151
|
Zhang XL, Hu LP, Yang Q, Qin WT, Wang X, Xu CJ, Tian GA, Yang XM, Yao LL, Zhu L, Nie HZ, Li Q, Xu Q, Zhang ZG, Zhang YL, Li J, Wang YH, Jiang SH. CTHRC1 promotes liver metastasis by reshaping infiltrated macrophages through physical interactions with TGF-β receptors in colorectal cancer. Oncogene 2021; 40:3959-3973. [PMID: 33986509 DOI: 10.1038/s41388-021-01827-0] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 04/13/2021] [Accepted: 04/27/2021] [Indexed: 02/03/2023]
Abstract
Metastasis is a major cause of cancer-related deaths. Tumor-intrinsic properties can determine whether tumor metastasis occurs or not. Here, by comparing the gene expression patterns in primary colorectal cancer (CRC) patients with or without metastasis, we found that Collagen Triple Helix Repeat Containing 1 (CTHRC1) in primary CRC served as a metastasis-associated gene. Animal experiments verified that CTHRC1 secreted by CRC cells promoted hepatic metastasis, which was closely correlated with macrophage infiltration. Depletion of macrophages by liposomal clodronate largely abolished the promoting effect of CTHRC1 on CRC liver metastasis. Furthermore, we demonstrated that CTHRC1 modulated macrophage polarization to M2 phenotypes through TGF-β signaling. A mechanistic study revealed that CTHRC1 bound directly to TGF-β receptor II and TGF-β receptor III, stabilized the TGF-β receptor complex, and activated TGF-β signaling. The combination treatment of CTHRC1 monoclonal antibody and anti-PD-1 blocking antibody effectively suppressed CRC hepatic metastasis. Taken together, our data demonstrated that CTHRC1 is an intrinsic marker of CRC metastasis and further revealed that CTHRC1 promoted CRC liver metastasis by reshaping infiltrated macrophages through TGF-β signaling, suggesting that CTHRC1 could be a potential biomarker for the early prediction of and a therapeutic target of CRC hepatic metastasis.
Collapse
Affiliation(s)
- Xue-Li Zhang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Li-Peng Hu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qin Yang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Wei-Ting Qin
- Department of Radiation Oncology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xu Wang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Chun-Jie Xu
- Department of Gastrointestinal Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Guang-Ang Tian
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiao-Mei Yang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Lin-Li Yao
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Lei Zhu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Hui-Zhen Nie
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qing Li
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qing Xu
- Department of Gastrointestinal Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhi-Gang Zhang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yan-Li Zhang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Jun Li
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Ya-Hui Wang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Shu-Heng Jiang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
152
|
Lim YW, Coles GL, Sandhu SK, Johnson DS, Adler AS, Stone EL. Single-cell transcriptomics reveals the effect of PD-L1/TGF-β blockade on the tumor microenvironment. BMC Biol 2021; 19:107. [PMID: 34030676 PMCID: PMC8147417 DOI: 10.1186/s12915-021-01034-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 04/21/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The anti-tumor activity of anti-PD-1/PD-L1 therapies correlates with T cell infiltration in tumors. Thus, a major goal in oncology is to find strategies that enhance T cell infiltration and efficacy of anti-PD-1/PD-L1 therapy. TGF-β has been shown to contribute to T cell exclusion, and anti-TGF-β improves anti-PD-L1 efficacy in vivo. However, TGF-β inhibition has frequently been shown to induce toxicity in the clinic, and the clinical efficacy of combination PD-L1 and TGF-β blockade has not yet been proven. To identify strategies to overcome resistance to PD-L1 blockade, the transcriptional programs associated with PD-L1 and/or TGF-β blockade in the tumor microenvironment should be further elucidated. RESULTS We used single-cell RNA sequencing in a mouse model to characterize the transcriptomic effects of PD-L1 and/or TGF-β blockade on nearly 30,000 single cells in the tumor and surrounding microenvironment. Combination treatment led to upregulation of immune response genes, including multiple chemokine genes such as CCL5, in macrophages, and downregulation of extracellular matrix genes in fibroblasts. Analysis of publicly available tumor transcriptome profiles showed that the chemokine CCL5 was strongly associated with immune cell infiltration in various human cancers. Further investigation with in vivo models showed that intratumorally administered CCL5 enhanced cytotoxic lymphocytes and the anti-tumor activity of anti-PD-L1. CONCLUSIONS Taken together, our data could be leveraged translationally to complement or find alternatives to anti-PD-L1 plus anti-TGF-β combination therapy, for example through companion biomarkers, and/or to identify novel targets that could be modulated to overcome resistance.
Collapse
Affiliation(s)
- Yoong Wearn Lim
- GigaGen, Inc., One Tower Place, Suite 750, South San Francisco, CA, 94080, USA
| | - Garry L Coles
- GigaGen, Inc., One Tower Place, Suite 750, South San Francisco, CA, 94080, USA
| | - Savreet K Sandhu
- GigaGen, Inc., One Tower Place, Suite 750, South San Francisco, CA, 94080, USA
| | - David S Johnson
- GigaGen, Inc., One Tower Place, Suite 750, South San Francisco, CA, 94080, USA
| | - Adam S Adler
- GigaGen, Inc., One Tower Place, Suite 750, South San Francisco, CA, 94080, USA.
| | - Erica L Stone
- GigaGen, Inc., One Tower Place, Suite 750, South San Francisco, CA, 94080, USA.
| |
Collapse
|
153
|
Kockx MM, McCleland M, Koeppen H. Microenvironmental regulation of tumour immunity and response to immunotherapy. J Pathol 2021; 254:374-383. [PMID: 33846997 PMCID: PMC8252752 DOI: 10.1002/path.5681] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 03/25/2021] [Accepted: 04/08/2021] [Indexed: 12/12/2022]
Abstract
The confluence of immunology and oncology has led to a lot of uncertainty and questions about relevant biomarkers. Despite the complexity of the tumour microenvironment, most clinical studies have relied on a single‐parameter immunohistochemical assay to prospectively select patients for checkpoint inhibitor therapy; the results of this strategy have been highly variable and often less than optimal. While great efforts have been made to identify additional or alternative biomarkers, pathologists, drug developers, and clinicians alike have faced technical, logistical, and regulatory challenges on how to implement them successfully. In this review, we will discuss these challenges; we will also highlight recent advances in dissecting the functional diversity of immune cell populations within the tumour microenvironment and their potential for improved, biomarker‐driven therapeutic strategies. The dynamic nature and cellular diversity of the tumour microenvironment may challenge past models of a single biomarker predicting patient response and clinical outcome. © 2021 The Authors. The Journal of Pathology published by John Wiley & Sons, Ltd. on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
|
154
|
Luo D, Kuang F, Du J, Zhou M, Peng F, Gan Y, Fang C, Yang X, Li B, Su S. Characterization of the Immune Cell Infiltration Profile in Pancreatic Carcinoma to Aid in Immunotherapy. Front Oncol 2021; 11:677609. [PMID: 34055645 PMCID: PMC8155731 DOI: 10.3389/fonc.2021.677609] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 04/19/2021] [Indexed: 12/14/2022] Open
Abstract
The tumor microenvironment (TME) is comprised of tumor cells, infiltrating immune cells, and stroma. Multiple reports suggest that the immune cell infiltration (ICI) in TME is strongly associated with responsiveness to immunotherapy and prognosis of certain cancers. Thus far, the ICI profile of pancreatic carcinoma (PC) remains unclear. Here, we employed two algorithms to characterize the ICI profile of PC patients. Based on our results, we identified 2 ICI patterns and calculated the ICI score by using principal component analysis. Furthermore, we revealed that patients with low ICI scores had a better prognosis, compared to high ICI scores. Moreover, we discovered that a low tumor mutation burden (TMB) offered better overall survival (OS), relative to high TMB. In this study, a high ICI score referred to elevated PD-L1/TGF-β levels, increased activation of cell cycle pathway and DNA repair pathway, as well as reduced expression of immune-activation-related genes. We also demonstrated that three metabolic pathways were suppressed in the low ICI score group. These data may explain why a high ICI score equates to a poor prognosis. Based on our analysis, the ICI score can be used as an effective predictor of PC prognosis. Hence, establishing an ICI profile, based on a large patient population, will not only enhance our knowledge of TME but also aid in the development of immunotherapies specific to PC.
Collapse
Affiliation(s)
- De Luo
- Department of Hepatobiliary Surgery, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Fei Kuang
- Department of General Surgery, Changhai Hospital of The Second Military Medical University, Shanghai, China
| | - Juan Du
- Department of Clinical Medicine, Southwest Medical University, Luzhou, China
| | - Mengjia Zhou
- Department of Ultrasound, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Fangyi Peng
- Department of Hepatobiliary Surgery, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yu Gan
- Department of Hepatobiliary Surgery, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Cheng Fang
- Department of Hepatobiliary Surgery, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Xiaoli Yang
- Department of Hepatobiliary Surgery, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Bo Li
- Department of Hepatobiliary Surgery, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Song Su
- Department of Hepatobiliary Surgery, Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
155
|
Dillon PM, Tushir-Singh J, Lum LG. Bispecific antibodies for the treatment of breast cancer. Expert Opin Biol Ther 2021; 22:1017-1027. [PMID: 33896311 PMCID: PMC8576064 DOI: 10.1080/14712598.2021.1922665] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION There are more than two dozen bispecific antibodies (BsAbs) in development with a variety of designs which are relevant to breast cancer. The field of BsAbs for breast cancer includes agents that co-direct immune recognition of the cancer cell, target unique cancer antigens, and target the microenvironment. BsAbs are being developed for use as antibody-drug conjugates and as homing signals for engineered T-cells. AREAS COVERED This review covers potential targets for bispecific antibodies, agents in pre-clinical development, agents in clinical trials, combinatorial therapies, and future directions. EXPERT OPINION There is no BsAb approval expected for breast cancer in the near term, but late-stage trials are underway. Future BsAb roles in breast cancer are possible given unmet needs in estrogen receptor+ disease, residual disease, and de-escalating chemotherapy use. The HER2+ space shows hints of success for BsAbs, but is already crowded. Areas of unmet need still exist.
Collapse
Affiliation(s)
- Patrick M Dillon
- Division of Hematology/Oncology, University of Virginia Charlottesville, VA, USA
| | - Jogender Tushir-Singh
- Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, USA
| | - Lawrence G Lum
- Division of Hematology/Oncology, University of Virginia Charlottesville, VA, USA
| |
Collapse
|
156
|
Wiggins CJ, Morris VK, Klimas NK, Nagarajan P, Curry JL, Richards KN. Bullous pemphigoid secondary to bintrafusp alfa, a bifunctional fusion protein targeting TGF-beta and PD-L1. JAAD Case Rep 2021; 13:23-25. [PMID: 34136620 PMCID: PMC8181498 DOI: 10.1016/j.jdcr.2021.04.027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Affiliation(s)
- Claire J Wiggins
- Department of Dermatology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Van K Morris
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Natasha K Klimas
- Department of Dermatology, The University of Texas Health Science Center at Houston, Houston, Texas
| | | | - Jonathan L Curry
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Kristen N Richards
- Department of Dermatology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
157
|
Ozawa Y, Hicks KC, Minnar CM, Knudson KM, Schlom J, Gameiro SR. Analysis of the tumor microenvironment and anti-tumor efficacy of subcutaneous vs systemic delivery of the bifunctional agent bintrafusp alfa. Oncoimmunology 2021; 10:1915561. [PMID: 33996267 PMCID: PMC8096334 DOI: 10.1080/2162402x.2021.1915561] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Most monoclonal antibodies (MAbs), including immune checkpoint inhibitor MAbs, are delivered intravenously (i.v.) to patients. Recent clinical studies have demonstrated that some anti-PD1 MAbs may also be delivered subcutaneously (s.c.), with clinical outcomes similar of those obtained with i.v.-delivered agents. Bintrafusp alfa, a first-in-class bifunctional fusion protein composed of the extracellular domain of the human transforming growth factor β receptor II (TGF-βRII or TGF-β “trap”) fused to the heavy chain of an IgG1 antibody blocking programmed death ligand 1 (anti-PDL1), was designed to target two key immunosuppressive pathways in the tumor microenvironment (TME). Bintrafusp alfa is currently being administered i.v. in clinical studies. The studies reported here demonstrate that systemic or s.c. delivery of bintrafusp alfa, each administered at five different doses, induces similar anti-tumor effects in breast and colorectal carcinoma models. An interrogation of the TME for CD8+ and CD4+ T cells, regulatory T cells (Tregs), monocytic myeloid-derived suppressor cells (M-MDSCs) and granulocytic (G) MDSCs showed similar levels and phenotype of each cell subset when bintrafusp alfa was given systemically or s.c. Subcutaneous administration of bintrafusp alfa also sequestered TGFβ in the periphery at similar levels seen with systemic delivery. To our knowledge, this is the most comprehensive preclinical evaluation of any checkpoint inhibitor MAb given s.c. vs systemically, and the first to demonstrate this phenomenon using a bifunctional agent. These studies provide preclinical rationale to explore s.c. approaches for bintrafusp alfa in the clinic.
Collapse
Affiliation(s)
- Yohei Ozawa
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Kristin C Hicks
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Christine M Minnar
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Karin M Knudson
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jeffrey Schlom
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Sofia R Gameiro
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
158
|
Shaver KA, Croom-Perez TJ, Copik AJ. Natural Killer Cells: The Linchpin for Successful Cancer Immunotherapy. Front Immunol 2021; 12:679117. [PMID: 33995422 PMCID: PMC8115550 DOI: 10.3389/fimmu.2021.679117] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 04/09/2021] [Indexed: 12/11/2022] Open
Abstract
Cancer immunotherapy is a highly successful and rapidly evolving treatment modality that works by augmenting the body’s own immune system. While various immune stimulation strategies such as PD-1/PD-L1 or CTLA-4 checkpoint blockade result in robust responses, even in patients with advanced cancers, the overall response rate is low. While immune checkpoint inhibitors are known to enhance cytotoxic T cells’ antitumor response, current evidence suggests that immune responses independent of cytotoxic T cells, such as Natural Killer (NK) cells, play crucial role in the efficacy of immunotherapeutic interventions. NK cells hold a distinct role in potentiating the innate immune response and activating the adaptive immune system. This review highlights the importance of the early actions of the NK cell response and the pivotal role NK cells hold in priming the immune system and setting the stage for successful response to cancer immunotherapy. Yet, in many patients the NK cell compartment is compromised thus lowering the chances of successful outcomes of many immunotherapies. An overview of mechanisms that can drive NK cell dysfunction and hinder immunotherapy success is provided. Rather than relying on the likely dysfunctional endogenous NK cells to work with immunotherapies, adoptive allogeneic NK cell therapies provide a viable solution to increase response to immunotherapies. This review highlights the advances made in development of NK cell therapeutics for clinical application with evidence supporting their combinatorial application with other immune-oncology approaches to improve outcomes of immunotherapies.
Collapse
Affiliation(s)
- Kari A Shaver
- College of Medicine, University of Central Florida, Orlando, FL, United States
| | - Tayler J Croom-Perez
- Burnett School of Biomedical Science, College of Medicine, University of Central Florida, Orlando, FL, United States
| | - Alicja J Copik
- Burnett School of Biomedical Science, College of Medicine, University of Central Florida, Orlando, FL, United States
| |
Collapse
|
159
|
Duranti S, Pietragalla A, Daniele G, Nero C, Ciccarone F, Scambia G, Lorusso D. Role of Immune Checkpoint Inhibitors in Cervical Cancer: From Preclinical to Clinical Data. Cancers (Basel) 2021; 13:cancers13092089. [PMID: 33925884 PMCID: PMC8123488 DOI: 10.3390/cancers13092089] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 04/20/2021] [Accepted: 04/24/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Cervical cancer represents one of the main leading causes of cancer-related mortality in women worldwide. In contrast to patients with early-stage disease, those with advanced, recurrent, or metastatic cervical cancer have a poor prognosis and new treatment strategies are needed. Immunotherapy has recently modified the natural course of different tumors, such as melanoma and lung cancer. The aim of this review is to evaluate the possible role of immune checkpoint inhibitors in cervical cancer treatment. Abstract Human papillomavirus (HPV) infection is the recognized cause of almost all cervical cancers. Despite the reduction in incidence due to a wide use of screening programs and a specific vaccine, the prognosis of cervical cancer remains poor, especially for late-stage and relapsed disease. Considering the elevated rates of PD-L1 expression in up to 80% of cervical cancers, a strong rationale supports the use of immunotherapy to restore the immune response against tumor. The aim of this review is to analyze the possible role of immune checkpoint inhibitors in cervical cancer treatment, with a particular focus on the rationale and on the results of phase I and II clinical trials. An overview of ongoing phase III studies with possible future areas of development is also provided.
Collapse
Affiliation(s)
- Simona Duranti
- Scientific Directorate, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (S.D.); (A.P.); (G.D.); (C.N.); (G.S.)
| | - Antonella Pietragalla
- Scientific Directorate, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (S.D.); (A.P.); (G.D.); (C.N.); (G.S.)
| | - Gennaro Daniele
- Scientific Directorate, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (S.D.); (A.P.); (G.D.); (C.N.); (G.S.)
| | - Camilla Nero
- Scientific Directorate, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (S.D.); (A.P.); (G.D.); (C.N.); (G.S.)
- Department Woman and Child Health and Public Health, Division of Gynaecologic Oncology, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy;
| | - Francesca Ciccarone
- Department Woman and Child Health and Public Health, Division of Gynaecologic Oncology, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy;
| | - Giovanni Scambia
- Scientific Directorate, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (S.D.); (A.P.); (G.D.); (C.N.); (G.S.)
- Department of Life Science and Public Health, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Domenica Lorusso
- Scientific Directorate, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (S.D.); (A.P.); (G.D.); (C.N.); (G.S.)
- Department of Life Science and Public Health, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- Correspondence: ; Tel.: +39-06-30157336
| |
Collapse
|
160
|
The Emerging Role of Immunotherapy in Intrahepatic Cholangiocarcinoma. Vaccines (Basel) 2021; 9:vaccines9050422. [PMID: 33922362 PMCID: PMC8146949 DOI: 10.3390/vaccines9050422] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/18/2021] [Accepted: 04/20/2021] [Indexed: 12/17/2022] Open
Abstract
Biliary tract cancer, and intrahepatic cholangiocarcinoma (iCC) in particular, represents a rather uncommon, highly aggressive malignancy with unfavorable prognosis. Therapeutic options remain scarce, with platinum-based chemotherapy is being considered as the gold standard for the management of advanced disease. Comprehensive molecular profiling of tumor tissue biopsies, utilizing multi-omics approaches, enabled the identification of iCC’s intratumor heterogeneity and paved the way for the introduction of novel targeted therapies under the scope of precision medicine. Yet, the unmet need for optimal care of patients with chemo-refractory disease or without targetable mutations still exists. Immunotherapy has provided a paradigm shift in cancer care over the past decade. Currently, immunotherapeutic strategies for the management of iCC are under intense research. Intrinsic factors of the tumor, including programmed death-ligand 1 (PD-L1) expression and mismatch repair (MMR) status, are simply the tip of the proverbial iceberg with regard to resistance to immunotherapy. Acknowledging the significance of the tumor microenvironment (TME) in both cancer growth and drug response, we broadly discuss about its diverse immune components. We further review the emerging role of immunotherapy in this rare disease, summarizing the results of completed and ongoing phase I–III clinical trials, expounding current challenges and future directions.
Collapse
|
161
|
Hall PE, Schmid P. Emerging drugs for the treatment of triple-negative breast cancer: a focus on phase II immunotherapy trials. Expert Opin Emerg Drugs 2021; 26:131-147. [PMID: 33870839 DOI: 10.1080/14728214.2021.1916468] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Introduction: Triple-negative breast cancer accounts for 10-20% of invasive breast cancers and is characterized by an aggressive phenotype and poor outcomes in the early and advanced settings compared to other breast cancer subtypes. Chemotherapy continues to be the mainstay of treatment, but recent advances have demonstrated the benefit of adding immune checkpoint inhibitors (ICIs) to chemotherapy regimens for patients with both early and advanced TNBC, particularly if PD-L1-positive. Despite these results, further improvements are needed.Areas covered: This review covers immunotherapy drugs which have recently completed, involved in ongoing or due to start phase II trials. This includes approaches to augment the response to existing ICIs, next-generation ICIs, combination treatments with targeted agents and drugs that target the tumor microenvironment. Potential development issues are also discussed.Expert opinion: The field of immunotherapy is developing rapidly and holds great promise for patients with TNBC. Promising avenues of research currently in phase II trials include targeting multiple immune checkpoints simultaneously and the addition of phosphatidylinositol 3-kinase (PI3K)/AKT inhibitors to ICI/chemotherapy regimens. A better understanding of the immunosuppressive role played by the tumor microenvironment has also been important. However, challenges remain, particularly regarding the need for more effective predictive biomarkers.
Collapse
Affiliation(s)
- Peter E Hall
- Dept. Of Medical Oncology, Barts Health NHS Trust, London, UK
| | - Peter Schmid
- Dept. Of Medical Oncology, Barts Health NHS Trust, London, UK.,Barts Cancer Institute, Queen Mary University of London, London, UK
| |
Collapse
|
162
|
Tateo V, Manuzzi L, Parisi C, De Giglio A, Campana D, Pantaleo MA, Lamberti G. An Overview on Molecular Characterization of Thymic Tumors: Old and New Targets for Clinical Advances. Pharmaceuticals (Basel) 2021; 14:316. [PMID: 33915954 PMCID: PMC8066729 DOI: 10.3390/ph14040316] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 03/25/2021] [Accepted: 03/26/2021] [Indexed: 12/11/2022] Open
Abstract
Thymic tumors are a group of rare mediastinal malignancies that include three different histological subtypes with completely different clinical behavior: the thymic carcinomas, the thymomas, and the rarest thymic neuroendocrine tumors. Nowadays, few therapeutic options are available for relapsed and refractory thymic tumors after a first-line platinum-based chemotherapy. In the last years, the deepening of knowledge on thymus' biological characterization has opened possibilities for new treatment options. Several clinical trials have been conducted, the majority with disappointing results mainly due to inaccurate patient selection, but recently some encouraging results have been presented. In this review, we summarize the molecular alterations observed in thymic tumors, underlying the great biological differences among the different histology, and the promising targeted therapies for the future.
Collapse
Affiliation(s)
- Valentina Tateo
- Department of Experimental, Diagnostic and Specialty Medicine, Policlinico di Sant’Orsola University Hospital, Via P. Albertoni 15, 40138 Bologna, Italy; (V.T.); (L.M.); (C.P.); (D.C.); (M.A.P.); (G.L.)
| | - Lisa Manuzzi
- Department of Experimental, Diagnostic and Specialty Medicine, Policlinico di Sant’Orsola University Hospital, Via P. Albertoni 15, 40138 Bologna, Italy; (V.T.); (L.M.); (C.P.); (D.C.); (M.A.P.); (G.L.)
| | - Claudia Parisi
- Department of Experimental, Diagnostic and Specialty Medicine, Policlinico di Sant’Orsola University Hospital, Via P. Albertoni 15, 40138 Bologna, Italy; (V.T.); (L.M.); (C.P.); (D.C.); (M.A.P.); (G.L.)
| | - Andrea De Giglio
- Department of Experimental, Diagnostic and Specialty Medicine, Policlinico di Sant’Orsola University Hospital, Via P. Albertoni 15, 40138 Bologna, Italy; (V.T.); (L.M.); (C.P.); (D.C.); (M.A.P.); (G.L.)
- Division of Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Via P. Albertoni 15, 40138 Bologna, Italy
| | - Davide Campana
- Department of Experimental, Diagnostic and Specialty Medicine, Policlinico di Sant’Orsola University Hospital, Via P. Albertoni 15, 40138 Bologna, Italy; (V.T.); (L.M.); (C.P.); (D.C.); (M.A.P.); (G.L.)
- Division of Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Via P. Albertoni 15, 40138 Bologna, Italy
| | - Maria Abbondanza Pantaleo
- Department of Experimental, Diagnostic and Specialty Medicine, Policlinico di Sant’Orsola University Hospital, Via P. Albertoni 15, 40138 Bologna, Italy; (V.T.); (L.M.); (C.P.); (D.C.); (M.A.P.); (G.L.)
- Division of Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Via P. Albertoni 15, 40138 Bologna, Italy
| | - Giuseppe Lamberti
- Department of Experimental, Diagnostic and Specialty Medicine, Policlinico di Sant’Orsola University Hospital, Via P. Albertoni 15, 40138 Bologna, Italy; (V.T.); (L.M.); (C.P.); (D.C.); (M.A.P.); (G.L.)
- Division of Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Via P. Albertoni 15, 40138 Bologna, Italy
| |
Collapse
|
163
|
N J, J T, Sl N, Gt B. Tertiary lymphoid structures and B lymphocytes in cancer prognosis and response to immunotherapies. Oncoimmunology 2021; 10:1900508. [PMID: 33854820 PMCID: PMC8018489 DOI: 10.1080/2162402x.2021.1900508] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Tertiary lymphoid structures (TLS) are ectopic cellular aggregates that resemble secondary lymphoid organs in their composition and structural organization. In contrast to secondary lymphoid organs, TLS are not imprinted during embryogenesis but are formed in non-lymphoid tissues in response to local inflammation. TLS structures exhibiting a variable degree of maturation are found in solid tumors. They are composed of various immune cell types including dendritic cells and antigen-specific B and T lymphocytes, that together, actively drive the immune response against tumor development and progression. This review highlights the successive steps leading to tumor TLS formation and its association with clinical outcomes. We discuss the role played by tumor-infiltrating B lymphocytes and plasma cells, their prognostic value in solid tumors and immunotherapeutic responses and their potential for future targeting.
Collapse
Affiliation(s)
- Jacquelot N
- Immunology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Australia
| | - Tellier J
- Immunology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Australia
| | - Nutt Sl
- Immunology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Australia
| | - Belz Gt
- Immunology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Australia.,The University of Queensland Diamantina Institute, the University of Queensland, Brisbane, Australia
| |
Collapse
|
164
|
Vathiotis IA, Johnson JM, Argiris A. Enhancing programmed cell death protein 1 axis inhibition in head and neck squamous cell carcinoma: Combination immunotherapy. Cancer Treat Rev 2021; 97:102192. [PMID: 33819755 DOI: 10.1016/j.ctrv.2021.102192] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/17/2021] [Accepted: 03/21/2021] [Indexed: 02/06/2023]
Abstract
Anti-programmed cell death protein 1 immunotherapy has become the new standard in the treatment of patients with recurrent or metastatic head and neck squamous cell carcinoma (HNSCC). However, the population that benefits is small, warranting drug combinations and novel approaches. HNSCC is a profoundly immunosuppressive disease, characterized by the interplay among different immune regulatory pathways. As clinical trials evaluating immunotherapy combinations in patients with HNSCC have started producing preliminary results, preclinical evidence on potential new targets for combination immunotherapy continues to accumulate. This review summarizes emerging clinical and preclinical data on immunotherapy combinations for the treatment of HNSCC.
Collapse
Affiliation(s)
- Ioannis A Vathiotis
- Department of Pathology, Yale University, 310 Cedar Street, New Haven, CT, USA
| | - Jennifer M Johnson
- Department of Medical Oncology, Thomas Jefferson University, 1025 Walnut Street, Suite 700, Philadelphia, PA, USA
| | - Athanassios Argiris
- Department of Medical Oncology, Thomas Jefferson University, 1025 Walnut Street, Suite 700, Philadelphia, PA, USA
| |
Collapse
|
165
|
Bashir B, Flickinger JC, Snook AE. Vaccines and immune checkpoint inhibitors: a promising combination strategy in gastrointestinal cancers. Immunotherapy 2021; 13:561-564. [PMID: 33724866 DOI: 10.2217/imt-2021-0012] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Tweetable abstract US FDA-approved immune checkpoint inhibitors have limited efficacy for gastrointestinal cancers such as #colorectalcancer and #pancreaticcancer. Could combinations with experimental cancer 'vaccines' be the key?
Collapse
Affiliation(s)
- Babar Bashir
- Department of Medical Oncology, Thomas Jefferson University, Philadelphia, PA 19107, USA.,Departments of Pharmacology & Experimental Therapeutics, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - John C Flickinger
- Departments of Pharmacology & Experimental Therapeutics, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Adam E Snook
- Departments of Pharmacology & Experimental Therapeutics, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
166
|
Gatti-Mays ME, Gameiro SR, Ozawa Y, Knudson KM, Hicks KC, Palena C, Cordes LM, Steinberg SM, Francis D, Karzai F, Lipkowitz S, Donahue RN, Jochems C, Schlom J, Gulley JL. Improving the Odds in Advanced Breast Cancer With Combination Immunotherapy: Stepwise Addition of Vaccine, Immune Checkpoint Inhibitor, Chemotherapy, and HDAC Inhibitor in Advanced Stage Breast Cancer. Front Oncol 2021; 10:581801. [PMID: 33747894 PMCID: PMC7977003 DOI: 10.3389/fonc.2020.581801] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 12/23/2020] [Indexed: 01/05/2023] Open
Abstract
Breast tumors commonly harbor low mutational burden, low PD-L1 expression, defective antigen processing/presentation, and an immunosuppressive tumor microenvironment (TME). In a malignancy mostly refractory to checkpoint blockade, there is an unmet clinical need for novel combination approaches that increase tumor immune infiltration and tumor control. Preclinical data have guided the development of this clinical trial combining 1) BN-Brachyury (a poxvirus vaccine platform encoding the tumor associated antigen brachyury), 2) bintrafusp alfa (a bifunctional protein composed of the extracellular domain of the TGF-βRII receptor (TGFβ "trap") fused to a human IgG1 anti-PD-L1), 3), entinostat (a class I histone deacetylase inhibitor), and 4) T-DM1 (ado-trastuzumab emtansine, a standard of care antibody-drug conjugate targeting HER2). We hypothesize that this tetratherapy will induce a robust immune response against HER2+ breast cancer with improved response rates through 1) expanding tumor antigen-specific effector T cells, natural killer cells, and immunostimulatory dendritic cells, 2) improving antigen presentation, and 3) decreasing inhibitory cytokines, regulatory T cells, and myeloid-derived suppressor cells. In an orthotopic HER2+ murine breast cancer model, tetratherapy induced high levels of antigen-specific T cell responses, tumor CD8+ T cell/Treg ratio, and augmented the presence of IFNγ- or TNFα-producing CD8+ T cells and IFNγ/TNFα bifunctional CD8+ T cells with increased cytokine production. Similar effects were observed in tumor CD4+ effector T cells. Based on this data, a phase 1b clinical trial evaluating the stepwise addition of BN-Brachyury, bintrafusp alfa, T-DM1 and entinostat in advanced breast cancer was designed. Arm 1 (TNBC) receives BN-Brachyury + bintrafusp alfa. Arm 2 (HER2+) receives T-DM1 + BN-Brachyury + bintrafusp alfa. After safety is established in Arm 2, Arm 3 (HER2+) will receive T-DM1 + BN-Brachyury + bintrafusp alfa + entinostat. Reimaging will occur every 2 cycles (1 cycle = 21 days). Arms 2 and 3 undergo research biopsies at baseline and after 2 cycles to evaluate changes within the TME. Peripheral immune responses will be evaluated. Co-primary objectives are response rate and safety. All arms employ a safety assessment in the initial six patients and a 2-stage Simon design for clinical efficacy (Arm 1 if ≥ three responses of eight then expand to 13 patients; Arms 2 and 3 if ≥ four responses of 14 then expand to 19 patients per arm). Secondary objectives include progression-free survival and changes in tumor infiltrating lymphocytes. Exploratory analyses include changes in peripheral immune cells and cytokines. To our knowledge, the combination of a vaccine, an anti-PD-L1 antibody, entinostat, and T-DM1 has not been previously evaluated in the preclinical or clinical setting. This trial (NCT04296942) is open at the National Cancer Institute (Bethesda, MD).
Collapse
Affiliation(s)
- Margaret E. Gatti-Mays
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Sofia R. Gameiro
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Yohei Ozawa
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Karin M. Knudson
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Kristin C. Hicks
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Claudia Palena
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Lisa M. Cordes
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Seth M. Steinberg
- Biostatistics and Data Management Section, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Deneise Francis
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Fatima Karzai
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Stanley Lipkowitz
- Women’s Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Renee N. Donahue
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Caroline Jochems
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Jeffrey Schlom
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - James L. Gulley
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
167
|
Horn LA, Fousek K, Hamilton DH, Hodge JW, Zebala JA, Maeda DY, Schlom J, Palena C. Vaccine Increases the Diversity and Activation of Intratumoral T Cells in the Context of Combination Immunotherapy. Cancers (Basel) 2021; 13:cancers13050968. [PMID: 33669155 PMCID: PMC7956439 DOI: 10.3390/cancers13050968] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/20/2021] [Accepted: 02/20/2021] [Indexed: 12/11/2022] Open
Abstract
Resistance to immune checkpoint blockade therapy has spurred the development of novel combinations of drugs tailored to specific cancer types, including non-inflamed tumors with low T-cell infiltration. Cancer vaccines can potentially be utilized as part of these combination immunotherapies to enhance antitumor efficacy through the expansion of tumor-reactive T cells. Utilizing murine models of colon and mammary carcinoma, here we investigated the effect of adding a recombinant adenovirus-based vaccine targeting tumor-associated antigens with an IL-15 super agonist adjuvant to a multimodal regimen consisting of a bifunctional anti-PD-L1/TGF-βRII agent along with a CXCR1/2 inhibitor. We demonstrate that the addition of vaccine induced a greater tumor infiltration with T cells highly positive for markers of proliferation and cytotoxicity. In addition to this enhancement of cytotoxic T cells, combination therapy showed a restructured tumor microenvironment with reduced Tregs and CD11b+Ly6G+ myeloid cells. Tumor-infiltrating immune cells exhibited an upregulation of gene signatures characteristic of a Th1 response and presented with a more diverse T-cell receptor (TCR) repertoire. These results provide the rationale for the addition of vaccine-to-immune checkpoint blockade-based therapies being tested in the clinic.
Collapse
Affiliation(s)
- Lucas A. Horn
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (L.A.H.); (K.F.); (D.H.H.); (J.W.H.); (J.S.)
| | - Kristen Fousek
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (L.A.H.); (K.F.); (D.H.H.); (J.W.H.); (J.S.)
| | - Duane H. Hamilton
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (L.A.H.); (K.F.); (D.H.H.); (J.W.H.); (J.S.)
| | - James W. Hodge
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (L.A.H.); (K.F.); (D.H.H.); (J.W.H.); (J.S.)
| | - John A. Zebala
- Syntrix Pharmaceuticals, Auburn, WA 98001, USA; (J.A.Z.); (D.Y.M.)
| | - Dean Y. Maeda
- Syntrix Pharmaceuticals, Auburn, WA 98001, USA; (J.A.Z.); (D.Y.M.)
| | - Jeffrey Schlom
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (L.A.H.); (K.F.); (D.H.H.); (J.W.H.); (J.S.)
| | - Claudia Palena
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (L.A.H.); (K.F.); (D.H.H.); (J.W.H.); (J.S.)
- Correspondence: ; Tel.: +1-240-858-3475; Fax: +1-240-541-4558
| |
Collapse
|
168
|
Burvenich IJG, Goh YW, Guo N, Gan HK, Rigopoulos A, Cao D, Liu Z, Ackermann U, Wichmann CW, McDonald AF, Huynh N, O'Keefe GJ, Gong SJ, Scott FE, Li L, Geng W, Zutshi A, Lan Y, Scott AM. Radiolabelling and preclinical characterization of 89Zr-Df-radiolabelled bispecific anti-PD-L1/TGF-βRII fusion protein bintrafusp alfa. Eur J Nucl Med Mol Imaging 2021; 48:3075-3088. [PMID: 33608805 DOI: 10.1007/s00259-021-05251-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 02/08/2021] [Indexed: 12/01/2022]
Abstract
PURPOSE Τhis study aimed to optimize the 89Zr-radiolabelling of bintrafusp alfa investigational drug product and controls, and perform the in vitro and in vivo characterization of 89Zr-Df-bintrafusp alfa and 89Zr-Df-control radioconjugates. METHODS Bintrafusp alfa (anti-PD-L1 human IgG1 antibody fused to TGF-β receptor II (TGF-βRII), avelumab (anti-PD-L1 human IgG1 control antibody), isotype control (mutated inactive anti-PD-L1 IgG1 control antibody), and trap control (mutated inactive anti-PD-L1 human IgG1 fused to active TGF-βRII) were chelated with p-isothiocyanatobenzyl-desferrioxamine (Df). After radiolabelling with zirconium-89 (89Zr), radioconjugates were assessed for radiochemical purity, immunoreactivity, antigen binding affinity, and serum stability in vitro. In vivo biodistribution and imaging studies were performed with PET/CT to identify and quantitate 89Zr-Df-bintrafusp alfa tumour uptake in a PD-L1/TGF-β-positive murine breast cancer model (EMT-6). Specificity of 89Zr-Df-bintrafusp alfa was assessed via a combined biodistribution and imaging experiment in the presence of competing cold bintrafusp alfa (1 mg/kg). RESULTS Nanomolar affinities for PD-L1 were achieved with 89Zr-Df-bintrafusp alfa and 89Zr-avelumab. Biodistribution and imaging studies in PD-L1- and TGF-β-positive EMT-6 tumour-bearing BALB/c mice demonstrated the biologic similarity of 89Zr-Df-bintrafusp alfa and 89Zr-avelumab indicating the in vivo distribution pattern of bintrafusp alfa is driven by its PD-L1 binding arm. Competition study with 1 mg of unlabelled bintrafusp alfa or avelumab co-administered with trace dose of 89Zr-labelled bintrafusp alfa demonstrated the impact of dose and specificity of PD-L1 targeting in vivo. CONCLUSION Molecular imaging of 89Zr-Df-bintrafusp alfa biodistribution was achievable and allows non-invasive quantitation of tumour uptake of 89Zr-Df-bintrafusp alfa, suitable for use in bioimaging clinical trials in cancer patients.
Collapse
Affiliation(s)
- Ingrid Julienne Georgette Burvenich
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, 145 Studley Road, Heidelberg, Melbourne, Victoria, 3084, Australia.,School of Cancer Medicine, La Trobe University, Melbourne, Australia
| | - Yit Wooi Goh
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, 145 Studley Road, Heidelberg, Melbourne, Victoria, 3084, Australia
| | - Nancy Guo
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, 145 Studley Road, Heidelberg, Melbourne, Victoria, 3084, Australia
| | - Hui Kong Gan
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, 145 Studley Road, Heidelberg, Melbourne, Victoria, 3084, Australia.,School of Cancer Medicine, La Trobe University, Melbourne, Australia
| | - Angela Rigopoulos
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, 145 Studley Road, Heidelberg, Melbourne, Victoria, 3084, Australia.,School of Cancer Medicine, La Trobe University, Melbourne, Australia
| | - Diana Cao
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, 145 Studley Road, Heidelberg, Melbourne, Victoria, 3084, Australia.,School of Cancer Medicine, La Trobe University, Melbourne, Australia
| | - Zhanqi Liu
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, 145 Studley Road, Heidelberg, Melbourne, Victoria, 3084, Australia.,School of Cancer Medicine, La Trobe University, Melbourne, Australia
| | - Uwe Ackermann
- School of Cancer Medicine, La Trobe University, Melbourne, Australia.,Department of Molecular Imaging and Therapy, Austin Health, Melbourne, Australia.,Department of Medicine, University of Melbourne, Melbourne, Australia
| | - Christian Werner Wichmann
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, 145 Studley Road, Heidelberg, Melbourne, Victoria, 3084, Australia.,School of Cancer Medicine, La Trobe University, Melbourne, Australia
| | - Alexander Franklin McDonald
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, 145 Studley Road, Heidelberg, Melbourne, Victoria, 3084, Australia.,School of Cancer Medicine, La Trobe University, Melbourne, Australia
| | - Nhi Huynh
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, 145 Studley Road, Heidelberg, Melbourne, Victoria, 3084, Australia
| | - Graeme Joseph O'Keefe
- Department of Molecular Imaging and Therapy, Austin Health, Melbourne, Australia.,Department of Medicine, University of Melbourne, Melbourne, Australia
| | - Sylvia Jie Gong
- Department of Molecular Imaging and Therapy, Austin Health, Melbourne, Australia.,School of Engineering and Mathematical Sciences, La Trobe University, Melbourne, Australia
| | - Fiona Elizabeth Scott
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, 145 Studley Road, Heidelberg, Melbourne, Victoria, 3084, Australia.,School of Cancer Medicine, La Trobe University, Melbourne, Australia
| | - Linghui Li
- EMD Serono Research & Development Institute, Inc., a business of Merck KGaA, Darmstadt, Germany, Billerica, MA, USA
| | - Wanping Geng
- EMD Serono Research & Development Institute, Inc., a business of Merck KGaA, Darmstadt, Germany, Billerica, MA, USA
| | - Anup Zutshi
- EMD Serono Research & Development Institute, Inc., a business of Merck KGaA, Darmstadt, Germany, Billerica, MA, USA
| | - Yan Lan
- EMD Serono Research & Development Institute, Inc., a business of Merck KGaA, Darmstadt, Germany, Billerica, MA, USA
| | - Andrew Mark Scott
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, 145 Studley Road, Heidelberg, Melbourne, Victoria, 3084, Australia. .,School of Cancer Medicine, La Trobe University, Melbourne, Australia. .,Department of Molecular Imaging and Therapy, Austin Health, Melbourne, Australia. .,Department of Medicine, University of Melbourne, Melbourne, Australia.
| |
Collapse
|
169
|
Pacheco-Torres J, Penet MF, Mironchik Y, Krishnamachary B, Bhujwalla ZM. The PD-L1 metabolic interactome intersects with choline metabolism and inflammation. Cancer Metab 2021; 9:10. [PMID: 33608051 PMCID: PMC7893974 DOI: 10.1186/s40170-021-00245-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 02/08/2021] [Indexed: 12/14/2022] Open
Abstract
Background Harnessing the power of the immune system by using immune checkpoint inhibitors has resulted in some of the most exciting advances in cancer treatment. The full potential of this approach has, however, not been fully realized for treating many cancers such as pancreatic and breast cancer. Cancer metabolism influences many aspects of cancer progression including immune surveillance. An expanded understanding of how cancer metabolism can directly impact immune checkpoints may allow further optimization of immunotherapy. We therefore investigated, for the first time, the relationship between the overexpression of choline kinase-α (Chk-α), an enzyme observed in most cancers, and the expression of the immune checkpoint PD-L1. Methods We used small interfering RNA to downregulate Chk-α, PD-L1, or both in two triple-negative human breast cancer cell lines (MDA-MB-231 and SUM-149) and two human pancreatic ductal adenocarcinoma cell lines (Pa09C and Pa20C). The effects of the downregulation were studied at the genomic, proteomic, and metabolomic levels. The findings were compared with the results obtained by the analysis of public data from The Cancer Genome Atlas Program. Results We identified an inverse dependence between Chk-α and PD-L1 at the genomic, proteomic, and metabolomic levels. We also found that prostaglandin-endoperoxide synthase 2 (COX-2) and transforming growth factor beta (TGF-β) play an important role in this relationship. We independently confirmed this relationship in human cancers by analyzing data from The Cancer Genome Atlas Program. Conclusions Our data identified previously unknown roles of PD-L1 in cancer cell metabolic reprogramming, and revealed the immunosuppressive increased PD-L1 effect of Chk-α downregulation. These data suggest that PD-L1 regulation of metabolism may be mediated through Chk-α, COX-2, and TGF-β. The observations provide new insights that can be applied to the rational design of combinatorial therapies targeting immune checkpoints and cancer metabolism. Supplementary Information The online version contains supplementary material available at 10.1186/s40170-021-00245-w.
Collapse
Affiliation(s)
- Jesus Pacheco-Torres
- Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, 720 Rutland Avenue, Rm 208C Traylor Building, Baltimore, MD, 21205, USA
| | - Marie-France Penet
- Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, 720 Rutland Avenue, Rm 208C Traylor Building, Baltimore, MD, 21205, USA.,Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Yelena Mironchik
- Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, 720 Rutland Avenue, Rm 208C Traylor Building, Baltimore, MD, 21205, USA
| | - Balaji Krishnamachary
- Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, 720 Rutland Avenue, Rm 208C Traylor Building, Baltimore, MD, 21205, USA
| | - Zaver M Bhujwalla
- Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, 720 Rutland Avenue, Rm 208C Traylor Building, Baltimore, MD, 21205, USA. .,Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA. .,Department of Radiation Oncology and Molecular Radiation Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| |
Collapse
|
170
|
Abstract
PURPOSE OF REVIEW Immune checkpoint inhibitors targeting the programmed cell death-1 (PD-1) pathway are a class of anti-cancer immunotherapy agents changing treatment paradigms of many cancers that occur at higher rates in people living with HIV (PLWH) than in the general population. However, PLWH have been excluded from most of the initial clinical trials with these agents. RECENT FINDINGS Two recent prospective studies of anti-PD-1 agents, along with observational studies and a meta-analysis, have demonstrated acceptable safety in PLWH. Preliminary evidence indicates activity in a range of tumors and across CD4+ T cell counts. Safety and preliminary activity data suggest monoclonal antibodies targeting PD-1 or its ligand, PD-L1, are generally appropriate for PLWH and cancers for which there are FDA-approved indications. Ongoing and future trials of anti-PD-1 and anti-PD-L1 therapy alone or in combination for HIV-associated cancers may further improve outcomes for this underserved population.
Collapse
|
171
|
The construction, expression, and enhanced anti-tumor activity of YM101: a bispecific antibody simultaneously targeting TGF-β and PD-L1. J Hematol Oncol 2021; 14:27. [PMID: 33593403 PMCID: PMC7885589 DOI: 10.1186/s13045-021-01045-x] [Citation(s) in RCA: 150] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 02/03/2021] [Indexed: 12/27/2022] Open
Abstract
Background Therapeutic antibodies targeting programmed cell death protein 1 (PD-1)/programmed death-ligand 1 (PD-L1) axis induce potent and durable anti-tumor responses in multiple types of cancers. However, only a subset of patients benefits from anti-PD-1/PD-L1 therapies. As a negative regulator of anti-tumor immunity, TGF-β impairs the efficacy of anti-PD-1/PD-L1 and induces drug resistance. Developing a novel treatment strategy to simultaneously block PD-1/PD-L1 and TGF-β would be valuable to enhance the effect of anti-PD-1/PD-L1 and relieve drug resistance. Methods Based on the Check-BODY™ technology platform, we developed an anti-TGF-β/PD-L1 bispecific antibody YM101. The bioactivity of the anti-TGF-β moiety was determined by Smad-luciferase reporter assay, transwell assay, western blotting, CCK-8, and flow cytometry. The bioactivity of the anti-PD-L1 moiety was measured by T cell activation assays. EMT-6, CT26, and 3LL tumor models were used to investigate the anti-tumor activity of YM101 in vivo. RNA-seq, immunohistochemical staining, and flow cytometry were utilized to analyze the effect of YM101 on the tumor microenvironment. Results YM101 could bind to TGF-β and PD-L1 specifically. In vitro experiments showed that YM101 effectively counteracted the biological effects of TGF-β and PD-1/PD-L1 pathway, including activating Smad signaling, inducing epithelial-mesenchymal transition, and immunosuppression. Besides, in vivo experiments indicated the anti-tumor activity of YM101 was superior to anti-TGF-β and anti-PD-L1 monotherapies. Mechanistically, YM101 promoted the formation of ‘hot tumor’: increasing the numbers of tumor infiltrating lymphocytes and dendritic cells, elevating the ratio of M1/M2, and enhancing cytokine production in T cells. This normalized tumor immune microenvironment and enhanced anti-tumor immune response might contribute to the robust anti-tumor effect of YM101. Conclusion Our results demonstrated that YM101 could simultaneously block TGF-β and PD-L1 pathways and had a superior anti-tumor effect compared to the monotherapies.
Collapse
|
172
|
Pembrolizumab in advanced osteosarcoma: results of a single-arm, open-label, phase 2 trial. Cancer Immunol Immunother 2021; 70:2617-2624. [PMID: 33580363 PMCID: PMC8360887 DOI: 10.1007/s00262-021-02876-w] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 01/27/2021] [Indexed: 12/28/2022]
Abstract
Aim To evaluate the activity and safety of the PD-1 antibody pembrolizumab in adult patients with advanced osteosarcoma.
Material and methods The study was a single-arm, open-label, phase 2 trial in patients with unresectable, relapsed osteosarcoma. The primary endpoint was clinical benefit rate (CBR) at 18 weeks of treatment, defined as complete response, partial response, or stable disease using RECIST v1.1. The trial had a Simon´s two-stage design, and ≥ 3 of 12 patients with clinical benefit in stage 1 were required to proceed to stage 2. The trial is registered with ClinicalTrials.gov, number NCT03013127. NanoString analysis was performed to explore tumor gene expression signatures and pathways. Results Twelve patients were enrolled and received study treatment. No patients had clinical benefit at 18 weeks of treatment, and patient enrollment was stopped after completion of stage 1. Estimated median progression-free survival was 1.7 months (95% CI 1.2–2.2). At time of data cut-off, 11 patients were deceased due to osteosarcoma. Median overall survival was 6.6 months (95% CI 3.8–9.3). No treatment-related deaths or drug-related grade 3 or 4 adverse events were observed. PD-L1 expression was positive in one of 11 evaluable tumor samples, and the positive sample was from a patient with a mixed treatment response.
Conclusion In this phase 2 study in advanced osteosarcoma, pembrolizumab was well-tolerated but did not show clinically significant antitumor activity. Future trials with immunomodulatory agents in osteosarcoma should explore combination strategies in patients selected based on molecular profiles associated with response.
Collapse
|
173
|
Wei Y, Xiao X, Lao XM, Zheng L, Kuang DM. Immune landscape and therapeutic strategies: new insights into PD-L1 in tumors. Cell Mol Life Sci 2021; 78:867-887. [PMID: 32940722 PMCID: PMC11072479 DOI: 10.1007/s00018-020-03637-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 08/07/2020] [Accepted: 09/03/2020] [Indexed: 12/14/2022]
Abstract
PD-1/PD-L1 axis represents an important target for renormalizing and resetting anti-tumor immunity in cancer patients. Currently, anti-PD-1/PD-L1 therapy has been applied in a broad spectrum of tumors and has yielded durable remission in patients. However, how to further broaden the application, guide personalized therapeutic strategies, and improve clinical responses remains a vital task. At present, PD-L1 expression is an important parameter of clinical indications for immune checkpoint blockade in many types of cancers, a strategy based on the supposition that positive PD-L1 expression reflects local T cell response. Recent studies have revealed that PD-L1 expression is regulated by multiple layers of complicated factors, during which the host immune microenvironment exerts a pivotal role and determines the clinical efficacy of the therapy. In this review, we will summarize recent findings on PD-1/PD-L1 in cancer, focusing on how local immune landscape participates in the regulation of PD-L1 expression and modification. Importantly, we will also discuss these topics in the context of clinical treatment and analyze how these fundamental principles might inspire our efforts to develop more precise and effective immune therapeutics for cancer.
Collapse
Affiliation(s)
- Yuan Wei
- The Fifth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University, Guangzhou, China
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Xiao Xiao
- Cancer Program, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | - Xiang-Ming Lao
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University, Guangzhou, China.
| | - Limin Zheng
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University, Guangzhou, China.
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University Cancer Center, Guangzhou, China.
| | - Dong-Ming Kuang
- The Fifth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China.
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University, Guangzhou, China.
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University Cancer Center, Guangzhou, China.
| |
Collapse
|
174
|
Armitage JD, Newnes HV, McDonnell A, Bosco A, Waithman J. Fine-Tuning the Tumour Microenvironment: Current Perspectives on the Mechanisms of Tumour Immunosuppression. Cells 2021; 10:E56. [PMID: 33401460 PMCID: PMC7823446 DOI: 10.3390/cells10010056] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 12/28/2020] [Accepted: 12/30/2020] [Indexed: 02/07/2023] Open
Abstract
Immunotherapy has revolutionised the treatment of cancers by harnessing the power of the immune system to eradicate malignant tissue. However, it is well recognised that some cancers are highly resistant to these therapies, which is in part attributed to the immunosuppressive landscape of the tumour microenvironment (TME). The contexture of the TME is highly heterogeneous and contains a complex architecture of immune, stromal, vascular and tumour cells in addition to acellular components such as the extracellular matrix. While understanding the dynamics of the TME has been instrumental in predicting durable responses to immunotherapy and developing new treatment strategies, recent evidence challenges the fundamental paradigms of how tumours can effectively subvert immunosurveillance. Here, we discuss the various immunosuppressive features of the TME and how fine-tuning these mechanisms, rather than ablating them completely, may result in a more comprehensive and balanced anti-tumour response.
Collapse
Affiliation(s)
- Jesse D. Armitage
- Telethon Kids Institute, The University of Western Australia, Nedlands, WA 6009, Australia; (J.D.A.); (H.V.N.); (A.M.)
| | - Hannah V. Newnes
- Telethon Kids Institute, The University of Western Australia, Nedlands, WA 6009, Australia; (J.D.A.); (H.V.N.); (A.M.)
| | - Alison McDonnell
- Telethon Kids Institute, The University of Western Australia, Nedlands, WA 6009, Australia; (J.D.A.); (H.V.N.); (A.M.)
- National Centre for Asbestos Related Diseases, QEII Medical Centre, The University of Western Australia, Nedlands, WA 6009, Australia
| | - Anthony Bosco
- Telethon Kids Institute, The University of Western Australia, Nedlands, WA 6009, Australia; (J.D.A.); (H.V.N.); (A.M.)
| | - Jason Waithman
- Telethon Kids Institute, The University of Western Australia, Nedlands, WA 6009, Australia; (J.D.A.); (H.V.N.); (A.M.)
| |
Collapse
|
175
|
Sirica AE, Strazzabosco M, Cadamuro M. Intrahepatic cholangiocarcinoma: Morpho-molecular pathology, tumor reactive microenvironment, and malignant progression. Adv Cancer Res 2020; 149:321-387. [PMID: 33579427 PMCID: PMC8800451 DOI: 10.1016/bs.acr.2020.10.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Intrahepatic cholangiocarcinoma (iCCA) is a relatively rare, but highly lethal and biologically complex primary biliary epithelial cancer arising within liver. After hepatocellular carcinoma, iCCA is the second most common primary liver cancer, accounting for approximately 10-20% of all primary hepatic malignancies. Over the last 10-20 years, iCCA has become the focus of increasing concern largely due to its rising incidence and high mortality rates in various parts of the world, including the United States. The challenges posed by iCCA are daunting and despite recent progress in the standard of care and management options for iCCA, the prognosis for this cancer continues to be dismal. In an effort to provide a framework for advancing our understanding of iCCA malignant aggressiveness and therapy resistance, this review will highlight key etiological, biological, molecular, and microenvironmental factors hindering more effective management of this hepatobiliary cancer. Particular focus will be on critically reviewing the cell origins and morpho-molecular heterogeneity of iCCAs, providing mechanistic insights into high risk fibroinflammatory cholangiopathies associated with iCCA development, and notably discussing the deleterious role played by the tumor reactive desmoplastic stroma in regulating iCCA malignant progression, lymphangiogenesis, and tumor immunobiology.
Collapse
Affiliation(s)
- Alphonse E Sirica
- Department of Pathology, Virginia Commonwealth University School of Medicine, Richmond, VA, United States.
| | - Mario Strazzabosco
- Liver Center and Section of Digestive Diseases, Department of Internal Medicine, Section of Digestive Diseases, Yale University School of Medicine, New Haven, CT, United States
| | | |
Collapse
|
176
|
Wang M, Wang S, Desai J, Trapani JA, Neeson PJ. Therapeutic strategies to remodel immunologically cold tumors. Clin Transl Immunology 2020; 9:e1226. [PMID: 35136604 PMCID: PMC8809427 DOI: 10.1002/cti2.1226] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/17/2020] [Accepted: 11/17/2020] [Indexed: 12/19/2022] Open
Abstract
Immune checkpoint inhibitors (ICIs) induce a durable response in a wide range of tumor types, but only a minority of patients outside these 'responsive' tumor types respond, with some totally resistant. The primary predictor of intrinsic immune resistance to ICIs is the complete or near-complete absence of lymphocytes from the tumor, so-called immunologically cold tumors. Here, we propose two broad approaches to convert 'cold' tumors into 'hot' tumors. The first is to induce immunogenic tumor cell death, through the use of oncolytic viruses or bacteria, conventional cancer therapies (e.g. chemotherapy or radiation therapy) or small molecule drugs. The second approach is to target the tumor microenvironment, and covers diverse options such as depleting immune suppressive cells; inhibiting transforming growth factor-beta; remodelling the tumor vasculature or hypoxic environment; strengthening the infiltration and activation of antigen-presenting cells and/or effector T cells in the tumor microenvironment with immune modulators; and enhancing immunogenicity through personalised cancer vaccines. Strategies that successfully modify cold tumors to overcome their resistance to ICIs represent mechanistically driven approaches that will ultimately result in rational combination therapies to extend the clinical benefits of immunotherapy to a broader cancer cohort.
Collapse
Affiliation(s)
- Minyu Wang
- Cancer Immunology ProgramPeter MacCallum Cancer CentreMelbourneVICAustralia
- Sir Peter MacCallum Department of OncologyThe University of MelbourneParkvilleVICAustralia
- Centre for Cancer ImmunotherapyPeter Mac and VCCC allianceMelbourneVICAustralia
| | - Sen Wang
- South Australian Genomics CentreSouth Australian Health and Medical Research InstituteAdelaideSAAustralia
- Medical Genomics PlatformHudson Institute of Medical ResearchClaytonVICAustralia
| | - Jayesh Desai
- Sir Peter MacCallum Department of OncologyThe University of MelbourneParkvilleVICAustralia
- Division of Medical OncologyPeter MacCallum Cancer CentreMelbourneVICAustralia
| | - Joseph A Trapani
- Cancer Immunology ProgramPeter MacCallum Cancer CentreMelbourneVICAustralia
- Sir Peter MacCallum Department of OncologyThe University of MelbourneParkvilleVICAustralia
- Centre for Cancer ImmunotherapyPeter Mac and VCCC allianceMelbourneVICAustralia
| | - Paul J Neeson
- Cancer Immunology ProgramPeter MacCallum Cancer CentreMelbourneVICAustralia
- Sir Peter MacCallum Department of OncologyThe University of MelbourneParkvilleVICAustralia
- Centre for Cancer ImmunotherapyPeter Mac and VCCC allianceMelbourneVICAustralia
| |
Collapse
|
177
|
Han M, Liao Z, Liu F, Chen X, Zhang B. Modulation of the TGF-β signaling pathway by long noncoding RNA in hepatocellular carcinoma. Biomark Res 2020; 8:70. [PMID: 33292618 PMCID: PMC7709261 DOI: 10.1186/s40364-020-00252-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 11/24/2020] [Indexed: 12/21/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a type of liver cancer with poor prognosis. There have been demonstrated to exist many possible mechanisms in HCC tumorigenesis, and recent investigations have provided some promising therapy targets. However, further mechanisms remain to be researched to improve the therapeutic strategy and diagnosis of HCC. Transforming growth factor-β (TGF-β) is a pleiotropic cytokine which plays critical roles in networks of different cellular processes, and TGF-β signaling has been found to participate in tumor initiation and development of HCC in recent years. Moreover, among the molecules and signaling pathways, researchers paid more attention to lncRNAs (long non-coding RNAs), but the connection between lncRNAs and TGF-βremain poorly understood. In this review, we conclude the malignant procedure which lncRNAs and TGF-β involved in, and summarize the mechanisms of lncRNAs and TGF-βin HCC initiation and development. Furthermore, the interaction between lncRNA and TGF-β are paid more attention, and the potential therapy targets are mentioned.
Collapse
Affiliation(s)
- Mengzhen Han
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China.,Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, 430030, China
| | - Zhibin Liao
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China.,Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, 430030, China
| | - Furong Liu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China.,Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, 430030, China
| | - Xiaoping Chen
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China. .,Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, 430030, China.
| | - Bixiang Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China. .,Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, 430030, China.
| |
Collapse
|
178
|
Marvin DL, Heijboer R, ten Dijke P, Ritsma L. TGF-β signaling in liver metastasis. Clin Transl Med 2020; 10:e160. [PMID: 33252863 PMCID: PMC7701955 DOI: 10.1002/ctm2.160] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/07/2020] [Accepted: 08/11/2020] [Indexed: 12/12/2022] Open
Abstract
The presence of liver metastases drastically worsens the prognosis of cancer patients. The liver is the second most prevalent metastatic site in cancer patients, but systemic therapeutic opportunities that target liver metastases are still limited. To aid the discovery of novel treatment options for metastatic liver disease, we provide insight into the cellular and molecular steps required for liver colonization. For successful colonization in the liver, adaptation of tumor cells and surrounding stroma is essential. This includes the formation of a pre-metastatic niche, the creation of a fibrotic and immune suppressive environment, angiogenesis, and adaptation of tumor cells. We illustrate that transforming growth factor β (TGF-β) is a central cytokine in all these processes. At last, we devise that future research should focus on TGF-β inhibitory strategies, especially in combination with immunotherapy. This promising systemic treatment strategy has potential to eliminate distant metastases as the efficacy of immunotherapy will be enhanced.
Collapse
Affiliation(s)
- Dieuwke L Marvin
- Department of Cell and Chemical Biology and Oncode InstituteLeiden University Medical CenterLeidenThe Netherlands
| | - Rosan Heijboer
- Department of Cell and Chemical Biology and Oncode InstituteLeiden University Medical CenterLeidenThe Netherlands
| | - Peter ten Dijke
- Department of Cell and Chemical Biology and Oncode InstituteLeiden University Medical CenterLeidenThe Netherlands
| | - Laila Ritsma
- Department of Cell and Chemical Biology and Oncode InstituteLeiden University Medical CenterLeidenThe Netherlands
| |
Collapse
|
179
|
Xue VW, Chung JYF, Córdoba CAG, Cheung AHK, Kang W, Lam EWF, Leung KT, To KF, Lan HY, Tang PMK. Transforming Growth Factor-β: A Multifunctional Regulator of Cancer Immunity. Cancers (Basel) 2020. [PMID: 33114183 DOI: 10.3390/cancers12113099.pmid:33114183;pmcid:pmc7690808] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2023] Open
Abstract
Transforming growth factor-β (TGF-β) was originally identified as an anti-tumour cytokine. However, there is increasing evidence that it has important roles in the tumour microenvironment (TME) in facilitating cancer progression. TGF-β actively shapes the TME via modulating the host immunity. These actions are highly cell-type specific and complicated, involving both canonical and non-canonical pathways. In this review, we systemically update how TGF-β signalling acts as a checkpoint regulator for cancer immunomodulation. A better appreciation of the underlying pathogenic mechanisms at the molecular level can lead to the discovery of novel and more effective therapeutic strategies for cancer.
Collapse
Affiliation(s)
- Vivian Weiwen Xue
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Jeff Yat-Fai Chung
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Cristina Alexandra García Córdoba
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Alvin Ho-Kwan Cheung
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Wei Kang
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Eric W-F Lam
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, London W12 0NN, UK
| | - Kam-Tong Leung
- Department of Paediatrics, The Chinese University of Hong Kong, Shatin, Hong Kong 999077, China
| | - Ka-Fai To
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Hui-Yao Lan
- Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Patrick Ming-Kuen Tang
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Hong Kong 999077, China
| |
Collapse
|
180
|
Transforming Growth Factor-β: A Multifunctional Regulator of Cancer Immunity. Cancers (Basel) 2020; 12:cancers12113099. [PMID: 33114183 PMCID: PMC7690808 DOI: 10.3390/cancers12113099] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/12/2020] [Accepted: 10/12/2020] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Transforming growth factor beta (TGF-β) is a multifunctional cytokine that can restrict cancer onset but also promote cancer progression at late stages of cancer. The ability of TGF-β in producing diverse and sometimes opposing effects relies on its potential to control different cellular signalling and gene expression in distinct cell types, and environmental settings. The tumour promoting role of TGF-β is primarily mediated through its effects on the local tumour microenvironment (TME) of the cancer cells. In this review, we discuss the most recent research on the role and regulation of TGF-β, with a specific focus on its functions on promoting cancer progression through targeting different immune cells in the TME as well as its therapeutic perspectives. Abstract Transforming growth factor-β (TGF-β) was originally identified as an anti-tumour cytokine. However, there is increasing evidence that it has important roles in the tumour microenvironment (TME) in facilitating cancer progression. TGF-β actively shapes the TME via modulating the host immunity. These actions are highly cell-type specific and complicated, involving both canonical and non-canonical pathways. In this review, we systemically update how TGF-β signalling acts as a checkpoint regulator for cancer immunomodulation. A better appreciation of the underlying pathogenic mechanisms at the molecular level can lead to the discovery of novel and more effective therapeutic strategies for cancer.
Collapse
|
181
|
Zhao H, Wei J, Sun J. Roles of TGF-β signaling pathway in tumor microenvirionment and cancer therapy. Int Immunopharmacol 2020; 89:107101. [PMID: 33099067 DOI: 10.1016/j.intimp.2020.107101] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/10/2020] [Accepted: 10/10/2020] [Indexed: 12/15/2022]
Abstract
Transforming growth factor β (TGF- β) signaling pathway has pleiotropic effects on cell proliferation, differentiation, adhesion, senescence, and apoptosis. TGF-β can be widely produced by various immune or non-immune cells and regulate cell behaviors through autocrine and paracrine. It plays essential roles in biological processes including embryological development, immune response, and tumor progression. Few cell signalings can contribute to so many pleiotropic functions as the TGF- β signaling pathway in mammals. The significant function of TGF-β signaling in tumor progression and evasion leading it to draw great attention in scientific and clinical research. Understanding the mechanism of TGF- β signaling provides us with chances to potentiate the effectiveness and selectivity of this therapeutic method. Herein, we review the molecular and cellular mechanisms of TGF-β signaling in carcinomas and tumor microenvironment. Then, we enumerate main achievements of TGF-β blockades used or being evaluated in cancer therapy, providing us opportunities to improve therapeutical approaches in the tumor which thrive in a TGF-β-rich environment.
Collapse
Affiliation(s)
- Haodi Zhao
- Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 30072, PR China
| | - Jing Wei
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, PR China
| | - Jian Sun
- Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 30072, PR China; Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, PR China.
| |
Collapse
|
182
|
Huang MY, Jiang XM, Wang BL, Sun Y, Lu JJ. Combination therapy with PD-1/PD-L1 blockade in non-small cell lung cancer: strategies and mechanisms. Pharmacol Ther 2020; 219:107694. [PMID: 32980443 DOI: 10.1016/j.pharmthera.2020.107694] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 09/21/2020] [Indexed: 12/16/2022]
Abstract
Programmed cell death-1 (PD-1)/programmed death-ligand 1 (PD-L1) blockade has been approved as the standard-of-care for the treatment of non-small cell lung cancer (NSCLC). Yet, the population of patients who benefit from the treatment remains modest, some of whom would get relapsed and progressed eventually. Combination therapy has emerged as an effective way to broaden beneficiaries from PD-1/PD-L1 immunotherapy and overcome or delay the resistance. In this review, we discuss the PD-1/PD-L1 blockade in combination with conventional chemotherapy, targeted therapy or immunotherapy. Meanwhile, we illustrate their underlying mechanisms in regulating the process of the cancer-immunity cycle, providing the rationale for the PD-1/PD-L1 blockade-based combination therapy. The challenges of combination regimens are also addressed.
Collapse
Affiliation(s)
- Mu-Yang Huang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Xiao-Ming Jiang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Bing-Lin Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Biotechnology and Pharmaceutical Sciences, School of Life Science, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China
| | - Yang Sun
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Biotechnology and Pharmaceutical Sciences, School of Life Science, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China
| | - Jin-Jian Lu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China.
| |
Collapse
|
183
|
Zhu L, Yang X, Zhong D, Xie S, Shi W, Li Y, Hou X, HuaYao, Zhou H, Zhao M, Ding Z, Zhao X, Mo F, Yin S, Liu A, Lu X. Single-Domain Antibody-Based TCR-Like CAR-T: A Potential Cancer Therapy. J Immunol Res 2020; 2020:2454907. [PMID: 32964055 PMCID: PMC7492946 DOI: 10.1155/2020/2454907] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 07/30/2020] [Accepted: 08/14/2020] [Indexed: 12/17/2022] Open
Abstract
Retargeting the antigen-binding specificity of T cells to intracellular antigens that are degraded and presented on the tumor surface by engineering chimeric antigen receptor (CAR), also named TCR-like antibody CAR-T, remains limited. With the exception of the commercialized CD19 CAR-T for hematological malignancies and other CAR-T therapies aiming mostly at extracellular antigens achieving great success, the rareness and scarcity of TCR-like CAR-T therapies might be due to their current status and limitations. This review provides the probable optimized initiatives for improving TCR-like CAR-T reprogramming and discusses single-domain antibodies administered as an alternative to conventional scFvs and secreted by CAR-T cells, which might be of great value to the development of CAR-T immunotherapies for intracellular antigens.
Collapse
MESH Headings
- Animals
- Antigens, Neoplasm/immunology
- Epitopes, T-Lymphocyte/immunology
- Genetic Engineering
- Humans
- Immunotherapy, Adoptive/adverse effects
- Immunotherapy, Adoptive/methods
- Neoplasms/immunology
- Neoplasms/therapy
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/immunology
- Receptors, Chimeric Antigen/genetics
- Receptors, Chimeric Antigen/immunology
- Single-Chain Antibodies/immunology
- Single-Domain Antibodies/genetics
- Single-Domain Antibodies/immunology
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Treatment Outcome
Collapse
Affiliation(s)
- Lichen Zhu
- Nanobody Research Center, Guangxi Medical University, Nanning, Guangxi 530021, China
- School of Preclinical Medicine, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Xiaomei Yang
- Nanobody Research Center, Guangxi Medical University, Nanning, Guangxi 530021, China
- School of Preclinical Medicine, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Dani Zhong
- Nanobody Research Center, Guangxi Medical University, Nanning, Guangxi 530021, China
- Department of Chemotherapy, Affiliated Cancer Hospital, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Shenxia Xie
- Nanobody Research Center, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Wei Shi
- Nanobody Research Center, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Yangzi Li
- Nanobody Research Center, Guangxi Medical University, Nanning, Guangxi 530021, China
- Guangxi Collaborative Innovation Center for Biomedicine, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Xiaoqiong Hou
- Nanobody Research Center, Guangxi Medical University, Nanning, Guangxi 530021, China
- School of Preclinical Medicine, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - HuaYao
- Nanobody Research Center, Guangxi Medical University, Nanning, Guangxi 530021, China
- School of Stomatology, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Huihui Zhou
- Nanobody Research Center, Guangxi Medical University, Nanning, Guangxi 530021, China
- Guangxi Collaborative Innovation Center for Biomedicine, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Minlong Zhao
- Nanobody Research Center, Guangxi Medical University, Nanning, Guangxi 530021, China
- School of Stomatology, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Ziqiang Ding
- Nanobody Research Center, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Xinyue Zhao
- Nanobody Research Center, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Fengzhen Mo
- Nanobody Research Center, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Shihua Yin
- Nanobody Research Center, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Aiqun Liu
- Nanobody Research Center, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Xiaoling Lu
- Nanobody Research Center, Guangxi Medical University, Nanning, Guangxi 530021, China
- School of Stomatology, Guangxi Medical University, Nanning, Guangxi 530021, China
| |
Collapse
|
184
|
Attademo L, Tuninetti V, Pisano C, Cecere SC, Di Napoli M, Tambaro R, Valabrega G, Musacchio L, Setola SV, Piccirillo P, Califano D, Spina A, Losito S, Greggi S, Pignata S. Immunotherapy in cervix cancer. Cancer Treat Rev 2020; 90:102088. [PMID: 32827839 DOI: 10.1016/j.ctrv.2020.102088] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 07/29/2020] [Accepted: 07/31/2020] [Indexed: 12/18/2022]
Abstract
The treatment approach to cervix cancer has remained unchanged for several decades and new therapeutic strategies are now required to improve outcomes, as the prognosis is still poor. In the last years, a better understanding of HPV tumor-host immune system interactions and the development of new therapeutics targeting immune checkpoints generated interest in the use of immunotherapy in cervix cancer. Preliminary phase I-II trials demonstrated the efficacy, the duration of responses and the manageable safety of this approach. Currently, many phase II and III studies are ongoing in both locally advanced and metastatic cervical cancer, assessing immunotherapy as a single agent or in combination with chemotherapy and radiotherapy. We reviewed the published data and the therapeutic implications of the most promising novel immunotherapeutic agents under investigation in cervix cancer.
Collapse
Affiliation(s)
- Laura Attademo
- Department of Urology and Gynecology, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, Napoli, Italy.
| | - Valentina Tuninetti
- Candiolo Cancer Institute, FPO-IRCCS Candiolo (TO), Italy; Department of Oncology, University of Torino, Italy.
| | - Carmela Pisano
- Department of Urology and Gynecology, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, Napoli, Italy.
| | - Sabrina Chiara Cecere
- Department of Urology and Gynecology, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, Napoli, Italy.
| | - Marilena Di Napoli
- Department of Urology and Gynecology, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, Napoli, Italy.
| | - Rosa Tambaro
- Department of Urology and Gynecology, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, Napoli, Italy.
| | - Giorgio Valabrega
- Candiolo Cancer Institute, FPO-IRCCS Candiolo (TO), Italy; Department of Oncology, University of Torino, Italy.
| | - Lucia Musacchio
- Department of Maternal and Child Health and Urological Sciences, University "Sapienza", Policlinico Umberto I, Rome, Italy.
| | | | - Patrizia Piccirillo
- Department of Urology and Gynecology, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, Napoli, Italy.
| | - Daniela Califano
- Functional Genomic Unit, Unit, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, Napoli, Italy.
| | - Anna Spina
- Functional Genomic Unit, Unit, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, Napoli, Italy.
| | - Simona Losito
- Surgical Pathology Unit, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, Napoli, Italy.
| | - Stefano Greggi
- Gynecologic Oncology Unit, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, Napoli, Italy.
| | - Sandro Pignata
- Department of Urology and Gynecology, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, Napoli, Italy.
| |
Collapse
|
185
|
Ancel J, Dewolf M, Deslée G, Nawrocky-Raby B, Dalstein V, Gilles C, Polette M. Clinical Impact of the Epithelial-Mesenchymal Transition in Lung Cancer as a Biomarker Assisting in Therapeutic Decisions. Cells Tissues Organs 2020; 211:91-109. [PMID: 32750701 DOI: 10.1159/000510103] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 07/11/2020] [Indexed: 12/24/2022] Open
Abstract
Lung cancer is one of the most common solid cancers and represents the leading cause of cancer death worldwide. Over the last decade, research on the epithelial-mesenchymal transition (EMT) in lung cancer has gained increasing attention. Here, we review clinical and histological features of non-small-cell lung cancer associated with EMT. We then aimed to establish potential clinical implications of EMT in current therapeutic options, including surgery, radiation, targeted therapy against oncogenic drivers, and immunotherapy.
Collapse
Affiliation(s)
- Julien Ancel
- Inserm, Université de Reims Champagne Ardenne, P3Cell UMR-S1250, SFR CAP-SANTE, Reims, France.,Service de Pneumologie, Hôpital Maison Blanche, CHU de Reims, Reims, France
| | - Maxime Dewolf
- Service de Pneumologie, Hôpital Maison Blanche, CHU de Reims, Reims, France
| | - Gaëtan Deslée
- Inserm, Université de Reims Champagne Ardenne, P3Cell UMR-S1250, SFR CAP-SANTE, Reims, France.,Service de Pneumologie, Hôpital Maison Blanche, CHU de Reims, Reims, France
| | - Béatrice Nawrocky-Raby
- Inserm, Université de Reims Champagne Ardenne, P3Cell UMR-S1250, SFR CAP-SANTE, Reims, France
| | - Véronique Dalstein
- Inserm, Université de Reims Champagne Ardenne, P3Cell UMR-S1250, SFR CAP-SANTE, Reims, France.,Laboratoire de Pathologie, Hôpital Maison Blanche, CHU de Reims, Reims, France
| | - Christine Gilles
- Laboratory of Tumor and Development Biology, GIGA-Cancer, University of Liège, Liège, Belgium,
| | - Myriam Polette
- Inserm, Université de Reims Champagne Ardenne, P3Cell UMR-S1250, SFR CAP-SANTE, Reims, France.,Laboratoire de Pathologie, Hôpital Maison Blanche, CHU de Reims, Reims, France
| |
Collapse
|
186
|
Derynck R, Turley SJ, Akhurst RJ. TGFβ biology in cancer progression and immunotherapy. Nat Rev Clin Oncol 2020; 18:9-34. [DOI: 10.1038/s41571-020-0403-1] [Citation(s) in RCA: 199] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/07/2020] [Indexed: 02/07/2023]
|
187
|
Ciardiello D, Elez E, Tabernero J, Seoane J. Clinical development of therapies targeting TGFβ: current knowledge and future perspectives. Ann Oncol 2020; 31:1336-1349. [PMID: 32710930 DOI: 10.1016/j.annonc.2020.07.009] [Citation(s) in RCA: 182] [Impact Index Per Article: 36.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/22/2020] [Accepted: 07/14/2020] [Indexed: 01/06/2023] Open
Abstract
Transforming growth factor beta (TGFβ) is a pleiotropic cytokine that plays a key role in both physiologic and pathologic conditions, including cancer. Importantly, TGFβ can exhibit both tumor-suppressive and oncogenic functions. In normal epithelial cells TGFβ acts as an antiproliferative and differentiating factor, whereas in advanced tumors TGFβ can act as an oncogenic factor by creating an immune-suppressive tumor microenvironment, and inducing cancer cell proliferation, angiogenesis, invasion, tumor progression, and metastatic spread. A wealth of preclinical findings have demonstrated that targeting TGFβ is a promising means of exerting antitumor activity. Based on this rationale, several classes of TGFβ inhibitors have been developed and tested in clinical trials, namely, monoclonal, neutralizing, and bifunctional antibodies; antisense oligonucleotides; TGFβ-related vaccines; and receptor kinase inhibitors. It is now >15 years since the first clinical trial testing an anti-TGFβ agent was engaged. Despite the promising preclinical studies, translation of the basic understanding of the TGFβ oncogenic response into the clinical setting has been slow and challenging. Here, we review the conclusions and status of all the completed and ongoing clinical trials that test compounds that inhibit the TGFβ pathway, and discuss the challenges that have arisen during their clinical development. With none of the TGFβ inhibitors evaluated in clinical trials approved for cancer therapy, clinical development for TGFβ blockade therapy is primarily oriented toward TGFβ inhibitor combinations. Immune checkpoint inhibitors are considered candidates, albeit with efficacy anticipated to be restricted to specific populations. In this context, we describe current efforts in the search for biomarkers for selecting the appropriate cancer patients who are likely to benefit from anti-TGFβ therapies. The knowledge accumulated during the last 15 years of clinical research in the context of the TGFβ pathway is crucial to design better, innovative, and more successful trials.
Collapse
Affiliation(s)
- D Ciardiello
- Vall d'Hebron Institute of Oncology, Vall d'Hebron University Hospital, Barcelona, Spain; Department of Medicina di Precisione, Università degli studi della Campania, Luigi Vanvitelli, Naples, Italy
| | - E Elez
- Vall d'Hebron Institute of Oncology, Vall d'Hebron University Hospital, Barcelona, Spain
| | - J Tabernero
- Vall d'Hebron Institute of Oncology, Vall d'Hebron University Hospital, Barcelona, Spain; Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain; CIBERONC, Barcelona, Spain
| | - J Seoane
- Vall d'Hebron Institute of Oncology, Vall d'Hebron University Hospital, Barcelona, Spain; Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain; CIBERONC, Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain.
| |
Collapse
|
188
|
Teixeira AF, Ten Dijke P, Zhu HJ. On-Target Anti-TGF-β Therapies Are Not Succeeding in Clinical Cancer Treatments: What Are Remaining Challenges? Front Cell Dev Biol 2020; 8:605. [PMID: 32733895 PMCID: PMC7360684 DOI: 10.3389/fcell.2020.00605] [Citation(s) in RCA: 149] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 06/19/2020] [Indexed: 12/24/2022] Open
Abstract
Metastasis is the leading cause of death for cancer patients. During cancer progression, the initial detachment of cells from the primary tumor and the later colonization of a secondary organ are characterized as limiting steps for metastasis. Epithelial-mesenchymal transition (EMT) and mesenchymal-epithelial transition (MET) are opposite dynamic multistep processes that enable these critical events in metastasis by altering the phenotype of cancer cells and improving their ability to migrate, invade and seed at distant organs. Among the molecular pathways that promote tumorigenesis in late-stage cancers, transforming growth factor-β (TGF-β) is described as an EMT master inducer by controlling different genes and proteins related to cytoskeleton assembly, cell-cell attachment and extracellular matrix remodeling. Still, despite the successful outcomes of different TGF-β pharmacological inhibitors in cell culture (in vitro) and animal models (in vivo), results in cancer clinical trials are poor or inconsistent at least, highlighting the existence of crucial components in human cancers that have not been properly explored. Here we review most recent findings to provide perspectives bridging the gap between on-target anti-TGF-β therapies in vitro and in pre-clinical models and the poor clinical outcomes in treating cancer patients. Specifically, we focus on (i) the dual roles of TGF-β signaling in cancer metastasis; (ii) dynamic signaling; (iii) functional differences of TGF-β free in solution vs. in exosomes; (iv) the regulatory effects of tumor microenvironment (TME) – particularly by cancer-associated fibroblasts – on TGF-β signaling pathway. Clearly identifying and establishing those missing links may provide strategies to revitalize and clinically improve the efficacy of TGF-β targeted therapies.
Collapse
Affiliation(s)
- Adilson Fonseca Teixeira
- Department of Surgery, The Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
| | - Peter Ten Dijke
- Oncode Institute and Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, Netherlands
| | - Hong-Jian Zhu
- Department of Surgery, The Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
189
|
Golay J, Andrea AE. Combined Anti-Cancer Strategies Based on Anti-Checkpoint Inhibitor Antibodies. Antibodies (Basel) 2020; 9:E17. [PMID: 32443877 PMCID: PMC7345008 DOI: 10.3390/antib9020017] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 05/11/2020] [Accepted: 05/12/2020] [Indexed: 12/14/2022] Open
Abstract
Therapeutic monoclonal antibodies for the treatment of cancer came of age in 1997, with the approval of anti-CD20 Rituximab. Since then, a wide variety of antibodies have been developed with many different formats and mechanisms of action. Among these, antibodies blocking immune checkpoint inhibitors (ICI) have revolutionized the field, based on the novelty of their concept and their demonstrated efficacy in several types of cancer otherwise lacking effective immunotherapy approaches. ICI are expressed by tumor, stromal or immune cells infiltrating the tumor microenvironment, and negatively regulate anti-tumor immunity. Antibodies against the first discovered ICI, CTLA-4, PD-1 and PD-L1, have shown significant activity in phase III studies against melanoma and other solid cancers, alone or in combination with chemotherapy or radiotherapy. However, not all cancers and not all patients respond to these drugs. Therefore, novel antibodies targeting additional ICI are currently being developed. In addition, CTLA-4, PD-1 and PD-L1 blocking antibodies are being combined with each other or with other antibodies targeting novel ICI, immunostimulatory molecules, tumor antigens, angiogenic factors, complement receptors, or with T cell engaging bispecific antibodies (BsAb), with the aim of obtaining synergistic effects with minimal toxicity. In this review, we summarize the biological aspects behind such combinations and review some of the most important clinical data on ICI-specific antibodies.
Collapse
Affiliation(s)
- Josée Golay
- Center of Cellular Therapy “G. Lanzani”, UOC Ematologia, Azienda Socio Sanitaria Territoriale Papa Giovanni XXIII, 24127 Bergamo, Italy
- Fondazione per la Ricerca Ospedale Maggiore, 24127 Bergamo, Italy
| | - Alain E. Andrea
- Laboratoire de Biochimie et Thérapies Moléculaires, Faculté de Pharmacie, Université Saint Joseph de Beyrouth, Beirut 1100, Lebanon;
| |
Collapse
|
190
|
Yu J, Song Y, Tian W. How to select IgG subclasses in developing anti-tumor therapeutic antibodies. J Hematol Oncol 2020; 13:45. [PMID: 32370812 PMCID: PMC7201658 DOI: 10.1186/s13045-020-00876-4] [Citation(s) in RCA: 133] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 04/15/2020] [Indexed: 12/21/2022] Open
Abstract
The intact antibody of human immunoglobulin (IgG) is composed of the fragment for antigen binding (Fab) and the crystallizable fragment (Fc) for binding of Fcγ receptors. Among the four subclasses of human IgG (IgG1, IgG2, IgG3, IgG4), which differ in their constant regions, particularly in their hinges and CH2 domains, IgG1 has the highest FcγR-binding affinity, followed by IgG3, IgG2, and IgG4. As a result, different subclasses have different effector functions such as antibody-dependent cell-mediated cytotoxicity (ADCC) and antibody-dependent cellular phagocytosis (ADCP). Fcγ receptors include six subtypes (FcγRI, FcγRIIA, FcγRIIB, FcγRIIC, FcγRIIIA, FcγRIIIB) which differ in cellular distribution, binding affinity to Fc, and the resulting biological activity. Therefore, when developing anti-tumor therapeutic antibodies, including single-targeted antibodies, bi-specific antibodies (BsAbs), and antibody-drug conjugates (ADCs), many factors, such as target biology, cellular distribution of the targets, the environments of particular tumor types, as well as the proposed mechanism of action (MOA), must be taken into consideration. This review outlines fundamental strategies that are required to select IgG subclasses in developing anti-tumor therapeutic antibodies.
Collapse
Affiliation(s)
- Jifeng Yu
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China. .,Academy of Medical and Pharmaceutical Sciences of Zhengzhou University, Zhengzhou, 450052, China.
| | - Yongping Song
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| | - Wenzhi Tian
- ImmuneOnco Biopharmaceuticals (Shanghai) Co., Ltd., Shanghai, 201203, China.
| |
Collapse
|
191
|
Mhaidly R, Mechta-Grigoriou F. Fibroblast heterogeneity in tumor micro-environment: Role in immunosuppression and new therapies. Semin Immunol 2020; 48:101417. [PMID: 33077325 DOI: 10.1016/j.smim.2020.101417] [Citation(s) in RCA: 166] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 09/25/2020] [Accepted: 09/26/2020] [Indexed: 02/07/2023]
|
192
|
Teixeira AF, Ten Dijke P, Zhu HJ. On-Target Anti-TGF-β Therapies Are Not Succeeding in Clinical Cancer Treatments: What Are Remaining Challenges? Front Cell Dev Biol 2020. [PMID: 32733895 DOI: 10.3389/fcell.2020.00605.pmid:32733895;pmcid:pmc7360684] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2023] Open
Abstract
Metastasis is the leading cause of death for cancer patients. During cancer progression, the initial detachment of cells from the primary tumor and the later colonization of a secondary organ are characterized as limiting steps for metastasis. Epithelial-mesenchymal transition (EMT) and mesenchymal-epithelial transition (MET) are opposite dynamic multistep processes that enable these critical events in metastasis by altering the phenotype of cancer cells and improving their ability to migrate, invade and seed at distant organs. Among the molecular pathways that promote tumorigenesis in late-stage cancers, transforming growth factor-β (TGF-β) is described as an EMT master inducer by controlling different genes and proteins related to cytoskeleton assembly, cell-cell attachment and extracellular matrix remodeling. Still, despite the successful outcomes of different TGF-β pharmacological inhibitors in cell culture (in vitro) and animal models (in vivo), results in cancer clinical trials are poor or inconsistent at least, highlighting the existence of crucial components in human cancers that have not been properly explored. Here we review most recent findings to provide perspectives bridging the gap between on-target anti-TGF-β therapies in vitro and in pre-clinical models and the poor clinical outcomes in treating cancer patients. Specifically, we focus on (i) the dual roles of TGF-β signaling in cancer metastasis; (ii) dynamic signaling; (iii) functional differences of TGF-β free in solution vs. in exosomes; (iv) the regulatory effects of tumor microenvironment (TME) - particularly by cancer-associated fibroblasts - on TGF-β signaling pathway. Clearly identifying and establishing those missing links may provide strategies to revitalize and clinically improve the efficacy of TGF-β targeted therapies.
Collapse
Affiliation(s)
- Adilson Fonseca Teixeira
- Department of Surgery, The Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
| | - Peter Ten Dijke
- Oncode Institute and Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, Netherlands
| | - Hong-Jian Zhu
- Department of Surgery, The Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|