151
|
The Oral Microbiome of Healthy Japanese People at the Age of 90. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10186450] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
For a healthy oral cavity, maintaining a healthy microbiome is essential. However, data on healthy microbiomes are not sufficient. To determine the nature of the core microbiome, the oral-microbiome structure was analyzed using pyrosequencing data. Saliva samples were obtained from healthy 90-year-old participants who attended the 20-year follow-up Niigata cohort study. A total of 85 people participated in the health checkups. The study population consisted of 40 male and 45 female participants. Stimulated saliva samples were obtained by chewing paraffin wax for 5 min. The V3–V4 hypervariable regions of the 16S ribosomal RNA (rRNA) gene were amplified by PCR. Pyrosequencing was performed using MiSeq. Operational taxonomic units (OTUs) were assigned on the basis of a 97% identity search in the EzTaxon-e database. Using the threshold of 100% detection on the species level, 13 species were detected: Streptococcus sinensis, Streptococcus pneumoniae, Streptococcus salivarius, KV831974_s, Streptococcus parasanguinis, Veillonella dispar, Granulicatella adiacens, Streptococcus_uc, Streptococcus peroris, KE952139_s, Veillonella parvula, Atopobium parvulum, and AFQU_vs. These species represent potential candidates for the core make-up of the human microbiome.
Collapse
|
152
|
Kleinstein S, Nelson K, Freire M. Inflammatory Networks Linking Oral Microbiome with Systemic Health and Disease. J Dent Res 2020; 99:1131-1139. [PMID: 32459164 PMCID: PMC7443998 DOI: 10.1177/0022034520926126] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The dance between microbes and the immune system takes place in all biological systems, including the human body, but this interaction is especially complex in the primary gateway to the body: the oral cavity. Recent advances in technology have enabled deep sequencing and analysis of members and signals of these communities. In a healthy state, the oral microbiome is composed of commensals, and their genes and phenotypes may be selected by the immune system to survive in symbiosis. These highly regulated signals are modulated by a network of microbial and host metabolites. However, in a diseased state, host-microbial networks lead to dysbiosis and considerable burden to the host prior to systemic impact that extends beyond the oral compartment. Interestingly, we presented data demonstrating similarities between human and mice immune dysbiosis and discussed how this affects the host response to similar pathobionts. The host and microbial signatures of a number of disease states are currently being examined to identify potential correlations. How the oral microbiome interacts with inflammation and the immune system to cause disease remains an area of active research. In this review, we summarize recent advancements in understanding the role of oral microbiota in mediating inflammation and altering systemic health and disease. In line with these findings, it is possible that existing conditions may be resolved by targeting specific immune-microbial markers in a positive way.
Collapse
Affiliation(s)
| | - K.E. Nelson
- J. Craig Venter Institute, La Jolla, CA, USA
| | - M. Freire
- J. Craig Venter Institute, La Jolla, CA, USA
| |
Collapse
|
153
|
Alkharaan H, Lu L, Gabarrini G, Halimi A, Ateeb Z, Sobkowiak MJ, Davanian H, Fernández Moro C, Jansson L, Del Chiaro M, Özenci V, Sällberg Chen M. Circulating and Salivary Antibodies to Fusobacterium nucleatum Are Associated With Cystic Pancreatic Neoplasm Malignancy. Front Immunol 2020; 11:2003. [PMID: 32983143 PMCID: PMC7484485 DOI: 10.3389/fimmu.2020.02003] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 07/24/2020] [Indexed: 12/21/2022] Open
Abstract
Objectives Intraductal papillary mucinous neoplasms (IPMNs) are cystic precursor lesions to pancreatic cancer. The presence of oral microbes in pancreatic tissue or cyst fluid has been associated with high-grade dysplasia (HGD) and cancer. The present study aims at investigating if humoral immunity to pancreas-associated oral microbes reflects IPMN severity. Design Paired plasma (n = 109) and saliva (n = 65) samples were obtained from IPMN pancreatic cystic tumor cases and controls, for anti-bacterial antibody analysis and DNA quantification by enzyme-linked immunosorbent assay (ELISA) and qPCR, respectively. Tumor severity was graded by histopathology, laboratory, and clinical data. Circulating plasma and salivary antibody reactivity to a pancreas-associated oral microbe panel were measured by ELISA and correlated to tumor severity. Results The patient group with high-risk cystic tumors (HGD and/or associated invasive cancer) shows ample circulating IgG reactivity to Fusobacterium nucleatum (F. nucleatum) but not to Granulicatella adiacens (G. adiacens), which is independent of the salivary bacteria DNA levels. This group also shows higher salivary IgA reactivity to F. nucleatum, Fap2 of F. nucleatum, and Streptococcus gordonii (S. gordonii) compared to low-risk IPMN and controls. The salivary antibody reactivity to F. nucleatum and Fap2 are found to be highly correlated, and cross-competition assays further confirm that these antibodies appear cross-reactive. Conclusion Our findings indicate that humoral reactivity against pancreas-associated oral microbes may reflect IPMN severity. These findings are beneficial for biomarker development.
Collapse
Affiliation(s)
- Hassan Alkharaan
- Department of Dental Medicine, Karolinska Institutet, Huddinge, Sweden
- College of Dentistry, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Liyan Lu
- Department of Dental Medicine, Karolinska Institutet, Huddinge, Sweden
- Tenth People’s Hospital, Tongji University, Shanghai, China
| | - Giorgio Gabarrini
- Department of Dental Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Asif Halimi
- Pancreatic Surgery Unit, Division of Surgery, Department of Clinical Science, Intervention and Technology, Karolinska University Hospital, Huddinge, Sweden
| | - Zeeshan Ateeb
- Pancreatic Surgery Unit, Division of Surgery, Department of Clinical Science, Intervention and Technology, Karolinska University Hospital, Huddinge, Sweden
| | | | - Haleh Davanian
- Department of Dental Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Carlos Fernández Moro
- Division of Pathology, Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Sweden
- Department of Clinical Pathology/Cytology, Karolinska University Hospital, Huddinge, Sweden
| | - Leif Jansson
- Clinic of Endodontics and Periodontology, Eastman Institute Stockholm, Stockholm, Sweden
| | - Marco Del Chiaro
- Division of Surgical Oncology, Department of Surgery, University of Colorado, Aurora, CO, United States
| | - Volkan Özenci
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Margaret Sällberg Chen
- Department of Dental Medicine, Karolinska Institutet, Huddinge, Sweden
- Tenth People’s Hospital, Tongji University, Shanghai, China
| |
Collapse
|
154
|
Teles FRF, Alawi F, Castilho RM, Wang Y. Association or Causation? Exploring the Oral Microbiome and Cancer Links. J Dent Res 2020; 99:1411-1424. [PMID: 32811287 DOI: 10.1177/0022034520945242] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Several epidemiological investigations have found associations between poor oral health and different types of cancer, including colorectal, lung, pancreatic, and oral malignancies. The oral health parameters underlying these relationships include deficient oral hygiene, gingival bleeding, and bone and tooth loss. These parameters are related to periodontal diseases, which are directly and indirectly mediated by oral bacteria. Given the increased accessibility of microbial sequencing platforms, many recent studies have investigated the link between the oral microbiome and these cancers. Overall, it seems that oral dysbiotic states can contribute to tumorigenesis in the oral cavity as well as in distant body sites. Further, it appears that certain oral bacterial species can contribute to carcinogenesis, in particular, Fusobacterium nucleatum and Porphyromonas gingivalis, based on results from epidemiological as well as mechanistic studies. Yet, the strength of the findings from these investigations is hampered by the heterogeneity of the methods used to measure oral diseases, the treatment of confounding factors, the study design, the platforms employed for microbial analysis, and types of samples analyzed. Despite these limitations, there is an overall indication that the presence of oral dysbiosis that leads to oral diseases may directly and/or indirectly contribute to carcinogenesis. Proper methodological standardized approaches should be implemented in future epidemiological studies as well as in the mechanistic investigations carried out to explore these results.
Collapse
Affiliation(s)
- F R F Teles
- Department of Basic and Translational Sciences, School Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Center for Innovation & Precision Dentistry, School of Dental Medicine, School of Engineering and Applied Sciences, University of Pennsylvania, Phildelphia, PA, USA
| | - F Alawi
- Department of Basic and Translational Sciences, School Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - R M Castilho
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| | - Y Wang
- Department of Periodontics, School Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
155
|
Kita A, Fujiya M, Konishi H, Tanaka H, Kashima S, Iwama T, Ijiri M, Murakami Y, Takauji S, Goto T, Sakatani A, Ando K, Ueno N, Ogawa N, Okumura T. Probiotic‑derived ferrichrome inhibits the growth of refractory pancreatic cancer cells. Int J Oncol 2020; 57:721-732. [PMID: 32705165 PMCID: PMC7384844 DOI: 10.3892/ijo.2020.5096] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 06/18/2020] [Indexed: 12/12/2022] Open
Abstract
Pancreatic cancer is associated with a poor prognosis due to challenges in early detection, severe progression of the primary tumor, metastatic lesions, and resistance to antitumor agents. However, previous studies have indicated a relationship between the microbiome and pancreatic cancer outcomes. Our previous study demonstrated that ferrichrome derived from Lactobacillus casei, a probiotic bacteria, exhibited tumor‑suppressive effects in colorectal and gastric cancer, and that the suppressive effects were stronger than conventional antitumor agents, such as 5‑fluorouracil (5‑FU) and cisplatin, suggesting that certain probiotics exert antitumorigenic effects. However, whether or not probiotic‑derived molecules, including ferrichrome, exert a tumor‑suppressive effect in other gastrointestinal tumors, such as pancreatic cancer, remains unclear. In the present study, it was demonstrated that probiotic‑derived ferrichrome inhibited the growth of pancreatic cancer cells, and its tumor‑suppressive effects were further revealed in 5‑FU‑resistant pancreatic cancer cells in vitro and in vivo in a mouse xenograft model. Ferrichrome inhibited the progression of cancer cells via dysregulation of the cell cycle by activating p53. DNA fragmentation and cleavage of poly (ADP‑ribose) polymerase were induced by ferrichrome treatment, suggesting that ferrichrome induced apoptosis in pancreatic cancer cells. A transcriptome analysis revealed that the expression p53‑associated mRNAs was significantly altered by ferrichrome treatment. Thus, the tumor‑suppressive effects of probiotics may mediated by probiotic‑derived molecules, such as ferrichrome, which may have applications as an antitumor drug, even in refractory and 5‑FU‑resistant pancreatic cancer.
Collapse
Affiliation(s)
- Akemi Kita
- Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Asahikawa 078‑8510, Japan
| | - Mikihiro Fujiya
- Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Asahikawa 078‑8510, Japan
| | - Hiroaki Konishi
- Department of Gastroenterology and Advanced Medical Sciences, Asahikawa Medical University, Asahikawa 078‑8510, Japan
| | - Hiroki Tanaka
- Division of Tumor Pathology, Department of Pathology, Asahikawa Medical University, Asahikawa 078‑8510, Japan
| | - Shin Kashima
- Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Asahikawa 078‑8510, Japan
| | - Takuya Iwama
- Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Asahikawa 078‑8510, Japan
| | - Masami Ijiri
- Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Asahikawa 078‑8510, Japan
| | - Yuki Murakami
- Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Asahikawa 078‑8510, Japan
| | - Shuhei Takauji
- Asahikawa Medical University Hospital Emergency Unit, Asahikawa 078‑8510, Japan
| | - Takuma Goto
- Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Asahikawa 078‑8510, Japan
| | - Aki Sakatani
- Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Asahikawa 078‑8510, Japan
| | - Katsuyoshi Ando
- Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Asahikawa 078‑8510, Japan
| | - Nobuhiro Ueno
- Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Asahikawa 078‑8510, Japan
| | - Naoki Ogawa
- Center for Advanced Research and Education, Department of Medicine, Asahikawa Medical University, Asahikawa 078‑8510, Japan
| | - Toshikatsu Okumura
- Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Asahikawa 078‑8510, Japan
| |
Collapse
|
156
|
Wang J, Jia Z, Zhang B, Peng L, Zhao F. Tracing the accumulation of in vivo human oral microbiota elucidates microbial community dynamics at the gateway to the GI tract. Gut 2020; 69:1355-1356. [PMID: 31227588 PMCID: PMC7306975 DOI: 10.1136/gutjnl-2019-318977] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 05/06/2019] [Accepted: 05/30/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Jinfeng Wang
- Computational Genomics Lab, Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China
| | - Zhen Jia
- Computational Genomics Lab, Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China,University of Chinese Academy of Sciences, Beijing, China
| | - Bing Zhang
- Computational Genomics Lab, Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China
| | - Lei Peng
- Capital Medical University Affiliated Beijing Friendship Hospital, Beijing, China
| | - Fangqing Zhao
- Computational Genomics Lab, Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China,University of Chinese Academy of Sciences, Beijing, China,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China
| |
Collapse
|
157
|
Ilievski V, Toth PT, Valyi-Nagy K, Valyi-Nagy T, Green SJ, Marattil RS, Aljewari HW, Wicksteed B, O'Brien-Simpson NM, Reynolds EC, Layden BT, Unterman TG, Watanabe K. Identification of a periodontal pathogen and bihormonal cells in pancreatic islets of humans and a mouse model of periodontitis. Sci Rep 2020; 10:9976. [PMID: 32561770 PMCID: PMC7305306 DOI: 10.1038/s41598-020-65828-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 05/05/2020] [Indexed: 12/15/2022] Open
Abstract
Results from epidemiological and prospective studies indicate a close association between periodontitis and diabetes. However the mechanisms by which periodontal pathogens influence the development of prediabetes/diabetes are not clear. We previously reported that oral administration of a periodontal pathogen, Porphyromonas gingivalis (Pg) to WT mice results in insulin resistance, hyperinsulinemia, and glucose intolerance and that Pg translocates to the pancreas. In the current study, we determined the specific localization of Pg in relation to mouse and human pancreatic α- and β-cells using 3-D confocal and immunofluorescence microscopy and orthogonal analyses. Pg/gingipain is intra- or peri-nuclearly localized primarily in β-cells in experimental mice and also in human post-mortem pancreatic samples. We also identified bihormonal cells in experimental mice as well as human pancreatic samples. A low percentage of bihormonal cells has intracellular Pg in both humans and experimental mice. Our data show that the number of Pg translocated to the pancreas correlates with the number of bihormonal cells in both mice and humans. Our findings suggest that Pg/gingipain translocates to pancreas, particularly β-cells in both humans and mice, and this is strongly associated with emergence of bihormonal cells.
Collapse
Affiliation(s)
- Vladimir Ilievski
- Department of Periodontics, College of Dentistry, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Peter T Toth
- Department of Pharmacology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
- Fluorescence Imaging Core Facility, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Klara Valyi-Nagy
- Department of Pathology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Tibor Valyi-Nagy
- Department of Pathology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Stefan J Green
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois, USA
- DNA Core Facility, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Rosann S Marattil
- Undergraduate Program, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Haider W Aljewari
- Post-Gradulate Program in Periodontics, College of Dentistry, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Barton Wicksteed
- Division of Endocrinology, Diabetes & Metabolism, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | | | - Eric C Reynolds
- Melbourne Dental School, University of Melbourne, Melbourne, Victoria, Australia
| | - Brian T Layden
- Division of Endocrinology, Diabetes & Metabolism, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Terry G Unterman
- Division of Endocrinology, Diabetes & Metabolism, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
- Jesse Brown VA Medical Center, Chicago, Illinois, USA
| | - Keiko Watanabe
- Department of Periodontics, College of Dentistry, University of Illinois at Chicago, Chicago, Illinois, USA.
| |
Collapse
|
158
|
Oral microbiome: possible harbinger for children's health. Int J Oral Sci 2020; 12:12. [PMID: 32350240 PMCID: PMC7190716 DOI: 10.1038/s41368-020-0082-x] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 04/01/2020] [Accepted: 04/01/2020] [Indexed: 12/12/2022] Open
Abstract
The human microbiome functions as an intricate and coordinated microbial network, residing throughout the mucosal surfaces of the skin, oral cavity, gastrointestinal tract, respiratory tract, and reproductive system. The oral microbiome encompasses a highly diverse microbiota, consisting of over 700 microorganisms, including bacteria, fungi, and viruses. As our understanding of the relationship between the oral microbiome and human health has evolved, we have identified a diverse array of oral and systemic diseases associated with this microbial community, including but not limited to caries, periodontal diseases, oral cancer, colorectal cancer, pancreatic cancer, and inflammatory bowel syndrome. The potential predictive relationship between the oral microbiota and these human diseases suggests that the oral cavity is an ideal site for disease diagnosis and development of rapid point-of-care tests. The oral cavity is easily accessible with a non-invasive collection of biological samples. We can envision a future where early life salivary diagnostic tools will be used to predict and prevent future disease via analyzing and shaping the infant’s oral microbiome. In this review, we present evidence for the establishment of the oral microbiome during early childhood, the capability of using childhood oral microbiome to predict future oral and systemic diseases, and the limitations of the current evidence.
Collapse
|
159
|
Oncobiosis and Microbial Metabolite Signaling in Pancreatic Adenocarcinoma. Cancers (Basel) 2020; 12:cancers12051068. [PMID: 32344895 PMCID: PMC7281526 DOI: 10.3390/cancers12051068] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/22/2020] [Accepted: 04/23/2020] [Indexed: 02/06/2023] Open
Abstract
Pancreatic adenocarcinoma is one of the most lethal cancers in both men and women, with a median five-year survival of around 5%. Therefore, pancreatic adenocarcinoma represents an unmet medical need. Neoplastic diseases, such as pancreatic adenocarcinoma, often are associated with microbiome dysbiosis, termed oncobiosis. In pancreatic adenocarcinoma, the oral, duodenal, ductal, and fecal microbiome become dysbiotic. Furthermore, the pancreas frequently becomes colonized (by Helicobacter pylori and Malassezia, among others). The oncobiomes from long- and short-term survivors of pancreatic adenocarcinoma are different and transplantation of the microbiome from long-term survivors into animal models of pancreatic adenocarcinoma prolongs survival. The oncobiome in pancreatic adenocarcinoma modulates the inflammatory processes that drive carcinogenesis. In this review, we point out that bacterial metabolites (short chain fatty acids, secondary bile acids, polyamines, indole-derivatives, etc.) also have a role in the microbiome-driven pathogenesis of pancreatic adenocarcinoma. Finally, we show that bacterial metabolism and the bacterial metabolome is largely dysregulated in pancreatic adenocarcinoma. The pathogenic role of additional metabolites and metabolic pathways will be identified in the near future, widening the scope of this therapeutically and diagnostically exploitable pathogenic pathway in pancreatic adenocarcinoma.
Collapse
|
160
|
Chakaroun RM, Massier L, Kovacs P. Gut Microbiome, Intestinal Permeability, and Tissue Bacteria in Metabolic Disease: Perpetrators or Bystanders? Nutrients 2020; 12:E1082. [PMID: 32295104 PMCID: PMC7230435 DOI: 10.3390/nu12041082] [Citation(s) in RCA: 167] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 04/07/2020] [Indexed: 02/06/2023] Open
Abstract
The emerging evidence on the interconnectedness between the gut microbiome and host metabolism has led to a paradigm shift in the study of metabolic diseases such as obesity and type 2 diabetes with implications on both underlying pathophysiology and potential treatment. Mounting preclinical and clinical evidence of gut microbiota shifts, increased intestinal permeability in metabolic disease, and the critical positioning of the intestinal barrier at the interface between environment and internal milieu have led to the rekindling of the "leaky gut" concept. Although increased circulation of surrogate markers and directly measurable intestinal permeability have been linked to increased systemic inflammation in metabolic disease, mechanistic models behind this phenomenon are underdeveloped. Given repeated observations of microorganisms in several tissues with congruent phylogenetic findings, we review current evidence on these unanticipated niches, focusing specifically on the interaction between gut permeability and intestinal as well as extra-intestinal bacteria and their joint contributions to systemic inflammation and metabolism. We further address limitations of current studies and suggest strategies drawing on standard techniques for permeability measurement, recent advancements in microbial culture independent techniques and computational methodologies to robustly develop these concepts, which may be of considerable value for the development of prevention and treatment strategies.
Collapse
Affiliation(s)
- Rima M. Chakaroun
- Medical Department III—Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, 04103 Leipzig, Germany; (L.M.); (P.K.)
| | | | | |
Collapse
|
161
|
Das S, Shapiro B, Vucic EA, Vogt S, Bar-Sagi D. Tumor Cell-Derived IL1β Promotes Desmoplasia and Immune Suppression in Pancreatic Cancer. Cancer Res 2020; 80:1088-1101. [PMID: 31915130 PMCID: PMC7302116 DOI: 10.1158/0008-5472.can-19-2080] [Citation(s) in RCA: 214] [Impact Index Per Article: 42.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 11/22/2019] [Accepted: 12/31/2019] [Indexed: 12/20/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDA) is an aggressive malignancy typified by a highly stromal and weakly immunogenic tumor microenvironment that promotes tumor evolution and contributes to therapeutic resistance. Here, we demonstrate that PDA tumor cell-derived proinflammatory cytokine IL1β is essential for the establishment of the protumorigenic PDA microenvironment. Tumor cell-derived IL1β promoted the activation and secretory phenotype of quiescent pancreatic stellate cells and established an immunosuppressive milieu mediated by M2 macrophages, myeloid-derived suppressor cells, CD1dhiCD5+ regulatory B cells, and Th17 cells. Loss of tumor cell-derived IL1 signaling in tumor stroma enabled intratumoral infiltration and activation of CD8+ cytotoxic T cells, attenuated growth of pancreatic neoplasia, and conferred survival advantage to PDA-bearing mice. Accordingly, antibody-mediated neutralization of IL1β significantly enhanced the antitumor activity of α-PD-1 and was accompanied by increased tumor infiltration of CD8+ T cells. Tumor cell expression of IL1β in vivo was driven by microbial-dependent activation of toll-like receptor 4 (TLR4) signaling and subsequent engagement of the NLRP3 inflammasome. Collectively, these findings identify a hitherto unappreciated role for tumor cell-derived IL1β in orchestrating an immune-modulatory program that supports pancreatic tumorigenesis. SIGNIFICANCE: These findings identify a new modality for immune evasion in PDA that depends on IL1β production by tumor cells through TLR4-NLRP3 inflammasome activation. Targeting this axis might provide an effective PDA therapeutic strategy.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents, Immunological/pharmacology
- Antineoplastic Agents, Immunological/therapeutic use
- CD8-Positive T-Lymphocytes/drug effects
- CD8-Positive T-Lymphocytes/immunology
- Carcinogenesis/immunology
- Carcinoma, Pancreatic Ductal/drug therapy
- Carcinoma, Pancreatic Ductal/immunology
- Carcinoma, Pancreatic Ductal/pathology
- Cell Line, Tumor/transplantation
- Disease Models, Animal
- Drug Synergism
- Epithelial Cells
- Female
- Humans
- Inflammasomes/immunology
- Inflammasomes/metabolism
- Interleukin-1beta/antagonists & inhibitors
- Interleukin-1beta/immunology
- Interleukin-1beta/metabolism
- Lymphocytes, Tumor-Infiltrating/drug effects
- Lymphocytes, Tumor-Infiltrating/immunology
- Mice
- Mice, Transgenic
- NLR Family, Pyrin Domain-Containing 3 Protein/metabolism
- Pancreatic Ducts/cytology
- Pancreatic Neoplasms/drug therapy
- Pancreatic Neoplasms/immunology
- Pancreatic Neoplasms/pathology
- Primary Cell Culture
- Programmed Cell Death 1 Receptor/antagonists & inhibitors
- Programmed Cell Death 1 Receptor/immunology
- Signal Transduction/immunology
- Toll-Like Receptor 4/metabolism
- Tumor Escape/drug effects
- Tumor Escape/immunology
- Tumor Microenvironment/drug effects
- Tumor Microenvironment/immunology
Collapse
Affiliation(s)
- Shipra Das
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, New York
| | - Beny Shapiro
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, New York
| | - Emily A Vucic
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, New York
| | - Sandra Vogt
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, New York
| | - Dafna Bar-Sagi
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, New York.
| |
Collapse
|
162
|
Søreide K, Roalsø M, Aunan JR. Is There a Trojan Horse to Aggressive Pancreatic Cancer Biology? A Review of the Trypsin-PAR2 Axis to Proliferation, Early Invasion, and Metastasis. J Pancreat Cancer 2020; 6:12-20. [PMID: 32064449 PMCID: PMC7014313 DOI: 10.1089/pancan.2019.0014] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Purpose: Pancreatic cancer is one of the most lethal of solid tumors and is associated with aggressive cancer biology. The purpose is to review the role of trypsin and effect on molecular and cellular processes potentially explaining the aggressive biology in pancreatic cancer. Methods: A narrative literature review of studies investigating trypsin and its effect on protease systems in cancer, with special reference to pancreatic cancer biology. Results: Proteases, such as trypsin, provides a significant advantage to developing tumors through the ability to remodel the extracellular matrix, promote cell invasion and migration, and facilitate angiogenesis. Trypsin is a digestive enzyme produced by the exocrine pancreas that is also related to mechanisms of proliferation, invasion and metastasis. Several of these mechanisms may be co-regulated or influenced by activation of proteinase-activated receptor 2 (PAR-2). The current role in pancreatic cancer is not clear but emerging data suggest several potential mechanisms. Trypsin may act as a Trojan horse in the pancreatic gland, facilitating several molecular pathways from the onset, which leads to rapid progression of the disease. Pancreatic cancer cell lines containing PAR-2 proliferate upon exposure to trypsin, whereas cancer cell lines not containing PAR-2 fail to proliferate upon trypsin expression. Several mechanisms of action include a proinflammatory environment, signals inducing proliferation and migration, and direct and indirect evidence for mechanisms promoting invasion and metastasis. Novel techniques (such as organoid models) and increased understanding of mechanisms (such as the microbiome) may yield improved understanding into the role of trypsin in pancreatic carcinogenesis. Conclusion: Trypsin is naturally present in the pancreatic gland and may experience pathological activation intracellularly and in the neoplastic environment, which speeds up molecular mechanisms of proliferation, invasion, and metastasis. Further investigation of these processes will provide important insights into how pancreatic cancer evolves, and suggest new ways for treatment.
Collapse
Affiliation(s)
- Kjetil Søreide
- Gastrointestinal Translational Research Unit, Laboratory for Molecular Medicine, Stavanger University Hospital, Stavanger, Norway.,Department of Gastrointestinal Surgery, HPB Unit, Stavanger University Hospital, Stavanger, Norway.,Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Marcus Roalsø
- Gastrointestinal Translational Research Unit, Laboratory for Molecular Medicine, Stavanger University Hospital, Stavanger, Norway.,Department of Gastrointestinal Surgery, HPB Unit, Stavanger University Hospital, Stavanger, Norway.,Faculty of Health and Medicine, University of Stavanger, Stavanger, Norway
| | - Jan Rune Aunan
- Gastrointestinal Translational Research Unit, Laboratory for Molecular Medicine, Stavanger University Hospital, Stavanger, Norway.,Department of Gastrointestinal Surgery, HPB Unit, Stavanger University Hospital, Stavanger, Norway
| |
Collapse
|
163
|
Thomas RM, Jobin C. Microbiota in pancreatic health and disease: the next frontier in microbiome research. Nat Rev Gastroenterol Hepatol 2020; 17:53-64. [PMID: 31811279 DOI: 10.1038/s41575-019-0242-7] [Citation(s) in RCA: 208] [Impact Index Per Article: 41.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/11/2019] [Indexed: 12/12/2022]
Abstract
Diseases intrinsic to the pancreas such as pancreatitis, pancreatic cancer and type 1 diabetes mellitus impart substantial health and financial burdens on society but identification of novel mechanisms contributing to these pathologies are slow to emerge. A novel area of research suggests that pancreatic-specific disorders might be modulated by the gut microbiota, either through a local (direct pancreatic influence) or in a remote (nonpancreatic) fashion. In this Perspectives, we examine literature implicating microorganisms in diseases of the pancreas, specifically pancreatitis, type 1 diabetes mellitus and pancreatic ductal adenocarcinoma. We also discuss evidence of an inherent pancreatic microbiota and the influence of the intestinal microbiota as it relates to disease association and development. In doing so, we address pitfalls in the current literature and areas of investigation that are needed to advance a developing field of research that has clinical potential to reduce the societal burden of pancreatic diseases.
Collapse
Affiliation(s)
- Ryan M Thomas
- Department of Surgery, University of Florida College of Medicine, Gainesville, FL, USA.,Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL, USA
| | - Christian Jobin
- Department of Medicine, Division of Gastroenterology, University of Florida College of Medicine, Gainesville, FL, USA.
| |
Collapse
|
164
|
Wang Y, Yang G, You L, Yang J, Feng M, Qiu J, Zhao F, Liu Y, Cao Z, Zheng L, Zhang T, Zhao Y. Role of the microbiome in occurrence, development and treatment of pancreatic cancer. Mol Cancer 2019; 18:173. [PMID: 31785619 PMCID: PMC6885316 DOI: 10.1186/s12943-019-1103-2] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 11/12/2019] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer is one of the most lethal malignancies. Recent studies indicated that development of pancreatic cancer may be intimately connected with the microbiome. In this review, we discuss the mechanisms through which microbiomes affect the development of pancreatic cancer, including inflammation and immunomodulation. Potential therapeutic and diagnostic applications of microbiomes are also discussed. For example, microbiomes may serve as diagnostic markers for pancreatic cancer, and may also play an important role in determining the efficacies of treatments such as chemo- and immunotherapies. Future studies will provide additional insights into the various roles of microbiomes in pancreatic cancer.
Collapse
Affiliation(s)
- Yicheng Wang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan, Wangfujing Street, Beijing, 100730 China
| | - Gang Yang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan, Wangfujing Street, Beijing, 100730 China
| | - Lei You
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan, Wangfujing Street, Beijing, 100730 China
| | - Jinshou Yang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan, Wangfujing Street, Beijing, 100730 China
| | - Mengyu Feng
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan, Wangfujing Street, Beijing, 100730 China
| | - Jiangdong Qiu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan, Wangfujing Street, Beijing, 100730 China
| | - Fangyu Zhao
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan, Wangfujing Street, Beijing, 100730 China
| | - Yueze Liu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan, Wangfujing Street, Beijing, 100730 China
| | - Zhe Cao
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan, Wangfujing Street, Beijing, 100730 China
| | - Lianfang Zheng
- Department of Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730 China
| | - Taiping Zhang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan, Wangfujing Street, Beijing, 100730 China
- Clinical Immunology Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730 China
| | - Yupei Zhao
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan, Wangfujing Street, Beijing, 100730 China
| |
Collapse
|
165
|
Utilizing Whole Fusobacterium Genomes To Identify, Correct, and Characterize Potential Virulence Protein Families. J Bacteriol 2019; 201:JB.00273-19. [PMID: 31501282 DOI: 10.1128/jb.00273-19] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 09/03/2019] [Indexed: 12/20/2022] Open
Abstract
Fusobacterium spp. are Gram-negative, anaerobic, opportunistic pathogens involved in multiple diseases, including a link between the oral pathogen Fusobacterium nucleatum and the progression and severity of colorectal cancer. The identification and characterization of virulence factors in the genus Fusobacterium has been greatly hindered by a lack of properly assembled and annotated genomes. Using newly completed genomes from nine strains and seven species of Fusobacterium, we report the identification and corrected annotation of verified and potential virulence factors from the type 5 secreted autotransporter, FadA, and MORN2 protein families, with a focus on the genetically tractable strain F. nucleatum subsp. nucleatum ATCC 23726 and type strain F. nucleatum subsp. nucleatum ATCC 25586. Within the autotransporters, we used sequence similarity networks to identify protein subsets and show a clear differentiation between the prediction of outer membrane adhesins, serine proteases, and proteins with unknown function. These data have identified unique subsets of type 5a autotransporters, which are key proteins associated with virulence in F. nucleatum However, we coupled our bioinformatic data with bacterial binding assays to show that a predicted weakly invasive strain of F. necrophorum that lacks a Fap2 autotransporter adhesin strongly binds human colonocytes. These analyses confirm a gap in our understanding of how autotransporters, MORN2 domain proteins, and FadA adhesins contribute to host interactions and invasion. In summary, we identify candidate virulence genes in Fusobacterium, and caution that experimental validation of host-microbe interactions should complement bioinformatic predictions to increase our understanding of virulence protein contributions in Fusobacterium infections and disease.IMPORTANCE Fusobacterium spp. are emerging pathogens that contribute to mammalian and human diseases, including colorectal cancer. Despite a validated connection with disease, few proteins have been characterized that define a direct molecular mechanism for Fusobacterium pathogenesis. We report a comprehensive examination of virulence-associated protein families in multiple Fusobacterium species and show that complete genomes facilitate the correction and identification of multiple, large type 5a secreted autotransporter genes in previously misannotated or fragmented genomes. In addition, we use protein sequence similarity networks and human cell interaction experiments to show that previously predicted noninvasive strains can indeed bind to and potentially invade human cells and that this could be due to the expansion of specific virulence proteins that drive Fusobacterium infections and disease.
Collapse
|
166
|
Zhang Z, Tang H, Chen P, Xie H, Tao Y. Demystifying the manipulation of host immunity, metabolism, and extraintestinal tumors by the gut microbiome. Signal Transduct Target Ther 2019; 4:41. [PMID: 31637019 PMCID: PMC6799818 DOI: 10.1038/s41392-019-0074-5] [Citation(s) in RCA: 153] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 08/27/2019] [Accepted: 08/27/2019] [Indexed: 02/06/2023] Open
Abstract
The trillions of microorganisms in the gut microbiome have attracted much attention recently owing to their sophisticated and widespread impacts on numerous aspects of host pathophysiology. Remarkable progress in large-scale sequencing and mass spectrometry has increased our understanding of the influence of the microbiome and/or its metabolites on the onset and progression of extraintestinal cancers and the efficacy of cancer immunotherapy. Given the plasticity in microbial composition and function, microbial-based therapeutic interventions, including dietary modulation, prebiotics, and probiotics, as well as fecal microbial transplantation, potentially permit the development of novel strategies for cancer therapy to improve clinical outcomes. Herein, we summarize the latest evidence on the involvement of the gut microbiome in host immunity and metabolism, the effects of the microbiome on extraintestinal cancers and the immune response, and strategies to modulate the gut microbiome, and we discuss ongoing studies and future areas of research that deserve focused research efforts.
Collapse
Affiliation(s)
- Ziying Zhang
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Department of Pathology, Xiangya Hospital, Central South University, 410078 Hunan, China
- NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute and School of Basic Medicine, Central South University, 410078 Changsha, Hunan China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, Department of Thoracic Surgery, Second Xiangya Hospital, Central South University, 410011 Changsha, China
- Department of Oncology, Third Xiangya Hospital, Central South University, 410013 Changsha, China
| | - Haosheng Tang
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Department of Pathology, Xiangya Hospital, Central South University, 410078 Hunan, China
- NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute and School of Basic Medicine, Central South University, 410078 Changsha, Hunan China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, Department of Thoracic Surgery, Second Xiangya Hospital, Central South University, 410011 Changsha, China
| | - Peng Chen
- Department of Urology, Xiangya Hospital, Central South University, 410008 Changsha, China
| | - Hui Xie
- Department of Thoracic and Cardiovascular Surgery, Second Xiangya Hospital of Central South University, 410011 Changsha, China
| | - Yongguang Tao
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Department of Pathology, Xiangya Hospital, Central South University, 410078 Hunan, China
- NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute and School of Basic Medicine, Central South University, 410078 Changsha, Hunan China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, Department of Thoracic Surgery, Second Xiangya Hospital, Central South University, 410011 Changsha, China
| |
Collapse
|