151
|
Zhang J, Wang X, Hou J, Li X, Li M, Zhao W, He N. High-resolution community-level sodium variation on the Tibetan Plateau: Content, density, and storage. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 944:173766. [PMID: 38844211 DOI: 10.1016/j.scitotenv.2024.173766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/02/2024] [Accepted: 06/02/2024] [Indexed: 06/18/2024]
Abstract
Sodium (Na), a beneficial mineral element, stimulates plant growth through osmotic adjustment. Previous studies focused on Na content at the individual or species level, however, it is hard to link to ecosystem functions without exploring the characteristics (content, density, and storage) of Na at the community level. We conducted grid-plot sampling of different plant organs in 2040 natural plant communities on the Tibetan Plateau (TP) to comprehensively characterize community-level Na on a regional scale. The Na content was 0.57, 0.09, 0.07, and 0.71 mg g-1 in leaves, branches, trunks, and roots, respectively. Across biomes Na content was higher in deserts under drought stress. Oxygen partial pressure, radiation, precipitation, soil Na supply, and temperature significantly affected the spatial variation in Na content. Furthermore, we accurately simulated the spatial variation in Na density and produced a highly precise 1 km × 1 km spatial map of plant Na density on the TP using random forest algorithm, which demonstrated higher Na density in the southeast of TP. The total plant Na storage on the TP was estimated as 111.80 × 104 t. These findings provide great insights and references for understanding the plant community-level adaptation strategies and evaluating the mineral element status on a large scale, and provide valuable data for ecological model optimization in the future.
Collapse
Affiliation(s)
- Jiahui Zhang
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin 150040, China; Earth Critical Zone and Flux Research Station of Xing'an Mountains, Chinese Academy of Sciences, Daxing'anling 165200, China
| | - Xiaomeng Wang
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China
| | - Jihua Hou
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China; Beijing Key Laboratory of Forest Resources and Ecosystem Process, Beijing Forestry University, Beijing 100083, China.
| | - Xin Li
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Mingxu Li
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Wenzong Zhao
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Nianpeng He
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin 150040, China; Earth Critical Zone and Flux Research Station of Xing'an Mountains, Chinese Academy of Sciences, Daxing'anling 165200, China.
| |
Collapse
|
152
|
Yuan P, Cai Q, Hu Z. Arabidopsis DEAD-box RNA helicase 12 is required for salt tolerance during seed germination. Biochem Biophys Res Commun 2024; 725:150228. [PMID: 38936167 DOI: 10.1016/j.bbrc.2024.150228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/03/2024] [Accepted: 06/04/2024] [Indexed: 06/29/2024]
Abstract
The DEAD-box family is the largest family of RNA helicases (RHs), playing crucial roles in RNA metabolism and plant stress resistance. In this study, we report that an RNA helicase, RH12, positively regulates plant salt tolerance, as rh12 knockout mutants exhibit heightened sensitivity to salt stress. Further analysis indicates that RH12 is involved in the abscisic acid (ABA) response, as rh12 knockout mutants show increased sensitivity to ABA. Examination of reactive oxygen species (ROS) revealed that RH12 helps inhibit ROS accumulation under salt stress during seed germination. Additionally, RH12 accelerates the degradation of specific germination-related transcripts. In conclusion, our results demonstrate that RH12 plays multiple roles in the salt stress response in Arabidopsis.
Collapse
Affiliation(s)
- Penglai Yuan
- College of Life Sciences, Nanjing Agricultural University, China; State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Qingsheng Cai
- College of Life Sciences, Nanjing Agricultural University, China.
| | - Zhubing Hu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China.
| |
Collapse
|
153
|
Abidi I, Daoui K, Abouabdillah A, Bazile D, Hassane Sidikou AA, Belqadi L, Mahyou H, Alaoui SB. Pomegranate-Quinoa-Based Agroforestry System: An Innovative Strategy to Alleviate Salinity Effects and Enhance Land Use Efficiency in Salt-Affected Semiarid Regions. PLANTS (BASEL, SWITZERLAND) 2024; 13:2543. [PMID: 39339517 PMCID: PMC11435191 DOI: 10.3390/plants13182543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/05/2024] [Accepted: 09/06/2024] [Indexed: 09/30/2024]
Abstract
Salinity is a major problem, impeding soil productivity, agricultural sustainability, and food security, particularly in dry regions. This study integrates quinoa, a facultative halophyte, into a pomegranate-based agroforestry with saline irrigation in northeast Morocco. We aim to explore this agroforestry model's potential in mitigating salinity's effects on quinoa's agronomic and biochemical traits and evaluate the land equivalent ratio (LER). Field experiments in 2020 and 2021 used a randomized block design with three replicates, including monocropping and agroforestry systems, two salinity levels (1.12 and 10.5 dS m-1), four quinoa genotypes (Titicaca, Puno, ICBA-Q4, ICBA-Q5), and a pomegranate control. Salinity significantly decreased total dry matter (40.5%), root dry matter (50.7%), leaf dry matter (39.2%), and root-to-shoot ratio (7.7%). The impact was more severe in monoculture than in agroforestry, reducing dry matter (47.6% vs. 30.7%), grain yield (46.3% vs. 26.1%), water productivity (47.5% vs. 23.9%), and total sugar (19.2% vs. 5.6%). LER averaged 1.86 to 2.21, indicating 86-121% higher productivity in agroforestry. LER averaged 1.85 at 1.12 dS m-1 and 2.18 at 10.5 dS m-1, reaching 2.21 with pomegranate-ICBA-Q5 combination. Quinoa-pomegranate agroforestry emerges as an innovative strategy, leveraging quinoa's salt resistance and agroforestry's potential to mitigate salinity impacts while enhancing land use efficiency.
Collapse
Affiliation(s)
- Ilham Abidi
- Hassan II Institute of Agronomy and Veterinary Medicine, Rabat 10112, Morocco; (A.A.H.S.); (L.B.); (S.B.A.)
| | - Khalid Daoui
- National Institute for Agricultural Research, Regional Agricultural Research Center, Meknès 50000, Morocco;
| | | | - Didier Bazile
- CIRAD, UMR SENS, F-34398 Montpellier, France;
- UMR SENS, CIRAD, IRD, University Paul Valery Montpellier 3, University Montpellier, F-34090 Montpellier, France
| | - Abdel Aziz Hassane Sidikou
- Hassan II Institute of Agronomy and Veterinary Medicine, Rabat 10112, Morocco; (A.A.H.S.); (L.B.); (S.B.A.)
| | - Loubna Belqadi
- Hassan II Institute of Agronomy and Veterinary Medicine, Rabat 10112, Morocco; (A.A.H.S.); (L.B.); (S.B.A.)
| | - Hamid Mahyou
- National Institute for Agricultural Research, Regional Agricultural Research Center, Oujda 60000, Morocco;
| | - Si Bennasseur Alaoui
- Hassan II Institute of Agronomy and Veterinary Medicine, Rabat 10112, Morocco; (A.A.H.S.); (L.B.); (S.B.A.)
| |
Collapse
|
154
|
Tian Q, Yu T, Dong M, Hu Y, Chen X, Xue Y, Fang Y, Zhang J, Zhang X, Xue D. Identification and Characterization of Shaker Potassium Channel Gene Family and Response to Salt and Chilling Stress in Rice. Int J Mol Sci 2024; 25:9728. [PMID: 39273675 PMCID: PMC11395327 DOI: 10.3390/ijms25179728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/30/2024] [Accepted: 09/05/2024] [Indexed: 09/15/2024] Open
Abstract
Shaker potassium channel proteins are a class of voltage-gated ion channels responsible for K+ uptake and translocation, playing a crucial role in plant growth and salt tolerance. In this study, bioinformatic analysis was performed to identify the members within the Shaker gene family. Moreover, the expression patterns of rice Shaker(OsShaker) K+ channel genes were analyzed in different tissues and salt treatment by RT-qPCR. The results revealed that there were eight OsShaker K+ channel genes distributed on chromosomes 1, 2, 5, 6 and 7 in rice, and their promoters contained a variety of cis-regulatory elements, including hormone-responsive, light-responsive, and stress-responsive elements, etc. Most of the OsShaker K+ channel genes were expressed in all tissues of rice, but at different levels in different tissues. In addition, the expression of OsShaker K+ channel genes differed in the timing, organization and intensity of response to salt and chilling stress. In conclusion, our findings provide a reference for the understanding of OsShaker K+ channel genes, as well as their potential functions in response to salt and chilling stress in rice.
Collapse
Affiliation(s)
- Quanxiang Tian
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou 311121, China
| | - Tongyuan Yu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Mengyuan Dong
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Yue Hu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Xiaoguang Chen
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou 311121, China
| | - Yuan Xue
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Yunxia Fang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou 311121, China
| | - Jian Zhang
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 311400, China
| | - Xiaoqin Zhang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou 311121, China
| | - Dawei Xue
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou 311121, China
| |
Collapse
|
155
|
Li D, Si J, Ren X. Coordination and adaptation of water processes in Populus euphratica in response to salinity. FRONTIERS IN PLANT SCIENCE 2024; 15:1443444. [PMID: 39309175 PMCID: PMC11412876 DOI: 10.3389/fpls.2024.1443444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 08/12/2024] [Indexed: 09/25/2024]
Abstract
Water processes secure plant survival and maintain their ecosystem function. Salinity affects water processes, but the mechanisms remain unclear and may depend on the degree of salinity stress. To improve the understanding of the cooperation of plant organs involved in water processes under salinity stress, we determined hydraulic, gas exchange, and physiological and biochemical parameters in Populus euphratica Oliv. under different salinity stresses. The results suggested that P. euphratica enhanced water transport efficiency in a salinity-stress environment, and the strengthening effect of roots in the water transfer process was greater than that of the aboveground parts. P. euphratica also increased water use efficiency and water transport efficiency in mild and moderate salinity stress (less than 200 mmol/L NaCl) but was adversely affected by heavy salinity stress (more than 300 mmol/L NaCl). Furthermore, P. euphratica increased its water storage by regulating antioxidant enzyme scavenging capacity and osmoregulation, which resulted in coordinated greater water utilization and enhanced water transport among plant organs and indicated that the adverse effects on water processes triggered by salinity stress depended on the extent of salt stress. P. euphratica lessened stress-induced damage and maintained plant productivity by coordination and cooperation of water processes under certain levels of salinity. Research on the coordination and cooperation involving water processes in riparian forests in saline areas provides the scientific basis for riparian plant protection and restoration.
Collapse
Affiliation(s)
- Duan Li
- School of Geographic Sciences, Taiyuan Normal University, Jinzhong, China
- Shanxi Key Laboratory of Earth Surface Processes and Resource Ecology Security in Fenhe River Basin, Taiyuan Normal University, Jinzhong, China
| | - Jianhua Si
- Key Laboratory of Eco-hydrology of Inland River Basin, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
| | - Xiaozong Ren
- School of Geographic Sciences, Taiyuan Normal University, Jinzhong, China
- Shanxi Key Laboratory of Earth Surface Processes and Resource Ecology Security in Fenhe River Basin, Taiyuan Normal University, Jinzhong, China
| |
Collapse
|
156
|
Wang C, Wen J, Liu Y, Yu B, Yang S. SOS2-AFP2 module regulates seed germination by inducing ABI5 degradation in response to salt stress in Arabidopsis. Biochem Biophys Res Commun 2024; 723:150190. [PMID: 38838447 DOI: 10.1016/j.bbrc.2024.150190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 05/27/2024] [Accepted: 05/28/2024] [Indexed: 06/07/2024]
Abstract
Soil salinity pose a significant challenge to global agriculture, threatening crop yields and food security. Understanding the salt tolerance mechanisms of plants is crucial for improving their survival under salt stress. AFP2, a negative regulator of ABA signaling, has been shown to play a crucial role in salt stress tolerance during seed germination. Mutations in AFP2 gene lead to increased sensitivity to salt stress. However, the underline mechanisms by which AFP2 regulates seed germination under salt stress remain elusive. In this study, we identified a protein interaction between AFP2 and SOS2, a Ser/Thr protein kinase known to play a critical role in salt stress response. Using a combination of genetic, biochemical, and physiological approaches, we investigated the role of the SOS2-AFP2 module in regulating seed germination under salt stress. Our findings reveal that SOS2 physically interacts with AFP2 and stabilizes it, leading to the degradation of the ABI5 protein, a negative transcription factor in seed germination under salt stress. This study sheds light on previously unknown connections within salt stress and ABA signaling, paving the way for novel strategies to enhance plant resilience against environmental challenges.
Collapse
Affiliation(s)
- Chuntao Wang
- Yuxi Normal University, Yuxi, 653100, China; Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China.
| | - Jing Wen
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuanyuan Liu
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Buzhu Yu
- Yuxi Normal University, Yuxi, 653100, China
| | - Shuda Yang
- School of Pharmaceutical Science & Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, 650500, China
| |
Collapse
|
157
|
Zou Y, Gigli-Bisceglia N, van Zelm E, Kokkinopoulou P, Julkowska MM, Besten M, Nguyen TP, Li H, Lamers J, de Zeeuw T, Dongus JA, Zeng Y, Cheng Y, Koevoets IT, Jørgensen B, Giesbers M, Vroom J, Ketelaar T, Petersen BL, Engelsdorf T, Sprakel J, Zhang Y, Testerink C. Arabinosylation of cell wall extensin is required for the directional response to salinity in roots. THE PLANT CELL 2024; 36:3328-3343. [PMID: 38691576 PMCID: PMC11371136 DOI: 10.1093/plcell/koae135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/29/2024] [Accepted: 04/24/2024] [Indexed: 05/03/2024]
Abstract
Soil salinity is a major contributor to crop yield losses. To improve our understanding of root responses to salinity, we developed and exploited a real-time salt-induced tilting assay. This assay follows root growth upon both gravitropic and salt challenges, revealing that root bending upon tilting is modulated by Na+ ions, but not by osmotic stress. Next, we measured this salt-specific response in 345 natural Arabidopsis (Arabidopsis thaliana) accessions and discovered a genetic locus, encoding the cell wall-modifying enzyme EXTENSIN ARABINOSE DEFICIENT TRANSFERASE (ExAD) that is associated with root bending in the presence of NaCl (hereafter salt). Extensins are a class of structural cell wall glycoproteins known as hydroxyproline (Hyp)-rich glycoproteins, which are posttranslationally modified by O-glycosylation, mostly involving Hyp-arabinosylation. We show that salt-induced ExAD-dependent Hyp-arabinosylation influences root bending responses and cell wall thickness. Roots of exad1 mutant seedlings, which lack Hyp-arabinosylation of extensin, displayed increased thickness of root epidermal cell walls and greater cell wall porosity. They also showed altered gravitropic root bending in salt conditions and a reduced salt-avoidance response. Our results suggest that extensin modification via Hyp-arabinosylation is a unique salt-specific cellular process required for the directional response of roots exposed to salinity.
Collapse
Affiliation(s)
- Yutao Zou
- Laboratory of Plant Physiology, Wageningen University & Research, 6708 PB Wageningen, the Netherlands
- Plant Cell Biology, Swammerdam Institute for Life Science, Universiteit van Amsterdam, 1090 GE Amsterdam, the Netherlands
| | - Nora Gigli-Bisceglia
- Laboratory of Plant Physiology, Wageningen University & Research, 6708 PB Wageningen, the Netherlands
- Plant Stress Resilience, Institute of Environmental Biology, Utrecht University, 3508 TB Utrecht, the Netherlands
| | - Eva van Zelm
- Laboratory of Plant Physiology, Wageningen University & Research, 6708 PB Wageningen, the Netherlands
| | - Pinelopi Kokkinopoulou
- Laboratory of Plant Physiology, Wageningen University & Research, 6708 PB Wageningen, the Netherlands
| | | | - Maarten Besten
- Laboratory of Biochemistry, Wageningen University & Research, 6708 WE Wageningen, the Netherlands
| | - Thu-Phuong Nguyen
- Laboratory of Genetics, Wageningen University & Research, 6708 PB Wageningen, the Netherlands
| | - Hongfei Li
- Laboratory of Plant Physiology, Wageningen University & Research, 6708 PB Wageningen, the Netherlands
| | - Jasper Lamers
- Laboratory of Plant Physiology, Wageningen University & Research, 6708 PB Wageningen, the Netherlands
| | - Thijs de Zeeuw
- Laboratory of Plant Physiology, Wageningen University & Research, 6708 PB Wageningen, the Netherlands
| | - Joram A Dongus
- Laboratory of Plant Physiology, Wageningen University & Research, 6708 PB Wageningen, the Netherlands
| | - Yuxiao Zeng
- Laboratory of Plant Physiology, Wageningen University & Research, 6708 PB Wageningen, the Netherlands
| | - Yu Cheng
- Laboratory of Plant Physiology, Wageningen University & Research, 6708 PB Wageningen, the Netherlands
| | - Iko T Koevoets
- Laboratory of Plant Physiology, Wageningen University & Research, 6708 PB Wageningen, the Netherlands
- Plant Cell Biology, Swammerdam Institute for Life Science, Universiteit van Amsterdam, 1090 GE Amsterdam, the Netherlands
| | - Bodil Jørgensen
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C 1871, Denmark
| | - Marcel Giesbers
- Wageningen Electron Microscopy Centre, Wageningen University & Research, 6708 PB Wageningen, the Netherlands
| | - Jelmer Vroom
- Wageningen Electron Microscopy Centre, Wageningen University & Research, 6708 PB Wageningen, the Netherlands
| | - Tijs Ketelaar
- Laboratory of Cell Biology, Wageningen University & Research, 6708 PB Wageningen, the Netherlands
| | - Bent Larsen Petersen
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C 1871, Denmark
| | - Timo Engelsdorf
- Molecular Plant Physiology, Philipps-Universität Marburg, 35043 Marburg, Germany
| | - Joris Sprakel
- Laboratory of Biochemistry, Wageningen University & Research, 6708 WE Wageningen, the Netherlands
| | - Yanxia Zhang
- Laboratory of Plant Physiology, Wageningen University & Research, 6708 PB Wageningen, the Netherlands
- College of Agriculture, South China Agricultural University, 510642 Guangzhou, China
| | - Christa Testerink
- Laboratory of Plant Physiology, Wageningen University & Research, 6708 PB Wageningen, the Netherlands
| |
Collapse
|
158
|
Feng ZQ, Li T, Li XY, Luo LX, Li Z, Liu CL, Ge SF, Zhu ZL, Li YY, Jiang H, Jiang YM. Enhancement of Apple Stress Resistance via Proline Elevation by Sugar Substitutes. Int J Mol Sci 2024; 25:9548. [PMID: 39273495 PMCID: PMC11395137 DOI: 10.3390/ijms25179548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/25/2024] [Accepted: 08/26/2024] [Indexed: 09/15/2024] Open
Abstract
Plants encounter numerous adversities during growth, necessitating the identification of common stress activators to bolster their resistance. However, the current understanding of these activators' mechanisms remains limited. This study identified three anti-stress activators applicable to apple trees, all of which elevate plant proline content to enhance resistance against various adversities. The results showed that the application of these sugar substitutes increased apple proline content by two to three times compared to the untreated group. Even at a lower concentration, these activators triggered plant stress resistance without compromising apple fruit quality. Therefore, these three sugar substitutes can be exogenously sprayed on apple trees to augment proline content and fortify stress resistance. Given their effectiveness and low production cost, these activators possess significant application value. Since they have been widely used in the food industry, they hold potential for broader application in plants, fostering apple industry development.
Collapse
Affiliation(s)
- Zi-Quan Feng
- National Research Center for Apple Engineering and Technology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an 271018, China
| | - Tong Li
- National Research Center for Apple Engineering and Technology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an 271018, China
| | - Xin-Yi Li
- National Research Center for Apple Engineering and Technology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an 271018, China
| | - Long-Xin Luo
- National Research Center for Apple Engineering and Technology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an 271018, China
| | - Zhi Li
- National Research Center for Apple Engineering and Technology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an 271018, China
| | - Chun-Ling Liu
- National Research Center for Apple Engineering and Technology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an 271018, China
| | - Shun-Feng Ge
- National Research Center for Apple Engineering and Technology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an 271018, China
| | - Zhan-Ling Zhu
- National Research Center for Apple Engineering and Technology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an 271018, China
| | - Yuan-Yuan Li
- National Research Center for Apple Engineering and Technology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an 271018, China
| | - Han Jiang
- National Research Center for Apple Engineering and Technology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an 271018, China
| | - Yuan-Mao Jiang
- National Research Center for Apple Engineering and Technology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an 271018, China
| |
Collapse
|
159
|
Song LY, Xu CQ, Zhang LD, Li J, Jiang LW, Ma DN, Guo ZJ, Wang Q, Wang XX, Zheng HL. Trehalose along with ABA promotes the salt tolerance of Avicennia marina by regulating Na + transport. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:2349-2362. [PMID: 38981025 DOI: 10.1111/tpj.16921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/06/2024] [Accepted: 06/26/2024] [Indexed: 07/11/2024]
Abstract
Mangroves grow in tropical/subtropical intertidal habitats with extremely high salt tolerance. Trehalose and trehalose-6-phosphate (T6P) have an alleviating function against abiotic stress. However, the roles of trehalose in the salt tolerance of salt-secreting mangrove Avicennia marina is not documented. Here, we found that trehalose was significantly accumulated in A. marina under salt treatment. Furthermore, exogenous trehalose can enhance salt tolerance by promoting the Na+ efflux from leaf salt gland and root to reduce the Na+ content in root and leaf. Subsequently, eighteen trehalose-6-phosphate synthase (AmTPS) and 11 trehalose-6-phosphate phosphatase (AmTPP) genes were identified from A. marina genome. Abscisic acid (ABA) responsive elements were predicted in AmTPS and AmTPP promoters by cis-acting elements analysis. We further identified AmTPS9A, as an important positive regulator, that increased the salt tolerance of AmTPS9A-overexpressing Arabidopsis thaliana by altering the expressions of ion transport genes and mediating Na+ efflux from the roots of transgenic A. thaliana under NaCl treatments. In addition, we also found that ABA could promote the accumulation of trehalose, and the application of exogenous trehalose significantly promoted the biosynthesis of ABA in both roots and leaves of A. marina. Ultimately, we confirmed that AmABF2 directly binds to the AmTPS9A promoter in vitro and in vivo. Taken together, we speculated that there was a positive feedback loop between trehalose and ABA in regulating the salt tolerance of A. marina. These findings provide new understanding to the salt tolerance of A. marina in adapting to high saline environment at trehalose and ABA aspects.
Collapse
Affiliation(s)
- Ling-Yu Song
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, 361102, People's Republic of China
| | - Chao-Qun Xu
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, 361102, People's Republic of China
| | - Lu-Dan Zhang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, 361102, People's Republic of China
- Houji Laboratory in Shanxi Province, Shanxi Agricultural University, Taiyuan, Shanxi, 030000, People's Republic of China
| | - Jing Li
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, 361102, People's Republic of China
| | - Li-Wei Jiang
- College of Horticulture, Henan Agricultural University, Zhengzhou, Henan, 450046, People's Republic of China
| | - Dong-Na Ma
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, 361102, People's Republic of China
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China
| | - Ze-Jun Guo
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, 361102, People's Republic of China
| | - Qian Wang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, 361102, People's Republic of China
| | - Xiu-Xiu Wang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, 361102, People's Republic of China
| | - Hai-Lei Zheng
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, 361102, People's Republic of China
| |
Collapse
|
160
|
Shen X, Sun M, Nie B, Li X. Physiological adaptation of Cyperus esculentus L. seedlings to varying concentrations of saline-alkaline stress: Insights from photosynthetic performance. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 214:108911. [PMID: 38976943 DOI: 10.1016/j.plaphy.2024.108911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/30/2024] [Accepted: 07/03/2024] [Indexed: 07/10/2024]
Abstract
Soil salinization effects plant photosynthesis in a number of global ecosystems. In this study, photosynthetic and physiological parameters were used to elucidate the impacts of saline-alkaline stress on Cyperus esculentus L. (C. esculentus) seedling photosynthesis. The results demonstrate that salt stress, alkali stress and mixed salt and alkali stress treatments all have similar bell-shaped influences on photosynthesis. At low concentrations (0-100 mmol L-1), saline-alkaline stress promoted net photosynthetic rate, transpiration rate and water use efficiency in C. esculentus. However, as the treatments increased in intensity (100-200 mmol L-1), plant photosynthetic parameters began to decline. We interpreted this as the capacity of C. esculentus to improve osmoregulatory capacity in low saline-alkaline stress treatments by accumulating photosynthetic pigment, proline and malondialdehyde to counterbalance the induced stress - an adaptive mechanism that failed once concentrations reached a critical threshold (100 mmol L-1). Stomatal conductance, maximum photosynthetic rate and actual photosynthetic rate all decreased with increasing concentration of the stress treatments, and intercellular carbon dioxide showed a decreasing and then increasing trend. These results indicated that when the saline-alkaline stress concentrations were low, C. esculentus seedlings showed obvious adaptive ability, but when the concentration increased further, the physiological processes of C. esculentus seedlings were significantly affected, with an obvious decrease in photosynthetic efficiency. This study provides a new understanding of the photosynthetic adaptation strategies of C. esculentus seedlings to varying concentrations of saline-alkaline stress.
Collapse
Affiliation(s)
- Xin Shen
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 83001, China; Xinjiang Key Laboratory of Desert Plant Roots Ecology and Vegetation Restoration, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China; Cele National Station of Observation and Research for Desert-Grassland Ecosystems, Cele, 848300, Xinjiang, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Mengxin Sun
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 83001, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bixia Nie
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 83001, China; Xinjiang Key Laboratory of Desert Plant Roots Ecology and Vegetation Restoration, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China; Cele National Station of Observation and Research for Desert-Grassland Ecosystems, Cele, 848300, Xinjiang, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiangyi Li
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 83001, China; Xinjiang Key Laboratory of Desert Plant Roots Ecology and Vegetation Restoration, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China; Cele National Station of Observation and Research for Desert-Grassland Ecosystems, Cele, 848300, Xinjiang, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
161
|
Zhang M, Wu M, Xu T, Cao J, Zhang Z, Zhang T, Xie Q, Wang J, Sun S, Zhang Q, Ma R, Xie L. A putative Na +/H + antiporter BpSOS1 contributes to salt tolerance in birch. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 346:112181. [PMID: 38969141 DOI: 10.1016/j.plantsci.2024.112181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 04/24/2024] [Accepted: 07/02/2024] [Indexed: 07/07/2024]
Abstract
White birch (Betula platyphylla Suk.) is an important pioneer tree which plays a critical role in maintaining ecosystem stability and forest regeneration. The growth of birch is dramatically inhibited by salt stress, especially the root inhibition. Salt Overly Sensitive 1 (SOS1) is the only extensively characterized Na+ efflux transporter in multiple plant species. The salt-hypersensitive mutant, sos1, display significant inhibition of root growth by NaCl. However, the role of SOS1 in birch responses to salt stress remains unclear. Here, we characterized a putative Na+/H+ antiporter BpSOS1 in birch and generated the loss-of-function mutants of the birch BpSOS1 by CRISPR/Cas9 approach. The bpsos1 mutant exhibit exceptional increased salt sensitivity which links to excessive Na+ accumulation in root, stem and old leaves. We observed a dramatic reduction of K+ contents in leaves of the bpsos1 mutant plants under salt stress. Furthermore, the Na+/K+ ratio of roots and leaves is significant higher in the bpsos1 mutants than the wild-type plants under salt stress. The ability of Na+ efflux in the root meristem zone is found to be impaired which might result the imbalance of Na+ and K+ in the bpsos1 mutants. Our findings indicate that the Na+/H+ exchanger BpSOS1 plays a critical role in birch salt tolerance by maintaining Na+ homeostasis and provide evidence for molecular breeding to improve salt tolerance in birch and other trees.
Collapse
Affiliation(s)
- Minghui Zhang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin, China
| | - Mingke Wu
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin, China
| | - Tao Xu
- The Editorial Board of Journal of Forestry Research, Northeast Forestry University, Harbin, China
| | - Junfeng Cao
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin, China
| | - Zihui Zhang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin, China
| | - Tianxu Zhang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Qingyi Xie
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin, China
| | - Jiang Wang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin, China
| | - Shanwen Sun
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin, China
| | - Qingzhu Zhang
- School of Ecology, Northeast Forestry University, Harbin, 150040, China; The Center for Basic Forestry Research, College of Forestry, Northeast Forestry University, Harbin, China; State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China; Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, School of Ecology, Northeast Forestry University, Harbin, 150040, China
| | - Renyi Ma
- Yunnan Key Laboratory of Biodiversity of Gaoligong Mountain, Yunnan Academy of Forestry and Grassland, Kunming, China.
| | - Linan Xie
- School of Ecology, Northeast Forestry University, Harbin, 150040, China; The Center for Basic Forestry Research, College of Forestry, Northeast Forestry University, Harbin, China; Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, School of Ecology, Northeast Forestry University, Harbin, 150040, China.
| |
Collapse
|
162
|
Chen S, Du T, Huang Z, He K, Yang M, Gao S, Yu T, Zhang H, Li X, Chen S, Liu C, Li H. The Spartina alterniflora genome sequence provides insights into the salt-tolerance mechanisms of exo-recretohalophytes. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:2558-2574. [PMID: 38685729 PMCID: PMC11331799 DOI: 10.1111/pbi.14368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 03/24/2024] [Accepted: 04/11/2024] [Indexed: 05/02/2024]
Abstract
Spartina alterniflora is an exo-recretohalophyte Poaceae species that is able to grow well in seashore, but the genomic basis underlying its adaptation to salt tolerance remains unknown. Here, we report a high-quality, chromosome-level genome assembly of S. alterniflora constructed through PacBio HiFi sequencing, combined with high-throughput chromosome conformation capture (Hi-C) technology and Illumina-based transcriptomic analyses. The final 1.58 Gb genome assembly has a contig N50 size of 46.74 Mb. Phylogenetic analysis suggests that S. alterniflora diverged from Zoysia japonica approximately 21.72 million years ago (MYA). Moreover, whole-genome duplication (WGD) events in S. alterniflora appear to have expanded gene families and transcription factors relevant to salt tolerance and adaptation to saline environments. Comparative genomics analyses identified numerous species-specific genes, significantly expanded genes and positively selected genes that are enriched for 'ion transport' and 'response to salt stress'. RNA-seq analysis identified several ion transporter genes including the high-affinity K+ transporters (HKTs), SaHKT1;2, SaHKT1;3 and SaHKT1;8, and high copy number of Salt Overly Sensitive (SOS) up-regulated under high salt conditions, and the overexpression of SaHKT2;4 in Arabidopsis thaliana conferred salt tolerance to the plant, suggesting specialized roles for S. alterniflora to adapt to saline environments. Integrated metabolomics and transcriptomics analyses revealed that salt stress activate glutathione metabolism, with differential expressions of several genes such as γ-ECS, GSH-S, GPX, GST and PCS in the glutathione metabolism. This study suggests several adaptive mechanisms that could contribute our understanding of evolutional basis of the halophyte.
Collapse
Affiliation(s)
- Shoukun Chen
- State Key Laboratory of Crop Gene Resources and BreedingInstitute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS)BeijingChina
- Nanfan Research Institute, CAASSanyaHainanChina
- Hainan Seed Industry LaboratorySanyaHainanChina
| | - Tingting Du
- State Key Laboratory of Crop Gene Resources and BreedingInstitute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS)BeijingChina
- Nanfan Research Institute, CAASSanyaHainanChina
| | - Zhangping Huang
- State Key Laboratory of Crop Gene Resources and BreedingInstitute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS)BeijingChina
- Nanfan Research Institute, CAASSanyaHainanChina
| | - Kunhui He
- State Key Laboratory of Crop Gene Resources and BreedingInstitute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS)BeijingChina
- Nanfan Research Institute, CAASSanyaHainanChina
| | - Maogeng Yang
- State Key Laboratory of Crop Gene Resources and BreedingInstitute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS)BeijingChina
- Nanfan Research Institute, CAASSanyaHainanChina
- Key Laboratory of Plant Molecular & Developmental BiologyCollege of Life Sciences, Yantai UniversityYantaiShandongChina
| | - Shang Gao
- State Key Laboratory of Crop Gene Resources and BreedingInstitute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS)BeijingChina
- Nanfan Research Institute, CAASSanyaHainanChina
| | - Tingxi Yu
- State Key Laboratory of Crop Gene Resources and BreedingInstitute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS)BeijingChina
- Nanfan Research Institute, CAASSanyaHainanChina
| | - Hao Zhang
- State Key Laboratory of Crop Gene Resources and BreedingInstitute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS)BeijingChina
- Nanfan Research Institute, CAASSanyaHainanChina
| | - Xiang Li
- State Key Laboratory of Plant Genomics and National Center for Plant Gene ResearchInstitute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of SciencesBeijingChina
| | - Shihua Chen
- Key Laboratory of Plant Molecular & Developmental BiologyCollege of Life Sciences, Yantai UniversityYantaiShandongChina
| | - Chun‐Ming Liu
- State Key Laboratory of Crop Gene Resources and BreedingInstitute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS)BeijingChina
- Key Laboratory of Plant Molecular PhysiologyInstitute of Botany, Chinese Academy of SciencesBeijingChina
- College of Life Sciences, University of Chinese Academy of SciencesBeijingChina
- School of Advanced Agricultural Sciences, Peking UniversityBeijingChina
| | - Huihui Li
- State Key Laboratory of Crop Gene Resources and BreedingInstitute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS)BeijingChina
- Nanfan Research Institute, CAASSanyaHainanChina
| |
Collapse
|
163
|
Zhang Y, Dong W, Ma H, Zhao C, Ma F, Wang Y, Zheng X, Jin M. Comparative transcriptome and coexpression network analysis revealed the regulatory mechanism of Astragalus cicer L. in response to salt stress. BMC PLANT BIOLOGY 2024; 24:817. [PMID: 39210248 PMCID: PMC11363611 DOI: 10.1186/s12870-024-05531-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Astragalus cicer L. is a perennial rhizomatous legume forage known for its quality, high biomass yield, and strong tolerance to saline-alkaline soils. Soil salinization is a widespread environmental pressure. To use A. cicer L. more scientifically and environmentally in agriculture and ecosystems, it is highly important to study the molecular response mechanism of A. cicer L. to salt stress. RESULTS In this study, we used RNA-seq technology and weighted gene coexpression network analysis (WGCNA) were performed. The results showed 4 key modules were closely related to the physiological response of A. cicer. L. to salt stress. The differentially expressed genes (DEGs) of key modules were mapped into the KEGG database, and found that the most abundant pathways were the plant hormone signal transduction pathway and carbon metabolism pathway. The potential regulatory networks of the cytokinin signal transduction pathway, the ethylene signal transduction pathway, and carbon metabolism related pathways were constructed according to the expression pathways of the DEGs. Seven hub genes in the key modules were selected and distributed among these pathways. They may involved in the positive regulation of cytokinin signaling and carbon metabolism in plant leaves, but limited the positive expression of ethylene signaling. Thus endowing the plant with salt tolerance in the early stage of salt stress. CONCLUSIONS Based on the phenotypic and physiological responses of A. cicer L. to salt stress, this study constructed the gene coexpression network of potential regulation to salt stress in key modules, which provided a new reference for exploring the response mechanism of legumes to abiotic stress.
Collapse
Affiliation(s)
- Yujuan Zhang
- College of Grassland Science, Gansu Agricultural University, Lanzhou, 730070, China
- Key Laboratory of Grassland Ecosystem (Gansu Agricultural University), Ministry of Education, Lanzhou, 730070, China
| | - Wenke Dong
- College of Grassland Science, Gansu Agricultural University, Lanzhou, 730070, China.
- Key Laboratory of Grassland Ecosystem (Gansu Agricultural University), Ministry of Education, Lanzhou, 730070, China.
| | - Huiling Ma
- College of Grassland Science, Gansu Agricultural University, Lanzhou, 730070, China
- Key Laboratory of Grassland Ecosystem (Gansu Agricultural University), Ministry of Education, Lanzhou, 730070, China
| | - Chunxu Zhao
- College of Grassland Science, Gansu Agricultural University, Lanzhou, 730070, China
- Key Laboratory of Grassland Ecosystem (Gansu Agricultural University), Ministry of Education, Lanzhou, 730070, China
| | - Fuqin Ma
- College of Grassland Science, Gansu Agricultural University, Lanzhou, 730070, China
- Key Laboratory of Grassland Ecosystem (Gansu Agricultural University), Ministry of Education, Lanzhou, 730070, China
| | - Yan Wang
- College of Grassland Science, Gansu Agricultural University, Lanzhou, 730070, China
- Key Laboratory of Grassland Ecosystem (Gansu Agricultural University), Ministry of Education, Lanzhou, 730070, China
| | - Xiaolin Zheng
- College of Grassland Science, Gansu Agricultural University, Lanzhou, 730070, China
- Key Laboratory of Grassland Ecosystem (Gansu Agricultural University), Ministry of Education, Lanzhou, 730070, China
| | - Minhui Jin
- College of Grassland Science, Gansu Agricultural University, Lanzhou, 730070, China
- Key Laboratory of Grassland Ecosystem (Gansu Agricultural University), Ministry of Education, Lanzhou, 730070, China
| |
Collapse
|
164
|
Zhao X, Zhu Z, Sang Z, Ma L, Yin Q, Jia Z. Physiological and Transcriptomic Analyses Demonstrate the Ca 2+-Mediated Alleviation of Salt Stress in Magnolia wufengensis. PLANTS (BASEL, SWITZERLAND) 2024; 13:2418. [PMID: 39273902 PMCID: PMC11396891 DOI: 10.3390/plants13172418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/23/2024] [Accepted: 08/28/2024] [Indexed: 09/15/2024]
Abstract
Magnolia wufengensis, a newly discovered ornamental species in the Magnoliaceae family, is susceptible to salinity. Moreover, Ca2+ is an essential element for plant growth and is receiving increasing attention for its ability to mitigate the negative effects of environmental stress on plants. In the present study, we investigated the effect of Ca2+ on the growth and transcriptome of M. wufengensis under salt stress. The treatments used here were as follows: control, NaCl (150 mmol/L), CaCl2 (5 mmol/L), and NaCl (150 mmol/L) + CaCl2 (5 mmol/L). After a 60-day treatment period, plant growth indices were determined, and leaves were collected for physiological analysis and transcriptome investigation. The combined application of NaCl and CaCl2 alleviated phenotypic damage and restored seedling growth. Moreover, RNA sequencing data revealed that in the Na vs. control group and the NaCa vs. Na group, there were 968 and 2632 differentially expressed genes, respectively, which were both primarily enriched in secondary metabolism, glutathione metabolism, signaling hormone metabolism, glucose metabolism, and amino acid metabolism. These pathways were analyzed to screen key genes: the adenosine triphosphate (ATP)-binding cassette efflux transporter G1 (ABCG1) genes, which are related to transmembrane transport; the calmodulin genes, which are related to signal transmission; and the glutathione S-transferase (GST), glutathione peroxidase (GPX), and peroxidase (POD) genes related to antioxidant enzymes. Lastly, we constructed a hypothesis model of Ca2+-enhanced salt tolerance in M. wufengensis. This study reveals the potential mechanisms by which Ca2+ enhances the salt tolerance of M. wufengensis and provides a theoretical reference for its cultivation in saline areas.
Collapse
Affiliation(s)
- Xiuting Zhao
- State Key Laboratory of Efficient Production of Forest Resources, College of Forestry, Beijing Forestry University, Beijing 100083, China
- Magnolia wufengensis Research Center, Beijing Forestry University, Beijing 100083, China
| | - Zhonglong Zhu
- College of Agriculture, HuBei Three Gorges Polytechnic, Yichang 443199, China
| | - Ziyang Sang
- Forest Science Research Institute of Wufeng Tujia Autonomous County, Yichang 443400, China
| | - Luyi Ma
- State Key Laboratory of Efficient Production of Forest Resources, College of Forestry, Beijing Forestry University, Beijing 100083, China
- Magnolia wufengensis Research Center, Beijing Forestry University, Beijing 100083, China
| | - Qun Yin
- State Key Laboratory of Efficient Production of Forest Resources, College of Forestry, Beijing Forestry University, Beijing 100083, China
- Magnolia wufengensis Research Center, Beijing Forestry University, Beijing 100083, China
| | - Zhongkui Jia
- State Key Laboratory of Efficient Production of Forest Resources, College of Forestry, Beijing Forestry University, Beijing 100083, China
- Magnolia wufengensis Research Center, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
165
|
Khalifa T, Abdel-Kader NI, Elbagory M, Ahmed ME, Saber EA, Omara AED, Mahdy RM. Investigating the influence of eco-friendly approaches on saline soil traits and growth of common bean plants ( Phaseolus vulgaris L.). PeerJ 2024; 12:e17828. [PMID: 39221268 PMCID: PMC11365486 DOI: 10.7717/peerj.17828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 07/08/2024] [Indexed: 09/04/2024] Open
Abstract
Soil salinization significantly impacts agricultural lands and crop productivity in the study area. Moreover, freshwater scarcity poses a significant obstacle to soil reclamation and agricultural production. Therefore, eco-friendly strategies must be adopted for agro-ecosystem sustainability under these conditions. A study conducted in 2022 and 2023 examined the interaction effects of various soil mulching materials (unmulched, white plastic, rice straw, and sawdust) and chitosan foliar spray application (control, 250 mg L-1 of normal chitosan, 125 mg L-1 of nano chitosan, and 62.5 mg L-1 of nano chitosan) on the biochemical soil characteristics and productivity of common beans in clay-saline soil. Higher organic matter, available nutrient content, and total bacteria count in soils were found under organic mulching treatments (rice straw and sawdust). In contrast, the white plastic mulching treatment resulted in the lowest values of soil electrical conductivity (EC) and the highest soil water content. Conversely, chitosan foliar spray treatments had the least impact on the chemical properties of the soil. Plants sprayed with 62.5 mg L-1 of nano chitosan exhibited higher chlorophyll content, plant height, fresh weight of shoots and roots, seed yield, and nutrient content compared to other chitosan foliar spray applications. All treatments studied led to a significant reduction in fungal communities and Na% in plants. The combined effect of organic mulch materials and foliar spray application of 62.5 mg L-1 nano chitosan appeared to enhance biochemical saline soil properties and common bean productivity.
Collapse
Affiliation(s)
- Tamer Khalifa
- Soil Improvement and Conservation Research Department, Soil, Water, and Environment Research Institute (SWERI), Agriculture Research Center (ARC), Giza, Egypt
| | | | - Mohssen Elbagory
- Department of Biology, Faculty of Science and Arts, King Khalid University, Assir, Mohail, Saudi Arabia
| | | | - Esraa Ahmed Saber
- Soil and Water Department Faculty of Agriculture, Tanta University, Tanta, Egypt
| | - Alaa El-Dein Omara
- Soil Microbiology Research Department, Soil, Water, and Environment Research Institute (SWERI), Agriculture Research Center (ARC), Giza, Egypt
| | - Rehab Mohamed Mahdy
- Horticulture Department, Faculty of Agriculture, Tanta University, Tanta, Egypt
| |
Collapse
|
166
|
Ding H, Li X, Zhuge S, Du J, Wu M, Li W, Li Y, Ma H, Zhang P, Wang X, Lv G, Zhang Z, Qiu F. Genome-Wide Identification and Functional Analysis of the Genes of the ATL Family in Maize during High-Temperature Stress in Maize. Genes (Basel) 2024; 15:1106. [PMID: 39202465 PMCID: PMC11353701 DOI: 10.3390/genes15081106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/18/2024] [Accepted: 08/20/2024] [Indexed: 09/03/2024] Open
Abstract
Maize is a significant food and feed product, and abiotic stress significantly impacts its growth and development. Arabidopsis Toxicosa en Levadura (ATL), a member of the RING-H2 E3 subfamily, modulates various physiological processes and stress responses in Arabidopsis. However, the role of ATL in maize remains unexplored. In this study, we systematically identified the genes encoding ATL in the maize genome. The results showed that the maize ATL family consists of 77 members, all predicted to be located in the cell membrane and cytoplasm, with a highly conserved RING domain. Tissue-specific expression analysis revealed that the expression levels of ATL family genes were significantly different in different tissues. Examination of the abiotic stress data revealed that the expression levels of ATL genes fluctuated significantly under different stress conditions. To further understand the biological functions of maize ATL family genes under high-temperature stress, we studied the high-temperature phenotypes of the maize ZmATL family gene ZmATL10 and its homologous gene AtATL27 in Arabidopsis. The results showed that overexpression of the ZmATL10 and AtATL27 genes enhanced resistance to high-temperature stress.
Collapse
Affiliation(s)
- Haiping Ding
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; (H.D.); (G.L.)
| | - Xiaohu Li
- National Key Laboratory of Wheat Breeding, College of Life Sciences, Shandong Agricultural University, Taian 271018, China; (X.L.); (S.Z.); (J.D.); (M.W.); (W.L.); (Y.L.); (H.M.); (P.Z.); (X.W.)
| | - Shilin Zhuge
- National Key Laboratory of Wheat Breeding, College of Life Sciences, Shandong Agricultural University, Taian 271018, China; (X.L.); (S.Z.); (J.D.); (M.W.); (W.L.); (Y.L.); (H.M.); (P.Z.); (X.W.)
| | - Jiyuan Du
- National Key Laboratory of Wheat Breeding, College of Life Sciences, Shandong Agricultural University, Taian 271018, China; (X.L.); (S.Z.); (J.D.); (M.W.); (W.L.); (Y.L.); (H.M.); (P.Z.); (X.W.)
| | - Min Wu
- National Key Laboratory of Wheat Breeding, College of Life Sciences, Shandong Agricultural University, Taian 271018, China; (X.L.); (S.Z.); (J.D.); (M.W.); (W.L.); (Y.L.); (H.M.); (P.Z.); (X.W.)
| | - Wenlong Li
- National Key Laboratory of Wheat Breeding, College of Life Sciences, Shandong Agricultural University, Taian 271018, China; (X.L.); (S.Z.); (J.D.); (M.W.); (W.L.); (Y.L.); (H.M.); (P.Z.); (X.W.)
| | - Yujing Li
- National Key Laboratory of Wheat Breeding, College of Life Sciences, Shandong Agricultural University, Taian 271018, China; (X.L.); (S.Z.); (J.D.); (M.W.); (W.L.); (Y.L.); (H.M.); (P.Z.); (X.W.)
| | - Haoran Ma
- National Key Laboratory of Wheat Breeding, College of Life Sciences, Shandong Agricultural University, Taian 271018, China; (X.L.); (S.Z.); (J.D.); (M.W.); (W.L.); (Y.L.); (H.M.); (P.Z.); (X.W.)
| | - Peng Zhang
- National Key Laboratory of Wheat Breeding, College of Life Sciences, Shandong Agricultural University, Taian 271018, China; (X.L.); (S.Z.); (J.D.); (M.W.); (W.L.); (Y.L.); (H.M.); (P.Z.); (X.W.)
| | - Xingyu Wang
- National Key Laboratory of Wheat Breeding, College of Life Sciences, Shandong Agricultural University, Taian 271018, China; (X.L.); (S.Z.); (J.D.); (M.W.); (W.L.); (Y.L.); (H.M.); (P.Z.); (X.W.)
| | - Guihua Lv
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; (H.D.); (G.L.)
- Zhejiang Academy of Agricultural Sciences, Institute of Maize and Featured Upland Crops, Hangzhou 310015, China
| | - Zhiming Zhang
- National Key Laboratory of Wheat Breeding, College of Life Sciences, Shandong Agricultural University, Taian 271018, China; (X.L.); (S.Z.); (J.D.); (M.W.); (W.L.); (Y.L.); (H.M.); (P.Z.); (X.W.)
| | - Fazhan Qiu
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; (H.D.); (G.L.)
| |
Collapse
|
167
|
Chen C, Yu W, Xu X, Wang Y, Wang B, Xu S, Lan Q, Wang Y. Research Advancements in Salt Tolerance of Cucurbitaceae: From Salt Response to Molecular Mechanisms. Int J Mol Sci 2024; 25:9051. [PMID: 39201741 PMCID: PMC11354715 DOI: 10.3390/ijms25169051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/02/2024] [Accepted: 08/19/2024] [Indexed: 09/03/2024] Open
Abstract
Soil salinization severely limits the quality and productivity of economic crops, threatening global food security. Recent advancements have improved our understanding of how plants perceive, signal, and respond to salt stress. The discovery of the Salt Overly Sensitive (SOS) pathway has been crucial in revealing the molecular mechanisms behind plant salinity tolerance. Additionally, extensive research into various plant hormones, transcription factors, and signaling molecules has greatly enhanced our knowledge of plants' salinity tolerance mechanisms. Cucurbitaceae plants, cherished for their economic value as fruits and vegetables, display sensitivity to salt stress. Despite garnering some attention, research on the salinity tolerance of these plants remains somewhat scattered and disorganized. Consequently, this article offers a review centered on three aspects: the salt response of Cucurbitaceae under stress; physiological and biochemical responses to salt stress; and the current research status of their molecular mechanisms in economically significant crops, like cucumbers, watermelons, melon, and loofahs. Additionally, some measures to improve the salt tolerance of Cucurbitaceae crops are summarized. It aims to provide insights for the in-depth exploration of Cucurbitaceae's salt response mechanisms, uncovering the roles of salt-resistant genes and fostering the cultivation of novel varieties through molecular biology in the future.
Collapse
Affiliation(s)
- Cuiyun Chen
- Institute of Germplasm Resources and Biotechnology, Tianjin Academy of Agricultural Sciences, Tianjin 300192, China; (C.C.); (W.Y.); (X.X.); (Y.W.); (B.W.); (S.X.)
- College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Wancong Yu
- Institute of Germplasm Resources and Biotechnology, Tianjin Academy of Agricultural Sciences, Tianjin 300192, China; (C.C.); (W.Y.); (X.X.); (Y.W.); (B.W.); (S.X.)
- State Key Laboratory of Vegetable Biobreeding, Tianjin Academy of Agricultural Sciences, Tianjin 300192, China
| | - Xinrui Xu
- Institute of Germplasm Resources and Biotechnology, Tianjin Academy of Agricultural Sciences, Tianjin 300192, China; (C.C.); (W.Y.); (X.X.); (Y.W.); (B.W.); (S.X.)
- College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yiheng Wang
- Institute of Germplasm Resources and Biotechnology, Tianjin Academy of Agricultural Sciences, Tianjin 300192, China; (C.C.); (W.Y.); (X.X.); (Y.W.); (B.W.); (S.X.)
- State Key Laboratory of Vegetable Biobreeding, Tianjin Academy of Agricultural Sciences, Tianjin 300192, China
| | - Bo Wang
- Institute of Germplasm Resources and Biotechnology, Tianjin Academy of Agricultural Sciences, Tianjin 300192, China; (C.C.); (W.Y.); (X.X.); (Y.W.); (B.W.); (S.X.)
- State Key Laboratory of Vegetable Biobreeding, Tianjin Academy of Agricultural Sciences, Tianjin 300192, China
| | - Shiyong Xu
- Institute of Germplasm Resources and Biotechnology, Tianjin Academy of Agricultural Sciences, Tianjin 300192, China; (C.C.); (W.Y.); (X.X.); (Y.W.); (B.W.); (S.X.)
- State Key Laboratory of Vegetable Biobreeding, Tianjin Academy of Agricultural Sciences, Tianjin 300192, China
| | - Qingkuo Lan
- Institute of Germplasm Resources and Biotechnology, Tianjin Academy of Agricultural Sciences, Tianjin 300192, China; (C.C.); (W.Y.); (X.X.); (Y.W.); (B.W.); (S.X.)
- State Key Laboratory of Vegetable Biobreeding, Tianjin Academy of Agricultural Sciences, Tianjin 300192, China
| | - Yong Wang
- Institute of Germplasm Resources and Biotechnology, Tianjin Academy of Agricultural Sciences, Tianjin 300192, China; (C.C.); (W.Y.); (X.X.); (Y.W.); (B.W.); (S.X.)
- State Key Laboratory of Vegetable Biobreeding, Tianjin Academy of Agricultural Sciences, Tianjin 300192, China
| |
Collapse
|
168
|
Bazihizina N, Papenbrock J, Aronsson H, Ben Hamed K, Elmaz Ö, Dafku Z, Custódio L, Rodrigues MJ, Atzori G, Negacz K. The Sustainable Use of Halophytes in Salt-Affected Land: State-of-the-Art and Next Steps in a Saltier World. PLANTS (BASEL, SWITZERLAND) 2024; 13:2322. [PMID: 39204758 PMCID: PMC11359953 DOI: 10.3390/plants13162322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 08/12/2024] [Accepted: 08/15/2024] [Indexed: 09/04/2024]
Abstract
Salinization is a major cause of soil degradation that affects several million hectares of agricultural land, threatening food security and the sustainability of agricultural systems worldwide. Nevertheless, despite the negative impact of salinity, salt-affected land also provides several important ecosystem services, from providing habitats and nurseries for numerous species to sustainable food production. This opinion paper, written in the framework of the EU COST Action CA22144 SUSTAIN on the sustainable use of salt-affected land, therefore, focuses on the potential of halophytes and saline agriculture to transform and restore key functions of these salt-affected and marginal lands. As the current knowledge on sustainable saline agriculture upscaling is fragmented, we highlight (i) the research gaps in halophyte and salinity research and (ii) the main barriers and potentials of saline agriculture for addressing food security and environmental sustainability in terms of population growth and climate change.
Collapse
Affiliation(s)
- Nadia Bazihizina
- Department of Biology, Università degli Studi di Firenze, Via Micheli 1, 50121 Florence, Italy
| | - Jutta Papenbrock
- Institute of Botany, Leibniz University Hannover, Herrenhäuser str. 2, D-30419 Hannover, Germany;
| | - Henrik Aronsson
- Department of Biological and Environmental Sciences, University of Gothenburg, P.O. Box 461, 405 30 Gothenburg, Sweden;
| | - Karim Ben Hamed
- Laboratoire des Plantes Extrêmophiles, Centre de Biotechnologie de Borj Cedria, BP 901, Hammam Lif 2050, Tunisia;
| | - Özkan Elmaz
- Department of Animal Science, Faculty of Veterinary Medicine, Mehmet Akif Ersoy University, Burdur 15030, Türkiye;
| | - Zenepe Dafku
- Faculty of Economy and Agribusiness, Agricultural University of Tirana, 1029 Tirana, Albania;
| | - Luísa Custódio
- Centre of Marine Sciences (CCMAR/CIMAR LA), Campus of Gambelas, University of Algarve, 8005-139 Faro, Portugal; (L.C.); (M.J.R.)
| | - Maria João Rodrigues
- Centre of Marine Sciences (CCMAR/CIMAR LA), Campus of Gambelas, University of Algarve, 8005-139 Faro, Portugal; (L.C.); (M.J.R.)
| | - Giulia Atzori
- Institute for Sustainable Plant Protection, Consiglio Nazionale delle Ricerche, Via Madonna del Piano, 10, 50019 Sesto Fiorentino, Italy;
| | - Katarzyna Negacz
- Institute for Environmental Studies, Vrije Universiteit Amsterdam, De Boelelaan 1111, 1081 HV Amsterdam, The Netherlands;
| |
Collapse
|
169
|
Li X, Liu H, Li C, Li Y. A systematic review on the morphology structure, propagation characteristics, resistance physiology and exploitation and utilization of Nitraria tangutorum Bobrov. PeerJ 2024; 12:e17830. [PMID: 39161968 PMCID: PMC11332387 DOI: 10.7717/peerj.17830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 07/08/2024] [Indexed: 08/21/2024] Open
Abstract
Nitraria tangutorum Bobrov., belonging to the family Nitrariaceae, is a drought-tolerant and salt-loving plant and has drawn attention for its good economic and ecological value. As one of the main group species and dominant species in China's desert and semi-desert regions, N. tangutorum possesses superior tolerance to drought, high temperature, cold, barren, high salinity and alkalinity and wind and sand. Its root system is well developed, with many branches and a strong germination capacity. Once buried in sandy soil, N. tangutorum can quickly produce a large number of adventitious roots, forming new plants and continuously expanding the shrubs, forming fixed and semi-fixed shrub sand dunes. Sand dune shrubs can trap and fix a large amounts of quicksand, prevent desert expansion and erosion, and play an important role in maintaining regional ecosystem balance and improving ecological environmental quality. In addition, the phytochemical screening studies report that N. tangutorum contains an abundance of various compounds including flavonoids, alkaloids, phenolic acids and polysaccharides. These compounds confer a range of beneficial bioactivities such as antioxidant, anti-inflammatory, anti-tumor, anti-fatigue, liver protection, neuroprotection, cardiovascular protection, lowering blood lipid, regulating blood sugar level and immunoregulation. The fruits of N. tangutorum also contain vitamin C, amino acids, minerals and microelements. It has been traditionally used as a nutritional food source and in folk medicine to treat diseases of the spleen and stomach, abnormal menstruation, indigestion, and hyperlipidemia. N. tangutorum, as a wild plant with medicinal and edible homology, possesses remarkable economic and medicinal values. This detailed, comprehensive review gathers and presents all the information related to the morphological structure, propagation characteristics, resistance physiology and exploitation and utilization of N. tangutorum, providing a theoretical basis for the researchers to conduct future in-depth research on N. tangutorum.
Collapse
Affiliation(s)
- Xiaolan Li
- Gansu Agricultural University, Lanzhou, China
| | | | - Chaoqun Li
- Gansu Agricultural University, Lanzhou, China
| | - Yi Li
- Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
170
|
Lei L, Dong K, Liu S, Li Y, Xu G, Sun H. Genome-wide identification of the WRKY gene family in blueberry ( Vaccinium spp.) and expression analysis under abiotic stress. FRONTIERS IN PLANT SCIENCE 2024; 15:1447749. [PMID: 39211844 PMCID: PMC11358086 DOI: 10.3389/fpls.2024.1447749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024]
Abstract
Introduction The WRKY transcription factor (TF) family is one of the largest TF families in plants and is widely involved in responses to both biotic and abiotic stresses. Methods To clarify the function of the WRKY family in blueberries, this study identified the WRKY genes within the blueberry genome and systematically analyzed gene characteristics, phylogenetic evolution, promoter cis-elements, expression patterns, and subcellular localization of the encoded products. Results In this study, 57 VcWRKY genes were identified, and all encoding products had a complete WRKY heptapeptide structure and zinc-finger motif. The VcWRKY genes were divided into three subgroups (I-III) by phylogenetic analysis. Group II was divided into five subgroups: IIa, IIb, IIc, IId, and IIe. 57 VcWRKY genes were distributed unevenly across 32 chromosomes. The amino acids ranged from 172 to 841, and molecular weights varied from 19.75 to 92.28 kD. Intra-group syntenic analysis identified 12 pairs of duplicate segments. Furthermore, 34 cis-element recognition sites were identified in the promoter regions of VcWRKY genes, primarily comprising phytohormone-responsive and light-responsive elements. Comparative syntenic maps were generated to investigate the evolutionary relationships of VcWRKY genes, revealing the closest homology to dicotyledonous WRKY gene families. VcWRKY genes were predominantly expressed in the fruit flesh and roots of blueberries. Gene expression analysis showed that the responses of VcWRKY genes to stress treatments were more strongly in leaves than in roots. Notably, VcWRKY13 and VcWRKY25 exhibited significant upregulation under salt stress, alkali stress, and saline-alkali stress, and VcWRKY1 and VcWRKY13 showed notable induction under drought stress. Subcellular localization analysis confirmed that VcWRKY13 and VcWRKY25 function within the nucleus. Conclusion These findings establish a foundation for further investigation into the functions and regulatory mechanisms of VcWRKY genes and provide guidance for selecting stress-tolerant genes in the development of blueberry cultivars.
Collapse
Affiliation(s)
- Lei Lei
- College of Horticulture, Jilin Agricultural University, Changchun, China
- College of Life Sciences, Jilin Agricultural University, Changchun, China
| | - Kun Dong
- Department of Horticulture, Heilongjiang Academy of Agricultural Science, Harbin, China
| | - Siwen Liu
- College of Horticulture, Jilin Agricultural University, Changchun, China
| | - Yadong Li
- College of Horticulture, Jilin Agricultural University, Changchun, China
| | - Guohui Xu
- College of Life and Health, Dalian University, Dalian, China
| | - Haiyue Sun
- College of Horticulture, Jilin Agricultural University, Changchun, China
| |
Collapse
|
171
|
Zhou X, Wang M, Yang L, Wang W, Zhang Y, Liu L, Chai J, Liu H, Zhao G. Comparative Physiological and Transcriptomic Analyses of Oat ( Avena sativa) Seedlings under Salt Stress Reveal Salt Tolerance Mechanisms. PLANTS (BASEL, SWITZERLAND) 2024; 13:2238. [PMID: 39204673 PMCID: PMC11359270 DOI: 10.3390/plants13162238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/02/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024]
Abstract
Soil salinity is a major abiotic stress limiting crop production globally. Oat (Avena sativa) is an annual cereal with a strong salt tolerance, a high yield, and nutritional quality, although the mechanisms underlying its salt stress response remain largely unknown. We examined the physiological and transcriptomic responses of A. sativa seedlings to salt stress in tolerant cultivar Qingyongjiu 195 and sensitive cultivar 709. Under salt stress, Qingyongjiu 195 maintained a higher photosynthetic efficiency, antioxidant enzymes activity, and leaf K+ accumulation but a lower Na+ uptake than 709. RNA-seq revealed 6616 differentially expressed genes (DEGs), including 4265 up- and 2351 downregulated. These were enriched in pathways like plant-pathogen interaction, phenylpropanoid biosynthesis, and MAPK signaling. We specifically highlight DEGs involved in photosynthesis (chlG, CP47 psbB, COX2, LHCB) and antioxidants (trxA, GroES). Qingyongjiu 195 also appeared to enhance K+ uptake via KAT1 and AKT2 and sequester Na+ in vacuoles via NHX2. Additionally, HKT restricted Na+ while promoting K+ transport to shoots, maintaining K+/Na+. The expression levels of CAX, ACA, CML, CaM, and CDPK in Qingyongjiu 195 were higher than those in 709. Oats regulated Ca2+ concentration through CAX and ACA after salt stress, decoded Ca2+ signals through CML, and then transferred Ca2+ signals to downstream receptors through the Ca2+ sensors CaM and CDPK, thereby activating K+/Na+ transporters, such as SOS1 and NHX, etc. Our results shed light on plant salt stress response mechanisms and provide transcriptomic resources for molecular breeding in improving salt tolerance in oats.
Collapse
Affiliation(s)
- Xiangrui Zhou
- Gansu Provincial Key Laboratory of Aridland Crop Science, Lanzhou 730070, China;
- Key Laboratory of Forage Gerplasm Innovation and Variety Breeding of the Ministry of Agriculture and Rural Affairs, Key Laboratory of Grassland Ecosystem of the Ministry of Education, College of Grassland Science, Gansu Agricultural University, Lanzhou 730070, China; (M.W.); (L.Y.); (W.W.); (L.L.); (J.C.); (H.L.)
| | - Miaomiao Wang
- Key Laboratory of Forage Gerplasm Innovation and Variety Breeding of the Ministry of Agriculture and Rural Affairs, Key Laboratory of Grassland Ecosystem of the Ministry of Education, College of Grassland Science, Gansu Agricultural University, Lanzhou 730070, China; (M.W.); (L.Y.); (W.W.); (L.L.); (J.C.); (H.L.)
| | - Li Yang
- Key Laboratory of Forage Gerplasm Innovation and Variety Breeding of the Ministry of Agriculture and Rural Affairs, Key Laboratory of Grassland Ecosystem of the Ministry of Education, College of Grassland Science, Gansu Agricultural University, Lanzhou 730070, China; (M.W.); (L.Y.); (W.W.); (L.L.); (J.C.); (H.L.)
| | - Wenping Wang
- Key Laboratory of Forage Gerplasm Innovation and Variety Breeding of the Ministry of Agriculture and Rural Affairs, Key Laboratory of Grassland Ecosystem of the Ministry of Education, College of Grassland Science, Gansu Agricultural University, Lanzhou 730070, China; (M.W.); (L.Y.); (W.W.); (L.L.); (J.C.); (H.L.)
| | - Yuehua Zhang
- National Center of Pratacultural Technology Innovation (Under Preparation), Huhhot 010000, China;
| | - Linbo Liu
- Key Laboratory of Forage Gerplasm Innovation and Variety Breeding of the Ministry of Agriculture and Rural Affairs, Key Laboratory of Grassland Ecosystem of the Ministry of Education, College of Grassland Science, Gansu Agricultural University, Lanzhou 730070, China; (M.W.); (L.Y.); (W.W.); (L.L.); (J.C.); (H.L.)
| | - Jikuan Chai
- Key Laboratory of Forage Gerplasm Innovation and Variety Breeding of the Ministry of Agriculture and Rural Affairs, Key Laboratory of Grassland Ecosystem of the Ministry of Education, College of Grassland Science, Gansu Agricultural University, Lanzhou 730070, China; (M.W.); (L.Y.); (W.W.); (L.L.); (J.C.); (H.L.)
| | - Huan Liu
- Key Laboratory of Forage Gerplasm Innovation and Variety Breeding of the Ministry of Agriculture and Rural Affairs, Key Laboratory of Grassland Ecosystem of the Ministry of Education, College of Grassland Science, Gansu Agricultural University, Lanzhou 730070, China; (M.W.); (L.Y.); (W.W.); (L.L.); (J.C.); (H.L.)
| | - Guiqin Zhao
- Key Laboratory of Forage Gerplasm Innovation and Variety Breeding of the Ministry of Agriculture and Rural Affairs, Key Laboratory of Grassland Ecosystem of the Ministry of Education, College of Grassland Science, Gansu Agricultural University, Lanzhou 730070, China; (M.W.); (L.Y.); (W.W.); (L.L.); (J.C.); (H.L.)
| |
Collapse
|
172
|
Li Z, Huang Y, Shen Z, Wu M, Huang M, Hong SB, Xu L, Zang Y. Advances in functional studies of plant MYC transcription factors. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:195. [PMID: 39103657 DOI: 10.1007/s00122-024-04697-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 07/17/2024] [Indexed: 08/07/2024]
Abstract
Myelocytomatosis (MYC) transcription factors (TFs) belong to the basic helix-loop-helix (bHLH) family in plants and play a central role in governing a wide range of physiological processes. These processes encompass plant growth, development, adaptation to biotic and abiotic stresses, as well as secondary metabolism. In recent decades, significant strides have been made in comprehending the multifaceted regulatory functions of MYCs. This advancement has been achieved through the cloning of MYCs and the characterization of plants with MYC deficiencies or overexpression, employing comprehensive genome-wide 'omics' and protein-protein interaction technologies. MYCs act as pivotal components in integrating signals from various phytohormones' transcriptional regulators to orchestrate genome-wide transcriptional reprogramming. In this review, we have compiled current research on the role of MYCs as molecular switches that modulate signal transduction pathways mediated by phytohormones and phytochromes. This comprehensive overview allows us to address lingering questions regarding the interplay of signals in response to environmental cues and developmental shift. It also sheds light on the potential implications for enhancing plant resistance to diverse biotic and abiotic stresses through genetic improvements achieved by plant breeding and synthetic biology efforts.
Collapse
Affiliation(s)
- Zewei Li
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China
| | - Yunshuai Huang
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China
| | - Zhiwei Shen
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China
| | - Meifang Wu
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China
| | - Mujun Huang
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China
| | - Seung-Beom Hong
- Department of Biotechnology, University of Houston Clear Lake, Houston, TX, 77058-1098, USA
| | - Liai Xu
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China.
| | - Yunxiang Zang
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China.
| |
Collapse
|
173
|
Yin C, Sun J, Cui C, Yang K, Shi L, Li Y. Chaotropic Ions Mediated Polymer Gelation for Thermal Management. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2405077. [PMID: 38959393 PMCID: PMC11348148 DOI: 10.1002/advs.202405077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/14/2024] [Indexed: 07/05/2024]
Abstract
Energy and environmental issues have increasingly garnered significant attention for sustainable development. Flexible and shape-stable phase change materials display great potential in regulation of environmental temperature for energy saving and human comfort. Here, inspired by the water absorption behavior of salt-tolerant animals and plants in salinity environment and the Hofmeister theory, highly stable phase change salogels (PCSGs) are fabricated through in situ polymerization of hydrophilic monomers in molten salt hydrates, which can serve multiple functions including thermal management patches, smart windows, and ice blocking coatings. The gelation principles of the polymer in high ion concentration solution are explored through the density functional theory simulation and verified the feasibility of four types of salt hydrates. The high concentration chaotropic ions strongly interacted with polymer chains and promoted the gelation at low polymer concentrations which derive highly-stable and ultra-moisturizing PCSGs with high latent heat (> 200 J g-1). The synergistic adhesion and transparency switching abilities accompanied with phase transition enable their smart thermal management. The study resolves the melting leakage and thermal cycling stability of salt hydrates, and open an avenue to fabricate flexible PCM of low cost, high latent heat, and long-term durability for energy-saving, ice-blocking, and thermal management.
Collapse
Affiliation(s)
- Chenxiao Yin
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065China
| | - Jingrui Sun
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065China
| | - Chang Cui
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065China
| | - Ke‐Ke Yang
- The Collaborative Innovation Center for Eco‐Friendly and Fire‐Safety Polymeric Materials (MoE)National Engineering Laboratory of Eco‐Friendly Polymeric Materials (Sichuan)State Key Laboratory of Polymer Materials EngineeringCollege of ChemistrySichuan UniversityChengdu610064China
| | - Ling‐Ying Shi
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065China
| | - Yiwen Li
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065China
| |
Collapse
|
174
|
Long J, Liu D, Qiao W, Wang Y, Miao Y, Baosai H. Response of Elymus nutans Griseb. seedling physiology and endogenous hormones to drought and salt stress. Sci Rep 2024; 14:17810. [PMID: 39090163 PMCID: PMC11294584 DOI: 10.1038/s41598-024-68894-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 07/29/2024] [Indexed: 08/04/2024] Open
Abstract
Elymus nutans Griseb. (E. nutans), a pioneer plant for the restoration of high quality pasture and vegetation, is widely used to establish artificial grasslands and ecologically restore arid and salinized soils. To investigate the effects of drought stress and salt stress on the physiology and endogenous hormones of E. nutans seedlings, this experiment configured the same environmental water potential (0 (CK), - 0.04, - 0.14, - 0.29, - 0.49, - 0.73, and - 1.02 MPa) of PEG-6000 and NaCl stress to investigate the effects of drought stress and salt stress, respectively, on E. nutans seedlings under the same environmental water potential. The results showed that although the physiological indices and endogenous hormones of the E. nutans seedlings responded differently to drought stress and salt stress under the same environmental water potential, the physiological indices of E. nutans shoots and roots were comprehensively evaluated using the genus function method, and the physiological indices of the E. nutans seedlings under the same environmental water potential exhibited better salt tolerance than drought tolerance. The changes in endogenous hormones of the E. nutans seedlings under drought stress were analyzed to find that treatment with gibberellic acid (GA3), gibberellin A7 (GA7), 6-benzyladenine (6-BA), 6-(y,y-dimethylallylaminopurine) (2.IP), trans-zeatin (TZ), kinetin (KT), dihydrozeatin (DHZ), indole acetic acid (IAA), and 2,6-dichloroisonicotininc acid (INA) was more effective than those under drought stress. By analyzing the amplitude of changes in the endogenous hormones in E. nutans seedlings, the amplitude of changes in the contents of GA3, GA7, 6-BA, 2.IP, TZ, KT, DHZ, IAA, isopentenyl adenosine (IPA), indole-3-butyric acid (IBA), naphthalene acetic acid (NAA), and abscisic acid was larger in drought stress compared with salt stress, which could be because the endogenous hormones are important for the drought tolerance of E. nutans itself. The amplitude of the changes in the contents of DHZ, TZR, salicylic acid, and jasmonic acid was larger in salt stress compared with drought stress. Changes in the content of melatonin were larger in salt stress compared with drought stress, which could indicate that endogenous hormones and substances are important for the salt tolerance of E. nutans itself.
Collapse
Affiliation(s)
- Jianting Long
- Xizang Agricultural and Animal Husbandry University, Tibet, Linzhi, 860000, China
| | - Dandan Liu
- Xizang Agricultural and Animal Husbandry University, Tibet, Linzhi, 860000, China
| | - Wei Qiao
- Xizang Agricultural and Animal Husbandry University, Tibet, Linzhi, 860000, China
| | - Yanwei Wang
- Xizang Agricultural and Animal Husbandry University, Tibet, Linzhi, 860000, China
| | - Yanjun Miao
- Xizang Agricultural and Animal Husbandry University, Tibet, Linzhi, 860000, China.
| | - Henna Baosai
- Xizang Agricultural and Animal Husbandry University, Tibet, Linzhi, 860000, China.
| |
Collapse
|
175
|
Han K, Zhao Y, Liu J, Tian Y, El-Kassaby YA, Qi Y, Ke M, Sun Y, Li Y. Genome-wide investigation and analysis of NAC transcription factor family in Populus tomentosa and expression analysis under salt stress. PLANT BIOLOGY (STUTTGART, GERMANY) 2024; 26:764-776. [PMID: 38859551 DOI: 10.1111/plb.13657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 04/20/2024] [Indexed: 06/12/2024]
Abstract
The NAC transcription factor family is one of the largest families of TFs in plants, and members of NAC gene family play important roles in plant growth and stress response. Recent release of the haplotype-resolved genome assembly of P. tomentosa provide a platform for NAC protein genome-wide analysis. A total of 270 NAC genes were identified and a comprehensive overview of the PtoNAC gene family is presented, including gene promoter, structure and conserved motif analyses, chromosome localization and collinearity analysis, protein phylogeny, expression pattern, and interaction analysis. The results indicate that protein length, molecular weight, and theoretical isoelectric points of the NAC TF family vary, while gene structure and motif are relatively conserved. Chromosome mapping analysis showed that the P. tomentosa NAC genes are unevenly distributed on 19 chromosomes. The interchromosomal evolutionary results indicate 12 pairs of tandem and 280 segmental duplications. Segmental duplication is possibly related to amplification of P. tomentosa NAC gene family. Expression patterns of 35 PtoNAC genes from P. tomentosa subgroup were analysed under high salinity, and seven NAC genes were induced by this treatment. Promoter and protein interaction network analyses showed that PtoNAC genes are closely associated with growth, development, and abiotic and biotic stress, especially salt stress. These results provide a meaningful reference for follow-up studies of the functional characteristics of NAC genes in the mechanism of stress response and their potential roles in development of P. tomentosa.
Collapse
Affiliation(s)
- K Han
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, Engineering Technology Research Center of Black Locust of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Y Zhao
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, Engineering Technology Research Center of Black Locust of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - J Liu
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, Engineering Technology Research Center of Black Locust of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Y Tian
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, Engineering Technology Research Center of Black Locust of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Y A El-Kassaby
- Department of Forest and Conservation Sciences Faculty of Forestry, The University of British Columbia, Vancouver, BC, Canada
| | - Y Qi
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, Engineering Technology Research Center of Black Locust of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - M Ke
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, Engineering Technology Research Center of Black Locust of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Y Sun
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, Engineering Technology Research Center of Black Locust of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Y Li
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, Engineering Technology Research Center of Black Locust of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| |
Collapse
|
176
|
Wang X, Wang Y, Jiang Y, Wang H, Zhou L, Li F, Wang L, Jiang J, Chen F, Chen S. Transcription factor CmHSFA4-CmMYBS3 complex enhances salt tolerance in chrysanthemum by repressing CmMYB121 expression. PLANT PHYSIOLOGY 2024; 195:3119-3135. [PMID: 38668629 DOI: 10.1093/plphys/kiae238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 03/06/2024] [Indexed: 08/02/2024]
Abstract
Excessive soil salinity not only hampers plant growth and development but can also lead to plant death. Previously, we found that heat-shock factor A4 (CmHSFA4) enhances the tolerance of chrysanthemum (Chrysanthemum morifolium) to salt. However, the underlying molecular mechanism remains unclear. In this study, we identified a candidate MYB transcription factor, CmMYB121, which responded to salt stress. We observed that the CmMYB121 transcription is suppressed by CmHSFA4. Moreover, overexpression of CmMYB121 exacerbated chrysanthemum sensitivity to salt stress. CmHSFA4 directly bound to the promoter of CmMYB121 at the heat-shock element. Protein-protein interaction assays identified an interaction between CmHSFA4 and CmMYBS3, a transcriptional repressor, and recruited the corepressor TOPLESS (CmTPL) to inhibit CmMYB121 transcription by impairing the H3 and H4 histone acetylation levels of CmMYB121. Our study demonstrated that a CmHSFA4-CmMYBS3-CmTPL complex modulates CmMYB121 expression, consequently regulating the tolerance of chrysanthemum to salt. The findings shed light on the responses of plants to salt stress.
Collapse
Affiliation(s)
- Xinhui Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement/Key Laboratory of Flower Biology and Germplasm Innovation, Ministry of Agriculture and Rural Affairs/Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration/College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Zhongshan Biological Breeding Laboratory, Nanjing, Jiangsu 210014, China
| | - Yue Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement/Key Laboratory of Flower Biology and Germplasm Innovation, Ministry of Agriculture and Rural Affairs/Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration/College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Zhongshan Biological Breeding Laboratory, Nanjing, Jiangsu 210014, China
| | - Yuhan Jiang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement/Key Laboratory of Flower Biology and Germplasm Innovation, Ministry of Agriculture and Rural Affairs/Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration/College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Zhongshan Biological Breeding Laboratory, Nanjing, Jiangsu 210014, China
| | - Han Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement/Key Laboratory of Flower Biology and Germplasm Innovation, Ministry of Agriculture and Rural Affairs/Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration/College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Zhongshan Biological Breeding Laboratory, Nanjing, Jiangsu 210014, China
| | - Lijie Zhou
- State Key Laboratory of Crop Genetics and Germplasm Enhancement/Key Laboratory of Flower Biology and Germplasm Innovation, Ministry of Agriculture and Rural Affairs/Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration/College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Zhongshan Biological Breeding Laboratory, Nanjing, Jiangsu 210014, China
| | - Fei Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement/Key Laboratory of Flower Biology and Germplasm Innovation, Ministry of Agriculture and Rural Affairs/Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration/College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Zhongshan Biological Breeding Laboratory, Nanjing, Jiangsu 210014, China
| | - Likai Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement/Key Laboratory of Flower Biology and Germplasm Innovation, Ministry of Agriculture and Rural Affairs/Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration/College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Zhongshan Biological Breeding Laboratory, Nanjing, Jiangsu 210014, China
| | - Jiafu Jiang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement/Key Laboratory of Flower Biology and Germplasm Innovation, Ministry of Agriculture and Rural Affairs/Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration/College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Zhongshan Biological Breeding Laboratory, Nanjing, Jiangsu 210014, China
| | - Fadi Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement/Key Laboratory of Flower Biology and Germplasm Innovation, Ministry of Agriculture and Rural Affairs/Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration/College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Zhongshan Biological Breeding Laboratory, Nanjing, Jiangsu 210014, China
| | - Sumei Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement/Key Laboratory of Flower Biology and Germplasm Innovation, Ministry of Agriculture and Rural Affairs/Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration/College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Zhongshan Biological Breeding Laboratory, Nanjing, Jiangsu 210014, China
| |
Collapse
|
177
|
Lorenzo CD. Taking stress with much more than a pinch of salt: osGRF7 regulates salinity resistance in rice through arbutin biosynthesis. THE PLANT CELL 2024; 36:2753-2754. [PMID: 38700166 PMCID: PMC11289624 DOI: 10.1093/plcell/koae139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 04/23/2024] [Accepted: 04/23/2024] [Indexed: 05/05/2024]
Affiliation(s)
- Christian Damian Lorenzo
- Assistant Features Editor, The Plant Cell, American Society of Plant Biologists
- Center for Plant Systems Biology, VIB, B-9052 Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium
| |
Collapse
|
178
|
Liang S, Zang Y, Wang H, Xue S, Xin J, Li X, Tang X, Chen J. Combined transcriptomics and metabolomics analysis reveals salinity stress specific signaling and tolerance responses in the seagrass Zostera japonica. PLANT CELL REPORTS 2024; 43:203. [PMID: 39080075 DOI: 10.1007/s00299-024-03292-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 07/18/2024] [Indexed: 08/17/2024]
Abstract
KEY MESSAGE Multiple regulatory pathways of Zostera japonica to salt stress were identified through growth, physiological, transcriptomic and metabolomic analyses. Seagrasses are marine higher submerged plants that evolved from terrestrial monocotyledons and have fully adapted to the high saline seawater environment during the long evolutionary process. As one of the seagrasses growing in the intertidal zone, Zostera japonica not only has the ability to quickly adapt to short-term salt stress but can also survive at salinities ranging from the lower salinity of the Yellow River estuary to the higher salinity of the bay, making it a good natural model for studying the mechanism underlying the adaptation of plants to salt stress. In this work, we screened the growth, physiological, metabolomic, and transcriptomic changes of Z. japonica after a 5-day exposure to different salinities. We found that high salinity treatment impeded the growth of Z. japonica, hindered its photosynthesis, and elicited oxidative damage, while Z. japonica increased antioxidant enzyme activity. At the transcriptomic level, hypersaline stress greatly reduced the expression levels of photosynthesis-related genes while increasing the expression of genes associated with flavonoid biosynthesis. Meanwhile, the expression of candidate genes involved in ion transport and cell wall remodeling was dramatically changed under hypersaline stress. Moreover, transcription factors signaling pathways such as mitogen-activated protein kinase (MAPK) were also significantly influenced by salt stress. At the metabolomic level, Z. japonica displayed an accumulation of osmolytes and TCA mediators under hypersaline stress. In conclusion, our results revealed a complex regulatory mechanism in Z. japonica under salt stress, and the findings will provide important guidance for improving salt resistance in crops.
Collapse
Affiliation(s)
- Shuo Liang
- College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong, China
- Department of Agriculture, Forestry and Food Science (DISAFA), Plant Stress Laboratory, Turin University, Grugliasco, Turin, Italy
| | - Yu Zang
- Ministry of Natural Resources, Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Qingdao, Shandong, China
| | - Hongzhen Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong, China
| | - Song Xue
- College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong, China
| | - Jiayi Xin
- College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong, China
| | - Xinqi Li
- College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong, China
| | - Xuexi Tang
- College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong, China.
| | - Jun Chen
- College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong, China.
| |
Collapse
|
179
|
Jiang H, Ma L, Gao P, Zhang Y, Zhang B, Ma G, Qi K, Qi J. Relationships between Wheat Development, Soil Properties, and Rhizosphere Mycobiota. Microorganisms 2024; 12:1516. [PMID: 39203359 PMCID: PMC11356171 DOI: 10.3390/microorganisms12081516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 07/19/2024] [Accepted: 07/22/2024] [Indexed: 09/03/2024] Open
Abstract
Wheat is a vital global food crop, yet it faces challenges in saline-alkali soils where Fusarium crown rot significantly impacts growth. Variations in wheat growth across regions are often attributed to uneven terrain. To explore these disparities, we examined well-growing and poorly growing wheat samples and their rhizosphere soils. Measurements included wheat height, root length, fresh weight, and Fusarium crown rot severity. Well-growing wheat exhibited greater height, root length, and fresh weight, with a lower Fusarium crown rot disease index compared to poorly growing wheat. Analysis of rhizosphere soil revealed higher alkalinity; lower nutrient levels; and elevated Na, K, and Ca levels in poorly growing wheat compared to well-growing wheat. High-throughput sequencing identified a higher proportion of unique operational taxonomic units (OTUs) in poorly growing wheat, suggesting selection for distinct fungal species under stress. FUNGuild analysis indicated a higher prevalence of pathogenic microbial communities in poorly growing wheat rhizosphere soil. This study underscores how uneven terrains in saline-alkali soils affect pH, nutrient dynamics, mineral content, wheat health, and rhizosphere fungal community structure.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Kai Qi
- Shandong Key Laboratory for Green Prevention and Control of Agricultural Pests, Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (H.J.); (L.M.); (P.G.); (Y.Z.); (B.Z.); (G.M.)
| | - Junshan Qi
- Shandong Key Laboratory for Green Prevention and Control of Agricultural Pests, Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (H.J.); (L.M.); (P.G.); (Y.Z.); (B.Z.); (G.M.)
| |
Collapse
|
180
|
Bu Y, Dong X, Zhang R, Shen X, Liu Y, Wang S, Takano T, Liu S. Unraveling the role of urea hydrolysis in salt stress response during seed germination and seedling growth in Arabidopsis thaliana. eLife 2024; 13:e96797. [PMID: 39037769 PMCID: PMC11364434 DOI: 10.7554/elife.96797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 07/19/2024] [Indexed: 07/23/2024] Open
Abstract
Urea is intensively utilized as a nitrogen fertilizer in agriculture, originating either from root uptake or from catabolism of arginine by arginase. Despite its extensive use, the underlying physiological mechanisms of urea, particularly its adverse effects on seed germination and seedling growth under salt stress, remain unclear. In this study, we demonstrate that salt stress induces excessive hydrolysis of arginine-derived urea, leading to an increase in cytoplasmic pH within seed radical cells, which, in turn, triggers salt-induced inhibition of seed germination (SISG) and hampers seedling growth. Our findings challenge the long-held belief that ammonium accumulation and toxicity are the primary causes of SISG, offering a novel perspective on the mechanism underlying these processes. This study provides significant insights into the physiological impact of urea hydrolysis under salt stress, contributing to a better understanding of SISG.
Collapse
Affiliation(s)
- Yuanyuan Bu
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Northeast Forestry University, Ministry of EducationHarbinChina
- College of Life Sciences, Northeast Forestry UniversityHarbinChina
| | - Xingye Dong
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Northeast Forestry University, Ministry of EducationHarbinChina
- College of Life Sciences, Northeast Forestry UniversityHarbinChina
| | - Rongrong Zhang
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Northeast Forestry University, Ministry of EducationHarbinChina
- College of Life Sciences, Northeast Forestry UniversityHarbinChina
| | - Xianglian Shen
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Northeast Forestry University, Ministry of EducationHarbinChina
- College of Life Sciences, Northeast Forestry UniversityHarbinChina
| | - Yan Liu
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Northeast Forestry University, Ministry of EducationHarbinChina
- College of Life Sciences, Northeast Forestry UniversityHarbinChina
| | - Shu Wang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F UniversityHangzhouChina
| | - Tetsuo Takano
- Asian Natural Environmental Science Center (ASNESC), University of TokyoTokyoJapan
| | - Shenkui Liu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F UniversityHangzhouChina
| |
Collapse
|
181
|
Qu M, Huang X, Shabala L, Fuglsang AT, Yu M, Shabala S. Understanding Ameliorating Effects of Boron on Adaptation to Salt Stress in Arabidopsis. PLANTS (BASEL, SWITZERLAND) 2024; 13:1960. [PMID: 39065487 PMCID: PMC11280838 DOI: 10.3390/plants13141960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/08/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024]
Abstract
When faced with salinity stress, plants typically exhibit a slowdown in their growth patterns. Boron (B) is an essential micronutrient for plants that are known to play a critical role in controlling cell wall properties. In this study, we used the model plant Arabidopsis thaliana Col-0 and relevant mutants to explore how the difference in B availability may modulate plant responses to salt stress. There was a visible root growth suppression of Col-0 with the increased salt levels in the absence of B while this growth reduction was remarkably alleviated by B supply. Pharmacological experiments revealed that orthovanadate (a known blocker of H+-ATPase) inhibited root growth at no B condition, but had no effect in the presence of 30 μM B. Salinity stress resulted in a massive K+ loss from mature zones of A. thaliana roots; this efflux was attenuated in the presence of B. Supplemental B also increased the magnitude of net H+ pumping by plant roots. Boron availability was also essential for root halotropism. Interestingly, the aha2Δ57 mutant with active H+-ATPase protein exhibited the same halotropism response as Col-0 while the aha2-4 mutant had a stronger halotropism response (larger bending angle) compared with that of Col-0. Overall, the ameliorative effect of B on the A. thaliana growth under salt stress is based on the H+-ATPase stimulation and a subsequent K+ retention, involving auxin- and ROS-pathways.
Collapse
Affiliation(s)
- Mei Qu
- International Research Center for Environmental Membrane Biology, Foshan University, Foshan 528000, China; (M.Q.); (X.H.); (L.S.)
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart 7005, Australia
- Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Copenhagen, Denmark;
| | - Xin Huang
- International Research Center for Environmental Membrane Biology, Foshan University, Foshan 528000, China; (M.Q.); (X.H.); (L.S.)
| | - Lana Shabala
- International Research Center for Environmental Membrane Biology, Foshan University, Foshan 528000, China; (M.Q.); (X.H.); (L.S.)
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart 7005, Australia
- School of Biological Sciences, University of Western Australia, Perth 6009, Australia
| | - Anja Thoe Fuglsang
- Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Copenhagen, Denmark;
| | - Min Yu
- International Research Center for Environmental Membrane Biology, Foshan University, Foshan 528000, China; (M.Q.); (X.H.); (L.S.)
| | - Sergey Shabala
- International Research Center for Environmental Membrane Biology, Foshan University, Foshan 528000, China; (M.Q.); (X.H.); (L.S.)
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart 7005, Australia
- School of Biological Sciences, University of Western Australia, Perth 6009, Australia
| |
Collapse
|
182
|
Vilarrasa-Blasi J, Vellosillo T, Jinkerson RE, Fauser F, Xiang T, Minkoff BB, Wang L, Kniazev K, Guzman M, Osaki J, Barrett-Wilt GA, Sussman MR, Jonikas MC, Dinneny JR. Multi-omics analysis of green lineage osmotic stress pathways unveils crucial roles of different cellular compartments. Nat Commun 2024; 15:5988. [PMID: 39013881 PMCID: PMC11252407 DOI: 10.1038/s41467-024-49844-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 06/21/2024] [Indexed: 07/18/2024] Open
Abstract
Maintenance of water homeostasis is a fundamental cellular process required by all living organisms. Here, we use the single-celled green alga Chlamydomonas reinhardtii to establish a foundational understanding of osmotic-stress signaling pathways through transcriptomics, phosphoproteomics, and functional genomics approaches. Comparison of pathways identified through these analyses with yeast and Arabidopsis allows us to infer their evolutionary conservation and divergence across these lineages. 76 genes, acting across diverse cellular compartments, were found to be important for osmotic-stress tolerance in Chlamydomonas through their functions in cytoskeletal organization, potassium transport, vesicle trafficking, mitogen-activated protein kinase and chloroplast signaling. We show that homologs for five of these genes have conserved functions in stress tolerance in Arabidopsis and reveal a novel PROFILIN-dependent stage of acclimation affecting the actin cytoskeleton that ensures tissue integrity upon osmotic stress. This study highlights the conservation of the stress response in algae and land plants, and establishes Chlamydomonas as a unicellular plant model system to dissect the osmotic stress signaling pathway.
Collapse
Affiliation(s)
- Josep Vilarrasa-Blasi
- Department of Biology, Stanford University, Stanford, CA, 94305, USA.
- Carnegie Institution for Science, Department of Plant Biology, Stanford, CA, 94305, USA.
| | - Tamara Vellosillo
- Department of Biology, Stanford University, Stanford, CA, 94305, USA
- Carnegie Institution for Science, Department of Plant Biology, Stanford, CA, 94305, USA
| | - Robert E Jinkerson
- Carnegie Institution for Science, Department of Plant Biology, Stanford, CA, 94305, USA
- Department of Chemical and Environmental Engineering, University of California Riverside, Riverside, CA, 92521, USA
| | - Friedrich Fauser
- Carnegie Institution for Science, Department of Plant Biology, Stanford, CA, 94305, USA
- Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, USA
| | - Tingting Xiang
- Carnegie Institution for Science, Department of Plant Biology, Stanford, CA, 94305, USA
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, 28223, USA
| | - Benjamin B Minkoff
- Department of Biochemistry and Center for Genomics Science Innovation, University of Wisconsin, Madison, WI, 53706, USA
| | - Lianyong Wang
- Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, USA
| | - Kiril Kniazev
- Department of Biology, Stanford University, Stanford, CA, 94305, USA
| | - Michael Guzman
- Carnegie Institution for Science, Department of Plant Biology, Stanford, CA, 94305, USA
| | - Jacqueline Osaki
- Carnegie Institution for Science, Department of Plant Biology, Stanford, CA, 94305, USA
| | | | - Michael R Sussman
- Department of Biochemistry and Center for Genomics Science Innovation, University of Wisconsin, Madison, WI, 53706, USA
| | - Martin C Jonikas
- Carnegie Institution for Science, Department of Plant Biology, Stanford, CA, 94305, USA
- Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, USA
| | - José R Dinneny
- Department of Biology, Stanford University, Stanford, CA, 94305, USA.
- Carnegie Institution for Science, Department of Plant Biology, Stanford, CA, 94305, USA.
| |
Collapse
|
183
|
Acharya BR, Gill SP, Kaundal A, Sandhu D. Strategies for combating plant salinity stress: the potential of plant growth-promoting microorganisms. FRONTIERS IN PLANT SCIENCE 2024; 15:1406913. [PMID: 39077513 PMCID: PMC11284086 DOI: 10.3389/fpls.2024.1406913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 06/24/2024] [Indexed: 07/31/2024]
Abstract
Global climate change and the decreasing availability of high-quality water lead to an increase in the salinization of agricultural lands. This rising salinity represents a significant abiotic stressor that detrimentally influences plant physiology and gene expression. Consequently, critical processes such as seed germination, growth, development, and yield are adversely affected. Salinity severely impacts crop yields, given that many crop plants are sensitive to salt stress. Plant growth-promoting microorganisms (PGPMs) in the rhizosphere or the rhizoplane of plants are considered the "second genome" of plants as they contribute significantly to improving the plant growth and fitness of plants under normal conditions and when plants are under stress such as salinity. PGPMs are crucial in assisting plants to navigate the harsh conditions imposed by salt stress. By enhancing water and nutrient absorption, which is often hampered by high salinity, these microorganisms significantly improve plant resilience. They bolster the plant's defenses by increasing the production of osmoprotectants and antioxidants, mitigating salt-induced damage. Furthermore, PGPMs supply growth-promoting hormones like auxins and gibberellins and reduce levels of the stress hormone ethylene, fostering healthier plant growth. Importantly, they activate genes responsible for maintaining ion balance, a vital aspect of plant survival in saline environments. This review underscores the multifaceted roles of PGPMs in supporting plant life under salt stress, highlighting their value for agriculture in salt-affected areas and their potential impact on global food security.
Collapse
Affiliation(s)
- Biswa R. Acharya
- US Salinity Laboratory, USDA-ARS, Riverside, CA, United States
- College of Natural and Agricultural Sciences, University of California Riverside, Riverside, CA, United States
| | - Satwinder Pal Gill
- Plants, Soils, and Climate, College of Agricultural and Applied Sciences, Utah State University, Logan, UT, United States
| | - Amita Kaundal
- Plants, Soils, and Climate, College of Agricultural and Applied Sciences, Utah State University, Logan, UT, United States
| | - Devinder Sandhu
- US Salinity Laboratory, USDA-ARS, Riverside, CA, United States
| |
Collapse
|
184
|
McNellie JP, May WE, Rieseberg LH, Hulke BS. Association studies of salinity tolerance in sunflower provide robust breeding and selection strategies under climate change. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:184. [PMID: 39008128 DOI: 10.1007/s00122-024-04672-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 06/08/2024] [Indexed: 07/16/2024]
Abstract
Phytotoxic soil salinity is a global problem, and in the northern Great Plains and western Canada, salt accumulates on the surface of marine sediment soils with high water tables under annual crop cover, particularly near wetlands. Crop production can overcome saline-affected soils using crop species and cultivars with salinity tolerance along with changes in management practices. This research seeks to improve our understanding of sunflower (Helianthus annuus) genetic tolerance to high salinity soils. Genome-wide association was conducted using the Sunflower Association Mapping panel grown for two years in naturally occurring saline soils (2016 and 2017, near Indian Head, Saskatchewan, Canada), and six phenotypes were measured: days to bloom, height, leaf area, leaf mass, oil percentage, and yield. Plot level soil salinity was determined by grid sampling of soil followed by kriging. Three estimates of sunflower performance were calculated: (1) under low soil salinity (< 4 dS/m), (2) under high soil salinity (> 4 dS/m), and (3) plasticity (regression coefficient between phenotype and soil salinity). Fourteen loci were significant, with one instance of co-localization between a leaf area and a leaf mass locus. Some genomic regions identified as significant in this study were also significant in a recent greenhouse salinity experiment using the same panel. Also, some candidate genes underlying significant QTL have been identified in other plant species as having a role in salinity response. This research identifies alleles for cultivar improvement and for genetic studies to further elucidate salinity tolerance pathways.
Collapse
Affiliation(s)
- James P McNellie
- Sunflower and Plant Biology Research Unit, USDA-ARS Edward T Schafer Agricultural Research Center, 1616 Albrecht Blvd. N., Fargo, ND, 58102, USA
| | - William E May
- Indian Head Research Farm, Agriculture and Agri-Food Canada, 1 Government Rd., Indian Head, SK, S0G 2K0, Canada
| | - Loren H Rieseberg
- Department of Botany, University of British Columbia, 3156-6270 University Blvd., Vancouver, BC, V6T 1Z4, Canada
| | - Brent S Hulke
- Sunflower and Plant Biology Research Unit, USDA-ARS Edward T Schafer Agricultural Research Center, 1616 Albrecht Blvd. N., Fargo, ND, 58102, USA.
| |
Collapse
|
185
|
Liu P, Liu H, Zhao J, Yang T, Guo S, Chang L, Xiao T, Xu A, Liu X, Zhu C, Gan L, Chen M. Genome-wide identification and functional analysis of mRNA m 6A writers in soybean under abiotic stress. FRONTIERS IN PLANT SCIENCE 2024; 15:1446591. [PMID: 39055358 PMCID: PMC11269220 DOI: 10.3389/fpls.2024.1446591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 06/25/2024] [Indexed: 07/27/2024]
Abstract
N6-methyladenosine (m6A), a well-characterized RNA modification, is involved in regulating multiple biological processes; however, genome-wide identification and functional characterization of the m6A modification in legume plants, including soybean (Glycine max (L.) Merr.), remains lacking. In this study, we utilized bioinformatics tools to perform comprehensive analyses of molecular writer candidates associated with the RNA m6A modification in soybean, characterizing their conserved domains, motifs, gene structures, promoters, and spatial expression patterns. Thirteen m6A writer complex genes in soybean were identified, which were assigned to four families: MT-A70, WTAP, VIR, and HAKAI. It also can be identified that multiple cis elements in the promoters of these genes, which were classified into five distinct groups, including elements responsive to light, phytohormone regulation, environmental stress, development, and others, suggesting that these genes may modulate various cellular and physiological processes in plants. Importantly, the enzymatic activities of two identified m6A writers, GmMTA1 and GmMTA2, were confirmed in vitro. Furthermore, we analyzed the expression patterns of the GmMTAs and GmMTBs under different abiotic stresses, revealing their potential involvement in stress tolerance, especially in the response to alkalinity or darkness. Overexpressing GmMTA2 and GmMTB1 in soybean altered the tolerance of the plants to alkalinity and long-term darkness, further confirming their effect on the stress response. Collectively, our findings identified the RNA m6A writer candidates in leguminous plants and highlighted the potential roles of GmMTAs and GmMTBs in the response to abiotic stress in soybean.
Collapse
Affiliation(s)
- Peng Liu
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Huijie Liu
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Jie Zhao
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Tengfeng Yang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Sichao Guo
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Luo Chang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Tianyun Xiao
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Anjie Xu
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Xiaoye Liu
- Department of Criminal Science and Technology, Nanjing Police University, Nanjing, China
| | - Changhua Zhu
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Lijun Gan
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Mingjia Chen
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
186
|
Li J, Lardon R, Mangelinckx S, Geelen D. A practical guide to the discovery of biomolecules with biostimulant activity. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:3797-3817. [PMID: 38630561 DOI: 10.1093/jxb/erae156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 04/16/2024] [Indexed: 04/19/2024]
Abstract
The growing demand for sustainable solutions in agriculture, which are critical for crop productivity and food quality in the face of climate change and the need to reduce agrochemical usage, has brought biostimulants into the spotlight as valuable tools for regenerative agriculture. With their diverse biological activities, biostimulants can contribute to crop growth, nutrient use efficiency, and abiotic stress resilience, as well as to the restoration of soil health. Biomolecules include humic substances, protein lysates, phenolics, and carbohydrates have undergone thorough investigation because of their demonstrated biostimulant activities. Here, we review the process of the discovery and development of extract-based biostimulants, and propose a practical step-by-step pipeline that starts with initial identification of biomolecules, followed by extraction and isolation, determination of bioactivity, identification of active compound(s), elucidation of mechanisms, formulation, and assessment of effectiveness. The different steps generate a roadmap that aims to expedite the transfer of interdisciplinary knowledge from laboratory-scale studies to pilot-scale production in practical scenarios that are aligned with the prevailing regulatory frameworks.
Collapse
Affiliation(s)
- Jing Li
- HortiCell, Department Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Robin Lardon
- HortiCell, Department Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Sven Mangelinckx
- SynBioC, Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Danny Geelen
- HortiCell, Department Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| |
Collapse
|
187
|
Khassanova G, Jatayev S, Gabdola A, Kuzbakova M, Zailasheva A, Kylyshbayeva G, Schramm C, Schleyer K, Philp-Dutton L, Sweetman C, Anderson P, Jenkins CLD, Soole KL, Shavrukov Y. Haplotypes of ATP-Binding Cassette CaABCC6 in Chickpea from Kazakhstan Are Associated with Salinity Tolerance and Leaf Necrosis via Oxidative Stress. Biomolecules 2024; 14:823. [PMID: 39062537 PMCID: PMC11275178 DOI: 10.3390/biom14070823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 06/30/2024] [Accepted: 07/03/2024] [Indexed: 07/28/2024] Open
Abstract
Salinity tolerance was studied in chickpea accessions from a germplasm collection and in cultivars from Kazakhstan. After NaCl treatment, significant differences were found between genotypes, which could be arranged into three groups. Those that performed poorest were found in group 1, comprising five ICC accessions with the lowest chlorophyll content, the highest leaf necrosis (LN), Na+ accumulation, malondialdehyde (MDA) content, and a low glutathione ratio GSH/GSSG. Two cultivars, Privo-1 and Tassay, representing group 2, were moderate in these traits, while the best performance was for group 3, containing two other cultivars, Krasnokutsky-123 and Looch, which were found to have mostly green plants and an exact opposite pattern of traits. Marker-trait association (MTA) between 6K DArT markers and four traits (LN, Na+, MDA, and GSH/GSSG) revealed the presence of four possible candidate genes in the chickpea genome that may be associated with the three groups. One gene, ATP-binding cassette, CaABCC6, was selected, and three haplotypes, A, D1, and D2, were identified in plants from the three groups. Two of the most salt-tolerant cultivars from group 3 were found to have haplotype D2 with a novel identified SNP. RT-qPCR analysis confirmed that this gene was strongly expressed after NaCl treatment in the parental- and breeding-line plants of haplotype D2. Mass spectrometry of seed proteins showed a higher accumulation of glutathione reductase and S-transferase, but not peroxidase, in the D2 haplotype. In conclusion, the CaABCC6 gene was hypothesized to be associated with a better response to oxidative stress via glutathione metabolism, while other candidate genes are likely involved in the control of chlorophyll content and Na+ accumulation.
Collapse
Affiliation(s)
- Gulmira Khassanova
- Faculty of Agronomy, S.Seifullin Kazakh Agrotechnical Research University, Astana 010000, Kazakhstan; (S.J.); (A.G.); (M.K.); (A.Z.)
- A.I. Barayev Research and Production Centre of Grain Farming, Shortandy 021601, Kazakhstan
| | - Satyvaldy Jatayev
- Faculty of Agronomy, S.Seifullin Kazakh Agrotechnical Research University, Astana 010000, Kazakhstan; (S.J.); (A.G.); (M.K.); (A.Z.)
| | - Ademi Gabdola
- Faculty of Agronomy, S.Seifullin Kazakh Agrotechnical Research University, Astana 010000, Kazakhstan; (S.J.); (A.G.); (M.K.); (A.Z.)
| | - Marzhan Kuzbakova
- Faculty of Agronomy, S.Seifullin Kazakh Agrotechnical Research University, Astana 010000, Kazakhstan; (S.J.); (A.G.); (M.K.); (A.Z.)
| | - Aray Zailasheva
- Faculty of Agronomy, S.Seifullin Kazakh Agrotechnical Research University, Astana 010000, Kazakhstan; (S.J.); (A.G.); (M.K.); (A.Z.)
| | - Gulnar Kylyshbayeva
- Faculty of Natural Sciences, Central Asian Innovation University, Shymkent 160000, Kazakhstan;
| | - Carly Schramm
- College of Science and Engineering, Biological Sciences, Flinders University, Adelaide, SA 5042, Australia; (C.S.); (K.S.); (L.P.-D.); (C.S.); (P.A.); (C.L.D.J.); (K.L.S.)
| | - Kathryn Schleyer
- College of Science and Engineering, Biological Sciences, Flinders University, Adelaide, SA 5042, Australia; (C.S.); (K.S.); (L.P.-D.); (C.S.); (P.A.); (C.L.D.J.); (K.L.S.)
| | - Lauren Philp-Dutton
- College of Science and Engineering, Biological Sciences, Flinders University, Adelaide, SA 5042, Australia; (C.S.); (K.S.); (L.P.-D.); (C.S.); (P.A.); (C.L.D.J.); (K.L.S.)
| | - Crystal Sweetman
- College of Science and Engineering, Biological Sciences, Flinders University, Adelaide, SA 5042, Australia; (C.S.); (K.S.); (L.P.-D.); (C.S.); (P.A.); (C.L.D.J.); (K.L.S.)
| | - Peter Anderson
- College of Science and Engineering, Biological Sciences, Flinders University, Adelaide, SA 5042, Australia; (C.S.); (K.S.); (L.P.-D.); (C.S.); (P.A.); (C.L.D.J.); (K.L.S.)
| | - Colin L. D. Jenkins
- College of Science and Engineering, Biological Sciences, Flinders University, Adelaide, SA 5042, Australia; (C.S.); (K.S.); (L.P.-D.); (C.S.); (P.A.); (C.L.D.J.); (K.L.S.)
| | - Kathleen L. Soole
- College of Science and Engineering, Biological Sciences, Flinders University, Adelaide, SA 5042, Australia; (C.S.); (K.S.); (L.P.-D.); (C.S.); (P.A.); (C.L.D.J.); (K.L.S.)
| | - Yuri Shavrukov
- College of Science and Engineering, Biological Sciences, Flinders University, Adelaide, SA 5042, Australia; (C.S.); (K.S.); (L.P.-D.); (C.S.); (P.A.); (C.L.D.J.); (K.L.S.)
| |
Collapse
|
188
|
Yan L, Lu M, Riaz M, Gao G, Tong K, Yu H, Wang L, Wang L, Cui K, Wang J, Niu Y. Differential response of proline metabolism defense, Na + absorption and deposition to salt stress in salt-tolerant and salt-sensitive rapeseed (Brassica napus L.) genotypes. PHYSIOLOGIA PLANTARUM 2024; 176:e14460. [PMID: 39091116 DOI: 10.1111/ppl.14460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/15/2024] [Accepted: 07/17/2024] [Indexed: 08/04/2024]
Abstract
Soil salinization is a major abiotic factor threatening rapeseed yields and quality worldwide, yet the adaptive mechanisms underlying salt resistance in rapeseed are not clear. Therefore, this study aimed to explore the differences in growth potential, sodium (Na+) retention in different plant tissues, and transport patterns between salt-tolerant (HY9) and salt-sensitive (XY15) rapeseed genotypes, which cultivated in Hoagland's nutrient solution in either the with or without of 150 mM NaCl stress. The results showed that the inhibition of growth-related parameters of the XY15 genotype was higher than those of the HY9 in response to salt stress. The XY15 had lower photosynthesis, chloroplast disintegration, and pigment content but higher oxidative damage than the HY9. Under NaCl treatment, the proline content in the root of HY9 variety increased by 8.47-fold, surpassing XY15 (5.41-fold). Under salt stress, the HY9 maintained lower Na+ content, while higher K+ content and exhibited a relatively abundant K+/Na+ ratio in root and leaf. HY9 also had lower Na+ absorption, Na+ concentration in xylem sap, and Na+ transfer factor than XY15. Moreover, more Na+ contents were accumulated in the root cell wall of HY9 with higher pectin content and pectin methylesterase (PME) activity than XY15. Collectively, our results showed that salt-tolerant varieties absorbed lower Na+ and retained more Na+ in the root cell wall (carboxyl group in pectin) to avoid leaf salt toxicity and induced higher proline accumulation as a defense and antioxidant system, resulting in higher resistance to salt stress, which provides the theoretical basis for screening salt resistant cultivars.
Collapse
Affiliation(s)
- Lei Yan
- Institute of Biomedical Engineering, College of Life Sciences, Qingdao University, Qingdao, China
| | - Mu Lu
- Institute of Biomedical Engineering, College of Life Sciences, Qingdao University, Qingdao, China
| | - Muhammad Riaz
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Guang Gao
- Institute of Biomedical Engineering, College of Life Sciences, Qingdao University, Qingdao, China
| | - Kaiqing Tong
- Institute of Biomedical Engineering, College of Life Sciences, Qingdao University, Qingdao, China
| | - Hualong Yu
- Institute of Biomedical Engineering, College of Life Sciences, Qingdao University, Qingdao, China
| | - Lu Wang
- Institute of Biomedical Engineering, College of Life Sciences, Qingdao University, Qingdao, China
| | - Lu Wang
- Institute of Biomedical Engineering, College of Life Sciences, Qingdao University, Qingdao, China
| | - Kunpeng Cui
- Institute of Biomedical Engineering, College of Life Sciences, Qingdao University, Qingdao, China
| | - Jiahui Wang
- Institute of Biomedical Engineering, College of Life Sciences, Qingdao University, Qingdao, China
| | - Yusheng Niu
- Institute of Biomedical Engineering, College of Life Sciences, Qingdao University, Qingdao, China
- School of Tourism and Geography Science, Qingdao University, Qingdao, China
| |
Collapse
|
189
|
Huang L, Du X, Jin Z, Ma J, Zuo Z. Accumulation of astaxanthin in Microcystis aeruginosa under NaCl and KCl stresses. BIORESOURCE TECHNOLOGY 2024; 403:130898. [PMID: 38797360 DOI: 10.1016/j.biortech.2024.130898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/17/2024] [Accepted: 05/23/2024] [Indexed: 05/29/2024]
Abstract
Astaxanthin is a high-value natural antioxidant, and can be accumulated in Microcystis aeruginosa. To enhance astaxanthin accumulation in the microalgae by using salt stress, the cell growth, photosynthetic abilities, reactive oxygen species (ROS) levels, astaxanthin and its precursor content, and gene expression were investigated under NaCl and KCl stresses. The two salt stresses inhibited the cell growth by lowering photosynthetic abilities and raising ROS levels. During the 6-day treatment, the two salt stresses improved the levels of astaxanthin, precursors (β-carotene and zeaxanthin) and carotenoids, which might be caused by the raised ROS up-regulating expression of 7 related genes. At the same concentration, KCl stress showed stronger inducing effect on astaxanthin and its precursor production than NaCl stress, due to higher expression of related genes. Therefore, NaCl and KCl stresses have obvious ion differences on astaxanthin accumulation, of which KCl stress is more suitable for the high-value antioxidant production from microalgae.
Collapse
Affiliation(s)
- Lexin Huang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang A&F University, Hangzhou 311300, China
| | - Xianmin Du
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang A&F University, Hangzhou 311300, China
| | - Zhuxin Jin
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang A&F University, Hangzhou 311300, China
| | - Junjie Ma
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang A&F University, Hangzhou 311300, China
| | - Zhaojiang Zuo
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang A&F University, Hangzhou 311300, China.
| |
Collapse
|
190
|
Yang Z, Yang R, Bai W, Chen W, Kong X, Zhou Y, Qiao W, Zhang Y, Sun J. Q negatively regulates wheat salt tolerance through directly repressing the expression of TaSOS1 and reactive oxygen species scavenging genes. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:478-489. [PMID: 38659310 DOI: 10.1111/tpj.16777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/28/2024] [Accepted: 04/10/2024] [Indexed: 04/26/2024]
Abstract
The Q transcription factor plays important roles in improving multiple wheat domestication traits such as spike architecture, threshability and rachis fragility. However, whether and how it regulates abiotic stress adaptation remain unclear. We found that the transcriptional expression of Q can be induced by NaCl and abscisic acid treatments. Using the q mutants generated by CRISPR/Cas9 and Q overexpression transgenic lines, we showed that the domesticated Q gene causes a penalty in wheat salt tolerance. Then, we demonstrated that Q directly represses the transcription of TaSOS1-3B and reactive oxygen species (ROS) scavenging genes to regulate Na+ and ROS homeostasis in wheat. Furthermore, we showed that wheat salt tolerance protein TaWD40 interacts with Q to competitively interfere with the interaction between Q and the transcriptional co-repressor TaTPL. Taken together, our findings reveal that Q directly represses the expression of TaSOS1 and some ROS scavenging genes, thus causing a harmful effect on wheat salt tolerance.
Collapse
Affiliation(s)
- Ziyi Yang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Ruizhen Yang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Wanqing Bai
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Wenxi Chen
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xiuying Kong
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yun Zhou
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, Henan, 475001, China
| | - Weihua Qiao
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yunwei Zhang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jiaqiang Sun
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| |
Collapse
|
191
|
Zhang HY, Wang X, Wang XN, Liu HF, Zhang TT, Wang DR, Liu GD, Liu YQ, Song XH, Zhang Z, You C. Brassinosteroids biosynthetic gene MdBR6OX2 regulates salt stress tolerance in both apple and Arabidopsis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 212:108767. [PMID: 38797009 DOI: 10.1016/j.plaphy.2024.108767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 04/09/2024] [Accepted: 05/21/2024] [Indexed: 05/29/2024]
Abstract
Salt stress is a critical limiting factor for fruit yield and quality of apples. Brassinosteroids (BRs) play an important role in response to abiotic stresses. In the present study, application of 2,4- Epicastasterone on seedlings of Malus 'M9T337' and Malus domestica 'Gala3' alleviated the physiological effects, such as growth inhibition and leaf yellowing, induced by salt stress. Further analysis revealed that treatment with NaCl induced expression of genes involved in BR biosynthesis in 'M9T337' and 'Gala3'. Among which, the expression of BR biosynthetic gene MdBR6OX2 showed a three-fold upregulation upon salt treatment, suggesting its potential role in response to salt stress in apple. MdBR6OX2, belonging to the CYP450 family, contains a signal peptide region and a P450 domain. Expression patterns analysis showed that the expression of MdBR6OX2 can be significantly induced by different abiotic stresses. Overexpressing MdBR6OX2 enhanced the tolerance of apple callis to salt stress, and the contents of endogenous BR-related compounds, such as Typhastero (TY), Castasterone (CS) and Brassinolide (BL) were significantly increased in transgenic calli compared with that of wild-type. Extopic expression of MdBR6OX2 enhanced tolerance to salt stress in Arabidopsis. Genes associated with salt stress were significantly up-regulated, and the contents of BR-related compounds were significantly elevated under salt stress. Our data revealed that BR-biosynthetic gene MdBR6OX2 positively regulates salt stress tolerance in both apple calli and Arabidopsis.
Collapse
Affiliation(s)
- Hai-Yuan Zhang
- Apple Technology Innovation Center of Shandong Province, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, National Key Laboratory of Wheat Improvement, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Xun Wang
- Apple Technology Innovation Center of Shandong Province, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, National Key Laboratory of Wheat Improvement, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Xiao-Na Wang
- Apple Technology Innovation Center of Shandong Province, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, National Key Laboratory of Wheat Improvement, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Hao-Feng Liu
- Apple Technology Innovation Center of Shandong Province, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, National Key Laboratory of Wheat Improvement, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Ting-Ting Zhang
- Apple Technology Innovation Center of Shandong Province, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, National Key Laboratory of Wheat Improvement, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Da-Ru Wang
- Apple Technology Innovation Center of Shandong Province, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, National Key Laboratory of Wheat Improvement, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Guo-Dong Liu
- Apple Technology Innovation Center of Shandong Province, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, National Key Laboratory of Wheat Improvement, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Ya-Qi Liu
- Apple Technology Innovation Center of Shandong Province, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, National Key Laboratory of Wheat Improvement, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Xiao-Hua Song
- Beijing Vocational College of Agriculture, Beijing, 100093, China
| | - Zhenlu Zhang
- Apple Technology Innovation Center of Shandong Province, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, National Key Laboratory of Wheat Improvement, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China.
| | - Chunxiang You
- Apple Technology Innovation Center of Shandong Province, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, National Key Laboratory of Wheat Improvement, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China.
| |
Collapse
|
192
|
Hao X, Gong Y, Chen S, Ma C, Duanmu H. Genome-Wide Identification of GRAS Transcription Factors and Their Functional Analysis in Salt Stress Response in Sugar Beet. Int J Mol Sci 2024; 25:7132. [PMID: 39000240 PMCID: PMC11241673 DOI: 10.3390/ijms25137132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/08/2024] [Accepted: 06/25/2024] [Indexed: 07/16/2024] Open
Abstract
GAI-RGA-and-SCR (GRAS) transcription factors can regulate many biological processes such as plant growth and development and stress defense, but there are few related studies in sugar beet. Salt stress can seriously affect the yield and quality of sugar beet (Beta vulgaris). Therefore, this study used bioinformatics methods to identify GRAS transcription factors in sugar beet and analyzed their structural characteristics, evolutionary relationships, regulatory networks and salt stress response patterns. A total of 28 BvGRAS genes were identified in the whole genome of sugar beet, and the sequence composition was relatively conservative. According to the topology of the phylogenetic tree, BvGRAS can be divided into nine subfamilies: LISCL, SHR, PAT1, SCR, SCL3, LAS, SCL4/7, HAM and DELLA. Synteny analysis showed that there were two pairs of fragment replication genes in the BvGRAS gene, indicating that gene replication was not the main source of BvGRAS family members. Regulatory network analysis showed that BvGRAS could participate in the regulation of protein interaction, material transport, redox balance, ion homeostasis, osmotic substance accumulation and plant morphological structure to affect the tolerance of sugar beet to salt stress. Under salt stress, BvGRAS and its target genes showed an up-regulated expression trend. Among them, BvGRAS-15, BvGRAS-19, BvGRAS-20, BvGRAS-21, LOC104892636 and LOC104893770 may be the key genes for sugar beet's salt stress response. In this study, the structural characteristics and biological functions of BvGRAS transcription factors were analyzed, which provided data for the further study of the molecular mechanisms of salt stress and molecular breeding of sugar beet.
Collapse
Affiliation(s)
- Xiaolin Hao
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin 150080, China; (X.H.); (Y.G.); (C.M.)
- Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region, School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Yongyong Gong
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin 150080, China; (X.H.); (Y.G.); (C.M.)
- Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region, School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Sixue Chen
- Department of Biology, University of Mississippi, Oxford, MS 38677, USA;
| | - Chunquan Ma
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin 150080, China; (X.H.); (Y.G.); (C.M.)
- Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region, School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Huizi Duanmu
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin 150080, China; (X.H.); (Y.G.); (C.M.)
- Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region, School of Life Sciences, Heilongjiang University, Harbin 150080, China
| |
Collapse
|
193
|
Torres E, Kalcsits L, Nieto LG. Is calcium deficiency the real cause of bitter pit? A review. FRONTIERS IN PLANT SCIENCE 2024; 15:1383645. [PMID: 38978516 PMCID: PMC11228315 DOI: 10.3389/fpls.2024.1383645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 05/28/2024] [Indexed: 07/10/2024]
Abstract
Bitter pit is a disorder affecting the appearance of apples. Susceptibility is genetically controlled by both the cultivar and rootstock, with both environmental and horticultural factors affecting its severity and proportional incidence. Symptoms appear more frequently at the calyx end of the fruit and consist of circular necrotic spots, which take on a "corky" appearance visible through the peel. Bitter pit may develop before harvest, or after harvest, reducing the proportions of marketable fruit. In this review, current knowledge of the factors associated with the occurrence of bitter pit in apples is summarized and discussed along with their interactions with Ca uptake and distribution to fruit. This disorder has been previously linked with localized Ca deficiencies in fruit during its development. However, these relationships are not always clear. Even with over a century of research, the precise mechanisms involved in its development are still not fully understood. Additional factors also contribute to bitter pit development, like imbalances of mineral nutrients, low concentration of auxins, high concentration of gibberellins, changes in xylem functionality, or physiological responses to abiotic stress. Bitter pit remains a complex disorder with multiple factors contributing to its development including changes at whole plant and cellular scales. Apple growers must carefully navigate these complex interactions between genetics, environment, and management decisions to minimize bitter pit in susceptible cultivars. Accordingly, management of plant nutrition, fruit crop load, and tree vigor still stands as the most important contribution to reducing bitter pit development. Even so, there will be situations where the occurrence of bitter pit will be inevitable due to cultivar and/or abiotic stress conditions.
Collapse
Affiliation(s)
- Estanis Torres
- Institute of Agrifood Research and Technology (IRTA), Fruitcentre, Parck AgroBiotech, Lleida, Spain
| | - Lee Kalcsits
- Tree Fruit Research and Extension Center, Washington State University, Wenatchee, WA, United States
- Department of Horticulture, Washington State University, Pullman, WA, United States
| | - Luís Gonzalez Nieto
- School of Integrative Plant Sciences, Horticulture Section, New York State Agricultural Experiment Station, Cornell University, Geneva, NY, United States
| |
Collapse
|
194
|
Ma Z, Hu L. WRKY Transcription Factor Responses and Tolerance to Abiotic Stresses in Plants. Int J Mol Sci 2024; 25:6845. [PMID: 38999954 PMCID: PMC11241455 DOI: 10.3390/ijms25136845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 06/16/2024] [Accepted: 06/20/2024] [Indexed: 07/14/2024] Open
Abstract
Plants are subjected to abiotic stresses throughout their developmental period. Abiotic stresses include drought, salt, heat, cold, heavy metals, nutritional elements, and oxidative stresses. Improving plant responses to various environmental stresses is critical for plant survival and perpetuation. WRKY transcription factors have special structures (WRKY structural domains), which enable the WRKY transcription factors to have different transcriptional regulatory functions. WRKY transcription factors can not only regulate abiotic stress responses and plant growth and development by regulating phytohormone signalling pathways but also promote or suppress the expression of downstream genes by binding to the W-box [TGACCA/TGACCT] in the promoters of their target genes. In addition, WRKY transcription factors not only interact with other families of transcription factors to regulate plant defence responses to abiotic stresses but also self-regulate by recognising and binding to W-boxes in their own target genes to regulate their defence responses to abiotic stresses. However, in recent years, research reviews on the regulatory roles of WRKY transcription factors in higher plants have been scarce and shallow. In this review, we focus on the structure and classification of WRKY transcription factors, as well as the identification of their downstream target genes and molecular mechanisms involved in the response to abiotic stresses, which can improve the tolerance ability of plants under abiotic stress, and we also look forward to their future research directions, with a view of providing theoretical support for the genetic improvement of crop abiotic stress tolerance.
Collapse
Affiliation(s)
- Ziming Ma
- Jilin Provincial Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun 130062, China
- Max-Planck-Institute of Molecular Plant Physiology, Am Muehlenberg 1, Golm, 14476 Potsdam, Germany
- Plant Genetics, TUM School of Life Sciences, Technical University of Munich (TUM), Emil Ramann Str. 4, 85354 Freising, Germany
| | - Lanjuan Hu
- Jilin Provincial Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun 130062, China
| |
Collapse
|
195
|
Gan J, Qiu Y, Tao Y, Zhang L, Okita TW, Yan Y, Tian L. RNA-seq analysis reveals transcriptome reprogramming and alternative splicing during early response to salt stress in tomato root. FRONTIERS IN PLANT SCIENCE 2024; 15:1394223. [PMID: 38966147 PMCID: PMC11222332 DOI: 10.3389/fpls.2024.1394223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 05/30/2024] [Indexed: 07/06/2024]
Abstract
Salt stress is one of the dominant abiotic stress conditions that cause severe damage to plant growth and, in turn, limiting crop productivity. It is therefore crucial to understand the molecular mechanism underlying plant root responses to high salinity as such knowledge will aid in efforts to develop salt-tolerant crops. Alternative splicing (AS) of precursor RNA is one of the important RNA processing steps that regulate gene expression and proteome diversity, and, consequently, many physiological and biochemical processes in plants, including responses to abiotic stresses like salt stress. In the current study, we utilized high-throughput RNA-sequencing to analyze the changes in the transcriptome and characterize AS landscape during the early response of tomato root to salt stress. Under salt stress conditions, 10,588 genes were found to be differentially expressed, including those involved in hormone signaling transduction, amino acid metabolism, and cell cycle regulation. More than 700 transcription factors (TFs), including members of the MYB, bHLH, and WRKY families, potentially regulated tomato root response to salt stress. AS events were found to be greatly enhanced under salt stress, where exon skipping was the most prevalent event. There were 3709 genes identified as differentially alternatively spliced (DAS), the most prominent of which were serine/threonine protein kinase, pentatricopeptide repeat (PPR)-containing protein, E3 ubiquitin-protein ligase. More than 100 DEGs were implicated in splicing and spliceosome assembly, which may regulate salt-responsive AS events in tomato roots. This study uncovers the stimulation of AS during tomato root response to salt stress and provides a valuable resource of salt-responsive genes for future studies to improve tomato salt tolerance.
Collapse
Affiliation(s)
- Jianghuang Gan
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, Zhejiang, China
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Yongqi Qiu
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, Zhejiang, China
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Yilin Tao
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, Zhejiang, China
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Laining Zhang
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, Zhejiang, China
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Thomas W. Okita
- Institute of Biological Chemistry, Washington State University, Pullman, WA, United States
| | - Yanyan Yan
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, Zhejiang, China
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Li Tian
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, Zhejiang, China
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A&F University, Hangzhou, Zhejiang, China
| |
Collapse
|
196
|
Chen X, Han H, Cong Y, Li X, Zhang W, Cui J, Xu W, Pang S, Liu H. Ascorbic Acid Improves Tomato Salt Tolerance by Regulating Ion Homeostasis and Proline Synthesis. PLANTS (BASEL, SWITZERLAND) 2024; 13:1672. [PMID: 38931104 PMCID: PMC11207900 DOI: 10.3390/plants13121672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 06/12/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024]
Abstract
In this study, processing tomato (Solanum lycopersicum L.) 'Ligeer 87-5' was hydroponically cultivated under 100 mM NaCl to simulate salt stress. To investigate the impacts on ion homeostasis, osmotic regulation, and redox status in tomato seedlings, different endogenous levels of ascorbic acid (AsA) were established through the foliar application of 0.5 mM AsA (NA treatment), 0.25 mM lycorine (LYC, an inhibitor of AsA synthesis; NL treatment), and a combination of LYC and AsA (NLA treatment). The results demonstrated that exogenous AsA significantly increased the activities and gene expressions of key enzymes (L-galactono-1,4-lactone dehydrogenase (GalLDH) and L-galactose dehydrogenase (GalDH)) involved in AsA synthesis in tomato seedling leaves under NaCl stress and NL treatment, thereby increasing cellular AsA content to maintain its redox status in a reduced state. Additionally, exogenous AsA regulated multiple ion transporters via the SOS pathway and increased the selective absorption of K+, Ca2+, and Mg2+ in the aerial parts, reconstructing ion homeostasis in cells, thereby alleviating ion imbalance caused by salt stress. Exogenous AsA also increased proline dehydrogenase (ProDH) activity and gene expression, while inhibiting the activity and transcription levels of Δ1-pyrroline-5-carboxylate synthetase (P5CS) and ornithine-δ-aminotransferase (OAT), thereby reducing excessive proline content in the leaves and alleviating osmotic stress. LYC exacerbated ion imbalance and osmotic stress caused by salt stress, which could be significantly reversed by AsA application. Therefore, exogenous AsA application increased endogenous AsA levels, reestablished ion homeostasis, maintained osmotic balance, effectively alleviated the inhibitory effect of salt stress on tomato seedling growth, and enhanced their salt tolerance.
Collapse
Affiliation(s)
- Xianjun Chen
- Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization of Xinjiang Production and Contruction Crops, Department of Horticulture, Agricultural College, Shihezi University, Shihezi 832003, China; (X.C.); (H.H.); (Y.C.); (X.L.); (W.Z.); (J.C.); (W.X.)
- Key Laboratory of Molecular Breeding and Variety Creation of Horticultural Plants for Mountain Features in Guizhou Province, School of Life and Health Science, Kaili University, Kaili 556011, China
| | - Hongwei Han
- Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization of Xinjiang Production and Contruction Crops, Department of Horticulture, Agricultural College, Shihezi University, Shihezi 832003, China; (X.C.); (H.H.); (Y.C.); (X.L.); (W.Z.); (J.C.); (W.X.)
- Key Laboratory of Horticulture Crop Genomics and Genetic Improvement in Xinjiang, Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830000, China
| | - Yundan Cong
- Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization of Xinjiang Production and Contruction Crops, Department of Horticulture, Agricultural College, Shihezi University, Shihezi 832003, China; (X.C.); (H.H.); (Y.C.); (X.L.); (W.Z.); (J.C.); (W.X.)
| | - Xuezhen Li
- Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization of Xinjiang Production and Contruction Crops, Department of Horticulture, Agricultural College, Shihezi University, Shihezi 832003, China; (X.C.); (H.H.); (Y.C.); (X.L.); (W.Z.); (J.C.); (W.X.)
| | - Wenbo Zhang
- Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization of Xinjiang Production and Contruction Crops, Department of Horticulture, Agricultural College, Shihezi University, Shihezi 832003, China; (X.C.); (H.H.); (Y.C.); (X.L.); (W.Z.); (J.C.); (W.X.)
| | - Jinxia Cui
- Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization of Xinjiang Production and Contruction Crops, Department of Horticulture, Agricultural College, Shihezi University, Shihezi 832003, China; (X.C.); (H.H.); (Y.C.); (X.L.); (W.Z.); (J.C.); (W.X.)
| | - Wei Xu
- Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization of Xinjiang Production and Contruction Crops, Department of Horticulture, Agricultural College, Shihezi University, Shihezi 832003, China; (X.C.); (H.H.); (Y.C.); (X.L.); (W.Z.); (J.C.); (W.X.)
| | - Shengqun Pang
- Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization of Xinjiang Production and Contruction Crops, Department of Horticulture, Agricultural College, Shihezi University, Shihezi 832003, China; (X.C.); (H.H.); (Y.C.); (X.L.); (W.Z.); (J.C.); (W.X.)
| | - Huiying Liu
- Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization of Xinjiang Production and Contruction Crops, Department of Horticulture, Agricultural College, Shihezi University, Shihezi 832003, China; (X.C.); (H.H.); (Y.C.); (X.L.); (W.Z.); (J.C.); (W.X.)
| |
Collapse
|
197
|
Liu L, Gong Y, Yahaya BS, Chen Y, Shi D, Liu F, Gou J, Zhou Z, Lu Y, Wu F. Maize auxin response factor ZmARF1 confers multiple abiotic stresses resistances in transgenic Arabidopsis. PLANT MOLECULAR BIOLOGY 2024; 114:75. [PMID: 38878261 DOI: 10.1007/s11103-024-01470-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 05/12/2024] [Indexed: 06/29/2024]
Abstract
Prolonged exposure to abiotic stresses causes oxidative stress, which affects plant development and survival. In this research, the overexpression of ZmARF1 improved tolerance to low Pi, drought and salinity stresses. The transgenic plants manifested tolerance to low Pi by their superior root phenotypic traits: root length, root tips, root surface area, and root volume, compared to wide-type (WT) plants. Moreover, the transgenic plants exhibited higher root and leaf Pi content and upregulated the high affinity Pi transporters PHT1;2 and phosphorus starvation inducing (PSI) genes PHO2 and PHR1 under low Pi conditions. Transgenic Arabidopsis displayed tolerance to drought and salt stress by maintaining higher chlorophyll content and chlorophyll fluorescence, lower water loss rates, and ion leakage, which contributed to the survival of overexpression lines compared to the WT. Transcriptome profiling identified a peroxidase gene, POX, whose transcript was upregulated by these abiotic stresses. Furthermore, we confirmed that ZmARF1 bound to the auxin response element (AuxRE) in the promoter of POX and enhanced its transcription to mediate tolerance to oxidative stress imposed by low Pi, drought and salt stress in the transgenic seedlings. These results demonstrate that ZmARF1 has significant potential for improving the tolerance of crops to multiple abiotic stresses.
Collapse
Affiliation(s)
- Ling Liu
- Faculty of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, 644000, Sichuan, China
- Maize Research Institute, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
| | - Ying Gong
- Maize Research Institute, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Wenjiang, Chengdu, Sichuan, China
| | - Baba Salifu Yahaya
- Maize Research Institute, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Wenjiang, Chengdu, Sichuan, China
| | - Yushu Chen
- Maize Research Institute, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Wenjiang, Chengdu, Sichuan, China
| | - Dengke Shi
- Maize Research Institute, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Wenjiang, Chengdu, Sichuan, China
| | - Fangyuan Liu
- Maize Research Institute, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Wenjiang, Chengdu, Sichuan, China
| | - Junlin Gou
- Maize Research Institute, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Wenjiang, Chengdu, Sichuan, China
| | - Zhanmei Zhou
- Maize Research Institute, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Wenjiang, Chengdu, Sichuan, China
| | - Yanli Lu
- Maize Research Institute, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China.
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Wenjiang, Chengdu, Sichuan, China.
| | - Fengkai Wu
- Maize Research Institute, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China.
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Wenjiang, Chengdu, Sichuan, China.
| |
Collapse
|
198
|
Zhang W, Wang D, Cao D, Chen J, Wei X. Exploring the potentials of Sesuvium portulacastrum L. for edibility and bioremediation of saline soils. FRONTIERS IN PLANT SCIENCE 2024; 15:1387102. [PMID: 38916037 PMCID: PMC11194377 DOI: 10.3389/fpls.2024.1387102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 05/21/2024] [Indexed: 06/26/2024]
Abstract
Sesuvium portulacastrum L. is a flowering succulent halophyte in the ice plant family Aizoaceae. There are various ecotypes distributed in sandy coastlines and salty marshlands in tropical and subtropical regions with the common name of sea purslane. These plants are tolerant to salt, drought, and flooding stresses and have been used for the stabilization of sand dunes and the restoration of coastal areas. With the increased salinization of agricultural soils and the widespread pollution of toxic metals in the environment, as well as excessive nutrients in waterbodies, S. portulacastrum has been explored for the desalination of saline soils and the phytoremediation of metals from contaminated soils and nitrogen and phosphorus from eutrophic water. In addition, sea purslane has nutraceutical and pharmaceutical value. Tissue analysis indicates that many ecotypes are rich in carbohydrates, proteins, vitamins, and mineral nutrients. Native Americans in Florida eat it raw, pickled, or cooked. In the Philippines, it is known as atchara after being pickled. S. portulacastrum contains high levels of ecdysteroids, which possess antidiabetic, anticancer, and anti-inflammatory activities in mammals. In this review article, we present the botanical information, the physiological and molecular mechanisms underlying the tolerance of sea purslane to different stresses, its nutritional and pharmaceutical value, and the methods for its propagation and production in saline soils and waterbodies. Its adaptability to a wide range of stressful environments and its role in the production of valuable bioactive compounds suggest that S. portulacastrum can be produced in saline soils as a leafy vegetable and is a valuable genetic resource that can be used for the bioremediation of soil salinity and eutrophic water.
Collapse
Affiliation(s)
- Wenbin Zhang
- Institute of Oceanography, College of Geography and Oceanography, Minjiang University, Fuzhou, China
- Fuzhou Institute of Oceanography, Fuzhou, China
| | - Dan Wang
- Institute of Oceanography, College of Geography and Oceanography, Minjiang University, Fuzhou, China
- Fuzhou Institute of Oceanography, Fuzhou, China
| | - Dingding Cao
- Institute of Oceanography, College of Geography and Oceanography, Minjiang University, Fuzhou, China
- Fuzhou Institute of Oceanography, Fuzhou, China
| | - Jianjun Chen
- Mid-Florida Research and Education Center, Department of Environmental Horticulture, Institute of Food and Agricultural Sciences, University of Florida, Apopka, FL, United States
| | - Xiangying Wei
- Institute of Oceanography, College of Geography and Oceanography, Minjiang University, Fuzhou, China
- Fuzhou Institute of Oceanography, Fuzhou, China
| |
Collapse
|
199
|
Xu S, Zhao R, Sun J, Sun Y, Xu G, Wang F. Microplastics change soil properties, plant performance, and bacterial communities in salt-affected soils. JOURNAL OF HAZARDOUS MATERIALS 2024; 471:134333. [PMID: 38643581 DOI: 10.1016/j.jhazmat.2024.134333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/11/2024] [Accepted: 04/16/2024] [Indexed: 04/23/2024]
Abstract
Microplastics (MPs) are emerging contaminants found globally. However, their effects on soil-plant systems in salt-affected habitats remain unknown. Here, we examined the effects of polyethylene (PE) and polylactic acid (PLA) on soil properties, maize performance, and bacterial communities in soils with different salinity levels. Overall, MPs decreased soil electrical conductivity and increased NH4+-N and NO3--N contents. Adding NaCl alone had promoting and inhibitive effects on plant growth in a concentration-dependent manner. Overall, the addition of 0.2% PLA increased shoot biomass, while 2% PLA decreased it. Salinity increased Na content and decreased K/Na ratio in plant tissues (particularly roots), which were further modified by MPs. NaCl and MPs singly and jointly regulated the expression of functional genes related to salt tolerance in leaves, including ZMSOS1, ZMHKT1, and ZMHAK1. Exposure to NaCl alone had a slight effect on soil bacterial α-diversity, but in most cases, MPs increased ACE, Chao1, and Shannon indexes. Both MPs and NaCl altered bacterial community composition, although the specific effects varied depending on the type and concentration of MPs and the salinity level. Overall, PLA had more pronounced effects on soil-plant systems compared to PE. These findings bridge knowledge gaps in the risks of MPs in salt-affected habitats.
Collapse
Affiliation(s)
- Shuang Xu
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, PR China
| | - Rong Zhao
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, PR China
| | - Jiao Sun
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, PR China; Shandong Vocational College of Science and Technology, Weifang, Shandong 261000, PR China
| | - Yuhuan Sun
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, PR China
| | - Guangjian Xu
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, PR China
| | - Fayuan Wang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, PR China.
| |
Collapse
|
200
|
Mahmoud NE, Abdel-Gawad H, Abdelhameed RM. Post-synthetic modification of nano-chitosan using gibberellic acid: Foliar application on sorghum under salt stress conditions and estimation of biochemical parameters. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 211:108655. [PMID: 38744086 DOI: 10.1016/j.plaphy.2024.108655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 04/15/2024] [Accepted: 04/22/2024] [Indexed: 05/16/2024]
Abstract
The challenge of desert farming with a high salt level has become an ecological task due to salt stress negatively affecting plant growth and reproduction. The current study deals with the cultivation of sorghum under salt stress conditions to counteract the effect of chitosan and gibberellic acid (GA3). Here, the effects of chitosan, GA3 and nano-composite (GA3@chitosan) on biochemical contents, growth and seed yield of sorghum under salinity stress conditions were studied. The results showed that spraying with GA3@chitosan increased sorghum grain yield by 2.07, 1.81 and 1.64 fold higher than salinity stressed plants, chitosan treatment and GA3 treatment, respectively. Additionally, compared to the control of the same variety, the GA3@chitosan spraying treatment improved the concentration of microelements in the grains of the Shandweel-1 and Dorado by 24.51% and 18.39%, respectively for each variety. Furthermore, spraying GA3@chitosan on sorghum varieties increased the accumulation of the macroelements N, P, and K by 34.03%, 47.61%, and 8.67% higher than salt-stressed plants, respectively. On the other hand, the proline and glycinebetaine content in sorghum leaves sprayed with nano-composite were drop by 51.04% and 11.98% less than stressed plants, respectively. The results showed that, in Ras Sudr, the Shandweel-1 variety produced more grain per feddan than the Dorado variety. These findings suggest that GA3@chitosan improves the chemical and biochemical components leading to a decrease in the negative effect of salt stress on the plant which reflects in the high-yield production of cultivated sorghum plants in salt conditions.
Collapse
Affiliation(s)
- Noura E Mahmoud
- Biochemistry Unit, Genetic Resources Department, Desert Research Center, Cairo, Egypt
| | - Hassan Abdel-Gawad
- Applied Organic Chemistry Department, Chemical Industries Research Institute, National Research Centre, Scopus Affiliation ID 60014618, 33 EL Buhouth St., Dokki, Giza, 12622, Egypt
| | - Reda M Abdelhameed
- Applied Organic Chemistry Department, Chemical Industries Research Institute, National Research Centre, Scopus Affiliation ID 60014618, 33 EL Buhouth St., Dokki, Giza, 12622, Egypt.
| |
Collapse
|