151
|
Falasca L, Agrati C, Petrosillo N, Di Caro A, Capobianchi MR, Ippolito G, Piacentini M. Molecular mechanisms of Ebola virus pathogenesis: focus on cell death. Cell Death Differ 2015; 22:1250-9. [PMID: 26024394 PMCID: PMC4495366 DOI: 10.1038/cdd.2015.67] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 03/31/2015] [Accepted: 04/20/2015] [Indexed: 12/28/2022] Open
Abstract
Ebola virus (EBOV) belongs to the Filoviridae family and is responsible for a severe disease characterized by the sudden onset of fever and malaise accompanied by other non-specific signs and symptoms; in 30–50% of cases hemorrhagic symptoms are present. Multiorgan dysfunction occurs in severe forms with a mortality up to 90%. The EBOV first attacks macrophages and dendritic immune cells. The innate immune reaction is characterized by a cytokine storm, with secretion of numerous pro-inflammatory cytokines, which induces a huge number of contradictory signals and hurts the immune cells, as well as other tissues. Other highly pathogenic viruses also trigger cytokine storms, but Filoviruses are thought to be particularly lethal because they affect a wide array of tissues. In addition to the immune system, EBOV attacks the spleen and kidneys, where it kills cells that help the body to regulate its fluid and chemical balance and that make proteins that help the blood to clot. In addition, EBOV causes liver, lungs and kidneys to shut down their functions and the blood vessels to leak fluid into surrounding tissues. In this review, we analyze the molecular mechanisms at the basis of Ebola pathogenesis with a particular focus on the cell death pathways induced by the virus. We also discuss how the treatment of the infection can benefit from the recent experience of blocking/modulating cell death in human degenerative diseases.
Collapse
Affiliation(s)
- L Falasca
- National Institute for Infectious Diseases, Lazzaro Spallanzani, Rome, Italy
| | - C Agrati
- National Institute for Infectious Diseases, Lazzaro Spallanzani, Rome, Italy
| | - N Petrosillo
- National Institute for Infectious Diseases, Lazzaro Spallanzani, Rome, Italy
| | - A Di Caro
- National Institute for Infectious Diseases, Lazzaro Spallanzani, Rome, Italy
| | - M R Capobianchi
- National Institute for Infectious Diseases, Lazzaro Spallanzani, Rome, Italy
| | - G Ippolito
- National Institute for Infectious Diseases, Lazzaro Spallanzani, Rome, Italy
| | - M Piacentini
- 1] National Institute for Infectious Diseases, Lazzaro Spallanzani, Rome, Italy [2] Department of Biology, University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|
152
|
Yuan S. Possible FDA-approved drugs to treat Ebola virus infection. Infect Dis Poverty 2015; 4:23. [PMID: 25984303 PMCID: PMC4432825 DOI: 10.1186/s40249-015-0055-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2015] [Accepted: 04/13/2015] [Indexed: 01/24/2023] Open
Abstract
There is currently no effective treatment for the Ebola virus (EBOV) thus far. Most drugs and vaccines developed to date have not yet been approved for human trials. Two FDA-approved c-AbI1 tyrosine kinase inhibitors Gleevec and Tasigna block the release of viral particles; however, their clinical dosages are much lower than the dosages required for effective EBOV suppression. An α-1,2-glucosidase inhibitor Miglustat has been shown to inhibit EBOV particle assembly and secretion. Additionally, the estrogen receptor modulators Clomiphene and Toremifene prevent membrane fusion of EBOV and 50-90% of treated mice survived after Clomiphene/Toremifene treatments. However, the uptake efficiency of Clomiphene by oral administration is very low. Thus, I propose a hypothetical treatment protocol to treat Ebola virus infection with a cumulative use of both Miglustat and Toremifene to inhibit the virus effectively and synergistically. EBOV infection induces massive apoptosis of peripheral lymphocytes. Also, cytolysis of endothelial cells triggers disseminated intravascular coagulation (DIC) and subsequent multiple organ failures. Therefore, blood transfusions and active treatments with FDA-approved drugs to treat DIC are also recommended.
Collapse
Affiliation(s)
- Shu Yuan
- College of Resources Science and Technology, Sichuan Agricultural University, Chengdu, 611130 China
| |
Collapse
|
153
|
Findlay JS, Ulaeto D, D'Elia RV. Cytokines and viral hemorrhagic fever: potential for therapeutic intervention. Future Virol 2015. [DOI: 10.2217/fvl.15.5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
ABSTRACT The recent Ebola outbreak in West Africa highlights the need to improve our understanding of why viral hemorrhagic fevers (VHFs) are so devastating. There is a requirement to generate effective prophylactics, such as vaccines, and therapies, especially those that are effective postsymptomatically. For a range of pathogens, it appears that overstimulation of pro-inflammatory cytokines, the ‘cytokine storm’, causes serious immunopathology in patients. In this review, we will focus on the cytokine response following infection by representatives of the viruses which can cause VHF: Ebola virus and Marburg virus, Crimean–Congo hemorrhagic fever virus, Dengue virus, Junin and Lassa virus. Specifically, the role of the cytokine storm in causing VHF and the use of therapeutic immunomodulatory compounds to help treat these fatal and debilitating diseases will be explored.
Collapse
Affiliation(s)
- James S Findlay
- Biomedical Sciences, Defence Science & Technology Laboratory (Dstl) Porton Down, Salisbury, SP4 0JQ, UK
| | - David Ulaeto
- Biomedical Sciences, Defence Science & Technology Laboratory (Dstl) Porton Down, Salisbury, SP4 0JQ, UK
| | - Riccardo V D'Elia
- Biomedical Sciences, Defence Science & Technology Laboratory (Dstl) Porton Down, Salisbury, SP4 0JQ, UK
| |
Collapse
|
154
|
Feagins AR, Basler CF. Amino Acid Residue at Position 79 of Marburg Virus VP40 Confers Interferon Antagonism in Mouse Cells. J Infect Dis 2015; 212 Suppl 2:S219-25. [PMID: 25926685 DOI: 10.1093/infdis/jiv010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Marburg viruses (MARVs) cause highly lethal infections in humans and nonhuman primates. Mice are not generally susceptible to MARV infection; however, if the strain is first adapted to mice through serial passaging, it becomes able to cause disease in this animal. A previous study correlated changes accrued during mouse adaptation in the VP40 gene of a MARV strain known as Ravn virus (RAVV) with an increased capacity to inhibit interferon (IFN) signaling in mouse cell lines. The MARV strain Ci67, which belongs to a different phylogenetic clade than RAVV, has also been adapted to mice and in the process the Ci67 VP40 acquired a different collection of genetic changes than did RAVV VP40. Here, we demonstrate that the mouse-adapted Ci67 VP40 more potently antagonizes IFN-α/β-induced STAT1 and STAT2 tyrosine phosphorylation, gene expression, and antiviral activity in both mouse and human cell lines, compared with the parental Ci67 VP40. Ci67 VP40 is also demonstrated to target the activation of kinase Jak1. A single change at VP40 residue 79 was found to be sufficient for the increased VP40 IFN antagonism. These data argue that VP40 IFN-antagonist activity plays a key role in MARV pathogenesis in mice.
Collapse
Affiliation(s)
- Alicia R Feagins
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Christopher F Basler
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
155
|
Giovanetti M, Grifoni A, Lo Presti A, Cella E, Montesano C, Zehender G, Colizzi V, Amicosante M, Ciccozzi M. Amino acid mutations in Ebola virus glycoprotein of the 2014 epidemic. J Med Virol 2015; 87:893-8. [PMID: 25783989 DOI: 10.1002/jmv.24133] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/28/2014] [Indexed: 11/07/2022]
Abstract
Zaire Ebola virus (EBOV) is an enveloped non-segmented negative strand RNA virus of 19 kb in length belonging to the family Filoviridae. The virus was isolated and identified in 1976 during the epidemic of hemorrhagic fever in Zaire. The most recent outbreak of EBOV among humans, was that occurred in the forested areas of south eastern Guinea, that began in February 2014 and is still ongoing. The recent Ebola outbreak, is affecting other countries in West Africa, in addiction to Guinea: Liberia, Nigeria, and Sierra Leone. In this article, a selective pressure analysis and homology modeling based on the G Glycoprotein (GP) sequences retrieved from public databases were used to investigate the genetic diversity and modification of antibody response in the recent outbreak of Ebola Virus. Structural and the evolutionary analysis underline the 2014 epidemic virus being under negative selective pressure does not change with respect to the old epidemic in terms of genome adaptation.
Collapse
Affiliation(s)
- Marta Giovanetti
- Department of Infectious Parasitic and Immunomediated Diseases, National Institute of Health, Rome, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
156
|
Martines RB, Ng DL, Greer PW, Rollin PE, Zaki SR. Tissue and cellular tropism, pathology and pathogenesis of Ebola and Marburg viruses. J Pathol 2015; 235:153-74. [PMID: 25297522 DOI: 10.1002/path.4456] [Citation(s) in RCA: 203] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 09/30/2014] [Accepted: 10/01/2014] [Indexed: 12/19/2022]
Abstract
Ebola viruses and Marburg viruses include some of the most virulent and fatal pathogens known to humans. These viruses cause severe haemorrhagic fevers, with case fatality rates in the range 25-90%. The diagnosis of filovirus using formalin-fixed tissues from fatal cases poses a significant challenge. The most characteristic histopathological findings are seen in the liver; however, the findings overlap with many other viral and non-viral haemorrhagic diseases. The need to distinguish filovirus infections from other haemorrhagic fevers, particularly in areas with multiple endemic viral haemorrhagic agents, is of paramount importance. In this review we discuss the current state of knowledge of filovirus infections and their pathogenesis, including histopathological findings, epidemiology, modes of transmission and filovirus entry and spread within host organisms. The pathogenesis of filovirus infections is complex and involves activation of the mononuclear phagocytic system, with release of pro-inflammatory cytokines, chemokines and growth factors, endothelial dysfunction, alterations of the innate and adaptive immune systems, direct organ and endothelial damage from unrestricted viral replication late in infection, and coagulopathy. Although our understanding of the pathogenesis of filovirus infections has rapidly increased in the past few years, many questions remain unanswered.
Collapse
Affiliation(s)
- Roosecelis Brasil Martines
- Infectious Diseases Pathology Branch, Division of High Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | | | | | | | | |
Collapse
|
157
|
Elevated cytokines, thrombin and PAI-1 in severe HCPS patients due to Sin Nombre virus. Viruses 2015; 7:559-89. [PMID: 25674766 PMCID: PMC4353904 DOI: 10.3390/v7020559] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 02/03/2015] [Indexed: 12/16/2022] Open
Abstract
Sin Nombre Hantavirus (SNV, Bunyaviridae Hantavirus) is a Category A pathogen that causes Hantavirus Cardiopulmonary Syndrome (HCPS) with case fatality ratios generally ranging from 30% to 50%. HCPS is characterized by vascular leakage due to dysregulation of the endothelial barrier function. The loss of vascular integrity results in non-cardiogenic pulmonary edema, shock, multi-organ failure and death. Using Electric Cell-substrate Impedance Sensing (ECIS) measurements, we found that plasma samples drawn from University of New Mexico Hospital patients with serologically-confirmed HCPS, induce loss of cell-cell adhesion in confluent epithelial and endothelial cell monolayers grown in ECIS cultureware. We show that the loss of cell-cell adhesion is sensitive to both thrombin and plasmin inhibitors in mild cases, and to thrombin only inhibition in severe cases, suggesting an increasing prothrombotic state with disease severity. A proteomic profile (2D gel electrophoresis and mass spectrometry) of HCPS plasma samples in our cohort revealed robust antifibrinolytic activity among terminal case patients. The prothrombotic activity is highlighted by acute ≥30 to >100 fold increases in active plasminogen activator inhibitor (PAI-1) which, preceded death of the subjects within 48 h. Taken together, this suggests that PAI-1 might be a response to the severe pathology as it is expected to reduce plasmin activity and possibly thrombin activity in the terminal patients.
Collapse
|
158
|
Liu J, Tan Y, Zhang J, Zou L, Deng G, Xu X, Wang F, Ma Z, Zhang J, Zhao T, Liu Y, Li Y, Zhu B, Guo B. C5aR, TNF-α, and FGL2 contribute to coagulation and complement activation in virus-induced fulminant hepatitis. J Hepatol 2015; 62:354-62. [PMID: 25200905 DOI: 10.1016/j.jhep.2014.08.050] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2014] [Revised: 08/29/2014] [Accepted: 08/31/2014] [Indexed: 12/04/2022]
Abstract
BACKGROUND & AIMS Viral fulminant hepatitis (FH) is a disease with a high mortality rate. Activation of the complement system correlates with the development of FH. However, the key factors mediating complement activation in FH remain elusive. METHODS Liver tissues were isolated from FH patients infected by hepatitis B virus (HBV) and from mice infected with murine hepatitis virus strain 3 (MHV-3). Wild type mice were treated with or without antagonists of C5aR or TNF-α, and mice deficient for C5aR (C5aR(-/-)), Fgl2 (Fgl2(-/-)), and Tnfα (Tnfα(-/-)) mice were not treated with the antagonists. C5b-9, C5aR, FGL2, CD31, CD11b, fibrin, TNF-α, and complement C3 cleavage products were detected by immunohistochemistry, immunofluorescence, or ELISA. Sorted liver sinusoidal endothelial cells (LSECs) or myeloid-derived (CD11b(+)) cells were stimulated with C5a, TNF-α or MHV-3 in vitro. The mRNA expressions levels of Fgl2 and Tnfα were determined by qRT-PCR analyses. RESULTS We observed that complement activation, coagulation and pro-inflammatory cytokine production were upregulated in the HBV(+) patients with FH. Similar observations were made in the murine FH models. Complement activation and coagulation were significantly reduced in MHV-3 infected mice in the absence of C5aR, Tnfα or Fgl2. The MHV-3 infected C5aR(-/-) mice exhibited reduced numbers of infiltrated inflammatory CD11b(+) cells and a reduced expression of TNF-α and FGL2. Moreover, C5a administration stimulated TNF-α production by CD11b(+) cells, which in turn promoted the expression of FGL2 in CD31(+) LSEC-like cells in vitro. Administration of antagonists against C5aR or TNF-α ameliorated MHV-3-induced FH. CONCLUSIONS Our results demonstrate that C5aR, TNF-α, and FGL2 form an integral network that contributes to coagulation and complement activation, and suggest that those are potential therapeutic targets in viral FH intervention.
Collapse
Affiliation(s)
- Jianjun Liu
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing, China; Department of Histology & Embryology, Third Military Medical University, Chongqing, China
| | - Yulong Tan
- Department of Immunology, Third Military Medical University, Chongqing, China
| | - Jinyu Zhang
- Department of Immunology, Third Military Medical University, Chongqing, China
| | - Liyun Zou
- Department of Immunology, Third Military Medical University, Chongqing, China
| | - Guohong Deng
- Institute of Infectious Diseases, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Xueqing Xu
- Department of Medical Genetics, Third Military Medical University, Chongqing, China
| | - Feng Wang
- Department of Laboratory Medicine, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Zhengwei Ma
- Institute of Hepatobiliary Surgery & Southwest Hospital, Third Military Medical University, District Shapingba, Chongqing, China
| | - Jue Zhang
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Tingting Zhao
- Department of Immunology, Third Military Medical University, Chongqing, China
| | - Yunlai Liu
- Department of Histology & Embryology, Third Military Medical University, Chongqing, China
| | - Yongsheng Li
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Bo Zhu
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing, China.
| | - Bo Guo
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing, China; Department of Immunology, Third Military Medical University, Chongqing, China.
| |
Collapse
|
159
|
Kilgore PE, Grabenstein JD, Salim AM, Rybak M. Treatment of Ebola Virus Disease. Pharmacotherapy 2015; 35:43-53. [DOI: 10.1002/phar.1545] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Paul E. Kilgore
- Department of Pharmacy Practice; Eugene Applebaum College of Pharmacy and Health Sciences; Wayne State University; Detroit Michigan
| | | | - Abdulbaset M. Salim
- Department of Pharmacy Practice; Eugene Applebaum College of Pharmacy and Health Sciences; Wayne State University; Detroit Michigan
| | - Michael Rybak
- Department of Pharmacy Practice; Eugene Applebaum College of Pharmacy and Health Sciences; Wayne State University; Detroit Michigan
| |
Collapse
|
160
|
Obilade TT. The Political Economy of the Ebola Virus Disease (EVD); Taking Individual and Community Ownership in the Prevention and Control of EVD. Healthcare (Basel) 2015; 3:36-49. [PMID: 27417746 PMCID: PMC4934522 DOI: 10.3390/healthcare3010036] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 01/20/2015] [Indexed: 11/16/2022] Open
Abstract
The outbreak of an emerging infectious disease of zoonotic origin has exposed the weaknesses in the health systems of the nations affected. The purpose of this paper was to explore the political economy of the existing outcome of the management strategies. In addition, it proposed a new strategy in the management of the current Ebola virus disease (EVD) outbreak. This paper admits that the current management strategy which is a top to bottom approach has not worked in reducing the spread of the disease. Instead of waiting for the disease before treatment is commenced, this paper suggests aggressively preventing infection from the EVD. It presents a bottom to top approach where there is individual ownership and community ownership in the prevention and control of the EVD outbreak. In addition, the paper presents the socio-economic situation of the three most affected countries including the ecology and stigmatization of EVD. It highlights the need for cross border surveillance across the West African nations to prevent importation of the disease as occurred in Nigeria and Senegal. It points out the need for aggressive international cooperation, an aggressive prevention and a sustainable control strategy.
Collapse
Affiliation(s)
- Titilola T Obilade
- Learning Sciences and Technology, Virginia Polytechnic Institute and State University, 144J Smyth Hall, Blacksburg, VA 24061-0488, USA.
| |
Collapse
|
161
|
De Clercq E. Ebola virus (EBOV) infection: Therapeutic strategies. Biochem Pharmacol 2015; 93:1-10. [PMID: 25481298 PMCID: PMC7110990 DOI: 10.1016/j.bcp.2014.11.008] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 11/20/2014] [Accepted: 11/20/2014] [Indexed: 11/19/2022]
Abstract
Within less than a year after its epidemic started (in December 2013) in Guinea, Ebola virus (EBOV), a member of the filoviridae, has spread over a number of West-African countries (Guinea, Sierra Leone and Liberia) and gained allures that have been unprecedented except by human immunodeficiency virus (HIV). Although EBOV is highly contagious and transmitted by direct contact with body fluids, it could be counteracted by the adequate chemoprophylactic and -therapeutic interventions: vaccines, antibodies, siRNAs (small interfering RNAs), interferons and chemical substances, i.e. neplanocin A derivatives (i.e. 3-deazaneplanocin A), BCX4430, favipiravir (T-705), endoplasmic reticulum (ER) α-glucosidase inhibitors and a variety of compounds that have been found to inhibit EBOV infection blocking viral entry or by a mode of action that still has to be resolved. Much has to be learned from the mechanism of action of the compounds active against VSV (vesicular stomatitis virus), a virus belonging to the rhabdoviridae, that in its mode of replication could be exemplary for the replication of filoviridae.
Collapse
Affiliation(s)
- Erik De Clercq
- Rega Institute for Medical Research, KU Leuven, Minderbroedersstraat 10, B-3000 Leuven, Belgium.
| |
Collapse
|
162
|
Wiwanitkit S, Wiwanitkit V. Ebola viral selenoproteins: a metallomics analysis. Asian Pac J Trop Biomed 2015. [DOI: 10.1016/s2221-1691(15)30161-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
163
|
Li H, Ying T, Yu F, Lu L, Jiang S. Development of therapeutics for treatment of Ebola virus infection. Microbes Infect 2014; 17:109-17. [PMID: 25498866 DOI: 10.1016/j.micinf.2014.11.012] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Revised: 11/25/2014] [Accepted: 11/28/2014] [Indexed: 11/27/2022]
Abstract
Ebola virus infection can cause Ebola virus disease (EVD). Patients usually show severe symptoms, and the fatality rate can reach up to 90%. No licensed medicine is available. In this review, development of therapeutics for treatment of Ebola virus infection and EVD will be discussed.
Collapse
Affiliation(s)
- Haoyang Li
- Key Lab of Medical Molecular Virology of MOE/MOH, Shanghai Medical College, Fudan University, 130 Dong An Rd., Xuhui District, Shanghai 200032, China
| | - Tianlei Ying
- Key Lab of Medical Molecular Virology of MOE/MOH, Shanghai Medical College, Fudan University, 130 Dong An Rd., Xuhui District, Shanghai 200032, China
| | - Fei Yu
- Key Lab of Medical Molecular Virology of MOE/MOH, Shanghai Medical College, Fudan University, 130 Dong An Rd., Xuhui District, Shanghai 200032, China
| | - Lu Lu
- Key Lab of Medical Molecular Virology of MOE/MOH, Shanghai Medical College, Fudan University, 130 Dong An Rd., Xuhui District, Shanghai 200032, China.
| | - Shibo Jiang
- Key Lab of Medical Molecular Virology of MOE/MOH, Shanghai Medical College, Fudan University, 130 Dong An Rd., Xuhui District, Shanghai 200032, China; Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY 10065, USA.
| |
Collapse
|
164
|
Tosh PK, Sampathkumar P. What clinicians should know about the 2014 Ebola outbreak. Mayo Clin Proc 2014; 89:1710-7. [PMID: 25467644 DOI: 10.1016/j.mayocp.2014.10.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 10/23/2014] [Accepted: 10/23/2014] [Indexed: 10/24/2022]
Abstract
The ongoing Ebola outbreak that began in Guinea in February 2014 has spread to Liberia, Sierra Leone, Nigeria, Senegal, Spain, and the United States and has become the largest Ebola outbreak in recorded history. It is important for frontline medical providers to understand key aspects of Ebola virus disease (EVD) to quickly recognize an imported case, provide appropriate medical care, and prevent transmission. Furthermore, an understanding of the clinical presentation, clinical course, transmission, and prevention of EVD can help reduce anxiety about the disease and allow health care providers to calmly and confidently provide medical care to patients suspected of having EVD.
Collapse
Affiliation(s)
- Pritish K Tosh
- Division of Infectious Diseases, Mayo Clinic, Rochester, MN
| | | |
Collapse
|
165
|
Daep CA, Muñoz-Jordán JL, Eugenin EA. Flaviviruses, an expanding threat in public health: focus on dengue, West Nile, and Japanese encephalitis virus. J Neurovirol 2014; 20:539-60. [PMID: 25287260 PMCID: PMC4331079 DOI: 10.1007/s13365-014-0285-z] [Citation(s) in RCA: 132] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 08/01/2014] [Accepted: 08/26/2014] [Indexed: 10/24/2022]
Abstract
The flaviviruses dengue, West Nile, and Japanese encephalitis represent three major mosquito-borne viruses worldwide. These pathogens impact the lives of millions of individuals and potentially could affect non-endemic areas already colonized by mosquito vectors. Unintentional transport of infected vectors (Aedes and Culex spp.), traveling within endemic areas, rapid adaptation of the insects into new geographic locations, climate change, and lack of medical surveillance have greatly contributed to the increase in flaviviral infections worldwide. The mechanisms by which flaviviruses alter the immune and the central nervous system have only recently been examined despite the alarming number of infections, related deaths, and increasing global distribution. In this review, we will discuss the expansion of the geographic areas affected by flaviviruses, the potential threats to previously unaffected countries, the mechanisms of pathogenesis, and the potential therapeutic interventions to limit the devastating consequences of these viruses.
Collapse
Affiliation(s)
- Carlo Amorin Daep
- Public Health Research Institute (PHRI), Rutgers New Jersey Medical School, Rutgers the State University of New Jersey, Newark, NJ, USA
- Department of Microbiology and Molecular Genetics, Rutgers New Jersey Medical School, Rutgers the State University of New Jersey, Newark, NJ, USA
| | - Jorge L. Muñoz-Jordán
- Centers for Disease Control and Prevention Dengue Branch, 1324 Cañada Street, San Juan, PR 00971
| | - Eliseo Alberto Eugenin
- Public Health Research Institute (PHRI), Rutgers New Jersey Medical School, Rutgers the State University of New Jersey, Newark, NJ, USA
- Department of Microbiology and Molecular Genetics, Rutgers New Jersey Medical School, Rutgers the State University of New Jersey, Newark, NJ, USA
| |
Collapse
|
166
|
To KKW, Chan JFW, Tsang AKL, Cheng VCC, Yuen KY. Ebola virus disease: a highly fatal infectious disease reemerging in West Africa. Microbes Infect 2014; 17:84-97. [PMID: 25456100 PMCID: PMC7110538 DOI: 10.1016/j.micinf.2014.11.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 11/24/2014] [Indexed: 12/15/2022]
Abstract
Ebolavirus can cause a highly fatal and panic-generating human disease which may jump from bats to other mammals and human. High viral loads in body fluids allow efficient transmission by contact. Lack of effective antivirals, vaccines and public health infrastructures in parts of Africa make it difficult to health workers to contain the outbreak.
Collapse
Affiliation(s)
- Kelvin K W To
- State Key Laboratory for Emerging Infectious Diseases, The University of Hong Kong, Hong Kong, China; Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong, China; Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong, China; Department of Microbiology, The University of Hong Kong, Hong Kong, China
| | - Jasper F W Chan
- State Key Laboratory for Emerging Infectious Diseases, The University of Hong Kong, Hong Kong, China; Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong, China; Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong, China; Department of Microbiology, The University of Hong Kong, Hong Kong, China
| | - Alan K L Tsang
- Department of Microbiology, The University of Hong Kong, Hong Kong, China
| | - Vincent C C Cheng
- Department of Microbiology, The University of Hong Kong, Hong Kong, China
| | - Kwok-Yung Yuen
- State Key Laboratory for Emerging Infectious Diseases, The University of Hong Kong, Hong Kong, China; Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong, China; Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong, China; Department of Microbiology, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
167
|
Pathophysiologic and transcriptomic analyses of viscerotropic yellow fever in a rhesus macaque model. PLoS Negl Trop Dis 2014; 8:e3295. [PMID: 25412185 PMCID: PMC4238990 DOI: 10.1371/journal.pntd.0003295] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Accepted: 09/24/2014] [Indexed: 11/19/2022] Open
Abstract
Infection with yellow fever virus (YFV), an explosively replicating flavivirus, results in viral hemorrhagic disease characterized by cardiovascular shock and multi-organ failure. Unvaccinated populations experience 20 to 50% fatality. Few studies have examined the pathophysiological changes that occur in humans during YFV infection due to the sporadic nature and remote locations of outbreaks. Rhesus macaques are highly susceptible to YFV infection, providing a robust animal model to investigate host-pathogen interactions. In this study, we characterized disease progression as well as alterations in immune system homeostasis, cytokine production and gene expression in rhesus macaques infected with the virulent YFV strain DakH1279 (YFV-DakH1279). Following infection, YFV-DakH1279 replicated to high titers resulting in viscerotropic disease with ∼72% mortality. Data presented in this manuscript demonstrate for the first time that lethal YFV infection results in profound lymphopenia that precedes the hallmark changes in liver enzymes and that although tissue damage was noted in liver, kidneys, and lymphoid tissues, viral antigen was only detected in the liver. These observations suggest that additional tissue damage could be due to indirect effects of viral replication. Indeed, circulating levels of several cytokines peaked shortly before euthanasia. Our study also includes the first description of YFV-DakH1279-induced changes in gene expression within peripheral blood mononuclear cells 3 days post-infection prior to any clinical signs. These data show that infection with wild type YFV-DakH1279 or live-attenuated vaccine strain YFV-17D, resulted in 765 and 46 differentially expressed genes (DEGs), respectively. DEGs detected after YFV-17D infection were mostly associated with innate immunity, whereas YFV-DakH1279 infection resulted in dysregulation of genes associated with the development of immune response, ion metabolism, and apoptosis. Therefore, WT-YFV infection is associated with significant changes in gene expression that are detectable before the onset of clinical symptoms and may influence disease progression and outcome of infection. Yellow fever virus causes ∼200,000 infections and 30,000 deaths annually in Africa and South America. Although this is an important human pathogen, the basis of yellow fever disease severity remains poorly understood. Rhesus macaques are susceptible to yellow fever and develop similar symptoms as severe as those observed in humans. In this study, we characterized disease progression in this model and observed a profound loss of lymphocytes that preceded the appearance of serum markers of virus-induced liver pathology. This change might provide an early indicator of fatal yellow fever. In addition, we also identified significant changes in gene expression in white blood cells that occur before any measurable disease symptoms and these genetic signatures may provide future targets for antiviral therapeutics and better diagnostics.
Collapse
|
168
|
Ng M, Ndungo E, Jangra RK, Cai Y, Postnikova E, Radoshitzky SR, Dye JM, Ramírez de Arellano E, Negredo A, Palacios G, Kuhn JH, Chandran K. Cell entry by a novel European filovirus requires host endosomal cysteine proteases and Niemann-Pick C1. Virology 2014; 468-470:637-646. [PMID: 25310500 PMCID: PMC4252868 DOI: 10.1016/j.virol.2014.08.019] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2014] [Revised: 07/30/2014] [Accepted: 08/20/2014] [Indexed: 11/19/2022]
Abstract
Lloviu virus (LLOV), a phylogenetically divergent filovirus, is the proposed etiologic agent of die-offs of Schreibers's long-fingered bats (Miniopterus schreibersii) in western Europe. Studies of LLOV remain limited because the infectious agent has not yet been isolated. Here, we generated a recombinant vesicular stomatitis virus expressing the LLOV spike glycoprotein (GP) and used it to show that LLOV GP resembles other filovirus GP proteins in structure and function. LLOV GP must be cleaved by endosomal cysteine proteases during entry, but is much more protease-sensitive than EBOV GP. The EBOV/MARV receptor, Niemann-Pick C1 (NPC1), is also required for LLOV entry, and its second luminal domain is recognized with high affinity by a cleaved form of LLOV GP, suggesting that receptor binding would not impose a barrier to LLOV infection of humans and non-human primates. The use of NPC1 as an intracellular entry receptor may be a universal property of filoviruses.
Collapse
Affiliation(s)
- Melinda Ng
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, United States
| | - Esther Ndungo
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, United States
| | - Rohit K Jangra
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, United States
| | - Yingyun Cai
- Integrated Research Facility at Fort Detrick, National Institute for Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD 21702, United States
| | - Elena Postnikova
- Integrated Research Facility at Fort Detrick, National Institute for Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD 21702, United States
| | - Sheli R Radoshitzky
- United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD 21702, United States
| | - John M Dye
- United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD 21702, United States
| | | | - Ana Negredo
- National Center of Microbiology, Instituto de Salud Carlos III, 28220 Madrid, Spain
| | - Gustavo Palacios
- United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD 21702, United States
| | - Jens H Kuhn
- Integrated Research Facility at Fort Detrick, National Institute for Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD 21702, United States
| | - Kartik Chandran
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, United States.
| |
Collapse
|
169
|
Inhibition of endoplasmic reticulum-resident glucosidases impairs severe acute respiratory syndrome coronavirus and human coronavirus NL63 spike protein-mediated entry by altering the glycan processing of angiotensin I-converting enzyme 2. Antimicrob Agents Chemother 2014; 59:206-16. [PMID: 25348530 DOI: 10.1128/aac.03999-14] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Endoplasmic reticulum (ER)-resident glucosidases I and II sequentially trim the three terminal glucose moieties on the N-linked glycans attached to nascent glycoproteins. These reactions are the first steps of N-linked glycan processing and are essential for proper folding and function of many glycoproteins. Because most of the viral envelope glycoproteins contain N-linked glycans, inhibition of ER glucosidases with derivatives of 1-deoxynojirimycin, i.e., iminosugars, efficiently disrupts the morphogenesis of a broad spectrum of enveloped viruses. However, like viral envelope proteins, the cellular receptors of many viruses are also glycoproteins. It is therefore possible that inhibition of ER glucosidases not only compromises virion production but also disrupts expression and function of viral receptors and thus inhibits virus entry into host cells. Indeed, we demonstrate here that iminosugar treatment altered the N-linked glycan structure of angiotensin I-converting enzyme 2 (ACE2), which did not affect its expression on the cell surface or its binding of the severe acute respiratory syndrome coronavirus (SARS-CoV) spike glycoprotein. However, alteration of N-linked glycans of ACE2 impaired its ability to support the transduction of SARS-CoV and human coronavirus NL63 (HCoV-NL63) spike glycoprotein-pseudotyped lentiviral particles by disruption of the viral envelope protein-triggered membrane fusion. Hence, in addition to reducing the production of infectious virions, inhibition of ER glucosidases also impairs the entry of selected viruses via a post-receptor-binding mechanism.
Collapse
|
170
|
Gray CM, Addo M, Schmidt RE. A dead-end host: is there a way out? A position piece on the ebola virus outbreak by the international union of immunology societies. Front Immunol 2014; 5:562. [PMID: 25400640 PMCID: PMC4213834 DOI: 10.3389/fimmu.2014.00562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Accepted: 10/22/2014] [Indexed: 11/17/2022] Open
Affiliation(s)
- Clive M Gray
- Division of Immunology, Institute of Infectious Diseases and Molecular Medicine, National Health Laboratory Services, University of Cape Town , Cape Town , South Africa
| | - Marylyn Addo
- Division of Emerging Infections/Tropical Medicine, Department of Medicine, University Medical Center Hamburg-Eppendorf , Hamburg , Germany
| | - Reinhold E Schmidt
- Division of Immunology and Rheumatology, University of Hannover , Hannover , Germany
| | | |
Collapse
|
171
|
Smith DR, Holbrook MR, Gowen BB. Animal models of viral hemorrhagic fever. Antiviral Res 2014; 112:59-79. [PMID: 25448088 DOI: 10.1016/j.antiviral.2014.10.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 09/24/2014] [Accepted: 10/05/2014] [Indexed: 12/13/2022]
Abstract
The term "viral hemorrhagic fever" (VHF) designates a syndrome of acute febrile illness, increased vascular permeability and coagulation defects which often progresses to bleeding and shock and may be fatal in a significant percentage of cases. The causative agents are some 20 different RNA viruses in the families Arenaviridae, Bunyaviridae, Filoviridae and Flaviviridae, which are maintained in a variety of animal species and are transferred to humans through direct or indirect contact or by an arthropod vector. Except for dengue, which is transmitted among humans by mosquitoes, the geographic distribution of each type of VHF is determined by the range of its animal reservoir. Treatments are available for Argentine HF and Lassa fever, but no approved countermeasures have been developed against other types of VHF. The development of effective interventions is hindered by the sporadic nature of most infections and their occurrence in geographic regions with limited medical resources. Laboratory animal models that faithfully reproduce human disease are therefore essential for the evaluation of potential vaccines and therapeutics. The goal of this review is to highlight the current status of animal models that can be used to study the pathogenesis of VHF and test new countermeasures.
Collapse
Affiliation(s)
- Darci R Smith
- Southern Research Institute, Frederick, MD 21701, United States.
| | - Michael R Holbrook
- Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD, United States
| | - Brian B Gowen
- Institute for Antiviral Research and Department of Animal, Dairy, and Veterinary Sciences, Utah State University, Logan, UT 84322, United States
| |
Collapse
|
172
|
|
173
|
Dziubańska PJ, Derewenda U, Ellena JF, Engel DA, Derewenda ZS. The structure of the C-terminal domain of the Zaire ebolavirus nucleoprotein. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2014; 70:2420-9. [PMID: 25195755 PMCID: PMC4157450 DOI: 10.1107/s1399004714014710] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 06/22/2014] [Indexed: 11/11/2022]
Abstract
Ebolavirus (EBOV) causes severe hemorrhagic fever with a mortality rate of up to 90%. EBOV is a member of the order Mononegavirales and, like other viruses in this taxonomic group, contains a negative-sense single-stranded (ss) RNA. The EBOV ssRNA encodes seven distinct proteins. One of them, the nucleoprotein (NP), is the most abundant viral protein in the infected cell and within the viral nucleocapsid. Like other EBOV proteins, NP is multifunctional. It is tightly associated with the viral genome and is essential for viral transcription, RNA replication, genome packaging and nucleocapsid assembly prior to membrane encapsulation. NP is unusual among the Mononegavirales in that it contains two distinct regions, or putative domains, the C-terminal of which shows no homology to any known proteins and is purported to be a hub for protein-protein interactions within the nucleocapsid. The atomic structure of NP remains unknown. Here, the boundaries of the N- and C-terminal domains of NP from Zaire EBOV are defined, it is shown that they can be expressed as highly stable recombinant proteins in Escherichia coli, and the atomic structure of the C-terminal domain (residues 641-739) derived from analysis of two distinct crystal forms at 1.98 and 1.75 Å resolution is described. The structure reveals a novel tertiary fold that is distantly reminiscent of the β-grasp architecture.
Collapse
Affiliation(s)
- Paulina J. Dziubańska
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA 22908-0736, USA
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA 22908-0736, USA
| | - Urszula Derewenda
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA 22908-0736, USA
| | - Jeffrey F. Ellena
- Department of Chemistry, University of Virginia, Charlottesville, VA 22904-4319, USA
| | - Daniel A. Engel
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA 22908-0736, USA
| | - Zygmunt S. Derewenda
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA 22908-0736, USA
| |
Collapse
|
174
|
Tretyakova I, Nickols B, Hidajat R, Jokinen J, Lukashevich IS, Pushko P. Plasmid DNA initiates replication of yellow fever vaccine in vitro and elicits virus-specific immune response in mice. Virology 2014; 468-470:28-35. [PMID: 25129436 DOI: 10.1016/j.virol.2014.07.050] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2014] [Revised: 07/12/2014] [Accepted: 07/27/2014] [Indexed: 12/30/2022]
Abstract
Yellow fever (YF) causes an acute hemorrhagic fever disease in tropical Africa and Latin America. To develop a novel experimental YF vaccine, we applied iDNA infectious clone technology. The iDNA represents plasmid that encodes the full-length RNA genome of 17D vaccine downstream from a cytomegalovirus (CMV) promoter. The vaccine was designed to transcribe the full-length viral RNA and to launch 17D vaccine virus in vitro and in vivo. Transfection with 10 ng of iDNA plasmid was sufficient to start replication of vaccine virus in vitro. Safety of the parental 17D and iDNA-derived 17D viruses was confirmed in AG129 mice deficient in receptors for IFN-α/β/γ. Finally, direct vaccination of BALB/c mice with a single 20 μg dose of iDNA plasmid resulted in seroconversion and elicitation of virus-specific neutralizing antibodies in animals. We conclude that iDNA immunization approach combines characteristics of DNA and attenuated vaccines and represents a promising vaccination strategy for YF.
Collapse
Affiliation(s)
- Irina Tretyakova
- Medigen, Inc., 8420 Gas House Pike, Suite S, Frederick, MD 21701, USA
| | - Brian Nickols
- Medigen, Inc., 8420 Gas House Pike, Suite S, Frederick, MD 21701, USA
| | - Rachmat Hidajat
- Medigen, Inc., 8420 Gas House Pike, Suite S, Frederick, MD 21701, USA
| | - Jenny Jokinen
- Department of Pharmacology and Toxicology, School of Medicine, Center for Predictive Medicine and Emerging Infectious Diseases, University of Louisville, Louisville, KY, USA
| | - Igor S Lukashevich
- Department of Pharmacology and Toxicology, School of Medicine, Center for Predictive Medicine and Emerging Infectious Diseases, University of Louisville, Louisville, KY, USA
| | - Peter Pushko
- Medigen, Inc., 8420 Gas House Pike, Suite S, Frederick, MD 21701, USA.
| |
Collapse
|
175
|
Cellular visualization of macrophage pyroptosis and interleukin-1β release in a viral hemorrhagic infection in zebrafish larvae. J Virol 2014; 88:12026-40. [PMID: 25100833 DOI: 10.1128/jvi.02056-14] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Hemorrhagic viral diseases are distributed worldwide with important pathogens, such as dengue virus or hantaviruses. The lack of adequate in vivo infection models has limited the research on viral pathogenesis and the current understanding of the underlying infection mechanisms. Although hemorrhages have been associated with the infection of endothelial cells, other cellular types could be the main targets for hemorrhagic viruses. Our objective was to take advantage of the use of zebrafish larvae in the study of viral hemorrhagic diseases, focusing on the interaction between viruses and host cells. Cellular processes, such as transendothelial migration of leukocytes, virus-induced pyroptosis of macrophages. and interleukin-1β (Il-1β) release, could be observed in individual cells, providing a deeper knowledge of the immune mechanisms implicated in the disease. Furthermore, the application of these techniques to other pathogens will improve the current knowledge of host-pathogen interactions and increase the potential for the discovery of new therapeutic targets. Importance: Pathogenic mechanisms of hemorrhagic viruses are diverse, and most of the research regarding interactions between viruses and host cells has been performed in cell lines that might not be major targets during natural infections. Thus, viral pathogenesis research has been limited because of the lack of adequate in vivo infection models. The understanding of the relative pathogenic roles of the viral agent and the host response to the infection is crucial. This will be facilitated by the establishment of in vivo infection models using organisms such as zebrafish, which allows the study of the diseases in the context of a complete individual. The use of this animal model with other pathogens could improve the current knowledge on host-pathogen interactions and increase the potential for the discovery of new therapeutic targets against diverse viral diseases.
Collapse
|
176
|
Abstract
On 23 March 2014, the World Health Organization issued its first communiqué on a new outbreak of Ebola virus disease (EVD), which began in December 2013 in Guinée Forestière (Forested Guinea), the eastern sector of the Republic of Guinea. Located on the Atlantic coast of West Africa, Guinea is the first country in this geographical region in which an outbreak of EVD has occurred, leaving aside the single case reported in Ivory Coast in 1994. Cases have now also been confirmed across Guinea as well as in the neighbouring Republic of Liberia. The appearance of cases in the Guinean capital, Conakry, and the transit of another case through the Liberian capital, Monrovia, presents the first large urban setting for EVD transmission. By 20 April 2014, 242 suspected cases had resulted in a total of 147 deaths in Guinea and Liberia. The causative agent has now been identified as an outlier strain of Zaire Ebola virus. The full geographical extent and degree of severity of the outbreak, its zoonotic origins and its possible spread to other continents are sure to be subjects of intensive discussion over the next months.
Collapse
Affiliation(s)
- Derek Gatherer
- Division of Biomedical & Life Sciences, Faculty of Health & Medicine, Lancaster University, Lancaster LA1 4YQ, UK
| |
Collapse
|
177
|
Klingström J, Granath F, Ekbom A, Björkström NK, Ljunggren HG. Increased risk for lymphoma following hemorrhagic fever with renal syndrome. Clin Infect Dis 2014; 59:1130-2. [PMID: 24965350 DOI: 10.1093/cid/ciu488] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Hemorrhagic fever with renal syndrome (HFRS) is a severe acute disease. Although long-term consequences to public health have been reported, no association with cancer is known. We examined the risk of cancer development after HFRS in the Swedish population between 1997 and 2011 (n = 6582) and report a 73% increased risk for lymphoma.
Collapse
Affiliation(s)
| | - Fredrik Granath
- Clinical Epidemiology Unit, Department of Medicine Solna, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Anders Ekbom
- Clinical Epidemiology Unit, Department of Medicine Solna, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Niklas K Björkström
- Center for Infectious Medicine, and Liver Immunology Laboratory, Division of Gastroenterology and Hepatology, Department of Medicine, Karolinska University Hospital Huddinge, Karolinska Institutet
| | | |
Collapse
|
178
|
Absence of genetic differences among G10P[11] rotaviruses associated with asymptomatic and symptomatic neonatal infections in Vellore, India. J Virol 2014; 88:9060-71. [PMID: 24899175 DOI: 10.1128/jvi.01417-14] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
UNLABELLED Rotaviruses (RVs) are leading causes of severe diarrhea and vomiting in infants and young children. RVs with G10P[11] genotype specificity have been associated with symptomatic and asymptomatic neonatal infections in Vellore, India. To identify possible viral genetic determinants responsible for differences in symptomology, the genome sequences of G10P[11] RVs in stool samples of 19 neonates with symptomatic infections and 20 neonates with asymptomatic infections were determined by Sanger and next-generation sequencing. The data showed that all 39 viruses had identical genotype constellations (G10-P[11]-I2-R2-C2-M2-A1-N1-T1-E2-H3), the same as those of the previously characterized symptomatic N155 Vellore isolate. The data also showed that the RNA and deduced protein sequences of all the Vellore G10P[11] viruses were nearly identical; no nucleotide or amino acid differences were found that correlated with symptomatic versus asymptomatic infection. Next-generation sequencing data revealed that some stool samples, both from neonates with symptomatic infections and from neonates with asymptomatic infections, also contained one or more positive-strand RNA viruses (Aichi virus, astrovirus, or salivirus/klassevirus) suspected of being potential causes of pediatric gastroenteritis. However, none of the positive-strand RNA viruses could be causally associated with the development of symptoms. These results indicate that the diversity of clinical symptoms in Vellore neonates does not result from genetic differences among G10P[11] RVs; instead, other undefined factors appear to influence whether neonates develop gastrointestinal disease symptoms. IMPORTANCE Rotavirus (RV) strains have been identified that preferentially replicate in neonates, in some cases, without causing gastrointestinal disease. Surveillance studies have established that G10P[11] RVs are a major cause of neonatal infection in Vellore, India, with half of infected neonates exhibiting symptoms. We used Sanger and next-generation sequencing technologies to contrast G10P[11] RVs recovered from symptomatic and asymptomatic neonates. Remarkably, the data showed that the RNA genomes of the viruses were virtually indistinguishable and lacked any differences that could explain the diversity of clinical outcomes among infected Vellore neonates. The sequencing results also indicated that some symptomatic and some asymptomatic Vellore neonates were infected with other enteric viruses (Aichi virus, astrovirus, salvirus/klassevirus); however, none could be correlated with the presence of symptoms in neonates. Together, our findings suggest that other poorly defined factors, not connected to the genetic makeup of the Vellore G10P[11] viruses, influence whether neonates develop gastrointestinal disease symptoms.
Collapse
|
179
|
Type I interferon is a therapeutic target for virus-induced lethal vascular damage. Proc Natl Acad Sci U S A 2014; 111:8925-30. [PMID: 24889626 DOI: 10.1073/pnas.1408148111] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The outcome of a viral infection reflects the balance between virus virulence and host susceptibility. The clone 13 (Cl13) variant of lymphocytic choriomeningitis virus--a prototype of Old World arenaviruses closely related to Lassa fever virus--elicits in C57BL/6 and BALB/c mice abundant negative immunoregulatory molecules, associated with T-cell exhaustion, negligible T-cell-mediated injury, and high virus titers that persist. Conversely, here we report that in NZB mice, despite the efficient induction of immunoregulatory molecules and high viremia, Cl13 generated a robust cytotoxic T-cell response, resulting in thrombocytopenia, pulmonary endothelial cell loss, vascular leakage, and death within 6-8 d. These pathogenic events required type I IFN (IFN-I) signaling on nonhematopoietic cells and were completely abrogated by IFN-I receptor blockade. Thus, IFN-I may play a prominent role in hemorrhagic fevers and other acute virus infections associated with severe vascular pathology, and targeting IFN-I or downstream effector molecules may be an effective therapeutic approach.
Collapse
|
180
|
Gillis PA, Hernandez-Alvarado N, Gnanandarajah JS, Wussow F, Diamond DJ, Schleiss MR. Development of a novel, guinea pig-specific IFN-γ ELISPOT assay and characterization of guinea pig cytomegalovirus GP83-specific cellular immune responses following immunization with a modified vaccinia virus Ankara (MVA)-vectored GP83 vaccine. Vaccine 2014; 32:3963-70. [PMID: 24856783 DOI: 10.1016/j.vaccine.2014.05.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 04/25/2014] [Accepted: 05/01/2014] [Indexed: 11/30/2022]
Abstract
The guinea pig (Cavia porcellus) provides a useful animal model for studying the pathogenesis of many infectious diseases, and for preclinical evaluation of vaccines. However, guinea pig models are limited by the lack of immunological reagents required for characterization and quantification of antigen-specific T cell responses. To address this deficiency, an enzyme-linked immunospot (ELISPOT) assay for guinea pig interferon (IFN)-γ was developed to measure antigen/epitope-specific T cell responses to guinea pig cytomegalovirus (GPCMV) vaccines. Using splenocytes harvested from animals vaccinated with a modified vaccinia virus Ankara (MVA) vector encoding the GPCMV GP83 (homolog of human CMV pp65 [gpUL83]) protein, we were able to enumerate and map antigen-specific responses, both in vaccinated as well as GPCMV-infected animals, using a panel of GP83-specific peptides. Several potential immunodominant GP83-specific peptides were identified, including one epitope, LGIVHFFDN, that was noted in all guinea pigs that had a detectable CD8+ response to GP83. Development of a guinea pig IFN-γ ELISPOT should be useful in characterization of additional T cell-specific responses to GPCMV, as well as other pathogens. This information in turn can help focus future experimental evaluation of immunization strategies, both for GPCMV as well as for other vaccine-preventable illnesses studied in the guinea pig model.
Collapse
Affiliation(s)
- Peter A Gillis
- University of Minnesota Medical School, Department of Pediatrics, Center for Infectious Diseases and Microbiology Translational Research, 2001 6th Street SE, Minneapolis, MN 55455, United States.
| | - Nelmary Hernandez-Alvarado
- University of Minnesota Medical School, Department of Pediatrics, Center for Infectious Diseases and Microbiology Translational Research, 2001 6th Street SE, Minneapolis, MN 55455, United States.
| | - Josephine S Gnanandarajah
- University of Minnesota Medical School, Department of Pediatrics, Center for Infectious Diseases and Microbiology Translational Research, 2001 6th Street SE, Minneapolis, MN 55455, United States.
| | - Felix Wussow
- Department of Virology, Beckman Research Institute of City of Hope, 1500 E. Duarte Road, Duarte, CA 91010, United States.
| | - Don J Diamond
- Department of Virology, Beckman Research Institute of City of Hope, 1500 E. Duarte Road, Duarte, CA 91010, United States.
| | - Mark R Schleiss
- University of Minnesota Medical School, Department of Pediatrics, Center for Infectious Diseases and Microbiology Translational Research, 2001 6th Street SE, Minneapolis, MN 55455, United States.
| |
Collapse
|
181
|
Guo F, Zhao X, Gill T, Zhou Y, Campagna M, Wang L, Liu F, Zhang P, DiPaolo L, Du Y, Xu X, Jiang D, Wei L, Cuconati A, Block TM, Guo JT, Chang J. An interferon-beta promoter reporter assay for high throughput identification of compounds against multiple RNA viruses. Antiviral Res 2014; 107:56-65. [PMID: 24792753 PMCID: PMC4143146 DOI: 10.1016/j.antiviral.2014.04.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Revised: 04/14/2014] [Accepted: 04/22/2014] [Indexed: 11/06/2022]
Abstract
A cell-based IFN-β reporter assay was established for high throughput screen. This assay can be applied to any virus that is able to activate IFN response in the report cells. The assay allows for identification of compounds with antiviral and innate immune response modulating activity.
Virus infection of host cells is sensed by innate pattern recognition receptors (PRRs) and induces production of type I interferons (IFNs) and other inflammatory cytokines. These cytokines orchestrate the elimination of the viruses but are occasionally detrimental to the hosts. The outcomes and pathogenesis of viral infection are largely determined by the specific interaction between the viruses and their host cells. Therefore, compounds that either inhibit viral infection or modulate virus-induced cytokine response should be considered as candidates for managing virus infection. The aim of the study was to identify compounds in both categories, using a single cell-based assay. Our screening platform is a HEK293 cell-based reporter assay where the expression of a firefly luciferase is under the control of a human IFN-β promoter. We have demonstrated that infection of the reporter cell line with a panel of RNA viruses activated the reporter gene expression that correlates quantitatively with the levels of virus replication and progeny virus production, and could be inhibited in a dose-dependent manner by known antiviral compound or inhibitors of PRR signal transduction pathways. Using Dengue virus as an example, a pilot screening of a small molecule library consisting of 26,900 compounds proved the concept that the IFN-β promoter reporter assay can serve as a convenient high throughput screening platform for simultaneous discovery of antiviral and innate immune response modulating compounds. A representative antiviral compound from the pilot screening, 1-(6-ethoxybenzo[d]thiazol-2-yl)-3-(3-methoxyphenyl) urea, was demonstrated to specifically inhibit several viruses belonging to the family of flaviviridae.
Collapse
Affiliation(s)
- Fang Guo
- Institute for Biotechnology and Virology Research, Department of Microbiology and Immunology, Drexel University College of Medicine, Doylestown, PA, USA
| | - Xuesen Zhao
- Institute for Biotechnology and Virology Research, Department of Microbiology and Immunology, Drexel University College of Medicine, Doylestown, PA, USA
| | - Tina Gill
- Institute for Biotechnology and Virology Research, Department of Microbiology and Immunology, Drexel University College of Medicine, Doylestown, PA, USA
| | - Yan Zhou
- Biostatistics and Bioinformatics Facility, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Matthew Campagna
- Institute for Biotechnology and Virology Research, Department of Microbiology and Immunology, Drexel University College of Medicine, Doylestown, PA, USA
| | - Lijuan Wang
- Institute for Biotechnology and Virology Research, Department of Microbiology and Immunology, Drexel University College of Medicine, Doylestown, PA, USA
| | - Fei Liu
- Institute for Biotechnology and Virology Research, Department of Microbiology and Immunology, Drexel University College of Medicine, Doylestown, PA, USA
| | - Pinghu Zhang
- Institute for Biotechnology and Virology Research, Department of Microbiology and Immunology, Drexel University College of Medicine, Doylestown, PA, USA
| | - Laura DiPaolo
- Institute for Biotechnology and Virology Research, Department of Microbiology and Immunology, Drexel University College of Medicine, Doylestown, PA, USA
| | - Yanming Du
- Baruch S. Blumberg Institute, Hepatitis B Foundation, Doylestown, PA, USA
| | - Xiaodong Xu
- Baruch S. Blumberg Institute, Hepatitis B Foundation, Doylestown, PA, USA
| | - Dong Jiang
- Hepatology Institute, Peking University, Beijing, China
| | - Lai Wei
- Hepatology Institute, Peking University, Beijing, China
| | - Andrea Cuconati
- Baruch S. Blumberg Institute, Hepatitis B Foundation, Doylestown, PA, USA
| | - Timothy M Block
- Institute for Biotechnology and Virology Research, Department of Microbiology and Immunology, Drexel University College of Medicine, Doylestown, PA, USA; Baruch S. Blumberg Institute, Hepatitis B Foundation, Doylestown, PA, USA
| | - Ju-Tao Guo
- Institute for Biotechnology and Virology Research, Department of Microbiology and Immunology, Drexel University College of Medicine, Doylestown, PA, USA
| | - Jinhong Chang
- Institute for Biotechnology and Virology Research, Department of Microbiology and Immunology, Drexel University College of Medicine, Doylestown, PA, USA.
| |
Collapse
|
182
|
Chen ZH, Qin XC, Song R, Shen Y, Chen XP, Wang W, Zhao YX, Zhang JS, He JR, Li MH, Zhao XH, Liu DW, Fu XK, Tian D, Li XW, Xu J, Plyusnin A, Holmes EC, Zhang YZ. Co-circulation of multiple hemorrhagic fever diseases with distinct clinical characteristics in Dandong, China. PLoS One 2014; 9:e89896. [PMID: 24587107 PMCID: PMC3937409 DOI: 10.1371/journal.pone.0089896] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Accepted: 01/29/2014] [Indexed: 12/14/2022] Open
Abstract
Hemorrhagic fevers (HF) caused by viruses and bacteria are a major public health problem in China and characterized by variable clinical manifestations, such that it is often difficult to achieve accurate diagnosis and treatment. The causes of HF in 85 patients admitted to Dandong hospital, China, between 2011–2012 were determined by serological and PCR tests. Of these, 34 patients were diagnosed with Huaiyangshan hemorrhagic fever (HYSHF), 34 with Hemorrhagic Fever with Renal Syndrome (HFRS), one with murine typhus, and one with scrub typhus. Etiologic agents could not be determined in the 15 remaining patients. Phylogenetic analyses of recovered bacterial and viral sequences revealed that the causative infectious agents were closely related to those described in other geographical regions. As these diseases have no distinctive clinical features in their early stage, only 13 patients were initially accurately diagnosed. The distinctive clinical features of HFRS and HYSHF developed during disease progression. Enlarged lymph nodes, cough, sputum, and diarrhea were more common in HYSHF patients, while more HFRS cases presented with headache, sore throat, oliguria, percussion pain kidney area, and petechiae. Additionally, HYSHF patients displayed significantly lower levels of white blood cells (WBC), higher levels of creations kinase (CK) and alanine aminotransferase (ALT), while HFRS patients presented with an elevation of blood urea nitrogen (BUN) and creatinine (CREA). These clinical features will assist in the accurate diagnosis of both HYSHF and HFRS. Overall, our data reveal the complexity of pathogens causing HFs in a single Chinese hospital, and highlight the need for accurate early diagnosis and a better understanding of their distinctive clinical features.
Collapse
Affiliation(s)
- Zhi-Hai Chen
- Department of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Xin-Cheng Qin
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Department of Zoonoses, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Rui Song
- Department of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Yi Shen
- Department of Infectious Diseases, Dandong Infectious Hospital, Dandong, Liaoning Province, China
| | - Xiao-Ping Chen
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Department of Zoonoses, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Wen Wang
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Department of Zoonoses, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yong-Xiang Zhao
- Department of Infectious Diseases, Dandong Infectious Hospital, Dandong, Liaoning Province, China
| | - Jing-Shan Zhang
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Department of Zoonoses, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jin-Rong He
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Department of Zoonoses, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Ming-Hui Li
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Department of Zoonoses, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xue-Hua Zhao
- Department of Infectious Diseases, Dandong Infectious Hospital, Dandong, Liaoning Province, China
| | - De-Wei Liu
- Department of Infectious Diseases, Dandong Infectious Hospital, Dandong, Liaoning Province, China
| | - Xiao-Kang Fu
- Department of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Di Tian
- Department of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Xing-Wang Li
- Department of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Jianguo Xu
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Department of Zoonoses, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Alexander Plyusnin
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Department of Zoonoses, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- Department of Virology, Haartman Institute, University of Helsinki, Finland
| | - Edward C. Holmes
- Marie Bashir Institute for Infectious Diseases and Biosecurity, School of Biological Sciences and Sydney Medical School, The University of Sydney, Sydney, Australia
| | - Yong-Zhen Zhang
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Department of Zoonoses, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- * E-mail:
| |
Collapse
|
183
|
McLay L, Liang Y, Ly H. Comparative analysis of disease pathogenesis and molecular mechanisms of New World and Old World arenavirus infections. J Gen Virol 2014; 95:1-15. [PMID: 24068704 PMCID: PMC4093776 DOI: 10.1099/vir.0.057000-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Accepted: 09/19/2013] [Indexed: 12/24/2022] Open
Abstract
Arenaviruses can cause fatal human haemorrhagic fever (HF) diseases for which vaccines and therapies are extremely limited. Both the New World (NW) and Old World (OW) groups of arenaviruses contain HF-causing pathogens. Although these two groups share many similarities, important differences with regard to pathogenicity and molecular mechanisms of virus infection exist. These closely related pathogens share many characteristics, including genome structure, viral assembly, natural host selection and the ability to interfere with innate immune signalling. However, members of the NW and OW viruses appear to use different receptors for cellular entry, as well as different mechanisms of virus internalization. General differences in disease signs and symptoms and pathological lesions in patients infected with either NW or OW arenaviruses are also noted and discussed herein. Whilst both the OW Lassa virus (LASV) and the NW Junin virus (JUNV) can cause disruption of the vascular endothelium, which is an important pathological feature of HF, the immune responses to these related pathogens seem to be quite distinct. Whereas LASV infection results in an overall generalized immune suppression, patients infected with JUNV seem to develop a cytokine storm. Additionally, the type of immune response required for recovery and clearance of the virus is different between NW and OW infections. These differences may be important to allow the viruses to evade host immune detection. Understanding these differences will aid the development of new vaccines and treatment strategies against deadly HF viral infections.
Collapse
MESH Headings
- Animals
- Arenaviridae Infections/immunology
- Arenaviridae Infections/pathology
- Arenaviridae Infections/virology
- Arenaviruses, New World/classification
- Arenaviruses, New World/genetics
- Arenaviruses, New World/immunology
- Arenaviruses, New World/pathogenicity
- Arenaviruses, Old World/classification
- Arenaviruses, Old World/genetics
- Arenaviruses, Old World/immunology
- Arenaviruses, Old World/pathogenicity
- Hemorrhagic Fevers, Viral/immunology
- Hemorrhagic Fevers, Viral/pathology
- Hemorrhagic Fevers, Viral/virology
- Humans
Collapse
Affiliation(s)
- Lisa McLay
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Twin Cities, MN 55108, USA
| | - Yuying Liang
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Twin Cities, MN 55108, USA
| | - Hinh Ly
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Twin Cities, MN 55108, USA
| |
Collapse
|
184
|
Recent Advances in Targeting Dengue and West Nile Virus Proteases Using Small Molecule Inhibitors. TOPICS IN MEDICINAL CHEMISTRY 2014. [DOI: 10.1007/7355_2014_46] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
185
|
Walker D. Interactions of Pathogens with the Host. PATHOBIOLOGY OF HUMAN DISEASE 2014. [PMCID: PMC7173434 DOI: 10.1016/b978-0-12-386456-7.01701-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Infection occurs when a microbe enters a normally nonsterile tissue and may cause an infectious disease with signs and symptoms or a subclinical infection. Infections that are not cleared by the host are characterized as persistent. The agent in nonreplicating or latent infection may begin to grow again or to reactivate. Growth of a microorganism such as normal bacterial flora on a normally nonsterile body surface such as the colonic mucosa in the absence of disease is called colonization. Some infectious agents known as pathogens routinely cause disease; others known as opportunistic cause disease only in persons with altered host defenses, such as acquired immunodeficiency syndrome. The location where a pathogen normally resides is the reservoir, such as naturally infected animals. The mechanism by which the pathogen moves from the reservoir into the patient is known as transmission such as by drinking contaminated water. The portals of entry are mucosal, respiratory, gastrointestinal, genitourinary, and cutaneous. A pathogen may replicate at the portal of entry and cause disease by secreting a toxin or enter the body and spread via the lymphatic or blood vessels, nerves, urinary tract, respiratory tract, cerebrospinal fluid, over mesothelial surfaces, or to the fetus transplacentally. Many infectious agents target a particular organ where they replicate and cause damage, for example, hepatitis, myocarditis, and meningoencephalitis.
Collapse
|
186
|
Abstract
Ebola is a highly virulent pathogen causing severe hemorrhagic fever with a high case fatality rate in humans and non-human primates (NHPs). Although safe and effective vaccines or other medicinal agents to block Ebola infection are currently unavailable, a significant effort has been put forth to identify several promising candidates for the treatment and prevention of Ebola hemorrhagic fever. Among these, recombinant adenovirus-based vectors have been identified as potent vaccine candidates, with some affording both pre- and post-exposure protection from the virus. Recently, Investigational New Drug (IND) applications have been approved by the US Food and Drug Administration (FDA) and phase I clinical trials have been initiated for two small-molecule therapeutics: anti-sense phosphorodiamidate morpholino oligomers (PMOs: AVI-6002, AVI-6003) and lipid nanoparticle/small interfering RNA (LNP/siRNA: TKM-Ebola). These potential alternatives to vector-based vaccines require multiple doses to achieve therapeutic efficacy, which is not ideal with regard to patient compliance and outbreak scenarios. These concerns have fueled a quest for even better vaccination and treatment strategies. Here, we summarize recent advances in vaccines or post-exposure therapeutics for prevention of Ebola hemorrhagic fever. The utility of novel pharmaceutical approaches to refine and overcome barriers associated with the most promising therapeutic platforms are also discussed.
Collapse
Affiliation(s)
- Jin Huk Choi
- Division of Pharmaceutics, College of Pharmacy, The University of Texas at Austin, Austin, TX, 78712, U.S.A
| | - Maria A. Croyle
- Division of Pharmaceutics, College of Pharmacy, The University of Texas at Austin, Austin, TX, 78712, U.S.A
- Institute of Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, 78712, U.S.A
| |
Collapse
|
187
|
Choi JH, Schafer SC, Zhang L, Juelich T, Freiberg AN, Croyle MA. Modeling pre-existing immunity to adenovirus in rodents: immunological requirements for successful development of a recombinant adenovirus serotype 5-based ebola vaccine. Mol Pharm 2013; 10:3342-55. [PMID: 23915419 DOI: 10.1021/mp4001316] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Pre-existing immunity (PEI) to human adenovirus serotype 5 (Ad5) worldwide is the primary limitation to routine clinical use of Ad5-based vectors in immunization platforms. Using systemic and mucosal PEI induction models in rodents (mice and guinea pigs), we assessed the influence of PEI on the type of adaptive immune response elicited by an Ad5-based vaccine for Ebola with respect to immunization route. Splenocytes isolated from vaccinated animals revealed that immunization by the same route in which PEI was induced significantly compromised Ebola Zaire glycoprotein (ZGP)-specific IFN-γ+ CD8+ T cells and ZGP-specific multifunctional CD8+ T cell populations. ZGP-specific IgG1 antibody levels were also significantly reduced and a sharp increase in serum anti-Ad5 neutralizing antibody (NAB) titers were noted following immunization. These immune parameters correlated with poor survival after lethal challenge with rodent-adapted Ebola Zaire virus (ZEBOV). Although the number of IFN-γ+ CD8+ T cells was reduced in animals given the vaccine by a different route from that used for PEI induction, the multifunctional CD8+ T cell response was not compromised. Survival rates in these groups were higher than when PEI was induced by the same route as immunization. These results suggest that antigen-specific multifunctional CD8(+) T cell and Th2 type antibody responses compromised by PEI to Ad5 are required for protection from Ebola. They also illustrate that methods for induction of PEI used in preclinical studies must be carefully evaluated for successful development of novel Ad5-based vaccines.
Collapse
Affiliation(s)
- Jin Huk Choi
- Division of Pharmaceutics, College of Pharmacy, The University of Texas at Austin , Austin, Texas 78712, United States
| | | | | | | | | | | |
Collapse
|
188
|
Chang J, Block TM, Guo JT. Antiviral therapies targeting host ER alpha-glucosidases: current status and future directions. Antiviral Res 2013; 99:251-60. [PMID: 23816430 PMCID: PMC7114303 DOI: 10.1016/j.antiviral.2013.06.011] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 06/15/2013] [Accepted: 06/19/2013] [Indexed: 12/18/2022]
Abstract
ER α-glucosidases are essential host factors for the morphogenesis of many enveloped viruses. Imino sugars are competitive inhibitors of the ER α-glucosidases I and II. Broad-spectrum antiviral efficacies of imino sugars have been demonstrated in vitro, and in vivo. Strategies for development of potent and specific ER α-glucosidase inhibitors have been proposed. Targeting glucosidase is promising for viral hemorrhagic fever and respiratory infections.
Endoplasmic reticulum (ER)-resident α-glucosidases I and II sequentially trim the three terminal glucose moieties on N-linked glycans attached to nascent glycoproteins. These reactions are the first steps of N-linked glycan processing and are essential for proper folding and function of many glycoproteins. Because most viral envelope glycoproteins contain N-linked glycans, inhibition of ER α-glucosidases with derivatives of 1-deoxynojirimycin (DNJ) or castanospermine (CAST), two well-studied pharmacophores of α-glucosidase inhibitors, efficiently disrupts the morphogenesis of a broad spectrum of enveloped viruses. Moreover, both DNJ and CAST derivatives have been demonstrated to prevent the death of mice infected with several distinct flaviviruses and filoviruses and suppress the multiplication of several other species of viruses in infected animals. N-Butyl derivative of DNJ (NB-DNJ) and 6 O-bytanoyl prodrug of CAST (Bu-CAST) have been evaluated in human clinical trials for their antiviral activities against human immunodeficiency virus and hepatitis C virus, and there is an ongoing trial of treating dengue patients with Bu-CAST. This article summarizes the current status of ER α-glucosidase-targeted antiviral therapy and proposes strategies for development of more efficacious and specific ER α-glucosidase inhibitors as broad-spectrum, drug resistance-refractory antiviral therapeutics. These host function-targeted, broad-spectrum antiviral agents do not rely on time-consuming etiologic diagnosis, and should therefore be particularly promising in the management of viral hemorrhagic fever and respiratory tract viral infections, medical conditions that can be caused by many different enveloped RNA viruses, with a short window for medical intervention.
Collapse
Affiliation(s)
- Jinhong Chang
- Department of Microbiology and Immunology, Drexel University College of Medicine, 3805 Old Easton Road, Doylestown, PA 18902, USA.
| | | | | |
Collapse
|