151
|
Cai Z, Zhang J, He Y, Xia L, Dong X, Chen G, Zhou Y, Hu X, Zhong S, Wang Y, Chen H, Xie D, Liu X, Liu J. Liquid biopsy by combining 5-hydroxymethylcytosine signatures of plasma cell-free DNA and protein biomarkers for diagnosis and prognosis of hepatocellular carcinoma. ESMO Open 2021; 6:100021. [PMID: 33508734 PMCID: PMC7841321 DOI: 10.1016/j.esmoop.2020.100021] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/29/2020] [Accepted: 11/14/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Liquid biopsy based on 5-hydroxymethylcytosine (5hmC) signatures of plasma cell-free DNA (cfDNA) originating from tumor cells provides a novel approach for early diagnosis in hepatocellular carcinoma (HCC). Here, we sought to develop a reliable model using cfDNA 5hmC signatures and protein biomarkers for diagnosis and prognosis of HCC. PATIENTS AND METHODS We carried out genome-wide 5hmC sequencing of cfDNA samples collected from 165 healthy volunteers, 62 liver cirrhosis (LC) patients and 135 HCC patients. A sensitive 5hmC diagnostic model was developed based on 5hmC signatures selected by sparse Partial Least Squares Discriminant Analysis and cross-validation to define the weighted diagnostic score (wd-score). Then, we combined protein biomarkers with the wd-score to build a more robust score (HCC score) by logistic regression. RESULTS The distribution pattern of differential 5hmC regions could clearly distinguish HCC patients, LC patients and healthy volunteers. The wd-score based on 64 5hmC signatures in cfDNA achieves 93.24% of area under the curve (AUC) to distinguish HCC patients from non-HCC patients, and the HCC score by combing protein biomarkers achieves 92.75% of AUC to distinguish HCC patients from LC patients. Meanwhile, the HCC score showed high capacity for screening high recurrence risk patients after receiving surgical resection, and appeared to be an independent indicator for both relapse-free survival (P = 0.00865) and overall survival (P = 0.000739). Furthermore, the values of the HCC score in patients' longitudinal plasma samples were positively associated with tumor burden dynamics during follow-up. CONCLUSION We have developed and validated a novel non-invasive liquid biopsy strategy for HCC diagnosis, prognosis and surveillance during HCC progression.
Collapse
Affiliation(s)
- Z Cai
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, P. R. China; Mengchao Med-X Center, Fuzhou University, Fuzhou, P. R. China
| | - J Zhang
- Frontier Science Center for Disease Molecular Network, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, P. R. China
| | - Y He
- Frontier Science Center for Disease Molecular Network, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, P. R. China; Laboratory of Nervous System Disease and Brain Functions, Clinical Research Institute, The Affiliated Hospital of Southwest Medical University, Luzhou, P. R. China
| | - L Xia
- Frontier Science Center for Disease Molecular Network, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, P. R. China
| | - X Dong
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, P. R. China; Mengchao Med-X Center, Fuzhou University, Fuzhou, P. R. China
| | - G Chen
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, P. R. China; Mengchao Med-X Center, Fuzhou University, Fuzhou, P. R. China
| | - Y Zhou
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, P. R. China; Mengchao Med-X Center, Fuzhou University, Fuzhou, P. R. China
| | - X Hu
- Frontier Science Center for Disease Molecular Network, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, P. R. China
| | - S Zhong
- Tailai Inc., Shanghai, P. R. China
| | - Y Wang
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, P. R. China; Mengchao Med-X Center, Fuzhou University, Fuzhou, P. R. China
| | - H Chen
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, P. R. China
| | - D Xie
- Frontier Science Center for Disease Molecular Network, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, P. R. China.
| | - X Liu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, P. R. China; Mengchao Med-X Center, Fuzhou University, Fuzhou, P. R. China.
| | - J Liu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, P. R. China; Mengchao Med-X Center, Fuzhou University, Fuzhou, P. R. China.
| |
Collapse
|
152
|
Luo H, Wei W, Ye Z, Zheng J, Xu RH. Liquid Biopsy of Methylation Biomarkers in Cell-Free DNA. Trends Mol Med 2021; 27:482-500. [PMID: 33500194 DOI: 10.1016/j.molmed.2020.12.011] [Citation(s) in RCA: 168] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 12/28/2020] [Accepted: 12/30/2020] [Indexed: 02/09/2023]
Abstract
Liquid biopsies, in particular, analysis of cell-free DNA (cfDNA), have emerged as a promising noninvasive diagnostic approach in oncology. Abnormal distribution of DNA methylation is one of the hallmarks of many cancers and methylation changes occur early during carcinogenesis. Systemic analysis of cfDNA methylation profiles is being developed for cancer early detection, monitoring for minimal residual disease (MRD), predicting treatment response and prognosis, and tracing the tissue origin. This review highlights the advantages and disadvantages of ctDNA profiling for noninvasive diagnosis of early-stage cancers and explores recent advances in the clinical application of ctDNA methylation assays. We also summarize the technologies for ctDNA methylation analysis and provide a brief overview of the bioinformatic approaches for analyzing DNA methylation sequencing data.
Collapse
Affiliation(s)
- Huiyan Luo
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Wei Wei
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Ziyi Ye
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Jiabo Zheng
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Rui-Hua Xu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China.
| |
Collapse
|
153
|
Identification of a Nine Immune-Related lncRNA Signature as a Novel Diagnostic Biomarker for Hepatocellular Carcinoma. BIOMED RESEARCH INTERNATIONAL 2021; 2021:9798231. [PMID: 33506049 PMCID: PMC7808810 DOI: 10.1155/2021/9798231] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 10/20/2020] [Accepted: 12/18/2020] [Indexed: 02/06/2023]
Abstract
Hepatocellular carcinoma (HCC) ranks fifth among common cancers and is the second most common cause of cancer-related mortality worldwide. This study is aimed at identifying an immune-related long noncoding RNA (lncRNA) signature as a potential biomarker with prognostic value to improve early diagnosis and provide potential therapeutic targets for HCC patients. The subjects of this study were HCC samples with complete transcriptome data and clinical information downloaded from The Cancer Genome Atlas (TCGA) database. We then extracted the immune-related mRNA and lncRNA expression profiles. Based on the expression profiles of immune-related lncRNAs, we identified a nine-lncRNA signature that was related to the progression of HCC. The risk score was calculated based on the expression level of the nine lncRNAs of each sample, which divided patients into high-risk and low-risk groups. We found that the increased risk score was associated with a poor prognosis of HCC patients. To assess the accuracy of the survival model, we calculated a receiver operating characteristic (ROC) for validation. The curve showed that the area under the curve (AUC) for the risk score was 0.792. Besides, both principal component analysis (PCA) and gene set enrichment analysis (GSEA) were further used for functional annotation. We found that the distribution patterns were different between the low-risk and high-risk groups in PCA, and the underlying mechanism by which the nine lncRNAs promoted the progression of HCC involved an abnormal immune status. Finally, we analyzed the infiltration of twenty-nine kinds of immune cells and the activation of immune function in HCC using the ssGSEA algorithm. The results showed that aDCs, iDCs, macrophages, Tfh, Th1, Treg, and NK cells were correlated with the progress of HCC patients. And the immune functions including APC costimulation, CCR, check point, HLA, MHC class I, and Type II IFN responses were also significantly different between the high-risk and low-risk groups. In conclusion, our study identified a nine-lncRNA signature with potential prognostic value for patients with HCC, which could be used as a new biomarker for the diagnosis and immunotherapy of HCC.
Collapse
|
154
|
Lv H, Lv G, Chen C, Zong Q, Jiang G, Ye D, Cui X, He Y, Xiang W, Han Q, Tang L, Yang W, Wang H. NAD + Metabolism Maintains Inducible PD-L1 Expression to Drive Tumor Immune Evasion. Cell Metab 2021; 33:110-127.e5. [PMID: 33171124 DOI: 10.1016/j.cmet.2020.10.021] [Citation(s) in RCA: 158] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 08/04/2020] [Accepted: 10/21/2020] [Indexed: 12/16/2022]
Abstract
NAD+ metabolism is implicated in aging and cancer. However, its role in immune checkpoint regulation and immune evasion remains unclear. Here, we find nicotinamide phosphoribosyltransferase (NAMPT), the rate-limiting enzyme of the NAD+ biogenesis, drives interferon γ (IFNγ)-induced PD-L1 expression in multiple types of tumors and governs tumor immune evasion in a CD8+ T cell-dependent manner. Mechanistically, NAD+ metabolism maintains activity and expression of methylcytosine dioxygenase Tet1 via α-ketoglutarate (α-KG). IFNγ-activated Stat1 facilitates Tet1 binding to Irf1 to regulate Irf1 demethylation, leading to downstream PD-L1 expression on tumors. Importantly, high NAMPT-expressing tumors are more sensitive to anti-PD-L1 treatment and NAD+ augmentation enhances the efficacy of anti-PD-L1 antibody in immunotherapy-resistant tumors. Collectively, these data delineate an NAD+ metabolism-dependent epigenetic mechanism contributing to tumor immune evasion, and NAD+ replenishment combined with PD-(L)1 antibody provides a promising therapeutic strategy for immunotherapy-resistant tumors.
Collapse
Affiliation(s)
- Hongwei Lv
- International Co-operation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200438, China; National Center for Liver Cancer, Second Military Medical University, Shanghai 201805, China; Shanghai Key Laboratory of Hepato-biliary Tumor Biology, Shanghai 200438, China
| | - Guishuai Lv
- International Co-operation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200438, China; National Center for Liver Cancer, Second Military Medical University, Shanghai 201805, China; Ministry of Education Key Laboratory on Signaling Regulation and Targeting Therapy of Liver Cancer, Shanghai 200438, China
| | - Cian Chen
- International Co-operation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200438, China; National Center for Liver Cancer, Second Military Medical University, Shanghai 201805, China
| | - Qianni Zong
- International Co-operation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200438, China; National Center for Liver Cancer, Second Military Medical University, Shanghai 201805, China
| | - Guoqing Jiang
- Department of Hepatobiliary Surgery, Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu 225000, China
| | - Dan Ye
- Molecular and Cell Biology Lab, Institute of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Xiuliang Cui
- International Co-operation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200438, China; National Center for Liver Cancer, Second Military Medical University, Shanghai 201805, China
| | - Yufei He
- International Co-operation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200438, China; National Center for Liver Cancer, Second Military Medical University, Shanghai 201805, China
| | - Wei Xiang
- Cancer Research Center, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Qin Han
- International Co-operation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200438, China; National Center for Liver Cancer, Second Military Medical University, Shanghai 201805, China
| | - Liang Tang
- International Co-operation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200438, China; National Center for Liver Cancer, Second Military Medical University, Shanghai 201805, China
| | - Wen Yang
- International Co-operation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200438, China; National Center for Liver Cancer, Second Military Medical University, Shanghai 201805, China.
| | - Hongyang Wang
- International Co-operation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200438, China; National Center for Liver Cancer, Second Military Medical University, Shanghai 201805, China; Cancer Research Center, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230027, China; Fudan University Shanghai Cancer Center, Shanghai 200032, China.
| |
Collapse
|
155
|
Biomarkers in Hepatocellular Carcinoma: Current Status and Future Perspectives. Biomedicines 2020; 8:biomedicines8120576. [PMID: 33297335 PMCID: PMC7762241 DOI: 10.3390/biomedicines8120576] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 12/01/2020] [Accepted: 12/02/2020] [Indexed: 12/12/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common primary liver cancer and one of the leading causes of cancer-related death worldwide. HCC is highly heterogeneous, both within the tumor and among individuals, which is closely related to the HCC surveillance, diagnosis, prognosis, and treatment response. With the advances of next-generation sequencing, the genomic landscape of HCC has been identified which vastly improves our understanding of genetic and epigenetic changes and their interaction during HCC development. In particular, gene mutations, epigenetic modifications, aberrant expression of coding and non-coding RNAs have been extensively explored and many of them are considered as biomarkers for HCC. Most recently, the gut microbiome has been proposed as potential non-invasive biomarkers for HCC diagnosis. In this review, we summarize the current development of HCC biomarkers studies and provide insights on further steps towards precision medicine of HCC.
Collapse
|
156
|
Cui XL, Nie J, Ku J, Dougherty U, West-Szymanski DC, Collin F, Ellison CK, Sieh L, Ning Y, Deng Z, Zhao CWT, Bergamaschi A, Pekow J, Wei J, Beadell AV, Zhang Z, Sharma G, Talwar R, Arensdorf P, Karpus J, Goel A, Bissonnette M, Zhang W, Levy S, He C. A human tissue map of 5-hydroxymethylcytosines exhibits tissue specificity through gene and enhancer modulation. Nat Commun 2020; 11:6161. [PMID: 33268789 PMCID: PMC7710742 DOI: 10.1038/s41467-020-20001-w] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 11/03/2020] [Indexed: 02/06/2023] Open
Abstract
DNA 5-hydroxymethylcytosine (5hmC) modification is known to be associated with gene transcription and frequently used as a mark to investigate dynamic DNA methylation conversion during mammalian development and in human diseases. However, the lack of genome-wide 5hmC profiles in different human tissue types impedes drawing generalized conclusions about how 5hmC is implicated in transcription activity and tissue specificity. To meet this need, we describe the development of a 5hmC tissue map by characterizing the genomic distributions of 5hmC in 19 human tissues derived from ten organ systems. Subsequent sequencing results enabled the identification of genome-wide 5hmC distributions that uniquely separates samples by tissue type. Further comparison of the 5hmC profiles with transcriptomes and histone modifications revealed that 5hmC is preferentially enriched on tissue-specific gene bodies and enhancers. Taken together, the results provide an extensive 5hmC map across diverse human tissue types that suggests a potential role of 5hmC in tissue-specific development; as well as a resource to facilitate future studies of DNA demethylation in pathogenesis and the development of 5hmC as biomarkers.
Collapse
Affiliation(s)
- Xiao-Long Cui
- Department of Chemistry, Department of Biochemistry and Molecular Biology, Institute for Biophysical Dynamics, University of Chicago, Chicago, IL, USA.,Howard Hughes Medical Institute, University of Chicago, Chicago, IL, USA
| | - Ji Nie
- Department of Chemistry, Department of Biochemistry and Molecular Biology, Institute for Biophysical Dynamics, University of Chicago, Chicago, IL, USA.,Howard Hughes Medical Institute, University of Chicago, Chicago, IL, USA
| | - Jeremy Ku
- Bluestar Genomics Inc., San Diego, CA, USA
| | | | - Diana C West-Szymanski
- Howard Hughes Medical Institute, University of Chicago, Chicago, IL, USA.,Department of Medicine, University of Chicago, Chicago, IL, USA
| | | | | | - Laura Sieh
- Department of Chemistry, Department of Biochemistry and Molecular Biology, Institute for Biophysical Dynamics, University of Chicago, Chicago, IL, USA.,Howard Hughes Medical Institute, University of Chicago, Chicago, IL, USA
| | | | - Zifeng Deng
- Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Carolyn W T Zhao
- Department of Chemistry, Department of Biochemistry and Molecular Biology, Institute for Biophysical Dynamics, University of Chicago, Chicago, IL, USA.,Howard Hughes Medical Institute, University of Chicago, Chicago, IL, USA
| | | | - Joel Pekow
- Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Jiangbo Wei
- Department of Chemistry, Department of Biochemistry and Molecular Biology, Institute for Biophysical Dynamics, University of Chicago, Chicago, IL, USA.,Howard Hughes Medical Institute, University of Chicago, Chicago, IL, USA
| | - Alana V Beadell
- Department of Chemistry, Department of Biochemistry and Molecular Biology, Institute for Biophysical Dynamics, University of Chicago, Chicago, IL, USA.,Howard Hughes Medical Institute, University of Chicago, Chicago, IL, USA
| | - Zhou Zhang
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Geeta Sharma
- City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | | | | | - Jason Karpus
- Department of Chemistry, Department of Biochemistry and Molecular Biology, Institute for Biophysical Dynamics, University of Chicago, Chicago, IL, USA.,Howard Hughes Medical Institute, University of Chicago, Chicago, IL, USA
| | - Ajay Goel
- City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | | | - Wei Zhang
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | | | - Chuan He
- Department of Chemistry, Department of Biochemistry and Molecular Biology, Institute for Biophysical Dynamics, University of Chicago, Chicago, IL, USA. .,Howard Hughes Medical Institute, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
157
|
Long G, Fang T, Su W, Mi X, Zhou L. The prognostic value of postoperative circulating cell-free DNA in operable hepatocellular carcinoma. Scand J Gastroenterol 2020; 55:1441-1446. [PMID: 33119422 DOI: 10.1080/00365521.2020.1839127] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND Tumor biomarkers are eagerly needed in monitoring the recurrence of operable hepatocellular carcinoma (HCC). Circulating cell-free DNA (cfDNA) is a promising noninvasive molecular biomarker for HCC. The current study aimed to evaluate the clinical significance of the postoperative cfDNA in operable HCC. METHODS This study enrolled 82 HCC patients from January 2018 to June 2019. All patients underwent liver surgery and were pathologically diagnosed with HCC. Postoperative blood samples were collected from each patient. A fluorometric dsDNA assay was used to measure the concentration of cfDNA. We explore the correlation between cfDNA and recurrence. Kaplan-Meier's curves were used to evaluate the recurrence-free survival (RFS). Univariate and multivariate Cox regression analyses were used for assessing the relative clinical variables in predicting recurrence. RESULTS Of the 82 HCC patients, 72 (87%) patients are male and the average age was 52.7 ± 12.8 years. The cfDNA-low and cfDNA-high groups had median recurrence times of 19.5 months and 14.0 months, respectively (p = .023). Multivariate analysis showed that postoperative cfDNA, tumour number and microvascular invasion (p < .050) were independent risk factors for recurrence in operable HCC. CONCLUSIONS Postoperative cfDNA is still a promising marker to predict prognosis in postoperative HCC patients although prospective and large multicenter clinical study is needed to further validate the relationship between cfDNA and HCC recurrence.
Collapse
Affiliation(s)
- Guo Long
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Tongdi Fang
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Wenxin Su
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Xingyu Mi
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - LeDu Zhou
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
158
|
Chen VL, Xu D, Wicha MS, Lok AS, Parikh ND. Utility of Liquid Biopsy Analysis in Detection of Hepatocellular Carcinoma, Determination of Prognosis, and Disease Monitoring: A Systematic Review. Clin Gastroenterol Hepatol 2020; 18:2879-2902.e9. [PMID: 32289533 PMCID: PMC7554087 DOI: 10.1016/j.cgh.2020.04.019] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 03/31/2020] [Accepted: 04/03/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Liquid biopsies, or blood samples, can be analyzed to detect circulating tumor cells (CTCs), cell-free DNA (cfDNA), and extracellular vesicles, which might identify patients with hepatocellular carcinoma (HCC) or help determine their prognoses. We performed a systematic review of studies of analyses of liquid biopsies from patients with HCC and their comparisons with other biomarkers. METHODS We performed a systematic review of original studies published before December 1, 2019. We included studies that compared liquid biopsies alone and in combination with other biomarkers for the detection of HCC, performed multivariate analyses of the accuracy of liquid biopsy analysis in determining patient prognoses, or evaluated the utility of liquid biopsy analysis in monitoring treatment response. RESULTS Our final analysis included 112 studies: 67 on detection, 46 on determining prognosis, and 25 on treatment monitoring or selection. Ten studies evaluated assays that characterized cfDNA for detection of HCC in combination with measurement of α-fetoprotein (AFP)-these studies found that the combined measurement of cfDNA and AFP more accurately identified patients with HCC than measurement of AFP alone. Six studies evaluated assays for extracellular vesicles and 2 studies evaluated assays for CTC in detection of HCC, with and without other biomarkers-most of these studies found that detection of CTCs or extracellular vesicles with AFP more accurately identified patients with HCC than measurement of AFP alone. Detection of CTCs before surgery was associated with HCC recurrence after resection in 13 of 14 studies; cfDNA and extracellular vesicles have been studied less frequently as prognostic factors. Changes in CTC numbers before vs after treatment more accurately identify patients with HCC recurrence than pretreatment counts alone, and measurements of cfDNA can identify patients with disease recurrence or progression before changes can be detected by imaging. We found little evidence that analyses of liquid biopsies can aid in the selection of treatment for HCC. Quality assessment showed risk of bias in studies of HCC detection and determination of prognosis. CONCLUSIONS In a systematic review of 112 studies of the accuracy of liquid biopsy analysis, we found that assays for CTCs and cfDNA might aid in determining patient prognoses and monitoring HCC, and assays for cfDNA might aid in HCC detection, but there is a risk of bias in these studies. Studies must be standardized before we can assess the clinical utility of liquid biopsy analysis in the detection and management of patients with HCC.
Collapse
Affiliation(s)
- Vincent L Chen
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, Michigan.
| | - Dabo Xu
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, Michigan
| | - Max S Wicha
- Division of Hematology and Oncology, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, Michigan
| | - Anna S Lok
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, Michigan
| | - Neehar D Parikh
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, Michigan
| |
Collapse
|
159
|
Gu C, Shi X, Dai C, Shen F, Rocco G, Chen J, Huang Z, Chen C, He C, Huang T, Chen C. RNA m 6A Modification in Cancers: Molecular Mechanisms and Potential Clinical Applications. Innovation (N Y) 2020; 1:100066. [PMID: 34557726 PMCID: PMC8454620 DOI: 10.1016/j.xinn.2020.100066] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
N6-Methyladenosine (m6A) RNA modification brings a new dawn for RNA modification researches in recent years. This posttranscriptional RNA modification is dynamic and reversible, and is regulated by methylases ("writers"), demethylases ("erasers"), and proteins that preferentially recognize m6A modifications ("readers"). The change of RNA m6A modification regulates RNA metabolism in eucaryon, including translation, splicing, exporting, decay, and processing. Thereby the dysregulation of m6A may lead to tumorigenesis and progression. Given the tumorigenic role of abnormal m6A expression, m6A regulators may function as potential clinical therapeutic targets for cancers. In this review, we emphasize on the underlying mechanisms of m6A modifications in tumorigenesis and further introduce the potential m6A regulators-associated therapeutic targets for tumor therapy.
Collapse
Affiliation(s)
- Chang Gu
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Xin Shi
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Chenyang Dai
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Feng Shen
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Gaetano Rocco
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Druckenmiller Center for Lung Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Jiafei Chen
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Zhengyu Huang
- Department of Colorectal and Anal Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Chunji Chen
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Chuan He
- Department of Chemistry and Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, USA
- Howard Hughes Medical Institute, The University of Chicago, Chicago, IL, USA
- Medical Scientist Training Program/Committee on Cancer Biology, The University of Chicago, Chicago, IL, USA
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, USA
| | - Tao Huang
- Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Chang Chen
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| |
Collapse
|
160
|
Han L, Chen C, Lu X, Song Y, Zhang Z, Zeng C, Chiu R, Li L, Xu M, He C, Zhang W, Duan S. Alterations of 5-hydroxymethylcytosines in circulating cell-free DNA reflect retinopathy in type 2 diabetes. Genomics 2020; 113:79-87. [PMID: 33221518 DOI: 10.1016/j.ygeno.2020.11.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 10/31/2020] [Accepted: 11/16/2020] [Indexed: 11/25/2022]
Abstract
Diabetic retinopathy (DR) is a common microvascular complication that may cause severe visual impairment and blindness in patients with type 2 diabetes mellitus (T2DM). Early detection of DR will expand the range of potential treatment options and enable better control of disease progression. Epigenetic dysregulation has been implicated in the pathogenesis of microvascular complications in patients with T2DM. We sought to explore the diagnostic value of 5-hydroxymethylcytosines (5hmC) in circulating cell-free DNA (cfDNA) for DR, taking advantage of a highly sensitive technique, the 5hmC-Seal. The genome-wide 5hmC profiles in cfDNA samples from 35 patients diagnosed with DR and 35 age-, gender-, diabetic duration-matched T2DM controls were obtained using the 5hmC-Seal, followed by a case-control analysis and external validation. The genomic distribution of 5hmC in cfDNA from patients with DR reflected potential gene regulatory relevance, showing co-localization with histone modification marks for active expression (e.g., H3K4me1). A three-gene signature (MESP1, LY6G6D, LINC01556) associated with DR was detected using the elastic net regularization on the multivariable logistic regression model, showing high accuracy to distinguish patients with DR from T2DM controls (AUC [area under curve] = 91.4%; 95% CI [confidence interval], 84.3- 98.5%), achieving a sensitivity of 88.6% and a specificity of 91.4%. In an external testing set, the 5hmC model detected 5 out of 6 DR patients and predicted 7 out of 8 non-DR patients with other microvascular complications. Circulating cfDNA from patients with DR contained 5hmC information that could be exploited for DR detection. As a novel non-invasive approach, the 5hmC-Seal holds the promise to be an integrated part of patient care and surveillance tool for T2DM patients.
Collapse
Affiliation(s)
- Liyuan Han
- Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, Zhejiang, China; Department of Global Health, Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, Zhejiang, China
| | - Chang Chen
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Xingyu Lu
- Shanghai Epican Genetech Co., Ltd., Shanghai, China
| | - Yanqun Song
- Shanghai Epican Genetech Co., Ltd., Shanghai, China
| | - Zhou Zhang
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Chang Zeng
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Rudyard Chiu
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Li Li
- Department of Endocrinology and Metabolism, Ningbo First Hospital, Ningbo, Zhejiang, China
| | - Miao Xu
- Department of Endocrinology and Metabolism, Ningbo First Hospital, Ningbo, Zhejiang, China
| | - Chuan He
- Department of Chemistry; Department of Biochemistry and Molecular Biology; Institute for Biophysical Dynamics; and the Howard Hughes Medical Institute, The University of Chicago, Chicago, IL, USA
| | - Wei Zhang
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA; Insititute of Precision Medicine, Jining Medical University, Jining, Shandong, China.
| | - Shiwei Duan
- Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang, China.
| |
Collapse
|
161
|
Trevisan França de Lima L, Broszczak D, Zhang X, Bridle K, Crawford D, Punyadeera C. The use of minimally invasive biomarkers for the diagnosis and prognosis of hepatocellular carcinoma. Biochim Biophys Acta Rev Cancer 2020; 1874:188451. [PMID: 33065194 DOI: 10.1016/j.bbcan.2020.188451] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/08/2020] [Accepted: 10/08/2020] [Indexed: 02/07/2023]
Abstract
Hepatocellular carcinoma (HCC) is a common cause of cancer-related deaths worldwide. Despite advances in systemic therapies, patient survival remains low due to late diagnosis and frequent underlying liver diseases. HCC diagnosis generally relies on imaging and liver tissue biopsy. Liver biopsy presents limitations because it is invasive, potentially risky for patients and it frequently misrepresents tumour heterogeneity. Recently, liquid biopsy has emerged as a way to monitor cancer progression in a non-invasive manner. Tumours shed content into the bloodstream, such as circulating tumour cells (CTCs), circulating nucleic acids, extracellular vesicles and proteins, that can be isolated from biological fluids of patients with HCC. These biomarkers provide knowledge regarding the genetic landscape of tumours and might be used for diagnostic or prognostic purposes. In this review, we summarize recent literature on circulating biomarkers for HCC, namely CTCs, circulating tumour DNA (ctDNA), RNA, extracellular vesicles and proteins, and their clinical relevance in HCC.
Collapse
Affiliation(s)
- Lucas Trevisan França de Lima
- Institute of Health & Biomedical Innovation, School of Biomedical Sciences, Queensland University of Technology, Kelvin Grove Campus, QLD, Australia; Gallipoli Medical Research Foundation, Greenslopes Private Hospital, Greenslopes, QLD, Australia
| | - Daniel Broszczak
- Institute of Health & Biomedical Innovation, School of Biomedical Sciences, Queensland University of Technology, Kelvin Grove Campus, QLD, Australia
| | - Xi Zhang
- Institute of Health & Biomedical Innovation, School of Biomedical Sciences, Queensland University of Technology, Kelvin Grove Campus, QLD, Australia
| | - Kim Bridle
- The University of Queensland, Faculty of Medicine, Herston, QLD, Australia; Gallipoli Medical Research Foundation, Greenslopes Private Hospital, Greenslopes, QLD, Australia
| | - Darrell Crawford
- The University of Queensland, Faculty of Medicine, Herston, QLD, Australia; Gallipoli Medical Research Foundation, Greenslopes Private Hospital, Greenslopes, QLD, Australia
| | - Chamindie Punyadeera
- Institute of Health & Biomedical Innovation, School of Biomedical Sciences, Queensland University of Technology, Kelvin Grove Campus, QLD, Australia.
| |
Collapse
|
162
|
Cai J, Zhang Z, He C, Zhang W, Fan J. Reply to 'Are the 5-hydroxymethylcytosine-based wd-scores really superior over α-fetoprotein for the early diagnosis of hepatocellular carcinoma?'. Gut 2020; 69:1903-1904. [PMID: 31871104 DOI: 10.1136/gutjnl-2019-320298] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 12/03/2019] [Accepted: 12/10/2019] [Indexed: 02/06/2023]
Affiliation(s)
- Jiabin Cai
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China.,Key Laboratory of Medical Epigenetics and Metabolism, Institute of Biomedical Sciences, Fudan University, Shanghai, China
| | - Zhou Zhang
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Chuan He
- Department of Chemistry, Department of Biochemistry and Molecular Biology, Institute for Biophysical Dynamics, and the Howard Hughes Medical Institute, University of Chicago, Chicago, Illinois, USA
| | - Wei Zhang
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Jia Fan
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China .,Key Laboratory of Medical Epigenetics and Metabolism, Institute of Biomedical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
163
|
Li J, Zhao S, Lee M, Yin Y, Li J, Zhou Y, Ballester LY, Esquenazi Y, Dashwood RH, Davies PJA, Parsons DW, Li XN, Huang Y, Sun D. Reliable tumor detection by whole-genome methylation sequencing of cell-free DNA in cerebrospinal fluid of pediatric medulloblastoma. SCIENCE ADVANCES 2020; 6:6/42/eabb5427. [PMID: 33067228 PMCID: PMC7567591 DOI: 10.1126/sciadv.abb5427] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 09/01/2020] [Indexed: 05/11/2023]
Abstract
Medulloblastoma (MB), the most common form of pediatric brain malignancy, has a low frequency of oncogenic mutations but pronouncedly abnormal DNA methylation changes. Epigenetic analysis of circulating cell-free tumor DNA (ctDNA) by liquid biopsy offers an approach for real-time monitoring of tumor status without tumor dissection. In this study, we identified 6598 differentially methylated CpGs in both MB tumors and the ctDNA isolated from matched cerebrospinal fluid (CSF) compared with normal cerebellum, which could be used to detect MB tumor occurrence and determine its subtype. Furthermore, DNA methylation changes in serial CSF samples could be used to monitor the treatment response and tumor recurrence. Integrating our data with large public datasets, we identified reliable MB DNA methylation signatures in ctDNA that have potential diagnostic and prognostic values. Our study sets the stage for exploiting epigenetic markers in CSF to improve the clinical management of patients with MB.
Collapse
Affiliation(s)
- Jia Li
- Center for Epigenetics and Disease Prevention, Institute of Biosciences and Technology, Texas A&M University, Houston, TX 77030, USA
| | - Sibo Zhao
- Texas Children's Hospital, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Hematology and Oncology, Cook Children's Medical Center, Fort Worth, TX 76104, USA
| | - Minjung Lee
- Center for Epigenetics and Disease Prevention, Institute of Biosciences and Technology, Texas A&M University, Houston, TX 77030, USA
| | - Yue Yin
- Center for Epigenetics and Disease Prevention, Institute of Biosciences and Technology, Texas A&M University, Houston, TX 77030, USA
| | - Jin Li
- Center for Epigenetics and Disease Prevention, Institute of Biosciences and Technology, Texas A&M University, Houston, TX 77030, USA
| | - Yubin Zhou
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, TX 77030, USA
| | - Leomar Y Ballester
- Department of Pathology and Laboratory Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- Department of Neurosurgery, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Yoshua Esquenazi
- Department of Neurosurgery, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Roderick H Dashwood
- Center for Epigenetics and Disease Prevention, Institute of Biosciences and Technology, Texas A&M University, Houston, TX 77030, USA
| | - Peter J A Davies
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, TX 77030, USA
| | - D Williams Parsons
- Texas Children's Hospital, Baylor College of Medicine, Houston, TX 77030, USA
| | - Xiao-Nan Li
- Texas Children's Hospital, Baylor College of Medicine, Houston, TX 77030, USA.
- Program of Precision Medicine PDOX Modeling of Pediatric Cancers, Department of Pediatrics, Ann & Robert H. Lurie Children's Hospital of Chicago, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Yun Huang
- Center for Epigenetics and Disease Prevention, Institute of Biosciences and Technology, Texas A&M University, Houston, TX 77030, USA.
| | - Deqiang Sun
- Center for Epigenetics and Disease Prevention, Institute of Biosciences and Technology, Texas A&M University, Houston, TX 77030, USA.
- Gomics Technology Corporation, 7707 Fannin Street, Suite 200, Houston, TX 77054, USA
- Department of Cardiology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| |
Collapse
|
164
|
Yang Y, Deng X, Chen X, Chen S, Song L, Meng M, Han Q, Imani S, Li S, Zhong Z, Li X, Deng Y. Landscape of active enhancers developed de novo in cirrhosis and conserved in hepatocellular carcinoma. Am J Cancer Res 2020; 10:3157-3178. [PMID: 33163263 PMCID: PMC7642653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 09/22/2020] [Indexed: 06/11/2023] Open
Abstract
Hepatocellular carcinoma (HCC) patients always have a background of cirrhosis. Aberrant epigenetic changes in cirrhosis provide a conductive environment for HCC tumorigenesis. Active enhancers (AEs) are essential for epigenetic regulation and play an important role in cell development and the progression of many diseases. However, the role of AEs in the progression from cirrhosis to HCC remains unclear. We systemically constructed a landscape of AEs that developed de novo in cirrhosis and were conserved in HCC, referred to as CL-HCC AEs. We observed significant upregulation of these CL-HCC AE-associated genes in cirrhosis and HCC, with no other epigenetic changes. Enrichment analysis of these CL-HCC AE-associated genes revealed enrichment in both hepatocyte-intrinsic tumorigenesis and tumor immune response, which might contribute to HCC tumorigenesis. Analysis of the diagnostic ability of these CL-HCC AE-associated genes provided a five-gene (THBS4, OLFML2B, CDKN3, GABRE, and HDAC11) diagnostic biomarker for HCC. Molecular subtype (MS) identification based on the CL-HCC AE-associated genes identified 3 MSs. Samples representing the 3 MSs showed differences in CL-HCC AE-associated gene expression levels, prognosis, copy number variation (CNV)/mutation frequencies, functional pathways, tumor microenvironment (TME) cell subtypes, immunotherapy responses and putative drug responses. We also found that the BET bromodomain inhibitor JQ1 downregulated the expression of CL-HCC AE-associated genes. Collectively, our results suggest that CL-HCC AEs and their associated genes contribute to HCC tumorigenesis and evolution, and could be used to distinguish the different landscapes of HCC and help explore the mechanism, classification, prediction, and precision therapy of HCC.
Collapse
Affiliation(s)
- Yao Yang
- Institute of Materia Medica, College of Pharmacy, Army Medical University (Third Military Medical University)Chongqing 400038, China
| | - Xiaoyu Deng
- Institute of Materia Medica, College of Pharmacy, Army Medical University (Third Military Medical University)Chongqing 400038, China
| | - Xinjian Chen
- Department of Cardiovascularology, Airforce Hospital of Southern Theater CommandGuangzhou, Guangdong 510062, China
| | - Shihan Chen
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Army Medical University (Third Military Medical University)Chongqing 400038, China
| | - Liang Song
- Institute of Materia Medica, College of Pharmacy, Army Medical University (Third Military Medical University)Chongqing 400038, China
| | - Meng Meng
- Institute of Materia Medica, College of Pharmacy, Army Medical University (Third Military Medical University)Chongqing 400038, China
| | - Qi Han
- The General Hospital of Tibet Military RegionLhasa, Tibet 850000, China
| | - Saber Imani
- Department of Oncology, The Affiliated Hospital of Southwest Medical UniversityLuzhou, Sichuan 646000, China
| | - Shuhui Li
- Department of Clinical Biochemistry, Faculty of Pharmacy and Laboratory Medicine, Army Medical University (Third Military Medical University)Chongqing 400038, China
| | - Zhaoyang Zhong
- Cancer Center, Daping Hospital and Research Institute of Surgery, Army Medical University (Third Military Medical University)Chongqing 400042, China
| | - Xiaohui Li
- Institute of Materia Medica, College of Pharmacy, Army Medical University (Third Military Medical University)Chongqing 400038, China
| | - Youcai Deng
- Institute of Materia Medica, College of Pharmacy, Army Medical University (Third Military Medical University)Chongqing 400038, China
| |
Collapse
|
165
|
Chen Y, Lin XY. Are the 5-hydroxymethylcytosine-based wd-scores really superior over α-fetoprotein for the early diagnosis of hepatocellular carcinoma? Gut 2020; 69:1892. [PMID: 31653786 DOI: 10.1136/gutjnl-2019-319853] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 10/06/2019] [Accepted: 10/15/2019] [Indexed: 12/08/2022]
Affiliation(s)
- Yongpeng Chen
- Department of Infectious Disease, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Xiao-Yu Lin
- Department of Infectious Disease, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
166
|
Gan X, Luo Y, Dai G, Lin J, Liu X, Zhang X, Li A. Identification of Gene Signatures for Diagnosis and Prognosis of Hepatocellular Carcinomas Patients at Early Stage. Front Genet 2020; 11:857. [PMID: 32849835 PMCID: PMC7406719 DOI: 10.3389/fgene.2020.00857] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 07/14/2020] [Indexed: 12/12/2022] Open
Abstract
The onset of liver cancer is insidious. Currently, there is no effective method for the early detection of hepatocellular carcinoma (HCC). Transcriptomic profiles of 826 tissue samples from the Gene Expression Omnibus (GEO), The Cancer Genome Atlas (TCGA), Genotype tissue expression (GTEx), and International Cancer Genome Consortium (ICGC) databases were utilized to establish models for early detection and surveillance of HCC. The overlapping differentially expressed genes (DEGs) were screened by elastic net and robust rank aggregation (RRA) analyses to construct the diagnostic prediction model for early HCC (DP.eHCC). Prognostic prediction genes were screened by univariate cox regression and lasso cox regression analyses to construct the survival risk prediction model for early HCC (SP.eHCC). The relationship between the variation of transcriptome profile and the oncogenic risk-score of early HCC was analyzed by combining Weighted Correlation Network Analysis (WGCNA), Gene Set Enrichment Analysis (GSEA), and genome networks (GeNets). The results showed that the AUC of DP.eHCC model for the diagnosis of early HCC was 0.956 (95% CI: 0.941–0.972; p < 0.001) with a sensitivity of 90.91%, a specificity of 92.97%. The SP.eHCC model performed well for predicting the overall survival risk of HCC patients (HR = 10.79; 95% CI: 6.16–18.89; p < 0.001). The oncogenesis of early HCC was revealed mainly involving in pathways associated with cell proliferation and tumor microenvironment. And the transcription factors including EZH2, EGR1, and SOX17 were screened in the genome networks as the promising targets used for precise treatment in patients with HCC. Our findings provide robust models for the early diagnosis and prognosis of HCC, and are crucial for the development of novel targets applied in the precision therapy of HCC.
Collapse
Affiliation(s)
- Xiaoning Gan
- Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China.,Cancer Center, Southern Medical University, Guangzhou, China.,Department of Physiology, Michigan State University, East Lansing, MI, United States
| | - Yue Luo
- Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China.,Cancer Center, Southern Medical University, Guangzhou, China.,Department of Physiology, Michigan State University, East Lansing, MI, United States
| | - Guanqi Dai
- Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China.,Cancer Center, Southern Medical University, Guangzhou, China
| | - Junhao Lin
- Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China.,Cancer Center, Southern Medical University, Guangzhou, China
| | - Xinhui Liu
- Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China.,Cancer Center, Southern Medical University, Guangzhou, China.,Department of Physiology, Michigan State University, East Lansing, MI, United States
| | - Xiangqun Zhang
- Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Aimin Li
- Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China.,Cancer Center, Southern Medical University, Guangzhou, China.,Department of Physiology, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
167
|
Cao F, Wei A, Hu X, He Y, Zhang J, Xia L, Tu K, Yuan J, Guo Z, Liu H, Xie D, Li A. Integrated epigenetic biomarkers in circulating cell-free DNA as a robust classifier for pancreatic cancer. Clin Epigenetics 2020; 12:112. [PMID: 32703318 PMCID: PMC7376965 DOI: 10.1186/s13148-020-00898-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 07/01/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND The high lethal rate of pancreatic cancer is partly due to a lack of efficient biomarkers for screening and early diagnosis. We attempted to develop effective and noninvasive methods using 5-methylcytosine (5mC) and 5-hydroxymethylcytosine (5hmC) markers from circulating cell-free DNA (cfDNA) for the detection of pancreatic ductal adenocarcinoma (PDAC). RESULTS A 24-feature 5mC model that can accurately discriminate PDAC from healthy controls (area under the curve (AUC) = 0.977, sensitivity = 0.824, specificity = 1) and a 5hmC prediction model with 27 features demonstrated excellent detection power in two distinct validation sets (AUC = 0.992 and 0.960, sensitivity = 0.786 and 0.857, specificity = 1 and 0.993). The 51-feature model combining 5mC and 5hmC markers outperformed both of the individual models, with an AUC of 0.997 (sensitivity = 0.938, specificity = 0.955) and particularly an improvement in the prediction sensitivity of PDAC. In addition, the weighted diagnosis score (wd-score) calculated with the 5hmC model can distinguish stage I patients from stage II-IV patients. CONCLUSIONS Both 5mC and 5hmC biomarkers in cfDNA are effective in PDAC detection, and the 5mC-5hmC integrated model significantly improve the detection sensitivity.
Collapse
Affiliation(s)
- Feng Cao
- Frontier Science Center for Disease Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan Province, China
| | - Ailin Wei
- Department of Pancreatic Surgery, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan Province, China
- Key Laboratory of Transplant Engineering and Immunology, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan Province, China
| | - Xinlei Hu
- Frontier Science Center for Disease Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan Province, China
| | - Yijing He
- Frontier Science Center for Disease Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan Province, China
| | - Jun Zhang
- Frontier Science Center for Disease Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan Province, China
| | - Lin Xia
- Frontier Science Center for Disease Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan Province, China
| | - Kailing Tu
- Frontier Science Center for Disease Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan Province, China
| | - Jue Yuan
- Department of Pancreatic Surgery, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan Province, China
| | - Ziheng Guo
- Department of Pancreatic Surgery, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan Province, China
| | - Hongying Liu
- Department of Pancreatic Surgery, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan Province, China
| | - Dan Xie
- Frontier Science Center for Disease Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan Province, China.
| | - Ang Li
- Department of Pancreatic Surgery, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan Province, China.
| |
Collapse
|
168
|
Zhang S, Liu Y, Chen J, Shu H, Shen S, Li Y, Lu X, Cao X, Dong L, Shi J, Cao Y, Wang X, Zhou J, Liu Y, Chen L, Fan J, Ding G, Gao Q. Autoantibody signature in hepatocellular carcinoma using seromics. J Hematol Oncol 2020; 13:85. [PMID: 32616055 PMCID: PMC7330948 DOI: 10.1186/s13045-020-00918-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 06/16/2020] [Indexed: 02/07/2023] Open
Abstract
Background Alpha-fetoprotein (AFP) is a widely used biomarker for hepatocellular carcinoma (HCC) early detection. However, low sensitivity and false negativity of AFP raise the requirement of more effective early diagnostic approaches for HCC. Methods We employed a three-phase strategy to identify serum autoantibody (AAb) signature for HCC early diagnosis using protein array-based approach. A total of 1253 serum samples from HCC, liver cirrhosis, and healthy controls were prospectively collected from three liver cancer centers in China. The Human Proteome Microarray, comprising 21,154 unique proteins, was first applied to identify AAb candidates in discovery phase (n = 100) and to further fabricate HCC-focused arrays. Then, an artificial neural network (ANN) model was used to discover AAbs for HCC detection in a test phase (n = 576) and a validation phase (n = 577), respectively. Results Using HCC-focused array, we identified and validated a novel 7-AAb panel containing CIAPIN1, EGFR, MAS1, SLC44A3, ASAH1, UBL7, and ZNF428 for effective HCC detection. The ANN model of this panel showed improvement of sensitivity (61.6–77.7%) compared to AFP (cutoff 400 ng/mL, 28.4–30.7%). Notably, it was able to detect AFP-negative HCC with AUC values of 0.841–0.948. For early-stage HCC (BCLC 0/A) detection, it outperformed AFP (cutoff 400 ng/mL) with approximately 10% increase in AUC. Conclusions The 7-AAb panel provides potentially clinical value for non-invasive early detection of HCC, and brings new clues on understanding the immune response against hepatocarcinogenesis.
Collapse
Affiliation(s)
- Shu Zhang
- Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, 200032, China
| | - Yuming Liu
- Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, 200032, China
| | - Jing Chen
- The International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, 200438, China
| | - Hong Shu
- Department of Clinical Laboratory, Cancer Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Siyun Shen
- The International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, 200438, China
| | - Yin Li
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Xinyuan Lu
- The Department of Pathology, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, 200438, China
| | - Xinyi Cao
- Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Liangqing Dong
- Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, 200032, China
| | - Jieyi Shi
- Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, 200032, China
| | - Ya Cao
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Xiangya Hospital and Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha, 410078, China
| | - Xiaoying Wang
- Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, 200032, China
| | - Jian Zhou
- Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, 200032, China
| | - Yinkun Liu
- Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, 200032, China.,Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Lei Chen
- The International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, 200438, China
| | - Jia Fan
- Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, 200032, China.,Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Guangyu Ding
- Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, 200032, China.
| | - Qiang Gao
- Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, 200032, China. .,Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
169
|
Beudeker BJB, Boonstra A. Circulating biomarkers for early detection of hepatocellular carcinoma. Therap Adv Gastroenterol 2020; 13:1756284820931734. [PMID: 32647536 PMCID: PMC7325534 DOI: 10.1177/1756284820931734] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 05/11/2020] [Indexed: 02/04/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is estimated to be the fourth leading cause of cancer-related deaths worldwide. HCC patients face a dismal prognosis because symptoms usually appear in an advanced stage of disease. The detection of early stage HCC allows for curative surgical treatment and therefore saves lives. Specific non-invasive or diagnostic markers for HCC may represent a valuable tool for detecting these tumors at an early stage. The clinically most established serological biomarker alpha-fetoprotein shows only limited diagnostic performance, however novel candidate biomarkers and biomarker panels for detecting HCC at early stages of development are being studied. In this review we will discuss the findings of these studies.
Collapse
Affiliation(s)
- Boris J. B. Beudeker
- Department of Gastroenterology and Hepatology, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| | | |
Collapse
|
170
|
Wu C, Zhang J, Li H, Xu W, Zhang X. The potential of liquid biopsies in gastrointestinal cancer. Clin Biochem 2020; 84:1-12. [PMID: 32540214 DOI: 10.1016/j.clinbiochem.2020.06.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 05/09/2020] [Accepted: 06/09/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Liquid biopsy is a novel approach for cancer diagnosis, the value of which in human gastrointestinal (GI) cancer has been confirmed by the previous studies. This article summarized the recent advances in liquid biopsy with a focus on novel technologies and the use of it in the screening, monitoring, and treatment of human GI cancer. CONTENT The concept of liquid biopsy was first used to define the detection of circulating tumor cells (CTCs) in cancer patients, and has been expanded to other biomarkers in blood and body fluids, such as circulating tumor DNA (ctDNA), extracellular vesicles (EVs) and circulating tumor RNA. If analyzed with proper and advanced techniques like next generation sequencing (NGS) or proteomics, liquid biopsies can open an enormous array of potential biomarkers. The amount changes of target biomarkers and the mutation of genetic materials provide quantitative and qualitative information, which can be utilized clinically for cancer diagnosis and disease monitoring. SUMMARY As a highly efficient, minimally invasive, and cost-effective approach to diagnose and evaluate prognosis of GI cancer, liquid biopsy has lots of advantages over traditional biopsy and is promising in future clinical utility. If the challenges are overcome in the near future, liquid biopsy will become a widely available and dependable option.
Collapse
Affiliation(s)
- Chenxi Wu
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Jiayin Zhang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Haibo Li
- Department of Clinical Laboratory, Nantong Maternal and Child Health Care Hospital, Nantong, Jiangsu 226000, China
| | - Wenrong Xu
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Xu Zhang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China.
| |
Collapse
|
171
|
Mocan T, Simão AL, Castro RE, Rodrigues CMP, Słomka A, Wang B, Strassburg C, Wöhler A, Willms AG, Kornek M. Liquid Biopsies in Hepatocellular Carcinoma: Are We Winning? J Clin Med 2020; 9:jcm9051541. [PMID: 32443747 PMCID: PMC7291267 DOI: 10.3390/jcm9051541] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 04/18/2020] [Accepted: 05/11/2020] [Indexed: 02/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) represents the sixth most common cancer worldwide and the third most common cause of cancer-related death. One of the major problems faced by researchers and clinicians in this area is the lack of reliable disease biomarkers, which would allow for an earlier diagnosis, follow-up or prediction of treatment response, among others. In this regard, the “HCC circulome”, defined as the pool of circulating molecules in the bloodstream derived from the primary tumor, represents an appealing target, the so called liquid biopsy. Such molecules encompass circulating tumor proteins, circulating tumor cells (CTCs), extracellular vesicles (EVs), tumor-educated platelets (TEPs), and circulating tumor nucleic acids, namely circulating tumor DNA (ctDNA) and circulating tumor RNA (ctRNA). In this article, we summarize recent findings highlighting the promising role of liquid biopsies as novel potential biomarkers in HCC, emphasizing on its clinical performance.
Collapse
Affiliation(s)
- Tudor Mocan
- Octavian Fodor Institute for Gastroenterology and Hepatology, Iuliu Haţieganu, University of Medicine and Pharmacy, 400162 Cluj-Napoca, Romania;
| | - André L. Simão
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal; (A.L.S.); (R.E.C.); (C.M.P.R.)
| | - Rui E. Castro
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal; (A.L.S.); (R.E.C.); (C.M.P.R.)
| | - Cecília M. P. Rodrigues
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal; (A.L.S.); (R.E.C.); (C.M.P.R.)
| | - Artur Słomka
- Department of Pathophysiology, Nicolaus Copernicus University in Toruń, Ludwik Rydygier Collegium Medicum, 85-094 Bydgoszcz, Poland;
| | - Bingduo Wang
- Department of Internal Medicine I, University Hospital of the Rheinische Friedrich-Wilhelms-University, 53127 Bonn, Germany; (B.W.); (C.S.)
| | - Christian Strassburg
- Department of Internal Medicine I, University Hospital of the Rheinische Friedrich-Wilhelms-University, 53127 Bonn, Germany; (B.W.); (C.S.)
| | - Aliona Wöhler
- Department of General, Visceral and Thoracic Surgery, German Armed Forces Central Hospital Koblenz, 56072 Koblenz, Germany; (A.W.); (A.G.W.)
| | - Arnulf G. Willms
- Department of General, Visceral and Thoracic Surgery, German Armed Forces Central Hospital Koblenz, 56072 Koblenz, Germany; (A.W.); (A.G.W.)
| | - Miroslaw Kornek
- Department of Internal Medicine I, University Hospital of the Rheinische Friedrich-Wilhelms-University, 53127 Bonn, Germany; (B.W.); (C.S.)
- Correspondence:
| |
Collapse
|
172
|
Peng X, Li HD, Wu FX, Wang J. Identifying the tissues-of-origin of circulating cell-free DNAs is a promising way in noninvasive diagnostics. Brief Bioinform 2020; 22:5840077. [PMID: 32427285 DOI: 10.1093/bib/bbaa060] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 03/16/2020] [Accepted: 03/25/2020] [Indexed: 12/18/2022] Open
Abstract
Advances in sequencing technologies facilitate personalized disease-risk profiling and clinical diagnosis. In recent years, some great progress has been made in noninvasive diagnoses based on cell-free DNAs (cfDNAs). It exploits the fact that dead cells release DNA fragments into the circulation, and some DNA fragments carry information that indicates their tissues-of-origin (TOOs). Based on the signals used for identifying the TOOs of cfDNAs, the existing methods can be classified into three categories: cfDNA mutation-based methods, methylation pattern-based methods and cfDNA fragmentation pattern-based methods. In cfDNA mutation-based methods, the SNP information or the detected mutations in driven genes of certain diseases are employed to identify the TOOs of cfDNAs. Methylation pattern-based methods are developed to identify the TOOs of cfDNAs based on the tissue-specific methylation patterns. In cfDNA fragmentation pattern-based methods, cfDNA fragmentation patterns, such as nucleosome positioning or preferred end coordinates of cfDNAs, are used to predict the TOOs of cfDNAs. In this paper, the strategies and challenges in each category are reviewed. Furthermore, the representative applications based on the TOOs of cfDNAs, including noninvasive prenatal testing, noninvasive cancer screening, transplantation rejection monitoring and parasitic infection detection, are also reviewed. Moreover, the challenges and future work in identifying the TOOs of cfDNAs are discussed. Our research provides a comprehensive picture of the development and challenges in identifying the TOOs of cfDNAs, which may benefit bioinformatics researchers to develop new methods to improve the identification of the TOOs of cfDNAs.
Collapse
|
173
|
Xu T, Gao H. Hydroxymethylation and tumors: can 5-hydroxymethylation be used as a marker for tumor diagnosis and treatment? Hum Genomics 2020; 14:15. [PMID: 32375881 PMCID: PMC7201531 DOI: 10.1186/s40246-020-00265-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 04/22/2020] [Indexed: 02/08/2023] Open
Abstract
5-Methylcytosine (5mC) is considered as a common epigenetic modification that plays an important role in the regulation of gene expression. At the same time, 5-hydroxymethylcytosine (5hmC) has been found as an emerging modification of cytosine bases of recent years. Unlike 5mC, global 5hmC levels vary from tissues that have differential distribution both in mammalian tissues and in the genome. DNA hydroxymethylation is the process that 5mC oxidates into 5hmC with the catalysis of TET (ten-eleven translocation) enzymes. It is an essential option of DNA demethylation, which modulates gene expression by adjusting the DNA methylation level. Various factors can regulate the demethylation of DNA, such as environmental toxins and mental stress. In this review, we summarize the progress in the formation of 5hmC, and obtaining 5hmC in a cell-free DNA sample presents multiple advantages and challenges for the subject. Furthermore, the clinical potential for 5hmC modification in dealing with cancer early diagnosis, prognostic evaluation, and prediction of therapeutic effect is also mentioned.
Collapse
Affiliation(s)
- Tianmin Xu
- The Second HospitaI of Jilin University, Changchun, Jilin, China.
| | - Haoyue Gao
- The Second HospitaI of Jilin University, Changchun, Jilin, China
| |
Collapse
|
174
|
Peng Y, Wei Q, He Y, Xie Q, Liang Y, Zhang L, Xia Y, Li Y, Chen W, Zhao J, Chai J. ALBI versus child-pugh in predicting outcome of patients with HCC: A systematic review. Expert Rev Gastroenterol Hepatol 2020; 14:383-400. [PMID: 32240595 DOI: 10.1080/17474124.2020.1748010] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Accepted: 03/24/2020] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Hepatocellular carcinoma (HCC) is an aggressive tumor type which results in poor prognosis. ALBI and Child-Pugh score have been widely applied for predicting prognosis in patients with liver diseases. We conducted a systematic review to compare the prognostic ability of ALBI versus Child-Pugh in HCC patients. AREAS COVERED PubMed, EMBASE and Cochrane Library were explored. The data were extracted from every study. Studies investigating HCC patients and comparing the predicting ability between ALBI and Child-Pugh were analyzed. EXPERT OPINION This systematic review revealed that ALBI showed better discriminative ability than Child-Pugh for predicting the prognosis in HCC patients. However, the predictive abilities of two scores should be improved. Except for the most common used serum biomarker AFP for diagnosis and surveillance of HCC, recent studies have also explored all aspects of HCC through genome-wide sequencing, exome sequencing, RNA sequencing and genome-wide methylation analysis which provide essential clues for genotyping of HCC. Further studies should explore biomarkers by advanced techniques to validate new prognostic tools for early diagnosis and prognosis of HCC. Moreover, multicenter prospective studies should be carried out to compare the prognostic values of predictive indicators in HCC population in the future.
Collapse
Affiliation(s)
- Ying Peng
- Cholestatic Liver Diseases Center and Department of Gastroenterology, Southwest Hospital, Third Military Medical University (Army Medical University) , Chongqing, China
- Department of Gastroenterology, Southwest Hospital, Third Military Medical University (Army Medical University) , Chongqing, China
| | - Qinglin Wei
- Cholestatic Liver Diseases Center and Department of Gastroenterology, Southwest Hospital, Third Military Medical University (Army Medical University) , Chongqing, China
- Department of Gastroenterology, Southwest Hospital, Third Military Medical University (Army Medical University) , Chongqing, China
| | - Yonghong He
- Cholestatic Liver Diseases Center and Department of Gastroenterology, Southwest Hospital, Third Military Medical University (Army Medical University) , Chongqing, China
- Department of Gastroenterology, Southwest Hospital, Third Military Medical University (Army Medical University) , Chongqing, China
| | - Qiaoling Xie
- Cholestatic Liver Diseases Center and Department of Gastroenterology, Southwest Hospital, Third Military Medical University (Army Medical University) , Chongqing, China
- Department of Gastroenterology, Southwest Hospital, Third Military Medical University (Army Medical University) , Chongqing, China
| | - Yanchao Liang
- Pulmonary and Critical Care Medicine 1, The Affiliated Zhuzhou Hospital Xiangya Medical College CSU , Zhuzhou City, Hunan Province, China
| | - Liangjun Zhang
- Cholestatic Liver Diseases Center and Department of Gastroenterology, Southwest Hospital, Third Military Medical University (Army Medical University) , Chongqing, China
- Department of Gastroenterology, Southwest Hospital, Third Military Medical University (Army Medical University) , Chongqing, China
| | - Yiju Xia
- Cholestatic Liver Diseases Center and Department of Gastroenterology, Southwest Hospital, Third Military Medical University (Army Medical University) , Chongqing, China
- Department of Gastroenterology, Southwest Hospital, Third Military Medical University (Army Medical University) , Chongqing, China
| | - Yan Li
- Cholestatic Liver Diseases Center and Department of Gastroenterology, Southwest Hospital, Third Military Medical University (Army Medical University) , Chongqing, China
- Department of Gastroenterology, Southwest Hospital, Third Military Medical University (Army Medical University) , Chongqing, China
| | - Wensheng Chen
- Cholestatic Liver Diseases Center and Department of Gastroenterology, Southwest Hospital, Third Military Medical University (Army Medical University) , Chongqing, China
- Department of Gastroenterology, Southwest Hospital, Third Military Medical University (Army Medical University) , Chongqing, China
| | - Jingjing Zhao
- Department of Gastroenterology, Southwest Hospital, Third Military Medical University (Army Medical University) , Chongqing, China
| | - Jin Chai
- Cholestatic Liver Diseases Center and Department of Gastroenterology, Southwest Hospital, Third Military Medical University (Army Medical University) , Chongqing, China
- Department of Gastroenterology, Southwest Hospital, Third Military Medical University (Army Medical University) , Chongqing, China
| |
Collapse
|
175
|
Ren S, Ren XD, Guo LF, Qu XM, Shang MY, Dai XT, Huang Q. Urine cell-free DNA as a promising biomarker for early detection of non-small cell lung cancer. J Clin Lab Anal 2020; 34:e23321. [PMID: 32281142 PMCID: PMC7439414 DOI: 10.1002/jcla.23321] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 03/09/2020] [Accepted: 03/11/2020] [Indexed: 12/26/2022] Open
Abstract
Background While blood‐derived cell‐free DNA has been shown to be a candidate biomarker able to provide diagnostic and prognostic insight in cancer patients, little is known regarding the potential application of urine cell‐free DNA (ucfDNA) in diagnosis of cancer. Thus, the aim of this study was to investigate ucfDNA concentration and integrity index as potential biomarkers for early detection of non‐small‐cell lung cancer (NSCLC). Methods Urine samples were collected from 35 healthy controls and 55 NSCLC patients at various tumor node metastasis (TNM) stages. Two long interspersed nuclear element 1 (LINE1) fragments (LINE1‐97 and 266 bp) were quantified via quantitative real‐time PCR (qPCR). DNA integrity index was calculated as the ratio of LINE1‐266/LINE‐97. Results LINE1 fragments concentrations of ucfDNA (LINE1‐97, 266 bp) were significantly higher in NSCLC patients with stage III/IV than in stage I/II and in healthy controls. The receiver operating characteristic (ROC) curves for discriminating patients with stage III/IV from healthy controls had areas under the curves (AUC) of 0.84 and 0.886, respectively. Moreover, ucfDNA integrity LINE1‐266/97 was significantly higher in patients with stage III/IV than in stage I/II and in healthy controls. The AUC of ROC curve for discriminating patients with stage III/IV from healthy controls was 0.800. Furthermore, LINE1‐266 fragment concentration was significantly higher in lymph node metastasis (LNM)‐positive patients relative to LNM‐negative patients. The ROC curve for discriminating LNM‐positive from LNM‐negative patients had an AUC of 0.822. Conclusion UcfDNA could serve as a promising biomarker for early detection of NSCLC.
Collapse
Affiliation(s)
- Sai Ren
- Department of Laboratory Medicine, Daping Hospital, Army Medical University, Chongqing, China
| | - Xiao-Dong Ren
- Department of Laboratory Medicine, Daping Hospital, Army Medical University, Chongqing, China
| | - Li-Fang Guo
- Department of Laboratory Medicine, Daping Hospital, Army Medical University, Chongqing, China
| | - Xue-Mei Qu
- Department of Laboratory Medicine, Daping Hospital, Army Medical University, Chongqing, China
| | - Mei-Yun Shang
- Department of Laboratory Medicine, Daping Hospital, Army Medical University, Chongqing, China
| | - Xiao-Tian Dai
- Department of Pulmonology, Southwest Hospital, Army Medical University, Chongqing, China
| | - Qing Huang
- Department of Laboratory Medicine, Daping Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
176
|
Applebaum MA, Barr EK, Karpus J, West-Szymanski DC, Oliva M, Sokol EA, Zhang S, Zhang Z, Zhang W, Chlenski A, Salwen HR, Wilkinson E, Dobratic M, Grossman RL, Godley LA, Stranger BE, He C, Cohn SL. 5-Hydroxymethylcytosine Profiles in Circulating Cell-Free DNA Associate with Disease Burden in Children with Neuroblastoma. Clin Cancer Res 2020; 26:1309-1317. [PMID: 31852832 PMCID: PMC7073281 DOI: 10.1158/1078-0432.ccr-19-2829] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 11/05/2019] [Accepted: 12/12/2019] [Indexed: 12/14/2022]
Abstract
PURPOSE 5-Hydroxymethylcytosine (5-hmC) is an epigenetic marker of open chromatin and active gene expression. We profiled 5-hmC with Nano-hmC-Seal technology using 10 ng of plasma-derived cell-free DNA (cfDNA) in blood samples from patients with neuroblastoma to determine its utility as a biomarker. EXPERIMENTAL DESIGN For the Discovery cohort, 100 5-hmC profiles were generated from 34 well children and 32 patients (27 high-risk, 2 intermediate-risk, and 3 low-risk) at various time points during the course of their disease. An independent Validation cohort encompassed 5-hmC cfDNA profiles (n = 29) generated from 21 patients (20 high-risk and 1 intermediate-risk). Metastatic burden was classified as high, moderate, low, or none per Curie metaiodobenzylguanidine scores and percentage of tumor cells in bone marrow. Genes with differential 5-hmC levels between samples according to metastatic burden were identified using DESeq2. RESULTS Hierarchical clustering using 5-hmC levels of 347 genes identified from the Discovery cohort defined four clusters of samples that were confirmed in the Validation cohort and corresponded to high, high-moderate, moderate, and low/no metastatic burden. Samples from patients with increased metastatic burden had increased 5-hmC deposition on genes in neuronal stem cell maintenance and epigenetic regulatory pathways. Further, 5-hmC cfDNA profiles generated with 1,242 neuronal pathway genes were associated with subsequent relapse in the cluster of patients with predominantly low or no metastatic burden (sensitivity 65%, specificity 75.6%). CONCLUSIONS cfDNA 5-hmC profiles in children with neuroblastoma correlate with metastatic burden and warrants development as a biomarker of treatment response and outcome.
Collapse
Affiliation(s)
- Mark A Applebaum
- Department of Pediatrics, University of Chicago, Chicago, Illinois.
| | - Erin K Barr
- Department of Pediatrics, Texas Tech University Health Sciences, Lubbock, Texas
| | - Jason Karpus
- Department of Chemistry, University of Chicago, Chicago, Illinois
| | | | - Meritxell Oliva
- Department of Medicine, University of Chicago, Chicago, Illinois
| | - Elizabeth A Sokol
- Department of Pediatrics, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois
| | - Sheng Zhang
- Department of Chemistry, University of Chicago, Chicago, Illinois
| | - Zhou Zhang
- Department of Preventive Medicine, Northwestern University, Chicago, Illinois
| | - Wei Zhang
- Department of Preventive Medicine, Northwestern University, Chicago, Illinois
| | | | - Helen R Salwen
- Department of Pediatrics, University of Chicago, Chicago, Illinois
| | - Emma Wilkinson
- Department of Pediatrics, University of Chicago, Chicago, Illinois
| | - Marija Dobratic
- Department of Pediatrics, University of Chicago, Chicago, Illinois
| | - Robert L Grossman
- Institute for Genomics and Systems Biology, Center for Translational Data Science, University of Chicago, Chicago, Illinois
| | - Lucy A Godley
- Department of Medicine, University of Chicago, Chicago, Illinois
| | | | - Chuan He
- Department of Chemistry, University of Chicago, Chicago, Illinois
- Howard Hughes Medical Institute, Chevy Chase, Maryland
| | - Susan L Cohn
- Department of Pediatrics, University of Chicago, Chicago, Illinois
| |
Collapse
|
177
|
Wu X, Li J, Gassa A, Buchner D, Alakus H, Dong Q, Ren N, Liu M, Odenthal M, Stippel D, Bruns C, Zhao Y, Wahba R. Circulating tumor DNA as an emerging liquid biopsy biomarker for early diagnosis and therapeutic monitoring in hepatocellular carcinoma. Int J Biol Sci 2020; 16:1551-1562. [PMID: 32226301 PMCID: PMC7097921 DOI: 10.7150/ijbs.44024] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 02/03/2020] [Indexed: 02/07/2023] Open
Abstract
As one of the most common malignant tumors worldwide, hepatocellular carcinoma (HCC) is known for its poor prognosis due to diagnosis only in advanced stages. Nearly 50% of the patients with the first diagnosis of HCC die within a year. Currently, the advancements in the integration of omics information have begun to transform the clinical management of cancer patients. Molecular profiling for HCC patients is in general obtained from resected tumor materials or biopsies. However, the resected tumor tissue is limited and can only be obtained through surgery, so that dynamic monitoring of patients cannot be performed. Compared to invasive procedures, circulating tumor DNA (ctDNA) has been proposed as an alternative source to perform molecular profiling of tumor DNA in cancer patients. The detection of abnormal forms of circulating cell-free DNA (cfDNA) that originate from cancer cells (ctDNA) provides a novel tool for cancer detection and disease monitoring. This may also be an opportunity to optimize the early diagnosis of HCC. In this review, we summarized the updated methods, materials, storage of sampling, detection techniques for ctDNA and the comparison of the applications among different biomarkers in HCC patients. In particular, we analyzed ctDNA studies dealing with copy number variations, gene integrity, mutations (RAS, TERT, CTNNB1, TP53 and so on), DNA methylation alterations (DBX2, THY1, TGR5 and so on) for the potential utility of ctDNA in the diagnosis and management of HCC. The biological functions and correlated signaling pathways of ctDNA associated genes (including MAPK/RAS pathway, p53 signaling pathway and Wnt-β catenin pathway) are also discussed and highlighted. Thus, exploration of ctDNA/cfDNA as potential biomarkers may provide a great opportunity in future liquid biopsy applications for HCC.
Collapse
Affiliation(s)
- Xiaolin Wu
- Department of General, Visceral, Cancer and Transplantation Surgery, University Hospital of Cologne, Kerpener Straße 62, 50937, Cologne, Germany
| | - Jiahui Li
- Department of General, Visceral, Cancer and Transplantation Surgery, University Hospital of Cologne, Kerpener Straße 62, 50937, Cologne, Germany
| | - Asmae Gassa
- Department of Cardiothoracic Surgery, Heart Center, University Hospital of Cologne, Germany, Kerpener Straße 62, 5.937 Cologne, Germany
| | - Denise Buchner
- Department of General, Visceral, Cancer and Transplantation Surgery, University Hospital of Cologne, Kerpener Straße 62, 50937, Cologne, Germany
| | - Hakan Alakus
- Department of General, Visceral, Cancer and Transplantation Surgery, University Hospital of Cologne, Kerpener Straße 62, 50937, Cologne, Germany
| | - Qiongzhu Dong
- Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute & Institutes of Biomedical Sciences, Fudan University, 200032, Shanghai, P.R. China
| | - Ning Ren
- Liver Cancer Institute & Zhongshan Hospital; Department of Surgery, Institute of Fudan-Minhang Academic Health System, Minhang Branch, Zhongshan Hospital, Fudan University, 200032, Shanghai, P.R. China
| | - Ming Liu
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University; Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, 510095, Guangzhou, P.R. China
| | - Margarete Odenthal
- Institute of Pathology, University Hospital of Cologne, 50937, Cologne, Germany
| | - Dirk Stippel
- Department of General, Visceral, Cancer and Transplantation Surgery, University Hospital of Cologne, Kerpener Straße 62, 50937, Cologne, Germany
| | - Christiane Bruns
- Department of General, Visceral, Cancer and Transplantation Surgery, University Hospital of Cologne, Kerpener Straße 62, 50937, Cologne, Germany
| | - Yue Zhao
- Department of General, Visceral, Cancer and Transplantation Surgery, University Hospital of Cologne, Kerpener Straße 62, 50937, Cologne, Germany
- Department of General, Visceral und Vascular Surgery, Otto-von-Guericke University, 39120, Magdeburg, Germany
| | - Roger Wahba
- Department of General, Visceral, Cancer and Transplantation Surgery, University Hospital of Cologne, Kerpener Straße 62, 50937, Cologne, Germany
| |
Collapse
|
178
|
Weiser DA, West-Szymanski DC, Fraint E, Weiner S, Rivas MA, Zhao CWT, He C, Applebaum MA. Progress toward liquid biopsies in pediatric solid tumors. Cancer Metastasis Rev 2020; 38:553-571. [PMID: 31836951 DOI: 10.1007/s10555-019-09825-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Pediatric solid tumors have long been known to shed tumor cells, DNA, RNA, and proteins into the blood. Recent technological advances have allowed for improved capture and analysis of these typically scant circulating materials. Efforts are ongoing to develop "liquid biopsy" assays as minimally invasive tools to address diagnostic, prognostic, and disease monitoring needs in childhood cancer care. Applying these highly sensitive technologies to serial liquid biopsies is expected to advance understanding of tumor biology, heterogeneity, and evolution over the course of therapy, thus opening new avenues for personalized therapy. In this review, we outline the latest technologies available for liquid biopsies and describe the methods, pitfalls, and benefits of the assays that are being developed for children with extracranial solid tumors. We discuss what has been learned in several of the most common pediatric solid tumors including neuroblastoma, sarcoma, Wilms tumor, and hepatoblastoma and highlight promising future directions for the field.
Collapse
Affiliation(s)
- Daniel A Weiser
- Department of Pediatrics, Albert Einstein College of Medicine and Children's Hospital at Montefiore, Bronx, NY, USA
| | | | - Ellen Fraint
- Department of Pediatrics, Albert Einstein College of Medicine and Children's Hospital at Montefiore, Bronx, NY, USA
| | - Shoshana Weiner
- Department of Pediatrics, Weill Cornell Medical Center, New York, NY, USA
| | - Marco A Rivas
- Department of Chemistry, Department of Biochemistry and Molecular Biology, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, USA
| | - Carolyn W T Zhao
- Department of Chemistry, Department of Biochemistry and Molecular Biology, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, USA
| | - Chuan He
- Department of Chemistry, Department of Biochemistry and Molecular Biology, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, USA.,Howard Hughes Medical Institute, The University of Chicago, Chicago, IL, USA
| | - Mark A Applebaum
- Department of Pediatrics, The University of Chicago, 900 E. 57th St., KCBD 5116, Chicago, IL, 60637, USA.
| |
Collapse
|
179
|
Stuckel AJ, Zhang W, Zhang X, Zeng S, Dougherty U, Mustafi R, Zhang Q, Perreand E, Khare T, Joshi T, West-Szymanski DC, Bissonnette M, Khare S. Enhanced CXCR4 Expression Associates with Increased Gene Body 5-Hydroxymethylcytosine Modification but not Decreased Promoter Methylation in Colorectal Cancer. Cancers (Basel) 2020; 12:cancers12030539. [PMID: 32110952 PMCID: PMC7139960 DOI: 10.3390/cancers12030539] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 02/19/2020] [Accepted: 02/24/2020] [Indexed: 12/19/2022] Open
Abstract
In colorectal cancer (CRC), upregulation of the C-X-C motif chemokine receptor 4 (CXCR4) is correlated with metastasis and poor prognosis, highlighting the need to further elucidate CXCR4’s regulation in CRC. For the first time, DNA methylation and 5-hydroxymethylcytosine aberrations were investigated to better understand the epigenetic regulation of CXCR4 in CRC. CXCR4 expression levels were measured using qPCR and immunoblotting in normal colon tissues, primary colon cancer tissues and CRC cell lines. Publicly available RNA-seq and methylation data from The Cancer Genome Atlas (TCGA) were extracted from tumors from CRC patients. The DNA methylation status spanning CXCR4 gene was evaluated using combined bisulfite restriction analysis (COBRA). The methylation status in the CXCR4 gene body was analyzed using previously performed nano-hmC-seal data from colon cancers and adjacent normal colonic mucosa. CXCR4 expression levels were significantly increased in tumor stromal cells and in tumor colonocytes, compared to matched cell types from adjacent normal-appearing mucosa. CXCR4 promoter methylation was detected in a minority of colorectal tumors in the TCGA. The CpG island of the CXCR4 promoter showed increased methylation in three of four CRC cell lines. CXCR4 protein expression differences were also notable between microsatellite stable (MSS) and microsatellite instable (MSI) tumor cell lines. While differential methylation was not detected in CXCR4, enrichment of 5-hydroxymethylcytosine (5hmC) in CXCR4 gene bodies in CRC was observed compared to adjacent mucosa.
Collapse
Affiliation(s)
- Alexei J. Stuckel
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Missouri, Columbia, MO 65212, USA (Q.Z.); (E.P.); (T.K.)
| | - Wei Zhang
- Department of Preventive Medicine and The Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA;
| | - Xu Zhang
- Department of Medicine, University of Illinois, Chicago, IL 60607, USA;
| | - Shuai Zeng
- Bond Life Sciences Center, University of Missouri, Columbia, MO 65201, USA; (S.Z.); (T.J.)
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO 65201, USA
| | - Urszula Dougherty
- Department of Medicine, Section of Gastroenterology, Hepatology and Nutrition, The University of Chicago, Chicago, IL 60637, USA; (U.D.); (R.M.); (D.C.W.-S.); (M.B.)
| | - Reba Mustafi
- Department of Medicine, Section of Gastroenterology, Hepatology and Nutrition, The University of Chicago, Chicago, IL 60637, USA; (U.D.); (R.M.); (D.C.W.-S.); (M.B.)
| | - Qiong Zhang
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Missouri, Columbia, MO 65212, USA (Q.Z.); (E.P.); (T.K.)
| | - Elsa Perreand
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Missouri, Columbia, MO 65212, USA (Q.Z.); (E.P.); (T.K.)
| | - Tripti Khare
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Missouri, Columbia, MO 65212, USA (Q.Z.); (E.P.); (T.K.)
| | - Trupti Joshi
- Bond Life Sciences Center, University of Missouri, Columbia, MO 65201, USA; (S.Z.); (T.J.)
- Institute for Data Science and Informatics, University of Missouri, Columbia, MO 65211, USA
- Department of Health Management and Informatics, School of Medicine, University of Missouri, Columbia, MO 65212, USA
| | - Diana C. West-Szymanski
- Department of Medicine, Section of Gastroenterology, Hepatology and Nutrition, The University of Chicago, Chicago, IL 60637, USA; (U.D.); (R.M.); (D.C.W.-S.); (M.B.)
| | - Marc Bissonnette
- Department of Medicine, Section of Gastroenterology, Hepatology and Nutrition, The University of Chicago, Chicago, IL 60637, USA; (U.D.); (R.M.); (D.C.W.-S.); (M.B.)
| | - Sharad Khare
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Missouri, Columbia, MO 65212, USA (Q.Z.); (E.P.); (T.K.)
- Harry S. Truman Memorial Veterans’ Hospital, Columbia, MO 65201, USA
- Correspondence:
| |
Collapse
|
180
|
Lenaerts L, Tuveri S, Jatsenko T, Amant F, Vermeesch JR. Detection of incipient tumours by screening of circulating plasma DNA: hype or hope? Acta Clin Belg 2020; 75:9-18. [PMID: 31578135 DOI: 10.1080/17843286.2019.1671653] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Background: The last half-decade has been marked by a rapid expansion of research efforts in the field of so-called liquid biopsies, thereby investigating the potential of blood-derived cell-free tumour DNA (ctDNA) markers for application in clinical oncological management. The analysis of cfDNA appears to be particularly attractive for therapy monitoring purposes, while in terms of early cancer diagnosis and screening the potentials are just starting to be explored. Challenges, both of biological and technical nature, need to be addressed. One such challenge is to overcome the low levels of ctDNA in the circulation, intrinsic to many early-stage cancers. Methods: Here, we give an overview of the features of ctDNA and the approaches that are currently being applied with the ultimate aim to detect tumours in a presymptomatic stage. Conclusion: Although many studies report encouraging results, further technical development and larger studies are warranted before application of ctDNA analysis may find its place in clinic.
Collapse
Affiliation(s)
| | | | | | - Frédéric Amant
- Department of Oncology, KU Leuven, Leuven, Belgium
- Gynecology and Obstetrics, University Hospitals Leuven, Leuven, Belgium
- Center for Gynecological Oncology Amsterdam, Academic Medical Centre Amsterdam-University of Amsterdam and The Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands
| | - Joris Robert Vermeesch
- Department of Human Genetics, KU Leuven, Leuven, Belgium
- Centre of Human Genetics, University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
181
|
Wu M, Liu Z, Li X, Zhang A, Li N. Dynamic Changes in Serum Markers and Their Utility in the Early Diagnosis of All Stages of Hepatitis B-Associated Hepatocellular Carcinoma. Onco Targets Ther 2020; 13:827-840. [PMID: 32095079 PMCID: PMC6995291 DOI: 10.2147/ott.s229835] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 01/05/2020] [Indexed: 12/12/2022] Open
Abstract
Objective This study aimed to evaluate the individual and combined diagnostic values of serum alpha-fetoprotein (AFP), des-gamma-carboxyprothrombin (DCP), glypican-3 (GPC3) and golgi protein 73 (GP73) in diagnosing hepatitis B virus (HBV)-related hepatocellular carcinoma (HCC). Methods Participants from Beijing YouAn Hospital were enrolled and divided into seven groups. Serum was collected and the levels of AFP, GPC3, GP73 and DCP were simultaneously measured with a protein array. Pearson's χ2 test was applied to compare the clinicopathological characteristics. Receiver operating characteristic (ROC) curves were used to analyse the diagnostic performance of the four markers. Results As a single biomarker for differentiating HCC from all controls, AFP had a larger area under the curve (AUC) (0.798, 95% CI (0.754-0.838) than the other biomarkers, with a sensitivity of 77.3% and a specificity of 71.1%. Among the other combinations, AFP plus GPC3 and DCP (0.871, 95% CI (0.833-0.903)) was the best at differentiating HCC from all controls. In discriminating very early stage and early stage HCC from all controls, the AUC of GPC3 (0.744, 95% CI (0.690-0.793); sensitivity 62.8%; specificity 83.3%) was better than that of AFP (0.723, 95% CI (0.668-0.774); sensitivity 67.3%; specificity 71.7%). Among all biomarker combinations, the combination of AFP, GPC3 and GP73 had the largest AUC (0.843, 95% CI (0.796-0.883); sensitivity 84.1%; specificity 71.7%). AFP (AUC 0.726, 95% CI (0.662-0.784)) showed the best performance in the very early diagnosis of HBV-related HCC. Conclusion As a single biomarker, AFP has an advantage in the very early and early diagnosis of HBV-related HCC. The combination of AFP, GPC3 and GP73 is the most suitable marker for the early diagnosis of HBV-related HCC. However, AFP remains the best biomarker for the very early diagnosis of HBV-related HCC, and the adding of one or more markers does not significantly improve the diagnostic accuracy.
Collapse
Affiliation(s)
- Min Wu
- Department of General Surgery, Beijing Youan Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Zhaobo Liu
- Department of General Surgery, Beijing Youan Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Xin Li
- Department of General Surgery, Beijing Youan Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Aiying Zhang
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Ning Li
- Department of General Surgery, Beijing Youan Hospital, Capital Medical University, Beijing, People's Republic of China.,Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, People's Republic of China
| |
Collapse
|
182
|
Dong C, Chen J, Zheng J, Liang Y, Yu T, Liu Y, Gao F, Long J, Chen H, Zhu Q, He Z, Hu S, He C, Lin J, Tang Y, Zhu H. 5-Hydroxymethylcytosine signatures in circulating cell-free DNA as diagnostic and predictive biomarkers for coronary artery disease. Clin Epigenetics 2020; 12:17. [PMID: 31964422 PMCID: PMC6974971 DOI: 10.1186/s13148-020-0810-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Accepted: 01/06/2020] [Indexed: 02/07/2023] Open
Abstract
Background The 5-hydroxymethylcytosine (5hmC) DNA modification is an epigenetic marker involved in a range of biological processes. Its function has been studied extensively in tumors, neurodegenerative diseases, and atherosclerosis. Studies have reported that 5hmC modification is closely related to the phenotype transformation of vascular smooth muscle cells and endothelial dysfunction. However, its role in coronary artery disease (CAD) has not been fully studied. Results To investigate whether 5hmC modification correlates with CAD pathogenesis and whether 5hmC can be used as a biomarker, we used a low-input whole-genome sequencing technology based on selective chemical capture (hmC-Seal) to firstly generate the 5hmC profiles in the circulating cell-free DNA(cfDNA) of CAD patients, including stable coronary artery disease (sCAD) patients and acute myocardial infarction (AMI) patients. We detected a significant difference of 5hmC enrichment in gene bodies from CAD patients compared with normal coronary artery (NCA) individuals. Our results showed that CAD patients can be well separated from NCA individuals by 5hmC markers. The prediction performance of the model established by differentially regulated 5hmc modified genes were superior to common clinical indicators for the diagnosis of CAD (AUC = 0.93) and sCAD (AUC = 0.93). Specially, we found that 5hmC markers in cfDNA showed prediction potential for AMI (AUC = 0.95), which was superior to that of cardiac troponin I, muscle/brain creatine kinase, and myoglobin. Conclusions Our results suggest that 5hmC markers derived from cfDNA can serve as effective epigenetic biomarkers for minimally noninvasive diagnosis and prediction of CAD.
Collapse
Affiliation(s)
- Chaoran Dong
- State Key Laboratory for Bioactive Substances and Functions of Natural Medicines, Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Xian Nong Tan Street 1, Xicheng District, Beijing, 100050, China
| | - Jiemei Chen
- State Key Laboratory for Bioactive Substances and Functions of Natural Medicines, Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Xian Nong Tan Street 1, Xicheng District, Beijing, 100050, China
| | - Jilin Zheng
- Department of Cardiology, Coronary Heart Disease Center, State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 167 Beilishi Road, Beijing, 100037, China
| | - Yiming Liang
- College of Chemistry and Molecular Engineering, Innovation Center for Genomics, Peking University, No. 5 Yiheyuan Road Haidian District, Beijing, 100871, China
| | - Tao Yu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yupeng Liu
- Department of Cardiology, Coronary Heart Disease Center, State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 167 Beilishi Road, Beijing, 100037, China
| | - Feng Gao
- State Key Laboratory for Bioactive Substances and Functions of Natural Medicines, Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Xian Nong Tan Street 1, Xicheng District, Beijing, 100050, China
| | - Jie Long
- State Key Laboratory for Bioactive Substances and Functions of Natural Medicines, Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Xian Nong Tan Street 1, Xicheng District, Beijing, 100050, China
| | - Hangyu Chen
- College of Chemistry and Molecular Engineering, Innovation Center for Genomics, Peking University, No. 5 Yiheyuan Road Haidian District, Beijing, 100871, China
| | - Qianhui Zhu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Zilong He
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Songnian Hu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Chuan He
- College of Chemistry and Molecular Engineering, Innovation Center for Genomics, Peking University, No. 5 Yiheyuan Road Haidian District, Beijing, 100871, China.,Department of Chemistry, Department of Biochemistry and Molecular Biology, Howard Hughes Medical Institute, The University of Chicago, Chicago, IL, 60637, USA
| | - Jian Lin
- College of Chemistry and Molecular Engineering, Innovation Center for Genomics, Peking University, No. 5 Yiheyuan Road Haidian District, Beijing, 100871, China.
| | - Yida Tang
- Department of Cardiology, Coronary Heart Disease Center, State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 167 Beilishi Road, Beijing, 100037, China.
| | - Haibo Zhu
- State Key Laboratory for Bioactive Substances and Functions of Natural Medicines, Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Xian Nong Tan Street 1, Xicheng District, Beijing, 100050, China.
| |
Collapse
|
183
|
Zhang Z, Chen P, Xie H, Cao P. Using circulating tumor DNA as a novel biomarker to screen and diagnose hepatocellular carcinoma: A systematic review and meta-analysis. Cancer Med 2019; 9:1349-1364. [PMID: 31876977 PMCID: PMC7013058 DOI: 10.1002/cam4.2799] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 12/05/2019] [Accepted: 12/09/2019] [Indexed: 12/19/2022] Open
Abstract
PURPOSE A meta-analysis was formulated to appraise the diagnostic accuracy of circulating tumor DNA (ctDNA) in hepatocellular carcinoma (HCC). MATERIALS AND METHODS We enrolled all relevant studies published until September 2019. Four primary subgroups were investigated: the subgroup of quantitative or qualitative analysis of ctDNA, the subgroup of Ras association domain family 1 isoform A (RASSF1A) methylation in ctDNA and the subgroup of the combined alpha-fetoprotein (AFP) and ctDNA assay. We analyzed the pooled sensitivity (SEN), specificity (SPE), positive likelihood ratio (PLR), negative likelihood ratio (NLR), diagnostic odds ratio (DOR), and summary receiver operating characteristic (SROC) as well as the area under the curve (AUC). RESULTS A total of 33 qualified articles with 4113 subjects were incorporated into our meta-analysis. The combined SEN, SPE, and DOR in quantitative studies were 0.722 (95% confidence interval (95% CI): 0.686-0.756), 0.823 (95% CI: 0.789-0.854), 18.532 (95% CI: 8.245-41.657), respectively, yielding an AUC of 0.880. For qualitative studies, the corresponding value was 0.568 (95% CI: 0.548-0.587), 0.882 (95% CI: 0.867-0.897), 10.457 (95% CI: 7.270-15.040) and 0.787, respectively. Detection of RASSF1A methylation yielded an AUC of 0.841, with a SEN of 0.644 (95% CI: 0.608-0.678) and a SPE of 0.875 (95% CI: 0.847-0.900). AFP combined with ctDNA assay achieved an AUC of 0.944, with a SEN of 0.760 (95% CI: 0.728-00.790) and a SPE of 0.920 (95% CI: 0.893-00.942). CONCLUSION Circulating tumor DNA displays a promising diagnostic potential in HCC. However, it is not independently sufficient and can serve as an assistant tool combined with AFP for HCC screening and detection.
Collapse
Affiliation(s)
- Ziying Zhang
- Department of Oncology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Peng Chen
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
| | - Hui Xie
- Department of Thoracic and Cardiovascular Surgery, Second Xiangya Hospital, Central South University, Changsha, China
| | - Peiguo Cao
- Department of Oncology, Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
184
|
Wang H, Lu Z, Zhao X. Tumorigenesis, diagnosis, and therapeutic potential of exosomes in liver cancer. J Hematol Oncol 2019; 12:133. [PMID: 31815633 PMCID: PMC6902437 DOI: 10.1186/s13045-019-0806-6] [Citation(s) in RCA: 180] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 10/17/2019] [Indexed: 12/24/2022] Open
Abstract
Hepatocellular carcinoma (HCC, also called primary liver cancer) is one of the most fatal cancers in the world. Due to the insidiousness of the onset of HCC and the lack of effective treatment methods, the prognosis of HCC is extremely poor, and the 5-year average survival rate is less than 10%. Exosomes are nano-sized microvesicle and contain various components such as nucleic acids, proteins, and lipids. Exosomes are important carriers for signal transmission or transportation of material from cell to cell or between cells and tissues. In recent years, exosomes have been considered as potential therapeutic targets of HCC. A large number of reports indicate that exosomes play a key role in the establishment of an HCC microenvironment, as well as the development, progression, invasion, metastasis, and even the diagnosis, treatment, and prognosis of HCC. However, the exact molecular mechanisms and roles of exosomes in these processes remain unclear. We believe that elucidation of the regulatory mechanism of HCC-related exosomes and its signaling pathway and analysis of its clinical applications in the diagnosis and treatment of HCC can provide useful clues for future treatment regimens for HCC. This article discusses and summarizes the research progress of HCC-related exosomes and their potential clinical applications.
Collapse
Affiliation(s)
- Hongbo Wang
- Department of Radiology, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang, 110004, Liaoning, China
| | - Zaiming Lu
- Department of Radiology, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang, 110004, Liaoning, China
| | - Xiangxuan Zhao
- Department of Radiology, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang, 110004, Liaoning, China.
| |
Collapse
|
185
|
Arechederra M. New warning signs on the road: 5-hydroxymethylcytosine-based liquid biopsy for the early detection of hepatocellular carcinoma. Gut 2019; 68:2103-2104. [PMID: 31391197 DOI: 10.1136/gutjnl-2019-319339] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 07/31/2019] [Indexed: 12/18/2022]
Affiliation(s)
- Maria Arechederra
- Hepatology Program, CIMA, University of Navarra, Pamplona, Spain .,Instituto de Investigaciones Sanitarias de Navarra-IdiSNA, Pamplona, Spain
| |
Collapse
|
186
|
Wang H, Lu Z, Zhao X. Tumorigenesis, diagnosis, and therapeutic potential of exosomes in liver cancer. J Hematol Oncol 2019; 12:133. [DOI: doi10.1186/s13045-019-0806-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 10/17/2019] [Indexed: 09/01/2023] Open
Abstract
AbstractHepatocellular carcinoma (HCC, also called primary liver cancer) is one of the most fatal cancers in the world. Due to the insidiousness of the onset of HCC and the lack of effective treatment methods, the prognosis of HCC is extremely poor, and the 5-year average survival rate is less than 10%. Exosomes are nano-sized microvesicle and contain various components such as nucleic acids, proteins, and lipids. Exosomes are important carriers for signal transmission or transportation of material from cell to cell or between cells and tissues. In recent years, exosomes have been considered as potential therapeutic targets of HCC. A large number of reports indicate that exosomes play a key role in the establishment of an HCC microenvironment, as well as the development, progression, invasion, metastasis, and even the diagnosis, treatment, and prognosis of HCC. However, the exact molecular mechanisms and roles of exosomes in these processes remain unclear. We believe that elucidation of the regulatory mechanism of HCC-related exosomes and its signaling pathway and analysis of its clinical applications in the diagnosis and treatment of HCC can provide useful clues for future treatment regimens for HCC. This article discusses and summarizes the research progress of HCC-related exosomes and their potential clinical applications.
Collapse
|
187
|
Huang J, Wang L. Cell-Free DNA Methylation Profiling Analysis-Technologies and Bioinformatics. Cancers (Basel) 2019; 11:cancers11111741. [PMID: 31698791 PMCID: PMC6896050 DOI: 10.3390/cancers11111741] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 11/01/2019] [Accepted: 11/04/2019] [Indexed: 12/24/2022] Open
Abstract
Analysis of circulating nucleic acids in bodily fluids, referred to as “liquid biopsies”, is rapidly gaining prominence. Studies have shown that cell-free DNA (cfDNA) has great potential in characterizing tumor status and heterogeneity, as well as the response to therapy and tumor recurrence. DNA methylation is an epigenetic modification that plays an important role in a broad range of biological processes and diseases. It is well known that aberrant DNA methylation is generalizable across various samples and occurs early during the pathogenesis of cancer. Methylation patterns of cfDNA are also consistent with their originated cells or tissues. Systemic analysis of cfDNA methylation profiles has emerged as a promising approach for cancer detection and origin determination. In this review, we will summarize the technologies for DNA methylation analysis and discuss their feasibility for liquid biopsy applications. We will also provide a brief overview of the bioinformatic approaches for analysis of DNA methylation sequencing data. Overall, this review provides informative guidance for the selection of experimental and computational methods in cfDNA methylation-based studies.
Collapse
|
188
|
Wang D, Hu X, Long G, Xiao L, Wang ZM, Zhou LD. The clinical value of total plasma cell-free DNA in hepatitis B virus-related hepatocellular carcinoma. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:650. [PMID: 31930051 DOI: 10.21037/atm.2019.10.78] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Background Circulating cell-free DNA (cfDNA), which is present in the blood, is related to the apoptosis and necrosis of cancer cells; inflammation also influences the total plasma level of cfDNA. However, the total plasma cfDNA level has not been investigated in patients with hepatitis B virus (HBV)-related hepatocellular carcinoma (HCC) who experience cancer and HBV infection at the same time. The aim of the study was to investigate total plasma cfDNA in patients with HBV-related HCC. Methods HBV-related HCC patients were included from January 2018 to May 2019. All patients underwent hepatectomy and were diagnosed with HCC by histopathology. Peripheral blood samples were obtained preoperatively, and the levels of total plasma cfDNA were quantitated by a fluorometric double-stranded DNA (dsDNA) assay. We examined the correlation between cfDNA and clinical parameters, and recurrence-free survival was evaluated using Kaplan-Meier curves. Results Forty-eight HBV-related HCC patients were included. The average age in years was 50.90±13.15, and the mean albumin level was 41.63±5.38 g/L. HBV-DNA, Child-Turcotte-Pugh (CTP) class, TNM stage, tumor number and vascular invasion showed a relationship with total plasma cfDNA (P<0.05), and albumin, prothrombin time (PT) and tumor diameter had linear correlation with plasma cfDNA. Based on multivariate analysis, tumor diameter, vascular invasion, and CTP class (P<0.05) were independent risk factors of total plasma cfDNA. Median recurrence times for low-cfDNA and high-cfDNA groups were 14.729±0.712 and 9.264±1.22 months (P=0.026). Conclusions In addition to tumor diameter and vascular invasion, CTP class can influence total plasma cfDNA in HBV-related HCC patients, and the total plasma cfDNA level can be used as a biomarker to predict early recurrence in HBV-related HCC patients.
Collapse
Affiliation(s)
- Dong Wang
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Xi Hu
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Guo Long
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Liang Xiao
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Zhi-Ming Wang
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Le-Du Zhou
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha 410008, China
| |
Collapse
|
189
|
Zhang W. Towards clinical implementation of circulating cell-free DNA in precision medicine. JOURNAL OF TRANSLATIONAL GENETICS AND GENOMICS 2019; 3. [PMID: 31579300 DOI: 10.20517/jtgg.2019.07] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Wei Zhang
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA.,The Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| |
Collapse
|
190
|
Yang Y, Zeng C, Lu X, Song Y, Nie J, Ran R, Zhang Z, He C, Zhang W, Liu SM. 5-Hydroxymethylcytosines in Circulating Cell-Free DNA Reveal Vascular Complications of Type 2 Diabetes. Clin Chem 2019; 65:1414-1425. [PMID: 31575611 DOI: 10.1373/clinchem.2019.305508] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 08/06/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Long-term complications of type 2 diabetes (T2D), such as macrovascular and microvascular events, are the major causes for T2D-related disability and mortality. A clinically convenient, noninvasive approach for monitoring the development of these complications would improve the overall life quality of patients with T2D and help reduce healthcare burden through preventive interventions. METHODS A selective chemical labeling strategy for 5-hydroxymethylcytosines (5hmC-Seal) was used to profile genome-wide 5hmCs, an emerging class of epigenetic markers implicated in complex diseases including diabetes, in circulating cell-free DNA (cfDNA) from a collection of Chinese patients (n = 62). Differentially modified 5hmC markers between patients with T2D with and without macrovascular/microvascular complications were analyzed under a case-control design. RESULTS Statistically significant changes in 5hmC markers were associated with T2D-related macrovascular/microvascular complications, involving genes and pathways relevant to vascular biology and diabetes, including insulin resistance and inflammation. A 16-gene 5hmC marker panel accurately distinguished patients with vascular complications from those without [testing set: area under the curve (AUC) = 0.85; 95% CI, 0.73-0.96], outperforming conventional clinical variables such as urinary albumin. In addition, a separate 13-gene 5hmC marker panel could distinguish patients with single complications from those with multiple complications (testing set: AUC = 0.84; 95% CI, 0.68-0.99), showing superiority over conventional clinical variables. CONCLUSIONS The 5hmC markers in cfDNA reflected the epigenetic changes in patients with T2D who developed macrovascular/microvascular complications. The 5hmC-Seal assay has the potential to be a clinically convenient, noninvasive approach that can be applied in the clinic to monitor the presence and severity of diabetic vascular complications.
Collapse
Affiliation(s)
- Ying Yang
- Department of Clinical Laboratory, Center for Gene Diagnosis, and Program of Clinical Laboratory, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Chang Zeng
- Driskill Graduate Program in Life Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL.,Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Xingyu Lu
- Shanghai Epican Genetech Co. Ltd., Shanghai, China
| | - Yanqun Song
- Shanghai Epican Genetech Co. Ltd., Shanghai, China
| | - Ji Nie
- Department of Chemistry, The University of Chicago, Chicago, IL
| | - Ruoxi Ran
- Department of Clinical Laboratory, Center for Gene Diagnosis, and Program of Clinical Laboratory, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zhou Zhang
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Chuan He
- Department of Chemistry, The University of Chicago, Chicago, IL; .,Department of Biochemistry and Molecular Biology; Institute for Biophysical Dynamics; and The Howard Hughes Medical Institute, The University of Chicago, Chicago, IL
| | - Wei Zhang
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL;
| | - Song-Mei Liu
- Department of Clinical Laboratory, Center for Gene Diagnosis, and Program of Clinical Laboratory, Zhongnan Hospital of Wuhan University, Wuhan, China;
| |
Collapse
|
191
|
Zeng C, Zhang Z, Wang J, Chiu BCH, Hou L, Zhang W. Application of the High-throughput TAB-Array for the Discovery of Novel 5-Hydroxymethylcytosine Biomarkers in Pancreatic Ductal Adenocarcinoma. EPIGENOMES 2019; 3:16. [PMID: 31413874 PMCID: PMC6693877 DOI: 10.3390/epigenomes3030016] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 08/08/2019] [Indexed: 02/06/2023] Open
Abstract
The clinical outcomes of pancreatic ductal adenocarcinoma (PDAC) remain dismal, with an estimated five-year survival rate less than 5%. Early detection and prognostic approaches, including robust biomarkers for PDAC are critical for improving patient survival. Our goal was to explore the biomarker potential of 5-hydroxymethylcytosines (5hmC), an emerging epigenetic marker with a distinct role in cancer pathobiology, yet under-investigated due largely to technical constraints, for PDAC. We used the TAB-Array assay, a state-of-the-art technology to directly profile 5hmC at single base resolution with the Illumina EPIC array (~850,000 cytosine modification sites) in 17 pairs of tumor/adjacent tissue samples from US patients collected at the University of Chicago Medical Center. The TAB-Array data were analyzed to explore the genomic distribution of 5hmC and evaluate whether 5hmC markers were differentially modified between tumors and adjacent tissues. We demonstrated distinctive distribution patterns of 5hmC in tissue samples from PDAC patients relative to gene regulatory elements (e.g., histone modification marks for enhancers), indicating their potential gene regulatory relevance. Substantial differences in 5hmC-modified CpG sites, involving those genes related to cancer pathobiology, were detected between tumors and adjacent tissues. The detected 5hmC-contaning marker genes also showed prognostic value for patient survival in the US patients with PDAC from the Cancer Genome Atlas Project. This study demonstrated the technical feasibility of the TAB-Array approach in cancer biomarker discovery and the biomarker potential of 5hmC for PDAC. Future studies using tissues and/or liquid biopsies may include 5hmC as potential epigenetic biomarker targets for PDAC.
Collapse
Affiliation(s)
- Chang Zeng
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Driskill Graduate Program in Life Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Zhou Zhang
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Jun Wang
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Brian C-H Chiu
- Department of Public Health Sciences, the University of Chicago, Chicago, IL 60637, USA
| | - Lifang Hou
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- The Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Wei Zhang
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- The Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| |
Collapse
|
192
|
Zhang Z, Zhang W. Fragmentation patterns of circulating cell-free DNA demonstrate biomarker potential for human cancers. BIOTARGET 2019; 3:16. [PMID: 31468030 PMCID: PMC6714582 DOI: 10.21037/biotarget.2019.08.02] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Zhou Zhang
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | - Wei Zhang
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
- The Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| |
Collapse
|