151
|
Sun C, Huang J, Wang Y, Zhao X, Su L, Thomas GWC, Zhao M, Zhang X, Jungreis I, Kellis M, Vicario S, Sharakhov IV, Bondarenko SM, Hasselmann M, Kim CN, Paten B, Penso-Dolfin L, Wang L, Chang Y, Gao Q, Ma L, Ma L, Zhang Z, Zhang H, Zhang H, Ruzzante L, Robertson HM, Zhu Y, Liu Y, Yang H, Ding L, Wang Q, Ma D, Xu W, Liang C, Itgen MW, Mee L, Cao G, Zhang Z, Sadd BM, Hahn MW, Schaack S, Barribeau SM, Williams PH, Waterhouse RM, Mueller RL. Genus-Wide Characterization of Bumblebee Genomes Provides Insights into Their Evolution and Variation in Ecological and Behavioral Traits. Mol Biol Evol 2021; 38:486-501. [PMID: 32946576 PMCID: PMC7826183 DOI: 10.1093/molbev/msaa240] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Bumblebees are a diverse group of globally important pollinators in natural ecosystems and for agricultural food production. With both eusocial and solitary life-cycle phases, and some social parasite species, they are especially interesting models to understand social evolution, behavior, and ecology. Reports of many species in decline point to pathogen transmission, habitat loss, pesticide usage, and global climate change, as interconnected causes. These threats to bumblebee diversity make our reliance on a handful of well-studied species for agricultural pollination particularly precarious. To broadly sample bumblebee genomic and phenotypic diversity, we de novo sequenced and assembled the genomes of 17 species, representing all 15 subgenera, producing the first genus-wide quantification of genetic and genomic variation potentially underlying key ecological and behavioral traits. The species phylogeny resolves subgenera relationships, whereas incomplete lineage sorting likely drives high levels of gene tree discordance. Five chromosome-level assemblies show a stable 18-chromosome karyotype, with major rearrangements creating 25 chromosomes in social parasites. Differential transposable element activity drives changes in genome sizes, with putative domestications of repetitive sequences influencing gene coding and regulatory potential. Dynamically evolving gene families and signatures of positive selection point to genus-wide variation in processes linked to foraging, diet and metabolism, immunity and detoxification, as well as adaptations for life at high altitudes. Our study reveals how bumblebee genes and genomes have evolved across the Bombus phylogeny and identifies variations potentially linked to key ecological and behavioral traits of these important pollinators.
Collapse
Affiliation(s)
- Cheng Sun
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jiaxing Huang
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yun Wang
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Xiaomeng Zhao
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Long Su
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Gregg W C Thomas
- Division of Biological Sciences, University of Montana, Missoula, MT
| | - Mengya Zhao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Xingtan Zhang
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Irwin Jungreis
- MIT Computer Science and Artificial Intelligence Laboratory, Cambridge, MA.,Broad Institute of MIT and Harvard, Cambridge, MA
| | - Manolis Kellis
- MIT Computer Science and Artificial Intelligence Laboratory, Cambridge, MA.,Broad Institute of MIT and Harvard, Cambridge, MA
| | - Saverio Vicario
- Institute of Atmospheric Pollution Research-Italian National Research Council C/O Department of Physics, University of Bari, Bari, Italy
| | - Igor V Sharakhov
- Department of Entomology, Virginia Polytechnic and State University, Blacksburg, VA.,Department of Cytology and Genetics, Tomsk State University, Tomsk, Russian Federation
| | - Semen M Bondarenko
- Department of Entomology, Virginia Polytechnic and State University, Blacksburg, VA
| | - Martin Hasselmann
- Department of Livestock Population Genomics, Institute of Animal Science, University of Hohenheim, Stuttgart, Germany
| | - Chang N Kim
- UC Santa Cruz Genomics Institute, University of California Santa Cruz, Santa Cruz, CA
| | - Benedict Paten
- UC Santa Cruz Genomics Institute, University of California Santa Cruz, Santa Cruz, CA
| | | | - Li Wang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Yuxiao Chang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Qiang Gao
- BGI Genomics, BGI-Shenzhen, Shenzhen, China
| | - Ling Ma
- BGI Genomics, BGI-Shenzhen, Shenzhen, China
| | - Lina Ma
- China National Center for Bioinformation & Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Zhang Zhang
- China National Center for Bioinformation & Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Hongbo Zhang
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Huahao Zhang
- College of Pharmacy and Life Science, Jiujiang University, Jiujiang, China
| | - Livio Ruzzante
- Department of Ecology and Evolution, University of Lausanne, and Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Hugh M Robertson
- Department of Entomology, University of Illinois at Urbana-Champaign, Champaign, IL
| | - Yihui Zhu
- Department of Medical Microbiology and Immunology, Genome Center, and MIND Institute, University of California Davis, Davis, CA
| | - Yanjie Liu
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Huipeng Yang
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lele Ding
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Quangui Wang
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Dongna Ma
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Weilin Xu
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Cheng Liang
- Institute of Sericultural and Apiculture, Yunnan Academy of Agricultural Sciences, Mengzi, China
| | - Michael W Itgen
- Department of Biology, Colorado State University, Fort Collins, CO
| | - Lauren Mee
- Department of Ecology, Evolution and Behaviour, Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Gang Cao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Ze Zhang
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Ben M Sadd
- School of Biological Sciences, Illinois State University, Normal, IL
| | - Matthew W Hahn
- Department of Biology, Indiana University, Bloomington, IN.,Department of Computer Science, Indiana University, Bloomington, IN
| | | | - Seth M Barribeau
- Department of Ecology, Evolution and Behaviour, Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Paul H Williams
- Department of Life Sciences, Natural History Museum, London, United Kingdom
| | - Robert M Waterhouse
- Department of Ecology and Evolution, University of Lausanne, and Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | | |
Collapse
|
152
|
Miller S, Shippy TD, Tamayo B, Hosmani PS, Flores-Gonzalez M, Mueller LA, Hunter WB, Brown SJ, D’Elia T, Saha S. Annotation of chitin biosynthesis genes in Diaphorina citri, the Asian citrus psyllid. GIGABYTE 2021; 2021:gigabyte23. [PMID: 36824327 PMCID: PMC9631950 DOI: 10.46471/gigabyte.23] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 06/03/2021] [Indexed: 01/21/2023] Open
Abstract
The polysaccharide chitin is critical for the formation of many insect structures, including the exoskeleton, and is required for normal development. Here we report the annotation of three genes from the chitin synthesis pathway in the Asian citrus psyllid, Diaphorina citri (Hemiptera: Liviidae), the vector of Huanglongbing (citrus greening disease). Most insects have two chitin synthase (CHS) genes but, like other hemipterans, D. citri has only one. In contrast, D. citri is unusual among insects in having two UDP-N-acetylglucosamine pyrophosphorylase (UAP) genes. One of the D. citri UAP genes is broadly expressed, while the other is expressed predominantly in males. Our work helps pave the way for potential utilization of these genes as pest control targets to reduce the spread of Huanglongbing.
Collapse
Affiliation(s)
- Sherry Miller
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA
- Allen County Community College, Burlingame, KS 66413, USA
| | - Teresa D. Shippy
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | - Blessy Tamayo
- Indian River State College, Fort Pierce, FL 34981, USA
| | | | | | | | - Wayne B. Hunter
- USDA-ARS, U.S. Horticultural Research Laboratory, Fort Pierce, FL 34945, USA
| | - Susan J. Brown
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | - Tom D’Elia
- Indian River State College, Fort Pierce, FL 34981, USA
| | - Surya Saha
- Boyce Thompson Institute, Ithaca, NY 14853, USA
- Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
153
|
Liu S, Zhong H, Wang Q, Liu C, Li T, Peng Z, Li Y, Zhang H, Liao J, Huang Y, Wang Z. Global Analysis of UDP Glucose Pyrophosphorylase (UDPGP) Gene Family in Plants: Conserved Evolution Involved in Cell Death. FRONTIERS IN PLANT SCIENCE 2021; 12:681719. [PMID: 34177996 PMCID: PMC8222925 DOI: 10.3389/fpls.2021.681719] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 04/26/2021] [Indexed: 05/28/2023]
Abstract
UDP glucose pyrophosphorylase (UDPGP) family genes have been reported to play essential roles in cell death or individual survival. However, a systematic analysis on UDPGP gene family has not been performed yet. In this study, a total of 454 UDPGP proteins from 76 different species were analyzed. The analyses of the phylogenetic tree and orthogroups divided UDPGPs into three clades, including UDP-N-acetylglucosamine pyrophosphorylase (UAP), UDP-glucose pyrophosphorylase (UGP, containing UGP-A and UGP-B), and UDP-sugar pyrophosphorylase (USP). The evolutionary history of the UDPGPs indicated that the members of UAP, USP, and UGP-B were relatively conserved while varied in UGP-A. Homologous sequences of UGP-B and USP were found only in plants. The expression profile of UDPGP genes in Oryza sativa was mainly motivated under jasmonic acid (JA), abscisic acid (ABA), cadmium, and cold treatments, indicating that UDPGPs may play an important role in plant development and environment endurance. The key amino acids regulating the activity of UDPGPs were analyzed, and almost all of them were located in the NB-loop, SB-loop, or conserved motifs. Analysis of the natural variants of UDPGPs in rice revealed that only a few missense mutants existed in coding sequences (CDSs), and most of the resulting variations were located in the non-motif sites, indicating the conserved structure and function of UDPGPs in the evolution. Furthermore, alternative splicing may play a key role in regulating the activity of UDPGPs. The spatial structure prediction, enzymatic analysis, and transgenic verification of UAP isoforms illustrated that the loss of N- and C-terminal sequences did not affect the overall 3D structures, but the N- and C-terminal sequences are important for UAP genes to maintain their enzymatic activity. These results revealed a conserved UDPGP gene family and provided valuable information for further deep functional investigation of the UDPGP gene family in plants.
Collapse
Affiliation(s)
- Shuai Liu
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Starkville, MS, United States
| | - Hua Zhong
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice, Ministry of Agriculture, College of Life Sciences, Wuhan University, Wuhan, China
| | - Qiang Wang
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education of the People’s Republic of China, Jiangxi Agricultural University, Nanchang, China
- Key Laboratory of Agriculture Responding to Climate Change, Jiangxi Agricultural University, Nanchang, China
| | - Caixiang Liu
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy of Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, China
| | - Ting Li
- Youth League Committee, Jiangxi Agricultural University, Nanchang, China
| | - Zhaohua Peng
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Starkville, MS, United States
| | - Yangsheng Li
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice, Ministry of Agriculture, College of Life Sciences, Wuhan University, Wuhan, China
| | - Hongyu Zhang
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education of the People’s Republic of China, Jiangxi Agricultural University, Nanchang, China
- Key Laboratory of Agriculture Responding to Climate Change, Jiangxi Agricultural University, Nanchang, China
| | - Jianglin Liao
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education of the People’s Republic of China, Jiangxi Agricultural University, Nanchang, China
- Key Laboratory of Agriculture Responding to Climate Change, Jiangxi Agricultural University, Nanchang, China
| | - Yingjin Huang
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education of the People’s Republic of China, Jiangxi Agricultural University, Nanchang, China
- Key Laboratory of Agriculture Responding to Climate Change, Jiangxi Agricultural University, Nanchang, China
| | - Zhaohai Wang
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education of the People’s Republic of China, Jiangxi Agricultural University, Nanchang, China
- Key Laboratory of Agriculture Responding to Climate Change, Jiangxi Agricultural University, Nanchang, China
| |
Collapse
|
154
|
Qu MB, Sun SP, Liu YS, Deng XR, Yang J, Yang Q. Insect group II chitinase OfChtII promotes chitin degradation during larva-pupa molting. INSECT SCIENCE 2021; 28:692-704. [PMID: 32306549 DOI: 10.1111/1744-7917.12791] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 03/24/2020] [Accepted: 04/09/2020] [Indexed: 06/11/2023]
Abstract
The insect group II chitinase (ChtII, also known as Cht10) is a unique chitinase with multiple catalytic and chitin-binding domains. It has been proven genetically to be an essential chitinase for molting. However, ChtII's role in chitin degradation during insect development remains poorly understood. Obtaining this knowledge is the key to fully understanding the chitin degradation system in insects. Here, we investigated the role of OfChtII during the molting of Ostrinia furnacalis, a model lepidopteran pest insect. OfChtII was expressed earlier than OfChtI (OfCht5) and OfChi-h, at both the gene and protein levels during larva-pupa molting as evidenced by quantitative polymerase chain reaction and western blot analyses. A truncated OfChtII, OfChtII-B4C1, was recombinantly expressed in Pichia pastoris cells and purified to homogeneity. The recombinant OfChtII-B4C1 loosened compacted chitin particles and produced holes in the cuticle surface as evidenced by scanning electron microscopy. It synergized with OfChtI and OfChi-h when hydrolyzing insoluble α-chitin. These findings suggested an important role for ChtII during insect molting and also provided a strategy for the coordinated degradation of cuticular chitin during insect molting by ChtII, ChtI and Chi-h.
Collapse
Affiliation(s)
- Ming-Bo Qu
- School of Bioengineering, Dalian University of Technology, Dalian, Liaoning, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection and Shenzhen Agricultural Genome Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shao-Peng Sun
- School of Bioengineering, Dalian University of Technology, Dalian, Liaoning, China
| | - Yuan-Sheng Liu
- School of Bioengineering, Dalian University of Technology, Dalian, Liaoning, China
| | - Xiao-Rui Deng
- School of Bioengineering, Dalian University of Technology, Dalian, Liaoning, China
| | - Jun Yang
- School of Bioengineering, Dalian University of Technology, Dalian, Liaoning, China
| | - Qing Yang
- School of Bioengineering, Dalian University of Technology, Dalian, Liaoning, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection and Shenzhen Agricultural Genome Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
155
|
Yu HZ, Huang YL, Lu ZJ, Zhang Q, Su HN, Du YM, Yi L, Zhong BL, Chen CX. Inhibition of trehalase affects the trehalose and chitin metabolism pathways in Diaphorina citri (Hemiptera: Psyllidae). INSECT SCIENCE 2021; 28:718-734. [PMID: 32428381 DOI: 10.1111/1744-7917.12819] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 04/16/2020] [Accepted: 04/29/2020] [Indexed: 05/14/2023]
Abstract
The Asian citrus psyllid, Diaphorina citri is the principal vector of huanglongbing, which transmits Candidatus Liberibacter asiaticus. Trehalase is a key enzyme involved in trehalose hydrolysis and plays an important role in insect growth and development. The specific functions of this enzyme in D. citri have not been determined. In this study, three trehalase genes (DcTre1-1, DcTre1-2, and DcTre2) were identified based on the D. citri genome database. Bioinformatic analysis showed that DcTre1-1 and DcTre1-2 are related to soluble trehalase, whereas DcTre2 is associated with membrane-bound trehalase. Spatiotemporal expression analysis indicated that DcTre1-1 and DcTre1-2 had the highest expression levels in the head and wing, respectively, and DcTre2 had high expression levels in the fat body. Furthermore, DcTre1-1 and DcTre1-2 expression levels were induced by 20-hydroxyecdysone and juvenile hormone Ⅲ, but DcTre2 was unaffected. The expression levels of DcTre1-1, DcTre1-2, and DcTre2 were significantly upregulated, which resulted in high mortality after treatment with validamycin. Trehalase activities and glucose contents were downregulated, but the trehalose content increased after treatment with validamycin. In addition, the expression levels of chitin metabolism-related genes significantly decreased at 24 and 48 h after treatment with validamycin. Furthermore, silencing of DcTre1-1, DcTre1-2, and DcTre2 reduced the expression levels of chitin metabolism-related genes and led to a malformed phenotype of D. citri. These results indicate that D. citri trehalase plays an essential role in regulating chitin metabolism and provides a new target for control of D. citri.
Collapse
Affiliation(s)
- Hai-Zhong Yu
- College of Life Sciences, Gannan Normal University, Ganzhou, Jiangxi, China
- National Navel Orange Engineering Research Center, Ganzhou, Jiangxi, China
| | - Yu-Ling Huang
- College of Life Sciences, Gannan Normal University, Ganzhou, Jiangxi, China
| | - Zhan-Jun Lu
- College of Life Sciences, Gannan Normal University, Ganzhou, Jiangxi, China
- National Navel Orange Engineering Research Center, Ganzhou, Jiangxi, China
- China-USA Citrus Huanglongbing Joint Laboratory, A Joint Laboratory of The University of Florida and Gannan Normal University, Ganzhou, Jiangxi, China
| | - Qin Zhang
- College of Life Sciences, Gannan Normal University, Ganzhou, Jiangxi, China
| | - Hua-Nan Su
- College of Life Sciences, Gannan Normal University, Ganzhou, Jiangxi, China
- National Navel Orange Engineering Research Center, Ganzhou, Jiangxi, China
| | - Yi-Ming Du
- College of Life Sciences, Gannan Normal University, Ganzhou, Jiangxi, China
- National Navel Orange Engineering Research Center, Ganzhou, Jiangxi, China
- China-USA Citrus Huanglongbing Joint Laboratory, A Joint Laboratory of The University of Florida and Gannan Normal University, Ganzhou, Jiangxi, China
| | - Long Yi
- College of Life Sciences, Gannan Normal University, Ganzhou, Jiangxi, China
- National Navel Orange Engineering Research Center, Ganzhou, Jiangxi, China
| | - Ba-Lian Zhong
- College of Life Sciences, Gannan Normal University, Ganzhou, Jiangxi, China
- National Navel Orange Engineering Research Center, Ganzhou, Jiangxi, China
| | | |
Collapse
|
156
|
Xin T, Li Z, Chen J, Wang J, Zou Z, Xia B. Molecular Characterization of Chitin Synthase Gene in Tetranychus cinnabarinus (Boisduval) and Its Response to Sublethal Concentrations of an Insecticide. INSECTS 2021; 12:501. [PMID: 34071207 PMCID: PMC8227100 DOI: 10.3390/insects12060501] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 05/22/2021] [Accepted: 05/26/2021] [Indexed: 01/01/2023]
Abstract
The carmine spider mite, Tetranychus cinnabarinus (Boisduval), is one of the most important acarine pest species. At present, its control remains primarily dependent on using various chemical insecticides/acaricides in agricultural crops worldwide. To clarify the mechanism whereby T. cinnabarinus responds to insecticide exposure, we identified the chitin synthase 1 gene (TcCHS1) and then explored the gene expression levels of TcCHS1 at different developmental stages of T. cinnabarinus. We also investigated the effects of sublethal concentrations of diflubenzuron on the toxicities and survivals of T. cinnabarinus eggs and larvae as well as TcCHS1 expression levels. The full-length cDNA sequence contains an open reading frame (ORF) of 4881 nucleotides that encoded for a 1474 amino acid residues protein. The predicted TcCHS1 protein had a molecular mass of 168.35 kDa and an isoelectric point of 6.26, and its amino acid sequence contained all the signature motifs (EDR, QRRRW and TWGTR) of chitin synthases. The results of phylogenetic analyses demonstrated that the putative CHS1 amino acid sequence of T. cinnabarinus revealed high similarities with chitin synthases in other insects and mites. Additionally, at the molecular level, transcriptional analysis by real-time quantitative PCR in different developmental stages of T. cinnabarinus revealed that TcCHS1 mRNA was expressed in all stages, and highest in eggs and female adults, but lowest in deutonymphs. Furthermore, the results of toxicity bioassays indicated that diflubenzuron treatment resulted in high mortality rates in eggs and larvae of T. cinnabarinus. The mRNA expression levels of TcCHS1 from the eggs and larvae of T. cinnabarinus were up-regulated in response to sublethal concentrations of diflubenzuron exposures. Together, all these results demonstrate that diflubenzuron has ovicidal and larvicidal effects and TcCHS1 may play an important role in the growth and development of T. cinnabarinus and may disrupt the chitin biosynthesis, thereby controlling T. cinnabarinus populations.
Collapse
Affiliation(s)
| | | | | | | | | | - Bin Xia
- School of Life Sciences, Nanchang University, Nanchang 330031, China; (T.X.); (Z.L.); (J.C.); (J.W.); (Z.Z.)
| |
Collapse
|
157
|
Molecular characterization and function of chitin deacetylase-like from the Chinese mitten crab, Eriocheir sinensis. Comp Biochem Physiol B Biochem Mol Biol 2021; 256:110612. [PMID: 33992769 DOI: 10.1016/j.cbpb.2021.110612] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 04/29/2021] [Accepted: 05/04/2021] [Indexed: 11/22/2022]
Abstract
Chitin deacetylases are essential enzymes in the chitin-modifying process and play vital roles in arthropod molting. In this study, we identified and characterized a chitin deacetylase-like (EsCDA-l) gene in the Chinese mitten crab, Eriocheir sinensis. The open reading frame of EsCDA-l was 2555 bp and encoded 554 amino acid residues that contained typical domain structure of carbohydrate esterase family 4. Phylogenetic analysis reveal that EsCDA-l belongs to the group I chitin deacetylase family. Quantitative real-time PCR analyses showed that EsCDA-l was highly expressed in exoskeletal tissues and megalopa stages. During the molting cycle, EsCDA-l was up-regulated periodically in the post-molt stage. Knockdown of EsCDA-l resulted in the abnormal ultrastructure of cuticle, prevented molting to high mortality suggesting EsCDA-l is indispensable for molting. The characterization and function analysis of the EsCDA-l should provide useful reference for further research on the utility of key genes involved in the chitin metabolic pathway in the molting process of the Chinese mitten crab as well as other crustaceans.
Collapse
|
158
|
Zhang X, Wang Y, Zhang S, Kong X, Liu F, Zhang Z. RNAi-Mediated Silencing of the Chitinase 5 Gene for Fall Webworm ( Hyphantria cunea) Can Inhibit Larval Molting Depending on the Timing of dsRNA Injection. INSECTS 2021; 12:insects12050406. [PMID: 33946562 PMCID: PMC8147239 DOI: 10.3390/insects12050406] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/27/2021] [Accepted: 04/29/2021] [Indexed: 11/16/2022]
Abstract
Chitinases, which are crucial enzymes required for chitin degradation and reconstruction, are often selectively considered to be effective molecular targets for pest control due to their critical roles in insect development. Although the Hyphantria cunea chitinase gene has been reported previously, its sequence characteristics, gene function, and feasibility as a potential target for pest management were absent. In the present study, we characterized the H. cunea chitinase gene and designated it HcCht5. Phylogenic and domain structure analysis suggested that HcCht5 contained the typical chitinase features and was clustered into chitinase group I. Tissue-specific and developmental expression pattern analysis with Real-Time Quantitative PCR (RT-qPCR) showed that HcCht5 was mainly expressed in the integument tissues and that the transcript levels peaked during molting. RNA interference (RNAi)-mediated silencing of HcCht5 caused 33.3% (2 ug) and 66.7% (4 ug) mortality rates after double-stranded RNA (dsRNA) injection. Importantly, the interference efficiency of HcCht5 depended on the injection time of double-stranded RNA (dsRNA), as the pre-molting treatment achieved molt arrest more effectively. In addition, transcriptome sequencing (RNA-seq) analysis of RNAi samples demonstrated silencing of the down-regulated HcCht5 genes related to chitin metabolism and molting hormone signaling, as well as genes related to detoxification metabolism. Our results indicate the essential role of HcCht5 in H. cunea development and detail the involvement of its gene function in the larval molting process.
Collapse
|
159
|
Ruegenberg S, Mayr FAMC, Atanassov I, Baumann U, Denzel MS. Protein kinase A controls the hexosamine pathway by tuning the feedback inhibition of GFAT-1. Nat Commun 2021; 12:2176. [PMID: 33846315 PMCID: PMC8041777 DOI: 10.1038/s41467-021-22320-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 03/10/2021] [Indexed: 02/01/2023] Open
Abstract
The hexosamine pathway (HP) is a key anabolic pathway whose product uridine 5'-diphospho-N-acetyl-D-glucosamine (UDP-GlcNAc) is an essential precursor for glycosylation processes in mammals. It modulates the ER stress response and HP activation extends lifespan in Caenorhabditis elegans. The highly conserved glutamine fructose-6-phosphate amidotransferase 1 (GFAT-1) is the rate-limiting HP enzyme. GFAT-1 activity is modulated by UDP-GlcNAc feedback inhibition and via phosphorylation by protein kinase A (PKA). Molecular consequences of GFAT-1 phosphorylation, however, remain poorly understood. Here, we identify the GFAT-1 R203H substitution that elevates UDP-GlcNAc levels in C. elegans. In human GFAT-1, the R203H substitution interferes with UDP-GlcNAc inhibition and with PKA-mediated Ser205 phosphorylation. Our data indicate that phosphorylation affects the interactions of the two GFAT-1 domains to control catalytic activity. Notably, Ser205 phosphorylation has two discernible effects: it lowers baseline GFAT-1 activity and abolishes UDP-GlcNAc feedback inhibition. PKA controls the HP by uncoupling the metabolic feedback loop of GFAT-1.
Collapse
Affiliation(s)
- Sabine Ruegenberg
- grid.419502.b0000 0004 0373 6590Max Planck Institute for Biology of Ageing, Cologne, Germany ,grid.6190.e0000 0000 8580 3777Institute of Biochemistry, University of Cologne, Cologne, Germany
| | - Felix A. M. C. Mayr
- grid.419502.b0000 0004 0373 6590Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Ilian Atanassov
- grid.419502.b0000 0004 0373 6590Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Ulrich Baumann
- grid.6190.e0000 0000 8580 3777Institute of Biochemistry, University of Cologne, Cologne, Germany
| | - Martin S. Denzel
- grid.419502.b0000 0004 0373 6590Max Planck Institute for Biology of Ageing, Cologne, Germany ,grid.6190.e0000 0000 8580 3777CECAD - Cluster of Excellence, University of Cologne, Cologne, Germany ,grid.6190.e0000 0000 8580 3777Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| |
Collapse
|
160
|
Ganie SA, Reddy ASN. Stress-Induced Changes in Alternative Splicing Landscape in Rice: Functional Significance of Splice Isoforms in Stress Tolerance. BIOLOGY 2021; 10:309. [PMID: 33917813 PMCID: PMC8068108 DOI: 10.3390/biology10040309] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 04/01/2021] [Accepted: 04/06/2021] [Indexed: 12/20/2022]
Abstract
Improvements in yield and quality of rice are crucial for global food security. However, global rice production is substantially hindered by various biotic and abiotic stresses. Making further improvements in rice yield is a major challenge to the rice research community, which can be accomplished through developing abiotic stress-resilient rice varieties and engineering durable agrochemical-independent pathogen resistance in high-yielding elite rice varieties. This, in turn, needs increased understanding of the mechanisms by which stresses affect rice growth and development. Alternative splicing (AS), a post-transcriptional gene regulatory mechanism, allows rapid changes in the transcriptome and can generate novel regulatory mechanisms to confer plasticity to plant growth and development. Mounting evidence indicates that AS has a prominent role in regulating rice growth and development under stress conditions. Several regulatory and structural genes and splicing factors of rice undergo different types of stress-induced AS events, and the functional significance of some of them in stress tolerance has been defined. Both rice and its pathogens use this complex regulatory mechanism to devise strategies against each other. This review covers the current understanding and evidence for the involvement of AS in biotic and abiotic stress-responsive genes, and its relevance to rice growth and development. Furthermore, we discuss implications of AS for the virulence of different rice pathogens and highlight the areas of further research and potential future avenues to develop climate-smart and disease-resistant rice varieties.
Collapse
Affiliation(s)
| | - Anireddy S. N. Reddy
- Department of Biology and Program in Cell and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|
161
|
Qi H, Jiang X, Ding Y, Liu T, Yang Q. Discovery of Kasugamycin as a Potent Inhibitor of Glycoside Hydrolase Family 18 Chitinases. Front Mol Biosci 2021; 8:640356. [PMID: 33898519 PMCID: PMC8058351 DOI: 10.3389/fmolb.2021.640356] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 02/10/2021] [Indexed: 11/15/2022] Open
Abstract
Kasugamycin, a well-known aminoglycoside antibiotic, has been used widely in agriculture and medicine to combat microbial pathogens by binding the ribosome to inhibit translation. Here, kasugamycin was discovered to be a competitive inhibitor of glycoside hydrolase family 18 (GH18) chitinases from three different organisms (bacterium, insect and human). Results from tryptophan fluorescence spectroscopy and molecular docking revealed that kasugamycin binds to the substrate-binding clefts in a similar mode as the substrate. An electrostatic interaction between the amino group of kasugamycin and the carboxyl group of a conserved aspartate in GH18 chitinase (one of the catalytic triad residues) was found to be vital for the inhibitory activity. This paper not only reports new molecular targets of kasugamycin, but also expands our thinking about GH inhibitor design by using a scaffold unrelated to the substrate.
Collapse
Affiliation(s)
- Huitang Qi
- School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Xi Jiang
- Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Yi Ding
- School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Tian Liu
- School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Qing Yang
- School of Bioengineering, Dalian University of Technology, Dalian, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| |
Collapse
|
162
|
Pantha P, Chalivendra S, Oh DH, Elderd BD, Dassanayake M. A Tale of Two Transcriptomic Responses in Agricultural Pests via Host Defenses and Viral Replication. Int J Mol Sci 2021; 22:3568. [PMID: 33808210 PMCID: PMC8037200 DOI: 10.3390/ijms22073568] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 03/26/2021] [Accepted: 03/26/2021] [Indexed: 01/02/2023] Open
Abstract
Autographa californica Multiple Nucleopolyhedrovirus (AcMNPV) is a baculovirus that causes systemic infections in many arthropod pests. The specific molecular processes underlying the biocidal activity of AcMNPV on its insect hosts are largely unknown. We describe the transcriptional responses in two major pests, Spodoptera frugiperda (fall armyworm) and Trichoplusia ni (cabbage looper), to determine the host-pathogen responses during systemic infection, concurrently with the viral response to the host. We assembled species-specific transcriptomes of the hemolymph to identify host transcriptional responses during systemic infection and assessed the viral transcript abundance in infected hemolymph from both species. We found transcriptional suppression of chitin metabolism and tracheal development in infected hosts. Synergistic transcriptional support was observed to suggest suppression of immune responses and induction of oxidative stress indicating disease progression in the host. The entire AcMNPV core genome was expressed in the infected host hemolymph with a proportional high abundance detected for viral transcripts associated with replication, structure, and movement. Interestingly, several of the host genes that were targeted by AcMNPV as revealed by our study are also targets of chemical insecticides currently used commercially to control arthropod pests. Our results reveal an extensive overlap between biological processes represented by transcriptional responses in both hosts, as well as convergence on highly abundant viral genes expressed in the two hosts, providing an overview of the host-pathogen transcriptomic landscape during systemic infection.
Collapse
Affiliation(s)
| | | | | | - Bret D. Elderd
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA; (P.P.); (S.C.); (D.-H.O.)
| | - Maheshi Dassanayake
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA; (P.P.); (S.C.); (D.-H.O.)
| |
Collapse
|
163
|
Wang L, Yang Q, Tang R, Liu X, Fan Z, Li J, Price M, Yue B. Gene Expression Differences Between Developmental Stages of the Fall Armyworm ( Spodoptera frugiperda). DNA Cell Biol 2021; 40:580-588. [PMID: 33761271 DOI: 10.1089/dna.2020.6191] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The fall armyworm (Spodoptera frugiperda) is one of the most significant agricultural pests in the world and invaded China in early 2019. We sampled and sequenced RNA-seq data from 15 individuals across different developmental stages. Developmental stages were the larval stage (5th instar larvae and 6th instar larvae), chrysalis stage, and adult stage (female adult and male adult). Individual samples were mainly clustered by developmental stages and we then identified variation between developmental stages of differentially expressed transcripts (DETs). There were 2136 upregulated DETs and 1391 downregulated DETs in the larval stage when comparing larval and chrysalis stages. In the comparison between the chrysalis and adult stages, there were 2033 upregulated DETs and 1391 downregulated DETs in the chrysalis stage. In total, 19,195 abundantly expressed transcripts were obtained and 10% of them were DETs. We then obtained stage-specific DETs to investigate the potential function of the fall armyworm during different developmental stages. We also constructed our annotation background set for Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis. This indicated that the fall armyworm may undergo active metabolism during its lifespan, even in the chrysalis stage. And it also may experience detoxifying and xenobiotic metabolism throughout its life, especially in the larval stage, which partially explains the difficulty to eradicate using chemical control. Our study is the first insight into the developmental patterns of the fall armyworm and we also provide the fundamental information about enhanced drug resistance at the level of transcriptome. These results are beneficial for a future investigation related to the eradication and/or control stage.
Collapse
Affiliation(s)
- Lei Wang
- Key Laboratory of Bio-Resources and Eco-Environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, China
| | - Qiao Yang
- Key Laboratory of Bio-Resources and Eco-Environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, China
| | - Ruixiang Tang
- Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, College of Life Sciences, Sichuan University, Chengdu, China
| | - Xu Liu
- Institute of Plant Protection, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Zhenxin Fan
- Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, College of Life Sciences, Sichuan University, Chengdu, China
| | - Jing Li
- Key Laboratory of Bio-Resources and Eco-Environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, China
| | - Megan Price
- Key Laboratory of Bio-Resources and Eco-Environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, China
| | - Bisong Yue
- Key Laboratory of Bio-Resources and Eco-Environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, China
| |
Collapse
|
164
|
Xu CD, Liu YK, Qiu LY, Wang SS, Pan BY, Li Y, Wang SG, Tang B. GFAT and PFK genes show contrasting regulation of chitin metabolism in Nilaparvata lugens. Sci Rep 2021; 11:5246. [PMID: 33664411 PMCID: PMC7933274 DOI: 10.1038/s41598-021-84760-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 02/15/2021] [Indexed: 01/10/2023] Open
Abstract
Glutamine:fructose-6-phosphate aminotransferase (GFAT) and phosphofructokinase (PFK) are enzymes related to chitin metabolism. RNA interference (RNAi) technology was used to explore the role of these two enzyme genes in chitin metabolism. In this study, we found that GFAT and PFK were highly expressed in the wing bud of Nilaparvata lugens and were increased significantly during molting. RNAi of GFAT and PFK both caused severe malformation rates and mortality rates in N. lugens. GFAT inhibition also downregulated GFAT, GNPNA, PGM1, PGM2, UAP, CHS1, CHS1a, CHS1b, Cht1-10, and ENGase. PFK inhibition significantly downregulated GFAT; upregulated GNPNA, PGM2, UAP, Cht2-4, Cht6-7 at 48 h and then downregulated them at 72 h; upregulated Cht5, Cht8, Cht10, and ENGase; downregulated Cht9 at 48 h and then upregulated it at 72 h; and upregulated CHS1, CHS1a, and CHS1b. In conclusion, GFAT and PFK regulated chitin degradation and remodeling by regulating the expression of genes related to the chitin metabolism and exert opposite effects on these genes. These results may be beneficial to develop new chitin synthesis inhibitors for pest control.
Collapse
Affiliation(s)
- Cai-Di Xu
- College of Education, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, People's Republic of China
| | - Yong-Kang Liu
- Hangzhou Key Laboratory of Animal Adaptation and Evolution, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, People's Republic of China
| | - Ling-Yu Qiu
- Hangzhou Key Laboratory of Animal Adaptation and Evolution, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, People's Republic of China
| | - Sha-Sha Wang
- Hangzhou Key Laboratory of Animal Adaptation and Evolution, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, People's Republic of China
| | - Bi-Ying Pan
- Hangzhou Key Laboratory of Animal Adaptation and Evolution, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, People's Republic of China
| | - Yan Li
- Hangzhou Key Laboratory of Animal Adaptation and Evolution, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, People's Republic of China
| | - Shi-Gui Wang
- Hangzhou Key Laboratory of Animal Adaptation and Evolution, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, People's Republic of China
| | - Bin Tang
- Hangzhou Key Laboratory of Animal Adaptation and Evolution, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, People's Republic of China.
| |
Collapse
|
165
|
Zhao D, Liu ZR, Wu H, Fu CR, Li YZ, Lu XJ, Guo W. RNA interference-mediated functional characterization of Group I chitin deacetylases in Holotrichia parallela Motschulsky. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2021; 173:104770. [PMID: 33771270 DOI: 10.1016/j.pestbp.2021.104770] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 12/23/2020] [Accepted: 12/30/2020] [Indexed: 06/12/2023]
Abstract
Chitin deacetylases (CDAs, EC 3.5.1.41) catalyze the N-deacetylation of chitin to produce chitosan, which is essential for insect survival. Hence, CDAs are promising targets for the development of novel insecticidal drugs. In this study, the putative Group I chitin deacetylase genes HpCDA1, HpCDA2-1 and HpCDA2-2 were identified from Holotrichia parallela. Conserved domain database search identified a chitin-binding peritrophin-A domain (ChBD), a low-density lipoprotein receptor class A domain (LDLa), and a putative CDA-like catalytic domain. RT-qPCR analysis showed that the Group I HpCDAs were expressed in various tissues and predominant in the integument. The developmental expression patterns from the first-instar to third-instar larvae showed that HpCDAs were highly expressed on the first day and gradually declined after molting. The functional characteristics of the Group I CDAs in cuticle organization were examined using RNA interference (RNAi) and transmission electron microscopy (TEM) methods. Administration of double-stranded HpCDA (dsHpCDA) through larval injection could suppress the expression levels of HpCDA1 and HpCDA2, thus resulting in abnormal or lethal phenotypes. TEM analysis revealed that RNAi of either HpCDA1 or HpCDA2 remarkably affected the cuticle integrity, as evidenced by cuticle disorganization and chitin laminae disruption, suggesting the crucial role of CDAs in chitin modification. These experimental results demonstrate the important contribution of putative key genes involved in chitin metabolism, and provide a foundation for developing new strategies to control H. parallela.
Collapse
Affiliation(s)
- Dan Zhao
- College of Plant Protection, Hebei Agricultural University, Baoding, China
| | - Zhao-Rui Liu
- College of Plant Protection, Hebei Agricultural University, Baoding, China
| | - Han Wu
- College of Plant Protection, Hebei Agricultural University, Baoding, China
| | - Chao-Ran Fu
- College of Plant Protection, Hebei Agricultural University, Baoding, China
| | - Ya-Zi Li
- College of Plant Protection, Hebei Agricultural University, Baoding, China
| | - Xiu-Jun Lu
- College of Plant Protection, Hebei Agricultural University, Baoding, China
| | - Wei Guo
- College of Plant Protection, Hebei Agricultural University, Baoding, China; Graduate School of Chinese Academy of Agricultural Sciences, Beijing, China.
| |
Collapse
|
166
|
Gut bacteria are essential for normal cuticle development in herbivorous turtle ants. Nat Commun 2021; 12:676. [PMID: 33514729 PMCID: PMC7846594 DOI: 10.1038/s41467-021-21065-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 01/12/2021] [Indexed: 11/08/2022] Open
Abstract
Across the evolutionary history of insects, the shift from nitrogen-rich carnivore/omnivore diets to nitrogen-poor herbivorous diets was made possible through symbiosis with microbes. The herbivorous turtle ants Cephalotes possess a conserved gut microbiome which enriches the nutrient composition by recycling nitrogen-rich metabolic waste to increase the production of amino acids. This enrichment is assumed to benefit the host, but we do not know to what extent. To gain insights into nitrogen assimilation in the ant cuticle we use gut bacterial manipulation, 15N isotopic enrichment, isotope-ratio mass spectrometry, and 15N nuclear magnetic resonance spectroscopy to demonstrate that gut bacteria contribute to the formation of proteins, catecholamine cross-linkers, and chitin in the cuticle. This study identifies the cuticular components which are nitrogen-enriched by gut bacteria, highlighting the role of symbionts in insect evolution, and provides a framework for understanding the nitrogen flow from nutrients through bacteria into the insect cuticle.
Collapse
|
167
|
Wang G, Gou Y, Guo S, Zhou JJ, Liu C. RNA interference of trehalose-6-phosphate synthase and trehalase genes regulates chitin metabolism in two color morphs of Acyrthosiphon pisum Harris. Sci Rep 2021; 11:948. [PMID: 33441844 PMCID: PMC7806880 DOI: 10.1038/s41598-020-80277-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 12/18/2020] [Indexed: 01/29/2023] Open
Abstract
Trehalose-6-phosphate synthase (TPS) and trehalase (TRE) directly regulate trehalose metabolism and indirectly regulate chitin metabolism in insects. Real-time quantitative PCR (RT-qPCR) and RNA interference (RNAi) were used to detect the expressions and functions of the ApTPS and ApTRE genes. Abnormal phenotypes were found after RNAi of ApTRE in the Acyrthosiphon pisum. The molting deformities were observed in two color morphs, while wing deformities were only observed in the red morphs. The RNAi of ApTPS significantly down-regulated the expression of chitin metabolism-related genes, UDP-N-acetyglucosamine pyrophosphorylase (ApUAP), chitin synthase 2 (Apchs-2), Chitinase 2, 5 (ApCht2, 5), endo-beta-N-acetylglucosaminidase (ApENGase) and chitin deacetylase (ApCDA) genes at 24 h and 48 h; The RNAi of ApTRE significantly down-regulated the expression of ApUAP, ApCht1, 2, 8 and ApCDA at 24 h and 48 h, and up-regulated the expression of glucose-6-phosphate isomerase (ApGPI) and Knickkopf protein (ApKNK) genes at 48 h. The RNAi of ApTRE and ApTPS not only altered the expression of chitin metabolism-related genes but also decreased the content of chitin. These results demonstrated that ApTPS and ApTRE can regulate the chitin metabolism, deepen our understanding of the biological functions, and provide a foundation for better understanding the molecular mechanism of insect metamorphosis.
Collapse
Affiliation(s)
- Guang Wang
- grid.411734.40000 0004 1798 5176College of Plant Protection, Gansu Agricultural University, Lanzhou, 730070 Gansu China ,Biocontrol Engineering Laboratory of Crop Diseases and Pests of Gansu Province, Lanzhou, 730070 Gansu China
| | - Yuping Gou
- grid.411734.40000 0004 1798 5176College of Plant Protection, Gansu Agricultural University, Lanzhou, 730070 Gansu China ,Biocontrol Engineering Laboratory of Crop Diseases and Pests of Gansu Province, Lanzhou, 730070 Gansu China
| | - Sufan Guo
- grid.411734.40000 0004 1798 5176College of Plant Protection, Gansu Agricultural University, Lanzhou, 730070 Gansu China ,Biocontrol Engineering Laboratory of Crop Diseases and Pests of Gansu Province, Lanzhou, 730070 Gansu China
| | - Jing-Jiang Zhou
- grid.411734.40000 0004 1798 5176College of Plant Protection, Gansu Agricultural University, Lanzhou, 730070 Gansu China ,Biocontrol Engineering Laboratory of Crop Diseases and Pests of Gansu Province, Lanzhou, 730070 Gansu China
| | - Changzhong Liu
- grid.411734.40000 0004 1798 5176College of Plant Protection, Gansu Agricultural University, Lanzhou, 730070 Gansu China ,Biocontrol Engineering Laboratory of Crop Diseases and Pests of Gansu Province, Lanzhou, 730070 Gansu China
| |
Collapse
|
168
|
Wang Y, Gao L, Moussian B. Drosophila, Chitin and Insect Pest Management. Curr Pharm Des 2021; 26:3546-3553. [PMID: 32693764 DOI: 10.2174/1381612826666200721002354] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 05/31/2020] [Indexed: 11/22/2022]
Abstract
Insects are a great menace in agriculture and vectors of human diseases. Hence, controlling insect populations is an important issue worldwide. A common strategy to control insects is the application of insecticides. However, insecticides entail three major problems. First, insecticides are chemicals that stress ecosystems and may even be harmful to humans. Second, insecticides are often unspecific and also eradicate beneficial insect species like the honeybee. Third, insects are able to develop resistance to insecticides. Therefore, the efficient generation of new potent insecticides and their intelligent delivery are the major tasks in agriculture. In addition, acceptance or refusal in society is a major issue that has to be considered in the application of a pest management strategy. In this paper, we unify two issues: 1) we illustrate that our molecular knowledge of the chitin synthesis and organization pathways may offer new opportunities to design novel insecticides that are environmentally harmless at the same time being specific to a pest species; and 2) we advocate that the fruit fly Drosophila melanogaster may serve as an excellent model of insect to study the effects of insecticides at the genetic, molecular and histology level in order to better understand their mode of action and to optimize their impact. Especially, chitin synthesis and organization proteins and enzymes are excellently dissected in the fruit fly, providing a rich source for new insecticide targets. Thus, D. melanogaster offers a cheap, efficient and fast assay system to address agricultural questions, as has been demonstrated to be the case in bio-medical research areas.
Collapse
Affiliation(s)
- Yiwen Wang
- School of Pharmaceutical Science and Technology, Tianjin University, 300072, Tianjin, China
| | - Lujuan Gao
- School of Pharmaceutical Science and Technology, Tianjin University, 300072, Tianjin, China
| | - Bernard Moussian
- Interfaculty Institute for Cell Biology (Ifiz), University of Tübingen, Auf der Morgenstelle 15, 72076 Tübingen, Germany
| |
Collapse
|
169
|
Xu Z, Qi C, Zhang M, Liu P, Zhang P, He L. Transcription response of Tetranychus cinnabarinus to plant-mediated short-term and long -term selenium treatment. CHEMOSPHERE 2021; 263:128007. [PMID: 33297040 DOI: 10.1016/j.chemosphere.2020.128007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 07/31/2020] [Accepted: 08/13/2020] [Indexed: 06/12/2023]
Abstract
Selenium is a trace element necessary for living organisms. It exists mainly in the form of selenite in nature. In plants, selenium can enhance defenses against pests. In this study, transcriptome sequencing technology was used to analyze the response mechanism of Tetranychus cinnabarinus to plant-mediated selenium treatment. We tested four sodium selenite treatments (5, 20, 50, and 200 μM) that were the same for short (2 d) and long (30 d) treatment durations. The results showed that the number of differentially expressed genes (DEGs) in the short-term treatment was greater than in the long-term treatment. This indicated that the gene expression of spider mites gradually stabilized during the selenium treatment. Regardless of the long-term and short-term conditions, spider mites had the largest response to the 20 μM sodium selenite treatment. The functional annotation classification of DEGs showed no significant difference under different concentrations and treatment durations. A total of 25 genes were differentially expressed in all eight treatments, including four down-regulated cytochrome P450 genes and one up-regulated chitinase gene. We speculate that selenium may have the potential to enhance the activity of chemical acaricides. Transcriptome sequencing of sodium selenite treatment at different concentrations and different times revealed the response mechanism of spider mites under plant-mediated selenium treatment. At the same time, it also provides new clues for the development of methods for preventing and controlling spider mites with selenium.
Collapse
Affiliation(s)
- Zhifeng Xu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China; Academy of Agricultural Sciences, Southwest University, Chongqing, China; State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Southwest University, Chongqing, China
| | - CuiCui Qi
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China; Academy of Agricultural Sciences, Southwest University, Chongqing, China; State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Southwest University, Chongqing, China
| | - Mengyu Zhang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China; Academy of Agricultural Sciences, Southwest University, Chongqing, China; State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Southwest University, Chongqing, China
| | - Peiling Liu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China; Academy of Agricultural Sciences, Southwest University, Chongqing, China; State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Southwest University, Chongqing, China
| | - Ping Zhang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China; Academy of Agricultural Sciences, Southwest University, Chongqing, China; State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Southwest University, Chongqing, China
| | - Lin He
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China; Academy of Agricultural Sciences, Southwest University, Chongqing, China; State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Southwest University, Chongqing, China.
| |
Collapse
|
170
|
Montroni D, Palanca M, Morellato K, Fermani S, Cristofolini L, Falini G. Hierarchical chitinous matrices byssus-inspired with mechanical properties tunable by Fe(III) and oxidation. Carbohydr Polym 2021; 251:116984. [DOI: 10.1016/j.carbpol.2020.116984] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 08/05/2020] [Accepted: 08/19/2020] [Indexed: 12/12/2022]
|
171
|
Firmino AAP, Pinheiro DH, Moreira-Pinto CE, Antonino JD, Macedo LLP, Martins-de-Sa D, Arraes FBM, Coelho RR, Fonseca FCDA, Silva MCM, Engler JDA, Silva MS, Lourenço-Tessutti IT, Terra WR, Grossi-de-Sa MF. RNAi-Mediated Suppression of Laccase2 Impairs Cuticle Tanning and Molting in the Cotton Boll Weevil ( Anthonomus grandis). Front Physiol 2020; 11:591569. [PMID: 33329040 PMCID: PMC7717984 DOI: 10.3389/fphys.2020.591569] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 10/20/2020] [Indexed: 11/13/2022] Open
Abstract
The cotton boll weevil, Anthonomus grandis, is the most economically important pest of cotton in Brazil. Pest management programs focused on A. grandis are based mostly on the use of chemical insecticides, which may cause serious ecological impacts. Furthermore, A. grandis has developed resistance to some insecticides after their long-term use. Therefore, alternative control approaches that are more sustainable and have reduced environmental impacts are highly desirable to protect cotton crops from this destructive pest. RNA interference (RNAi) is a valuable reverse genetics tool for the investigation of gene function and has been explored for the development of strategies to control agricultural insect pests. This study aimed to evaluate the biological role of the Laccase2 (AgraLac2) gene in A. grandis and its potential as an RNAi target for the control of this insect pest. We found that AgraLac2 is expressed throughout the development of A. grandis with significantly higher expression in pupal and adult developmental stages. In addition, the immunolocalization of the AgraLac2 protein in third-instar larvae using specific antibodies revealed that AgraLac2 is distributed throughout the epithelial tissue, the cuticle and the tracheal system. We also verified that the knockdown of AgraLac2 in A. grandis resulted in an altered cuticle tanning process, molting defects and arrested development. Remarkably, insects injected with dsAgraLac2 exhibited defects in cuticle hardening and pigmentation. As a consequence, the development of dsAgraLac2-treated insects was compromised, and in cases of severe phenotypic defects, the insects subsequently died. On the contrary, insects subjected to control treatments did not show any visible phenotypic defects in cuticle formation and successfully molted to the pupal and adult stages. Taken together, our data indicate that AgraLac2 is involved in the cuticle tanning process in A. grandis and may be a promising target for the development of RNAi-based technologies.
Collapse
Affiliation(s)
- Alexandre Augusto Pereira Firmino
- Embrapa Genetic Resources and Biotechnology, Brasília, Brazil.,Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | | | - Clidia Eduarda Moreira-Pinto
- Embrapa Genetic Resources and Biotechnology, Brasília, Brazil.,Department of Cell Biology, Federal University of Brasília (UnB), Brasília, Brazil
| | - José Dijair Antonino
- Embrapa Genetic Resources and Biotechnology, Brasília, Brazil.,Departamento de Agronomia/Entomologia, Universidade Federal Rural de Pernambuco (UFRPE), Recife, Brazil
| | | | - Diogo Martins-de-Sa
- Department of Cell Biology, Federal University of Brasília (UnB), Brasília, Brazil
| | - Fabrício Barbosa Monteiro Arraes
- Embrapa Genetic Resources and Biotechnology, Brasília, Brazil.,Department of Cellular and Molecular Biology, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,National Institute of Science and Technology - INCT PlantStress Biotech - Embrapa, Brasília, Brazil
| | | | - Fernando Campos de Assis Fonseca
- Embrapa Genetic Resources and Biotechnology, Brasília, Brazil.,Department of Cell Biology, Federal University of Brasília (UnB), Brasília, Brazil
| | - Maria Cristina Mattar Silva
- Embrapa Genetic Resources and Biotechnology, Brasília, Brazil.,National Institute of Science and Technology - INCT PlantStress Biotech - Embrapa, Brasília, Brazil
| | - Janice de Almeida Engler
- National Institute of Science and Technology - INCT PlantStress Biotech - Embrapa, Brasília, Brazil.,Département Santé des Plantes et Environnement, Institut National de la Recherche Agronomique and Institut Sophia Agrobiotech, Sophia Antipolis, France
| | | | | | | | - Maria Fátima Grossi-de-Sa
- Embrapa Genetic Resources and Biotechnology, Brasília, Brazil.,National Institute of Science and Technology - INCT PlantStress Biotech - Embrapa, Brasília, Brazil.,Department of Biological Sciences, Catholic University o Brasília (UCB), Brasília, Brazil
| |
Collapse
|
172
|
Ding YJ, Li GY, Xu CD, Wu Y, Zhou ZS, Wang SG, Li C. Regulatory Functions of Nilaparvata lugens GSK-3 in Energy and Chitin Metabolism. Front Physiol 2020; 11:518876. [PMID: 33324230 PMCID: PMC7723894 DOI: 10.3389/fphys.2020.518876] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 10/20/2020] [Indexed: 12/27/2022] Open
Abstract
Glucose metabolism is a biologically important metabolic process. Glycogen synthase kinase (GSK-3) is a key enzyme located in the middle of the sugar metabolism pathway that can regulate the energy metabolism process in the body through insulin signaling. This paper mainly explores the regulatory effect of glycogen synthase kinase on the metabolism of glycogen and trehalose in the brown planthopper (Nilaparvata lugens) by RNA interference. In this paper, microinjection of the target double-stranded GSK-3 (dsGSK-3) effectively inhibited the expression of target genes in N. lugens. GSK-3 gene silencing can effectively inhibit the expression of target genes (glycogen phosphorylase gene, glycogen synthase gene, trehalose-6-phosphate synthase 1 gene, and trehalose-6-phosphate synthase 2 gene) in N. lugens and trehalase activity, thereby reducing glycogen and glucose content, increasing trehalose content, and regulating insect trehalose balance. GSK-3 can regulate the genes chitin synthase gene and glucose-6-phosphate isomerase gene involved in the chitin biosynthetic pathway of N. lugens. GSK-3 gene silencing can inhibit the synthesis of chitin N. lugens, resulting in abnormal phenotypes and increased mortality. These results indicated that a low expression of GSK-3 in N. lugens can regulate the metabolism of glycogen and trehalose through the insulin signal pathway and energy metabolism pathway, and can regulate the biosynthesis of chitin, which affects molting and wing formation. The relevant research results will help us to more comprehensively explore the molecular mechanism of the regulation of energy and chitin metabolism of insect glycogen synthase kinases in species such as N. lugens.
Collapse
Affiliation(s)
- Yan-Juan Ding
- Guizhou Provincial Key Laboratory for Rare Animal and Economic Insect of the Mountainous Region, Guizhou Provincial Engineering Research Center for Biological Resources Protection and Efficient Utilization of the Mountainous Region, College of Biology and Environmental Engineering, Guiyang University, Guiyang, China
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Guo-Yong Li
- Guizhou Provincial Key Laboratory for Rare Animal and Economic Insect of the Mountainous Region, Guizhou Provincial Engineering Research Center for Biological Resources Protection and Efficient Utilization of the Mountainous Region, College of Biology and Environmental Engineering, Guiyang University, Guiyang, China
| | - Cai-Di Xu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Yan Wu
- Guizhou Provincial Key Laboratory for Rare Animal and Economic Insect of the Mountainous Region, Guizhou Provincial Engineering Research Center for Biological Resources Protection and Efficient Utilization of the Mountainous Region, College of Biology and Environmental Engineering, Guiyang University, Guiyang, China
| | - Zhong-Shi Zhou
- Guizhou Provincial Key Laboratory for Rare Animal and Economic Insect of the Mountainous Region, Guizhou Provincial Engineering Research Center for Biological Resources Protection and Efficient Utilization of the Mountainous Region, College of Biology and Environmental Engineering, Guiyang University, Guiyang, China
| | - Shi-Gui Wang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Can Li
- Guizhou Provincial Key Laboratory for Rare Animal and Economic Insect of the Mountainous Region, Guizhou Provincial Engineering Research Center for Biological Resources Protection and Efficient Utilization of the Mountainous Region, College of Biology and Environmental Engineering, Guiyang University, Guiyang, China
| |
Collapse
|
173
|
Qu M, Watanabe-Nakayama T, Sun S, Umeda K, Guo X, Liu Y, Ando T, Yang Q. High-Speed Atomic Force Microscopy Reveals Factors Affecting the Processivity of Chitinases during Interfacial Enzymatic Hydrolysis of Crystalline Chitin. ACS Catal 2020. [DOI: 10.1021/acscatal.0c02751] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Mingbo Qu
- School of Bioengineering, Dalian University of Technology, No. 2, Linggong Road, Dalian 116024, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 West Yuanmingyuan Road, Beijing 100193, China
| | | | - Shaopeng Sun
- School of Bioengineering, Dalian University of Technology, No. 2, Linggong Road, Dalian 116024, China
| | - Kenichi Umeda
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Xiaoxi Guo
- School of Bioengineering, Dalian University of Technology, No. 2, Linggong Road, Dalian 116024, China
| | - Yuansheng Liu
- School of Bioengineering, Dalian University of Technology, No. 2, Linggong Road, Dalian 116024, China
| | - Toshio Ando
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Qing Yang
- School of Bioengineering, Dalian University of Technology, No. 2, Linggong Road, Dalian 116024, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 West Yuanmingyuan Road, Beijing 100193, China
- Guangdong Laboratory for Lingnan Modern Agriculture (Shenzhen Branch), Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, No. 7 Pengfei Road, Shenzhen 518120, China
| |
Collapse
|
174
|
Hong J, Han T, Kim YY. Mealworm ( Tenebrio molitor Larvae) as an Alternative Protein Source for Monogastric Animal: A Review. Animals (Basel) 2020; 10:ani10112068. [PMID: 33171639 PMCID: PMC7695176 DOI: 10.3390/ani10112068] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/05/2020] [Accepted: 11/06/2020] [Indexed: 12/20/2022] Open
Abstract
Simple Summary Tenebrio molitor (T. molitor) larvae, known as mealworm, have been considered a good protein source for monogastric animals. They have a high quantity and quality of protein content and amino acid profile. The inclusion of T. molitor larvae in broiler diets improved the growth performance without having negative effects on carcass traits and blood profiles in broiler chickens, or had no influence on the growth performance and carcass yield of broiler chickens. The supplementation of T. molitor larvae improved the growth performance and protein utilization of weaning pigs. Furthermore, the replacement of fishmeal with T. molitor larvae resulted in no difference in the growth performance and nutrient digestibility of weaning pigs. However, there are some challenges regarding biosafety, consumer’s acceptance, and price for the use of T. moiltor larvae in animal feed. Consequently, T. molitor larvae could be used as an alternative or sustainable protein source in monogastric animal feed. Abstract Edible insects have been used as an alternative protein source for food and animal feed, and the market size for edible insects has increased. Tenebrio molitor larvae, also known as mealworm and yellow mealworm, are considered a good protein source with nutritional value, digestibility, flavor, and a functional ability. Additionally, they are easy to breed and feed for having a stable protein content, regardless of their diets. Therefore, T. molitor larvae have been produced industrially as feed for pets, zoo animals, and even for production animals. To maintain the nutrient composition and safety of T. molitor larvae, slaughtering (heating or freezing) and post-slaughtering (drying and grinding) procedures should be improved for animal feed. T. molitor larvae are also processed with defatting or hydrolysis before grinding. They have a high quality and quantity of protein and amino acid profile, so are considered a highly sustainable protein source for replacing soybean meal or fishmeal. T. molitor has a chitin in its cuticle, which is an indigestible fiber with positive effects on the immune system. In studies of poultry, the supplementation of T. molitor larvae improved the growth performance of broiler chickens, without having negative effects on carcass traits, whereas some studies have reported that there were no significant differences in the growth performance and carcass yield of broiler chickens. In studies of swine, the supplementation of T. molitor larvae improved the growth performance and protein utilization of weaning pigs. Furthermore, 10% of T. molitor larvae showed greater amino acid digestibility than conventional animal proteins in growing pigs. However, there are some challenges regarding the biosafety, consumer’s acceptance, and price for the use of T. moiltor larvae in animal feed. Consequently, T. molitor larvae could be used as an alternative or sustainable protein source in monogastric animal feed with a consideration of the nutritional values, biosafety, consumer’s acceptance, and market price of T. molitor larvae products.
Collapse
Affiliation(s)
- Jinsu Hong
- Department of Animal Science, South Dakota State University, Brookings, SD 57007, USA;
| | - Taehee Han
- Department of Production Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, 00014 Helsinki, Finland;
| | - Yoo Yong Kim
- Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
- Correspondence: ; Tel.: +82-2-878-5838; Fax: +82-2-878-5839
| |
Collapse
|
175
|
Lü X, Han SC, Li ZG, Li LY, Li J. Gene Characterization and Enzymatic Activities Related to Trehalose Metabolism of In Vitro Reared Trichogramma dendrolimi Matsumura (Hymenoptera: Trichogrammatidae) under Sustained Cold Stress. INSECTS 2020; 11:insects11110767. [PMID: 33171708 PMCID: PMC7694998 DOI: 10.3390/insects11110767] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/28/2020] [Accepted: 11/04/2020] [Indexed: 11/18/2022]
Abstract
Simple Summary Trehalose is a non-reducing disaccharide that presents in a wide variety of organisms, where it serves as an energy source or stress protectant. Trehalose is the most characteristic sugar of insect hemolymph and plays a crucial role in the regulation of insect growth and development. Trichogramma species are economically important egg parasitoids, which are being mass-produced for biological control programs worldwide. Many Trichogramma species could be mass reared on artificial mediums (not insect eggs), in which components contain insect hemolymph and trehalose. These in vitro-reared parasitoid wasps were strongly affected by cold storage, but prepupae could be successfully stored at 13 °C for up to 4 weeks. The aims of the present study were to determine the role of trehalose and the relationship between trehalose and egg parasitoid stress resistance. Our study revealed that (1) trehalose regulated the growth under sustained cold stress; (2) prepupal stage is a critical developmental period and 13 °C is the cold tolerance threshold temperature; (3) in vitro reared Trichogramma dendrolimi could be reared at temperatures of 16 °C, 20 °C, and 23 °C to reduce rearing costs. This finding identifies a low cost, prolonged development rearing method for T. dendrolimi, which will facilitate improved mass rearing methods for biocontrol. Abstract Trichogramma spp. is an important egg parasitoid wasp for biocontrol of agriculture and forestry insect pests. Trehalose serves as an energy source or stress protectant for insects. To study the potential role of trehalose in cold resistance on an egg parasitoid, cDNA for trehalose-6-phosphate synthase (TPS) and soluble trehalase (TRE) from Trichogramma dendrolimi were cloned and characterized. Gene expressions and enzyme activities of TdTPS and TdTRE were determined in larvae, prepupae, pupae, and adults at sustained low temperatures, 13 °C and 16 °C. TdTPS and TdTRE expressions had similar patterns with higher levels in prepupae at 13 °C and 16 °C. TdTPS enzyme activities increased with a decrease of temperature, and TdTRE activity in prepupae decreased sharply at these two low temperatures. In vitro reared T. dendrolimi could complete entire development above 13 °C, and the development period was prolonged without cold injury. Results indicated trehalose might regulate growth and the metabolic process of cold tolerance. Moreover, 13 °C is the cold tolerance threshold temperature and the prepupal stage is a critical developmental period for in vitro reared T. dendrolimi. These findings identify a low cost, prolonged development rearing method, and the cold tolerance for T. dendrolimi, which will facilitate improved mass rearing methods for biocontrol.
Collapse
Affiliation(s)
- Xin Lü
- Correspondence: (X.L.); (J.L.)
| | | | | | | | - Jun Li
- Correspondence: (X.L.); (J.L.)
| |
Collapse
|
176
|
Rajarapu SP, Bansal R, Mittapelly P, Michel A. Transcriptome Analysis Reveals Functional Diversity in Salivary Glands of Plant Virus Vector, Graminella nigrifrons. Genes (Basel) 2020; 11:E1289. [PMID: 33138242 PMCID: PMC7716219 DOI: 10.3390/genes11111289] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 09/23/2020] [Accepted: 10/22/2020] [Indexed: 11/16/2022] Open
Abstract
Insect salivary glands play an important role for host feeding, specifically by secreting salivary proteins for digestion and potentially modulating host defenses. Compared to other hemipterans, the significance of salivary glands is less studied in the black-faced leafhopper, Graminella nigrifrons, a crop pest that vectors several agronomically important plant viruses. To identify functionally important genes in the salivary glands of the black-faced leafhopper, we compared transcriptomes between adult salivary glands (SG) and the remaining carcasses. We identified 14,297 salivary gland-enriched transcripts and 195 predicted secretory peptides (i.e., with a signal peptide and extracellular localization characteristics). Overall, the SG transcriptome included functions such as 'oxidoreduction', 'membrane transport', and 'ATP-binding', which might be important for the fundamental physiology of this tissue. We further evaluated transcripts with potential contributions in host feeding using RT-qPCR. Two SG-enriched transcripts (log2 fold change > 5), GnP19 and GnE63 (a putative calcium binding protein), were significantly upregulated in maize-fed adults relative to starved adults, validating their importance in feeding. The SG-enriched transcripts of the black-faced leafhopper could play a potential role for interacting with maize and could be targets of interest for further functional studies and improve pest control and disease transmission.
Collapse
Affiliation(s)
- Swapna Priya Rajarapu
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NA 27606, USA
- Department of Entomology, The Center for Applied Plant Sciences, OARDC, The Ohio State University, Wooster, OH 44691, USA; (R.B.); (P.M.); (A.M.)
| | - Raman Bansal
- Department of Entomology, The Center for Applied Plant Sciences, OARDC, The Ohio State University, Wooster, OH 44691, USA; (R.B.); (P.M.); (A.M.)
- USDA-ARS, San Joaquin Valley Agricultural Sciences Center, 9611 South Riverbend Avenue, Parlier, CA 93648, USA
| | - Priyanka Mittapelly
- Department of Entomology, The Center for Applied Plant Sciences, OARDC, The Ohio State University, Wooster, OH 44691, USA; (R.B.); (P.M.); (A.M.)
- USDA-APHIS PPQ, 5936 Ford Court, Suite 200, Brighton, MI 48116, USA
| | - Andrew Michel
- Department of Entomology, The Center for Applied Plant Sciences, OARDC, The Ohio State University, Wooster, OH 44691, USA; (R.B.); (P.M.); (A.M.)
| |
Collapse
|
177
|
Ranganathan S, Ilavarasi AV, Palaka BK, Kuppusamy D, Ampasala DR. Cloning, functional characterization and screening of potential inhibitors for Chilo partellus chitin synthase A using in silico, in vitro and in vivo approaches. J Biomol Struct Dyn 2020; 40:1416-1429. [PMID: 33000693 DOI: 10.1080/07391102.2020.1827034] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Chitin synthase (CHS) is one of the crucial enzymes that play an essential role in chitin synthesis during the molting process, and it is considered to be the specific target to control insect pests. Currently, there are no potent inhibitors available in the market, which specifically target this enzyme. Pyrimidine nucleoside peptide, nikkomycin Z, binds to nucleotide-binding sites of fungal and insect CHS. But, their mode of action is still fragmentary due to the lack of a 3Dstructure of CHS. Chilo partellus is a severe pest insect of major food crops such as maize and sorghum, in an attempt to target integument expressed cuticular CpCHS. The CpChsA cDNA was cloned, and subsequently, their developmental and tissue-specific expression was studied. The 3D structure of the CHS catalytic domain was modeled, after which natural compounds were screened using a virtual screening workflow and resulted in the identification of five hit molecules. Molecular dynamics simulations were performed to investigate the dynamics and interactions of hits with CpCHS. The obtained results revealed that the compounds kasugamycin, rutin and robinin could act as potent inhibitors of CpCHS. All three molecules were observed to significantly reduce the chitin production as validated using in vitro and in vivo studies. Thus, this study aims to provide a set of novel inhibitor molecules against CpCHS for controlling the pest population. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
| | | | - Bhagath Kumar Palaka
- Centre for Bioinformatics, School of Life Sciences, Pondicherry University, Pondicherry, India
| | - Dheebika Kuppusamy
- Department of Pathology, Jawaharlal Institute of Postgraduate Medical Education and Research, Pondicherry, India
| | - Dinakara Rao Ampasala
- Centre for Bioinformatics, School of Life Sciences, Pondicherry University, Pondicherry, India
| |
Collapse
|
178
|
Transcriptomic profiling of the digestive tract of the rat flea, Xenopsylla cheopis, following blood feeding and infection with Yersinia pestis. PLoS Negl Trop Dis 2020; 14:e0008688. [PMID: 32946437 PMCID: PMC7526888 DOI: 10.1371/journal.pntd.0008688] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 09/30/2020] [Accepted: 08/10/2020] [Indexed: 01/29/2023] Open
Abstract
Yersinia pestis, the causative agent of plague, is a highly lethal pathogen transmitted by the bite of infected fleas. Once ingested by a flea, Y. pestis establish a replicative niche in the gut and produce a biofilm that promotes foregut colonization and transmission. The rat flea Xenopsylla cheopis is an important vector to several zoonotic bacterial pathogens including Y. pestis. Some fleas naturally clear themselves of infection; however, the physiological and immunological mechanisms by which this occurs are largely uncharacterized. To address this, RNA was extracted, sequenced, and distinct transcript profiles were assembled de novo from X. cheopis digestive tracts isolated from fleas that were either: 1) not fed for 5 days; 2) fed sterile blood; or 3) fed blood containing ~5x108 CFU/ml Y. pestis KIM6+. Analysis and comparison of the transcript profiles resulted in identification of 23 annotated (and 11 unknown or uncharacterized) digestive tract transcripts that comprise the early transcriptional response of the rat flea gut to infection with Y. pestis. The data indicate that production of antimicrobial peptides regulated by the immune-deficiency pathway (IMD) is the primary flea immune response to infection with Y. pestis. The remaining infection-responsive transcripts, not obviously associated with the immune response, were involved in at least one of 3 physiological themes: 1) alterations to chemosensation and gut peristalsis; 2) modification of digestion and metabolism; and 3) production of chitin-binding proteins (peritrophins). Despite producing several peritrophin transcripts shortly after feeding, including a subset that were infection-responsive, no thick peritrophic membrane was detectable by histochemistry or electron microscopy of rat flea guts for the first 24 hours following blood-feeding. Here we discuss the physiological implications of rat flea infection-responsive transcripts, the function of X. cheopis peritrophins, and the mechanisms by which Y. pestis may be cleared from the flea gut. The goal of this study was to characterize the transcriptional response of the digestive tract of the rat flea, Xenopsylla cheopis, to infection with Yersinia pestis, the causative agent of plague. This flea is generally considered the most prevalent and efficient vector of Y. pestis. Because most pathogens transmitted by fleas, including Y. pestis, reside in the insect digestive tract prior to transmission, the transcriptional program induced in the gut epithelium likely influences bacterial colonization of the flea. To determine the specific response to infection, RNA profiles were generated from fleas that were either unfed, fed sterile blood, or fed blood containing Y. pestis. Comparative analyses of the transcriptomes resulted in identification of 34 infection-responsive transcripts. The functions of these differentially regulated genes indicate that infection of fleas with Y. pestis induces a limited immune response and potentially alters the insect’s behavior, metabolism, and other aspects of its physiology. Based on these data, we describe potential mechanisms fleas use to eliminate bacteria and the corresponding strategies Y. pestis uses to resist elimination. These findings may be helpful for developing targeted strategies to make fleas resistant to microbial infection and thereby reduce the incidence of diseases they spread.
Collapse
|
179
|
Mani V, Reddy CS, Lee SK, Park S, Ko HR, Kim DG, Hahn BS. Chitin Biosynthesis Inhibition of Meloidogyne incognita by RNAi-Mediated Gene Silencing Increases Resistance to Transgenic Tobacco Plants. Int J Mol Sci 2020; 21:E6626. [PMID: 32927773 PMCID: PMC7555284 DOI: 10.3390/ijms21186626] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 09/07/2020] [Accepted: 09/08/2020] [Indexed: 12/28/2022] Open
Abstract
Meloidogyne incognita is a devastating plant parasitic nematode that causes root knot disease in a wide range of plants. In the present study, we investigated host-induced RNA interference (RNAi) gene silencing of chitin biosynthesis pathway genes (chitin synthase, glucose-6-phosphate isomerase, and trehalase) in transgenic tobacco plants. To develop an RNAi vector, ubiquitin (UBQ1) promoter was directly cloned, and to generate an RNAi construct, expression of three genes was suppressed using the GATEWAY system. Further, transgenic Nicotiana benthamiana lines expressing dsRNA for chitin synthase (CS), glucose-6-phosphate isomerase (GPI), and trehalase 1 (TH1) were generated. Quantitative PCR analysis confirmed endogenous mRNA expression of root knot nematode (RKN) and revealed that all three genes were more highly expressed in the female stage than in eggs and in the parasitic stage. In vivo, transformed roots were challenged with M. incognita. The number of eggs and root knots were significantly decreased by 60-90% in RNAi transgenic lines. As evident, root galls obtained from transgenic RNAi lines exhibited 0.01- to 0.70-fold downregulation of transcript levels of targeted genes compared with galls isolated from control plants. Furthermore, phenotypic characteristics such as female size and width were also marginally altered, while effect of egg mass per egg number in RNAi transgenic lines was reduced. These results indicate the relevance and significance of targeting chitin biosynthesis genes during the nematode lifespan. Overall, our results suggest that further developments in RNAi efficiency in commercially valued crops can be applied to employ RNAi against other plant parasitic nematodes.
Collapse
Affiliation(s)
- Vimalraj Mani
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Korea; (V.M.); (C.S.R.); (S.-K.L.); (S.P.)
| | - Chinreddy Subramanyam Reddy
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Korea; (V.M.); (C.S.R.); (S.-K.L.); (S.P.)
| | - Seon-Kyeong Lee
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Korea; (V.M.); (C.S.R.); (S.-K.L.); (S.P.)
| | - Soyoung Park
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Korea; (V.M.); (C.S.R.); (S.-K.L.); (S.P.)
| | - Hyoung-Rai Ko
- Crop Protection Division, National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, Korea;
| | - Dong-Gwan Kim
- Department of Bio-Industry and Bio-Resource Engineering, Sejong University, Seoul 05006, Korea;
| | - Bum-Soo Hahn
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Korea
| |
Collapse
|
180
|
Xu G, Yi Y, Lyu H, Gong C, Feng Q, Song Q, Peng X, Liu L, Zheng S. DNA methylation suppresses chitin degradation and promotes the wing development by inhibiting Bmara-mediated chitinase expression in the silkworm, Bombyx mori. Epigenetics Chromatin 2020; 13:34. [PMID: 32887667 PMCID: PMC7472703 DOI: 10.1186/s13072-020-00356-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 08/26/2020] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND DNA methylation, as an essential epigenetic modification found in mammals and plants, has been implicated to play an important role in insect reproduction. However, the functional role and the regulatory mechanism of DNA methylation during insect organ or tissue development are far from being clear. RESULTS Here, we found that DNA methylation inhibitor (5-aza-dC) treatment in newly molted pupae decreased the chitin content of pupal wing discs and adult wings and resulted in wing deformity of Bombyx mori. Transcriptome analysis revealed that the up-regulation of chitinase 10 (BmCHT10) gene might be related to the decrease of chitin content induced by 5-aza-dC treatment. Further, the luciferase activity assays demonstrated that DNA methylation suppressed the promoter activity of BmCHT10 by down-regulating the transcription factor, homeobox protein araucan (Bmara). Electrophoretic mobility shift assay, DNA pull-down and chromatin immunoprecipitation demonstrated that Bmara directly bound to the BmCHT10 promoter. Therefore, DNA methylation is involved in keeping the structural integrity of the silkworm wings from unwanted chitin degradation, as a consequence, it promotes the wing development of B. mori. CONCLUSIONS This study reveals that DNA methylation plays an important role in the wing development of B. mori. Our results support that the indirect transcriptional repression of a chitin degradation-related gene BmCHT10 by DNA methylation is necessary to keep the proper wing development in B. mori.
Collapse
Affiliation(s)
- Guanfeng Xu
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China.,Guangzhou Key Laboratory of Insect Development Regulation and Applied Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Yangqin Yi
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China.,Guangzhou Key Laboratory of Insect Development Regulation and Applied Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Hao Lyu
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China.,Guangzhou Key Laboratory of Insect Development Regulation and Applied Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Chengcheng Gong
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China.,Guangzhou Key Laboratory of Insect Development Regulation and Applied Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Qili Feng
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China.,Guangzhou Key Laboratory of Insect Development Regulation and Applied Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Qisheng Song
- Division of Plant Sciences, College of Agriculture, Food and Natural Resources, University of Missouri, Columbia, MO, 65211, USA
| | - Xuezhen Peng
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China.,Guangzhou Key Laboratory of Insect Development Regulation and Applied Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Lin Liu
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China.,Guangzhou Key Laboratory of Insect Development Regulation and Applied Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Sichun Zheng
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China. .,Guangzhou Key Laboratory of Insect Development Regulation and Applied Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China.
| |
Collapse
|
181
|
Zhang R, Zhao X, Liu X, Zhang X, Yu R, Ma E, Moussian B, Zhu K, Zhang J. Effect of RNAi-mediated silencing of two Knickkopf family genes (LmKnk2 and LmKnk3) on cuticle formation and insecticide susceptibility in Locusta migratoria. PEST MANAGEMENT SCIENCE 2020; 76:2907-2917. [PMID: 32358831 DOI: 10.1002/ps.5879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 04/08/2020] [Accepted: 05/01/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Knickkopf (Knk) proteins play crucial roles in the formation of insect cuticle. Recent studies in the holometabolous insect red flour beetle (Tribolium castaneum) have shown that three Knk genes encoding TcKnk, TcKnk2 and TcKnk3 play different but essential roles at different developmental stages and in different tissues. However, the functions of Knk genes had not been fully explored in hemimetabolous insects such as the migratory locust Locusta migratoria. RESULTS We identified three transcripts of LmKnk-like genes LmKnk2 and LmKnk3 with the full-length cDNA sequences, which were named as LmKnk2, LmKnk3-FL and LmKnk3-5'. These three transcripts were highly expressed before molting and mainly expressed in the integument. Among these genes, silencing only LmKnk3-5' by RNA interference (RNAi) caused molting defects and high mortality of the locusts. Injection of dsLmKnk3-5' dramatically decreased chitin content, but did not affect cuticle laminar ultra-structures in the integument. After the knockdown of LmKnk3-5' transcript, lipid deposition on the cuticle surface was impeded, and locusts exhibited increased susceptibility to each of four insecticides in three different classes. However, no visible phenotypic changes were observed after LmKnk2 or LmKnk3-FL was silenced by RNAi. CONCLUSION We demonstrate that LmKnk3-5' is essential for cuticle formation in L. migratoria. This contrasts the findings that the cognate protein in T. castaneum TcKnk3-5' is dispensable for cuticle formation and survival. Hence, we provide some evidence that the function of Knk-type proteins may be species-specific. We therefore think that LmKnk3-5' may be a good target for the application of RNAi-based technologies for species-specific insect pest management. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Rui Zhang
- Institute of Applied Biology and College of Life Science, Shanxi University, Taiyuan, China
- College of Life Science, Shanxi Datong University, Datong, China
| | - Xiaoming Zhao
- Institute of Applied Biology and College of Life Science, Shanxi University, Taiyuan, China
| | - Xiaojian Liu
- Institute of Applied Biology and College of Life Science, Shanxi University, Taiyuan, China
| | - Xueyao Zhang
- Institute of Applied Biology and College of Life Science, Shanxi University, Taiyuan, China
| | - Rongrong Yu
- Institute of Applied Biology and College of Life Science, Shanxi University, Taiyuan, China
| | - Enbo Ma
- Institute of Applied Biology and College of Life Science, Shanxi University, Taiyuan, China
| | - Bernard Moussian
- Université Côte d'Azur, CNRS, Inserm, Institute of Biology Valrose, Nice, France
| | - KunYan Zhu
- Department of Entomology, Kansas State University, Manhattan, KS, USA
| | - Jianzhen Zhang
- Institute of Applied Biology and College of Life Science, Shanxi University, Taiyuan, China
| |
Collapse
|
182
|
Shen S, Dong L, Lu H, Dong Y, Yang Q, Zhang J. Synthesis of ureido thioglycosides as novel insect β‑N‑acetylhexosaminidase OfHex1 inhibitors. Bioorg Med Chem 2020; 28:115602. [PMID: 32631559 DOI: 10.1016/j.bmc.2020.115602] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/07/2020] [Accepted: 06/09/2020] [Indexed: 02/05/2023]
Abstract
The insect β-N-acetylhexosaminidase OfHex1 from Ostrinia furnacalis (one of the most destructive agricultural pests) has been considered as a promising pesticide target. In this study, a series of novel and readily available ureido thioglycosides were designed and synthesized based on the catalytic mechanism and the co-crystal structures of OfHex1 with substrates. After evaluation via enzyme inhibition experiments, thioglycosides 11c and 15k were found to have inhibitory activities against OfHex1 with the Ki values of 25.6 µM and 53.8 µM, respectively. In addition, all these ureido thioglycosides exhibited high selectivity toward OfHex1 over hOGA and HsHexB (Ki > 100 μM). Furthermore, to investigate the inhibitory mechanism, the possible binding modes of 11c and 15k with OfHex1 were deduced based on molecular docking analysis. This work may provide useful structural starting points for further rational design of potent inhibitors of OfHex1.
Collapse
Affiliation(s)
- Shengqiang Shen
- Department of Pesticide Chemistry, College of Science, China Agricultural University, Beijing, China
| | - Lili Dong
- Department of Pesticide Chemistry, College of Science, China Agricultural University, Beijing, China
| | - Huizhe Lu
- Department of Pesticide Chemistry, College of Science, China Agricultural University, Beijing, China
| | - Yanhong Dong
- Department of Pesticide Chemistry, College of Science, China Agricultural University, Beijing, China
| | - Qing Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection and Shenzhen Agricultural Genome Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China.
| | - Jianjun Zhang
- Department of Pesticide Chemistry, College of Science, China Agricultural University, Beijing, China.
| |
Collapse
|
183
|
Yang C, Ou D, Guo W, Lü J, Guo C, Qiu B, Pan H. De Novo Assembly of the Asian Citrus Psyllid Diaphorina citri (Hemiptera: Psyllidae) Transcriptome across Developmental Stages. Int J Mol Sci 2020; 21:ijms21144974. [PMID: 32674498 PMCID: PMC7404022 DOI: 10.3390/ijms21144974] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 07/09/2020] [Accepted: 07/12/2020] [Indexed: 11/16/2022] Open
Abstract
Asian citrus psyllid Diaphorina citri Kuwayama is an important economic pest of citrus, as it transmits Candidatus Liberibacter asiaticus, the causative agent of huanglongbing. In this study, we used RNA-seq to identify novel genes and provide the first high-resolution view of the of D. citri transcriptome throughout development. The transcriptomes of D. citri during eight developmental stages, including the egg, five instars, and male and female adults were sequenced. In total, 115 million clean reads were obtained and assembled into 354,726 unigenes with an average length of 925.65 bp and an N50 length of 1733 bp. Clusters of Orthologous Groups, Gene Ontology, and Kyoto Encyclopedia of Genes and Genomes analyses were conducted to functionally annotate the genes. Differential expression analysis highlighted developmental stage-specific expression patterns. Furthermore, two trehalase genes were characterized with lower expression in adults compared to that in the other stages. The RNA interference (RNAi)-mediated suppression of the two trehalase genes resulted in significantly high D. citri mortality. This study enriched the genomic information regarding D. citri. Importantly, these data represent the most comprehensive transcriptomic resource currently available for D. citri and will facilitate functional genomics studies of this notorious pest.
Collapse
Affiliation(s)
- Chunxiao Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China;
- Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, South China Agricultural University, Guangzhou 510642, China; (D.O.); (W.G.); (J.L.); (C.G.)
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Da Ou
- Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, South China Agricultural University, Guangzhou 510642, China; (D.O.); (W.G.); (J.L.); (C.G.)
| | - Wei Guo
- Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, South China Agricultural University, Guangzhou 510642, China; (D.O.); (W.G.); (J.L.); (C.G.)
| | - Jing Lü
- Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, South China Agricultural University, Guangzhou 510642, China; (D.O.); (W.G.); (J.L.); (C.G.)
| | - Changfei Guo
- Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, South China Agricultural University, Guangzhou 510642, China; (D.O.); (W.G.); (J.L.); (C.G.)
| | - Baoli Qiu
- Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, South China Agricultural University, Guangzhou 510642, China; (D.O.); (W.G.); (J.L.); (C.G.)
- Correspondence: (B.Q.); (H.P.)
| | - Huipeng Pan
- Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, South China Agricultural University, Guangzhou 510642, China; (D.O.); (W.G.); (J.L.); (C.G.)
- Correspondence: (B.Q.); (H.P.)
| |
Collapse
|
184
|
Temporal Coordination of Collective Migration and Lumen Formation by Antagonism between Two Nuclear Receptors. iScience 2020; 23:101335. [PMID: 32682323 PMCID: PMC7366032 DOI: 10.1016/j.isci.2020.101335] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 06/13/2020] [Accepted: 06/26/2020] [Indexed: 02/01/2023] Open
Abstract
During development, cells undergo multiple, distinct morphogenetic processes to form a tissue or organ, but how their temporal order and time interval are determined remain poorly understood. Here we show that the nuclear receptors E75 and DHR3 regulate the temporal order and time interval between the collective migration and lumen formation of a coherent group of cells named border cells during Drosophila oogenesis. We show that E75, in response to ecdysone signaling, antagonizes the activity of DHR3 during border cell migration, and DHR3 is necessary and sufficient for the subsequent lumen formation that is critical for micropyle morphogenesis. DHR3's lumen-inducing function is mainly mediated through βFtz-f1, another nuclear receptor and transcription factor. Furthermore, both DHR3 and βFtz-f1 are required for chitin secretion into the lumen, whereas DHR3 is sufficient for chitin secretion. Lastly, DHR3 and βFtz-f1 suppress JNK signaling in the border cells to downregulate cell adhesion during lumen formation. E75 antagonizes DHR3's function in inducing lumen formation of border cells (BCs) E75 and DHR3 temporally coordinate collective migration and lumen formation of BCs DHR3 is required and sufficient for chitin secretion into the lumen DHR3 and βFtz-f1 downregulate JNK signaling and cell adhesion in the BCs
Collapse
|
185
|
Shao ZM, Li YJ, Ding JH, Liu ZX, Zhang XR, Wang J, Sheng S, Wu FA. Identification, Characterization, and Functional Analysis of Chitin Synthase Genes in Glyphodes pyloalis Walker (Lepidoptera: Pyralidae). Int J Mol Sci 2020; 21:ijms21134656. [PMID: 32629944 PMCID: PMC7370082 DOI: 10.3390/ijms21134656] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 06/27/2020] [Accepted: 06/29/2020] [Indexed: 02/05/2023] Open
Abstract
Glyphodes pyloalis Walker (G. pyloalis) causes significant damage to mulberry every year, and we currently lack effective and environmentally friendly ways to control the pest. Chitin synthase (CHS) is a critical regulatory enzyme related to chitin biosynthesis, which plays a vital role in the growth and development of insects. The function of CHS in G. pyloalis, however, has not been studied. In this study, two chitin synthase genes (GpCHSA and GpCHSB) were screened from our previously created transcriptome database. The complete coding sequences of the two genes are 5,955 bp and 5,896 bp, respectively. Expression of GpCHSA and GpCHSB could be detected throughout all developmental stages. Relatively high expression levels of GpCHSA occurred in the head and integument and GpCHSB was most highly expressed in the midgut. Moreover, silencing of GpCHSA and GpCHSB using dsRNA reduced expression of downstream chitin metabolism pathway genes and resulted in abnormal development and wings stretching, but did not affect normal pupating of larvae. Furthermore, the inhibitor of chitin synthesis diflubenzuron (DFB) was used to further validate the RNAi result. DFB treatment significantly improved expression of GpCHSA, except GpCHSB, and their downstream genes, and also effected G. Pyloali molting at 48 h (62% mortality rate) and 72 h (90% mortality rate), respectively. These results show that GpCHSA and GpCHSB play critical roles in the development and wing stretching in G. pyloalis adults, indicating that the genes are attractive potential pest control targets.
Collapse
Affiliation(s)
- Zuo-Min Shao
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212018, China; (Z.-M.S.); (Y.-J.L.); (J.-H.D.); (Z.-X.L.); (X.-R.Z.); (J.W.); (S.S.)
| | - Yi-Jiangcheng Li
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212018, China; (Z.-M.S.); (Y.-J.L.); (J.-H.D.); (Z.-X.L.); (X.-R.Z.); (J.W.); (S.S.)
| | - Jian-Hao Ding
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212018, China; (Z.-M.S.); (Y.-J.L.); (J.-H.D.); (Z.-X.L.); (X.-R.Z.); (J.W.); (S.S.)
| | - Zhi-Xiang Liu
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212018, China; (Z.-M.S.); (Y.-J.L.); (J.-H.D.); (Z.-X.L.); (X.-R.Z.); (J.W.); (S.S.)
| | - Xiao-Rui Zhang
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212018, China; (Z.-M.S.); (Y.-J.L.); (J.-H.D.); (Z.-X.L.); (X.-R.Z.); (J.W.); (S.S.)
| | - Jun Wang
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212018, China; (Z.-M.S.); (Y.-J.L.); (J.-H.D.); (Z.-X.L.); (X.-R.Z.); (J.W.); (S.S.)
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Science, Zhenjiang 212018, China
| | - Sheng Sheng
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212018, China; (Z.-M.S.); (Y.-J.L.); (J.-H.D.); (Z.-X.L.); (X.-R.Z.); (J.W.); (S.S.)
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Science, Zhenjiang 212018, China
| | - Fu-An Wu
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212018, China; (Z.-M.S.); (Y.-J.L.); (J.-H.D.); (Z.-X.L.); (X.-R.Z.); (J.W.); (S.S.)
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Science, Zhenjiang 212018, China
- Correspondence:
| |
Collapse
|
186
|
Haugen HJ, Basu P, Sukul M, Mano JF, Reseland JE. Injectable Biomaterials for Dental Tissue Regeneration. Int J Mol Sci 2020; 21:E3442. [PMID: 32414077 PMCID: PMC7279163 DOI: 10.3390/ijms21103442] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 05/08/2020] [Indexed: 12/17/2022] Open
Abstract
Injectable biomaterials scaffolds play a pivotal role for dental tissue regeneration, as such materials are highly applicable in the dental field, particularly when compared to pre-formed scaffolds. The defects in the maxilla-oral area are normally small, confined and sometimes hard to access. This narrative review describes different types of biomaterials for dental tissue regeneration, and also discusses the potential use of nanofibers for dental tissues. Various studies suggest that tissue engineering approaches involving the use of injectable biomaterials have the potential of restoring not only dental tissue function but also their biological purposes.
Collapse
Affiliation(s)
- Håvard Jostein Haugen
- Department of Biomaterials, Institute of Clinical Dentistry, Faculty of Odontology, University of Oslo, 0317 Oslo, Norway; (P.B.); (M.S.); (J.E.R.)
| | - Poulami Basu
- Department of Biomaterials, Institute of Clinical Dentistry, Faculty of Odontology, University of Oslo, 0317 Oslo, Norway; (P.B.); (M.S.); (J.E.R.)
| | - Mousumi Sukul
- Department of Biomaterials, Institute of Clinical Dentistry, Faculty of Odontology, University of Oslo, 0317 Oslo, Norway; (P.B.); (M.S.); (J.E.R.)
| | - João F Mano
- CICECO – Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Janne Elin Reseland
- Department of Biomaterials, Institute of Clinical Dentistry, Faculty of Odontology, University of Oslo, 0317 Oslo, Norway; (P.B.); (M.S.); (J.E.R.)
| |
Collapse
|
187
|
Yang H, Qi H, Hao Z, Shao X, Liu T, Yang Q, Qian X. Thiazolylhydrazone dervatives as inhibitors for insect N-acetyl-β-d-hexosaminidase and chitinase. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2019.11.035] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
188
|
Liu T, Guo X, Bu Y, Zhou Y, Duan Y, Yang Q. Structural and biochemical insights into an insect gut-specific chitinase with antifungal activity. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2020; 119:103326. [PMID: 31968227 DOI: 10.1016/j.ibmb.2020.103326] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 01/08/2020] [Accepted: 01/16/2020] [Indexed: 06/10/2023]
Abstract
The antifungal activity of insect chitinase has rarely been studied. Here, we show that chitinase ChtIV, which is specifically expressed in the midgut of Asian corn borer (Ostrinia furnacalis), has antifungal activity toward phytopathogenic fungi. ChtIV exhibited high stability and mycelial hydrolytic activity in the extreme midgut environment, which has a pH of 10 and is rich in proteases. Hyper-N-glycosylation and reduced electrostatic interactions ensure the stability of ChtIV in the midgut. The structural characteristics of ChtIV are similar to two plant antifungal chitinases but distinct from an insect chitinase for cuticular chitin degradation in both the substrate-binding cleft and auxiliary binding motif. Since the phytopathogenic fungi are those that frequently invade corn, ChtIV may play a role in insect immune system and become a potential pesticide target. The crystal structures of ChtIV and its complexes with penta-N-acetylchitopentaose (a substrate) and allosamidin (an inhibitor) were obtained, which may facilitate rational design of ChtIV inhibitors as agrichemicals.
Collapse
Affiliation(s)
- Tian Liu
- School of Bioengineering, Dalian University of Technology, Dalian, 116024, China
| | - Xiaoguang Guo
- School of Bioengineering, Dalian University of Technology, Dalian, 116024, China
| | - Yunfei Bu
- School of Bioengineering, Dalian University of Technology, Dalian, 116024, China
| | - Yong Zhou
- School of Software, Dalian University of Technology, Dalian, 116024, China
| | - Yanwei Duan
- School of Bioengineering, Dalian University of Technology, Dalian, 116024, China
| | - Qing Yang
- School of Bioengineering, Dalian University of Technology, Dalian, 116024, China; State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| |
Collapse
|
189
|
Ding N, Wang Z, Geng N, Zou H, Zhang G, Cao C, Li X, Zou C. Silencing Br-C impairs larval development and chitin synthesis in Lymantria dispar larvae. JOURNAL OF INSECT PHYSIOLOGY 2020; 122:104041. [PMID: 32126216 DOI: 10.1016/j.jinsphys.2020.104041] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 02/28/2020] [Accepted: 02/28/2020] [Indexed: 06/10/2023]
Abstract
In insects, 20-hydroxyecdysone (20E) mediates developmental transitions and regulates molting processes through activation of a series of transcription factors. Broad-Complex (Br-C), a vital gene in the 20E signalling pathway, plays crucial roles during insect growth processes. However, whether Br-C affects chitin synthesis in insects remains unclear. In the present study, the Br-C gene from Lymantria dispar, a notorious defoliator of forestry, was identified based on transcriptome data, and subjected to bioinformatic analysis. The regulatory functions of LdBr-C in chitin synthesis and metabolism in L. dispar larvae were analysed by RNA interference (RNAi). The full-length LdBr-C gene (1431 bp) encodes a 477 amino acid (aa) polypeptide containing a common BRcore region (391 aa) at the N-terminus and a C-terminal Zinc finger domain (56 aa) harbouring two characteristic C2H2 motifs (CXXC and HXXXXH). Phylogenetic analyses showed that LdBr-C shares highest homology and identity with Br-C isoform 7 (83.12%) of Helicoverpa armigera. Expression profiles indicate that LdBr-C was expressed throughout larval and pupal stages, and highly expressed in prepupal and pupal stages. Furthermore, LdBr-C expression was strongly induced by exogenous 20E, and suppressed dramatically after application of dsLdBr-C. Bioassay results showed that knockdown of LdBr-C caused larval developmental deformity, significant weight loss, and a mortality rate of 67.18%. Knockdown of LdBr-C significantly down-regulated transcription levels of eight critical genes (LdTre1, LdTre2, LdG6PI, LdUAP, LdCHS1, LdCHS2, LdTPS and LdCHT) related to chitin synthesis and metabolism, thereby lowering the chitin content in the midgut and epidermis. Our findings demonstrate that Br-C knockdown impairs larval development and chitin synthesis in L. dispar.
Collapse
Affiliation(s)
- Nan Ding
- School of Forestry, Northeast Forestry University, Harbin 150040, PR China
| | - Zhiying Wang
- School of Forestry, Northeast Forestry University, Harbin 150040, PR China
| | - Nannan Geng
- School of Forestry, Northeast Forestry University, Harbin 150040, PR China
| | - Hang Zou
- School of Forestry, Northeast Forestry University, Harbin 150040, PR China
| | - Guocai Zhang
- School of Forestry, Northeast Forestry University, Harbin 150040, PR China
| | - Chuanwang Cao
- School of Forestry, Northeast Forestry University, Harbin 150040, PR China
| | - Xingpeng Li
- Jilin Province Academy of Forestry Sciences, PR China
| | - Chuanshan Zou
- School of Forestry, Northeast Forestry University, Harbin 150040, PR China.
| |
Collapse
|
190
|
Shao ZM, Li YJ, Zhang XR, Chu J, Ma JH, Liu ZX, Wang J, Sheng S, Wu FA. Identification and Functional Study of Chitin Metabolism and Detoxification-Related Genes in Glyphodes pyloalis Walker (Lepidoptera: Pyralidae) Based on Transcriptome Analysis. Int J Mol Sci 2020; 21:ijms21051904. [PMID: 32164390 PMCID: PMC7084822 DOI: 10.3390/ijms21051904] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/05/2020] [Accepted: 03/06/2020] [Indexed: 01/01/2023] Open
Abstract
Glyphodes pyloalis Walker (Lepidoptera: Pyralididae) is a serious pest in the sericulture industry, which has caused damage and losses in recent years. With the widespread use of insecticides, the insecticide resistance of G. pyloalis has becomes increasingly apparent. In order to find other effective methods to control G. pyloalis, this study performed a transcriptome analysis of the midgut, integument, and whole larvae. Transcriptome data were annotated with KEGG and GO, and they have been shown to be of high quality by RT-qPCR. The different significant categories of differentially expressed genes between the midgut and the integument suggested that the transcriptome data could be used for next analysis. With the exception of Dda9 (GpCDA5), 19 genes were involved in chitin metabolism, most of which had close protein–protein interactions. Among them, the expression levels of 11 genes, including GpCHSA, GpCDA1, GpCDA2, GpCDA4, GPCHT1, GPCHT2a, GPCHT3a, GPCHT7, GpTre1, GpTre2, and GpRtv were higher in the integument than in the midgut, while the expression levels of the last eight genes, including GpCHSB, GpCDA5, GpCHT2b, GpCHT3b, GpCHT-h, GpPAGM, GpNAGK, and GpUAP, were higher in the midgut than in the integument. Moreover, 282 detoxification-related genes were identified and can be divided into 10 categories, including cytochrome P450, glutathione S-transferase, carboxylesterase, nicotinic acetylcholine receptor, aquaporin, chloride channel, methoprene-tolerant, serine protease inhibitor, sodium channel, and calcium channel. In order to further study the function of chitin metabolism-related genes, dsRNA injection knocked down the expression of GpCDA1 and GpCHT3a, resulting in the significant downregulation of its downstream genes. These results provide an overview of chitin metabolism and detoxification of G. pyloalis and lay the foundation for the effective control of this pest in the sericulture industry.
Collapse
Affiliation(s)
- Zuo-min Shao
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212018, China; (Z.-m.S.); (Y.-j.L.); (X.-r.Z.); (J.C.); (Z.-x.L.); (J.W.)
| | - Yi-jiangcheng Li
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212018, China; (Z.-m.S.); (Y.-j.L.); (X.-r.Z.); (J.C.); (Z.-x.L.); (J.W.)
| | - Xiao-rui Zhang
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212018, China; (Z.-m.S.); (Y.-j.L.); (X.-r.Z.); (J.C.); (Z.-x.L.); (J.W.)
| | - Jie Chu
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212018, China; (Z.-m.S.); (Y.-j.L.); (X.-r.Z.); (J.C.); (Z.-x.L.); (J.W.)
| | - Jia-hui Ma
- Zhenjiang Runshen Sericulture Development Co., Ltd, Zhenjiang 212001, China;
| | - Zhi-xiang Liu
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212018, China; (Z.-m.S.); (Y.-j.L.); (X.-r.Z.); (J.C.); (Z.-x.L.); (J.W.)
| | - Jun Wang
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212018, China; (Z.-m.S.); (Y.-j.L.); (X.-r.Z.); (J.C.); (Z.-x.L.); (J.W.)
- The Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture, Sericultural Research Institute, Chinese Academy of Agricultural Science, Zhenjiang 212018, China
| | - Sheng Sheng
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212018, China; (Z.-m.S.); (Y.-j.L.); (X.-r.Z.); (J.C.); (Z.-x.L.); (J.W.)
- The Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture, Sericultural Research Institute, Chinese Academy of Agricultural Science, Zhenjiang 212018, China
- Correspondence: (S.S.); (F.-a.W.)
| | - Fu-an Wu
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212018, China; (Z.-m.S.); (Y.-j.L.); (X.-r.Z.); (J.C.); (Z.-x.L.); (J.W.)
- The Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture, Sericultural Research Institute, Chinese Academy of Agricultural Science, Zhenjiang 212018, China
- Correspondence: (S.S.); (F.-a.W.)
| |
Collapse
|
191
|
Chen Y, Ou J, Liu Y, Wu Q, Wen L, Zheng S, Li S, Feng Q, Liu L. Transcriptomic analysis of the testicular fusion in Spodoptera litura. BMC Genomics 2020; 21:171. [PMID: 32075574 PMCID: PMC7029529 DOI: 10.1186/s12864-020-6494-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 01/14/2020] [Indexed: 01/28/2023] Open
Abstract
Background Lepidoptera is one group of the largest plant-feeding insects and Spodoptera litura (Lepidoptera: Noctuidae) is one of the most serious agricultural pests in Asia countries. An interesting and unique phenomenon for gonad development of Lepidoptera is the testicular fusion. Two separated testes fused into a single one during the larva-to-pupa metamorphosis, which is believed to contribute to sperm production and the prevalence in field. To study the molecular mechanism of the testicular fusion, RNA sequencing (RNA-seq) experiments of the testes from 4-day-old sixth instar larvae (L6D4) (before fusion), 6-day-old sixth instar larvae (L6D6, prepupae) (on fusing) and 4-day-old pupae (P4D) (after fusion) of S. litura were performed. Results RNA-seq data of the testes showed that totally 12,339 transcripts were expressed at L6D4, L6D6 and P4D stages. A large number of differentially expressed genes (DEGs) were up-regulated from L6D4 to L6D6, and then more genes were down-regulated from L6D6 to P4D. The DEGs mainly belongs to the genes related to the 20E signal transduction pathway, transcription factors, chitin metabolism related enzymes, the families of cytoskeleton proteins, extracellular matrix (ECM) components, ECM-related protein, its receptor integrins and ECM-remodeling enzymes. The expression levels of these genes that were up-regulated significantly during the testicular fusion were verified by qRT-PCR. The matrix metalloproteinases (MMPs) were found to be the main enzymes related to the ECM degradation and contribute to the testicular fusion. The testis was not able to fuse if MMPs inhibitor GM6001 was injected into the 5th abdomen region at L6D6 early stage. Conclusions The transcriptome and DEGs analysis of the testes at L6D4, L6D6 and P4D stages provided genes expression information related to the testicular fusion in S. litura. These results indicated that cytoskeleton proteins, ECM-integrin interaction genes and ECM-related proteins were involved in cell migration, adhesion and fusion during the testicular fusion. The ECM degradation enzymes MMPs probably play a critical role in the fusion of testis.
Collapse
Affiliation(s)
- Yaqing Chen
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China.,Guangzhou Key Laboratory of Insect Development Regulation and Applied Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Jun Ou
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China.,Guangzhou Key Laboratory of Insect Development Regulation and Applied Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Yucheng Liu
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China.,Guangzhou Key Laboratory of Insect Development Regulation and Applied Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Qiong Wu
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China.,Guangzhou Key Laboratory of Insect Development Regulation and Applied Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Liang Wen
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China.,Guangzhou Key Laboratory of Insect Development Regulation and Applied Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Sichun Zheng
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China.,Guangzhou Key Laboratory of Insect Development Regulation and Applied Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Sheng Li
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China.,Guangzhou Key Laboratory of Insect Development Regulation and Applied Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Qili Feng
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China. .,Guangzhou Key Laboratory of Insect Development Regulation and Applied Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China.
| | - Lin Liu
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China. .,Guangzhou Key Laboratory of Insect Development Regulation and Applied Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China.
| |
Collapse
|
192
|
du Toit Y, Coles DW, Mewalal R, Christie N, Naidoo S. eCALIBRATOR: A Comparative Tool to Identify Key Genes and Pathways for Eucalyptus Defense Against Biotic Stressors. Front Microbiol 2020; 11:216. [PMID: 32127794 PMCID: PMC7039109 DOI: 10.3389/fmicb.2020.00216] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Accepted: 01/30/2020] [Indexed: 11/13/2022] Open
Abstract
Many pests and pathogens threaten Eucalyptus plantations. The study of defense responses in this economically important wood and fiber crop enables the discovery of novel pathways and genes, which may be adopted to improve resistance. Various functional genomics experiments have been conducted in Eucalyptus-biotic stress interactions following the availability of the Eucalyptus grandis genome, however, comparisons between these studies were limited largely due to a lack of comparative tools. To this end, we developed eCALIBRATOR http://ecalibrator.bi.up.ac.za, a tool for the comparison of Eucalyptus biotic stress interaction. The tool, which is not limited to Eucalyptus, allows the comparison of various datasets, provides a visual output in the form of Venn diagrams and clustering and extraction of lists for gene ontology enrichment analyses. We also demonstrate the usefulness of the tool in revealing pathways and key gene targets to further functionally characterize. We identified 708 differentially expressed E. grandis genes in common among responses to the insect pest Leptocybe invasa, oomycete pathogen Phytophthora cinnamomi and fungus Chrysoporthe austroafricana. Within this set of genes, one of the Gene Ontology terms enriched was "response to organonitrogen compound," with NITRATE TRANSPORTER 2.5 (NRT2.5) being a key gene, up-regulated under susceptible interactions and down-regulated under resistant interactions. Although previous functional genetics studies in Arabidopsis thaliana support a role in nitrate acquisition and remobilization under long-term nitrate starvation, the importance of NRT2.5 in plant defense is unclear. The T-DNA mutants of AtNRT2.5 were more resistant to Pseudomonas syringae pv. tomato pv tomato DC3000 inoculation than the wild-type counterpart, supporting a direct role for NRT2.5 in plant defense. Future studies will focus on characterizing the Eucalyptus ortholog of NRT2.5.
Collapse
Affiliation(s)
- Yves du Toit
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Donovin William Coles
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Ritesh Mewalal
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, DOE Joint Genome Institute, Berkeley, CA, United States
| | - Nanette Christie
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Sanushka Naidoo
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| |
Collapse
|
193
|
Zhang G, Zou H, Geng N, Ding N, Wang Y, Zhang J, Zou C. Fenoxycarb and methoxyfenozide (RH-2485) affected development and chitin synthesis through disturbing glycometabolism in Lymantria dispar larvae. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2020; 163:64-75. [PMID: 31973871 DOI: 10.1016/j.pestbp.2019.10.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 07/04/2019] [Accepted: 10/23/2019] [Indexed: 06/10/2023]
Abstract
Fenoxycarb as a juvenile hormone analogue and methoxyfenozide (RH-2485) as a 20-hydroxyecdysone (20E) agonist are two main insect growth regulators (IGRs) used for pest control, whose insecticidal mechanisms had been widely reported in past decades. However, there were few studies focused on their effects on the carbohydrate metabolism of insects. Here, we reported that two IGRs (fenoxycarb and RH-2485) significantly affected growth and development of L. dispar larvae and caused larval lethality. Furthermore, both contens of three sugars (glycogen, threhalose, glucose) in four tissues (fat body, midgut, hemolymph and epidermis) and trehalase activity in three tissues (fat body, midgut and hemolymph) of L. dispar larvae were markedly affected by these two IGRs. Moreover, we found that mRNA expression levels of LdTPS, LdTre1 and LdTre2 in L. dispar larvae were dramatically suppressed by two IGRs. Additionally, chitin content in both midgut and epidermis decreased significantly after L. dispar larvae treated with fenoxycarb or RH-2485. Summarily, these results indicated that these two IGRs disturbed glycometabolism in L. dispar larvae, resulting in impeding chitin synthesis, generating new epidermis failure, disrupting molting and larval lethality in the end.
Collapse
Affiliation(s)
- Guocai Zhang
- School of Forestry, Northeast Forestry University, Harbin 150040, PR China
| | - Hang Zou
- School of Forestry, Northeast Forestry University, Harbin 150040, PR China
| | - Nannan Geng
- School of Forestry, Northeast Forestry University, Harbin 150040, PR China
| | - Nan Ding
- School of Forestry, Northeast Forestry University, Harbin 150040, PR China
| | - Yuejie Wang
- Library of Northeast Forestry University, Harbin 150040, PR China
| | - Jie Zhang
- College of Life Science, Northeast Forestry University, Harbin 150040, PR China
| | - Chuanshan Zou
- School of Forestry, Northeast Forestry University, Harbin 150040, PR China.
| |
Collapse
|
194
|
Barad BA, Liu L, Diaz RE, Basilio R, Van Dyken SJ, Locksley RM, Fraser JS. Differences in the chitinolytic activity of mammalian chitinases on soluble and insoluble substrates. Protein Sci 2020; 29:966-977. [PMID: 31930591 PMCID: PMC7096708 DOI: 10.1002/pro.3822] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 01/02/2020] [Accepted: 01/07/2020] [Indexed: 12/24/2022]
Abstract
Chitin is an abundant polysaccharide used by many organisms for structural rigidity and water repulsion. As such, the insoluble crystalline structure of chitin poses significant challenges for enzymatic degradation. Acidic mammalian chitinase, a processive glycosyl hydrolase, is the primary enzyme involved in the degradation of environmental chitin in mammalian lungs. Mutations to acidic mammalian chitinase have been associated with asthma, and genetic deletion in mice increases morbidity and mortality with age. We initially set out to reverse this phenotype by engineering hyperactive acidic mammalian chitinase variants. Using a screening approach with commercial fluorogenic substrates, we identified mutations with consistent increases in activity. To determine whether the activity increases observed were consistent with more biologically relevant chitin substrates, we developed new assays to quantify chitinase activity with insoluble chitin, and identified a one-pot fluorogenic assay that is sufficiently sensitive to quantify changes to activity due to the addition or removal of a carbohydrate-binding domain. We show that the activity increases from our directed evolution screen were lost when insoluble substrates were used. In contrast, naturally occurring gain-of-function mutations gave similar results with oligomeric and insoluble substrates. We also show that activity differences between acidic mammalian chitinase and chitotriosidase are reduced with insoluble substrate, suggesting that previously reported activity differences with oligomeric substrates may have been driven by differential substrate specificity. These results highlight the need for assays against physiological substrates when engineering metabolic enzymes, and provide a new one-pot assay that may prove to be broadly applicable to engineering glycosyl hydrolases.
Collapse
Affiliation(s)
- Benjamin A. Barad
- Department of Bioengineering and Therapeutic SciencesUniversity of CaliforniaSan FranciscoCalifornia
- Biophysics Graduate ProgramUniversity of CaliforniaSan FranciscoCalifornia
| | - Lin Liu
- Department of Bioengineering and Therapeutic SciencesUniversity of CaliforniaSan FranciscoCalifornia
| | - Roberto E. Diaz
- Department of Bioengineering and Therapeutic SciencesUniversity of CaliforniaSan FranciscoCalifornia
- Tetrad Graduate ProgramUniversity of CaliforniaSan FranciscoCalifornia
| | - Ralp Basilio
- Department of Bioengineering and Therapeutic SciencesUniversity of CaliforniaSan FranciscoCalifornia
- Science Education Partnership High School Intern Program, University of CaliforniaSan FranciscoCalifornia
| | - Steven J. Van Dyken
- Department of Pathology and ImmunologyWashington University School of Medicine in St. LouisSt. LouisMissouri
| | - Richard M. Locksley
- Department of MedicineUniversity of CaliforniaSan FranciscoCalifornia
- Department of Microbiology and ImmunologyUniversity of CaliforniaSan FranciscoCalifornia
- Howard Hughes Medical InstituteSan FranciscoCalifornia
| | - James S. Fraser
- Department of Bioengineering and Therapeutic SciencesUniversity of CaliforniaSan FranciscoCalifornia
| |
Collapse
|
195
|
Konopová B, Buchberger E, Crisp A. Transcriptome of pleuropodia from locust embryos supports that these organs produce enzymes enabling the larva to hatch. Front Zool 2020; 17:4. [PMID: 31969926 PMCID: PMC6966819 DOI: 10.1186/s12983-019-0349-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 12/23/2019] [Indexed: 01/02/2023] Open
Abstract
Background Pleuropodia are limb-derived glandular organs that transiently appear on the first abdominal segment in embryos of insects from majority of “orders”. They are missing in the genetic model Drosophila and little is known about them. Experiments carried out on orthopteran insects 80 years ago indicated that the pleuropodia secrete a “hatching enzyme” that digests the serosal cuticle to enable the larva to hatch, but evidence by state-of-the-art molecular methods is missing. Results We used high-throughput RNA-sequencing to identify the genes expressed in the pleuropodia of the locust Schistocerca gregaria (Orthoptera). First, using transmission electron microscopy we studied the development of the pleuropodia during 11 stages of the locust embryogenesis. We show that the glandular cells differentiate and start secreting just before the definitive dorsal closure of the embryo and the secretion granules outside the cells become more abundant prior to hatching. Next, we generated a comprehensive embryonic reference transcriptome for the locust and used it to study genome wide gene expression across ten morphologicaly defined stages of the pleuropodia. We show that when the pleuropodia have morphological markers of functional organs and produce secretion, they are primarily enriched in transcripts associated with transport functions. They express genes encoding enzymes capable of digesting cuticular protein and chitin. These include the potent cuticulo-lytic Chitinase 5, whose transcript rises just before hatching. Unexpected finding was the enrichment in transcripts for immunity-related enzymes. This indicates that the pleuropodia are equipped with epithelial immunity similarly as barrier epithelia in postembryonic stages. Conclusions These data provide transcriptomic support for the historic hypothesis that pleuropodia produce cuticle-degrading enzymes and function in hatching. They may also have other functions, such as facilitation of embryonic immune defense. By the genes that they express the pleuropodia are specialized embryonic organs and apparently an important though neglected part of insect physiology.
Collapse
Affiliation(s)
- Barbora Konopová
- 1Department of Zoology, University of Cambridge, Cambridge, UK.,2Department of Evolutionary Developmental Genetics, University of Göttingen, Göttingen, Germany.,Institute of Entomology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Elisa Buchberger
- 4Department of Developmental Biology, University of Göttingen, Göttingen, Germany
| | | |
Collapse
|
196
|
Shang F, Ding BY, Ye C, Yang L, Chang TY, Xie J, Tang LD, Niu J, Wang JJ. Evaluation of a cuticle protein gene as a potential RNAi target in aphids. PEST MANAGEMENT SCIENCE 2020; 76:134-140. [PMID: 31461217 DOI: 10.1002/ps.5599] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 08/22/2019] [Accepted: 08/25/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND RNA interference (RNAi) has potential as a pest insect control technique. One possible RNAi target is the cuticle protein, which is important in insect molting and development. As an example, here we evaluate the possibility of designing double-stranded RNA (RNA) that is effective for silencing the cuticle protein 19 gene (CP19) in aphids but is harmless to non-target predator insects. RESULTS The sequences of CP19s were similar (86.6-94.4%) among the tested aphid species (Aphis citricidus, Acyrthosiphon pisum, and Myzus persicae) but different in the predator Propylaea japonica. Ingestion of species-specific dsRNAs of CP19 by the three aphids produced 39.3-64.2% gene silencing and 45.8-55.8% mortality. Ingestion of non-species-specific dsRNA (dsAcCP19) by Ac. pisum and M. persicae gave gene silencing levels ranging from 40.4% to 50.3% and 43.3-50.8% mortality. The dsApCP19 did not affect PjCP19 expression or developmental duration in P. japonica. CONCLUSION The results demonstrate that CP19 is a promising RNAi target for aphid control via one dsRNA design. The targeting of genes that are conserved in insect pests but not present in beneficial insects is a useful RNAi-based pest control strategy. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Feng Shang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Bi-Yue Ding
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Chao Ye
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Li Yang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Teng-Yu Chang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Jiaqin Xie
- Chongqing Engineering Research Center for Fungal Insecticide, Genetic Engineering Research Center, School of Life Sciences, Chongqing University, Chongqing, China
| | - Liang-De Tang
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Jinzhi Niu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Jin-Jun Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| |
Collapse
|
197
|
Kühlborn J, Groß J, Opatz T. Making natural products from renewable feedstocks: back to the roots? Nat Prod Rep 2020; 37:380-424. [DOI: 10.1039/c9np00040b] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This review highlights the utilization of biomass-derived building blocks in the total synthesis of natural products.
Collapse
Affiliation(s)
- Jonas Kühlborn
- Institute of Organic Chemistry
- Johannes Gutenberg University
- 55128 Mainz
- Germany
| | - Jonathan Groß
- Institute of Organic Chemistry
- Johannes Gutenberg University
- 55128 Mainz
- Germany
| | - Till Opatz
- Institute of Organic Chemistry
- Johannes Gutenberg University
- 55128 Mainz
- Germany
| |
Collapse
|
198
|
Ullah F, Gul H, Wang X, Ding Q, Said F, Gao X, Desneux N, Song D. RNAi-Mediated Knockdown of Chitin Synthase 1 ( CHS1) Gene Causes Mortality and Decreased Longevity and Fecundity in Aphis gossypii. INSECTS 2019; 11:insects11010022. [PMID: 31888020 PMCID: PMC7023125 DOI: 10.3390/insects11010022] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 12/19/2019] [Accepted: 12/23/2019] [Indexed: 12/26/2022]
Abstract
Chitin is a vital part of the insect exoskeleton and peritrophic membrane, synthesized by chitin synthase (CHS) enzymes. Chitin synthase 1 (CHS1) is a crucial enzyme in the final step of chitin biosynthetic pathway and consequently plays essential role towards insect growth and molting. RNA interference (RNAi) is an agent that could be used as an extremely target-specific and ecologically innocuous tactic to control different insect pests associated with economically important crops. The sole purpose of the current study is to use CHS1 as the key target gene against the cotton-melon aphid, Aphis gossypii, via oral feeding on artificial diets mixed with dsRNA-CHS1. Results revealed that the expression level of CHS1 gene significantly decreased after the oral delivery of dsRNA-CHS1. The knockdown of CHS1 gene caused up to 43%, 47%, and 59% mortality in third-instar nymph after feeding of dsCHS1 for 24, 48, and 72 h, respectively, as compared to the control. Consistent with this, significantly lower longevity (approximately 38%) and fecundity (approximately 48%) were also found in adult stage of cotton-melon aphids that were fed with dsCHS1 for 72 h at nymphal stage. The qRT-PCR analysis of gene expression demonstrated that the increased mortality rates and lowered longevity and fecundity of A. gossypii were attributed to the downregulation of CHS1 gene via oral-delivery-mediated RNAi. The results of current study confirm that CHS1 could be an appropriate candidate target gene for the RNAi-based control of cotton-melon aphids.
Collapse
Affiliation(s)
- Farman Ullah
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing 100193, China; (F.U.); (H.G.); (X.W.); (Q.D.); (X.G.)
| | - Hina Gul
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing 100193, China; (F.U.); (H.G.); (X.W.); (Q.D.); (X.G.)
| | - Xiu Wang
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing 100193, China; (F.U.); (H.G.); (X.W.); (Q.D.); (X.G.)
| | - Qian Ding
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing 100193, China; (F.U.); (H.G.); (X.W.); (Q.D.); (X.G.)
| | - Fazal Said
- Department of Agriculture, Abdul Wali Khan University, Mardan 23200, Khyber Pakhtunkhwa, Pakistan;
| | - Xiwu Gao
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing 100193, China; (F.U.); (H.G.); (X.W.); (Q.D.); (X.G.)
| | - Nicolas Desneux
- Université Côte d’Azur, INRA, CNRS, UMR ISA, 06000 Nice, France;
| | - Dunlun Song
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing 100193, China; (F.U.); (H.G.); (X.W.); (Q.D.); (X.G.)
- Correspondence:
| |
Collapse
|
199
|
Wu SY, Tong XL, Li CL, Ding X, Zhang ZL, Fang CY, Tan D, Hu H, Liu H, Dai FY. BmBlimp-1 gene encoding a C2H2 zinc finger protein is required for wing development in the silkworm Bombyx mori. Int J Biol Sci 2019; 15:2664-2675. [PMID: 31754338 PMCID: PMC6854374 DOI: 10.7150/ijbs.34743] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Accepted: 07/28/2019] [Indexed: 11/05/2022] Open
Abstract
Cys2-His2 zinc finger (C2H2-ZF) proteins represent the most common class of transcription factors. These factors have great potential for the management of developmental progression by regulating the specific spatiotemporal expression of genes. In this study, we cloned one C2H2-ZF protein gene of Bombyx mori, BGIBMGA000319, that is orthologous to B-lymphocyte-induced maturation protein-1 (Blimp-1); we thus named it as Bombyx mori Blimp-1 (BmBlimp-1). In the silkworm, the BmBlimp-1 gene is specifically upregulated during day 2 of the pupal to adult stage and is highly expressed in wing discs on day 3 of the pupa. Knockdown of its expression level in the pupal stage results in a crumpled-winged silkworm moth. Using the predicted DNA-binding sequences of BmBlimp-1 to search the silkworm genome to screen target genes of BmBlimp-1, 7049 genes were identified to have at least one binding site of BmBlimp-1 on their 1 kb upstream and downstream genome regions. Comparisons of those genes with a reported pupal wing disc transcriptome data resulted in 4065 overlapping genes being retrieved. GO enrichment analysis of the overlapping genes showed that most of the genes were enriched in the binding term. Combining functional annotation and real-time quantitative PCR, 15 genes were identified as the candidate target genes of BmBlimp-1, including several wing cuticular protein genes, chitin synthase A, and wing disc development genes, such as Wnt1, cubitus interruptus (ci) and engrailed (en). Moreover, the amino acid sequence of the zinc finger motif of Blimp-1 gene was highly conserved among the 15 insect species. We propose that BmBlimp-1 is an important regulatory factor in silkworm wing development.
Collapse
Affiliation(s)
- Song-Yuan Wu
- State Key Laboratory of Silkworm Genome Biology; Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs; College of Biotechnology, Southwest University, Chongqing 400715, China.,College of Plant Protection, Southwest University, Chongqing 400716, China
| | - Xiao-Ling Tong
- State Key Laboratory of Silkworm Genome Biology; Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs; College of Biotechnology, Southwest University, Chongqing 400715, China
| | - Chun-Lin Li
- State Key Laboratory of Silkworm Genome Biology; Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs; College of Biotechnology, Southwest University, Chongqing 400715, China
| | - Xin Ding
- State Key Laboratory of Silkworm Genome Biology; Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs; College of Biotechnology, Southwest University, Chongqing 400715, China
| | - Zhu-Lin Zhang
- State Key Laboratory of Silkworm Genome Biology; Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs; College of Biotechnology, Southwest University, Chongqing 400715, China
| | - Chun-Yan Fang
- State Key Laboratory of Silkworm Genome Biology; Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs; College of Biotechnology, Southwest University, Chongqing 400715, China
| | - Duan Tan
- State Key Laboratory of Silkworm Genome Biology; Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs; College of Biotechnology, Southwest University, Chongqing 400715, China
| | - Hai Hu
- State Key Laboratory of Silkworm Genome Biology; Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs; College of Biotechnology, Southwest University, Chongqing 400715, China
| | - Huai Liu
- College of Plant Protection, Southwest University, Chongqing 400716, China
| | - Fang-Yin Dai
- State Key Laboratory of Silkworm Genome Biology; Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs; College of Biotechnology, Southwest University, Chongqing 400715, China
| |
Collapse
|
200
|
Yang WJ, Xu KK, Yan X, Li C. Knockdown of β- N-acetylglucosaminidase 2 Impairs Molting and Wing Development in Lasioderma serricorne (Fabricius). INSECTS 2019; 10:insects10110396. [PMID: 31717288 PMCID: PMC6921043 DOI: 10.3390/insects10110396] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 10/31/2019] [Accepted: 11/06/2019] [Indexed: 12/11/2022]
Abstract
β-N-acetylglucosaminidases (NAGs) are carbohydrate enzymes that degrade chitin oligosaccharides into N-acetylglucosamine monomers. This process is important for chitin degradation during insect development and metamorphosis. We identified and evaluated a β-N-acetylglucosaminidase 2 gene (LsNAG2) from the cigarette beetle, Lasioderma serricorne (Fabricius). The full-length open reading frame of LsNAG2 was 1776 bp and encoded a 591 amino acid protein. The glycoside hydrolase family 20 (GH20) catalytic domain and an additional GH20b domain of the LsNAG2 protein were highly conserved. Phylogenetic analysis revealed that LsNAG2 clustered with the group II NAGs. Quantitative real-time PCR analyses showed that LsNAG2 was expressed in all developmental stages and was most highly expressed in the late larval and late pupal stages. In the larval stage, LsNAG2 was predominantly expressed in the integument. Knockdown of LsNAG2 in fifth instar larvae disrupted larval-pupal molting and reduced the expression of four chitin synthesis genes (trehalase 1 (LsTRE1), UDP-N-acetylglucosamine pyrophosphorylase 1 and 2 (LsUAP1 and LsUAP2), and chitin synthase 1 (LsCHS1)). In late pupae, LsNAG2 depletion resulted in abnormal adult eclosion and wing deformities. The expression of five wing development-related genes (teashirt (LsTSH), vestigial (LsVG), wingless (LsWG), ventral veins lacking (LsVVL), and distal-less (LsDLL)) significantly declined in the LsNAG2-depleted beetles. These findings suggest that LsNAG2 is important for successful molting and wing development of L. serricorne.
Collapse
Affiliation(s)
| | | | | | - Can Li
- Correspondence: ; Tel.: +86-851-8540-5891
| |
Collapse
|