151
|
Sharma N, Flaherty K, Lezgiyeva K, Wagner DE, Klein AM, Ginty DD. The emergence of transcriptional identity in somatosensory neurons. Nature 2020; 577:392-398. [PMID: 31915380 DOI: 10.1038/s41586-019-1900-1] [Citation(s) in RCA: 292] [Impact Index Per Article: 58.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 11/06/2019] [Indexed: 11/09/2022]
Abstract
More than twelve morphologically and physiologically distinct subtypes of primary somatosensory neuron report salient features of our internal and external environments1-4. It is unclear how specialized gene expression programs emerge during development to endow these subtypes with their unique properties. To assess the developmental progression of transcriptional maturation of each subtype of principal somatosensory neuron, we generated a transcriptomic atlas of cells traversing the primary somatosensory neuron lineage in mice. Here we show that somatosensory neurogenesis gives rise to neurons in a transcriptionally unspecialized state, characterized by co-expression of transcription factors that become restricted to select subtypes as development proceeds. Single-cell transcriptomic analyses of sensory neurons from mutant mice lacking transcription factors suggest that these broad-to-restricted transcription factors coordinate subtype-specific gene expression programs in subtypes in which their expression is maintained. We also show that neuronal targets are involved in this process; disruption of the prototypic target-derived neurotrophic factor NGF leads to aberrant subtype-restricted patterns of transcription factor expression. Our findings support a model in which cues that emanate from intermediate and final target fields promote neuronal diversification in part by transitioning cells from a transcriptionally unspecialized state to transcriptionally distinct subtypes by modulating the selection of subtype-restricted transcription factors.
Collapse
Affiliation(s)
- Nikhil Sharma
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA.,Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | - Kali Flaherty
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA.,Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | - Karina Lezgiyeva
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA.,Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | - Daniel E Wagner
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | - Allon M Klein
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | - David D Ginty
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA. .,Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
152
|
Jain A, Hakim S, Woolf CJ. Unraveling the Plastic Peripheral Neuroimmune Interactome. THE JOURNAL OF IMMUNOLOGY 2020; 204:257-263. [DOI: 10.4049/jimmunol.1900818] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 09/21/2019] [Indexed: 01/16/2023]
|
153
|
Taylor TS, Konda P, John SS, Bulmer DC, Hockley JRF, Smith ESJ. Galanin suppresses visceral afferent responses to noxious mechanical and inflammatory stimuli. Physiol Rep 2020; 8:e14326. [PMID: 31960596 PMCID: PMC6971316 DOI: 10.14814/phy2.14326] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Galanin is a neuropeptide expressed by sensory neurones innervating the gastrointestinal (GI) tract. Galanin displays inhibitory effects on vagal afferent signaling within the upper GI tract, and the goal of this study was to determine the actions of galanin on colonic spinal afferent function. Specifically, we sought to evaluate the effect of galanin on lumbar splanchnic nerve (LSN) mechanosensitivity to noxious distending pressures and the development of hypersensitivity in the presence of inflammatory stimuli and colitis. Using ex vivo electrophysiological recordings we show that galanin produces a dose-dependent suppression of colonic LSN responses to mechanical stimuli and prevents the development of hypersensitivity to acutely administered inflammatory mediators. Using galanin receptor (GalR) agonists, we show that GalR1 activation, but not GalR2/3 activation, suppresses mechanosensitivity. The effect of galanin on colonic afferent activity was not observed in tissue from mice with dextran sodium sulfate-induced colitis. We conclude that galanin has a marked suppressive effect on colonic mechanosensitivity at noxious distending pressures and prevents the acute development of mechanical hypersensitivity to inflammatory mediators, an effect not seen in the inflamed colon. These actions highlight a potential role for galanin in the regulation of mechanical nociception in the bowel and the therapeutic potential of targeting galaninergic signaling to treat visceral hypersensitivity.
Collapse
Affiliation(s)
- Toni S. Taylor
- Department of PharmacologyUniversity of CambridgeCambridgeUK
| | - Parvesh Konda
- Department of PharmacologyUniversity of CambridgeCambridgeUK
| | - Sarah S. John
- Department of PharmacologyUniversity of CambridgeCambridgeUK
| | - David C. Bulmer
- Department of PharmacologyUniversity of CambridgeCambridgeUK
| | - James R. F. Hockley
- Department of PharmacologyUniversity of CambridgeCambridgeUK
- GSKGSK Medicines Research CentreStevenageHertfordshireUK
| | | |
Collapse
|
154
|
Mieth B, Hockley JRF, Görnitz N, Vidovic MMC, Müller KR, Gutteridge A, Ziemek D. Using transfer learning from prior reference knowledge to improve the clustering of single-cell RNA-Seq data. Sci Rep 2019; 9:20353. [PMID: 31889137 PMCID: PMC6937257 DOI: 10.1038/s41598-019-56911-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 12/13/2019] [Indexed: 01/21/2023] Open
Abstract
In many research areas scientists are interested in clustering objects within small datasets while making use of prior knowledge from large reference datasets. We propose a method to apply the machine learning concept of transfer learning to unsupervised clustering problems and show its effectiveness in the field of single-cell RNA sequencing (scRNA-Seq). The goal of scRNA-Seq experiments is often the definition and cataloguing of cell types from the transcriptional output of individual cells. To improve the clustering of small disease- or tissue-specific datasets, for which the identification of rare cell types is often problematic, we propose a transfer learning method to utilize large and well-annotated reference datasets, such as those produced by the Human Cell Atlas. Our approach modifies the dataset of interest while incorporating key information from the larger reference dataset via Non-negative Matrix Factorization (NMF). The modified dataset is subsequently provided to a clustering algorithm. We empirically evaluate the benefits of our approach on simulated scRNA-Seq data as well as on publicly available datasets. Finally, we present results for the analysis of a recently published small dataset and find improved clustering when transferring knowledge from a large reference dataset. Implementations of the method are available at https://github.com/nicococo/scRNA.
Collapse
Affiliation(s)
- Bettina Mieth
- Machine Learning Group, Technische Universität Berlin, Berlin, 10587, Germany
| | - James R F Hockley
- Department of Pharmacology, University of Cambridge, Cambridge, CB2 1PD, United Kingdom
- GlaxoSmithKline, Stevenage, SG1 2NY, United Kingdom
| | - Nico Görnitz
- Machine Learning Group, Technische Universität Berlin, Berlin, 10587, Germany
| | - Marina M-C Vidovic
- Machine Learning Group, Technische Universität Berlin, Berlin, 10587, Germany
| | - Klaus-Robert Müller
- Machine Learning Group, Technische Universität Berlin, Berlin, 10587, Germany.
- Department of Brain and Cognitive Engineering, Korea University, Seoul, 02841, Republic of Korea.
- Max Planck Institute for Informatics, Saarbrücken, 66123, Germany.
| | | | - Daniel Ziemek
- Pfizer, Worldwide Research and Development, Berlin, 10785, Germany.
| |
Collapse
|
155
|
Koll R, Martorell Ribera J, Brunner RM, Rebl A, Goldammer T. Gene Profiling in the Adipose Fin of Salmonid Fishes Supports its Function as a Flow Sensor. Genes (Basel) 2019; 11:E21. [PMID: 31878086 PMCID: PMC7016824 DOI: 10.3390/genes11010021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 12/13/2019] [Accepted: 12/17/2019] [Indexed: 11/16/2022] Open
Abstract
In stock enhancement and sea-ranching procedures, the adipose fin of hundreds of millions of salmonids is removed for marking purposes annually. However, recent studies proved the significance of the adipose fin as a flow sensor and attraction feature. In the present study, we profiled the specific expression of 20 neuron- and glial cell-marker genes in the adipose fin and seven other tissues (including dorsal and pectoral fin, brain, skin, muscle, head kidney, and liver) of the salmonid species rainbow trout Oncorhynchus mykiss and maraena whitefish Coregonusmaraena. Moreover, we measured the transcript abundance of genes coding for 15 mechanoreceptive channel proteins from a variety of mechanoreceptors known in vertebrates. The overall expression patterns indicate the presence of the entire repertoire of neurons, glial cells and receptor proteins on the RNA level. This quantification suggests that the adipose fin contains considerable amounts of small nerve fibers with unmyelinated or slightly myelinated axons and most likely mechanoreceptive potential. The findings are consistent for both rainbow trout and maraena whitefish and support a previous hypothesis about the innervation and potential flow sensory function of the adipose fin. Moreover, our data suggest that the resection of the adipose fin has a stronger impact on the welfare of salmonid fish than previously assumed.
Collapse
Affiliation(s)
- Raphael Koll
- Fish Genetics Unit, Institute for Genome Biology, Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany; (R.K.); (J.M.R.); (R.M.B.); (A.R.)
| | - Joan Martorell Ribera
- Fish Genetics Unit, Institute for Genome Biology, Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany; (R.K.); (J.M.R.); (R.M.B.); (A.R.)
| | - Ronald M. Brunner
- Fish Genetics Unit, Institute for Genome Biology, Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany; (R.K.); (J.M.R.); (R.M.B.); (A.R.)
| | - Alexander Rebl
- Fish Genetics Unit, Institute for Genome Biology, Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany; (R.K.); (J.M.R.); (R.M.B.); (A.R.)
| | - Tom Goldammer
- Fish Genetics Unit, Institute for Genome Biology, Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany; (R.K.); (J.M.R.); (R.M.B.); (A.R.)
- Professorship for Molecular Biology and Fish Genetics, Faculty of Agriculture and Environmental Sciences, University of Rostock, 18055 Rostock, Germany
| |
Collapse
|
156
|
Pattison LA, Callejo G, St John Smith E. Evolution of acid nociception: ion channels and receptors for detecting acid. Philos Trans R Soc Lond B Biol Sci 2019; 374:20190291. [PMID: 31544616 PMCID: PMC6790391 DOI: 10.1098/rstb.2019.0291] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/27/2019] [Indexed: 12/13/2022] Open
Abstract
Nociceptors, i.e. sensory neurons tuned to detect noxious stimuli, are found in numerous phyla of the Animalia kingdom and are often polymodal, responding to a variety of stimuli, e.g. heat, cold, pressure and chemicals, such as acid. Owing to the ability of protons to have a profound effect on ionic homeostasis and damage macromolecular structures, it is no wonder that the ability to detect acid is conserved across many species. To detect changes in pH, nociceptors are equipped with an assortment of different acid sensors, some of which can detect mild changes in pH, such as the acid-sensing ion channels, proton-sensing G protein-coupled receptors and several two-pore potassium channels, whereas others, such as the transient receptor potential vanilloid 1 ion channel, require larger shifts in pH. This review will discuss the evolution of acid sensation and the different mechanisms by which nociceptors can detect acid. This article is part of the Theo Murphy meeting issue 'Evolution of mechanisms and behaviour important for pain'.
Collapse
Affiliation(s)
| | | | - Ewan St John Smith
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, UK
| |
Collapse
|
157
|
Transcriptional Profiling of Individual Airway Projecting Vagal Sensory Neurons. Mol Neurobiol 2019; 57:949-963. [DOI: 10.1007/s12035-019-01782-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 09/12/2019] [Indexed: 12/11/2022]
|
158
|
van Thiel IAM, Botschuijver S, de Jonge WJ, Seppen J. Painful interactions: Microbial compounds and visceral pain. Biochim Biophys Acta Mol Basis Dis 2019; 1866:165534. [PMID: 31634534 DOI: 10.1016/j.bbadis.2019.165534] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 08/12/2019] [Accepted: 08/13/2019] [Indexed: 12/18/2022]
Abstract
Visceral pain, characterized by abdominal discomfort, originates from organs in the abdominal cavity and is a characteristic symptom in patients suffering from irritable bowel syndrome, vulvodynia or interstitial cystitis. Most organs in which visceral pain originates are in contact with the external milieu and continuously exposed to microbes. In order to maintain homeostasis and prevent infections, the immune- and nervous system in these organs cooperate to sense and eliminate (harmful) microbes. Recognition of microbial components or products by receptors expressed on cells from the immune and nervous system can activate immune responses but may also cause pain. We review the microbial compounds and their receptors that could be involved in visceral pain development.
Collapse
Affiliation(s)
- I A M van Thiel
- Tytgat Institute for Liver and Intestinal Research, Amsterdam UMC, location AMC, Meibergdreef 69, 1105 BK Amsterdam, the Netherlands
| | - S Botschuijver
- Tytgat Institute for Liver and Intestinal Research, Amsterdam UMC, location AMC, Meibergdreef 69, 1105 BK Amsterdam, the Netherlands
| | - W J de Jonge
- Tytgat Institute for Liver and Intestinal Research, Amsterdam UMC, location AMC, Meibergdreef 69, 1105 BK Amsterdam, the Netherlands
| | - J Seppen
- Tytgat Institute for Liver and Intestinal Research, Amsterdam UMC, location AMC, Meibergdreef 69, 1105 BK Amsterdam, the Netherlands.
| |
Collapse
|
159
|
Peters CM, Muñoz-Islas E, Ramírez-Rosas MB, Jiménez-Andrade JM. Mechanisms underlying non-malignant skeletal pain. CURRENT OPINION IN PHYSIOLOGY 2019. [DOI: 10.1016/j.cophys.2019.10.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
160
|
Affiliation(s)
- Megan Crow
- Cold Spring Harbor Laboratory, NY, United States
| | - Franziska Denk
- King's College London, Wolfson Centre for Age-Related Diseases, London, SE1 1UL, United Kingdom
| |
Collapse
|
161
|
Price TJ, Ray PR. Recent advances toward understanding the mysteries of the acute to chronic pain transition. CURRENT OPINION IN PHYSIOLOGY 2019; 11:42-50. [PMID: 32322780 DOI: 10.1016/j.cophys.2019.05.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Chronic pain affects up to a third of the population. Ongoing epidemiology studies suggest that the impact of chronic pain on the population is accelerating [1]. While advances have been made in understanding how chronic pain develops, there are still many important mysteries about how acute pain transitions to a chronic state. In this review, I summarize recent developments in the field with a focus on several areas of emerging research that are likely to have an important impact on the field. These include mechanisms of cellular plasticity that drive chronic pain, evidence of pervasive sex differential mechanisms in chronic pain and the profound impact that next generation sequencing technologies are having on this area of research.
Collapse
Affiliation(s)
- Theodore J Price
- University of Texas at Dallas, School of Behavioral and Brain Sciences and Center for Advanced Pain Studies
| | - Pradipta R Ray
- University of Texas at Dallas, School of Behavioral and Brain Sciences and Center for Advanced Pain Studies
| |
Collapse
|
162
|
Loeza-Alcocer E, McPherson TP, Gold MS. Peripheral GABA receptors regulate colonic afferent excitability and visceral nociception. J Physiol 2019; 597:3425-3439. [PMID: 31077379 DOI: 10.1113/jp278025] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 05/10/2019] [Indexed: 12/11/2022] Open
Abstract
KEY POINTS While the presence of GABA receptors on primary afferents has been well described, most functional analyses have focused on the regulation of transmitter release from central terminals and/or signalling in the sensory neuron cell body. Evidence that GABA receptors are transported to peripheral terminals and that there are several sources of GABA in the colon raise the possibility that GABA signalling in the periphery may influence colonic afferent excitability. GABAA and GABAB are present and functional in the colon, where exogenous agonists decrease the excitability of colonic afferents and suppress visceral nociception. Endogenous GABA release within the colon is sufficient to establish the resting excitability of colonic afferents as well as the behavioural response to noxious stimulation of the colon, primarily via GABAA receptors. Peripheral GABA receptors may serve as a viable target for the treatment of visceral pain. ABSTRACT It is well established that GABA receptors at the central terminals of primary afferent fibres regulate afferent input to the superficial dorsal horn. However, the extent to which peripheral GABA signalling may also regulate afferent input remains to be determined. The colon was used to explore this issue because of the numerous endogenous sources of GABA that have been described in this tissue. The influence of GABA signalling on colonic afferent excitability was assessed in an ex vivo mouse colorectum pelvic nerve preparation where test compounds were applied to the receptive field. The visceromotor response (VMR) evoked by noxious colorectal distension was used to assess the impact of GABA signalling on visceral nociception, where test compounds were applied directly to the colon. Application of either GABAA or GABAB receptor agonists attenuated the colonic afferent response to colon stretch. Conversely, GABAA and GABAB receptor antagonists increased the stretch response. However, while the noxious distension-induced VMR was attenuated in the presence of GABAA and GABAB receptor agonists, the VMR was only consistently increased by GABAA receptor antagonists. These results suggest that GABA receptors are present and functional in the peripheral terminals of colonic afferents and activation of these receptors via endogenous GABA release contributes to the establishment of colonic afferent excitability and visceral nociception. These results suggest that increasing peripheral GABA receptor signalling could be used to treat visceral pain.
Collapse
Affiliation(s)
- Emanuel Loeza-Alcocer
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Thomas P McPherson
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Michael S Gold
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
163
|
Crow M, Gillis J. Single cell RNA-sequencing: replicability of cell types. Curr Opin Neurobiol 2019; 56:69-77. [PMID: 30654233 PMCID: PMC6551252 DOI: 10.1016/j.conb.2018.12.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 12/03/2018] [Accepted: 12/09/2018] [Indexed: 01/09/2023]
Abstract
Recent technical advances have enabled transcriptomics experiments at an unprecedented scale, and single-cell profiles from neural tissue are accumulating rapidly. There has been considerable effort to use these profiles to understand cell diversity, primarily through unsupervised clustering and differential expression analysis. However, current practices to validate these findings vary. In this review, we describe recent efforts to evaluate clusters from single-cell RNA-sequencing data, and provide a framework for considering current evidence and practices in terms of their capacity to establish principles of cell biology. Single-cell RNA-sequencing has already transformed neuroscience. By facilitating detailed comparative and genetic perturbation analyses, it may provide the tools to uncover fundamental mechanisms of neural diversity throughout the tree of life.
Collapse
Affiliation(s)
- Megan Crow
- Cold Spring Harbor Laboratory, One Bungtown Road, Cold Spring Harbor, NY 11724, USA
| | - Jesse Gillis
- Cold Spring Harbor Laboratory, One Bungtown Road, Cold Spring Harbor, NY 11724, USA.
| |
Collapse
|
164
|
Guo T, Bian Z, Trocki K, Chen L, Zheng G, Feng B. Optical recording reveals topological distribution of functionally classified colorectal afferent neurons in intact lumbosacral DRG. Physiol Rep 2019; 7:e14097. [PMID: 31087524 PMCID: PMC6513768 DOI: 10.14814/phy2.14097] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 04/25/2019] [Indexed: 01/18/2023] Open
Abstract
Neuromodulation as a non-drug alternative for managing visceral pain in irritable bowel syndrome (IBS) may target sensitized afferents of distal colon and rectum (colorectum), especially their somata in the dorsal root ganglion (DRG). Developing selective DRG stimulation to manage visceral pain requires knowledge of the topological distribution of colorectal afferent somata which are sparsely distributed in the DRG. Here, we implemented GCaMP6f to conduct high-throughput optical recordings of colorectal afferent activities in lumbosacral DRG, that is, optical electrophysiology. Using a mouse ex vivo preparation with distal colorectum and L5-S1 DRG in continuity, we recorded 791 colorectal afferents' responses to graded colorectal distension (15, 30, 40, and 60 mmHg) and/or luminal shear flow (20-30 mL/min), then functionally classified them into four mechanosensitive classes, and determined the topological distribution of their somata in the DRG. Of the 791 colorectal afferents, 90.8% were in the L6 DRG, 8.3% in the S1 DRG, and only 0.9% in the L5 DRG. L6 afferents had all four classes: 29% mucosal, 18.4% muscular-mucosal, 34% low-threshold (LT) muscular, and 18.2% high-threshold (HT) muscular afferents. S1 afferents only had three classes: 19.7% mucosal, 34.8% LT muscular, and 45.5% HT muscular afferents. All seven L5 afferents were HT muscular. In L6 DRG, somata of HT muscular afferents were clustered in the caudal region whereas somata of the other classes did not cluster in specific regions. Outcomes of this study can directly inform the design and improvement of next-generation neuromodulation devices that target the DRG to alleviate visceral pain in IBS patients.
Collapse
Affiliation(s)
- Tiantian Guo
- Department of Biomedical EngineeringUniversity of ConnecticutStorrsConnecticut
| | - Zichao Bian
- Department of Biomedical EngineeringUniversity of ConnecticutStorrsConnecticut
| | - Kyle Trocki
- Department of Biomedical EngineeringUniversity of ConnecticutStorrsConnecticut
| | - Longtu Chen
- Department of Biomedical EngineeringUniversity of ConnecticutStorrsConnecticut
| | - Guoan Zheng
- Department of Biomedical EngineeringUniversity of ConnecticutStorrsConnecticut
| | - Bin Feng
- Department of Biomedical EngineeringUniversity of ConnecticutStorrsConnecticut
| |
Collapse
|
165
|
Neuronal diversity in the somatosensory system: bridging the gap between cell type and function. Curr Opin Neurobiol 2019; 56:167-174. [PMID: 30953870 DOI: 10.1016/j.conb.2019.03.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 02/11/2019] [Accepted: 03/01/2019] [Indexed: 12/22/2022]
Abstract
A recent flurry of genetic studies in mice have provided key insights into how the somatosensory system is organized at a cellular level to encode itch, pain, temperature, and touch. These studies are largely predicated on the idea that functional cell types can be identified by their unique developmental provenance and gene expression profile. However, the extent to which gene expression profiles can be correlated with functional cell types and circuit organization remains an open question. In this review, we focus on recent progress in characterizing the sensory afferent and dorsal horn neuron cell types that process cutaneous somatosensory information and ongoing circuit studies that are beginning to bridge the divide between cell type and function.
Collapse
|
166
|
Picard E, Carvalho FA, Agosti F, Bourinet E, Ardid D, Eschalier A, Daulhac L, Mallet C. Inhibition of Ca v 3.2 calcium channels: A new target for colonic hypersensitivity associated with low-grade inflammation. Br J Pharmacol 2019; 176:950-963. [PMID: 30714145 DOI: 10.1111/bph.14608] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 12/13/2018] [Accepted: 01/02/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND AND PURPOSE Abdominal pain associated with low-grade inflammation is frequently encountered in irritable bowel syndrome (IBS) and inflammatory bowel disease (IBD) during remission. Current treatments are not very effective and new therapeutic approaches are needed. The role of CaV 3.2 channels, which are important in other chronic pain contexts, was investigated in a murine model of colonic hypersensitivity (CHS) associated with low-grade inflammation. EXPERIMENTAL APPROACH Low doses of dextran sulfate sodium (DSS; 0.5%) were chronically administered to C57BL/6j mice in drinking water. Their inflammatory state was assessed by systemic and local measures of IL-6, myeloperoxidase, and lipocalin-2 using elisa. Colonic sensitivity was evaluated by the visceromotor responses to colorectal distension. Functional involvement of CaV 3.2 channels was assessed with different pharmacological (TTA-A2, ABT-639, and ethosuximide) and genetic tools. KEY RESULTS DSS induced low-grade inflammation associated with CHS in mice. Genetic or pharmacological inhibition of CaV 3.2 channels reduced CHS. Cav3.2 channel deletion in primary nociceptive neurons in dorsal root ganglia (CaV 3.2Nav1.8 KO mice) suppressed CHS. Spinal, but not systemic, administration of ABT-639, a peripherally acting T-type channel blocker, reduced CHS. ABT-639 given intrathecally to CaV 3.2Nav1.8 KO mice had no effect, demonstrating involvement of CaV 3.2 channels located presynaptically in afferent fibre terminals. Finally, ethosuximide, which is a T-type channel blocker used clinically, reduced CHS. CONCLUSIONS AND IMPLICATIONS These results suggest that ethosuximide represents a promising drug reposition strategy and that inhibition of CaV 3.2 channels is an attractive therapeutic approach for relieving CHS in IBS or IBD.
Collapse
Affiliation(s)
- Elodie Picard
- Université Clermont Auvergne, INSERM, CHU, NEURO-DOL Basics & Clinical Pharmacology of Pain, F-63000 Clermont-Ferrand, France.,ANALGESIA Institute, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France
| | - Frederic Antonio Carvalho
- Université Clermont Auvergne, INSERM, CHU, NEURO-DOL Basics & Clinical Pharmacology of Pain, F-63000 Clermont-Ferrand, France.,ANALGESIA Institute, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France
| | - Francina Agosti
- CNRS, INSERM, LABEX ICST, IGF, Université Montpellier, Montpellier, France
| | - Emmanuel Bourinet
- CNRS, INSERM, LABEX ICST, IGF, Université Montpellier, Montpellier, France
| | - Denis Ardid
- Université Clermont Auvergne, INSERM, CHU, NEURO-DOL Basics & Clinical Pharmacology of Pain, F-63000 Clermont-Ferrand, France.,ANALGESIA Institute, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France
| | - Alain Eschalier
- Université Clermont Auvergne, INSERM, CHU, NEURO-DOL Basics & Clinical Pharmacology of Pain, F-63000 Clermont-Ferrand, France.,ANALGESIA Institute, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France
| | - Laurence Daulhac
- Université Clermont Auvergne, INSERM, CHU, NEURO-DOL Basics & Clinical Pharmacology of Pain, F-63000 Clermont-Ferrand, France.,ANALGESIA Institute, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France
| | - Christophe Mallet
- Université Clermont Auvergne, INSERM, CHU, NEURO-DOL Basics & Clinical Pharmacology of Pain, F-63000 Clermont-Ferrand, France.,ANALGESIA Institute, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France
| |
Collapse
|
167
|
Adenosine triphosphate is co-secreted with glucagon-like peptide-1 to modulate intestinal enterocytes and afferent neurons. Nat Commun 2019; 10:1029. [PMID: 30833673 PMCID: PMC6399286 DOI: 10.1038/s41467-019-09045-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 02/01/2019] [Indexed: 02/02/2023] Open
Abstract
Enteroendocrine cells are specialised sensory cells located in the intestinal epithelium and generate signals in response to food ingestion. Whilst traditionally considered hormone-producing cells, there is evidence that they also initiate activity in the afferent vagus nerve and thereby signal directly to the brainstem. We investigate whether enteroendocrine L-cells, well known for their production of the incretin hormone glucagon-like peptide-1 (GLP-1), also release other neuro-transmitters/modulators. We demonstrate regulated ATP release by ATP measurements in cell supernatants and by using sniffer patches that generate electrical currents upon ATP exposure. Employing purinergic receptor antagonists, we demonstrate that evoked ATP release from L-cells triggers electrical responses in neighbouring enterocytes through P2Y2 and nodose ganglion neurones in co-cultures through P2X2/3-receptors. We conclude that L-cells co-secrete ATP together with GLP-1 and PYY, and that ATP acts as an additional signal triggering vagal activation and potentially synergising with the actions of locally elevated peptide hormone concentrations.
Collapse
|
168
|
Du L, Long Y, Kim JJ, Chen B, Zhu Y, Dai N. Protease Activated Receptor-2 Induces Immune Activation and Visceral Hypersensitivity in Post-infectious Irritable Bowel Syndrome Mice. Dig Dis Sci 2019; 64:729-739. [PMID: 30446929 DOI: 10.1007/s10620-018-5367-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Accepted: 11/07/2018] [Indexed: 12/17/2022]
Abstract
BACKGROUND The role of protease activated receptor-2 (PAR-2) in the pathogenesis of abdominal pain in irritable bowel syndrome (IBS) is not well defined. AIMS To investigate the role of PAR-2-mediated visceral hypersensitivity in a post-infectious IBS (PI-IBS) mouse model. METHODS T. spiralis-infected PI-IBS mouse model was used. Fecal serine protease activity and intestinal mast cells were evaluated. Intestinal permeability was assessed by urine lactulose/mannitol ratio, and colonic expressions of PAR-2 and tight junction (TJ) proteins were examined by Western blot. Intestinal immune profile was assessed by measuring Th (T helper) 1/Th2 cytokine expression. Visceral sensitivity was evaluated by abdominal withdrawal reflex in response to colorectal distention. RESULTS Colonic PAR-2 expression as well as fecal serine protease activity and intestinal mast cell counts were elevated in PI-IBS compared to the control mice. Decreased colonic TJ proteins expression, increased lactulose/mannitol ratio, elevated colonic Th1/Th2 cytokine ratio, and visceral hypersensitivity were observed in PI-IBS compared to the control mice. Administration of PAR-2 agonist in control mice demonstrated similar changes observed in PI-IBS mice, while PAR-2 antagonist normalized the increased intestinal permeability and reduced visceral hypersensitivity observed in PI-IBS mice. CONCLUSIONS PAR-2 activation increases intestinal permeability leading to immune activation and visceral hypersensitivity in PI-IBS mouse model.
Collapse
Affiliation(s)
- Lijun Du
- Department of Gastroenterology, School of Medicine, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310016, China
| | - Yanqin Long
- Department of Gastroenterology, School of Medicine, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310016, China.
| | - John J Kim
- Department of Gastroenterology, School of Medicine, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310016, China
- Division of Gastroenterology & Hepatology, Loma Linda University Health, Loma Linda, CA, 92354, USA
| | - Binrui Chen
- Department of Gastroenterology, School of Medicine, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310016, China
| | - Yubin Zhu
- Department of Gastroenterology, School of Medicine, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310016, China
| | - Ning Dai
- Department of Gastroenterology, School of Medicine, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310016, China
| |
Collapse
|
169
|
Abstract
Most of us live blissfully unaware of the orchestrated function that our internal organs conduct. When this peace is interrupted, it is often by routine sensations of hunger and urge. However, for >20% of the global population, chronic visceral pain is an unpleasant and often excruciating reminder of the existence of our internal organs. In many cases, there is no obvious underlying pathological cause of the pain. Accordingly, chronic visceral pain is debilitating, reduces the quality of life of sufferers, and has large concomitant socioeconomic costs. In this review, we highlight key mechanisms underlying chronic abdominal and pelvic pain associated with functional and inflammatory disorders of the gastrointestinal and urinary tracts. This includes how the colon and bladder are innervated by specialized subclasses of spinal afferents, how these afferents become sensitized in highly dynamic signaling environments, and the subsequent development of neuroplasticity within visceral pain pathways. We also highlight key contributing factors, including alterations in commensal bacteria, altered mucosal permeability, epithelial interactions with afferent nerves, alterations in immune or stress responses, and cross talk between these two adjacent organs.
Collapse
Affiliation(s)
- Luke Grundy
- Visceral Pain Research Group, College of Medicine and Public Health, Centre for Neuroscience, Flinders University, Bedford Park, South Australia 5042, Australia; .,Centre for Nutrition and Gastrointestinal Diseases, University of Adelaide, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia 5000, Australia
| | - Andelain Erickson
- Visceral Pain Research Group, College of Medicine and Public Health, Centre for Neuroscience, Flinders University, Bedford Park, South Australia 5042, Australia; .,Centre for Nutrition and Gastrointestinal Diseases, University of Adelaide, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia 5000, Australia
| | - Stuart M Brierley
- Visceral Pain Research Group, College of Medicine and Public Health, Centre for Neuroscience, Flinders University, Bedford Park, South Australia 5042, Australia; .,Centre for Nutrition and Gastrointestinal Diseases, University of Adelaide, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia 5000, Australia
| |
Collapse
|
170
|
Bautzova T, Hockley JRF, Perez-Berezo T, Pujo J, Tranter MM, Desormeaux C, Barbaro MR, Basso L, Le Faouder P, Rolland C, Malapert P, Moqrich A, Eutamene H, Denadai-Souza A, Vergnolle N, Smith ESJ, Hughes DI, Barbara G, Dietrich G, Bulmer DC, Cenac N. 5-oxoETE triggers nociception in constipation-predominant irritable bowel syndrome through MAS-related G protein-coupled receptor D. Sci Signal 2018; 11:eaal2171. [PMID: 30563864 PMCID: PMC6411128 DOI: 10.1126/scisignal.aal2171] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Irritable bowel syndrome (IBS) is a common gastrointestinal disorder that is characterized by chronic abdominal pain concurrent with altered bowel habit. Polyunsaturated fatty acid (PUFA) metabolites are increased in abundance in IBS and are implicated in the alteration of sensation to mechanical stimuli, which is defined as visceral hypersensitivity. We sought to quantify PUFA metabolites in patients with IBS and evaluate their role in pain. Quantification of PUFA metabolites by mass spectrometry in colonic biopsies showed an increased abundance of 5-oxoeicosatetraenoic acid (5-oxoETE) only in biopsies taken from patients with IBS with predominant constipation (IBS-C). Local administration of 5-oxoETE to mice induced somatic and visceral hypersensitivity to mechanical stimuli without causing tissue inflammation. We found that 5-oxoETE directly acted on both human and mouse sensory neurons as shown by lumbar splanchnic nerve recordings and Ca2+ imaging of dorsal root ganglion (DRG) neurons. We showed that 5-oxoETE selectively stimulated nonpeptidergic, isolectin B4 (IB4)-positive DRG neurons through a phospholipase C (PLC)- and pertussis toxin-dependent mechanism, suggesting that the effect was mediated by a G protein-coupled receptor (GPCR). The MAS-related GPCR D (Mrgprd) was found in mouse colonic DRG afferents and was identified as being implicated in the noxious effects of 5-oxoETE. Together, these data suggest that 5-oxoETE, a potential biomarker of IBS-C, induces somatic and visceral hyperalgesia without inflammation in an Mrgprd-dependent manner. Thus, 5-oxoETE may play a pivotal role in the abdominal pain associated with IBS-C.
Collapse
Affiliation(s)
- Tereza Bautzova
- INSERM, UMR1220, IRSD, Université de Toulouse, INRA, ENVT, UPS, Toulouse, France
| | - James R F Hockley
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB1 2PD, UK
- National Centre for Bowel Research and Surgical Innovation, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AJ, UK
| | - Teresa Perez-Berezo
- INSERM, UMR1220, IRSD, Université de Toulouse, INRA, ENVT, UPS, Toulouse, France
| | - Julien Pujo
- INSERM, UMR1220, IRSD, Université de Toulouse, INRA, ENVT, UPS, Toulouse, France
| | - Michael M Tranter
- National Centre for Bowel Research and Surgical Innovation, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AJ, UK
| | - Cleo Desormeaux
- INSERM, UMR1220, IRSD, Université de Toulouse, INRA, ENVT, UPS, Toulouse, France
| | | | - Lilian Basso
- INSERM, UMR1220, IRSD, Université de Toulouse, INRA, ENVT, UPS, Toulouse, France
| | - Pauline Le Faouder
- INSERM UMR1048, Lipidomic Core Facility, Metatoul Platform, Université de Toulouse, Toulouse, France
| | - Corinne Rolland
- INSERM, UMR1220, IRSD, Université de Toulouse, INRA, ENVT, UPS, Toulouse, France
| | - Pascale Malapert
- Aix-Marseille-Université, CNRS, Institut de Biologie du Développement de Marseille, UMR 7288, Marseille, France
| | - Aziz Moqrich
- Aix-Marseille-Université, CNRS, Institut de Biologie du Développement de Marseille, UMR 7288, Marseille, France
| | - Helene Eutamene
- Neuro-Gastroenterology and Nutrition Team, UMR 1331, INRA Toxalim, INP-EI-Purpan, Université de Toulouse, Toulouse, France
| | | | - Nathalie Vergnolle
- INSERM, UMR1220, IRSD, Université de Toulouse, INRA, ENVT, UPS, Toulouse, France
- Departments of Physiology & Pharmacology, and Medicine, University of Calgary Cumming School of Medicine, 3330 Hospital Drive Northwest, Calgary, Alberta T2N 4N1, Canada
| | - Ewan St John Smith
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB1 2PD, UK
| | - David I Hughes
- Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, UK
| | - Giovanni Barbara
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Gilles Dietrich
- INSERM, UMR1220, IRSD, Université de Toulouse, INRA, ENVT, UPS, Toulouse, France
| | - David C Bulmer
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB1 2PD, UK
- National Centre for Bowel Research and Surgical Innovation, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AJ, UK
| | - Nicolas Cenac
- INSERM, UMR1220, IRSD, Université de Toulouse, INRA, ENVT, UPS, Toulouse, France.
| |
Collapse
|
171
|
Brierley SM, Hibberd TJ, Spencer NJ. Spinal Afferent Innervation of the Colon and Rectum. Front Cell Neurosci 2018; 12:467. [PMID: 30564102 PMCID: PMC6288476 DOI: 10.3389/fncel.2018.00467] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 11/16/2018] [Indexed: 12/12/2022] Open
Abstract
Despite their seemingly elementary roles, the colon and rectum undertake a variety of key processes to ensure our overall wellbeing. Such processes are coordinated by the transmission of sensory signals from the periphery to the central nervous system, allowing communication from the gut to the brain via the "gut-brain axis". These signals are transmitted from the peripheral terminals of extrinsic sensory nerve fibers, located within the wall of the colon or rectum, and via their axons within the spinal splanchnic and pelvic nerves to the spinal cord. Recent studies utilizing electrophysiological, anatomical and gene expression techniques indicate a surprisingly diverse set of distinct afferent subclasses, which innervate all layers of the colon and rectum. Combined these afferent sub-types allow the detection of luminal contents, low- and high-intensity stretch or contraction, in addition to the detection of inflammatory, immune, and microbial mediators. To add further complexity, the proportions of these afferents vary within splanchnic and pelvic pathways, whilst the density of the splanchnic and pelvic innervation also varies along the colon and rectum. In this review we traverse this complicated landscape to elucidate afferent function, structure, and nomenclature to provide insights into how the extrinsic sensory afferent innervation of the colon and rectum gives rise to physiological defecatory reflexes and sensations of discomfort, bloating, urgency, and pain.
Collapse
Affiliation(s)
- Stuart M Brierley
- Visceral Pain Research Group, Centre for Neuroscience, College of Medicine and Public Health, Flinders University, Bedford Park, SA, Australia.,Centre for Nutrition and Gastrointestinal Diseases, Discipline of Medicine, South Australian Health and Medical Research Institute (SAHMRI), University of Adelaide, Adelaide, SA, Australia
| | - Timothy J Hibberd
- Visceral Neurophysiology Laboratory, Centre for Neuroscience, College of Medicine and Public Health, Flinders University, Bedford Park, SA, Australia
| | - Nick J Spencer
- Visceral Neurophysiology Laboratory, Centre for Neuroscience, College of Medicine and Public Health, Flinders University, Bedford Park, SA, Australia
| |
Collapse
|
172
|
Characterization of sensory neuronal subtypes innervating mouse tongue. PLoS One 2018; 13:e0207069. [PMID: 30408082 PMCID: PMC6224080 DOI: 10.1371/journal.pone.0207069] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 10/24/2018] [Indexed: 12/14/2022] Open
Abstract
The tongue is uniquely exposed to water-soluble environmental chemicals that may lead to injury or tumorigenesis. However, comparatively little research has focused on the molecular and functional organization of trigeminal ganglia (TG) afferent neurons innervating the tongue. The current study identified and characterized lingual sensory neurons based on a neuronal subtype classification previously characterized in the dorsal root ganglion (DRG) neurons. We employed immunohistochemistry on transgenic reporter mouse lines as well as single-cell PCR of known markers of neuronal subtypes to characterize neuronal subtypes innervating the tongue. Markers expressed in retrogradely labeled TG neurons were evaluated for the proportion of neurons expressing each marker, intensity of expression, and overlapping genes. We found that tongue-innervating sensory neurons primarily expressed CGRP, TRPV1, TrkC, 5HT3A and Parvalbumin. These markers correspond to peptidergic and a subgroup of non-peptidergic C-nociceptors, peptidergic A nociceptors, proprioceptors and myelinated low-threshold mechanoreceptors (LTMRs). Interestingly, as reported previously, we also found several differences between TG and DRG neurons indicating the need for single-cell sequencing of neuronal types based on tissue type within all TG as well as DRG neurons.
Collapse
|
173
|
Hockley JRF, Smith ESJ, Bulmer DC. Human visceral nociception: findings from translational studies in human tissue. Am J Physiol Gastrointest Liver Physiol 2018; 315:G464-G472. [PMID: 29848022 DOI: 10.1152/ajpgi.00398.2017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Peripheral sensitization of nociceptors during disease has long been recognized as a leading cause of inflammatory pain. However, a growing body of data generated over the last decade has led to the increased understanding that peripheral sensitization is also an important mechanism driving abdominal pain in highly prevalent functional bowel disorders, in particular, irritable bowel syndrome (IBS). As such, the development of drugs that target pain-sensing nerves innervating the bowel has the potential to be a successful analgesic strategy for the treatment of abdominal pain in both organic and functional gastrointestinal diseases. Despite the success of recent peripherally restricted approaches for the treatment of IBS, not all drugs that have shown efficacy in animal models of visceral pain have reduced pain end points in clinical trials of IBS patients, suggesting innate differences in the mechanisms of pain processing between rodents and humans and, in particular, how we model disease states. To address this gap in our understanding of peripheral nociception from the viscera and the body in general, several groups have developed experimental systems to study nociception in isolated human tissue and neurons, the findings of which we discuss in this review. Studies of human tissue identify a repertoire of human primary afferent subtypes comparable to rodent models including a nociceptor population, the targeting of which will shape future analgesic development efforts. Detailed mechanistic studies in human sensory neurons combined with unbiased RNA-sequencing approaches have revealed fundamental differences in not only receptor/channel expression but also peripheral pain pathways.
Collapse
Affiliation(s)
- James R F Hockley
- Department of Pharmacology, University of Cambridge , Cambridge , United Kingdom
| | - Ewan St John Smith
- Department of Pharmacology, University of Cambridge , Cambridge , United Kingdom
| | - David C Bulmer
- Department of Pharmacology, University of Cambridge , Cambridge , United Kingdom
| |
Collapse
|
174
|
Chakrabarti S, Pattison LA, Singhal K, Hockley JRF, Callejo G, Smith ESJ. Acute inflammation sensitizes knee-innervating sensory neurons and decreases mouse digging behavior in a TRPV1-dependent manner. Neuropharmacology 2018; 143:49-62. [PMID: 30240782 PMCID: PMC6277850 DOI: 10.1016/j.neuropharm.2018.09.014] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 09/06/2018] [Accepted: 09/11/2018] [Indexed: 01/20/2023]
Abstract
Ongoing, spontaneous pain is characteristic of inflammatory joint pain and reduces an individual's quality of life. To understand the neural basis of inflammatory joint pain, we made a unilateral knee injection of complete Freund's adjuvant (CFA) in mice, which reduced their natural digging behavior. We hypothesized that sensitization of knee-innervating dorsal root ganglion (DRG) neurons underlies this altered behavior. To test this hypothesis, we performed electrophysiological recordings on retrograde labeled knee-innervating primary DRG neuron cultures and measured their responses to a number of electrical and chemical stimuli. We found that 24-h after CFA-induced knee inflammation, knee neurons show a decreased action potential generation threshold, as well as increased GABA and capsaicin sensitivity, but have unaltered acid sensitivity. The inflammation-induced sensitization of knee neurons persisted for 24-h in culture, but was not observed after 48-h in culture. Through immunohistochemistry, we showed that the increased knee neuron capsaicin sensitivity correlated with enhanced expression of the capsaicin receptor, transient receptor potential vanilloid 1 (TRPV1) in knee-innervating neurons of the CFA-injected side. We also observed an increase in the co-expression of TRPV1 with tropomyosin receptor kinase A (TrkA), which is the receptor for nerve growth factor (NGF), suggesting that NGF partially induces the increased TRPV1 expression. Lastly, we found that systemic administration of the TRPV1 antagonist, A-425619, reversed the decrease in digging behavior induced by CFA injection, further confirming the role of TRPV1, expressed by knee neurons, in acute inflammatory joint pain. Knee inflammation decreases digging behavior in mice. Knee-innervating dorsal root ganglion neurons are hyperexcitable after inflammation. NGF-mediated increase in TRPV1 expression is observed in knee-innervating neurons. Systemic TRPV1 antagonist administration normalises digging behavior in mice.
Collapse
Affiliation(s)
| | - Luke A Pattison
- Department of Pharmacology, University of Cambridge, Cambridge, UK
| | - Kaajal Singhal
- Department of Pharmacology, University of Cambridge, Cambridge, UK
| | | | - Gerard Callejo
- Department of Pharmacology, University of Cambridge, Cambridge, UK
| | | |
Collapse
|
175
|
Lo Vecchio S, Andersen HH, Arendt-Nielsen L. The time course of brief and prolonged topical 8% capsaicin-induced desensitization in healthy volunteers evaluated by quantitative sensory testing and vasomotor imaging. Exp Brain Res 2018; 236:2231-2244. [DOI: 10.1007/s00221-018-5299-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 05/23/2018] [Indexed: 12/13/2022]
|
176
|
Starobova H, S. W. A. H, Lewis RJ, Vetter I. Transcriptomics in pain research: insights from new and old technologies. Mol Omics 2018; 14:389-404. [DOI: 10.1039/c8mo00181b] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Physiological and pathological pain involves a complex interplay of multiple cell types and signaling pathways.
Collapse
Affiliation(s)
- H. Starobova
- Centre for Pain Research
- Institute for Molecular Bioscience
- University of Queensland
- St Lucia
- Australia
| | - Himaya S. W. A.
- Centre for Pain Research
- Institute for Molecular Bioscience
- University of Queensland
- St Lucia
- Australia
| | - R. J. Lewis
- Centre for Pain Research
- Institute for Molecular Bioscience
- University of Queensland
- St Lucia
- Australia
| | - I. Vetter
- Centre for Pain Research
- Institute for Molecular Bioscience
- University of Queensland
- St Lucia
- Australia
| |
Collapse
|