151
|
Zhang TY, Labonté B, Wen XL, Turecki G, Meaney MJ. Epigenetic mechanisms for the early environmental regulation of hippocampal glucocorticoid receptor gene expression in rodents and humans. Neuropsychopharmacology 2013; 38:111-23. [PMID: 22968814 PMCID: PMC3521971 DOI: 10.1038/npp.2012.149] [Citation(s) in RCA: 237] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Revised: 05/31/2012] [Accepted: 05/31/2012] [Indexed: 01/22/2023]
Abstract
Parental care influences development across mammals. In humans such influences include effects on phenotypes, such as stress reactivity, which determine individual differences in the vulnerability for affective disorders. Thus, the adult offspring of rat mothers that show an increased frequency of pup licking/grooming (ie, high LG mothers) show increased hippocampal glucocorticoid receptor (GR) expression and more modest hypothalamic-pituitary-adrenal responses to stress compared with the offspring of low LG mothers. In humans, childhood maltreatment associates decreased hippocampal GR expression and increased stress responses in adulthood. We review the evidence suggesting that such effects are mediated by epigenetic mechanisms, including DNA methylation and hydroxymethylation across GR promoter regions. We also present new findings revealing associated histone post-translational modifications of a critical GR promoter in rat hippocampus. Taken together these existing evidences are consistent with the idea that parental influences establish stable phenotypic variation in the offspring through effects on intracellular signaling pathways that regulate the epigenetic state and function of specific regions of the genome.
Collapse
Affiliation(s)
- Tie Yuan Zhang
- Sackler Program for Epigenetics Psychobiology and Departments of Psychiatry and Neurology & Neurosurgery, McGill University, Montreal, Quebec, Canada
| | - Benoit Labonté
- Sackler Program for Epigenetics Psychobiology and Departments of Psychiatry and Neurology & Neurosurgery, McGill University, Montreal, Quebec, Canada
| | - Xiang Lan Wen
- Sackler Program for Epigenetics Psychobiology and Departments of Psychiatry and Neurology & Neurosurgery, McGill University, Montreal, Quebec, Canada
| | - Gustavo Turecki
- Sackler Program for Epigenetics Psychobiology and Departments of Psychiatry and Neurology & Neurosurgery, McGill University, Montreal, Quebec, Canada
| | - Michael J Meaney
- Sackler Program for Epigenetics Psychobiology and Departments of Psychiatry and Neurology & Neurosurgery, McGill University, Montreal, Quebec, Canada
- Singapore Institute for Clinical Sciences, Singapore, Singapore
| |
Collapse
|
152
|
Grayson DR, Guidotti A. The dynamics of DNA methylation in schizophrenia and related psychiatric disorders. Neuropsychopharmacology 2013; 38:138-66. [PMID: 22948975 PMCID: PMC3521968 DOI: 10.1038/npp.2012.125] [Citation(s) in RCA: 200] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Revised: 05/08/2012] [Accepted: 05/09/2012] [Indexed: 02/06/2023]
Abstract
Major psychiatric disorders such as schizophrenia (SZ) and bipolar disorder (BP) with psychosis (BP+) express a complex symptomatology characterized by positive symptoms, negative symptoms, and cognitive impairment. Postmortem studies of human SZ and BP+ brains show considerable alterations in the transcriptome of a variety of cortical structures, including multiple mRNAs that are downregulated in both inhibitory GABAergic and excitatory pyramidal neurons compared with non-psychiatric subjects (NPS). Several reports show increased expression of DNA methyltransferases in telencephalic GABAergic neurons. Accumulating evidence suggests a critical role for altered DNA methylation processes in the pathogenesis of SZ and related psychiatric disorders. The establishment and maintenance of CpG site methylation is essential during central nervous system differentiation and this methylation has been implicated in synaptic plasticity, learning, and memory. Atypical hypermethylation of candidate gene promoters expressed in GABAergic neurons is associated with transcriptional downregulation of the corresponding mRNAs, including glutamic acid decarboxylase 67 (GAD67) and reelin (RELN). Recent reports indicate that the methylation status of promoter proximal CpG dinucleotides is in a dynamic balance between DNA methylation and DNA hydroxymethylation. Hydroxymethylation and subsequent DNA demethylation is more complex and involves additional proteins downstream of 5-hydroxymethylcytosine, including members of the base excision repair (BER) pathway. Recent advances in our understanding of altered CpG methylation, hydroxymethylation, and active DNA demethylation provide a framework for the identification of new targets, which may be exploited for the pharmacological intervention of the psychosis associated with SZ and possibly BP+.
Collapse
Affiliation(s)
- Dennis R Grayson
- The Psychiatric Institute, Department of Psychiatry, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA.
| | | |
Collapse
|
153
|
Kabro A, Lachance H, Marcoux-Archambault I, Perrier V, Doré V, Gros C, Masson V, Gregoire JM, Ausseil F, Cheishvili D, Laulan NB, St-Pierre Y, Szyf M, Arimondo PB, Gagnon A. Preparation of phenylethylbenzamide derivatives as modulators of DNMT3 activity. MEDCHEMCOMM 2013. [DOI: 10.1039/c3md00214d] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
154
|
Tardito D, Mallei A, Popoli M. Lost in translation. New unexplored avenues for neuropsychopharmacology: epigenetics and microRNAs. Expert Opin Investig Drugs 2012; 22:217-33. [DOI: 10.1517/13543784.2013.749237] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
155
|
Fraczek J, Bolleyn J, Vanhaecke T, Rogiers V, Vinken M. Primary hepatocyte cultures for pharmaco-toxicological studies: at the busy crossroad of various anti-dedifferentiation strategies. Arch Toxicol 2012; 87:577-610. [PMID: 23242478 DOI: 10.1007/s00204-012-0983-3] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Accepted: 11/19/2012] [Indexed: 01/24/2023]
Abstract
Continuously increasing understanding of the molecular triggers responsible for the onset of diseases, paralleled by an equally dynamic evolution of chemical synthesis and screening methods, offers an abundance of pharmacological agents with a potential to become new successful drugs. However, before patients can benefit of newly developed pharmaceuticals, stringent safety filters need to be applied to weed out unfavourable drug candidates. Cost effectiveness and the need to identify compound liabilities, without exposing humans to unnecessary risks, has stimulated the shift of the safety studies to the earliest stages of drug discovery and development. In this regard, in vivo relevant organotypic in vitro models have high potential to revolutionize the preclinical safety testing. They can enable automation of the process, to match the requirements of high-throughput screening approaches, while satisfying ethical considerations. Cultures of primary hepatocytes became already an inherent part of the preclinical pharmaco-toxicological testing battery, yet their routine use, particularly for long-term assays, is limited by the progressive deterioration of liver-specific features. The availability of suitable hepatic and other organ-specific in vitro models is, however, of paramount importance in the light of changing European legal regulations in the field of chemical compounds of different origin, which gradually restrict the use of animal studies for safety assessment, as currently witnessed in cosmetic industry. Fortunately, research groups worldwide spare no effort to establish hepatic in vitro systems. In the present review, both classical and innovative methodologies to stabilize the in vivo-like hepatocyte phenotype in culture of primary hepatocytes are presented and discussed.
Collapse
Affiliation(s)
- J Fraczek
- Department of Toxicology, Faculty of Medicine and Pharmacy, Centre for Pharmaceutical Research, Vrije Universiteit Brussel, Belgium.
| | | | | | | | | |
Collapse
|
156
|
Montenegro MF, Sáez-Ayala M, Piñero-Madrona A, Cabezas-Herrera J, Rodríguez-López JN. Reactivation of the tumour suppressor RASSF1A in breast cancer by simultaneous targeting of DNA and E2F1 methylation. PLoS One 2012; 7:e52231. [PMID: 23251702 PMCID: PMC3522638 DOI: 10.1371/journal.pone.0052231] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Accepted: 11/13/2012] [Indexed: 11/19/2022] Open
Abstract
Background Tumour suppressor genes are often transcriptionally silenced by promoter hypermethylation, and recent research has implicated alterations in chromatin structure as the mechanistic basis for this repression. In addition to DNA methylation, other epigenetic post-translational modifications that modulate the stability and binding of specific transcription factors to gene promoters have emerged as important mechanisms for controlling gene expression. The aim of this study was to analyse the implications of these mechanisms and their molecular connections in the reactivation of RASSF1A in breast cancer. Methods Compounds that modulate the intracellular concentration of adenosine, such as dipyridamole (DIPY), greatly increase the antiproliferative effects of 3-O-(3,4,5-trimethoxybenzoyl)-(−)-catechin (TMCG), a synthetic antifolate derived from the structure of tea catechins. Quantitative real-time PCR arrays and MALDI-TOF mass spectrometry indicated that this combination (TMCG/DIPY) induced apoptosis in breast cancer cells by modulating the methylation levels of DNA and proteins (such as E2F1), respectively. Chromatin immunoprecipitation (ChIP) assays were employed to confirm that this combination induced chromatin remodelling of the RASSF1A promoter and increased the occupancy of E2F1 at the promoter of this tumour suppressor gene. Results The TMCG/DIPY combination acted as an epigenetic treatment that reactivated RASSF1A expression and induced apoptosis in breast cancer cells. In addition to modulating DNA methylation and chromatin remodelling, this combination also induced demethylation of the E2F1 transcription factor. The ChIP assay showed enhancement of E2F1 occupancy at the unmethylated RASSF1A promoter after TMCG/DIPY treatment. Interestingly, inhibition of E2F1 demethylation using an irreversible inhibitor of lysine-specific demethylase 1 reduced both TMCG/DIPY-mediated RASSF1A expression and apoptosis in MDA-MB-231 cells, suggesting that DNA and protein demethylation may act together to control these molecular and cellular processes. Conclusions/Significance This study demonstrates that simultaneous targeting of DNA and E2F1 methylation is an effective epigenetic treatment that reactivates RASSF1A expression and induces apoptosis in breast cancer cells.
Collapse
Affiliation(s)
- María F. Montenegro
- Department of Biochemistry and Molecular Biology A, School of Biology, Regional Campus of International Excellence “Campus Mare Nostrum”, University of Murcia, Espinardo, Murcia, Spain
| | - Magali Sáez-Ayala
- Department of Biochemistry and Molecular Biology A, School of Biology, Regional Campus of International Excellence “Campus Mare Nostrum”, University of Murcia, Espinardo, Murcia, Spain
| | - Antonio Piñero-Madrona
- Department of Surgery, University Hospital Virgen de la Arrixaca, Instituto Murciano de Investigación Biomédica, Murcia, Spain
| | - Juan Cabezas-Herrera
- Translational Cancer Research Group, University Hospital Virgen de la Arrixaca, Instituto Murciano de Investigación Biomédica, Murcia, Spain
| | - José Neptuno Rodríguez-López
- Department of Biochemistry and Molecular Biology A, School of Biology, Regional Campus of International Excellence “Campus Mare Nostrum”, University of Murcia, Espinardo, Murcia, Spain
- * E-mail:
| |
Collapse
|
157
|
Millan MJ. An epigenetic framework for neurodevelopmental disorders: from pathogenesis to potential therapy. Neuropharmacology 2012; 68:2-82. [PMID: 23246909 DOI: 10.1016/j.neuropharm.2012.11.015] [Citation(s) in RCA: 151] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2012] [Revised: 11/11/2012] [Accepted: 11/22/2012] [Indexed: 12/12/2022]
Abstract
Neurodevelopmental disorders (NDDs) are characterized by aberrant and delayed early-life development of the brain, leading to deficits in language, cognition, motor behaviour and other functional domains, often accompanied by somatic symptoms. Environmental factors like perinatal infection, malnutrition and trauma can increase the risk of the heterogeneous, multifactorial and polygenic disorders, autism and schizophrenia. Conversely, discrete genetic anomalies are involved in Down, Rett and Fragile X syndromes, tuberous sclerosis and neurofibromatosis, the less familiar Phelan-McDermid, Sotos, Kleefstra, Coffin-Lowry and "ATRX" syndromes, and the disorders of imprinting, Angelman and Prader-Willi syndromes. NDDs have been termed "synaptopathies" in reference to structural and functional disturbance of synaptic plasticity, several involve abnormal Ras-Kinase signalling ("rasopathies"), and many are characterized by disrupted cerebral connectivity and an imbalance between excitatory and inhibitory transmission. However, at a different level of integration, NDDs are accompanied by aberrant "epigenetic" regulation of processes critical for normal and orderly development of the brain. Epigenetics refers to potentially-heritable (by mitosis and/or meiosis) mechanisms controlling gene expression without changes in DNA sequence. In certain NDDs, prototypical epigenetic processes of DNA methylation and covalent histone marking are impacted. Conversely, others involve anomalies in chromatin-modelling, mRNA splicing/editing, mRNA translation, ribosome biogenesis and/or the regulatory actions of small nucleolar RNAs and micro-RNAs. Since epigenetic mechanisms are modifiable, this raises the hope of novel therapy, though questions remain concerning efficacy and safety. The above issues are critically surveyed in this review, which advocates a broad-based epigenetic framework for understanding and ultimately treating a diverse assemblage of NDDs ("epigenopathies") lying at the interface of genetic, developmental and environmental processes. This article is part of the Special Issue entitled 'Neurodevelopmental Disorders'.
Collapse
Affiliation(s)
- Mark J Millan
- Unit for Research and Discovery in Neuroscience, IDR Servier, 125 chemin de ronde, 78290 Croissy sur Seine, Paris, France.
| |
Collapse
|
158
|
Schaevitz LR, Berger-Sweeney JE. Gene-Environment Interactions and Epigenetic Pathways in Autism: The Importance of One-Carbon Metabolism. ILAR J 2012; 53:322-40. [DOI: 10.1093/ilar.53.3-4.322] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
159
|
Li KK, Luo C, Wang D, Jiang H, Zheng YG. Chemical and biochemical approaches in the study of histone methylation and demethylation. Med Res Rev 2012; 32:815-67. [PMID: 22777714 DOI: 10.1002/mrr.20228] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Histone methylation represents one of the most critical epigenetic events in DNA function regulation in eukaryotic organisms. Classic molecular biology and genetics tools provide significant knowledge about mechanisms and physiological roles of histone methyltransferases and demethylases in various cellular processes. In addition to this stream line, development and application of chemistry and chemistry-related techniques are increasingly involved in biological study, and offer information otherwise difficult to obtain by standard molecular biology methods. Herein, we review recent achievements and progress in developing and applying chemical and biochemical approaches in the study of histone methylation, including chromatin immunoprecipitation, chemical ligation, mass spectrometry, biochemical methylation and demethylation assays, and inhibitor development. These technological advances allow histone methylation to be studied from genome-wide level to molecular and atomic levels. With ChIP technology, information can be obtained about precise mapping of histone methylation patterns at specific promoters, genes, or other genomic regions. MS is particularly useful in detecting and analyzing methylation marks in histone and nonhistone protein substrates. Chemical approaches that permit site-specific incorporation of methyl groups into histone proteins greatly facilitate the investigation of biological impacts of methylation at individual modification sites. Discovery and design of selective organic inhibitors of histone methyltransferases and demethylases provide chemical probes to interrogate methylation-mediated cellular pathways. Overall, these chemistry-related technological advances have greatly improved our understanding of the biological functions of histone methylation in normal physiology and diseased states, and also are of great potential to translate basic epigenetics research into diagnostic and therapeutic applications in the clinic.
Collapse
Affiliation(s)
- Keqin Kathy Li
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | | | | | | | | |
Collapse
|
160
|
Blaze J, Roth TL. Epigenetic mechanisms in learning and memory. WILEY INTERDISCIPLINARY REVIEWS. COGNITIVE SCIENCE 2012; 4:105-115. [DOI: 10.1002/wcs.1205] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
161
|
Lipsky RH. Epigenetic mechanisms regulating learning and long-term memory. Int J Dev Neurosci 2012; 31:353-8. [PMID: 23142272 DOI: 10.1016/j.ijdevneu.2012.10.110] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Revised: 10/29/2012] [Accepted: 10/30/2012] [Indexed: 01/29/2023] Open
Abstract
A balance between rapid, short lived, neuronal responses and prolonged ones fulfill the biochemical and cellular requirements for creating a molecular memory. I provide an overview of epigenetic mechanisms in the brain and discuss their impact on synaptic plasticity, cognitive functions, and discuss a recent example of how they can contribute to neurodegeneration and the cognitive decline associated with Alzheimer's disease.
Collapse
Affiliation(s)
- Robert H Lipsky
- Inova Neuroscience Institute, Department of Neurosciences, Inova Health System, 3289 Woodburn Road, Suite 210B, Annandale, VA 22003, United States.
| |
Collapse
|
162
|
Billack B, Serio R, Silva I, Kinsley CH. Epigenetic changes brought about by perinatal stressors: A brief review of the literature. J Pharmacol Toxicol Methods 2012; 66:221-31. [DOI: 10.1016/j.vascn.2012.08.169] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Revised: 07/25/2012] [Accepted: 08/28/2012] [Indexed: 12/27/2022]
|
163
|
Pereira R, Benedetti R, Pérez-Rodríguez S, Nebbioso A, García-Rodríguez J, Carafa V, Stuhldreier M, Conte M, Rodríguez-Barrios F, Stunnenberg HG, Gronemeyer H, Altucci L, de Lera ÁR. Indole-Derived Psammaplin A Analogues as Epigenetic Modulators with Multiple Inhibitory Activities. J Med Chem 2012; 55:9467-91. [DOI: 10.1021/jm300618u] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Raquel Pereira
- Departamento de Química
Orgánica, Universidade de Vigo,
36310 Vigo, Spain
| | - Rosaria Benedetti
- Dipartimento
di Patologia Generale, Seconda Università degli Studi di Napoli, Vico
L. de Crecchio 7, 80138 Napoli, Italy
| | | | - Angela Nebbioso
- Dipartimento
di Patologia Generale, Seconda Università degli Studi di Napoli, Vico
L. de Crecchio 7, 80138 Napoli, Italy
| | | | - Vincenzo Carafa
- Dipartimento
di Patologia Generale, Seconda Università degli Studi di Napoli, Vico
L. de Crecchio 7, 80138 Napoli, Italy
| | - Mayra Stuhldreier
- Departamento de Química
Orgánica, Universidade de Vigo,
36310 Vigo, Spain
| | - Mariarosaria Conte
- Dipartimento
di Patologia Generale, Seconda Università degli Studi di Napoli, Vico
L. de Crecchio 7, 80138 Napoli, Italy
| | | | - Hendrik G. Stunnenberg
- NCMLS, Department
of Molecular
Biology, Radboud University, 6525 GA Nijmegen,
The Netherlands
| | - Hinrich Gronemeyer
- Department
of Cancer Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS, INSERM, ULP, BP 163, 67404
Illkirch Cedex, C. U. de Strasbourg, France
| | - Lucia Altucci
- Dipartimento
di Patologia Generale, Seconda Università degli Studi di Napoli, Vico
L. de Crecchio 7, 80138 Napoli, Italy
- Institute of Genetics and Biophysics (IGB), CNR, Via P. Castellino 111, 80131
Napoli, Italy
| | - Ángel R. de Lera
- Departamento de Química
Orgánica, Universidade de Vigo,
36310 Vigo, Spain
| |
Collapse
|
164
|
Variations in postnatal maternal care and the epigenetic regulation of metabotropic glutamate receptor 1 expression and hippocampal function in the rat. Proc Natl Acad Sci U S A 2012; 109 Suppl 2:17200-7. [PMID: 23045678 DOI: 10.1073/pnas.1204599109] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Variations in maternal care in the rat affect hippocampal morphology and function as well as performance on hippocampal-dependent tests of learning and memory in the offspring. Preliminary genome-wide analyses of gene transcription and DNA methylation of the molecular basis for such maternal effects suggested differences in the epigenetic state and transcriptional activity of the Grm1 gene in the rat as a function of maternal care. Grm1 encodes the type I metabotropic glutamate receptor (mGluR1), and we found increased mGluR1 mRNA and protein in hippocampus from the adult offspring of mothers showing an increased frequency of pup licking/grooming (i.e., high-LG mothers) that was associated with a decrease in the methylation of Grm1. ChIP assays showed increased levels of histone 3 lysine 9 acetylation and histone 3 lysine 4 trimethylation of Grm1 in hippocampus from the adult offspring of high-LG compared with low-LG mothers. These histone posttranslational modifications were highly correlated, and both associate inversely with DNA methylation and positively with transcription. Studies of mGluR1 function showed increased hippocampal mGluR1-induced long-term depression in the adult offspring of high-LG compared with low-LG mothers, as well as increased paired-pulse depression (PPD). PPD is an inhibitory feedback mechanism that prevents excessive glutamate release during high-frequency stimulation. The maternal effects on both long-term depression and PPD were eliminated by treatment with an mGluR1-selective antagonist. These findings suggest that variations in maternal care can influence hippocampal function and cognitive performance through the epigenetic regulation of genes implicated in glutamatergic synaptic signaling.
Collapse
|
165
|
Trials with 'epigenetic' drugs: an update. Mol Oncol 2012; 6:657-82. [PMID: 23103179 DOI: 10.1016/j.molonc.2012.09.004] [Citation(s) in RCA: 179] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Accepted: 09/30/2012] [Indexed: 02/06/2023] Open
Abstract
Epigenetic inactivation of pivotal genes involved in correct cell growth is a hallmark of human pathologies, in particular cancer. These epigenetic mechanisms, including crosstalk between DNA methylation, histone modifications and non-coding RNAs, affect gene expression and are associated with disease progression. In contrast to genetic mutations, epigenetic changes are potentially reversible. Re-expression of genes epigenetically inactivated can result in the suppression of disease state or sensitization to specific therapies. Small molecules that reverse epigenetic inactivation, so-called epi-drugs, are now undergoing clinical trials. Accordingly, the Food and Drug Administration (FDA) and the European Medicines Agency (EMA) for cancer treatment have approved some of these drugs. Here, we focus on the biological features of epigenetic molecules, analyzing the mechanism(s) of action and their current use in clinical practice.
Collapse
|
166
|
Emes RD, Clifford H, Haworth KE, Farrell WE, Fryer AA, Carroll WD, Ismail KMK. Antiepileptic drugs and the fetal epigenome. Epilepsia 2012; 54:e16-9. [DOI: 10.1111/j.1528-1167.2012.03673.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
167
|
Buchheit T, Van de Ven T, Shaw A. Epigenetics and the transition from acute to chronic pain. PAIN MEDICINE 2012; 13:1474-90. [PMID: 22978429 DOI: 10.1111/j.1526-4637.2012.01488.x] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
OBJECTIVE The objective of this study was to review the epigenetic modifications involved in the transition from acute to chronic pain and to identify potential targets for the development of novel, individualized pain therapeutics. BACKGROUND Epigenetics is the study of heritable modifications in gene expression and phenotype that do not require a change in genetic sequence to manifest their effects. Environmental toxins, medications, diet, and psychological stresses can alter epigenetic processes such as DNA methylation, histone acetylation, and RNA interference. As epigenetic modifications potentially play an important role in inflammatory cytokine metabolism, steroid responsiveness, and opioid sensitivity, they are likely key factors in the development of chronic pain. Although our knowledge of the human genetic code and disease-associated polymorphisms has grown significantly in the past decade, we have not yet been able to elucidate the mechanisms that lead to the development of persistent pain after nerve injury or surgery. DESIGN This is a focused literature review of epigenetic science and its relationship to chronic pain. RESULTS Significant laboratory and clinical data support the notion that epigenetic modifications are affected by the environment and lead to differential gene expression. Similar to mechanisms involved in the development of cancer, neurodegenerative disease, and inflammatory disorders, the literature endorses an important potential role for epigenetics in chronic pain. CONCLUSIONS Epigenetic analysis may identify mechanisms critical to the development of chronic pain after injury, and may provide new pathways and target mechanisms for future drug development and individualized medicine.
Collapse
Affiliation(s)
- Thomas Buchheit
- Department of Anesthesiology, Duke University Medical Center, Durham VA Medical Center, Durham, NC 27710, USA.
| | | | | |
Collapse
|
168
|
de Souza CF, Xander P, Monteiro AC, Silva AGDS, da Silva DCP, Mai S, Bernardo V, Lopes JD, Jasiulionis MG. Mining gene expression signature for the detection of pre-malignant melanocytes and early melanomas with risk for metastasis. PLoS One 2012; 7:e44800. [PMID: 22984562 PMCID: PMC3439384 DOI: 10.1371/journal.pone.0044800] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Accepted: 08/14/2012] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Metastatic melanoma is a highly aggressive skin cancer and currently resistant to systemic therapy. Melanomas may involve genetic, epigenetic and metabolic abnormalities. Evidence is emerging that epigenetic changes might play a significant role in tumor cell plasticity and metastatic phenotype of melanoma cells. PRINCIPAL FINDINGS In this study, we developed a systematic approach to identify genes implicated in melanoma progression. To do this, we used the Affymetrix GeneChip Arrays to screen 34,000 mouse transcripts in melan-a melanocytes, 4C pre-malignant melanocytes, 4C11- non-metastatic and 4C11+ metastatic melanoma cell lines. The genome-wide association studies revealed pathways commonly over-represented in the transition from immortalized to pre-malignant stage, and under-represented in the transition from non-metastatic to metastatic stage. Additionally, the treatment of cells with 10 µM 5-aza-2'-deoxycytidine (5AzaCdR) for 48 hours allowed us to identify genes differentially re-expressed at specific stages of melan-a malignant transformation. Treatment of human primary melanocytes with the demethylating agent 5AzaCdR in combination to the histone deacetylase inhibitor Trichostatin A (TSA) revealed changes on melanocyte morphology and gene expression which could be an indicator of epigenetic flexibility in normal melanocytes. Moreover, changes on gene expression recognized by affecting the melanocyte biology (NDRG2 and VDR), phenotype of metastatic melanoma cells (HSPB1 and SERPINE1) and response to cancer therapy (CTCF, NSD1 and SRC) were found when Mel-2 and/or Mel-3-derived patient metastases were exposed to 5AzaCdR plus TSA treatment. Hierarchical clustering and network analyses in a panel of five patient-derived metastatic melanoma cells showed gene interactions that have never been described in melanomas. SIGNIFICANCE Despite the heterogeneity observed in melanomas, this study demonstrates the utility of our murine melanoma progression model to identify molecular markers commonly perturbed in metastasis. Additionally, the novel gene expression signature identified here may be useful in the future into a model more closely related to translational research.
Collapse
|
169
|
Schwartzer JJ, Koenig CM, Berman RF. Using mouse models of autism spectrum disorders to study the neurotoxicology of gene-environment interactions. Neurotoxicol Teratol 2012; 36:17-35. [PMID: 23010509 DOI: 10.1016/j.ntt.2012.08.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Revised: 08/28/2012] [Accepted: 08/30/2012] [Indexed: 10/27/2022]
Abstract
To better study the role of genetics in autism, mouse models have been developed which mimic the genetics of specific autism spectrum and related disorders. These models have facilitated research on the role genetic susceptibility factors in the pathogenesis of autism in the absence of environmental factors. Inbred mouse strains have been similarly studied to assess the role of environmental agents on neurodevelopment, typically without the complications of genetic heterogeneity of the human population. What has not been as actively pursued, however, is the methodical study of the interaction between these factors (e.g., gene and environmental interactions in neurodevelopment). This review suggests that a genetic predisposition paired with exposure to environmental toxicants plays an important role in the etiology of neurodevelopmental disorders including autism, and may contribute to the largely unexplained rise in the number of children diagnosed with autism worldwide. Specifically, descriptions of the major mouse models of autism and toxic mechanisms of prevalent environmental chemicals are provided followed by a discussion of current and future research strategies to evaluate the role of gene and environment interactions in neurodevelopmental disorders.
Collapse
Affiliation(s)
- Jared J Schwartzer
- Department of Psychiatry and Behavioral Sciences, MIND Institute, University of California, Davis, Davis, CA 95618, United States.
| | | | | |
Collapse
|
170
|
Dong E, Gavin DP, Chen Y, Davis J. Upregulation of TET1 and downregulation of APOBEC3A and APOBEC3C in the parietal cortex of psychotic patients. Transl Psychiatry 2012; 2:e159. [PMID: 22948384 PMCID: PMC3565208 DOI: 10.1038/tp.2012.86] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Increasing evidence suggests that epigenetic dysfunction may account for the alteration of gene transcription present in neuropsychiatric disorders such as schizophrenia (SZ), bipolar disorder (BP) and autism. Here, we studied the expression of the ten-eleven translocation (TET) gene family and activation-induced deaminase/apolipoprotein B mRNA-editing enzymes (AID/APOBEC) in the inferior parietal lobule (IPL) (BA39-40) and the cerebellum of psychotic (PSY) patients, depressed (DEP) patients and nonpsychiatric (CTR) subjects obtained from the Stanley Foundation Neuropathology Consortium Medical Research Institute. These two sets of enzymes have a critical role in the active DNA demethylation pathway. The results show that TET1, but not TET2 and TET3, mRNA and protein expression was increased (two- to threefold) in the IPL of the PSY patients compared with the CTR subjects. TET1 mRNA showed no change in the cerebellum. Consistent with the increase of TET1, the level of 5-hydroxymethylcytosine (5hmC) was elevated in the IPL of PSY patients but not in the other groups. Moreover, higher 5hmC levels were detected at the glutamic acid decarboxylase67 (GAD67) promoter only in the PSY group. This increase was inversely related to the decrease of GAD67 mRNA expression. Of 11 DNA deaminases measured, APOBEC3A mRNA was significantly decreased in the PSY and DEP patients, while APOBEC3C was decreased only in PSY patients. The other APOBEC mRNA studied failed to change. Increased TET1 and decreased APOBEC3A and APOBEC3C found in this study highlight the possible role of altered DNA demethylation mechanisms in the pathophysiology of psychosis.
Collapse
Affiliation(s)
- E Dong
- Department of Psychiatry, The Psychiatric Institute, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA.
| | - D P Gavin
- Department of Psychiatry, The Psychiatric Institute, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Y Chen
- Department of Psychiatry, The Psychiatric Institute, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - J Davis
- Department of Psychiatry, The Psychiatric Institute, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
171
|
DNA methylation inhibitors in cancer: recent and future approaches. Biochimie 2012; 94:2280-96. [PMID: 22967704 DOI: 10.1016/j.biochi.2012.07.025] [Citation(s) in RCA: 169] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2012] [Accepted: 07/30/2012] [Indexed: 12/14/2022]
Abstract
This review presents the different human DNA methyltransferases (DNMTs), their biological roles, their mechanisms of action and their role in cancer. The description of assays for detecting DNMT inhibitors (DNMTi) follows. The different known DNMTi are reported along with their advantages, drawbacks and clinical trials. A discussion on the features of the future DNMT inhibitors will conclude this review.
Collapse
|
172
|
Three-dimensional quantitative DNA methylation imagingfor chromatin texture analysis in pharmacoepigenomics and toxicoepigenomics. Epigenomics 2012. [DOI: 10.1017/cbo9780511777271.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
173
|
Abstract
Chemoresistance of tumors is often reported to be due to overexpression of efflux transporters or genetic alterations of signaling pathways. More recently, there is increasing evidence that epigenetic modification contributes to the phenomenon of drug resistance. Despite alteration of DNA methylation or histone modifications, deregulated miRNA expression patterns of tumor cells have been identified as interfering with drug response. Attempts to modify the expression of selected miRNAs have partly led to intriguing improvements of chemotherapy response. This review focuses on the major epigenetic mechanisms, including the role of miRNA expression contributing to drug resistance and the role of epigenetic drugs to overcome nonresponse arising under conventional chemotherapy.
Collapse
Affiliation(s)
- Sierk Haenisch
- Institute of Experimental & Clinical Pharmacology, University Hospital Schleswig-Holstein, Campus Kiel, Arnold-Heller-Street 3, Building 30, D-24105 Kiel, Germany
| | - Ingolf Cascorbi
- Institute of Experimental & Clinical Pharmacology, University Hospital Schleswig-Holstein, Campus Kiel, Arnold-Heller-Street 3, Building 30, D-24105 Kiel, Germany
| |
Collapse
|
174
|
Wang J, Wu Z, Li D, Li N, Dindot SV, Satterfield MC, Bazer FW, Wu G. Nutrition, epigenetics, and metabolic syndrome. Antioxid Redox Signal 2012; 17:282-301. [PMID: 22044276 PMCID: PMC3353821 DOI: 10.1089/ars.2011.4381] [Citation(s) in RCA: 185] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Accepted: 11/01/2011] [Indexed: 01/21/2023]
Abstract
SIGNIFICANCE Epidemiological and animal studies have demonstrated a close link between maternal nutrition and chronic metabolic disease in children and adults. Compelling experimental results also indicate that adverse effects of intrauterine growth restriction on offspring can be carried forward to subsequent generations through covalent modifications of DNA and core histones. RECENT ADVANCES DNA methylation is catalyzed by S-adenosylmethionine-dependent DNA methyltransferases. Methylation, demethylation, acetylation, and deacetylation of histone proteins are performed by histone methyltransferase, histone demethylase, histone acetyltransferase, and histone deacetyltransferase, respectively. Histone activities are also influenced by phosphorylation, ubiquitination, ADP-ribosylation, sumoylation, and glycosylation. Metabolism of amino acids (glycine, histidine, methionine, and serine) and vitamins (B6, B12, and folate) plays a key role in provision of methyl donors for DNA and protein methylation. CRITICAL ISSUES Disruption of epigenetic mechanisms can result in oxidative stress, obesity, insulin resistance, diabetes, and vascular dysfunction in animals and humans. Despite a recognized role for epigenetics in fetal programming of metabolic syndrome, research on therapies is still in its infancy. Possible interventions include: 1) inhibition of DNA methylation, histone deacetylation, and microRNA expression; 2) targeting epigenetically disturbed metabolic pathways; and 3) dietary supplementation with functional amino acids, vitamins, and phytochemicals. FUTURE DIRECTIONS Much work is needed with animal models to understand the basic mechanisms responsible for the roles of specific nutrients in fetal and neonatal programming. Such new knowledge is crucial to design effective therapeutic strategies for preventing and treating metabolic abnormalities in offspring born to mothers with a previous experience of malnutrition.
Collapse
Affiliation(s)
- Junjun Wang
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, China
| | - Zhenlong Wu
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, China
| | - Defa Li
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, China
| | - Ning Li
- State Key Laboratory of AgroBiotechnology, China Agricultural University, Beijing, China
| | - Scott V. Dindot
- Center for Animal Biotechnology and Genomics, Texas A&M University, College Station, Texas
- Department of Veterinary Pathobiology, Texas A&M University, College Station, Texas
- Department of Molecular and Cellular Medicine, Texas A&M University, College Station, Texas
| | - M. Carey Satterfield
- Center for Animal Biotechnology and Genomics, Texas A&M University, College Station, Texas
- Department of Animal Science, Texas A&M University, College Station, Texas
| | - Fuller W. Bazer
- Center for Animal Biotechnology and Genomics, Texas A&M University, College Station, Texas
- Department of Animal Science, Texas A&M University, College Station, Texas
| | - Guoyao Wu
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, China
- Center for Animal Biotechnology and Genomics, Texas A&M University, College Station, Texas
- Department of Animal Science, Texas A&M University, College Station, Texas
| |
Collapse
|
175
|
García-Domínguez P, Alvarez R, de Lera ÁR. Survey of Synthetic Approaches to Natural (Peyssonenynes) and Unnatural Acetoxyenediynes. European J Org Chem 2012. [DOI: 10.1002/ejoc.201200246] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
176
|
Epigenetic mechanisms in central nervous system disorders. Transl Neurosci 2012. [DOI: 10.1017/cbo9780511980053.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
177
|
Section summary and perspectives: Neurodevelopmental disorders and regulation of epigenetic changes. Transl Neurosci 2012. [DOI: 10.1017/cbo9780511980053.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
178
|
Van De Voorde L, Speeckaert R, Van Gestel D, Bracke M, De Neve W, Delanghe J, Speeckaert M. DNA methylation-based biomarkers in serum of patients with breast cancer. Mutat Res 2012; 751:304-325. [PMID: 22698615 DOI: 10.1016/j.mrrev.2012.06.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Revised: 06/03/2012] [Accepted: 06/05/2012] [Indexed: 12/18/2022]
Abstract
Alterations of genetic and epigenetic features can provide important insights into the natural history of breast cancer. Although DNA methylation analysis is a rapidly developing field, a reproducible epigenetic blood-based assay for diagnosis and follow-up of breast cancer has yet to be successfully developed into a routine clinical test. The aim of this study was to review multiple serum DNA methylation assays and to highlight the value of those novel biomarkers in diagnosis, prognosis and prediction of therapeutic outcome. Serum is readily accessible for molecular diagnosis in all individuals from a peripheral blood sample. The list of hypermethylated genes in breast cancer is heterogeneous and no single gene is methylated in all breast cancer types. There is increasing evidence that a panel of epigenetic markers is essential to achieve a higher sensitivity and specificity in breast cancer detection. However, the reported percentages of methylation are highly variable, which can be partly explained by the different sensitivities and the different intra-/inter-assay coefficients of variability of the analysis methods. Moreover, there is a striking lack of receiver operating characteristic (ROC) curves of the proposed biomarkers. Another point of criticism is the fact that 'normal' patterns of DNA methylation of some tumor suppressor and other cancer-related genes are influenced by several factors and are often poorly characterized. A relatively frequent methylation of those genes has been observed in high-risk asymptomatic women. Finally, there is a call for larger prospective cohort studies to determine methylation patterns during treatment and follow-up. Identification of patterns specific for a differential response to therapeutic interventions should be useful. Only in this way, it will be possible to evaluate the predictive and prognostic characteristics of those novel promising biomarkers.
Collapse
Affiliation(s)
- Lien Van De Voorde
- Department of Radiation Oncology and Experimental Cancer Research, Ghent University Hospital, Ghent, Belgium
| | | | - Dirk Van Gestel
- Department of Radiation Oncology, Antwerp University Hospital, Antwerp, Belgium
| | - Marc Bracke
- Department of Radiation Oncology and Experimental Cancer Research, Ghent University Hospital, Ghent, Belgium
| | - Wilfried De Neve
- Department of Radiation Oncology and Experimental Cancer Research, Ghent University Hospital, Ghent, Belgium
| | - Joris Delanghe
- Department of Clinical Chemistry, Ghent University Hospital, Ghent, Belgium
| | - Marijn Speeckaert
- Department of Clinical Chemistry, Ghent University Hospital, Ghent, Belgium; Department of Internal Medicine, Ghent University Hospital, Ghent, Belgium.
| |
Collapse
|
179
|
Abstract
Abnormal brain-derived neurotrophic factor (BDNF) signaling seems to have a central role in the course and development of various neurological and psychiatric disorders. In addition, positive effects of psychotropic drugs are known to activate BDNF-mediated signaling. Although the BDNF gene has been associated with several diseases, molecular mechanisms other than functional genetic variations can impact on the regulation of BDNF gene expression and lead to disturbed BDNF signaling and associated pathology. Thus, epigenetic modifications, representing key mechanisms by which environmental factors induce enduring changes in gene expression, are suspected to participate in the onset of various psychiatric disorders. More specifically, various environmental factors, particularly when occurring during development, have been claimed to produce long-lasting epigenetic changes at the BDNF gene, thereby affecting availability and function of the BDNF protein. Such stabile imprints on the BDNF gene might explain, at least in part, the delayed efficacy of treatments as well as the high degree of relapses observed in psychiatric disorders. Moreover, BDNF gene has a complex structure displaying differential exon regulation and usage, suggesting a subcellular- and brain region-specific distribution. As such, developing drugs that modify epigenetic regulation at specific BDNF exons represents a promising strategy for the treatment of psychiatric disorders. Here, we present an overview of the current literature on epigenetic modifications at the BDNF locus in psychiatric disorders and related animal models.
Collapse
|
180
|
Treatment of Nuclear-Donor Cells or Cloned Zygotes with Chromatin-Modifying Agents Increases Histone Acetylation But Does Not Improve Full-Term Development of Cloned Cattle. Cell Reprogram 2012; 14:235-47. [DOI: 10.1089/cell.2011.0079] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
|
181
|
Gavin DP, Akbarian S. Epigenetic and post-transcriptional dysregulation of gene expression in schizophrenia and related disease. Neurobiol Dis 2012; 46:255-62. [DOI: 10.1016/j.nbd.2011.12.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Revised: 11/10/2011] [Accepted: 12/04/2011] [Indexed: 12/22/2022] Open
|
182
|
Durham A, Chou PC, Kirkham P, Adcock IM. Epigenetics in asthma and other inflammatory lung diseases. Epigenomics 2012; 2:523-37. [PMID: 22121972 DOI: 10.2217/epi.10.27] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Asthma is a chronic inflammatory disease of the airways. The causes of asthma and other inflammatory lung diseases are thought to be both environmental and heritable. Genetic studies do not adequately explain the heritability and susceptabilty to the disease, and recent evidence suggests that epigentic changes may underlie these processes. Epigenetics are heritable noncoding changes to DNA and can be influenced by environmental factors such as smoking and traffic pollution, which can cause genome-wide and gene-specific changes in DNA methylation. In addition, alterations in histone acetyltransferase/deacetylase activities can be observed in the cells of patients with lung diseases such as severe asthma and chronic obstructive pulmonary disease, and are often linked to smoking. Drugs such as glucocorticoids, which are used to control inflammation, are dependent on histone deacetylase activity, which may be important in patients with severe asthma and chronic obstructive pulmonary disease who do not respond well to glucocorticoid therapy. Future work targeting specific histone acetyltransferases/deacetylases or (de)methylases may prove to be effective future anti-inflammatory treatments for patients with treatment-unresponsive asthma.
Collapse
Affiliation(s)
- Andrew Durham
- Airways Disease Section, National Heart & Lung Institute, Imperial College, Dovehouse Street, London, SW3 6LY, UK.
| | | | | | | |
Collapse
|
183
|
Blumenthal MN. Genetic, epigenetic, and environmental factors in asthma and allergy. Ann Allergy Asthma Immunol 2012; 108:69-73. [PMID: 22289722 DOI: 10.1016/j.anai.2011.12.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Revised: 11/18/2011] [Accepted: 12/04/2011] [Indexed: 12/20/2022]
|
184
|
Abstract
Strong evidence suggests a potential link among epigenetics, microRNAs (miRNAs), and pregnancy complications. Much research still needs to be carried out to determine whether epigenetic factors are predictive in the pathogenesis of preeclampsia (PE), a life-threatening disease during pregnancy. Recently, the importance of maternal epigenetic features, including DNA methylation, histone modifications, epigenetically regulated miRNA, and the effect of imprinted or non-imprinted genes on trophoblast growth, invasion, as well as fetal development and hypertension in pregnancy, has been demonstrated in a series of articles. This article discusses the current evidence of this complicated network of miRNA and epigenetic factors as potential mechanisms that may underlie the theories of disease for PE. Translating these basic epigenetic findings to clinical practice could potentially serve as prognostic biomarkers for diagnosis in its early stages and could help in the development of prophylactic strategies.
Collapse
Affiliation(s)
- Mahua Choudhury
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO 80045, USA.
| | | |
Collapse
|
185
|
Abstract
Changes in gene expression that reset a cell program from a normal to a diseased state involve multiple genetic circuitries, creating a characteristic signature of gene expression that defines the cell's unique identity. Such signatures have been demonstrated to classify subtypes of breast cancers. Because DNA methylation is critical in programming gene expression, a change in methylation from a normal to diseased state should be similarly reflected in a signature of DNA methylation that involves multiple gene pathways. Whole-genome approaches have recently been used with different levels of success to delineate breast-cancer-specific DNA methylation signatures, and to test whether they can classify breast cancer and whether they could be associated with specific clinical outcomes. Recent work suggests that DNA methylation signatures will extend our ability to classify breast cancer and predict outcome beyond what is currently possible. DNA methylation is a robust biomarker, vastly more stable than RNA or proteins, and is therefore a promising target for the development of new approaches for diagnosis and prognosis of breast cancer and other diseases. Here, I review the scientific basis for using DNA methylation signatures in breast cancer classification and prognosis. I discuss the role of DNA methylation in normal gene regulation, the aberrations in DNA methylation in cancer, and candidate-gene and whole-genome approaches to classify breast cancer subtypes using DNA methylation markers.
Collapse
Affiliation(s)
- Moshe Szyf
- Department of Pharmacology and Therapeutics, Sackler Program in Epigenetics and Psychobiology, McGill University, 3,655 Sir William Osler Promenade, Montreal H3G1Y6, Canada
| |
Collapse
|
186
|
Role of epigenetics in cancer initiation and progression. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 720:91-104. [PMID: 21901621 DOI: 10.1007/978-1-4614-0254-1_8] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The epigenome which comprises DNA methylation, histone modifications, chromatin structures and non-coding RNAs controls gene expression patterns. In cancer cells, there are aberrant changes in the epigenome. The question in cancer epigenetics is that whether these changes are the cause of cell transformation, or rather the consequence of it. We will discuss the epigenetic phenomenon in cancer, as well as the recent interests in the epigenetic reprogramming events, and their implications in the cancer stem cell theory. We will also look at the progression of cancers as they become more aggressive, with focus on the role of epigenetics in tumor metastases exemplified with the urokinase plasminogen activator (uPA) system. Last but not least, with therapeutics intervention in mind, we will highlight the importance of balance in the design of epigenetic based anti-cancer therapeutic strategies.
Collapse
|
187
|
Fu Y, Nachtigal MW. Analysis of epigenetic alterations to proprotein convertase genes in disease. Methods Mol Biol 2012; 768:231-45. [PMID: 21805246 DOI: 10.1007/978-1-61779-204-5_12] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Epigenetic alterations produce heritable changes in phenotype or gene expression without changing DNA sequence. Modified levels of gene expression contribute to a variety of human diseases encompassing genetic disorders, pediatric syndromes, autoimmune disease, aging, and cancer. Alterations in proprotein convertase gene expression are associated with numerous disease states; however, the underlying mechanism for changes in PC gene expression remains understudied. Epigenetic changes in gene expression profiles can be accomplished through modification of chromatin, specifically via chemical modification of DNA bases (methylation of cytosine) or associated histone proteins (acetylation or methylation). In general, active chromatin is associated with low DNA methylation status and histone acetylation, whereas silenced gene are typically in inactive regions of chromatin exhibiting DNA hypermethylation and histone deacetylation. This chapter will provide in-depth protocols to analyze epigenetic alterations in proprotein convertase gene expression using the PCSK6 gene in the context of human ovarian cancer as a model system.
Collapse
Affiliation(s)
- YangXin Fu
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, AB, Canada.
| | | |
Collapse
|
188
|
Tian W, Zhao M, Li M, Song T, Zhang M, Quan L, Li S, Sun ZS. Reversal of cocaine-conditioned place preference through methyl supplementation in mice: altering global DNA methylation in the prefrontal cortex. PLoS One 2012; 7:e33435. [PMID: 22438930 PMCID: PMC3306398 DOI: 10.1371/journal.pone.0033435] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Accepted: 02/09/2012] [Indexed: 12/18/2022] Open
Abstract
Analysis of global methylation in cells has revealed correlations between overall DNA methylation status and some biological states. Recent studies suggest that epigenetic regulation through DNA methylation could be responsible for neuroadaptations induced by addictive drugs. However, there is no investigation to determine global DNA methylation status following repeated exposure to addictive drugs. Using mice conditioned place preference (CPP) procedure, we measured global DNA methylation level in the nucleus accumbens (NAc) and the prefrontal cortex (PFC) associated with drug rewarding effects. We found that cocaine-, but not morphine- or food-CPP training decreased global DNA methylation in the PFC. Chronic treatment with methionine, a methyl donor, for 25 consecutive days prior to and during CPP training inhibited the establishment of cocaine, but not morphine or food CPP. We also found that both mRNA and protein level of DNMT (DNA methytransferase) 3b in the PFC were downregulated following the establishment of cocaine CPP, and the downregulation could be reversed by repeated administration of methionine. Our study indicates a crucial role of global PFC DNA hypomethylation in the rewarding effects of cocaine. Reversal of global DNA hypomethylation could significantly attenuate the rewarding effects induced by cocaine. Our results suggest that methionine may have become a potential therapeutic target to treat cocaine addiction.
Collapse
Affiliation(s)
- Weiping Tian
- Department of Forensic Science, School of Medicine, Xi'an Jiaotong University, Xi'an, Shan'xi, China
| | - Mei Zhao
- Key Lab of Mental Health, Institute of Psychology Chinese Academy of Sciences, Beijing, China
| | - Min Li
- Institute of Genomic Medicine, Wenzhou Medical College, Wenzhou, China
| | - Tianbao Song
- Department of Forensic Science, School of Medicine, Xi'an Jiaotong University, Xi'an, Shan'xi, China
| | - Min Zhang
- Department of Molecular Immunology, Capital Institute of Pediatrics, Beijing, China
| | - Li Quan
- Department of Molecular Immunology, Capital Institute of Pediatrics, Beijing, China
| | - Shengbin Li
- Department of Forensic Science, School of Medicine, Xi'an Jiaotong University, Xi'an, Shan'xi, China
- * E-mail: (SL); (ZSS)
| | - Zhong Sheng Sun
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China
- Institute of Genomic Medicine, Wenzhou Medical College, Wenzhou, China
- * E-mail: (SL); (ZSS)
| |
Collapse
|
189
|
Sales AJ, Biojone C, Terceti MS, Guimarães FS, Gomes MVM, Joca SRL. Antidepressant-like effect induced by systemic and intra-hippocampal administration of DNA methylation inhibitors. Br J Pharmacol 2012; 164:1711-21. [PMID: 21585346 DOI: 10.1111/j.1476-5381.2011.01489.x] [Citation(s) in RCA: 111] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND AND PURPOSE Epigenetic modifications are thought to play an important role in the neurobiology of depression. Antidepressant treatment induces histone acetylation in the hippocampus, which is associated with transcriptional activation, whereas stress increases DNA methylation, which is associated with transcriptional repression. Because the specific involvement of DNA methylation in the regulation of depressive-like behaviours is not yet known, we have investigated the effects induced by systemic or intra-hippocampal administration of inhibitors of DNA methyltransferase (DNMT) in rats submitted to a range of behavioural tests. EXPERIMENTAL APPROACH Rats received i.p. injections of 5-aza-2-deoxycytidine (5-azaD, 0.1-0.8 mg·kg(-1) ), 5-azacytidine (5-azaC, 0.4-3.2 mg·kg(-1) ), imipramine (15 mg·kg(-1) ) or vehicle and were submitted to the forced swimming test (FST) or open field test (OFT). Other groups of rats received intra-hippocampal injection of DNMT inhibitors. KEY RESULTS Systemic administration of DNMT inhibitors induced a dose-dependent antidepressant-like effect, which was followed by decreased DNA methylation and increased brain-derived neurotrophic factor (BDNF) levels in the hippocampus. Hippocampal inhibition of DNA methylation induced similar behavioural effects. No treatment induced any locomotor effects in the OFT. Antidepressant-like effects of 5-azaD were confirmed in mice submitted to the FST or the tail suspension test. CONCLUSIONS AND IMPLICATIONS Systemic, as well as hippocampal, inhibition of DNA methylation induced antidepressant-like effects. These effects could be associated with increased hippocampal expression of BDNF. Our data give further support to the hypothesis that DNA methylation is an important epigenetic mechanism involved in the development of depressive-like behaviours.
Collapse
Affiliation(s)
- Amanda J Sales
- Laboratory of Pharmacology, Department of Physics and Chemistry, School of Pharmaceutical of Ribeirão Preto, University of São Paulo, Brazil
| | | | | | | | | | | |
Collapse
|
190
|
Lu Q, Quinn AM, Patel MP, Semus SF, Graves AP, Bandyopadhyay D, Pope AJ, Thrall SH. Perspectives on the discovery of small-molecule modulators for epigenetic processes. ACTA ACUST UNITED AC 2012; 17:555-71. [PMID: 22392809 DOI: 10.1177/1087057112437763] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Epigenetic gene regulation is a critical process controlling differentiation and development, the malfunction of which may underpin a variety of diseases. In this article, we review the current landscape of small-molecule epigenetic modulators including drugs on the market, key compounds in clinical trials, and chemical probes being used in epigenetic mechanistic studies. Hit identification strategies for the discovery of small-molecule epigenetic modulators are summarized with respect to writers, erasers, and readers of histone marks. Perspectives are provided on opportunities for new hit discovery approaches, some of which may define the next generation of therapeutic intervention strategies for epigenetic processes.
Collapse
Affiliation(s)
- Quinn Lu
- GlaxoSmithKline, Collegeville, Pennsylvania, USA.
| | | | | | | | | | | | | | | |
Collapse
|
191
|
Abstract
Inflammation can result from a range of sources including microbial infections, exposure to allergens and toxic chemicals, autoimmune disease and obesity. A well-balanced immune response can be anti-tumorigenic; however, a sustained or chronic inflammatory response is generally harmful as the immune response becomes distorted. A causal link between chronic inflammation and cancer is now well accepted and many chronically inflamed organs of the gastrointestinal tract show this association. For example, patients with inflammatory bowel disease (IBD), including both ulcerative colitis and Crohn's disease, have a 2- to 3-fold greater lifetime risk of developing colorectal cancer compared with the general population. The development of colitis-associated cancer (CAC) is thought to be multifaceted and is probably due to a combination of genetic factors, epigenetic factors and the duration, extent and severity of disease. Recently, epigenetic alterations, in particular alterations in DNA methylation, have been observed during inflammation and inflammation-associated carcinogenesis. The mediators of this, the significance of these changes in DNA methylation and the effect this has on gene expression and the malignant transformation of the epithelial cells during IBD and CAC are discussed in this review. The recent advances in technologies to study genome-wide DNA methylation and the therapeutic potential of understanding these molecular mechanisms are also highlighted.
Collapse
Affiliation(s)
- Lori Hartnett
- Department of Pharmacology and Therapeutics, National University of Ireland, Galway, Ireland
| | | |
Collapse
|
192
|
Day JJ, Sweatt JD. Epigenetic treatments for cognitive impairments. Neuropsychopharmacology 2012; 37:247-60. [PMID: 21593731 PMCID: PMC3238093 DOI: 10.1038/npp.2011.85] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2011] [Revised: 04/04/2011] [Accepted: 04/07/2011] [Indexed: 12/11/2022]
Abstract
Epigenetic mechanisms integrate signals from diverse intracellular transduction cascades and in turn regulate genetic readout. Accumulating evidence has revealed that these mechanisms are critical components of ongoing physiology and function in the adult nervous system, and are essential for many cognitive processes, including learning and memory. Moreover, a number of psychiatric disorders and syndromes that involve cognitive impairments are associated with altered epigenetic function. In this review, we will examine how epigenetic mechanisms contribute to cognition, consider how changes in these mechanisms may lead to cognitive impairments in a range of disorders and discuss the potential utility of therapeutic treatments that target epigenetic machinery. Finally, we will comment on a number of caveats associated with interpreting epigenetic changes and using epigenetic treatments, and suggest future directions for research in this area that will expand our understanding of the epigenetic changes underlying cognitive disorders.
Collapse
Affiliation(s)
- Jeremy J Day
- Department of Neurobiology and Evelyn F McKnight Brain Institute, University of Alabama at Birmingham, Birmingham, AL 35294-2182, USA.
| | | |
Collapse
|
193
|
|
194
|
|
195
|
Halby L, Champion C, Sénamaud-Beaufort C, Ajjan S, Drujon T, Rajavelu A, Ceccaldi A, Jurkowska R, Lequin O, Nelson WG, Guy A, Jeltsch A, Guianvarc'h D, Ferroud C, Arimondo PB. Rapid Synthesis of New DNMT Inhibitors Derivatives of Procainamide. Chembiochem 2011; 13:157-65. [DOI: 10.1002/cbic.201100522] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Indexed: 11/06/2022]
|
196
|
Tajbakhsh J. DNA methylation topology: potential of a chromatin landmark for epigenetic drug toxicology. Epigenomics 2011; 3:761-70. [PMID: 22126294 PMCID: PMC3250213 DOI: 10.2217/epi.11.101] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Targeting chromatin and its basic components through epigenetic drug therapy has become an increased focus in the treatment of complex diseases. This boost calls for the implementation of high-throughput cell-based assays that exploit the increasing knowledge about epigenetic mechanisms and their interventions for genotoxicity testing of epigenetic drugs. 3D quantitative DNA methylation imaging is a novel approach for detecting drug-induced DNA demethylation and concurrent heterochromatin decondensation/reorganization in cells through the analysis of differential nuclear distribution patterns of methylcytosine and gDNA visualized by fluorescence and processed by machine-learning algorithms. Utilizing 3D DNA methylation patterns is a powerful precursor to a series of fully automatable assays that employ chromatin structure and higher organization as novel pharmacodynamic biomarkers for various epigenetic drug actions.
Collapse
Affiliation(s)
- Jian Tajbakhsh
- Chromatin Biology Laboratory, Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA.
| |
Collapse
|
197
|
Maternal nutritional status, C(1) metabolism and offspring DNA methylation: a review of current evidence in human subjects. Proc Nutr Soc 2011; 71:154-65. [PMID: 22124338 PMCID: PMC3491641 DOI: 10.1017/s0029665111003338] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Evidence is growing for the long-term effects of environmental factors during early-life on later disease susceptibility. It is believed that epigenetic mechanisms (changes in gene function not mediated by DNA sequence alteration), particularly DNA methylation, play a role in these processes. This paper reviews the current state of knowledge of the involvement of C1 metabolism and methyl donors and cofactors in maternal diet-induced DNA methylation changes in utero as an epigenetic mechanism. Methyl groups for DNA methylation are mostly derived from the diet and supplied through C1 metabolism by way of choline, betaine, methionine or folate, with involvement of riboflavin and vitamins B6 and B12 as cofactors. Mouse models have shown that epigenetic features, for example DNA methylation, can be altered by periconceptional nutritional interventions such as folate supplementation, thereby changing offspring phenotype. Evidence of early nutrient-induced epigenetic change in human subjects is scant, but it is known that during pregnancy C1 metabolism has to cope with high fetal demands for folate and choline needed for neural tube closure and normal development. Retrospective studies investigating the effect of famine or season during pregnancy indicate that variation in early environmental exposure in utero leads to differences in DNA methylation of offspring. This may affect gene expression in the offspring. Further research is needed to examine the real impact of maternal nutrient availability on DNA methylation in the developing fetus.
Collapse
|
198
|
Differential patterns of whole-genome DNA methylation in institutionalized children and children raised by their biological parents. Dev Psychopathol 2011; 24:143-55. [PMID: 22123582 DOI: 10.1017/s0954579411000605] [Citation(s) in RCA: 207] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Previous studies with nonhuman species have shown that animals exposed to early adversity show differential DNA methylation relative to comparison animals. The current study examined differential methylation among 14 children raised since birth in institutional care and 14 comparison children raised by their biological parents. Blood samples were taken from children in middle childhood. Analysis of whole-genome methylation patterns was performed using the Infinium HumanMethylation27 BeadChip assay (Illumina), which contains 27,578 CpG sites, covering approximately 14,000 gene promoters. Group differences were registered, which were characterized primarily by greater methylation in the institutionalized group relative to the comparison group, with most of these differences in genes involved in the control of immune response and cellular signaling systems, including a number of crucial players important for neural communication and brain development and functioning. The findings suggest that patterns of differential methylation seen in nonhuman species with altered maternal care are also characteristic of children who experience early maternal separation.
Collapse
|
199
|
Crea F, Paolicchi E, Marquez VE, Danesi R. Polycomb genes and cancer: time for clinical application? Crit Rev Oncol Hematol 2011; 83:184-93. [PMID: 22112692 DOI: 10.1016/j.critrevonc.2011.10.007] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Revised: 10/12/2011] [Accepted: 10/26/2011] [Indexed: 12/12/2022] Open
Abstract
Polycomb group genes (PcGs) are epigenetic effectors, essential for stem cell self-renewal and pluripotency. Two main Polycomb repressive complexes (PRC1, PRC2) mediate gene silencing through histone post-translational modifications. PcGs have been the focus of investigation in cancer research. Many cancer types show an over-expression of PcGs, predicting poor prognosis, metastasis and chemoresistance. Genetic polymorphisms of EZH2 (a PRC2 component) are significantly associated to lung cancer risk. Recently, 3-Deazaneplanocin A (DZNeP) was identified as an efficient inhibitor of PRC2 activity. DZNeP impairs cancer stem cell self-renewal and tumorigenicity. Despite the well-established role of PcGs in cancer stem cell biology, few studies dissected the clinical significance of these genes. In this paper, we explore PcGs as predictive and prognostic factors in oncology, with particular emphasis on what they can add to current biomarkers. We also propose a model for the rational development of DZNeP-based anticancer regimens and suggest the therapeutic applications of this drug.
Collapse
Affiliation(s)
- Francesco Crea
- Department of Internal Medicine, Division of Pharmacology, University of Pisa, Via Roma 55, 56100 Pisa, Italy.
| | | | | | | |
Collapse
|
200
|
Abstract
Stress during early life can impact the developing brain and increase vulnerability to mood disorders later in life. Here, we argue that epigenetic mechanisms can mediate the gene-environment dialogue in early life and give rise to persistent epigenetic programming of adult physiology eventually resulting in disease. Early life stress in mice leads to epigenetic marking of the arginine vasopressin (AVP) gene underpinning sustained expression and increased hypothalamic-pituitary-adrenal axis activity. This epigenetic memory is laid down in the parvocellular neurons of the paraventricular nucleus and involves Ca(2+)/calmodulin kinase-mediated phosphorylation of the methyl-CpG binding domain protein MeCP2 leading to dissociation from its DNA-binding site and derepression of the AVP gene. The reduced occupancy of MeCP2 during this early stage of life facilitates the development of hypomethylation at the AVP enhancer, which sustains derepression throughout later life and thereby serves to hardwire early life experiences. The sequential order of these events may represent a critical time window for the preventive therapy of severe trauma.
Collapse
|