, Mars Brisbin MA, Mikheyev AS. Effects of microbial evolution dominate those of experimental host-mediated indirect selection. PeerJ 2020; 8:e9350. [PMID: 32676220 PMCID: PMC7334978 DOI: 10.7717/peerj.9350] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 05/23/2020] [Indexed: 12/31/2022] Open
Abstract
Microbes ubiquitously inhabit animals and plants, often affecting their host's phenotype. As a result, even in a constant genetic background, the host's phenotype may evolve through indirect selection on the microbiome. 'Microbiome engineering' offers a promising novel approach for attaining desired host traits but has been attempted only a few times. Building on the known role of the microbiome on development in fruit flies, we attempted to evolve earlier-eclosing flies by selecting on microbes in the growth media. We carried out parallel evolution experiments in no- and high-sugar diets by transferring media associated with fast-developing fly lines over the course of four selection cycles. In each cycle, we used sterile eggs from the same inbred population, and assayed mean fly eclosion times. Ultimately, flies eclosed seven to twelve hours earlier, depending on the diet, but microbiome engineering had no effect relative to a random-selection control treatment. 16S rRNA gene sequencing showed that the microbiome did evolve, particularly in the no sugar diet, with an increase in Shannon diversity over time. Thus, while microbiome evolution did affect host eclosion times, these effects were incidental. Instead, any experimentally enforced selection effects were swamped by uncontrolled microbial evolution, likely resulting in its adaptation to the media. These results imply that selection on host phenotypes must be strong enough to overcome other selection pressures simultaneously operating on the microbiome. The independent evolutionary trajectories of the host and the microbiome may limit the extent to which indirect selection on the microbiome can ultimately affect host phenotype. Random-selection lines accounting for independent microbial evolution are essential for experimental microbiome engineering studies.
Collapse
Affiliation(s)
- Jigyasa Arora
- Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa, Japan
| | | | - Alexander S. Mikheyev
- Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa, Japan
- Research School of Biology, Australian National University, Acton, ACT, Australia
| |
Collapse
|
153
|
Kumar A, Dubey A. Rhizosphere microbiome: Engineering bacterial competitiveness for enhancing crop production. J Adv Res 2020; 24:337-352. [PMID: 32461810 PMCID: PMC7240055 DOI: 10.1016/j.jare.2020.04.014] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 04/15/2020] [Accepted: 04/25/2020] [Indexed: 12/29/2022] Open
Abstract
Plants in nature are constantly exposed to a variety of abiotic and biotic stresses which limits their growth and production. Enhancing crop yield and production to feed exponentially growing global population in a sustainable manner by reduced chemical fertilization and agrochemicals will be a big challenge. Recently, the targeted application of beneficial plant microbiome and their cocktails to counteract abiotic and biotic stress is gaining momentum and becomes an exciting frontier of research. Advances in next generation sequencing (NGS) platform, gene editing technologies, metagenomics and bioinformatics approaches allows us to unravel the entangled webs of interactions of holobionts and core microbiomes for efficiently deploying the microbiome to increase crops nutrient acquisition and resistance to abiotic and biotic stress. In this review, we focused on shaping rhizosphere microbiome of susceptible host plant from resistant plant which comprises of specific type of microbial community with multiple potential benefits and targeted CRISPR/Cas9 based strategies for the manipulation of susceptibility genes in crop plants for improving plant health. This review is significant in providing first-hand information to improve fundamental understanding of the process which helps in shaping rhizosphere microbiome.
Collapse
Affiliation(s)
- Ashwani Kumar
- Metagenomics and Secretomics Research Laboratory, Department of Botany, Dr. Harisingh Gour University (A Central University), Sagar 470003, M.P., India
| | - Anamika Dubey
- Metagenomics and Secretomics Research Laboratory, Department of Botany, Dr. Harisingh Gour University (A Central University), Sagar 470003, M.P., India
| |
Collapse
|
154
|
Berg G, Rybakova D, Fischer D, Cernava T, Vergès MCC, Charles T, Chen X, Cocolin L, Eversole K, Corral GH, Kazou M, Kinkel L, Lange L, Lima N, Loy A, Macklin JA, Maguin E, Mauchline T, McClure R, Mitter B, Ryan M, Sarand I, Smidt H, Schelkle B, Roume H, Kiran GS, Selvin J, Souza RSCD, van Overbeek L, Singh BK, Wagner M, Walsh A, Sessitsch A, Schloter M. Microbiome definition re-visited: old concepts and new challenges. MICROBIOME 2020; 8:103. [PMID: 32605663 PMCID: PMC7329523 DOI: 10.1186/s40168-020-00875-0] [Citation(s) in RCA: 928] [Impact Index Per Article: 185.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 05/22/2020] [Indexed: 05/03/2023]
Abstract
The field of microbiome research has evolved rapidly over the past few decades and has become a topic of great scientific and public interest. As a result of this rapid growth in interest covering different fields, we are lacking a clear commonly agreed definition of the term "microbiome." Moreover, a consensus on best practices in microbiome research is missing. Recently, a panel of international experts discussed the current gaps in the frame of the European-funded MicrobiomeSupport project. The meeting brought together about 40 leaders from diverse microbiome areas, while more than a hundred experts from all over the world took part in an online survey accompanying the workshop. This article excerpts the outcomes of the workshop and the corresponding online survey embedded in a short historical introduction and future outlook. We propose a definition of microbiome based on the compact, clear, and comprehensive description of the term provided by Whipps et al. in 1988, amended with a set of novel recommendations considering the latest technological developments and research findings. We clearly separate the terms microbiome and microbiota and provide a comprehensive discussion considering the composition of microbiota, the heterogeneity and dynamics of microbiomes in time and space, the stability and resilience of microbial networks, the definition of core microbiomes, and functionally relevant keystone species as well as co-evolutionary principles of microbe-host and inter-species interactions within the microbiome. These broad definitions together with the suggested unifying concepts will help to improve standardization of microbiome studies in the future, and could be the starting point for an integrated assessment of data resulting in a more rapid transfer of knowledge from basic science into practice. Furthermore, microbiome standards are important for solving new challenges associated with anthropogenic-driven changes in the field of planetary health, for which the understanding of microbiomes might play a key role. Video Abstract.
Collapse
Affiliation(s)
- Gabriele Berg
- Environmental Biotechnology, Graz University of Technology, Graz, Austria.
| | - Daria Rybakova
- Environmental Biotechnology, Graz University of Technology, Graz, Austria
| | | | - Tomislav Cernava
- Environmental Biotechnology, Graz University of Technology, Graz, Austria
| | | | - Trevor Charles
- Waterloo Centre for Microbial Research, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada
- Metagenom Bio, 550 Parkside Drive, Unit A9, Waterloo, ON, N2L 5 V4, Canada
| | - Xiaoyulong Chen
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Guizhou University, Guiyang, 550025, Guizhou, China
| | - Luca Cocolin
- European Food Information Council, Brussels, Belgium
| | - Kellye Eversole
- International Alliance for Phytobiomes Research, Summit, Lee, MO, 's, USA
| | | | - Maria Kazou
- Laboratory of Dairy Research, Department of Food Science and Human Nutrition, Agricultural University of Athens, Athens, Greece
| | - Linda Kinkel
- Department of Plant Pathology, University of Minnesota, St. Paul, MN, 55108, USA
| | - Lene Lange
- BioEconomy, Research, & Advisory, Valby, Denmark
| | - Nelson Lima
- CEB-Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Alexander Loy
- Department of Microbial Ecology and Ecosystem Science, University of Vienna, Vienna, Austria
| | | | - Emmanuelle Maguin
- MICALIS, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Tim Mauchline
- Sustainable Agriculture Sciences, Rothamsted Research, Harpenden, UK
| | - Ryan McClure
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Birgit Mitter
- Bioresources Unit, AIT Austrian Institute of Technology, Tulln, Austria
| | | | - Inga Sarand
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | - Hauke Smidt
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, the Netherlands
| | | | | | - G Seghal Kiran
- Dept of Food Science and Technology, Pondicherry University, Puducherry, India
| | - Joseph Selvin
- Department of Microbiology, Pondicherry University, Puducherry, India
| | - Rafael Soares Correa de Souza
- Genomics for Climate Change Research Center (GCCRC), Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil
| | - Leo van Overbeek
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, the Netherlands
| | - Brajesh K Singh
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
- Global Centre for Land-Based Innovation, Western Sydney University, Penrith, NSW, Australia
| | - Michael Wagner
- Department of Microbial Ecology and Ecosystem Science, University of Vienna, Vienna, Austria
| | - Aaron Walsh
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland
| | - Angela Sessitsch
- Bioresources Unit, AIT Austrian Institute of Technology, Tulln, Austria
| | | |
Collapse
|
155
|
Zhao L, He K, Luo J, Sun J, Liao L, Tang X, Liu Q, Yang S. Co-modulation of Liver Genes and Intestinal Microbiome of Largemouth Bass Larvae ( Micropterus salmoides) During Weaning. Front Microbiol 2020; 11:1332. [PMID: 32625193 PMCID: PMC7311569 DOI: 10.3389/fmicb.2020.01332] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 05/25/2020] [Indexed: 11/26/2022] Open
Abstract
In recent years, largemouth bass have become one of the most commonly aquacultured species in China, however, its low survival rate during larval weaning has always been a bottleneck that has restricted industrial development. Understanding the changes in liver metabolism and intestinal microflora during the weaning of largemouth bass larvae can help to design better weaning strategies and improve survival. In this study, liver mRNA and intestinal microflora 16S rRNA genes were analyzed using high-throughput sequencing at the pre, mid, and post weaning stages [15, 30, 45 days post hatching; total length (cm) were 2.21 ± 0.12, 3.45 ± 0.21, 5.29 ± 0.33, respectively]. The transcriptome results revealed that the genes with increased expression were related to amino acid metabolism in the pre-weaning stage, but they were related to fatty acid metabolism in the post-weaning stage. A similar phenomenon was observed in the intestinal microflora where the dominant microbe Proteobacteria (relative abundance 56.32%) in the pre-weaning stage was gradually replaced by Firmicutes (relative abundance 62.81%) by the post-weaning stage. In addition, the three most important digestive enzymes (trypsin, lipase, and amylase) in the intestine were significantly decreased during the mid-weaning stage (P < 0.05), which was also true for some genes crucial to immune pathways in the liver. Overall, these findings showed that weaning in largemouth bass can cause changes in liver metabolism and intestinal microbial communities, which has improved our understanding of fish adaptation to changes in food sources during weaning.
Collapse
Affiliation(s)
- Liulan Zhao
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Kuo He
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Jie Luo
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Junlong Sun
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Lei Liao
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Xiaohong Tang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Qiao Liu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Song Yang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
156
|
Voolstra CR, Ziegler M. Adapting with Microbial Help: Microbiome Flexibility Facilitates Rapid Responses to Environmental Change. Bioessays 2020; 42:e2000004. [DOI: 10.1002/bies.202000004] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 03/11/2020] [Indexed: 02/06/2023]
Affiliation(s)
| | - Maren Ziegler
- Department of Animal Ecology and SystematicsJustus Liebig University Giessen 35392 Germany
| |
Collapse
|
157
|
Wang C, Masoudi A, Wang M, Yang J, Shen R, Man M, Yu Z, Liu J. Community structure and diversity of the microbiomes of two microhabitats at the root-soil interface: implications of meta-analysis of the root-zone soil and root endosphere microbial communities in Xiong'an New Area. Can J Microbiol 2020; 66:605-622. [PMID: 32526152 DOI: 10.1139/cjm-2020-0061] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The diversity of the microbial compositions of the root-zone soil (the rhizosphere-surrounding soil) and root endosphere (all inner root tissues) of Pinus tabulaeformis Carr. and Ginkgo biloba L. were evaluated in Xiong'an New Area using high-throughput sequencing; the influence of the soil edaphic parameters on microbial community compositions was also evaluated. Our results showed that both the taxonomic and phylogenetic diversities of the root endosphere were lower than those of the root-zone soil, but the variation in the endosphere microbial community structure was remarkably higher than that of the root-zone soil. Spearman correlation analysis showed that the soil organic matter, total nitrogen, total phosphate, total potassium, ratio of carbon to nitrogen, and pH significantly explained the α-diversity of the bacterial community and that total nitrogen differentially contributed to the α-diversity of the fungal community. Variation partitioning analysis showed that plant species had a greater influence on microbial composition variations than did any other soil property, although soil chemical parameters explained more variation when integrated. Together, our results suggest that both plant species and soil chemical parameters played a critical role in shaping the microbial community composition.
Collapse
Affiliation(s)
- Can Wang
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, P.R. China
| | - Abolfazl Masoudi
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, P.R. China
| | - Min Wang
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, P.R. China
| | - Jia Yang
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, P.R. China
| | - Ruowen Shen
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, P.R. China
| | - Meng Man
- Library of Hebei Normal University, Hebei Normal University, Shijiazhuang 050024, P.R. China
| | - Zhijun Yu
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, P.R. China
| | - Jingze Liu
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, P.R. China
| |
Collapse
|
158
|
Khoruts A, Bajaj JS. Reply to: " 'You know my name, but not my story' - Deciding on an accurate nomenclature for faecal microbiota transplantation": Intestinal microbiota transplantation: Naming a new paradigm. J Hepatol 2020; 72:1213-1214. [PMID: 32197802 DOI: 10.1016/j.jhep.2020.02.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 02/18/2020] [Indexed: 01/11/2023]
Affiliation(s)
- Alexander Khoruts
- Department of Medicine, Division of Gastroenterology, Hepatology, and Nutrition, University of Minnesota, Minneapolis, USA.
| | - Jasmohan S Bajaj
- Division of Gastroenterology, Hepatology and Nutrition, Virginia Commonwealth University and McGuire VA Medical Center, Richmond, USA
| |
Collapse
|
159
|
Longitudinal analysis reveals transition barriers between dominant ecological states in the gut microbiome. Proc Natl Acad Sci U S A 2020; 117:13839-13845. [PMID: 32471946 PMCID: PMC7306764 DOI: 10.1073/pnas.1922498117] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Deep molecular phenotyping of individuals provides the opportunity for biological insight into host physiology. As the human microbiome is increasingly being recognized as an important determinant of host health, understanding the host–microbiome relationship in a multiomics context may pave the way forward for targeted interventions. In this study, we analyze gut microbial composition of 101 individuals over the course of a year, alongside clinical markers and serum metabolomics. We establish association between specific gut compositional states and host health biomarkers (e.g., of inflammation). Finally, we provide evidence for an apparent transition barrier between these compositional states. A deeper understanding of microbiome dynamics and the associated variation in host phenotypes furthers our ability to engineer effective interventions that optimize wellness. The Pioneer 100 Wellness Project involved quantitatively profiling 108 participants’ molecular physiology over time, including genomes, gut microbiomes, blood metabolomes, blood proteomes, clinical chemistries, and data from wearable devices. Here, we present a longitudinal analysis focused specifically around the Pioneer 100 gut microbiomes. We distinguished a subpopulation of individuals with reduced gut diversity, elevated relative abundance of the genus Prevotella, and reduced levels of the genus Bacteroides. We found that the relative abundances of Bacteroides and Prevotella were significantly correlated with certain serum metabolites, including omega-6 fatty acids. Primary dimensions in distance-based redundancy analysis of clinical chemistries explained 18.5% of the variance in bacterial community composition, and revealed a Bacteroides/Prevotella dichotomy aligned with inflammation and dietary markers. Finally, longitudinal analysis of gut microbiome dynamics within individuals showed that direct transitions between Bacteroides-dominated and Prevotella-dominated communities were rare, suggesting the presence of a barrier between these states. One implication is that interventions seeking to transition between Bacteroides- and Prevotella-dominated communities will need to identify permissible paths through ecological state-space that circumvent this apparent barrier.
Collapse
|
160
|
Abstract
Much recent marine research has been directed towards understanding the effects of anthropogenic-induced environmental change on marine biodiversity, particularly for those animals with heavily calcified exoskeletons, such as corals, molluscs and urchins. This is because life in our oceans is becoming more challenging for these animals with changes in temperature, pH and salinity. In the future, it will be more energetically expensive to make marine skeletons and the increasingly corrosive conditions in seawater are expected to result in the dissolution of these external skeletons. However, initial predictions of wide-scale sensitivity are changing as we understand more about the mechanisms underpinning skeletal production (biomineralization). These studies demonstrate the complexity of calcification pathways and the cellular responses of animals to these altered conditions. Factors including parental conditioning, phenotypic plasticity and epigenetics can significantly impact the production of skeletons and thus future population success. This understanding is paralleled by an increase in our knowledge of the genes and proteins involved in biomineralization, particularly in some phyla, such as urchins, molluscs and corals. This Review will provide a broad overview of our current understanding of the factors affecting skeletal production in marine invertebrates. It will focus on the molecular mechanisms underpinning biomineralization and how knowledge of these processes affects experimental design and our ability to predict responses to climate change. Understanding marine biomineralization has many tangible benefits in our changing world, including improvements in conservation and aquaculture and exploitation of natural calcified structure design using biomimicry approaches that are aimed at producing novel biocomposites.
Collapse
Affiliation(s)
- Melody S Clark
- British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Road, Cambridge, CB3 0ET, UK
| |
Collapse
|
161
|
diCenzo GC, Tesi M, Pfau T, Mengoni A, Fondi M. Genome-scale metabolic reconstruction of the symbiosis between a leguminous plant and a nitrogen-fixing bacterium. Nat Commun 2020; 11:2574. [PMID: 32444627 PMCID: PMC7244743 DOI: 10.1038/s41467-020-16484-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 04/28/2020] [Indexed: 11/09/2022] Open
Abstract
The mutualistic association between leguminous plants and endosymbiotic rhizobial bacteria is a paradigmatic example of a symbiosis driven by metabolic exchanges. Here, we report the reconstruction and modelling of a genome-scale metabolic network of Medicago truncatula (plant) nodulated by Sinorhizobium meliloti (bacterium). The reconstructed nodule tissue contains five spatially distinct developmental zones and encompasses the metabolism of both the plant and the bacterium. Flux balance analysis (FBA) suggests that the metabolic costs associated with symbiotic nitrogen fixation are primarily related to supporting nitrogenase activity, and increasing N2-fixation efficiency is associated with diminishing returns in terms of plant growth. Our analyses support that differentiating bacteroids have access to sugars as major carbon sources, ammonium is the main nitrogen export product of N2-fixing bacteria, and N2 fixation depends on proton transfer from the plant cytoplasm to the bacteria through acidification of the peribacteroid space. We expect that our model, called 'Virtual Nodule Environment' (ViNE), will contribute to a better understanding of the functioning of legume nodules, and may guide experimental studies and engineering of symbiotic nitrogen fixation.
Collapse
Affiliation(s)
- George C diCenzo
- Department of Biology, University of Florence, Sesto Fiorentino, Italy
- Department of Biology, Queen's University, Kingston, ON, Canada
| | - Michelangelo Tesi
- Department of Biology, University of Florence, Sesto Fiorentino, Italy
| | - Thomas Pfau
- Life Sciences Research Unit, University of Luxembourg, Belvaux, Luxembourg
| | - Alessio Mengoni
- Department of Biology, University of Florence, Sesto Fiorentino, Italy.
| | - Marco Fondi
- Department of Biology, University of Florence, Sesto Fiorentino, Italy.
| |
Collapse
|
162
|
Sariola S, Gilbert SF. Toward a Symbiotic Perspective on Public Health: Recognizing the Ambivalence of Microbes in the Anthropocene. Microorganisms 2020; 8:E746. [PMID: 32429344 PMCID: PMC7285259 DOI: 10.3390/microorganisms8050746] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 05/13/2020] [Accepted: 05/14/2020] [Indexed: 02/07/2023] Open
Abstract
Microbes evolve in complex environments that are often fashioned, in part, by human desires. In a global perspective, public health has played major roles in structuring how microbes are perceived, cultivated, and destroyed. The germ theory of disease cast microbes as enemies of the body and the body politic. Antibiotics have altered microbial development by providing stringent natural selection on bacterial species, and this has led to the formation of antibiotic-resistant bacterial strains. Public health perspectives such as "Precision Public Health" and "One Health" have recently been proposed to further manage microbial populations. However, neither of these take into account the symbiotic relationships that exist between bacterial species and between bacteria, viruses, and their eukaryotic hosts. We propose a perspective on public health that recognizes microbial evolution through symbiotic associations (the hologenome theory) and through lateral gene transfer. This perspective has the advantage of including both the pathogenic and beneficial interactions of humans with bacteria, as well as combining the outlook of the "One Health" model with the genomic methodologies utilized in the "Precision Public Health" model. In the Anthropocene, the conditions for microbial evolution have been altered by human interventions, and public health initiatives must recognize both the beneficial (indeed, necessary) interactions of microbes with their hosts as well as their pathogenic interactions.
Collapse
Affiliation(s)
- Salla Sariola
- Faculty of Social Sciences, Sociology, University of Helsinki, 00014 Helsinki, Finland;
| | - Scott F. Gilbert
- Department of Biology, Swarthmore College, Swarthmore, PA 19081, USA
| |
Collapse
|
163
|
Suárez J, Stencel A. A part‐dependent account of biological individuality: why holobionts are individuals
and
ecosystems simultaneously. Biol Rev Camb Philos Soc 2020; 95:1308-1324. [DOI: 10.1111/brv.12610] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 04/22/2020] [Accepted: 04/24/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Javier Suárez
- Department of Philosophy, Logos/BIAP University of Barcelona C/Montalegre 6 Barcelona E‐08001 Spain
- Egenis – The Centre for the Study of Life Sciences University of Exeter St. German's Rd Exeter EX4 4PJ U.K
| | - Adrian Stencel
- Institute of Philosophy Jagiellonian University Kraków 31‐044 Poland
| |
Collapse
|
164
|
Scheelings TF, Moore RJ, Van TTH, Klaassen M, Reina RD. Microbial symbiosis and coevolution of an entire clade of ancient vertebrates: the gut microbiota of sea turtles and its relationship to their phylogenetic history. Anim Microbiome 2020; 2:17. [PMID: 33499954 PMCID: PMC7807503 DOI: 10.1186/s42523-020-00034-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 04/22/2020] [Indexed: 02/07/2023] Open
Abstract
Background The microbiota plays a critical role in host homeostasis and has been shown to be a major driving force in host evolution. However, our understanding of these important relationships is hampered by a lack of data for many species, and by significant gaps in sampling of the evolutionary tree. In this investigation we improve our understanding of the host-microbiome relationship by obtaining samples from all seven extant species of sea turtle, and correlate microbial compositions with host evolutionary history. Results Our analysis shows that the predominate phyla in the microbiota of nesting sea turtles was Proteobacteria. We also demonstrate a strong relationship between the bacterial phyla SR1 and sea turtle phylogeny, and that sea turtle microbiotas have changed very slowly over time in accordance with their similarly slow phenotypic changes. Conclusions This is one of the most comprehensive microbiota studies to have been performed in a single clade of animals and further improves our knowledge of how microbial populations have influenced vertebrate evolution.
Collapse
Affiliation(s)
| | - Robert J Moore
- RMIT University School of Science, Bundoora West Campus, Plenty Rd, Bundoora, Victoria, 3083, Australia
| | - Thi Thu Hao Van
- RMIT University School of Science, Bundoora West Campus, Plenty Rd, Bundoora, Victoria, 3083, Australia
| | - Marcel Klaassen
- Centre for Integrative Ecology, Deakin University, Waurn Ponds, Victoria, 3216, Australia
| | - Richard D Reina
- School of Biological Sciences, Monash University, Wellington Rd, Clayton, Victoria, 3800, Australia
| |
Collapse
|
165
|
Baedke J, Fábregas‐Tejeda A, Nieves Delgado A. The holobiont concept before Margulis. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2020; 334:149-155. [DOI: 10.1002/jez.b.22931] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 01/22/2020] [Accepted: 01/24/2020] [Indexed: 12/13/2022]
Affiliation(s)
- Jan Baedke
- Department of Philosophy IRuhr University BochumBochum Germany
- Institute of Zoology and Evolutionary ResearchFriedrich‐Schiller‐UniversityJena Germany
| | - Alejandro Fábregas‐Tejeda
- Department of Philosophy IRuhr University BochumBochum Germany
- Institute of BiologyNational Autonomous University of Mexico (UNAM) Circuito Exterior Ciudad Universitaria S/N Mexico City Mexico
| | - Abigail Nieves Delgado
- Department of Philosophy IRuhr University BochumBochum Germany
- Centre for Anthropological Knowledge in Scientific and Technological Cultures (CAST)Ruhr University BochumBochum Germany
| |
Collapse
|
166
|
Karaivazoglou K, Konstantakis C, Assimakopoulos SF, Triantos C. Neonate gut colonization: The rise of a social brain. Neurogastroenterol Motil 2020; 32:e13767. [PMID: 31788958 DOI: 10.1111/nmo.13767] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 10/07/2019] [Accepted: 10/30/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND The human gut microbiota constitutes an integral part of human physiology, playing an important role in maintaining health, and compositional or functional changes in intestinal microbiota may be associated with the emergence of several chronic diseases. Animal and human studies have shown that there is a dynamic cross-talk between intestinal microorganisms and brain networks which has an impact on neurodevelopment and may be extremely critical in shaping human social behavior. PURPOSE The aim of the current review is to appraise and present in a concise manner all findings linking the evolution of neonate and infant gut colonization with early social development and to formulate scientifically informed hypotheses which could guide future research on this field.
Collapse
Affiliation(s)
- Katerina Karaivazoglou
- Department of Psychiatry, University Hospital of Patras, Rio, Greece.,Centre for Children with Developmental Disorders, EPSYPEA, Mesolongi, Greece
| | - Christos Konstantakis
- Division of Gastroenterology, Department of Internal Medicine, University Hospital of Patras, Rio, Greece
| | | | - Christos Triantos
- Division of Gastroenterology, Department of Internal Medicine, University Hospital of Patras, Rio, Greece
| |
Collapse
|
167
|
Dupont S, Lokmer A, Corre E, Auguet JC, Petton B, Toulza E, Montagnani C, Tanguy G, Pecqueur D, Salmeron C, Guillou L, Desnues C, La Scola B, Bou Khalil J, de Lorgeril J, Mitta G, Gueguen Y, Escoubas JM. Oyster hemolymph is a complex and dynamic ecosystem hosting bacteria, protists and viruses. Anim Microbiome 2020; 2:12. [PMID: 33499958 PMCID: PMC7807429 DOI: 10.1186/s42523-020-00032-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 04/14/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The impact of the microbiota on host fitness has so far mainly been demonstrated for the bacterial microbiome. We know much less about host-associated protist and viral communities, largely due to technical issues. However, all microorganisms within a microbiome potentially interact with each other as well as with the host and the environment, therefore likely affecting the host health. RESULTS We set out to explore how environmental and host factors shape the composition and diversity of bacterial, protist and viral microbial communities in the Pacific oyster hemolymph, both in health and disease. To do so, five oyster families differing in susceptibility to the Pacific oyster mortality syndrome were reared in hatchery and transplanted into a natural environment either before or during a disease outbreak. Using metabarcoding and shotgun metagenomics, we demonstrate that hemolymph can be considered as an ecological niche hosting bacterial, protist and viral communities, each of them shaped by different factors and distinct from the corresponding communities in the surrounding seawater. Overall, we found that hemolymph microbiota is more strongly shaped by the environment than by host genetic background. Co-occurrence network analyses suggest a disruption of the microbial network after transplantation into natural environment during both non-infectious and infectious periods. Whereas we could not identify a common microbial community signature for healthy animals, OsHV-1 μVar virus dominated the hemolymph virome during the disease outbreak, without significant modifications of other microbiota components. CONCLUSION Our study shows that oyster hemolymph is a complex ecosystem containing diverse bacteria, protists and viruses, whose composition and dynamics are primarily determined by the environment. However, all of these are also shaped by oyster genetic backgrounds, indicating they indeed interact with the oyster host and are therefore not only of transient character. Although it seems that the three microbiome components respond independently to environmental conditions, better characterization of hemolymph-associated viruses could change this picture.
Collapse
Affiliation(s)
- S Dupont
- IHPE, Univ. Montpellier, CNRS, Ifremer, Univ. Montpellier, Univ. Perpignan Via Domitia, 34095, Montpellier, France
| | - A Lokmer
- Coastal Ecology, Wadden Sea Station Sylt, Alfred Wegener Institute - Helmholtz Centre for Polar and Marine Research, List auf Sylt, Germany.,Current affiliation UMR 7206 Eco-anthropologie et Ethnologie, CNRS - MNHN Univ. Paris Diderot Sorbonne Paris Cité, Paris, France
| | - E Corre
- Sorbonne Université, CNRS, FR2424 ABiMS (Analysis and Bioanalysis for Marine Sciences), Station Biologique de Roscoff SBR, 29680, Roscoff, France
| | - J-C Auguet
- MARBEC, Université Montpellier, CNRS, IFREMER, IRD, CC093, place Eugène Bataillon, 34095, Montpellier, France
| | - B Petton
- Ifremer, LEMAR UMR 6539, 11 presqu'île du Vivier, 29840, Argenton-en-Landunvez, France
| | - E Toulza
- IHPE, Univ. Montpellier, CNRS, Ifremer, Univ. Montpellier, Univ. Perpignan Via Domitia, 34095, Montpellier, France
| | - C Montagnani
- IHPE, Univ. Montpellier, CNRS, Ifremer, Univ. Montpellier, Univ. Perpignan Via Domitia, 34095, Montpellier, France
| | - G Tanguy
- Sorbonne Université, CNRS, FR2424, Genomer, Station Biologique de Roscoff SBR, 29680, Roscoff, France
| | - D Pecqueur
- Observatoire Océanologique de Banyuls sur Mer, FR 3724, BioPIC, CNRS/SU, Avenue Pierre Fabre, 66650, Banyuls-sur-Mer, France
| | - C Salmeron
- Observatoire Océanologique de Banyuls sur Mer, FR 3724, BioPIC, CNRS/SU, Avenue Pierre Fabre, 66650, Banyuls-sur-Mer, France
| | - L Guillou
- Sorbonne Université, CNRS, UMR7144 Adaptation et Diversité en Milieu Marin, Ecology of Marine Plankton (ECOMAP), Station Biologique de Roscoff SBR, 29680, Roscoff, France
| | - C Desnues
- Aix-Marseille Université, IRD 257, Assistance-Publique des Hôpitaux de Marseille, UMR Microbes, Evolution, Phylogeny and Infections (MEPHI), IHU Méditerranée Infection, 13005, Marseille, France.,Aix-Marseille Université, Université de Toulon, CNRS, IRD, Mediterranean Institute of Oceanography, UM 110, 13288, Marseille, France
| | - B La Scola
- Microbes, Evolution, Phylogeny and Infection (MEΦI), Aix-Marseille Université UM63, Institut de Recherche pour le Développement IRD 198, Assistance Publique - Hôpitaux de Marseille (AP-HM), Marseille, France.,Institut Hospitalo-Universitaire (IHU) - Méditerranée Infection, Marseille, France
| | - J Bou Khalil
- Institut Hospitalo-Universitaire (IHU) - Méditerranée Infection, Marseille, France
| | - J de Lorgeril
- IHPE, Univ. Montpellier, CNRS, Ifremer, Univ. Montpellier, Univ. Perpignan Via Domitia, 34095, Montpellier, France
| | - G Mitta
- IHPE, Univ. Montpellier, CNRS, Ifremer, Univ. Montpellier, Univ. Perpignan Via Domitia, 34095, Montpellier, France
| | - Y Gueguen
- IHPE, Univ. Montpellier, CNRS, Ifremer, Univ. Montpellier, Univ. Perpignan Via Domitia, 34095, Montpellier, France
| | - J-M Escoubas
- IHPE, Univ. Montpellier, CNRS, Ifremer, Univ. Montpellier, Univ. Perpignan Via Domitia, 34095, Montpellier, France.
| |
Collapse
|
168
|
Vaelli PM, Theis KR, Williams JE, O'Connell LA, Foster JA, Eisthen HL. The skin microbiome facilitates adaptive tetrodotoxin production in poisonous newts. eLife 2020; 9:e53898. [PMID: 32254021 PMCID: PMC7138609 DOI: 10.7554/elife.53898] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Accepted: 02/26/2020] [Indexed: 12/11/2022] Open
Abstract
Rough-skinned newts (Taricha granulosa) use tetrodotoxin (TTX) to block voltage-gated sodium (Nav) channels as a chemical defense against predation. Interestingly, newts exhibit extreme population-level variation in toxicity attributed to a coevolutionary arms race with TTX-resistant predatory snakes, but the source of TTX in newts is unknown. Here, we investigated whether symbiotic bacteria isolated from toxic newts could produce TTX. We characterized the skin-associated microbiota from a toxic and non-toxic population of newts and established pure cultures of isolated bacterial symbionts from toxic newts. We then screened bacterial culture media for TTX using LC-MS/MS and identified TTX-producing bacterial strains from four genera, including Aeromonas, Pseudomonas, Shewanella, and Sphingopyxis. Additionally, we sequenced the Nav channel gene family in toxic newts and found that newts expressed Nav channels with modified TTX binding sites, conferring extreme physiological resistance to TTX. This study highlights the complex interactions among adaptive physiology, animal-bacterial symbiosis, and ecological context.
Collapse
Affiliation(s)
- Patric M Vaelli
- Department of Integrative Biology, Michigan State UniversityEast LansingUnited States
- BEACON Center for the Study of Evolution in Action, Michigan State UniversityEast LansingUnited States
| | - Kevin R Theis
- BEACON Center for the Study of Evolution in Action, Michigan State UniversityEast LansingUnited States
- Department of Biochemistry, Microbiology, and Immunology, Wayne State UniversityDetroitUnited States
| | - Janet E Williams
- BEACON Center for the Study of Evolution in Action, Michigan State UniversityEast LansingUnited States
- Department of Animal and Veterinary Science, University of IdahoMoscowUnited States
- Institute for Bioinformatics and Evolutionary Studies, University of IdahoMoscowUnited States
| | | | - James A Foster
- BEACON Center for the Study of Evolution in Action, Michigan State UniversityEast LansingUnited States
- Institute for Bioinformatics and Evolutionary Studies, University of IdahoMoscowUnited States
- Department of Biological Sciences, University of IdahoMoscowUnited States
| | - Heather L Eisthen
- Department of Integrative Biology, Michigan State UniversityEast LansingUnited States
- BEACON Center for the Study of Evolution in Action, Michigan State UniversityEast LansingUnited States
| |
Collapse
|
169
|
Wu Y, Yao Y, Dong M, Xia T, Li D, Xie M, Wu J, Wen A, Wang Q, Zhu G, Ni Q, Zhang M, Xu H. Characterisation of the gut microbial community of rhesus macaques in high-altitude environments. BMC Microbiol 2020; 20:68. [PMID: 32216756 PMCID: PMC7098161 DOI: 10.1186/s12866-020-01747-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Accepted: 03/05/2020] [Indexed: 02/16/2023] Open
Abstract
BACKGROUND The mammal intestinal microbiota is involved in various physiological processes and plays a key role in host environment adaption. However, for non-human primates (NHPs), little is known about their gut microbial community in high-altitude environments and even less about their adaption to such habitats. We characterised the gut microbial community of rhesus macaques from multiple high-altitude environments and compared it to those of low-altitude populations. RESULTS We collected faecal samples of rhesus macaques from four high-altitude populations (above 3000 m) and three low-altitude populations (below 500 m). By calculating the alpha diversity index, we found that high-altitude populations exhibited a higher diversity. Statistical analysis of beta diversity indicated significant differences between high- and low-altitude populations. Significant differences were also detected at the phylum and family levels. At the phylum level, the high-altitude gut microbial community was dominated by Firmicutes (63.42%), while at low altitudes, it was dominated by Bacteroidetes (47.4%). At the family level, the high-altitude population was dominated by Ruminococcaceae (36.2%), while the low-altitude one was dominated by Prevotellaceae (39.6%). Some families, such as Christensenellaceae and Rikenellaceae, were consistently higher abundant in all high-altitude populations. We analysed the overlap of operational taxonomic units (OTUs) in high-altitude populations and determined their core OTUs (shared by all four high-altitude populations). However, when compared with the low-altitude core OTUs, only 65% were shared, suggesting a divergence in core OTUs. Function prediction indicated a significant difference in gene copy number of 35 level-2 pathways between high- and low-altitude populations; 29 of them were higher in high altitudes, especially in membrane transport and carbohydrate metabolism. CONCLUSIONS The gut microbial community of high-altitude rhesus macaques was significantly distinct from that of low-altitude populations in terms of diversity, composition and function. High-altitude populations were dominated by Firmicutes and Ruminococcace, while in low-altitude populations, Bacteroidetes and Prevotellaceae were dominant. The difference in gut microbiota between these two populations may be caused by differences in host diet, environmental temperature and oxygen pressure. These differentiated gut microbial microorganisms may play a critical role in the adaptive evolution of rhesus macaques to high-altitude environments.
Collapse
Affiliation(s)
- Yuhan Wu
- College of Life Science, Sichuan Agricultural University, No. 46, Xinkang Road, Yucheng District, Ya'an, Sichuan, 625014, People's Republic of China
| | - Yongfang Yao
- College of Life Science, Sichuan Agricultural University, No. 46, Xinkang Road, Yucheng District, Ya'an, Sichuan, 625014, People's Republic of China
| | - Mengmeng Dong
- College of Life Science, Sichuan Agricultural University, No. 46, Xinkang Road, Yucheng District, Ya'an, Sichuan, 625014, People's Republic of China
| | - Tianrui Xia
- College of Life Science, Sichuan Agricultural University, No. 46, Xinkang Road, Yucheng District, Ya'an, Sichuan, 625014, People's Republic of China
| | - Diyan Li
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Meng Xie
- College of Life Science, Sichuan Agricultural University, No. 46, Xinkang Road, Yucheng District, Ya'an, Sichuan, 625014, People's Republic of China
| | - Jiayun Wu
- College of Life Science, Sichuan Agricultural University, No. 46, Xinkang Road, Yucheng District, Ya'an, Sichuan, 625014, People's Republic of China
| | - Anxiang Wen
- College of Life Science, Sichuan Agricultural University, No. 46, Xinkang Road, Yucheng District, Ya'an, Sichuan, 625014, People's Republic of China
| | - Qin Wang
- College of Life Science, Sichuan Agricultural University, No. 46, Xinkang Road, Yucheng District, Ya'an, Sichuan, 625014, People's Republic of China
| | - Guangxiang Zhu
- College of Life Science, Sichuan Agricultural University, No. 46, Xinkang Road, Yucheng District, Ya'an, Sichuan, 625014, People's Republic of China
| | - Qingyong Ni
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Mingwang Zhang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Huailiang Xu
- College of Life Science, Sichuan Agricultural University, No. 46, Xinkang Road, Yucheng District, Ya'an, Sichuan, 625014, People's Republic of China.
| |
Collapse
|
170
|
Saikkonen K, Nissinen R, Helander M. Toward Comprehensive Plant Microbiome Research. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.00061] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
171
|
Abstract
Phylosymbiosis was recently formulated to support a hypothesis-driven framework for the characterization of a new, cross-system trend in host-associated microbiomes. Defining phylosymbiosis as 'microbial community relationships that recapitulate the phylogeny of their host', we review the relevant literature and data in the last decade, emphasizing frequently used methods and regular patterns observed in analyses. Quantitative support for phylosymbiosis is provided by statistical methods evaluating higher microbiome variation between host species than within host species, topological similarities between the host phylogeny and microbiome dendrogram, and a positive association between host genetic relationships and microbiome beta diversity. Significant degrees of phylosymbiosis are prevalent, but not universal, in microbiomes of plants and animals from terrestrial and aquatic habitats. Consistent with natural selection shaping phylosymbiosis, microbiome transplant experiments demonstrate reduced host performance and/or fitness upon host-microbiome mismatches. Hybridization can also disrupt phylosymbiotic microbiomes and cause hybrid pathologies. The pervasiveness of phylosymbiosis carries several important implications for advancing knowledge of eco-evolutionary processes that impact host-microbiome interactions and future applications of precision microbiology. Important future steps will be to examine phylosymbiosis beyond bacterial communities, apply evolutionary modelling for an increasingly sophisticated understanding of phylosymbiosis, and unravel the host and microbial mechanisms that contribute to the pattern. This review serves as a gateway to experimental, conceptual and quantitative themes of phylosymbiosis and outlines opportunities ripe for investigation from a diversity of disciplines.
Collapse
Affiliation(s)
- Shen Jean Lim
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Seth R Bordenstein
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA.,Vanderbilt Microbiome Initiative, Vanderbilt University, Nashville, TN, USA.,Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA.,Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
172
|
Suárez J, Triviño V. What Is a Hologenomic Adaptation? Emergent Individuality and Inter-Identity in Multispecies Systems. Front Psychol 2020; 11:187. [PMID: 32194470 PMCID: PMC7064717 DOI: 10.3389/fpsyg.2020.00187] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 01/27/2020] [Indexed: 01/09/2023] Open
Abstract
Contemporary biological research has suggested that some host-microbiome multispecies systems (referred to as "holobionts") can in certain circumstances evolve as unique biological individual, thus being a unit of selection in evolution. If this is so, then it is arguably the case that some biological adaptations have evolved at the level of the multispecies system, what we call hologenomic adaptations. However, no research has yet been devoted to investigating their nature, or how these adaptations can be distinguished from adaptations at the species-level (genomic adaptations). In this paper, we cover this gap by investigating the nature of hologenomic adaptations. By drawing on the case of the evolution of sanguivory diet in vampire bats, we argue that a trait constitutes a hologenomic adaptation when its evolution can only be explained if the holobiont is considered the biological individual that manifests this adaptation, while the bacterial taxa that bear the trait are only opportunistic beneficiaries of it. We then use the philosophical notions of emergence and inter-identity to explain the nature of this form of individuality and argue why it is special of holobionts. Overall, our paper illustrates how the use of philosophical concepts can illuminate scientific discussions, in the trend of what has recently been called metaphysics of biology.
Collapse
Affiliation(s)
- Javier Suárez
- LOGOS/BIAP, Department of Philosophy, University of Barcelona, Barcelona, Spain
- Egenis, The Centre for the Study of Life Sciences, Department of Sociology, Philosophy and Anthropology, University of Exeter, Exeter, United Kingdom
| | - Vanessa Triviño
- Department of History of Science, Rey Juan Carlos University, Madrid, Spain
| |
Collapse
|
173
|
Chen QL, Hu HW, Zhu D, Ding J, Yan ZZ, He JZ, Zhu YG. Host identity determines plant associated resistomes. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 258:113709. [PMID: 31838394 DOI: 10.1016/j.envpol.2019.113709] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 11/12/2019] [Accepted: 11/30/2019] [Indexed: 05/20/2023]
Abstract
Plant microbiome, as the second genome of plant, and the interface between human and environmental microbiome, represents a potential pathway of human exposure to environmental pathogens and resistomes. However, the impact of host identity on the profile of resistomes in plant phyllosphere is unclear and this knowledge is vital for establishing a framework to evaluate the dissemination of antibiotic resistance via the plant microbiome. Here, we explored the phyllosphere microbiome and resistomes in 12 selected plant species. By using High-throughput quantitative PCR, we identified a total of 172 unique resistance genes in plant phyllosphere microbiome, which was significantly divergent from the profile of resistomes in associated soils (Adonis, P < 0.01). Host identity had a significant effect on the plant resistome, which was mainly attributed to the dissimilarity of phyllosphere bacterial phylogeny across different plants. We identified a core set of plant resistomes shared in more than 80% of samples, which accounted for more than 64% of total resistance genes. These plant core resistomes conferred resistance to antibiotics that are commonly administered to humans and animals. Our findings extend our knowledge regarding the resistomes in plant phyllosphere microbiome and highlight the role of host identity in shaping the plant associated antibiotic resistance genes.
Collapse
Affiliation(s)
- Qing-Lin Chen
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, 361021, China; Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Hang-Wei Hu
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Dong Zhu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Jing Ding
- School of Environmental and Material Engineering, Yantai University, 30 Qingquan Road, Yantai, 264005, China
| | - Zhen-Zhen Yan
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Ji-Zheng He
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Yong-Guan Zhu
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, 361021, China; State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
| |
Collapse
|
174
|
Suárez J. The stability of traits conception of the hologenome: An evolutionary account of holobiont individuality. HISTORY AND PHILOSOPHY OF THE LIFE SCIENCES 2020; 42:11. [PMID: 32103386 DOI: 10.1007/s40656-020-00305-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 02/13/2020] [Indexed: 05/26/2023]
Abstract
Bourrat and Griffiths (Hist Philos Life Sci 40(2):33, 2018) have recently argued that most of the evidence presented by holobiont defenders to support the thesis that holobionts are evolutionary individuals is not to the point and is not even adequate to discriminate multispecies evolutionary individuals from other multispecies assemblages that would not be considered evolutionary individuals by most holobiont defenders. They further argue that an adequate criterion to distinguish the two categories is fitness alignment, presenting the notion of fitness boundedness as a criterion that allows divorcing true multispecies evolutionary individuals from other multispecies assemblages and provides an adequate criterion to single out genuine evolutionary multispecies assemblages. A consequence of their criterion is that holobionts, as conventionally defined by hologenome defenders, are not evolutionary individuals except in very rare cases, and for very specific host-symbiont associations. This paper is a critical response to Bourrat and Griffiths' arguments and a defence of the arguments presented by holobiont defenders. Drawing upon the case of the hologenomic basis of the evolution of sanguivory in vampire bats (Nat Ecol Evol 2:659-668, 2018), I argue that Bourrat and Griffiths overlook some aspects of the biological nature of the microbiome that justifies the thesis that holobionts are evolutionarily different to other multispecies assemblages. I argue that the hologenome theory of evolution should not define the hologenome as a collection of genomes, but as the sum of the host genome plus some traits of the microbiome which together constitute an evolutionary individual, a conception I refer to as the stability of traits conception of the hologenome. Based on that conception I argue that the evidence presented by holobiont defenders is to the point, and supports the thesis that holobionts are evolutionary individuals. In this sense, the paper offers an account of the holobiont that aims to foster a dialogue between hologenome advocates and hologenome critics.
Collapse
Affiliation(s)
- Javier Suárez
- Logos - Barcelona Institute for Analytic Philosophy, University of Barcelona, Barcelona, Spain.
- Egenis - The Centre for the Study of Life Sciences, University of Exeter, Exeter, UK.
| |
Collapse
|
175
|
Binetruy F, Buysse M, Lejarre Q, Barosi R, Villa M, Rahola N, Paupy C, Ayala D, Duron O. Microbial community structure reveals instability of nutritional symbiosis during the evolutionary radiation of Amblyomma ticks. Mol Ecol 2020; 29:1016-1029. [PMID: 32034827 DOI: 10.1111/mec.15373] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 01/29/2020] [Accepted: 02/05/2020] [Indexed: 12/14/2022]
Abstract
Mutualistic interactions with microbes have facilitated the adaptation of major eukaryotic lineages to restricted diet niches. Hence, ticks with their strictly blood-feeding lifestyle are associated with intracellular bacterial symbionts through an essential B vitamin supplementation. In this study, examination of bacterial diversity in 25 tick species of the genus Amblyomma showed that three intracellular bacteria, Coxiella-like endosymbionts (LE), Francisella-LE and Rickettsia, are remarkably common. No other bacterium is as uniformly present in Amblyomma ticks. Almost all Amblyomma species were found to harbour a nutritive obligate symbiont, Coxiella-LE or Francisella-LE, that is able to synthesize B vitamins. However, despite the co-evolved and obligate nature of these mutualistic interactions, the structure of microbiomes does not mirror the Amblyomma phylogeny, with a clear exclusion pattern between Coxiella-LE and Francisella-LE across tick species. Coxiella-LE, but not Francisella-LE, form evolutionarily stable associations with ticks, commonly leading to co-cladogenesis. We further found evidence for symbiont replacements during the radiation of Amblyomma, with recent, and probably ongoing, invasions by Francisella-LE and subsequent replacements of ancestral Coxiella-LE through transient co-infections. Nutritional symbiosis in Amblyomma ticks is thus not a stable evolutionary state, but instead arises from conflicting origins between unrelated but competing symbionts with similar metabolic capabilities.
Collapse
Affiliation(s)
- Florian Binetruy
- MIVEGEC (Maladies Infectieuses et Vecteurs : Ecologie, Génétique, Evolution et Contrôle), Centre National de la Recherche Scientifique (CNRS), Institut pour la Recherche et le Développement (IRD), Université de Montpellier (UM), Montpellier, France
| | - Marie Buysse
- MIVEGEC (Maladies Infectieuses et Vecteurs : Ecologie, Génétique, Evolution et Contrôle), Centre National de la Recherche Scientifique (CNRS), Institut pour la Recherche et le Développement (IRD), Université de Montpellier (UM), Montpellier, France
| | - Quentin Lejarre
- MIVEGEC (Maladies Infectieuses et Vecteurs : Ecologie, Génétique, Evolution et Contrôle), Centre National de la Recherche Scientifique (CNRS), Institut pour la Recherche et le Développement (IRD), Université de Montpellier (UM), Montpellier, France.,CIRMF (Centre International de Recherches Médicales de Franceville), Franceville, Gabon
| | - Roxanne Barosi
- MIVEGEC (Maladies Infectieuses et Vecteurs : Ecologie, Génétique, Evolution et Contrôle), Centre National de la Recherche Scientifique (CNRS), Institut pour la Recherche et le Développement (IRD), Université de Montpellier (UM), Montpellier, France
| | - Manon Villa
- MIVEGEC (Maladies Infectieuses et Vecteurs : Ecologie, Génétique, Evolution et Contrôle), Centre National de la Recherche Scientifique (CNRS), Institut pour la Recherche et le Développement (IRD), Université de Montpellier (UM), Montpellier, France
| | - Nil Rahola
- MIVEGEC (Maladies Infectieuses et Vecteurs : Ecologie, Génétique, Evolution et Contrôle), Centre National de la Recherche Scientifique (CNRS), Institut pour la Recherche et le Développement (IRD), Université de Montpellier (UM), Montpellier, France.,CIRMF (Centre International de Recherches Médicales de Franceville), Franceville, Gabon
| | - Christophe Paupy
- MIVEGEC (Maladies Infectieuses et Vecteurs : Ecologie, Génétique, Evolution et Contrôle), Centre National de la Recherche Scientifique (CNRS), Institut pour la Recherche et le Développement (IRD), Université de Montpellier (UM), Montpellier, France
| | - Diego Ayala
- MIVEGEC (Maladies Infectieuses et Vecteurs : Ecologie, Génétique, Evolution et Contrôle), Centre National de la Recherche Scientifique (CNRS), Institut pour la Recherche et le Développement (IRD), Université de Montpellier (UM), Montpellier, France.,CIRMF (Centre International de Recherches Médicales de Franceville), Franceville, Gabon
| | - Olivier Duron
- MIVEGEC (Maladies Infectieuses et Vecteurs : Ecologie, Génétique, Evolution et Contrôle), Centre National de la Recherche Scientifique (CNRS), Institut pour la Recherche et le Développement (IRD), Université de Montpellier (UM), Montpellier, France
| |
Collapse
|
176
|
Affiliation(s)
| | - Daniel T. Blumstein
- Department of Ecology and Evolutionary Biology University of California Los Angeles CA USA
| | | | - Sasha G. Tetu
- Department of Molecular Sciences Macquarie University North Ryde NSW Australia
| | - Michael R. Gillings
- Department of Biological Sciences Macquarie University North Ryde NSW Australia
| |
Collapse
|
177
|
de Souza RSC, Armanhi JSL, Arruda P. From Microbiome to Traits: Designing Synthetic Microbial Communities for Improved Crop Resiliency. FRONTIERS IN PLANT SCIENCE 2020; 11:1179. [PMID: 32983187 PMCID: PMC7484511 DOI: 10.3389/fpls.2020.01179] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 07/21/2020] [Indexed: 05/19/2023]
Abstract
Plants teem with microorganisms, whose tremendous diversity and role in plant-microbe interactions are being increasingly explored. Microbial communities create a functional bond with their hosts and express beneficial traits capable of enhancing plant performance. Therefore, a significant task of microbiome research has been identifying novel beneficial microbial traits that can contribute to crop productivity, particularly under adverse environmental conditions. However, although knowledge has exponentially accumulated in recent years, few novel methods regarding the process of designing inoculants for agriculture have been presented. A recently introduced approach is the use of synthetic microbial communities (SynComs), which involves applying concepts from both microbial ecology and genetics to design inoculants. Here, we discuss how to translate this rationale for delivering stable and effective inoculants for agriculture by tailoring SynComs with microorganisms possessing traits for robust colonization, prevalence throughout plant development and specific beneficial functions for plants. Computational methods, including machine learning and artificial intelligence, will leverage the approaches of screening and identifying beneficial microbes while improving the process of determining the best combination of microbes for a desired plant phenotype. We focus on recent advances that deepen our knowledge of plant-microbe interactions and critically discuss the prospect of using microbes to create SynComs capable of enhancing crop resiliency against stressful conditions.
Collapse
Affiliation(s)
- Rafael Soares Correa de Souza
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil
- Genomics for Climate Change Research Center (GCCRC), Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil
| | - Jaderson Silveira Leite Armanhi
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil
- Genomics for Climate Change Research Center (GCCRC), Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil
| | - Paulo Arruda
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil
- Genomics for Climate Change Research Center (GCCRC), Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil
- Departamento de Genética e Evolução, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil
- *Correspondence: Paulo Arruda,
| |
Collapse
|
178
|
Bredon M, Herran B, Bertaux J, Grève P, Moumen B, Bouchon D. Isopod holobionts as promising models for lignocellulose degradation. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:49. [PMID: 32190114 PMCID: PMC7071664 DOI: 10.1186/s13068-020-01683-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Accepted: 02/20/2020] [Indexed: 05/06/2023]
Abstract
BACKGROUND Isopods have colonized all environments, partly thanks to their ability to decompose the organic matter. Their enzymatic repertoire, as well as the one of their associated microbiota, has contributed to their colonization success. Together, these holobionts have evolved several interesting life history traits to degrade the plant cell walls, mainly composed of lignocellulose. It has been shown that terrestrial isopods achieve lignocellulose degradation thanks to numerous and diverse CAZymes provided by both the host and its microbiota. Nevertheless, the strategies for lignocellulose degradation seem more diversified in isopods, in particular in aquatic species which are the least studied. Isopods could be an interesting source of valuable enzymes for biotechnological industries of biomass conversion. RESULTS To provide new features on the lignocellulose degradation in isopod holobionts, shotgun sequencing of 36 metagenomes of digestive and non-digestive tissues was performed from several populations of four aquatic and terrestrial isopod species. Combined to the 15 metagenomes of an additional species from our previous study, as well as the host transcriptomes, this large dataset allowed us to identify the CAZymes in both the host and the associated microbial communities. Analyses revealed the dominance of Bacteroidetes and Proteobacteria in the five species, covering 36% and 56% of the total bacterial community, respectively. The identification of CAZymes and new enzymatic systems for lignocellulose degradation, such as PULs, cellulosomes and LPMOs, highlights the richness of the strategies used by the isopods and their associated microbiota. CONCLUSIONS Altogether, our results show that the isopod holobionts are promising models to study lignocellulose degradation. These models can provide new enzymes and relevant lignocellulose-degrading bacteria strains for the biotechnological industries of biomass conversion.
Collapse
Affiliation(s)
- Marius Bredon
- Laboratoire Ecologie et Biologie des Interactions-UMR CNRS 7267, Ecologie et Biologie des Interactions-Bâtiment B8-B35, Université de Poitiers, 5 rue Albert Turpin, TSA 51106, 86073 Poitiers Cedex 9, France
| | - Benjamin Herran
- Laboratoire Ecologie et Biologie des Interactions-UMR CNRS 7267, Ecologie et Biologie des Interactions-Bâtiment B8-B35, Université de Poitiers, 5 rue Albert Turpin, TSA 51106, 86073 Poitiers Cedex 9, France
| | - Joanne Bertaux
- Laboratoire Ecologie et Biologie des Interactions-UMR CNRS 7267, Ecologie et Biologie des Interactions-Bâtiment B8-B35, Université de Poitiers, 5 rue Albert Turpin, TSA 51106, 86073 Poitiers Cedex 9, France
| | - Pierre Grève
- Laboratoire Ecologie et Biologie des Interactions-UMR CNRS 7267, Ecologie et Biologie des Interactions-Bâtiment B8-B35, Université de Poitiers, 5 rue Albert Turpin, TSA 51106, 86073 Poitiers Cedex 9, France
| | - Bouziane Moumen
- Laboratoire Ecologie et Biologie des Interactions-UMR CNRS 7267, Ecologie et Biologie des Interactions-Bâtiment B8-B35, Université de Poitiers, 5 rue Albert Turpin, TSA 51106, 86073 Poitiers Cedex 9, France
| | - Didier Bouchon
- Laboratoire Ecologie et Biologie des Interactions-UMR CNRS 7267, Ecologie et Biologie des Interactions-Bâtiment B8-B35, Université de Poitiers, 5 rue Albert Turpin, TSA 51106, 86073 Poitiers Cedex 9, France
| |
Collapse
|
179
|
Baquero F, Coque TM, Martínez JL, Aracil-Gisbert S, Lanza VF. Gene Transmission in the One Health Microbiosphere and the Channels of Antimicrobial Resistance. Front Microbiol 2019; 10:2892. [PMID: 31921068 PMCID: PMC6927996 DOI: 10.3389/fmicb.2019.02892] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 12/02/2019] [Indexed: 12/12/2022] Open
Abstract
Antibiotic resistance is a field in which the concept of One Health can best be illustrated. One Health is based on the definition of communication spaces among diverse environments. Antibiotic resistance is encoded by genes, however, these genes are propagated in mobile genetic elements (MGEs), circulating among bacterial species and clones that are integrated into the multiple microbiotas of humans, animals, food, sewage, soil, and water environments, the One Health microbiosphere. The dynamics and evolution of antibiotic resistance depend on the communication networks linking all these ecological, biological, and genetic entities. These communications occur by environmental overlapping and merging, a critical issue in countries with poor sanitation, but also favored by the homogenizing power of globalization. The overwhelming increase in the population of highly uniform food animals has contributed to the parallel increase in the absolute size of their microbiotas, consequently enhancing the possibility of microbiome merging between humans and animals. Microbial communities coalescence might lead to shared microbiomes in which the spread of antibiotic resistance (of human, animal, or environmental origin) is facilitated. Intermicrobiome communication is exerted by shuttle bacterial species (or clones within species) belonging to generalist taxa, able to multiply in the microbiomes of various hosts, including humans, animals, and plants. Their integration into local genetic exchange communities fosters antibiotic resistance gene flow, following the channels of accessory genome exchange among bacterial species. These channels delineate a topology of gene circulation, including dense clusters of species with frequent historical and recent exchanges. The ecological compatibility of these species, sharing the same niches and environments, determines the exchange possibilities. In summary, the fertility of the One Health approach to antibiotic resistance depends on the progress of understanding multihierarchical systems, encompassing communications among environments (macro/microaggregates), among microbiotas (communities), among bacterial species (clones), and communications among MGEs.
Collapse
Affiliation(s)
- Fernando Baquero
- Department of Microbiology, Ramón y Cajal University Hospital, Ramón y Cajal Institute for Health Research (IRYCIS), Madrid, Spain
| | - Teresa M. Coque
- Department of Microbiology, Ramón y Cajal University Hospital, Ramón y Cajal Institute for Health Research (IRYCIS), Madrid, Spain
| | - José-Luis Martínez
- Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Sonia Aracil-Gisbert
- Department of Microbiology, Ramón y Cajal University Hospital, Ramón y Cajal Institute for Health Research (IRYCIS), Madrid, Spain
| | - Val F. Lanza
- Bioinformatics Unit, Ramón y Cajal University Hospital, Ramón y Cajal Institute for Health Research (IRYCIS), Madrid, Spain
- CIBER in Epidemiology and Public Health (CIBERESP), Madrid, Spain
| |
Collapse
|
180
|
Zhang Y, Kumarasamy S, Mell B, Cheng X, Morgan EE, Britton SL, Vijay-Kumar M, Koch LG, Joe B. Vertical selection for nuclear and mitochondrial genomes shapes gut microbiota and modifies risks for complex diseases. Physiol Genomics 2019; 52:1-14. [PMID: 31762410 DOI: 10.1152/physiolgenomics.00089.2019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Here we postulate that the heritability of complex disease traits previously ascribed solely to the inheritance of the nuclear and mitochondrial genomes is broadened to encompass a third component of the holobiome, the microbiome. To test this, we expanded on the selectively bred low capacity runner/high capacity runner (LCR/HCR) rat exercise model system into four distinct rat holobiont model frameworks including matched and mismatched host nuclear and mitochondrial genomes. Vertical selection of varying nuclear and mitochondrial genomes resulted in differential acquisition of the microbiome within each of these holobiont models. Polygenic disease risk of these novel models were assessed and subsequently correlated with patterns of acquisition and contributions of their microbiomes in controlled laboratory settings. Nuclear-mitochondrial-microbiotal interactions were not for exercise as a reporter of health, but significantly noted for increased adiposity, increased blood pressure, compromised cardiac function, and loss of long-term memory as reporters of disease susceptibility. These findings provide evidence for coselection of the microbiome with nuclear and mitochondrial genomes as an important feature impacting the heritability of complex diseases.
Collapse
Affiliation(s)
- Youjie Zhang
- Microbiome Consortium and Center for Hypertension and Precision Medicine, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
| | - Sivarajan Kumarasamy
- Microbiome Consortium and Center for Hypertension and Precision Medicine, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
| | - Blair Mell
- Microbiome Consortium and Center for Hypertension and Precision Medicine, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
| | - Xi Cheng
- Microbiome Consortium and Center for Hypertension and Precision Medicine, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
| | - Eric E Morgan
- Microbiome Consortium and Center for Hypertension and Precision Medicine, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio.,Department of Radiology, University of Toledo Medical Center, Toledo, Ohio
| | - Steven L Britton
- Department of Anesthesiology, University of Michigan, Ann Arbor, Michigan.,Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| | - Matam Vijay-Kumar
- Microbiome Consortium and Center for Hypertension and Precision Medicine, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
| | - Lauren Gerard Koch
- Microbiome Consortium and Center for Hypertension and Precision Medicine, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
| | - Bina Joe
- Microbiome Consortium and Center for Hypertension and Precision Medicine, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
| |
Collapse
|
181
|
Weishaar R, Wellmann R, Camarinha-Silva A, Rodehutscord M, Bennewitz J. Selecting the hologenome to breed for an improved feed efficiency in pigs-A novel selection index. J Anim Breed Genet 2019; 137:14-22. [PMID: 31701578 DOI: 10.1111/jbg.12447] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 08/28/2019] [Accepted: 09/20/2019] [Indexed: 01/14/2023]
Abstract
Most traits in animal breeding, including feed efficiency traits in pigs, are affected by many genes with small effect and have a moderately high heritability between 0.1 and 0.5, which enables efficient selection. Since the microbiota composition in the gastrointestinal tract is also partly heritable and was shown to have a substantial effect on feed efficiency, the host genes affect the phenotype not only directly by altering metabolic pathways, but also indirectly by changing the microbiota composition. The effect m i of the microbiota composition on the breeding value g i of an animal i is the conditional expectation of its breeding value, given the vector φ i with microbiota frequencies, that is m i = E g i | φ i . The breeding value g i of an animal can therefore be decomposed into a heritable contribution m i that arises from an altered microbiota composition and a heritable contribution p i that arises from altered metabolic pathways within the animal, so g i = m i + p i . Instead of selecting for breeding value g ^ i , an index comprising the two components m ^ i and p ^ i with appropriate weights, that is I i = λ 1 m ^ i + λ 2 p ^ i , can be used. The present study shows how this breeding strategy can be applied in pig genomic selection breeding scheme for two feed efficiency traits and daily gain.
Collapse
Affiliation(s)
- Ramona Weishaar
- Institute of Animal Science, University of Hohenheim, Stuttgart, Germany
| | - Robin Wellmann
- Institute of Animal Science, University of Hohenheim, Stuttgart, Germany
| | | | | | - Jörn Bennewitz
- Institute of Animal Science, University of Hohenheim, Stuttgart, Germany
| |
Collapse
|
182
|
Ganci M, Suleyman E, Butt H, Ball M. The role of the brain-gut-microbiota axis in psychology: The importance of considering gut microbiota in the development, perpetuation, and treatment of psychological disorders. Brain Behav 2019; 9:e01408. [PMID: 31568686 PMCID: PMC6851798 DOI: 10.1002/brb3.1408] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 08/15/2019] [Indexed: 12/12/2022] Open
Abstract
INTRODUCTION The prevalence of psychological disorders remains stable despite steady increases in pharmacological treatments suggesting the need for auxiliary treatment options. Consideration of the brain-gut-microbiota axis (BGMA) has made inroads into reconceptualizing psychological illness from a more holistic perspective. While our understanding of the precise role of gut microbiota (GM) in psychological illness is in its infancy, it represents an attractive target for novel interventions. METHOD An extensive review of relevant literature was undertaken. RESULTS Gut microbiota are proposed to directly and indirectly influence mood, cognition, and behavior which are key components of mental health. This paper outlines how GM may be implicated in psychological disorders from etiology through to treatment and prevention using the Four P model of case formulation. CONCLUSION Moving forward, integration of GM into the conceptualization and treatment of psychological illness will require the discipline of psychology to undergo a significant paradigm shift. While the importance of the GM in psychological well-being must be respected, it is not proposed to be a panacea, but instead, an additional arm to a multidisciplinary approach to treatment and prevention.
Collapse
Affiliation(s)
- Michael Ganci
- Psychology Department, Institute for Health and Sport, Victoria University, Melbourne, Vic., Australia
| | - Emra Suleyman
- Psychology Department, Institute for Health and Sport, Victoria University, Melbourne, Vic., Australia
| | - Henry Butt
- Bioscreen Yarraville (Aust) Pty Ltd, Melbourne, Vic., Australia.,Melbourne University, Melbourne, Vic., Australia
| | - Michelle Ball
- Psychology Department, Institute for Health and Sport, Victoria University, Melbourne, Vic., Australia
| |
Collapse
|
183
|
Quigley KM, Alvarez Roa C, Torda G, Bourne DG, Willis BL. Co-dynamics of Symbiodiniaceae and bacterial populations during the first year of symbiosis with Acropora tenuis juveniles. Microbiologyopen 2019; 9:e959. [PMID: 31670480 PMCID: PMC7002099 DOI: 10.1002/mbo3.959] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 10/04/2019] [Accepted: 10/08/2019] [Indexed: 02/04/2023] Open
Abstract
Interactions between corals and their associated microbial communities (Symbiodiniaceae and prokaryotes) are key to understanding corals' potential for and rate of acclimatory and adaptive responses. However, the establishment of microalgal and bacterial communities is poorly understood during coral ontogeny in the wild. We examined the establishment and co-occurrence between multiple microbial communities using 16S rRNA (bacterial) and ITS2 rDNA (Symbiodiniaceae) gene amplicon sequencing in juveniles of the common coral, Acropora tenuis, across the first year of development. Symbiodiniaceae communities in juveniles were dominated by Durusdinium trenchii and glynnii (D1 and D1a), with lower abundances of Cladocopium (C1, C1d, C50, and Cspc). Bacterial communities were more diverse and dominated by taxa within Proteobacteria, Cyanobacteria, and Planctomycetes. Both communities were characterized by significant changes in relative abundance and diversity of taxa throughout the year. D1, D1a, and C1 were significantly correlated with multiple bacterial taxa, including Alpha-, Deltra-, and Gammaproteobacteria, Planctomycetacia, Oxyphotobacteria, Phycisphaerae, and Rhizobiales. Specifically, D1a tended to associate with Oxyphotobacteria and D1 with Alphaproteobacteria, although these associations may represent correlational and not causal relationships. Bioenergetic modeling combined with physiological measurements of coral juveniles (surface area and Symbiodiniaceae cell densities) identified key periods of carbon limitation and nitrogen assimilation, potentially coinciding with shifts in microbial community composition. These results demonstrate that Symbiodiniaceae and bacterial communities are dynamic throughout the first year of ontology and may vary in tandem, with important fitness effects on host juveniles.
Collapse
Affiliation(s)
- Kate M Quigley
- College of Marine and Environmental Sciences, James Cook University, Townsville, QLD, Australia.,AIMS@JCU, Australian Institute of Marine Science and James Cook University, Townsville, QLD, Australia.,Australian Institute of Marine Science, Townsville, QLD, Australia
| | | | - Greg Torda
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD, Australia
| | - David G Bourne
- College of Marine and Environmental Sciences, James Cook University, Townsville, QLD, Australia.,AIMS@JCU, Australian Institute of Marine Science and James Cook University, Townsville, QLD, Australia.,Australian Institute of Marine Science, Townsville, QLD, Australia
| | - Bette L Willis
- College of Marine and Environmental Sciences, James Cook University, Townsville, QLD, Australia.,AIMS@JCU, Australian Institute of Marine Science and James Cook University, Townsville, QLD, Australia.,ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD, Australia
| |
Collapse
|
184
|
Dheilly NM, Martínez Martínez J, Rosario K, Brindley PJ, Fichorova RN, Kaye JZ, Kohl KD, Knoll LJ, Lukeš J, Perkins SL, Poulin R, Schriml L, Thompson LR. Parasite microbiome project: Grand challenges. PLoS Pathog 2019; 15:e1008028. [PMID: 31600339 PMCID: PMC6786532 DOI: 10.1371/journal.ppat.1008028] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
- Nolwenn M. Dheilly
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, New York, United States of America
- * E-mail: (NMD); (JMM)
| | - Joaquín Martínez Martínez
- Bigelow Laboratory for Ocean Sciences, East Boothbay, Maine, United States of America
- * E-mail: (NMD); (JMM)
| | - Karyna Rosario
- College of Marine Science, University of South Florida, Saint Petersburg, Florida, United States of America
| | - Paul J. Brindley
- Department of Microbiology, Immunology and Tropical Medicine, George Washington University, Washington, DC, United States of America
- Research Center for Neglected Diseases of Poverty, School of Medicine & Health Sciences, George Washington University, Washington, DC, United States of America
| | - Raina N. Fichorova
- Genital Tract Biology Division, Department of Obstetrics, Gynecology and Reproductive Biology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Jonathan Z. Kaye
- Gordon and Betty Moore Foundation, Palo Alto, California, United States of America
| | - Kevin D. Kohl
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Laura J. Knoll
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Julius Lukeš
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences and Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| | - Susan L. Perkins
- Sackler Institute for Comparative Genomics, American Museum of Natural History, New York, New York, United States of America
| | - Robert Poulin
- Department of Zoology, University of Otago, Dunedin, New Zealand
| | - Lynn Schriml
- Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Luke R. Thompson
- Department of Biological Sciences and Northern Gulf Institute, University of Southern Mississippi, Hattiesburg, Mississippi, United States of America
- Ocean Chemistry and Ecosystems Division, Atlantic Oceanographic and Meteorological Laboratory, National Oceanic and Atmospheric Administration, La Jolla, California, United States of America
| |
Collapse
|
185
|
van Vliet S, Doebeli M. The role of multilevel selection in host microbiome evolution. Proc Natl Acad Sci U S A 2019; 116:20591-20597. [PMID: 31548380 PMCID: PMC6789794 DOI: 10.1073/pnas.1909790116] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Animals are associated with a microbiome that can affect their reproductive success. It is, therefore, important to understand how a host and its microbiome coevolve. According to the hologenome concept, hosts and their microbiome form an integrated evolutionary entity, a holobiont, on which selection can potentially act directly. However, this view is controversial, and there is an active debate on whether the association between hosts and their microbiomes is strong enough to allow for selection at the holobiont level. Much of this debate is based on verbal arguments, but a quantitative framework is needed to investigate the conditions under which selection can act at the holobiont level. Here, we use multilevel selection theory to develop such a framework. We found that selection at the holobiont level can in principle favor a trait that is costly to the microbes but that provides a benefit to the host. However, such scenarios require rather stringent conditions. The degree to which microbiome composition is heritable decays with time, and selection can only act at the holobiont level when this decay is slow enough, which occurs when vertical transmission is stronger than horizontal transmission. Moreover, the host generation time has to be short enough compared with the timescale of the evolutionary dynamics at the microbe level. Our framework thus allows us to quantitatively predict for what kind of systems selection could act at the holobiont level.
Collapse
Affiliation(s)
- Simon van Vliet
- Department of Zoology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada;
| | - Michael Doebeli
- Department of Zoology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Department of Mathematics, University of British Columbia, Vancouver, BC V6T 1Z2, Canada
| |
Collapse
|
186
|
Uroz S, Courty PE, Oger P. Plant Symbionts Are Engineers of the Plant-Associated Microbiome. TRENDS IN PLANT SCIENCE 2019; 24:905-916. [PMID: 31288964 DOI: 10.1016/j.tplants.2019.06.008] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 06/03/2019] [Accepted: 06/07/2019] [Indexed: 05/09/2023]
Abstract
Plants interact throughout their lives with environmental microorganisms. These interactions determine plant development, nutrition, and fitness in a dynamic and stressful environment, forming the basis for the holobiont concept in which plants and plant-associated microbes are not considered as independent entities but as a single evolutionary unit. A primary open question concerns whether holobiont structure is shaped by its microbial members or solely by the plant. Current knowledge of plant-microbe interactions argues that the establishment of symbiosis directly and indirectly conditions the plant-associated microbiome. We propose to define the impact of the symbiont on the plant microbiome as the 'symbiosis cascade effect', in which the symbionts and their plant host jointly shape the plant microbiome.
Collapse
Affiliation(s)
- Stephane Uroz
- Institut National de la Recherche Agronomique (INRA) Unité Mixte de Recherche (UMR) 1136, Interactions Arbres-Microorganismes, F-54280, Champenoux, France; Université de Lorraine, UMR 1136, Interactions Arbres-Microorganismes, F-54500 Vandoeuvre-lès-, Nancy, France; INRA Unité de Recherche (UR) 1138, Biogéochimie des Écosystèmes Forestiers, F-54280, Champenoux, France.
| | - Pierre Emmanuel Courty
- Agroécologie, Institut National de la Recherche, Agronomique (INRA), AgroSup Dijon, Centre, National de la Recherche Scientifique (CNRS), Université de Bourgogne, INRA, Université de Bourgogne Franche-Comté, F-21000 Dijon, France
| | - Phil Oger
- Université de Lyon, Institut National des Sciences Appliquées (INSA) de Lyon, CNRS UMR, 5240, Villeurbanne, France
| |
Collapse
|
187
|
Mayer E, Dörr de Quadros P, Fulthorpe R. Plantibacter flavus, Curtobacterium herbarum, Paenibacillus taichungensis, and Rhizobium selenitireducens Endophytes Provide Host-Specific Growth Promotion of Arabidopsis thaliana, Basil, Lettuce, and Bok Choy Plants. Appl Environ Microbiol 2019; 85:e00383-19. [PMID: 31350315 PMCID: PMC6752021 DOI: 10.1128/aem.00383-19] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Accepted: 07/06/2019] [Indexed: 11/20/2022] Open
Abstract
A collection of bacterial endophytes isolated from stem tissues of plants growing in soils highly contaminated with petroleum hydrocarbons were screened for plant growth-promoting capabilities. Twenty-seven endophytic isolates significantly improved the growth of Arabidopsis thaliana plants in comparison to that of uninoculated control plants. The five most beneficial isolates, one strain each of Curtobacterium herbarum, Paenibacillus taichungensis, and Rhizobium selenitireducens and two strains of Plantibacter flavus were further examined for growth promotion in Arabidopsis, lettuce, basil, and bok choy plants. Host-specific plant growth promotion was observed when plants were inoculated with the five bacterial strains. P. flavus strain M251 increased the total biomass and total root length of Arabidopsis plants by 4.7 and 5.8 times, respectively, over that of control plants and improved lettuce and basil root growth, while P. flavus strain M259 promoted Arabidopsis shoot and root growth, lettuce and basil root growth, and bok choy shoot growth. A genome comparison between P. flavus strains M251 and M259 showed that both genomes contain up to 70 actinobacterial putative plant-associated genes and genes involved in known plant-beneficial pathways, such as those for auxin and cytokinin biosynthesis and 1-aminocyclopropane-1-carboxylate deaminase production. This study provides evidence of direct plant growth promotion by Plantibacter flavusIMPORTANCE The discovery of new plant growth-promoting bacteria is necessary for the continued development of biofertilizers, which are environmentally friendly and cost-efficient alternatives to conventional chemical fertilizers. Biofertilizer effects on plant growth can be inconsistent due to the complexity of plant-microbe interactions, as the same bacteria can be beneficial to the growth of some plant species and neutral or detrimental to others. We examined a set of bacterial endophytes isolated from plants growing in a unique petroleum-contaminated environment to discover plant growth-promoting bacteria. We show that strains of Plantibacter flavus exhibit strain-specific plant growth-promoting effects on four different plant species.
Collapse
Affiliation(s)
- Evan Mayer
- University of Toronto Scarborough, Toronto, Ontario, Canada
| | | | | |
Collapse
|
188
|
Maltecca C, Bergamaschi M, Tiezzi F. The interaction between microbiome and pig efficiency: A review. J Anim Breed Genet 2019; 137:4-13. [PMID: 31576623 DOI: 10.1111/jbg.12443] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 09/05/2019] [Accepted: 09/06/2019] [Indexed: 12/22/2022]
Abstract
The existence of genetic control over the abundance of particular taxa and the link of these to energy balance and growth has been documented in model organisms and humans as well as several livestock species. Preliminary evidence of the same mechanisms is currently under investigation in pigs. Future research should expand these results and elicit the extent of genetic control of the gut microbiome population in swine and its relationship with growth efficiency. The quest for a more efficient pig at the interface between the host and its metagenome rests on the central hypothesis that the gut microbiome is an essential component of the variability of growth in all living organisms. Swine do not escape this general rule, and the identification of the significance of the interaction between host and its gut microbiota in the growth process could be a game-changer in the achievement of sustainable and efficient lean meat production. Standard sampling protocols, sequencing techniques, bioinformatic pipelines and methods of analysis will be paramount for the portability of results across experiments and populations. Likewise, characterizing and accounting for temporal and spatial variability will be a necessary step if microbiome is to be utilized routinely as an aid to selection.
Collapse
Affiliation(s)
- Christian Maltecca
- Department of Animal Science, North Carolina State University, Raleigh, NC, USA
| | - Matteo Bergamaschi
- Department of Animal Science, North Carolina State University, Raleigh, NC, USA
| | - Francesco Tiezzi
- Department of Animal Science, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
189
|
Giuliani C, Garagnani P, Franceschi C. Genetics of Human Longevity Within an Eco-Evolutionary Nature-Nurture Framework. Circ Res 2019; 123:745-772. [PMID: 30355083 DOI: 10.1161/circresaha.118.312562] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Human longevity is a complex trait, and to disentangle its basis has a great theoretical and practical consequences for biomedicine. The genetics of human longevity is still poorly understood despite several investigations that used different strategies and protocols. Here, we argue that such rather disappointing harvest is largely because of the extraordinary complexity of the longevity phenotype in humans. The capability to reach the extreme decades of human lifespan seems to be the result of an intriguing mixture of gene-environment interactions. Accordingly, the genetics of human longevity is here described as a highly context-dependent phenomenon, within a new integrated, ecological, and evolutionary perspective, and is presented as a dynamic process, both historically and individually. The available literature has been scrutinized within this perspective, paying particular attention to factors (sex, individual biography, family, population ancestry, social structure, economic status, and education, among others) that have been relatively neglected. The strength and limitations of the most powerful and used tools, such as genome-wide association study and whole-genome sequencing, have been discussed, focusing on prominently emerged genes and regions, such as apolipoprotein E, Forkhead box O3, interleukin 6, insulin-like growth factor-1, chromosome 9p21, 5q33.3, and somatic mutations among others. The major results of this approach suggest that (1) the genetics of longevity is highly population specific; (2) small-effect alleles, pleiotropy, and the complex allele timing likely play a major role; (3) genetic risk factors are age specific and need to be integrated in the light of the geroscience perspective; (4) a close relationship between genetics of longevity and genetics of age-related diseases (especially cardiovascular diseases) do exist. Finally, the urgent need of a global approach to the largely unexplored interactions between the 3 genetics of human body, that is, nuclear, mitochondrial, and microbiomes, is stressed. We surmise that the comprehensive approach here presented will help in increasing the above-mentioned harvest.
Collapse
Affiliation(s)
- Cristina Giuliani
- From the Department of Biological, Geological, and Environmental Sciences (BiGeA), Laboratory of Molecular Anthropology and Centre for Genome Biology (C.G.), University of Bologna, Italy.,School of Anthropology and Museum Ethnography, University of Oxford, United Kingdom (C.G.).,Interdepartmental Centre 'L. Galvani' (CIG), University of Bologna, Italy (C.G.)
| | - Paolo Garagnani
- Department of Experimental, Diagnostic, and Specialty Medicine (DIMES) (P.G.), University of Bologna, Italy.,Clinical Chemistry, Department of Laboratory Medicine, Karolinska Institutet at Huddinge University Hospital, Stockholm, Sweden (P.G.)
| | | |
Collapse
|
190
|
Deciphering the Symbiotic Plant Microbiome: Translating the Most Recent Discoveries on Rhizobia for the Improvement of Agricultural Practices in Metal-Contaminated and High Saline Lands. AGRONOMY-BASEL 2019. [DOI: 10.3390/agronomy9090529] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Rhizosphere and plant-associated microorganisms have been intensely studied for their beneficial effects on plant growth and health. These mainly include nitrogen-fixing bacteria (NFB) and plant-growth promoting rhizobacteria (PGPR). This beneficial fraction is involved in major functions such as plant nutrition and plant resistance to biotic and abiotic stresses, which include water deficiency and heavy-metal contamination. Consequently, crop yield emerges as the net result of the interactions between the plant genome and its associated microbiome. Here, we provide a review covering recent studies on PGP rhizobia as effective inoculants for agricultural practices in harsh soil, and we propose models for inoculant combinations and genomic manipulation strategies to improve crop yield.
Collapse
|
191
|
Paix B, Othmani A, Debroas D, Culioli G, Briand JF. Temporal covariation of epibacterial community and surface metabolome in the Mediterranean seaweed holobiont Taonia atomaria. Environ Microbiol 2019; 21:3346-3363. [PMID: 30945796 DOI: 10.1111/1462-2920.14617] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 03/31/2019] [Indexed: 11/30/2022]
Abstract
An integrative multi-omics approach allowed monthly variations for a year of the surface metabolome and the epibacterial community of the Mediterranean Phaeophyceae Taonia atomaria to be investigated. The LC-MS-based metabolomics and 16S rDNA metabarcoding data sets were integrated in a multivariate meta-omics analysis (multi-block PLS-DA from the MixOmic DIABLO analysis) showing a strong seasonal covariation (Mantel test: p < 0.01). A network based on positive and negative correlations between the two data sets revealed two clusters of variables, one relative to the 'spring period' and a second to the 'summer period'. The 'spring period' cluster was mainly characterized by dipeptides positively correlated with a single bacterial taxon of the Alteromonadaceae family (BD1-7 clade). Moreover, 'summer' dominant epibacterial taxa from the second cluster (including Erythrobacteraceae, Rhodospirillaceae, Oceanospirillaceae and Flammeovirgaceae) showed positive correlations with few metabolites known as macroalgal antifouling defences [e.g. dimethylsulphoniopropionate (DMSP) and proline] which exhibited a key role within the correlation network. Despite a core community that represents a significant part of the total epibacteria, changes in the microbiota structure associated with surface metabolome variations suggested that both environment and algal host shape the bacterial surface microbiota.
Collapse
Affiliation(s)
- Benoît Paix
- Université de Toulon, Laboratoire MAPIEM, EA 4323, Toulon, France
| | - Ahlem Othmani
- Université de Toulon, Laboratoire MAPIEM, EA 4323, Toulon, France
| | - Didier Debroas
- Université Clermont Auvergne, CNRS, Laboratoire Microorganismes: Génome et Environnement, UMR 6023, Clermont-Ferrand, France
| | - Gérald Culioli
- Université de Toulon, Laboratoire MAPIEM, EA 4323, Toulon, France
| | | |
Collapse
|
192
|
Arias-Sánchez FI, Vessman B, Mitri S. Artificially selecting microbial communities: If we can breed dogs, why not microbiomes? PLoS Biol 2019; 17:e3000356. [PMID: 31469824 PMCID: PMC6716632 DOI: 10.1371/journal.pbio.3000356] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Natural microbial communities perform many functions that are crucial for human well-being. Yet we have very little control over them, and we do not know how to optimize their functioning. One idea is to breed microbial communities as we breed dogs: by comparing a set of microbiomes and allowing the best-performing ones to generate new communities, and so on. Although this idea seems simple, designing such a selection experiment brings with it many decisions with surprising outcomes. Xie and colleagues developed a computational model that reveals this complexity and shows how different experimental design decisions can impact the success of such an experiment.
Collapse
Affiliation(s)
- Flor I Arias-Sánchez
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Björn Vessman
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Sara Mitri
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
193
|
Protective Efficacy of a Pseudoalteromonas Strain in European Abalone, Haliotis tuberculata, Infected with Vibrio harveyi ORM4. Probiotics Antimicrob Proteins 2019; 11:239-247. [PMID: 29411243 DOI: 10.1007/s12602-018-9389-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The hemolymph of healthy marine invertebrates is known to harbor antibiotic-producing bacteria belonging to the genus Pseudoalteromonas. Such strains are potential probiotics to control infectious diseases in aquaculture. In the present study, we screened a collection of Pseudoalteromonas strains isolated from the hemolymph of oyster and mussel for antimicrobial activity against Vibrio harveyi, a pathogenic species responsible for high mortality in abalone. Subsequently, the protective efficacy of the most active strain named hCg-6 was investigated in abalone culture faced with a Vibrio harveyi ORM4 infection. First, we have controlled the Pseudoalteromonas hCg-6 safety for abalone health. To that end, animals were immersed for 4 h in Pseudoalteromonas hCg-6 suspensions in seawater. The abalone viability was monitored and Pseudoalteromonas hCg-6 was tracked by quantitative-PCR in abalone hemolymph. After immersion, no abalone death occurred while the strain hCg-6 was significantly detected in hemolymph. Therefore, the strain hCg-6 was considered safe for abalone and evaluated for its ability to protect abalone against V. harveyi (injection of 1 × 103Vibrio per animal). A 4-h long immersion of abalone in a seawater suspension of Pseudoalteromonas hCg-6 (1 × 106 CFU mL-1) prior to infection with Vibrio harveyi significantly improved the abalone viability. Indeed, 15 days post infection, the hCg-6 treatment used increased the abalone survival rate from 16% in untreated animals to 40% in treated abalone. We hypothesized that Pseudoalteromonas hCg-6 antibacterial activity increased the hemomicrobiota shielding effect. In conclusion, Pseudoalteromonas hCg-6 is a promising anti-Vibrio strain for abalone culture.
Collapse
|
194
|
Laviad-Shitrit S, Izhaki I, Lalzar M, Halpern M. Comparative Analysis of Intestine Microbiota of Four Wild Waterbird Species. Front Microbiol 2019; 10:1911. [PMID: 31481943 PMCID: PMC6711360 DOI: 10.3389/fmicb.2019.01911] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 08/05/2019] [Indexed: 01/07/2023] Open
Abstract
Waterbirds are ubiquitous and globally distributed. Yet, studies on wild waterbirds' gut microbiota are still rare. Our aim was to explore and compare the gut microbial community composition of wild waterbird species. Four wild waterbird species that are either wintering or all-year residents in Israel were studied: great cormorants, little egrets, black-crowned night herons and black-headed gulls. For each bird, three intestinal sections were sampled; anterior, middle and posterior. No significant differences were found among the microbiota compositions in the three intestine sections of each individual bird. Each waterbird species had a unique microbial composition. The gut microbiota of the black-headed gulls' fundamentally deviated from that of the other bird species, probably due to a very high abundance (58.8%) of the genus Catellicoccus (Firmicutes). Our results suggest a correlation between the waterbird species' phylogeny and their intestine microbial community hierarchical tree, which evinced phylosymbiosis. This recent coinage stands for eco-evolutionary patterns between the host phylogeny and its microbiota composition. We conclude that eco-evolutionary processes termed phylosymbiosis may occur between wild waterbird species and their gut microbial community composition.
Collapse
Affiliation(s)
- Sivan Laviad-Shitrit
- Department of Evolutionary and Environmental Biology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Ido Izhaki
- Department of Evolutionary and Environmental Biology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Maya Lalzar
- Bioinformatics Service Unit, University of Haifa, Haifa, Israel
| | - Malka Halpern
- Department of Evolutionary and Environmental Biology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel.,Department of Biology and Environment, Faculty of Natural Sciences, University of Haifa at Oranim, Tivon, Israel
| |
Collapse
|
195
|
Bevivino A, Bacci G, Drevinek P, Nelson MT, Hoffman L, Mengoni A. Deciphering the Ecology of Cystic Fibrosis Bacterial Communities: Towards Systems-Level Integration. Trends Mol Med 2019; 25:1110-1122. [PMID: 31439509 DOI: 10.1016/j.molmed.2019.07.008] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 07/14/2019] [Accepted: 07/23/2019] [Indexed: 02/06/2023]
Abstract
Despite over a decade of cystic fibrosis (CF) microbiome research, much remains to be learned about the overall composition, metabolic activities, and pathogenicity of the microbes in CF airways, limiting our understanding of the respiratory microbiome's relation to disease. Systems-level integration and modeling of host-microbiome interactions may allow us to better define the relationships between microbiological characteristics, disease status, and treatment response. In this way, modeling could pave the way for microbiome-based development of predictive models, individualized treatment plans, and novel therapeutic approaches, potentially serving as a paradigm for approaching other chronic infections. In this review, we describe the challenges facing this effort and propose research priorities for a systems biology approach to CF lung disease.
Collapse
Affiliation(s)
- Annamaria Bevivino
- Department for Sustainability, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Rome, Italy.
| | - Giovanni Bacci
- Department of Biology, University of Florence, Sesto Fiorentino, Florence, Italy
| | - Pavel Drevinek
- Department of Medical Microbiology, Department of Paediatrics, 2nd Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| | - Maria T Nelson
- Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Lucas Hoffman
- Department of Pediatrics, University of Washington, Seattle, WA, USA; Department of Microbiology, University of Washington, Seattle, WA, USA; Center for Clinical and Translational Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Alessio Mengoni
- Department of Biology, University of Florence, Sesto Fiorentino, Florence, Italy
| |
Collapse
|
196
|
Chan WY, Peplow LM, Menéndez P, Hoffmann AA, Oppen MJH. The roles of age, parentage and environment on bacterial and algal endosymbiont communities in
Acropora
corals. Mol Ecol 2019; 28:3830-3843. [DOI: 10.1111/mec.15187] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 06/28/2019] [Accepted: 07/15/2019] [Indexed: 12/22/2022]
Affiliation(s)
- Wing Yan Chan
- Australian Institute of Marine Science Townsville Qld Australia
- School of BioSciences University of Melbourne Parkville Vic. Australia
| | - Lesa M. Peplow
- Australian Institute of Marine Science Townsville Qld Australia
| | - Patricia Menéndez
- Australian Institute of Marine Science Townsville Qld Australia
- Department of Econometrics and Business Statistics, School of Mathematics and Physics Monash University Clayton Vic. Australia
| | - Ary A. Hoffmann
- Bio21 Institute University of Melbourne Parkville Vic. Australia
| | - Madeleine J. H. Oppen
- Australian Institute of Marine Science Townsville Qld Australia
- School of BioSciences University of Melbourne Parkville Vic. Australia
| |
Collapse
|
197
|
Carrier TJ, Dupont S, Reitzel AM. Geographic location and food availability offer differing levels of influence on the bacterial communities associated with larval sea urchins. FEMS Microbiol Ecol 2019; 95:5526217. [PMID: 31260050 DOI: 10.1093/femsec/fiz103] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 06/27/2019] [Indexed: 12/17/2022] Open
Abstract
Determining the factors underlying the assembly, structure, and diversity of symbiont communities remains a focal point of animal-microbiome research. Much of these efforts focus on taxonomic variation of microbiota within or between animal populations, but rarely test the proportional impacts of ecological components that may affect animal-associated microbiota. Using larvae from the sea urchin Strongylocentrotus droebachiensis from the Atlantic and Pacific Oceans, we test the hypothesis that, under natural conditions, inter-population differences in the composition of larval-associated bacterial communities are larger than intra-population variation due to a heterogeneous feeding environment. Despite significant differences in bacterial community structure within each S. droebachiensis larval population based on food availability, development, phenotype, and time, variation in OTU membership and community composition correlated more strongly with geographic location. Moreover, 20-30% of OTUs associated with larvae were specific to a single location while less than 10% were shared. Taken together, these results suggest that inter-populational variation in symbiont communities may be more pronounced than intra-populational variation, and that this difference may suggest that broad-scale ecological variables (e.g., across ocean basins) may mask smaller scale ecological variables (e.g., food availability).
Collapse
Affiliation(s)
- Tyler J Carrier
- Department of Biological Sciences, University of North Carolina at Charlotte, 9201 University City Blvd., Charlotte, NC 28223, USA
| | - Sam Dupont
- Department of Biological and Environmental Sciences, University of Gothenburg, The Sven Lovén Centre for Marine Infrastructure, Kristineberg, 45178 Sweden
| | - Adam M Reitzel
- Department of Biological Sciences, University of North Carolina at Charlotte, 9201 University City Blvd., Charlotte, NC 28223, USA
| |
Collapse
|
198
|
Shi YM, Bode HB. Chemical language and warfare of bacterial natural products in bacteria-nematode-insect interactions. Nat Prod Rep 2019; 35:309-335. [PMID: 29359226 DOI: 10.1039/c7np00054e] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Covering: up to November 2017 Organismic interaction is one of the fundamental principles for survival in any ecosystem. Today, numerous examples show the interaction between microorganisms like bacteria and higher eukaryotes that can be anything between mutualistic to parasitic/pathogenic symbioses. There is also increasing evidence that microorganisms are used by higher eukaryotes not only for the supply of essential factors like vitamins but also as biological weapons to protect themselves or to kill other organisms. Excellent examples for such systems are entomopathogenic nematodes of the genera Heterorhabditis and Steinernema that live in mutualistic symbiosis with bacteria of the genera Photorhabdus and Xenorhabdus, respectively. Although these systems have been used successfully in organic farming on an industrial scale, it was only shown during the last 15 years that several different natural products (NPs) produced by the bacteria play key roles in the complex life cycle of the bacterial symbionts, the nematode host and the insect prey that is killed by and provides nutrients for the nematode-bacteria pair. Since the bacteria can switch from mutualistic to pathogenic lifestyle, interacting with two different types of higher eukaryotes, and since the full system with all players can be established in the lab, they are promising model systems to elucidate the natural function of microbial NPs. This review summarizes the current knowledge as well as open questions for NPs from Photorhabdus and Xenorhabdus and tries to assign their roles in the tritrophic relationship.
Collapse
Affiliation(s)
- Yi-Ming Shi
- Merck-Stiftungsprofessur für Molekulare Biotechnologie, Fachbereich Biowissenschaften, Goethe Universität Frankfurt, Frankfurt am Main 60438, Germany
| | | |
Collapse
|
199
|
Díaz-Sánchez S, Estrada-Peña A, Cabezas-Cruz A, de la Fuente J. Evolutionary Insights into the Tick Hologenome. Trends Parasitol 2019; 35:725-737. [PMID: 31331734 DOI: 10.1016/j.pt.2019.06.014] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 06/21/2019] [Accepted: 06/24/2019] [Indexed: 12/25/2022]
Abstract
Recently, our knowledge of the composition and complexity of tick microbial communities has increased and supports microbial impact on tick biology. Results support a phylogenetic association between ticks and their microbiota across evolution; this is known as phylosymbiosis. Herein, using published datasets, we confirm the existence of phylosymbiosis between Ixodes ticks and their microbial communities. The strong phylosymbiotic signal and the phylogenetic structure of microbial communities associated with Ixodid ticks revealed that phylosymbiosis may be a widespread phenomenon in tick-microbiota evolution. This finding supports the existence of a species-specific tick hologenome with a largely unexplored influence on tick biology and pathogen transmission. These results may provide potential targets for the construction of paratransgenic ticks to control tick infestations and tick-borne diseases.
Collapse
Affiliation(s)
- Sandra Díaz-Sánchez
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo s/n, 13005 Ciudad Real, Spain.
| | | | - Alejandro Cabezas-Cruz
- UMR BIPAR, INRA, ANSES, Ecole Nationale Vétérinaire d'Alfort, Université Paris-Est, Maisons-Alfort, 94700, France
| | - José de la Fuente
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo s/n, 13005 Ciudad Real, Spain; Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK 74078, USA.
| |
Collapse
|
200
|
Madhusoodanan J. News Feature: Do hosts and their microbes evolve as a unit? Proc Natl Acad Sci U S A 2019; 116:14391-14394. [PMID: 31311888 PMCID: PMC6642407 DOI: 10.1073/pnas.1908139116] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
|