151
|
Hu JL, Todhunter ME, LaBarge MA, Gartner ZJ. Opportunities for organoids as new models of aging. J Cell Biol 2017; 217:39-50. [PMID: 29263081 PMCID: PMC5748992 DOI: 10.1083/jcb.201709054] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 11/13/2017] [Accepted: 11/27/2017] [Indexed: 01/02/2023] Open
Abstract
The biology of aging is challenging to study, particularly in humans. As a result, model organisms are used to approximate the physiological context of aging in humans. However, the best model organisms remain expensive and time-consuming to use. More importantly, they may not reflect directly on the process of aging in people. Human cell culture provides an alternative, but many functional signs of aging occur at the level of tissues rather than cells and are therefore not readily apparent in traditional cell culture models. Organoids have the potential to effectively balance between the strengths and weaknesses of traditional models of aging. They have sufficient complexity to capture relevant signs of aging at the molecular, cellular, and tissue levels, while presenting an experimentally tractable alternative to animal studies. Organoid systems have been developed to model many human tissues and diseases. Here we provide a perspective on the potential for organoids to serve as models for aging and describe how current organoid techniques could be applied to aging research.
Collapse
Affiliation(s)
- Jennifer L Hu
- University of California Berkeley-University of California San Francisco Graduate Program in Bioengineering, San Francisco, CA
| | - Michael E Todhunter
- Center for Cancer and Aging, Beckman Research Institute at City of Hope, Duarte, CA
| | - Mark A LaBarge
- Center for Cancer and Aging, Beckman Research Institute at City of Hope, Duarte, CA
| | - Zev J Gartner
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA .,National Science Foundation Center for Cellular Construction, University of California San Francisco, San Francisco, CA.,Chan Zuckerberg Biohub, San Francisco, CA
| |
Collapse
|
152
|
Moreira L, Bakir B, Chatterji P, Dantes Z, Reichert M, Rustgi AK. Pancreas 3D Organoids: Current and Future Aspects as a Research Platform for Personalized Medicine in Pancreatic Cancer. Cell Mol Gastroenterol Hepatol 2017; 5. [PMID: 29541683 PMCID: PMC5849862 DOI: 10.1016/j.jcmgh.2017.12.004] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Pancreatic ductal adenocarcinoma is one of the most aggressive forms of cancer, and the third leading cause of cancer-related mortality in the United States. Although important advances have been made in the last decade, the mortality rate of pancreatic ductal adenocarcinoma has not changed appreciably. This review summarizes a rapidly emerging model of pancreatic cancer research, focusing on 3-dimensional organoids as a powerful tool for several applications, but above all, representing a step toward personalized medicine.
Collapse
Affiliation(s)
- Leticia Moreira
- Division of Gastroenterology, Departments of Medicine and Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania,Department of Gastroenterology, Hospital Clínic, Centro de Investigación Biomédica en Red en Enfermedades Hepáticas y Digestivas, IDIBAPS, University of Barcelona, Catalonia, Spain
| | - Basil Bakir
- Division of Gastroenterology, Departments of Medicine and Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Priya Chatterji
- Division of Gastroenterology, Departments of Medicine and Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Zahra Dantes
- II. Medizinische Klinik und Poliklinik, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany
| | - Maximilian Reichert
- II. Medizinische Klinik und Poliklinik, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany
| | - Anil K. Rustgi
- Division of Gastroenterology, Departments of Medicine and Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania,Correspondence Address correspondence to: Anil K. Rustgi, MD, 951 Biomedical Research Building II/III, University of Pennsylvania, 415 Curie Boulevard, Philadelphia, Pennsylvania 19104. fax: (215) 573–5412.951 Biomedical Research Building II/IIIUniversity of Pennsylvania415 Curie BoulevardPhiladelphiaPennsylvania 19104
| |
Collapse
|
153
|
Reprogramming to pluripotency does not require transition through a primitive streak-like state. Sci Rep 2017; 7:16543. [PMID: 29185460 PMCID: PMC5707390 DOI: 10.1038/s41598-017-15187-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 10/23/2017] [Indexed: 12/11/2022] Open
Abstract
Pluripotency can be induced in vitro from adult somatic mammalian cells by enforced expression of defined transcription factors regulating and initiating the pluripotency network. Despite the substantial advances over the last decade to improve the efficiency of direct reprogramming, exact mechanisms underlying the conversion into the pluripotent stem cell state are still vaguely understood. Several studies suggested that induced pluripotency follows reversed embryonic development. For somatic cells of mesodermal and endodermal origin that would require the transition through a Primitive streak-like state, which would necessarily require an Eomesodermin (Eomes) expressing intermediate. We analyzed reprogramming in human and mouse cells of mesodermal as well as ectodermal origin by thorough marker gene analyses in combination with genetic reporters, conditional loss of function and stable fate-labeling for the broad primitive streak marker Eomes. We unambiguously demonstrate that induced pluripotency is not dependent on a transient primitive streak-like stage and thus does not represent reversal of mesendodermal development in vivo.
Collapse
|
154
|
Lou YR, Leung AW. Next generation organoids for biomedical research and applications. Biotechnol Adv 2017; 36:132-149. [PMID: 29056474 DOI: 10.1016/j.biotechadv.2017.10.005] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 10/07/2017] [Accepted: 10/16/2017] [Indexed: 12/14/2022]
Abstract
Organoids are in vitro cultures of miniature fetal or adult organ-like structures. Their potentials for use in tissue and organ replacement, disease modeling, toxicology studies, and drug discovery are tremendous. Currently, major challenges facing human organoid technology include (i) improving the range of cellular heterogeneity for a particular organoid system, (ii) mimicking the native micro- and matrix-environment encountered by cells within organoids, and (iii) developing robust protocols for the in vitro maturation of organoids that remain mostly fetal-like in cultures. To tackle these challenges, we advocate the principle of reverse engineering that replicates the inner workings of in vivo systems with the goal of achieving functionality and maturation of the resulting organoid structures with the input of minimal intrinsic (cellular) and environmental (matrix and niche) constituents. Here, we present an overview of organoid technology development in several systems that employ cell materials derived from fetal and adult tissues and pluripotent stem cell cultures. We focus on key studies that exploit the self-organizing property of embryonic progenitors and the role of designer matrices and cell-free scaffolds in assisting organoid formation. We further explore the relationship between adult stem cells, niche factors, and other current developments that aim to enhance robust organoid maturation. From these works, we propose a standardized pipeline for the development of future protocols that would help generate more physiologically relevant human organoids for various biomedical applications.
Collapse
Affiliation(s)
- Yan-Ru Lou
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland.
| | - Alan W Leung
- Yale Stem Cell Center, Department of Genetics, Yale School of Medicine, Yale University, New Haven, CT, United States.
| |
Collapse
|
155
|
Abstract
The pancreas is a complex organ with exocrine and endocrine components. Many pathologies impair exocrine function, including chronic pancreatitis, cystic fibrosis and pancreatic ductal adenocarcinoma. Conversely, when the endocrine pancreas fails to secrete sufficient insulin, patients develop diabetes mellitus. Pathology in either the endocrine or exocrine pancreas results in devastating economic and personal consequences. The current standard therapy for treating patients with type 1 diabetes mellitus is daily exogenous insulin injections, but cell sources of insulin provide superior glycaemic regulation and research is now focused on the goal of regenerating or replacing β cells. Stem-cell-based models might be useful to study exocrine pancreatic disorders, and mesenchymal stem cells or secreted factors might delay disease progression. Although the standards that bioengineered cells must meet before being considered as a viable therapy are not yet established, any potential therapy must be acceptably safe and functionally superior to current therapies. Here, we describe progress and challenges in cell-based methods to restore pancreatic function, with a focus on optimizing the site for cell delivery and decreasing requirements for immunosuppression through encapsulation. We also discuss the tools and strategies being used to generate exocrine pancreas and insulin-producing β-cell surrogates in situ and highlight obstacles to clinical application.
Collapse
|
156
|
Picollet-D'hahan N, Dolega ME, Freida D, Martin DK, Gidrol X. Deciphering Cell Intrinsic Properties: A Key Issue for Robust Organoid Production. Trends Biotechnol 2017; 35:1035-1048. [PMID: 28927991 DOI: 10.1016/j.tibtech.2017.08.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 07/18/2017] [Accepted: 08/08/2017] [Indexed: 02/07/2023]
Abstract
We highlight the disposition of various cell types to self-organize into complex organ-like structures without necessarily the support of any stromal cells, provided they are placed into permissive 3D culture conditions. The goal of generating organoids reproducibly and efficiently has been hampered by poor understanding of the exact nature of the intrinsic cell properties at the origin of organoid generation, and of the signaling pathways governing their differentiation. Using microtechnologies like microfluidics to engineer organoids would create opportunities for single-cell genomics and high-throughput functional genomics to exhaustively characterize cell intrinsic properties. A more complete understanding of the development of organoids would enhance their relevance as models to study organ morphology, function, and disease and would open new avenues in drug development and regenerative medicine.
Collapse
Affiliation(s)
| | - Monika E Dolega
- Université Grenoble Alpes, INSERM, CEA, BIG, F-38000 Grenoble, France
| | - Delphine Freida
- Université Grenoble Alpes, INSERM, CEA, BIG, F-38000 Grenoble, France
| | - Donald K Martin
- Université Grenoble Alpes, F-38000 Grenoble, France; TIMC-IMAG/CNRS UMR 5525, F-38041 Grenoble, France
| | - Xavier Gidrol
- Université Grenoble Alpes, INSERM, CEA, BIG, F-38000 Grenoble, France.
| |
Collapse
|
157
|
Chen C, Cohrs CM, Stertmann J, Bozsak R, Speier S. Human beta cell mass and function in diabetes: Recent advances in knowledge and technologies to understand disease pathogenesis. Mol Metab 2017; 6:943-957. [PMID: 28951820 PMCID: PMC5605733 DOI: 10.1016/j.molmet.2017.06.019] [Citation(s) in RCA: 318] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 05/31/2017] [Accepted: 06/07/2017] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Plasma insulin levels are predominantly the product of the morphological mass of insulin producing beta cells in the pancreatic islets of Langerhans and the functional status of each of these beta cells. Thus, deficiency in either beta cell mass or function, or both, can lead to insufficient levels of insulin, resulting in hyperglycemia and diabetes. Nonetheless, the precise contribution of beta cell mass and function to the pathogenesis of diabetes as well as the underlying mechanisms are still unclear. In the past, this was largely due to the restricted number of technologies suitable for studying the scarcely accessible human beta cells. However, in recent years, a number of new platforms have been established to expand the available techniques and to facilitate deeper insight into the role of human beta cell mass and function as cause for diabetes and as potential treatment targets. SCOPE OF REVIEW This review discusses the current knowledge about contribution of human beta cell mass and function to different stages of type 1 and type 2 diabetes pathogenesis. Furthermore, it highlights standard and newly developed technological platforms for the study of human beta cell biology, which can be used to increase our understanding of beta cell mass and function in human glucose homeostasis. MAJOR CONCLUSIONS In contrast to early disease models, recent studies suggest that in type 1 and type 2 diabetes impairment of beta cell function is an early feature of disease pathogenesis while a substantial decrease in beta cell mass occurs more closely to clinical manifestation. This suggests that, in addition to beta cell mass replacement for late stage therapies, the development of novel strategies for protection and recovery of beta cell function could be most promising for successful diabetes treatment and prevention. The use of today's developing and wide range of technologies and platforms for the study of human beta cells will allow for a more detailed investigation of the underlying mechanisms and will facilitate development of treatment approaches to specifically target human beta cell mass and function.
Collapse
Affiliation(s)
- Chunguang Chen
- Paul Langerhans Institute Dresden (PLID) of Helmholtz Zentrum München at the University Clinic Carl Gustav Carus of Technische Universität Dresden, Helmholtz Zentrum München, München-Neuherberg, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Christian M. Cohrs
- Paul Langerhans Institute Dresden (PLID) of Helmholtz Zentrum München at the University Clinic Carl Gustav Carus of Technische Universität Dresden, Helmholtz Zentrum München, München-Neuherberg, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Julia Stertmann
- Paul Langerhans Institute Dresden (PLID) of Helmholtz Zentrum München at the University Clinic Carl Gustav Carus of Technische Universität Dresden, Helmholtz Zentrum München, München-Neuherberg, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Robert Bozsak
- Paul Langerhans Institute Dresden (PLID) of Helmholtz Zentrum München at the University Clinic Carl Gustav Carus of Technische Universität Dresden, Helmholtz Zentrum München, München-Neuherberg, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Stephan Speier
- Paul Langerhans Institute Dresden (PLID) of Helmholtz Zentrum München at the University Clinic Carl Gustav Carus of Technische Universität Dresden, Helmholtz Zentrum München, München-Neuherberg, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| |
Collapse
|
158
|
Hohwieler M, Perkhofer L, Liebau S, Seufferlein T, Müller M, Illing A, Kleger A. Stem cell-derived organoids to model gastrointestinal facets of cystic fibrosis. United European Gastroenterol J 2017; 5:609-624. [PMID: 28815024 PMCID: PMC5548342 DOI: 10.1177/2050640616670565] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Accepted: 08/25/2016] [Indexed: 12/16/2022] Open
Abstract
Cystic fibrosis (CF) is one of the most frequently occurring inherited human diseases caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) which lead to ample defects in anion transport and epithelial fluid secretion. Existing models lack both access to early stages of CF development and a coeval focus on the gastrointestinal CF phenotypes, which become increasingly important due increased life span of the affected individuals. Here, we provide a comprehensive overview of gastrointestinal facets of CF and the opportunity to model these in various systems in an attempt to understand and treat CF. A particular focus is given on forward-leading organoid cultures, which may circumvent current limitations of existing models and thereby provide a platform for drug testing and understanding of disease pathophysiology in gastrointestinal organs.
Collapse
Affiliation(s)
- Meike Hohwieler
- Department of Internal Medicine 1, University Medical Centre Ulm, Ulm, Germany
| | - Lukas Perkhofer
- Department of Internal Medicine 1, University Medical Centre Ulm, Ulm, Germany
| | - Stefan Liebau
- Institute of Neuroanatomy, Eberhard Karls University Tuebingen, Oesterbergstr. 3, 72074 Tuebingen, Germany
| | - Thomas Seufferlein
- Department of Internal Medicine 1, University Medical Centre Ulm, Ulm, Germany
| | - Martin Müller
- Department of Internal Medicine 1, University Medical Centre Ulm, Ulm, Germany
| | - Anett Illing
- Department of Internal Medicine 1, University Medical Centre Ulm, Ulm, Germany
| | - Alexander Kleger
- Department of Internal Medicine 1, University Medical Centre Ulm, Ulm, Germany
| |
Collapse
|
159
|
Jacobson EF, Tzanakakis ES. Human pluripotent stem cell differentiation to functional pancreatic cells for diabetes therapies: Innovations, challenges and future directions. J Biol Eng 2017; 11:21. [PMID: 28680477 PMCID: PMC5494890 DOI: 10.1186/s13036-017-0066-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 06/02/2017] [Indexed: 12/18/2022] Open
Abstract
Recent advances in the expansion and directed pancreatogenic differentiation of human pluripotent stem cells (hPSCs) have intensified efforts to generate functional pancreatic islet cells, especially insulin-secreting β-cells, for cell therapies against diabetes. However, the consistent generation of glucose-responsive insulin-releasing cells remains challenging. In this article, we first present basic concepts of pancreatic organogenesis, which frequently serves as a basis for engineering differentiation regimens. Next, past and current efforts are critically discussed for the conversion of hPSCs along pancreatic cell lineages, including endocrine β-cells and α-cells, as well as exocrine cells with emphasis placed on the later stages of commitment. Finally, major challenges and future directions are examined, such as the identification of factors for in vivo maturation, large-scale culture and post processing systems, cell loss during differentiation, culture economics, efficiency, and efficacy and exosomes and miRNAs in pancreatic differentiation.
Collapse
Affiliation(s)
- Elena F Jacobson
- Department of Chemical and Biological Engineering, Tufts University, 4 Colby St., Room 276A, Medford, MA 02155 USA
| | - Emmanuel S Tzanakakis
- Department of Chemical and Biological Engineering, Tufts University, 4 Colby St., Room 276A, Medford, MA 02155 USA.,Tufts Clinical and Translational Science Institute, Tufts Medical Center, Boston, MA 02111 USA
| |
Collapse
|
160
|
Using 3D Organoid Cultures to Model Intestinal Physiology and Colorectal Cancer. CURRENT COLORECTAL CANCER REPORTS 2017; 13:183-191. [PMID: 29276469 DOI: 10.1007/s11888-017-0363-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The three-dimensional (3D) structure of the intestine is a key determinant of differentiation and function; thus, preserving this architecture is an important consideration for studies of intestinal homeostasis and disease. Over the past decade, a number of systems for 3D intestinal organoid cultures have been developed and adapted to model a wide variety of biological phenomenon. Purpose of this review We discuss the current state of intestinal and colorectal cancer (CRC) 3D modeling, the most common methods for generating organoid cultures, and how these have yielded insights into intestinal physiology and tumor biology. Recent findings Organoids have been used to model numerous aspects of intestinal physiology and disease. Recent adaptations have further improved disease modeling and high-throughput therapeutic screening. Summary These studies show intestinal organoid models are a robust, highly tractable system which maintains many vital features of intestinal tissue, making them a pivotal step forward in the field of gastroenterology.
Collapse
|
161
|
Hill DR, Spence JR. Gastrointestinal Organoids: Understanding the Molecular Basis of the Host-Microbe Interface. Cell Mol Gastroenterol Hepatol 2017; 3:138-149. [PMID: 28275681 PMCID: PMC5331777 DOI: 10.1016/j.jcmgh.2016.11.007] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 11/09/2016] [Indexed: 02/07/2023]
Abstract
In recent years, increasing attention has been devoted to the concept that microorganisms play an integral role in human physiology and pathophysiology. Despite this, the molecular basis of host-pathogen and host-symbiont interactions in the human intestine remains poorly understood owing to the limited availability of human tissue, and the biological complexity of host-microbe interactions. Over the past decade, technological advances have enabled long-term culture of organotypic intestinal tissue derived from human subjects and from human pluripotent stem cells, and these in vitro culture systems already have shown the potential to inform our understanding significantly of host-microbe interactions. Gastrointestinal organoids represent a substantial advance in structural and functional complexity over traditional in vitro cell culture models of the human gastrointestinal epithelium while retaining much of the genetic and molecular tractability that makes in vitro experimentation so appealing. The opportunity to model epithelial barrier dynamics, cellular differentiation, and proliferation more accurately in specific intestinal segments and in tissue containing a proportional representation of the diverse epithelial subtypes found in the native gut greatly enhances the translational potential of organotypic gastrointestinal culture systems. By using these tools, researchers have uncovered novel aspects of host-pathogen and host-symbiont interactions with the intestinal epithelium. Application of these tools promises to reveal new insights into the pathogenesis of infectious disease, inflammation, cancer, and the role of microorganisms in intestinal development. This review summarizes research on the use of gastrointestinal organoids as a model of the host-microbe interface.
Collapse
Key Words
- 3D, 3-dimensional
- CDI, Clostridium difficile infection
- ECM, extracellular matrix
- Enteroids
- Epithelium
- GI, gastrointestinal
- HIO, human intestinal organoids
- IFN, interferon
- IL, interleukin
- Intestine
- Model Systems
- NEC, necrotizing enterocolitis
- Pathogenesis
- SCFA, short-chain fatty acid
- Symbiosis
- TcdB, C difficile toxin B
- hPSC, human pluripotent stem cell
Collapse
Affiliation(s)
- David R. Hill
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan
| | - Jason R. Spence
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan
- Center for Organogenesis, University of Michigan Medical School, Ann Arbor, Michigan
| |
Collapse
|
162
|
El Hokayem J, Cukier HN, Dykxhoorn DM. Blood Derived Induced Pluripotent Stem Cells (iPSCs): Benefits, Challenges and the Road Ahead. ACTA ACUST UNITED AC 2016; 6. [PMID: 27882265 DOI: 10.4172/2161-0460.1000275] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Since the creation of induced Pluripotent Stem Cells (iPSCs) ten years ago, hundreds of publications have demonstrated their considerable impact on disease modeling and therapy. In this commentary, we will summarize key milestones, benefits and challenges in the iPSC field. Furthermore, we will highlight blood as an effective and easily accessible source for patient-specific iPSCs derivation in the context of work done in our laboratory and others.
Collapse
Affiliation(s)
- Jimmy El Hokayem
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, USA
| | - Holly N Cukier
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, USA.,Department of Neurology, University of Miami Miller School of Medicine, Miami, USA
| | - Derek M Dykxhoorn
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, USA.,John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, USA
| |
Collapse
|