151
|
Wang X, Komatsu S. The Role of Phytohormones in Plant Response to Flooding. Int J Mol Sci 2022; 23:6383. [PMID: 35742828 PMCID: PMC9223812 DOI: 10.3390/ijms23126383] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 06/05/2022] [Accepted: 06/06/2022] [Indexed: 02/07/2023] Open
Abstract
Climatic variations influence the morphological, physiological, biological, and biochemical states of plants. Plant responses to abiotic stress include biochemical adjustments, regulation of proteins, molecular mechanisms, and alteration of post-translational modifications, as well as signal transduction. Among the various abiotic stresses, flooding stress adversely affects the growth of plants, including various economically important crops. Biochemical and biological techniques, including proteomic techniques, provide a thorough understanding of the molecular mechanisms during flooding conditions. In particular, plants can cope with flooding conditions by embracing an orchestrated set of morphological adaptations and physiological adjustments that are regulated by an elaborate hormonal signaling network. With the help of these findings, the main objective is to identify plant responses to flooding and utilize that information for the development of flood-tolerant plants. This review provides an insight into the role of phytohormones in plant response mechanisms to flooding stress, as well as different mitigation strategies that can be successfully administered to improve plant growth during stress exposure. Ultimately, this review will expedite marker-assisted genetic enhancement studies in crops for developing high-yield lines or varieties with flood tolerance.
Collapse
Affiliation(s)
- Xin Wang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China;
| | - Setsuko Komatsu
- Faculty of Environmental and Information Sciences, Fukui University of Technology, Fukui 910-8505, Japan
| |
Collapse
|
152
|
Chen H, Wu Q, Ni M, Chen C, Han C, Yu F. Transcriptome Analysis of Endogenous Hormone Response Mechanism in Roots of Styrax tonkinensis Under Waterlogging. FRONTIERS IN PLANT SCIENCE 2022; 13:896850. [PMID: 35734248 PMCID: PMC9208659 DOI: 10.3389/fpls.2022.896850] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 04/29/2022] [Indexed: 06/02/2023]
Abstract
As a promising oil species, Styrax tonkinensis has great potential as a biofuel due to an excellent fatty acid composition. However, frequent flooding caused by global warming and the low tolerance of the species to waterlogging largely halted its expansion in waterlogged areas. To explore endogenous hormones and phytohormone-related molecular response mechanism of S. tonkinensis under waterlogging, we determined 1-aminocyclopropane-1-carboxylic acid (ACC) and three phytohormone content (ABA, abscisic acid; SA, salicylic acid; IAA, indole-3-acetic acid) and analyzed the transcriptome of its seedlings under waterlogged condition of 3-5 cm. The sample collecting time was 0, 9, 24, and 72 h, respectively. It was concluded that ACC presented an upward trend, but other plant hormones showed a downward trend from 0 to 72 h under waterlogging stress. A total of 84,601 unigenes were assembled with a total length of 81,389,823 bp through transcriptome analysis. The GO enrichment analysis of total differentially expressed genes (DEGs) revealed that 4,637 DEGs, 8,238 DEGs, and 7,146 DEGs were assigned into three main GO functional categories in 9 vs. 0 h, 24 vs. 0 h, and 72 vs. 0 h, respectively. We also discovered several DEGs involved in phytohormone synthesis pathway and plant hormone signaling pathway. It was concluded that the decreased transcription of PYL resulted in the weak ABA signal transduction pathway. Moreover, decreased SA content caused by the low-expressed PAL might impact the resistance of S. tonkinensis seedlings under waterlogging stress. Our research may provide a scientific basis for the understanding of the endogenous hormone response mechanism of S. tonkinensis to waterlogging and lay a foundation for further exploration of the waterlogging defect resistance genes of S. tonkinensis and improving its resistance to waterlogging stress.
Collapse
Affiliation(s)
- Hong Chen
- Collaborative Innovation Centre of Sustainable Forestry in Southern China, College of Forest Science, Nanjing Forestry University (NJFU), Nanjing, China
| | - Qikui Wu
- Collaborative Innovation Centre of Sustainable Forestry in Southern China, College of Forest Science, Nanjing Forestry University (NJFU), Nanjing, China
- State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of the Yellow River, College of Forestry, Shandong Agricultural University, Tai’an, China
| | - Ming Ni
- Collaborative Innovation Centre of Sustainable Forestry in Southern China, College of Forest Science, Nanjing Forestry University (NJFU), Nanjing, China
| | - Chen Chen
- Collaborative Innovation Centre of Sustainable Forestry in Southern China, College of Forest Science, Nanjing Forestry University (NJFU), Nanjing, China
| | - Chao Han
- Collaborative Innovation Centre of Sustainable Forestry in Southern China, College of Forest Science, Nanjing Forestry University (NJFU), Nanjing, China
| | - Fangyuan Yu
- Collaborative Innovation Centre of Sustainable Forestry in Southern China, College of Forest Science, Nanjing Forestry University (NJFU), Nanjing, China
| |
Collapse
|
153
|
Jing S, Zhang X, Niu H, Lin F, Ayi Q, Wan B, Ren X, Su X, Shi S, Liu S, Zeng B. Differential Growth Responses of Alternanthera philoxeroides as Affected by Submergence Depths. FRONTIERS IN PLANT SCIENCE 2022; 13:883800. [PMID: 35720589 PMCID: PMC9201830 DOI: 10.3389/fpls.2022.883800] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 04/27/2022] [Indexed: 06/15/2023]
Abstract
Global climate change has resulted in an increase in intensity and frequency of flooding, plants living in lowlands, and shore areas have to confront submergence caused by flooding, submergence-tolerant plants usually respond by adopting either escape or quiescence strategies. While certain plants exhibit a changeover from escape strategy upon partial submergence to quiescence strategy under complete shallow submergence, it remains unknown whether plants completely submerged at different water depths would adjust their strategies to cope with the change in submergence depth. Alternanthera philoxeroides is an ideal species to explore this adjustment as it is widely distributed in flood-disturbed habitats and exhibits an escape strategy when completely submerged in shallow waters. We investigated the responses of A. philoxeroides in terms of morphology, anatomy, and non-structural carbohydrate metabolism by conducting experiments using a series of submergence depths (0, 2, 5, and 9 m). During the submergence treatment, environmental factors such as light, dissolved oxygen, and temperature for submerged plants were kept constant. The results showed that A. philoxeroides plants submerged at depth of 2 m presented an escape strategy via fast stem elongation, extensive pith cavity development, and small biomass loss. However, the retarded stem elongation, reduced pith cavity transverse area, and increased biomass loss along the water depth gradient indicated that A. philoxeroides altered its growth response as water depth increased from 2 to 9 m. It is found that the changeover of response strategies occurred at higher submergence depths (5-9 m). Based on the results of our experiments, we demonstrated that water depth played an important role in driving the change in strategy. The water-depth-dependent growth performance of A. philoxeroides would benefit the species in habit exploration and exploitation. Further studies should focus on the performances of plants when submerged at varied water depths with different light climates and dissolved oxygen content, and how water depths drive the response behaviors of the submerged plants.
Collapse
Affiliation(s)
- Shufang Jing
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources in Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing, China
- School of Art and Design, Huanghuai University, Zhumadian, China
| | - Xiaoping Zhang
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources in Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing, China
| | - Hangang Niu
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources in Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing, China
| | - Feng Lin
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources in Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing, China
| | - Qiaoli Ayi
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources in Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing, China
| | - Binna Wan
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources in Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing, China
| | - Xinyi Ren
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources in Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing, China
| | - Xiaolei Su
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources in Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing, China
| | - Shaohua Shi
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources in Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing, China
| | - Songping Liu
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources in Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing, China
| | - Bo Zeng
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources in Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing, China
| |
Collapse
|
154
|
Mfarrej MFB, Wang X, Hamzah Saleem M, Hussain I, Rasheed R, Arslan Ashraf M, Iqbal M, Sohaib Chattha M, Nasser Alyemeni M. Hydrogen sulphide and nitric oxide mitigate the negative impacts of waterlogging stress on wheat (Triticum aestivum L.). PLANT BIOLOGY (STUTTGART, GERMANY) 2022; 24:670-683. [PMID: 34783146 DOI: 10.1111/plb.13358] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 09/20/2021] [Indexed: 06/13/2023]
Abstract
Nitric oxide (NO) and hydrogen sulphide (H2 S) are important gaseous signalling molecules that regulate key physiochemical mechanisms of plants under environmental stresses. A number of attempts have been made to improve waterlogging tolerance in plants, but with limited success. Having said that, NO and H2 S are vital signalling molecules, but their role in mitigating waterlogging effects on crop plants is not well established. We investigated the efficacy of exogenous NO and H2 S to alleviate waterlogging effects in two wheat cultivars (Galaxy-2013 and FSD-2008). Waterlogging produced a noticeable reduction in plant growth, yield, chlorophyll, soluble sugars and free amino acids. Besides, waterlogging induced severe oxidative damage seen as higher cellular TBARS and H2 O2 content. Antioxidant enzyme activity increased together with a notable rise in Fe2+ and Mn2+ content. Proline content was higher in waterlogged plants compared with non-waterlogged plants. In contrast, waterlogging caused a substantial decline in endogenous levels of essential nutrients (K+ , Ca2+ and Mg2+ ). Waterlogged conditions led to Fe2+ and Mn2+ toxicity due to rapid reduction of Fe3+ and Mn3+ in the soil. Exogenous NO and H2 S significantly protected plants from waterlogging effects by enhancing the oxidative defence and regulating nutritional status. Besides, the protective effects of exogenous NO were more prominent as compared with effects of H2 S. Further, we did not study the effect of H2 S and NO on photosynthetic attributes and expression of stress-related genes. Therefore, future studies should examine the effects of H2 S and NO on wheat physiology and gene expression under waterlogging.
Collapse
Affiliation(s)
- M F B Mfarrej
- Department of Life and Environmental Sciences, College of Natural and Health Sciences, Zayed University, Abu Dhabi, United Arab Emirates
| | - X Wang
- College of Life Sciences, Yan'an University, Yan'an, China
| | - M Hamzah Saleem
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - I Hussain
- Department of Botany, Government College University Faisalabad and Pakistan, Faisalabad, Pakistan
| | - R Rasheed
- Department of Botany, Government College University Faisalabad and Pakistan, Faisalabad, Pakistan
| | - M Arslan Ashraf
- Department of Botany, Government College University Faisalabad and Pakistan, Faisalabad, Pakistan
| | - M Iqbal
- Department of Botany, Government College University Faisalabad and Pakistan, Faisalabad, Pakistan
| | - M Sohaib Chattha
- School of Plant, Environmental, and Soil Sciences, Louisiana State University Agricultural Center, Baton Rouge, USA
| | - M Nasser Alyemeni
- Department of Botany and Microbiology, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
155
|
Effects of Hypoxia Stress on Growth, Root Respiration, and Metabolism of Phyllostachys praecox. Life (Basel) 2022; 12:life12060808. [PMID: 35743839 PMCID: PMC9224615 DOI: 10.3390/life12060808] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 05/24/2022] [Indexed: 11/22/2022] Open
Abstract
Hypoxia affects plant growth, hormone content, various enzyme activities, cell structure, peroxide production, and metabolic level, therefore reducing crop yield. This study assessed the physiological, biochemical, and metabolic characteristics of Phyllostachys praecox. Results revealed that hypoxia stress treatment significantly inhibited plant growth. Leaf chlorophyll contents was initially improved and then reduced with plant growth time. Under hypoxia stress, the root activity significantly was reduced, leading to the decrease in the nutrient absorption and transport. Yet, with low oxygen concentration, the contents of ethanol, acetaldehyde, and lactic acid were improved. With hypoxia stress, phospholipids and amino acids were the main metabolites of Phyllostachys praecox. Glycosphospholipid metabolism is the key pathway in responding to hypoxia stress significantly (p < 0.05), and lysophosphatidlycholine (lysoPC) and phosphatidylcholines (PC) in the metabolites of this metabolic pathway were significantly enhanced. Our study reveals the mechanism of Phyllostachys praecox cell membrane responding to hypoxia stress based on molecular level. This is conducive to finding targeted solutions to improve the productivity of Phyllostachys praecox to better optimize a mulching approach in the bamboo forest.
Collapse
|
156
|
Xu Y, Fu X. Reprogramming of Plant Central Metabolism in Response to Abiotic Stresses: A Metabolomics View. Int J Mol Sci 2022; 23:5716. [PMID: 35628526 PMCID: PMC9143615 DOI: 10.3390/ijms23105716] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 05/15/2022] [Accepted: 05/18/2022] [Indexed: 12/15/2022] Open
Abstract
Abiotic stresses rewire plant central metabolism to maintain metabolic and energy homeostasis. Metabolites involved in the plant central metabolic network serve as a hub for regulating carbon and energy metabolism under various stress conditions. In this review, we introduce recent metabolomics techniques used to investigate the dynamics of metabolic responses to abiotic stresses and analyze the trend of publications in this field. We provide an updated overview of the changing patterns in central metabolic pathways related to the metabolic responses to common stresses, including flooding, drought, cold, heat, and salinity. We extensively review the common and unique metabolic changes in central metabolism in response to major abiotic stresses. Finally, we discuss the challenges and some emerging insights in the future application of metabolomics to study plant responses to abiotic stresses.
Collapse
Affiliation(s)
- Yuan Xu
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Xinyu Fu
- Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
157
|
Begum Y. Regulatory role of microRNAs (miRNAs) in the recent development of abiotic stress tolerance of plants. Gene 2022; 821:146283. [PMID: 35143944 DOI: 10.1016/j.gene.2022.146283] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 01/12/2022] [Accepted: 02/03/2022] [Indexed: 12/21/2022]
Abstract
MicroRNAs (miRNAs) are a distinct groups of single-stranded non-coding, tiny regulatory RNAs approximately 20-24 nucleotides in length. miRNAs negatively influence gene expression at the post-transcriptional level and have evolved considerably in the development of abiotic stress tolerance in a number of model plants and economically important crop species. The present review aims to deliver the information on miRNA-mediated regulation of the expression of major genes or Transcription Factors (TFs), as well as genetic and regulatory pathways. Also, the information on adaptive mechanisms involved in plant abiotic stress responses, prediction, and validation of targets, computational tools, and databases available for plant miRNAs, specifically focus on their exploration for engineering abiotic stress tolerance in plants. The regulatory function of miRNAs in plant growth, development, and abiotic stresses consider in this review, which uses high-throughput sequencing (HTS) technologies to generate large-scale libraries of small RNAs (sRNAs) for conventional screening of known and novel abiotic stress-responsive miRNAs adds complexity to regulatory networks in plants. The discoveries of miRNA-mediated tolerance to multiple abiotic stresses, including salinity, drought, cold, heat stress, nutritional deficiency, UV-radiation, oxidative stress, hypoxia, and heavy metal toxicity, are highlighted and discussed in this review.
Collapse
Affiliation(s)
- Yasmin Begum
- Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, 92, APC Road, Kolkata 700009, West Bengal, India; Center of Excellence in Systems Biology and Biomedical Engineering (TEQIP Phase-III), University of Calcutta, JD-2, Sector III, Salt Lake, Kolkata 700106, West Bengal, India.
| |
Collapse
|
158
|
Raineri J, Caraballo L, Rigalli N, Portapila M, Otegui ME, Chan RL. Expressing the sunflower transcription factor HaHB11 in maize improves waterlogging and defoliation tolerance. PLANT PHYSIOLOGY 2022; 189:230-247. [PMID: 35148415 PMCID: PMC9070847 DOI: 10.1093/plphys/kiac054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 01/17/2022] [Indexed: 06/01/2023]
Abstract
The sunflower (Helianthus annuus) transcription factor HaHB11 (H. annuus Homeobox 11) belongs to the homeodomain-leucine zipper family and confers improved yield to maize (Zea mays) hybrids (HiII × B73) and lines. Here we report that transgenic maize lines expressing HaHB11 exhibited better performance under waterlogging, both in greenhouse and field trials carried out during three growth cycles. Transgenic plants had increased chlorophyll content, wider stems, more nodal roots, greater total aerial biomass, a higher harvest index, and increased plant grain yield. Under severe defoliation caused by a windstorm during flowering, transgenic genotypes were able to set more grains than controls. This response was confirmed in controlled defoliation assays. Hybrids generated by crossing B73 HaHB11 lines with the contrasting Mo17 lines were also tested in the field and exhibited the same beneficial traits as the parental lines, compared with their respective controls. Moreover, they were less penalized by stress than commercial hybrids. Waterlogging tolerance increased via improvement of the root system, including more xylem vessels, reduced tissue damage, less superoxide accumulation, and altered carbohydrate metabolism. Multivariate analyses corroborated the robustness of the differential traits observed. Furthermore, canopy spectral reflectance data, computing 29 vegetation indices associated with biomass, chlorophyll, and abiotic stress, helped to distinguish genotypes as well as their growing conditions. Altogether the results reported here indicate that this sunflower gene constitutes a suitable tool to improve maize plants for environments prone to waterlogging and/or wind defoliation.
Collapse
Affiliation(s)
- Jesica Raineri
- Facultad de Bioquímica y Ciencias Biológicas, Instituto de Agrobiotecnología del Litoral, Universidad Nacional del Litoral—CONICET, Santa Fe 3000, Argentina
| | - Luciano Caraballo
- Facultad de Bioquímica y Ciencias Biológicas, Instituto de Agrobiotecnología del Litoral, Universidad Nacional del Litoral—CONICET, Santa Fe 3000, Argentina
| | - Nicolás Rigalli
- CIFASIS, Universidad Nacional de Rosario—CONICET, Santa Fe 2000, Argentina
| | | | - María Elena Otegui
- Facultad de Agronomía, CONICET-INTA-FAUBA, Estación experimental Pergamino, Universidad de Buenos Aires, Buenos Aires C1417DSE, Argentina
| | - Raquel Lía Chan
- Facultad de Bioquímica y Ciencias Biológicas, Instituto de Agrobiotecnología del Litoral, Universidad Nacional del Litoral—CONICET, Santa Fe 3000, Argentina
| |
Collapse
|
159
|
Flooding Tolerance in Sweet Potato (Ipomoea batatas (L.) Lam) Is Mediated by Reactive Oxygen Species and Nitric Oxide. Antioxidants (Basel) 2022; 11:antiox11050878. [PMID: 35624742 PMCID: PMC9138130 DOI: 10.3390/antiox11050878] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/25/2022] [Accepted: 04/27/2022] [Indexed: 11/17/2022] Open
Abstract
Flooding is harmful to almost all higher plants, including crop species. Most cultivars of the root crop sweet potato are able to tolerate environmental stresses such as drought, high temperature, and high salinity. They are, however, relatively sensitive to flooding stress, which greatly reduces yield and commercial value. Previous transcriptomic analysis of flood-sensitive and flood-resistant sweet potato cultivars identified genes that were likely to contribute to protection against flooding stress, including genes related to ethylene (ET), reactive oxygen species (ROS), and nitric oxide (NO) metabolism. Although each sweet potato cultivar can be classified as either tolerant or sensitive to flooding stress, the molecular mechanisms of flooding resistance in ET, ROS, and NO regulation-mediated responses have not yet been reported. Therefore, this study characterized the regulation of ET, ROS, and NO metabolism in two sweet potato cultivars—one flood-tolerant cultivar and one flood-sensitive cultivar—under early flooding treatment conditions. The expression of ERFVII genes, which are involved in low oxygen signaling, was upregulated in leaves during flooding stress treatments. In addition, levels of respiratory burst oxidase homologs and metallothionein-mediated ROS scavenging were greatly increased in the early stage of flooding in the flood-tolerant sweet potato cultivar compared with the flood-sensitive cultivar. The expression of genes involved in NO biosynthesis and scavenging was also upregulated in the tolerant cultivar. Finally, NO scavenging-related MDHAR expressions and enzymatic activity were higher in the flood-tolerant cultivar than in the flood-sensitive cultivar. These results indicate that, in sweet potato, genes involved in ET, ROS, and NO regulation play an important part in response mechanisms against flooding stress.
Collapse
|
160
|
Hypoxia-Induced Aquaporins and Regulation of Redox Homeostasis by a Trans-Plasma Membrane Electron Transport System in Maize Roots. Antioxidants (Basel) 2022; 11:antiox11050836. [PMID: 35624700 PMCID: PMC9137787 DOI: 10.3390/antiox11050836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/06/2022] [Accepted: 04/13/2022] [Indexed: 02/06/2023] Open
Abstract
In plants, flooding-induced oxygen deficiency causes severe stress, leading to growth reduction and yield loss. It is therefore important to understand the molecular mechanisms for adaptation to hypoxia. Aquaporins at the plasma membrane play a crucial role in water uptake. However, their role during hypoxia and membrane redox changes is still not fully understood. The influence of 24 h hypoxia induction on hydroponically grown maize (Zea mays L.) was investigated using an oil-based setup. Analyses of physiological parameters revealed typical flooding symptoms such as increased ethylene and H2O2 levels, an increased alcohol dehydrogenase activity, and an increased redox activity at the plasma membrane along with decreased oxygen of the medium. Transcriptomic analysis and shotgun proteomics of plasma membranes and soluble fractions were performed to determine alterations in maize roots. RNA-sequencing data confirmed the upregulation of genes involved in anaerobic metabolism, biosynthesis of the phytohormone ethylene, and its receptors. Transcripts of several antioxidative systems and other oxidoreductases were regulated. Mass spectrometry analysis of the plasma membrane proteome revealed alterations in redox systems and an increased abundance of aquaporins. Here, we discuss the importance of plasma membrane aquaporins and redox systems in hypoxia stress response, including the regulation of plant growth and redox homeostasis.
Collapse
|
161
|
Gao J, Zhuang S, Zhang Y, Qian Z. Exogenously applied spermidine alleviates hypoxia stress in Phyllostachys praecox seedlings via changes in endogenous hormones and gene expression. BMC PLANT BIOLOGY 2022; 22:200. [PMID: 35439921 PMCID: PMC9016973 DOI: 10.1186/s12870-022-03568-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 03/30/2022] [Indexed: 05/30/2023]
Abstract
BACKGROUND Hypoxia stress is thought to be one of the major abiotic stresses that inhibits the growth and development of higher plants. Phyllostachys pracecox is sensitive to oxygen and suffers soil hypoxia during cultivation; however, the corresponding solutions to mitigate this stress are still limited in practice. In this study, Spermidine (Spd) was tested for regulating the growth of P. praecox seedlings under the hypoxia stress with flooding. RESULTS A batch experiment was carried out in seedlings treated with 1 mM and 2 mM Spd under flooding for eight days. Application of 1 mM and 2 mM Spd could alleviate plant growth inhibition and reduce oxidative damage from hypoxia stress. Exogenous Spd significantly (P < 0.05) increased proline, soluble protein content, catalase (CAT), superoxide dismutase (SOD), and S-adenosylmethionine decarboxylase (SAMDC) activity, enhanced abscisic acid (ABA) and indole-3-acetic acid (IAA) content, and reduced ethylene emission, hydrogen peroxide (H2O2), superoxide radical (O2·-) production rate, ACC oxidase (ACO) and ACC synthase (ACS) to protect membranes from lipid peroxidation under flooding. Moreover, exogenous Spd up-regulated the expression of auxin-related genes auxin responsive factor1 (ARF1), auxin1 protein (AUX1), auxin2 protein (AUX2), auxin3 protein (AUX3) and auxin4 protein (AUX4), and down-regulated the expression of ethylene-related ACO and ACS genes during flooding. CONCLUSION The results indicated that exogenous Spd altered hormone concentrations and the expression of hormone-related genes, thereby protecting the bamboo growth under flooding. Our data suggest that Spd can be used to reduce hypoxia-induced cell damage and improve the adaptability of P. praecox to flooding stress.
Collapse
Affiliation(s)
- Jianshuang Gao
- State Key Lab of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Shunyao Zhuang
- State Key Lab of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008 China
| | - Yuhe Zhang
- State Key Lab of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008 China
| | - Zhuangzhuang Qian
- State Key Lab of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008 China
| |
Collapse
|
162
|
Abstract
Underwater photosynthesis is the most important metabolic activity for submerged plants since it could utilize carbon fixation to replenish lost carbohydrates and improve internal aeration by producing O2. The present study used bibliometric methods to quantify the annual number of publications related to underwater photosynthesis. CiteSpace, as a visual analytic software for the literature, was employed to analyze the distribution of the subject categories, author collaborations, institution collaborations, international (regional) collaborations, and cocitation and keyword burst. The results show the basic characteristics of the literature, the main intellectual base, and the main research powers of underwater photosynthesis. Meanwhile, this paper revealed the research hotspots and trends of this field. This study provides an objective and comprehensive analysis of underwater photosynthesis from a bibliometric perspective. It is expected to provide reference information for scholars in related fields to refine the research direction, solve specific scientific problems, and assist scholars in seeking/establishing relevant collaborations in their areas of interest.
Collapse
|
163
|
Manik SMN, Quamruzzaman M, Zhao C, Johnson P, Hunt I, Shabala S, Zhou M. Genome-Wide Association Study Reveals Marker Trait Associations (MTA) for Waterlogging-Triggered Adventitious Roots and Aerenchyma Formation in Barley. Int J Mol Sci 2022; 23:ijms23063341. [PMID: 35328762 PMCID: PMC8954902 DOI: 10.3390/ijms23063341] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 03/16/2022] [Indexed: 12/31/2022] Open
Abstract
Waterlogging is an environmental stress, which severely affects barley growth and development. Limited availability of oxygen in the root zone negatively affects the metabolism of the whole plant. Adventitious roots (AR) and root cortical aerenchyma (RCA) formation are the most important adaptive traits that contribute to a plant's ability to survive in waterlogged soil conditions. This study used a genome-wide association (GWAS) approach using 18,132 single nucleotide polymorphisms (SNPs) in a panel of 697 barley genotypes to reveal marker trait associations (MTA) conferring the above adaptive traits. Experiments were conducted over two consecutive years in tanks filled with soil and then validated in field experiments. GWAS analysis was conducted using general linear models (GLM), mixed linear models (MLM), and fixed and random model circulating probability unification models (FarmCPU model), with the FarmCPU showing to be the best suited model. Six and five significant (approximately -log10 (p) ≥ 5.5) MTA were identified for AR and RCA formation under waterlogged conditions, respectively. The highest -log10 (p) MTA for adventitious root and aerenchyma formation were approximately 9 and 8 on chromosome 2H and 4H, respectively. The combination of different MTA showed to be more effective in forming RCA and producing more AR under waterlogging stress. Genes from major facilitator superfamily (MFS) transporter and leucine-rich repeat (LRR) families for AR formation, and ethylene responsive factor (ERF) family genes and potassium transporter family genes for RCA formation were the potential candidate genes involved under waterlogging conditions. Several genotypes, which performed consistently well under different conditions, can be used in breeding programs to develop waterlogging-tolerant varieties.
Collapse
Affiliation(s)
- S. M. Nuruzzaman Manik
- Tasmanian Institute of Agriculture, University of Tasmania, Launceston, TAS 7250, Australia; (S.M.N.M.); (M.Q.); (C.Z.); (P.J.); (I.H.); (S.S.)
| | - Md Quamruzzaman
- Tasmanian Institute of Agriculture, University of Tasmania, Launceston, TAS 7250, Australia; (S.M.N.M.); (M.Q.); (C.Z.); (P.J.); (I.H.); (S.S.)
| | - Chenchen Zhao
- Tasmanian Institute of Agriculture, University of Tasmania, Launceston, TAS 7250, Australia; (S.M.N.M.); (M.Q.); (C.Z.); (P.J.); (I.H.); (S.S.)
| | - Peter Johnson
- Tasmanian Institute of Agriculture, University of Tasmania, Launceston, TAS 7250, Australia; (S.M.N.M.); (M.Q.); (C.Z.); (P.J.); (I.H.); (S.S.)
| | - Ian Hunt
- Tasmanian Institute of Agriculture, University of Tasmania, Launceston, TAS 7250, Australia; (S.M.N.M.); (M.Q.); (C.Z.); (P.J.); (I.H.); (S.S.)
| | - Sergey Shabala
- Tasmanian Institute of Agriculture, University of Tasmania, Launceston, TAS 7250, Australia; (S.M.N.M.); (M.Q.); (C.Z.); (P.J.); (I.H.); (S.S.)
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan 528000, China
| | - Meixue Zhou
- Tasmanian Institute of Agriculture, University of Tasmania, Launceston, TAS 7250, Australia; (S.M.N.M.); (M.Q.); (C.Z.); (P.J.); (I.H.); (S.S.)
- Correspondence:
| |
Collapse
|
164
|
Full-Length Transcriptome and RNA-Seq Analyses Reveal the Mechanisms Underlying Waterlogging Tolerance in Kiwifruit ( Actinidia valvata). Int J Mol Sci 2022; 23:ijms23063237. [PMID: 35328659 PMCID: PMC8951935 DOI: 10.3390/ijms23063237] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/15/2022] [Accepted: 03/15/2022] [Indexed: 12/13/2022] Open
Abstract
Actinidia valvata possesses waterlogging tolerance; however, the mechanisms underlying this trait are poorly characterized. Here, we performed a transcriptome analysis by combining single-molecule real-time (SMRT) sequencing and Illumina RNA sequencing and investigated the physiological responses of the roots of KR5 (A. valvata, a tolerant genotype) after 0, 12, 24 and 72 h of waterlogging stress. KR5 roots responded to waterlogging stress mainly via carbohydrate and free amino acids metabolism and reactive oxygen species (ROS) scavenging pathways. Trehalose-6-phosphate synthase (TPS) activity, alcohol dehydrogenase (ADH) activity and the total free amino acid content increased significantly under waterlogging stress. The nicotinamide adenine dinucleotide-dependent glutamate synthase/alanine aminotransferase (NADH-GOGAT/AlaAT) cycle was correlated with alanine accumulation. Levels of genes encoding peroxidase (POD) and catalase (CAT) decreased and enzyme activity increased under waterlogging stress. Members of the LATERAL ORGAN BOUNDARIES (LOB), AP2/ERF-ERF, Trihelix and C3H transcription factor families were identified as potential regulators of the transcriptional response. Several hub genes were identified as key factors in the response to waterlogging stress by a weighted gene co-expression network analysis (WGCNA). Our results provide insights into the factors contributing to waterlogging tolerance in kiwifruit, providing a basis for further studies of interspecific differences in an important plant trait and for molecular breeding.
Collapse
|
165
|
Waterlogged Conditions Influence the Nitrogen, Phosphorus, Potassium, and Sugar Distribution in Sago Palm (Metroxylon sagu Rottb.) at Seedling Stages. PLANTS 2022; 11:plants11050710. [PMID: 35270179 PMCID: PMC8912494 DOI: 10.3390/plants11050710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 02/26/2022] [Accepted: 03/02/2022] [Indexed: 11/17/2022]
Abstract
Sago palm (Metroxylon sagu Rottb.) grows in well-drained mineral soil and in peatland with high groundwater levels until complete submersion. However, the published information on nutrient uptake and carbohydrate content in sago palms growing under waterlogging remains unreported. This experiment observed sago palm growth performance under normal soil conditions (non-submerged conditions) as a control plot and extended waterlogged conditions. Several parameters were analyzed: Plant morphological growth traits, nitrogen, phosphorus, potassium, and sugar concentration in the plant organ, including sucrose, glucose, starch, and non-structural carbohydrate. The analysis found that sago palm morphological growth traits were not significantly affected by extended waterlogging. However, waterlogging reduced carbohydrate levels in the upper part of the sago palm, especially the petiole, and increased sugar levels, especially glucose, in roots. Waterlogging also reduced N concentration in roots and leaflets and P in petioles. The K level was independent of waterlogging as the sago palm maintained a sufficient level in all of the plant organs. Long duration waterlogging may reduce the plant’s economic value as the starch level in the trunk decreases, although sago palm can grow while waterlogged.
Collapse
|
166
|
Amoanimaa-Dede H, Su C, Yeboah A, Zhou H, Zheng D, Zhu H. Growth regulators promote soybean productivity: a review. PeerJ 2022; 10:e12556. [PMID: 35265396 PMCID: PMC8900611 DOI: 10.7717/peerj.12556] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 11/05/2021] [Indexed: 01/06/2023] Open
Abstract
Soybean [Glycine max (L.) Merrill] is a predominant edible plant and a major supply of plant protein worldwide. Global demand for soybean keeps increasing as its seeds provide essential proteins, oil, and nutraceuticals. In a quest to meet heightened demands for soybean, it has become essential to introduce agro-technical methods that promote adaptability to complex environments, improve soybean resistance to abiotic stress , and increase productivity. Plant growth regulators are mainly exploited to achieve this due to their crucial roles in plant growth and development. Increasing research suggests the influence of plant growth regulators on soybean growth and development, yield, quality, and abiotic stress responses. In an attempt to expatiate on the topic, current knowledge, and possible applications of plant growth regulators that improve growth and yield have been reviewed and discussed. Notably, the application of plant growth regulators in their appropriate concentrations at suitable growth periods relieves abiotic stress thereby increasing the yield and yield components of soybean. Moreover, the regulation effects of different growth regulators on the morphology, physiology, and yield quality of soybean are discoursed in detail.
Collapse
Affiliation(s)
- Hanna Amoanimaa-Dede
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong Province, China
| | - Chuntao Su
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong Province, China
| | - Akwasi Yeboah
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong Province, China
| | - Hang Zhou
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong Province, China
| | - Dianfeng Zheng
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong Province, China
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, Guangdong Province, China
| | - Hongbo Zhu
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong Province, China
| |
Collapse
|
167
|
Mishra V, Singh A, Gandhi N, Sarkar Das S, Yadav S, Kumar A, Sarkar AK. A unique miR775- GALT9 module regulates leaf senescence in Arabidopsis during post-submergence recovery by modulating ethylene and the abscisic acid pathway. Development 2022; 149:274011. [DOI: 10.1242/dev.199974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 12/06/2021] [Indexed: 11/20/2022]
Abstract
ABSTRACT
The submergence-induced hypoxic condition negatively affects the plant growth and development, and causes early onset of senescence. Hypoxia alters the expression of a number of microRNAs (miRNAs). However, the molecular function of submergence stress-induced miRNAs in physiological or developmental changes and recovery remains poorly understood. Here, we show that miR775 is an Arabidopsis thaliana-specific young and unique miRNA that possibly evolved non-canonically. miR775 post-transcriptionally regulates GALACTOSYLTRANSFERASE 9 (GALT9) and their expression is inversely affected at 24 h of complete submergence stress. The overexpression of miR775 (miR775-Oe) confers enhanced recovery from submergence stress and reduced accumulation of RBOHD and ROS, in contrast to wild-type and MIM775 Arabidopsis shoot. A similar recovery phenotype in the galt9 mutant indicates the role of the miR775-GALT9 module in post-submergence recovery. We predicted that Golgi-localized GALT9 is potentially involved in protein glycosylation. The altered expression of senescence-associated genes (SAG12, SAG29 and ORE1), ethylene signalling (EIN2 and EIN3) and abscisic acid (ABA) biosynthesis (NCED3) pathway genes occurs in miR775-Oe, galt9 and MIM775 plants. Thus, our results indicate the role for the miR775-GALT9 module in post-submergence recovery through a crosstalk between the ethylene signalling and ABA biosynthesis pathways.
Collapse
Affiliation(s)
- Vishnu Mishra
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Archita Singh
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, USA
| | - Nidhi Gandhi
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Shabari Sarkar Das
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, USA
- Department of Botany and Forestry, Vidyasagar University, Midnapore, West Bengal 721104, India
| | - Sandeep Yadav
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Ashutosh Kumar
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Ananda K. Sarkar
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, USA
| |
Collapse
|
168
|
Deng X, Yang D, Sun H, Liu J, Song H, Xiong Y, Wang Y, Ma J, Zhang M, Li J, Liu Y, Yang M. Time-course analysis and transcriptomic identification of key response strategies to complete submergence in Nelumbo nucifera. HORTICULTURE RESEARCH 2022; 9:uhac001. [PMID: 35147174 PMCID: PMC8973275 DOI: 10.1093/hr/uhac001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 12/12/2021] [Indexed: 05/12/2023]
Abstract
Water submergence is an environmental stress with detrimental effects on plant growth and survival. As a wetland plant species, lotus (Nelumbo nucifera) is widely cultivated in flood-prone lowlands throughout Asian countries, but little is known about its endurance and acclimation mechanisms to complete submergence. Here, we combined a time-course submergence experiment and an RNA-sequencing transcriptome analysis on two lotus varieties of "Qiuxing" and "China Antique". Both varieties showed a low submergence tolerance, with a median lethal time of around 10 days. Differentially expressed gene (DEG) analysis and weighted gene co-expression network analysis (WGCNA) identified a number of key genes putatively involved in lotus submergence responses. Lotus plants under complete submergence developed thinned leaves and elongated petioles containing high density of aerenchyma. All four lotus submergence responsive ERF-VII genes and gene sets corresponding to the low oxygen "escape" strategy (LOES) were elevated. In addition, a number of lotus innate immunity genes were rapidly induced by submergence, likely to confer resistance to possible pathogen infections. Our data also reveals the likely involvement of jasmonic acid in modulating lotus submergence responses, but to a lesser extent than the gaseous ethylene hormone. These results suggest that lotus plants primarily take the LOES strategy in coping with submergence-induced complex stresses, and will be valuable for people understanding the molecular basis underlying the plant submergence acclimations.
Collapse
Affiliation(s)
- Xianbao Deng
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan 430074, China
| | - Dong Yang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan 430074, China
| | - Heng Sun
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| | - Juan Liu
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| | - Heyun Song
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
- University of Chinese Academy of Sciences, 19A Yuquanlu, Beijing, 100049, China
| | - Yaqian Xiong
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
- University of Chinese Academy of Sciences, 19A Yuquanlu, Beijing, 100049, China
| | - Yunmeng Wang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
- University of Chinese Academy of Sciences, 19A Yuquanlu, Beijing, 100049, China
| | - Junyu Ma
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
- University of Chinese Academy of Sciences, 19A Yuquanlu, Beijing, 100049, China
| | - Minghua Zhang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
- University of Chinese Academy of Sciences, 19A Yuquanlu, Beijing, 100049, China
| | - Jing Li
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, China
| | - Yanling Liu
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan 430074, China
| | - Mei Yang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan 430074, China
| |
Collapse
|
169
|
Zhou Y, Zhou DM, Yu WW, Shi LL, Zhang Y, Lai YX, Huang LP, Qi H, Chen QF, Yao N, Li JF, Xie LJ, Xiao S. Phosphatidic acid modulates MPK3- and MPK6-mediated hypoxia signaling in Arabidopsis. THE PLANT CELL 2022; 34:889-909. [PMID: 34850198 PMCID: PMC8824597 DOI: 10.1093/plcell/koab289] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 11/19/2021] [Indexed: 05/07/2023]
Abstract
Phosphatidic acid (PA) is an important lipid essential for several aspects of plant development and biotic and abiotic stress responses. We previously suggested that submergence induces PA accumulation in Arabidopsis thaliana; however, the molecular mechanism underlying PA-mediated regulation of submergence-induced hypoxia signaling remains unknown. Here, we showed that in Arabidopsis, loss of the phospholipase D (PLD) proteins PLDα1 and PLDδ leads to hypersensitivity to hypoxia, but increased tolerance to submergence. This enhanced tolerance is likely due to improvement of PA-mediated membrane integrity. PA bound to the mitogen-activated protein kinase 3 (MPK3) and MPK6 in vitro and contributed to hypoxia-induced phosphorylation of MPK3 and MPK6 in vivo. Moreover, mpk3 and mpk6 mutants were more sensitive to hypoxia and submergence stress compared with wild type, and fully suppressed the submergence-tolerant phenotypes of pldα1 and pldδ mutants. MPK3 and MPK6 interacted with and phosphorylated RELATED TO AP2.12, a master transcription factor in the hypoxia signaling pathway, and modulated its activity. In addition, MPK3 and MPK6 formed a regulatory feedback loop with PLDα1 and/or PLDδ to regulate PLD stability and submergence-induced PA production. Thus, our findings demonstrate that PA modulates plant tolerance to submergence via both membrane integrity and MPK3/6-mediated hypoxia signaling in Arabidopsis.
Collapse
Affiliation(s)
- Ying Zhou
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - De-Mian Zhou
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Wei-Wei Yu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Li-Li Shi
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Yi Zhang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Yong-Xia Lai
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Li-Ping Huang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Hua Qi
- Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Qin-Fang Chen
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Nan Yao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Jian-Feng Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | | | - Shi Xiao
- Authors for correspondence: (S.X.) and (L.J.X.)
| |
Collapse
|
170
|
Qian Z, Wu L, Tang L. Effects of Flooding and Endogenous Hormone on the Formation of Knee Roots in Taxodium ascendens. FRONTIERS IN PLANT SCIENCE 2022; 13:803619. [PMID: 35185981 PMCID: PMC8850469 DOI: 10.3389/fpls.2022.803619] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 01/11/2022] [Indexed: 06/14/2023]
Abstract
Taxodium ascendens is a typical tree species with high flood tolerance, and it can generate knee roots in the wetlands. This study investigated the number and size of knee roots and the soil flooding conditions. Furthermore, we also measured physiology, biochemical responses, and the anatomical structure of knee roots and underground roots at different developmental stages. This study aimed to understand the adaptation mechanism of T. ascendens to flooding stress and the formation mechanism of the knee roots. The results showed that the formation of knee roots was significantly affected by the soil water table (P < 0.05). The middle water table was more conducive to the formation of knee roots. In the middle water table, the 1-aminocyclopropane-1-carboxylic acid (ACC) content and ACC synthase activity were significantly lower in the knee roots than in the underground roots. The knee roots at the young-aged stage showed the highest ACC oxidase activity among the development stages of the knee roots. The ethylene release rate was significantly higher in the knee roots than in the underground roots (P < 0.05). Indole-3-acetic acid (IAA) content first increased, then decreased with knee root development. The periderm cells at the apex of the knee roots were dead and had many intercellular spaces, which was beneficial for the growth of T. ascendens. In conclusion, the middle water table induced the ethylene and IAA production, which promoted the formation of knee roots, which improved roots ventilation and flooding tolerance of T. ascendens. The results obtained can provide information about mechanisms of knee roots formation and provide scientific evidence for the afforestation and management under wetland conditions.
Collapse
|
171
|
Huang X, Shabala L, Zhang X, Zhou M, Voesenek LACJ, Hartman S, Yu M, Shabala S. Cation transporters in cell fate determination and plant adaptive responses to a low-oxygen environment. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:636-645. [PMID: 34718542 DOI: 10.1093/jxb/erab480] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 10/26/2021] [Indexed: 06/13/2023]
Abstract
Soil flooding creates low-oxygen environments in root zones and thus severely affects plant growth and productivity. Plants adapt to low-oxygen environments by a suite of orchestrated metabolic and anatomical alterations. Of these, formation of aerenchyma and development of adventitious roots are considered very critical to enable plant performance in waterlogged soils. Both traits have been firmly associated with stress-induced increases in ethylene levels in root tissues that operate upstream of signalling pathways. Recently, we used a bioinformatic approach to demonstrate that several Ca2+ and K+ -permeable channels from KCO, AKT, and TPC families could also operate in low oxygen sensing in Arabidopsis. Here we argue that low-oxygen-induced changes to cellular ion homeostasis and operation of membrane transporters may be critical for cell fate determination and formation of the lysigenous aerenchyma in plant roots and shaping the root architecture and adventitious root development in grasses. We summarize the existing evidence for a causal link between tissue-specific changes in oxygen concentration, intracellular Ca2+ and K+ homeostasis, and reactive oxygen species levels, and their role in conferring those two major traits enabling plant adaptation to a low-oxygen environment. We conclude that, for efficient operation, plants may rely on several complementary signalling pathway mechanisms that operate in concert and 'fine-tune' each other. A better understanding of this interaction may create additional and previously unexplored opportunities to crop breeders to improve cereal crop yield losses to soil flooding.
Collapse
Affiliation(s)
- Xin Huang
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan 528041, China
| | - Lana Shabala
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, Tas 7001, Australia
| | - Xuechen Zhang
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, Tas 7001, Australia
| | - Meixue Zhou
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, Tas 7001, Australia
| | | | - Sjon Hartman
- Plant Ecophysiology, Utrecht University, 3584 CH Utrecht, The Netherlands
- School of Biosciences, University of Birmingham, Edgbaston B15 2TT, UK
| | - Min Yu
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan 528041, China
| | - Sergey Shabala
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan 528041, China
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, Tas 7001, Australia
| |
Collapse
|
172
|
Cao M, Zheng L, Li J, Mao Y, Zhang R, Niu X, Geng M, Zhang X, Huang W, Luo K, Chen Y. Transcriptomic profiling suggests candidate molecular responses to waterlogging in cassava. PLoS One 2022; 17:e0261086. [PMID: 35061680 PMCID: PMC8782352 DOI: 10.1371/journal.pone.0261086] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 11/23/2021] [Indexed: 11/19/2022] Open
Abstract
Owing to climate change impacts, waterlogging is a serious abiotic stress that affects crops, resulting in stunted growth and loss of productivity. Cassava (Manihot esculenta Grantz) is usually grown in areas that experience high amounts of rainfall; however, little research has been done on the waterlogging tolerance mechanism of this species. Therefore, we investigated the physiological responses of cassava plants to waterlogging stress and analyzed global gene transcription responses in the leaves and roots of waterlogged cassava plants. The results showed that waterlogging stress significantly decreased the leaf chlorophyll content, caused premature senescence, and increased the activities of superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD) in the leaves and roots. In total, 2538 differentially expressed genes (DEGs) were detected in the leaves and 13364 in the roots, with 1523 genes shared between the two tissues. Comparative analysis revealed that the DEGs were related mainly to photosynthesis, amino metabolism, RNA transport and degradation. We also summarized the functions of the pathways that respond to waterlogging and are involved in photosynthesis, glycolysis and galactose metabolism. Additionally, many transcription factors (TFs), such as MYBs, AP2/ERFs, WRKYs and NACs, were identified, suggesting that they potentially function in the waterlogging response in cassava. The expression of 12 randomly selected genes evaluated via both quantitative real-time PCR (qRT-PCR) and RNA sequencing (RNA-seq) was highly correlated (R2 = 0.9077), validating the reliability of the RNA-seq results. The potential waterlogging stress-related transcripts identified in this study are representatives of candidate genes and molecular resources for further understanding the molecular mechanisms underlying the waterlogging response in cassava.
Collapse
Affiliation(s)
- Min Cao
- Key Laboratory of Sustainable Utilization of Tropical Biological Resources of Hainan Province, Haikou, China
- School of Tropical Crops, Hainan University, Haikou, China
| | - Linling Zheng
- Key Laboratory of Sustainable Utilization of Tropical Biological Resources of Hainan Province, Haikou, China
- School of Life Sciences, Hainan University, Haikou, China
| | - Junyi Li
- Key Laboratory of Sustainable Utilization of Tropical Biological Resources of Hainan Province, Haikou, China
- School of Tropical Crops, Hainan University, Haikou, China
| | - Yiming Mao
- Key Laboratory of Sustainable Utilization of Tropical Biological Resources of Hainan Province, Haikou, China
- School of Tropical Crops, Hainan University, Haikou, China
| | - Rui Zhang
- Key Laboratory of Sustainable Utilization of Tropical Biological Resources of Hainan Province, Haikou, China
- School of Tropical Crops, Hainan University, Haikou, China
| | - Xiaolei Niu
- Key Laboratory of Sustainable Utilization of Tropical Biological Resources of Hainan Province, Haikou, China
- School of Tropical Crops, Hainan University, Haikou, China
| | - Mengting Geng
- Key Laboratory of Sustainable Utilization of Tropical Biological Resources of Hainan Province, Haikou, China
- School of Tropical Crops, Hainan University, Haikou, China
| | - Xiaofei Zhang
- Alliance of Bioversity International and the International Center for Tropical Agriculture (CIAT), Cali, Colombia
| | - Wei Huang
- Hainan University Archives, Haikou, the People’s Republic of China
| | - Kai Luo
- Key Laboratory of Sustainable Utilization of Tropical Biological Resources of Hainan Province, Haikou, China
- School of Tropical Crops, Hainan University, Haikou, China
| | - Yinhua Chen
- Key Laboratory of Sustainable Utilization of Tropical Biological Resources of Hainan Province, Haikou, China
- School of Life Sciences, Hainan University, Haikou, China
| |
Collapse
|
173
|
Jethva J, Schmidt RR, Sauter M, Selinski J. Try or Die: Dynamics of Plant Respiration and How to Survive Low Oxygen Conditions. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11020205. [PMID: 35050092 PMCID: PMC8780655 DOI: 10.3390/plants11020205] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/07/2022] [Accepted: 01/11/2022] [Indexed: 05/09/2023]
Abstract
Fluctuations in oxygen (O2) availability occur as a result of flooding, which is periodically encountered by terrestrial plants. Plant respiration and mitochondrial energy generation rely on O2 availability. Therefore, decreased O2 concentrations severely affect mitochondrial function. Low O2 concentrations (hypoxia) induce cellular stress due to decreased ATP production, depletion of energy reserves and accumulation of metabolic intermediates. In addition, the transition from low to high O2 in combination with light changes-as experienced during re-oxygenation-leads to the excess formation of reactive oxygen species (ROS). In this review, we will update our current knowledge about the mechanisms enabling plants to adapt to low-O2 environments, and how to survive re-oxygenation. New insights into the role of mitochondrial retrograde signaling, chromatin modification, as well as moonlighting proteins and mitochondrial alternative electron transport pathways (and their contribution to low O2 tolerance and survival of re-oxygenation), are presented.
Collapse
Affiliation(s)
- Jay Jethva
- Department of Plant Developmental Biology and Plant Physiology, Faculty of Mathematics and Natural Sciences, Botanical Institute, Christian-Albrechts University, D-24118 Kiel, Germany; (J.J.); (M.S.)
| | - Romy R. Schmidt
- Department of Plant Biotechnology, Faculty of Biology, University of Bielefeld, D-33615 Bielefeld, Germany;
| | - Margret Sauter
- Department of Plant Developmental Biology and Plant Physiology, Faculty of Mathematics and Natural Sciences, Botanical Institute, Christian-Albrechts University, D-24118 Kiel, Germany; (J.J.); (M.S.)
| | - Jennifer Selinski
- Department of Plant Cell Biology, Botanical Institute, Faculty of Mathematics and Natural Sciences, Christian-Albrechts University, D-24118 Kiel, Germany
- Correspondence: ; Tel.: +49-(0)431-880-4245
| |
Collapse
|
174
|
Wang Z, Han Y, Luo S, Rong X, Song H, Jiang N, Li C, Yang L. Calcium peroxide alleviates the waterlogging stress of rapeseed by improving root growth status in a rice-rape rotation field. FRONTIERS IN PLANT SCIENCE 2022; 13:1048227. [PMID: 36466266 PMCID: PMC9718366 DOI: 10.3389/fpls.2022.1048227] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 11/04/2022] [Indexed: 05/16/2023]
Abstract
Waterlogging stress has a negative influence on agricultural production, particularly for rapeseed yield in a rice-rape rotation field. To alleviate the profound impacts of waterlogging stress on rapeseed production, a new fertilization with calcium peroxide (CaO2) was proposed. In this field experiment, with the conventional rape (Brassica napus L.) variety fengyou958 (FY958) and early maturing rape variety xiangyou420 (XY420) as materials, waterlogging was imposed from the bud to flowering stage, and three supplies of CaO2 (0, C1 for the 594 kg hm-2 and C2 for the 864 kg hm-2) were added as basal fertilizer. The results showed that CaO2 significantly reduced the accumulation of fermentation products in roots and alleviated the peroxidation of leaves. The reduced waterlogging stress promoted the root vigor and agronomic characters, such as branches, plant height and stem diameter, accelerated dry matter and nutrients accumulation, and resulting in 22.7% (C1) to 232.8% (C2) higher grain yields in XY420, and 112.4% (C1) to 291.8% (C2) higher grain yields in FY958, respectively. In conclusion, 594 kg hm-2 to 864 kg hm-2 CaO2 application restored the growth of waterlogged rapeseed leaves, and reduced the anaerobic intensity of root, which enhanced the resistance of plants to waterlogging, and improved crop productivity. In a certain range, the higher CaO2 application, the more the yield. This study provides a valid method to prevent damage from flooding in crop fields.
Collapse
Affiliation(s)
- Zhiyuan Wang
- College of Resources and Environmental, Hunan Agricultural University, Changsha, China
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Changsha, China
| | - Yongliang Han
- College of Resources and Environmental, Hunan Agricultural University, Changsha, China
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Changsha, China
| | - Shang Luo
- College of Resources and Environmental, Hunan Agricultural University, Changsha, China
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Changsha, China
| | - Xiangmin Rong
- College of Resources and Environmental, Hunan Agricultural University, Changsha, China
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Changsha, China
| | - Haixing Song
- College of Resources and Environmental, Hunan Agricultural University, Changsha, China
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Changsha, China
| | - Na Jiang
- College of Resources and Environmental, Hunan Agricultural University, Changsha, China
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Changsha, China
| | - Changwei Li
- College of Resources and Environmental, Hunan Agricultural University, Changsha, China
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Changsha, China
| | - Lan Yang
- College of Resources and Environmental, Hunan Agricultural University, Changsha, China
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Changsha, China
- *Correspondence: Lan Yang,
| |
Collapse
|
175
|
Submergence Gene Sub1A Transfer into Drought-Tolerant japonica Rice DT3 Using Marker-Assisted Selection. Int J Mol Sci 2021; 22:ijms222413365. [PMID: 34948165 PMCID: PMC8705020 DOI: 10.3390/ijms222413365] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/08/2021] [Accepted: 12/09/2021] [Indexed: 12/03/2022] Open
Abstract
Flash flooding is a major environmental stressor affecting rice production worldwide. DT3 is a drought-tolerant, recurrent parent with a good yield, edible quality, and agronomic traits akin to those of an elite Taiwanese variety, Taiken9 (TK9). Progenies carrying Sub1A can enhance submergence stress tolerance and can be selected using the marker-assisted backcross (MAB) breeding method. For foreground selection, Sub1A and SubAB1 were utilized as markers on the BC2F1, BC3F1, and BC3F2 generations to select the submergence-tolerant gene, Sub1A. Background selection was performed in the Sub1A-BC3F2 genotypes, and the percentages of recurrent parent recovery within individuals ranged from 84.7–99.55%. BC3F3 genotypes (N = 100) were evaluated for agronomic traits, yield, and eating quality. Four of the eleven BC3F4 lines showed good yield, yield component, grain, and eating quality. Four BC3F4 lines, SU39, SU40, SU89, and SU92, exhibited desirable agronomic traits, including grain quality and palatability, consistent with those of DT3. These genotypes displayed a high survival rate between 92 and 96%, much better compared with DT3 with 64%, and demonstrated better drought tolerance compared to IR64 and IR96321-345-240. This study provides an efficient and precise MAB strategy for developing climate-resilient rice varieties with good grain quality for flood-prone regions.
Collapse
|
176
|
Liu Q, Dong GR, Ma YQ, Huang XX, Mu TJ, Huang XX, Li YJ, Li X, Hou BK. Retracted: Glycosyltransferase UGT79B7 negatively regulates hypoxia response through γ-aminobutyric acid homeostasis in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:7998-8010. [PMID: 33693583 DOI: 10.1093/jxb/erab107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 03/04/2021] [Indexed: 06/12/2023]
Affiliation(s)
- Qian Liu
- The Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, PR China
| | - Guang-Rui Dong
- The Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, PR China
| | - Yu-Qing Ma
- The Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, PR China
| | - Xiu-Xiu Huang
- The Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, PR China
| | - Tian-Jiao Mu
- The Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, PR China
| | - Xu-Xu Huang
- The Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, PR China
| | - Yan-Jie Li
- The Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, PR China
| | - Xugang Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, PR China
| | - Bing-Kai Hou
- The Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, PR China
| |
Collapse
|
177
|
Wang S, Liu W, He Y, Adegoke TV, Ying J, Tong X, Li Z, Tang L, Wang H, Zhang J, Tian Z, Wang Y. bZIP72 promotes submerged rice seed germination and coleoptile elongation by activating ADH1. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 169:112-118. [PMID: 34775177 DOI: 10.1016/j.plaphy.2021.11.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 11/01/2021] [Accepted: 11/02/2021] [Indexed: 06/13/2023]
Abstract
Seed germination and coleoptile elongation in response to flooding stress is an important trait for the direct seeding of rice. However, the genes regulating this process and the underlying mechanisms are little understood. In this study, bZIP72 was identified as a positive regulator of seed germination under submergence. Transcription of bZIP72 was submergence induced. Over-expression of bZIP72 enhanced submerged seed germination and coleoptile elongation, while bzip72 mutants exhibited the opposite tendency. Using biochemical interaction assays, we showed that bZIP72 directly binds to the promoter of alcohol dehydrogenase 1 (ADH1), enhances its activity, and subsequently produces more NAD+, NADH and ATP involved in the alcoholic fermentation and glycolysis pathway, ultimately providing necessary energy reserves thus conferring tolerance to submergence. In summary, this research provides novel insights into bZIP72 participation in submerged rice seed germination and coleoptile elongation.
Collapse
Affiliation(s)
- Shuang Wang
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland, College of Life Science, Yangtze University, Jingzhou, 434025, China
| | - Wanning Liu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 311400, China
| | - Yong He
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland, College of Life Science, Yangtze University, Jingzhou, 434025, China
| | - Tosin Victor Adegoke
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 311400, China
| | - Jiezheng Ying
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 311400, China; State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, LinAn, 311300, China
| | - Xiaohong Tong
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 311400, China
| | - Zhiyong Li
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 311400, China
| | - Liqun Tang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 311400, China
| | - Huimei Wang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 311400, China
| | - Jian Zhang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 311400, China.
| | - Zhihong Tian
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland, College of Life Science, Yangtze University, Jingzhou, 434025, China.
| | - Yifeng Wang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 311400, China.
| |
Collapse
|
178
|
Genome-Wide Identification of Hsp90 Gene Family in Perennial Ryegrass and Expression Analysis under Various Abiotic Stresses. PLANTS 2021; 10:plants10112509. [PMID: 34834872 PMCID: PMC8622807 DOI: 10.3390/plants10112509] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 11/29/2022]
Abstract
The heat shock protein 90 (Hsp90) is a protein produced in plants in response to stress. This study identified and analyzed Hsp90 gene family members in the perennial ryegrass genome. From the results, eight Hsp90 proteins were obtained and their MW, pI and number of amino acid bases varied. The amino acid bases ranged from 526 to 862. The CDS also ranged from 20 (LpHsp0-4) to 1 (LpHsp90-5). The least number of CDS regions was 1 (LpHsp90-5) with 528 kb amino acids, while the highest was 20 (LpHsp90-4) with 862 kb amino acids, which showed diversity among the protein sequences. The phylogenetic tree revealed that Hsp90 genes in Lolium perenne, Arabidopsis thaliana, Oryza sativa and Brachypodium distachyon could be divided into two groups with five paralogous gene pairs and three orthologous gene pairs. The expression analysis after perennial ryegrass was subjected to heat, salt, chromium (Cr), cadmium (Cd), polyethylene glycol (PEG) and abscisic acid (ABA) revealed that LpHsp90 genes were generally highly expressed under heat stress, but only two LpHsp90 proteins were expressed under Cr stresses. Additionally, the expression of the LpHsp90 proteins differed at each time point in all treatments. This study provides the basis for an understanding of the functions of LpHsp90 proteins in abiotic stress studies and in plant breeding.
Collapse
|
179
|
Shokoohi-Rad S, Heidarzadeh HR. In Vivo Imaging of Plant Oxygen Levels. PLANT & CELL PHYSIOLOGY 2021; 62:1251-1258. [PMID: 33725087 PMCID: PMC8410434 DOI: 10.1093/pcp/pcab039] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/01/2021] [Accepted: 03/01/2021] [Indexed: 06/12/2023]
Abstract
Oxygen is essential for multicellular aerobic life due to its central role in energy metabolism. The availability of oxygen can drop below the level to sustain oxidative phosphorylation when plants are flooded, posing a severe threat to survival. However, under non-stressful conditions, the internal oxygen concentration of most plant tissue is not in equilibrium with the environment, which is attributed to cellular respiration and diffusion constrains imposed by O2 barriers and bulky tissue. This is exemplified by the observations of steep oxygen gradients in roots, fruits, tubers, anthers and meristems. To adapt to a varying availability of oxygen, plants sense O2 via the conditional proteolysis of transcriptional regulators. This mechanism acts to switch oxidative metabolism to anaerobic fermentation, but it was also shown to play a role in plant development and pathogen defense. To investigate how dynamic and spatial distribution of O2 impacts on these processes, accurate mapping of its concentration in plants is essential. Physical oxygen sensors have been employed for decades to profile internal oxygen concentrations in plants, while genetically encoded oxygen biosensors have only recently started to see use. Driven by the critical role of hypoxia in human pathology and development, several novel oxygen-sensing devices have also been characterized in cell lines and animal model organisms. This review aims to provide an overview of available oxygen biosensors and to discuss their potential application to image oxygen levels in plants.
Collapse
Affiliation(s)
- Saeed Shokoohi-Rad
- Eye Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | | |
Collapse
|
180
|
Geldhof B, Pattyn J, Eyland D, Carpentier S, Van de Poel B. A digital sensor to measure real-time leaf movements and detect abiotic stress in plants. PLANT PHYSIOLOGY 2021; 187:1131-1148. [PMID: 34618089 PMCID: PMC8566216 DOI: 10.1093/plphys/kiab407] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 08/02/2021] [Indexed: 05/31/2023]
Abstract
Plant and plant organ movements are the result of a complex integration of endogenous growth and developmental responses, partially controlled by the circadian clock, and external environmental cues. Monitoring of plant motion is typically done by image-based phenotyping techniques with the aid of computer vision algorithms. Here we present a method to measure leaf movements using a digital inertial measurement unit (IMU) sensor. The lightweight sensor is easily attachable to a leaf or plant organ and records angular traits in real-time for two dimensions (pitch and roll) with high resolution (measured sensor oscillations of 0.36 ± 0.53° for pitch and 0.50 ± 0.65° for roll). We were able to record simple movements such as petiole bending, as well as complex lamina motions, in several crops, ranging from tomato to banana. We also assessed growth responses in terms of lettuce rosette expansion and maize seedling stem movements. The IMU sensors are capable of detecting small changes of nutations (i.e. bending movements) in leaves of different ages and in different plant species. In addition, the sensor system can also monitor stress-induced leaf movements. We observed that unfavorable environmental conditions evoke certain leaf movements, such as drastic epinastic responses, as well as subtle fading of the amplitude of nutations. In summary, the presented digital sensor system enables continuous detection of a variety of leaf motions with high precision, and is a low-cost tool in the field of plant phenotyping, with potential applications in early stress detection.
Collapse
Affiliation(s)
- Batist Geldhof
- Department of Biosystems, Division of Crop Biotechnics, Molecular Plant Hormone Physiology Lab, University of Leuven, Leuven 3001, Belgium
| | - Jolien Pattyn
- Department of Biosystems, Division of Crop Biotechnics, Molecular Plant Hormone Physiology Lab, University of Leuven, Leuven 3001, Belgium
| | - David Eyland
- Department of Biosystems, Division of Crop Biotechnics, Tropical Crop Improvement Laboratory, University of Leuven, Leuven 3001, Belgium
| | - Sebastien Carpentier
- Department of Biosystems, Division of Crop Biotechnics, Tropical Crop Improvement Laboratory, University of Leuven, Leuven 3001, Belgium
- Bioversity International, Leuven, 3001, Belgium
| | - Bram Van de Poel
- Department of Biosystems, Division of Crop Biotechnics, Molecular Plant Hormone Physiology Lab, University of Leuven, Leuven 3001, Belgium
| |
Collapse
|
181
|
Mignolli F, Barone JO, Vidoz ML. Root submergence enhances respiration and sugar accumulation in the stem of flooded tomato plants. PLANT, CELL & ENVIRONMENT 2021; 44:3643-3654. [PMID: 34268805 DOI: 10.1111/pce.14152] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 07/09/2021] [Accepted: 07/11/2021] [Indexed: 06/13/2023]
Abstract
Flooding is a major environmental constraint that obliges plants to adopt plastic responses in order to cope with it. When partially submerged, tomato plants undergo profound changes involving rearrangements in their morphology and metabolism. In this work, we observed that partial submergence markedly dampens root respiration and halts root growth. However, the flooded hypocotyl surprisingly enhances oxygen consumption. Previous results demonstrated that aerenchyma formation in the submerged tomato stem re-establishes internal oxygen tension, making aerobic respiration possible. Indeed, potassium cyanide abruptly stops oxygen uptake, indicating that the cytochrome c pathway is likely to be engaged. Furthermore, we found out that leaf-derived sugars accumulate in large amounts in hypocotyls of flooded plants. Girdling and feeding experiments point to sucrose as the main carbon source for respiration. Consistently, submerged hypocotyls are characterized by high sucrose synthase activity, indicating that sucrose is cleaved and channelled into respiration. Since inhibition of hypocotyl respiration significantly prevents sugar build-up, it is suggested that a high respiration rate is required for sucrose unloading from phloem. As substrate availability increases, respiration is fuelled even more, leading to a maintained allocation of sugars to flooded hypocotyls.
Collapse
Affiliation(s)
- Francesco Mignolli
- Fisiología Vegetal e Interacción Planta-Microorganismo, Instituto de Botánica del Nordeste (IBONE), UNNE-CONICET, Corrientes, Argentina
- Facultad de Ciencias Agrarias, Universidad Nacional del Nordeste (UNNE), Corrientes, Argentina
| | - Javier Orlando Barone
- Fisiología Vegetal e Interacción Planta-Microorganismo, Instituto de Botánica del Nordeste (IBONE), UNNE-CONICET, Corrientes, Argentina
| | - María Laura Vidoz
- Fisiología Vegetal e Interacción Planta-Microorganismo, Instituto de Botánica del Nordeste (IBONE), UNNE-CONICET, Corrientes, Argentina
- Facultad de Ciencias Agrarias, Universidad Nacional del Nordeste (UNNE), Corrientes, Argentina
| |
Collapse
|
182
|
Wang X, Yan L, Wang B, Qian Y, Wang Z, Wu W. Comparative Proteomic Analysis of Grapevine Rootstock in Response to Waterlogging Stress. FRONTIERS IN PLANT SCIENCE 2021; 12:749184. [PMID: 34777428 PMCID: PMC8589030 DOI: 10.3389/fpls.2021.749184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 10/04/2021] [Indexed: 06/13/2023]
Abstract
Waterlogging severely affects global agricultural production. Clarifying the regulatory mechanism of grapevine in response to waterlogging stress will help to improve the waterlogging tolerance of grapevine. In the present study, the physiological and proteomic responses of SO4 grapevine rootstock to different waterlogging tolerances were comparatively assayed. The results showed that the activities of SOD and POD first increased and then decreased, while the change trend of CAT and APX activities was the opposite. In addition, the MDA and H2O2 contents increased after waterlogging treatment, but the chlorophyll a and chlorophyll b contents decreased. A total of 5,578 grapevine proteins were identified by the use of the tandem mass tag (TMT) labeling technique. Among them, 214 (103 and 111 whose expression was upregulated and downregulated, respectively), 314 (129 and 185 whose expression was upregulated and downregulated, respectively), and 529 (248 and 281 whose expression was upregulated and downregulated, respectively) differentially expressed proteins (DEPs) were identified in T0d vs. T10d, T10d vs. T20d, and T0d vs. T20d comparison groups, respectively. Enrichment analysis showed that these DEPs were mainly involved in glutathione metabolism, carbon fixation, amino sugar and nucleotide sugar metabolism, biosynthesis of amino acids, photosynthesis, carbon metabolism, starch, and sucrose metabolism, galactose metabolism, protein processing and ribosomes. To further verify the proteomic data, the expression of corresponding genes that encode eight DEPs was confirmed by quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR). The results of this study presented an important step toward understanding the resistance mechanisms of grapevine in response to waterlogging stress at the proteome level.
Collapse
|
183
|
Oram NJ, Sun Y, Abalos D, Groenigen JW, Hartley S, De Deyn GB. Plant traits of grass and legume species for flood resilience and N
2
O mitigation. Funct Ecol 2021. [DOI: 10.1111/1365-2435.13873] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Natalie J. Oram
- Soil Biology Group Wageningen University & Research Wageningen The Netherlands
- Department of Ecology University of Innsbruck Innsbruck Austria
- Environmental Research Centre TeagascJohnstown Castle Co Wexford Ireland
| | - Yan Sun
- Soil Biology Group Wageningen University & Research Wageningen The Netherlands
| | - Diego Abalos
- Department of Agroecology Aarhus University Tjele Denmark
| | | | - Sue Hartley
- Department of Animal and Plant Sciences University of SheffieldWestern Bank Sheffield UK
| | - Gerlinde B. De Deyn
- Soil Biology Group Wageningen University & Research Wageningen The Netherlands
| |
Collapse
|
184
|
Zheng H, Wang R, Jiang Q, Zhang D, Mu R, Xu Y, Nnaemeka VE, Mei J, Zhao Y, Cai F, Yu D, Sun Y, Ke L. Identification and functional analysis of a pollen fertility-associated gene GhGLP4 of Gossypium hirsutum L. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:3237-3247. [PMID: 34272568 DOI: 10.1007/s00122-021-03888-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 06/09/2021] [Indexed: 06/13/2023]
Abstract
KEY MESSAGE Cotton male fertility-associated gene GhGLP4, encoding a germin-like protein, is essential for anthers development by keeping ROS homeostasis through reducing H2O2 level. Utilization of heterosis is an important way to increase cotton yield and improve fiber quality in hybrid cotton development programs. Male sterility is used in the development of cotton hybrids to reduce the cost of hybrid seed production by eliminating the process of emasculation. From the transcriptome analysis of genic male sterile mutant (ms1) and its background C312 of G. hirsutum, a gene encoding germin-like protein (GhGLP4) was found significantly down-regulated in different developmental stages of ms1 anthers. To explore the gene function in cotton fertility, GhGLP4 was further studied and interfered by virus-induced gene silencing. In the GhGLP4 interfered cotton lines, the expression level of GhGLP4 was significantly decreased in the stamens, and the down-regulation of GhGLP4 resulted in pollen sac closure, stigma exertion, filament shortening, decrease in the number of anthers and complete male sterility. The expression levels of respiratory burst oxidase homologs (Rboh, NADPH oxidase) were significantly altered. Further investigation showed that the SOD activity decreased while the H2O2 content increased in the atypical stamens. These results indicated that GhGLP4 gene affected the cotton anther development through maintenance of ROS homeostasis by H2O2 reduction.
Collapse
Affiliation(s)
- Hongli Zheng
- Plant Genomics and Molecular Improvement of Colored Fiber Laboratory, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310016, Zhejiang, China
| | - Rongjia Wang
- Plant Genomics and Molecular Improvement of Colored Fiber Laboratory, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310016, Zhejiang, China
| | - Qimeng Jiang
- Plant Genomics and Molecular Improvement of Colored Fiber Laboratory, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310016, Zhejiang, China
| | - Diandian Zhang
- Plant Genomics and Molecular Improvement of Colored Fiber Laboratory, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310016, Zhejiang, China
| | - Rongrong Mu
- Plant Genomics and Molecular Improvement of Colored Fiber Laboratory, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310016, Zhejiang, China
| | - Yihan Xu
- Plant Genomics and Molecular Improvement of Colored Fiber Laboratory, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310016, Zhejiang, China
| | - Vitalis E Nnaemeka
- Plant Genomics and Molecular Improvement of Colored Fiber Laboratory, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310016, Zhejiang, China
| | - Jun Mei
- Plant Genomics and Molecular Improvement of Colored Fiber Laboratory, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310016, Zhejiang, China
| | - Yanyan Zhao
- Plant Genomics and Molecular Improvement of Colored Fiber Laboratory, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310016, Zhejiang, China
| | - Fangfang Cai
- Plant Genomics and Molecular Improvement of Colored Fiber Laboratory, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310016, Zhejiang, China
| | - Dongliang Yu
- Plant Genomics and Molecular Improvement of Colored Fiber Laboratory, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310016, Zhejiang, China
| | - Yuqiang Sun
- Plant Genomics and Molecular Improvement of Colored Fiber Laboratory, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310016, Zhejiang, China
| | - Liping Ke
- Plant Genomics and Molecular Improvement of Colored Fiber Laboratory, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310016, Zhejiang, China.
| |
Collapse
|
185
|
Boaretto LF, Labate MTV, Franceschini LM, Cataldi TR, Budzinski IGF, de Moraes FE, Labate CA. Proteomics Reveals an Increase in the Abundance of Glycolytic and Ethanolic Fermentation Enzymes in Developing Sugarcane Culms During Sucrose Accumulation. FRONTIERS IN PLANT SCIENCE 2021; 12:716964. [PMID: 34659289 PMCID: PMC8515036 DOI: 10.3389/fpls.2021.716964] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 08/25/2021] [Indexed: 06/13/2023]
Abstract
Sugarcane is an economically important crop contributing to the sugar and ethanol production of the world with 80 and 40%, respectively. Despite its importance as the main crop for sugar production, the mechanisms involved in the regulation of sucrose accumulation in sugarcane culms are still poorly understood. The aim of this work was to compare the quantitative changes of proteins in juvenile and maturing internodes at three stages of plant development. Label-free shotgun proteomics was used for protein profiling and quantification in internodes 5 (I5) and 9 (I9) of 4-, 7-, and 10-month-old-plants (4M, 7M, and 10M, respectively). The I9/I5 ratio was used to assess the differences in the abundance of common proteins at each stage of internode development. I9 of 4M plants showed statistically significant increases in the abundance of several enzymes of the glycolytic pathway and proteoforms of alcohol dehydrogenase (ADH) and pyruvate decarboxylase (PDC). The changes in content of the enzymes were followed by major increases of proteins related to O2 transport like hemoglobin 2, ROS scavenging enzymes, and enzymes involved in the ascorbate/glutatione system. Besides, intermediates from tricarboxylic acid cycle (TCA) were reduced in I9-4M, indicating that the increase in abundance of several enzymes involved in glycolysis, pentose phosphate cycle, and TCA, might be responsible for higher metabolic flux, reducing its metabolites content. The results observed in I9-4M indicate that hypoxia might be the main cause of the increased flux of glycolysis and ethanolic fermentation to supply ATP and reducing power for plant growth, mitigating the reduction in mitochondrial respiration due to the low oxygen availability inside the culm. As the plant matured and sucrose accumulated to high levels in the culms, the proteins involved in glycolysis, ethanolic fermentation, and primary carbon metabolism were significantly reduced.
Collapse
|
186
|
Razzaq A, Wani SH, Saleem F, Yu M, Zhou M, Shabala S. Rewilding crops for climate resilience: economic analysis and de novo domestication strategies. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:6123-6139. [PMID: 34114599 DOI: 10.1093/jxb/erab276] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 06/09/2021] [Indexed: 05/08/2023]
Abstract
To match predicted population growth, annual food production should be doubled by 2050. This is not achievable by current agronomical and breeding practices, due to the impact of climate changes and associated abiotic stresses on agricultural production systems. Here, we analyze the impact of global climate trends on crop productivity and show that the overall loss in crop production from climate-driven abiotic stresses may exceed US$170 billion year-1 and represents a major threat to global food security. We also show that abiotic stress tolerance had been present in wild progenitors of modern crops but was lost during their domestication. We argue for a major shift in our paradigm of crop breeding, focusing on climate resilience, and call for a broader use of wild relatives as a major tool in this process. We argue that, while molecular tools are currently in place to harness the potential of climate-resilient genes present in wild relatives, the complex polygenic nature of tolerance traits remains a major bottleneck in this process. Future research efforts should be focused not only on finding appropriate wild relatives but also on development of efficient cell-based high-throughput phenotyping platforms allowing assessment of the in planta operation of key genes.
Collapse
Affiliation(s)
- Ali Razzaq
- Centre of Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture, Faisald 38040,Pakistan
| | - Shabir Hussain Wani
- Mountain Research Center for Field Crops, Khudwani, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, J&K,India
| | - Fozia Saleem
- Centre of Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture, Faisald 38040,Pakistan
| | - Min Yu
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan 528000,China
| | - Meixue Zhou
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, Tas 7001,Australia
| | - Sergey Shabala
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan 528000,China
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, Tas 7001,Australia
| |
Collapse
|
187
|
Understanding a Mechanistic Basis of ABA Involvement in Plant Adaptation to Soil Flooding: The Current Standing. PLANTS 2021; 10:plants10101982. [PMID: 34685790 PMCID: PMC8537370 DOI: 10.3390/plants10101982] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/19/2021] [Accepted: 09/20/2021] [Indexed: 11/16/2022]
Abstract
Soil flooding severely impairs agricultural crop production. Plants can cope with flooding conditions by embracing an orchestrated set of morphological adaptations and physiological adjustments that are regulated by the elaborated hormonal signaling network. The most prominent of these hormones is ethylene, which has been firmly established as a critical signal in flooding tolerance. ABA (abscisic acid) is also known as a “stress hormone” that modulates various responses to abiotic stresses; however, its role in flooding tolerance remains much less established. Here, we discuss the progress made in the elucidation of morphological adaptations regulated by ABA and its crosstalk with other phytohormones under flooding conditions in model plants and agriculturally important crops.
Collapse
|
188
|
Zhang H, Xu W, Chen H, Chen J, Liu X, Chen X, Yang S. Transcriptomic analysis of salt tolerance-associated genes and diversity analysis using indel markers in yardlong bean (Vigna unguiculata ssp. sesquipedialis). BMC Genom Data 2021; 22:34. [PMID: 34530724 PMCID: PMC8447766 DOI: 10.1186/s12863-021-00989-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 08/29/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND High salinity is a devastating abiotic stresses for crops. To understand the molecular basis of salinity stress in yardlong bean (Vigna unguiculata ssp. sesquipedalis), and to develop robust markers for improving this trait in germplasm, whole transcriptome RNA sequencing (RNA-seq) was conducted to compare the salt-tolerant variety Suzi 41 and salt-sensitive variety Sujiang 1419 under normal and salt stress conditions. RESULTS Compared with controls, 417 differentially expressed genes (DEGs) were identified under exposure to high salinity, including 42 up- and 11 down-regulated DEGs in salt-tolerant Suzi 41 and 186 up- and 197 down-regulated genes in salt-sensitive Sujiang 1419, validated by qRT-PCR. DEGs were enriched in "Glycolysis/Gluconeogenesis" (ko00010), "Cutin, suberine and wax biosynthesis" (ko00073), and "phenylpropanoid biosynthesis" (ko00940) in Sujiang 1419, although "cysteine/methionine metabolism" (ko00270) was the only pathway significantly enriched in salt-tolerant Suzi 41. Notably, AP2/ERF, LR48, WRKY, and bHLH family transcription factors (TFs) were up-regulated under high salt conditions. Genetic diversity analysis of 84 yardlong bean accessions using 26 InDel markers developed here could distinguish salt-tolerant and salt-sensitive varieties. CONCLUSIONS These findings show a limited set of DEGs, primarily TFs, respond to salinity stress in V. unguiculata, and that these InDels associated with salt-inducible loci are reliable for diversity analysis.
Collapse
Affiliation(s)
- Hongmei Zhang
- Soybean Research Institute of Nanjing Agricultural University/National Center for Soybean Improvement/National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing, 210095, Jiangsu, China.,Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, No. 50, Zhongling Street, Nanjing, 210014, Jiangsu, China
| | - Wenjing Xu
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, No. 50, Zhongling Street, Nanjing, 210014, Jiangsu, China.,College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Huatao Chen
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, No. 50, Zhongling Street, Nanjing, 210014, Jiangsu, China
| | - Jingbin Chen
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, No. 50, Zhongling Street, Nanjing, 210014, Jiangsu, China
| | - Xiaoqing Liu
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, No. 50, Zhongling Street, Nanjing, 210014, Jiangsu, China
| | - Xin Chen
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, No. 50, Zhongling Street, Nanjing, 210014, Jiangsu, China.
| | - Shouping Yang
- Soybean Research Institute of Nanjing Agricultural University/National Center for Soybean Improvement/National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing, 210095, Jiangsu, China.
| |
Collapse
|
189
|
Singh P, Dutta P, Chakrabarty D. miRNAs play critical roles in response to abiotic stress by modulating cross-talk of phytohormone signaling. PLANT CELL REPORTS 2021; 40:1617-1630. [PMID: 34159416 DOI: 10.1007/s00299-021-02736-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 06/10/2021] [Indexed: 05/06/2023]
Abstract
One of the most interesting signaling molecules that regulates a wide array of adaptive stress responses in plants are the micro RNAs (miRNAs) that are a unique class of non-coding RNAs constituting novel mechanisms of post-transcriptional gene regulation. Recent studies revealed the role of miRNAs in several biotic and abiotic stresses by regulating various phytohormone signaling pathways as well as by targeting a number of transcription factors (TFs) and defense related genes. Phytohormones are signal molecules modulating the plant growth and developmental processes by regulating gene expression. Studies concerning miRNAs in abiotic stress response also show their vital roles in abiotic stress signaling. Current research indicates that miRNAs may act as possible candidates to create abiotic stress tolerant crop plants by genetic engineering. Yet, the detailed mechanism governing the dynamic expression networks of miRNAs in response to stress tolerance remains unclear. In this review, we provide recent updates on miRNA-mediated regulation of phytohormones combating various stress and its role in adaptive stress response in crop plants.
Collapse
Affiliation(s)
- Puja Singh
- Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Prasanna Dutta
- Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Debasis Chakrabarty
- Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute, Lucknow, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
190
|
Borrego-Benjumea A, Carter A, Zhu M, Tucker JR, Zhou M, Badea A. Genome-Wide Association Study of Waterlogging Tolerance in Barley ( Hordeum vulgare L.) Under Controlled Field Conditions. FRONTIERS IN PLANT SCIENCE 2021; 12:711654. [PMID: 34512694 PMCID: PMC8427447 DOI: 10.3389/fpls.2021.711654] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 07/21/2021] [Indexed: 06/01/2023]
Abstract
Waterlogging is one of the main abiotic stresses severely reducing barley grain yield. Barley breeding programs focusing on waterlogging tolerance require an understanding of genetic loci and alleles in the current germplasm. In this study, 247 worldwide spring barley genotypes grown under controlled field conditions were genotyped with 35,926 SNPs with minor allele frequency (MAF) > 0.05. Significant phenotypic variation in each trait, including biomass, spikes per plant, grains per plant, kernel weight per plant, plant height and chlorophyll content, was observed. A genome-wide association study (GWAS) based on linkage disequilibrium (LD) for waterlogging tolerance was conducted. Population structure analysis divided the population into three subgroups. A mixed linkage model using both population structure and kinship matrix (Q+K) was performed. We identified 17 genomic regions containing 51 significant waterlogging-tolerance-associated markers for waterlogging tolerance response, accounting for 5.8-11.5% of the phenotypic variation, with a majority of them localized on chromosomes 1H, 2H, 4H, and 5H. Six novel QTL were identified and eight potential candidate genes mediating responses to abiotic stresses were located at QTL associated with waterlogging tolerance. To our awareness, this is the first GWAS for waterlogging tolerance in a worldwide barley collection under controlled field conditions. The marker-trait associations could be used in the marker-assisted selection of waterlogging tolerance and will facilitate barley breeding.
Collapse
Affiliation(s)
- Ana Borrego-Benjumea
- Brandon Research and Development Centre, Agriculture and Agri-Food Canada, Brandon, MB, Canada
| | - Adam Carter
- Brandon Research and Development Centre, Agriculture and Agri-Food Canada, Brandon, MB, Canada
| | - Min Zhu
- College of Agriculture, Yangzhou University, Yangzhou, China
| | - James R. Tucker
- Brandon Research and Development Centre, Agriculture and Agri-Food Canada, Brandon, MB, Canada
| | - Meixue Zhou
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, TAS, Australia
| | - Ana Badea
- Brandon Research and Development Centre, Agriculture and Agri-Food Canada, Brandon, MB, Canada
| |
Collapse
|
191
|
Ma Y, Zhao J, Fu H, Yang T, Dong J, Yang W, Chen L, Zhou L, Wang J, Liu B, Zhang S, Edwards D. Genome-Wide Identification, Expression and Functional Analysis Reveal the Involvement of FCS-Like Zinc Finger Gene Family in Submergence Response in Rice. RICE (NEW YORK, N.Y.) 2021; 14:76. [PMID: 34417910 PMCID: PMC8380221 DOI: 10.1186/s12284-021-00519-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 08/13/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Direct seeding is an efficient rice cultivation practice. However, its application is often limited due to O2 deficiency following submergence, leading to poor seed germination, seedling establishment, and consequently yield loss. Identification of genes associated with tolerance to submergence and understanding their regulatory mechanisms is the fundamental way to address this problem. Unfortunately, the molecular mechanism of rice response to submergence stress is still not well understood. RESULTS Here, we have performed a genome-wide identification of FCS-like zinc finger (FLZ) proteins and assessed their involvement in submergence response in rice. We identified 29 FLZ genes in rice, and the expression analysis revealed that several genes actively responded to submergence stress. Eight OsFLZ proteins interact with SnRK1A. As a case study, we demonstrated that OsFLZ18 interacted with SnRK1A and inhibited the transcriptional activation activity of SnRK1A in modulating the expression of its target gene αAmy3, a positive regulator in rice flooding tolerance. In line with this, OsFLZ18-overexpression lines displayed retarded early seedling growth and shorter coleoptile following submergence. CONCLUSIONS These data provide the most comprehensive information of OsFLZ genes in rice, and highlight their roles in rice submergence response.
Collapse
Affiliation(s)
- Yamei Ma
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, 510640 China
| | - Junliang Zhao
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, 510640 China
| | - Hua Fu
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, 510640 China
| | - Tifeng Yang
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, 510640 China
| | - Jingfang Dong
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, 510640 China
| | - Wu Yang
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, 510640 China
| | - Luo Chen
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, 510640 China
| | - Lian Zhou
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, 510640 China
| | - Jian Wang
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, 510640 China
| | - Bin Liu
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, 510640 China
| | - Shaohong Zhang
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, 510640 China
| | - David Edwards
- School of Biological Sciences and Institute of Agriculture, The University of Western Australia, Perth, WA Australia
| |
Collapse
|
192
|
Kyu KL, Malik AI, Colmer TD, Siddique KHM, Erskine W. Response of Mungbean (cvs. Celera II-AU and Jade-AU) and Blackgram (cv. Onyx-AU) to Transient Waterlogging. FRONTIERS IN PLANT SCIENCE 2021; 12:709102. [PMID: 34490010 PMCID: PMC8417111 DOI: 10.3389/fpls.2021.709102] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 07/23/2021] [Indexed: 05/31/2023]
Abstract
Mungbean [Vigna radiata (L.) Wilczek] and blackgram [Vigna mungo (L.) Hepper] are important crops for smallholder farmers in tropical and subtropical regions. Production of both crops is affected by unexpected and increasingly frequent extreme precipitation events, which result in transient soil waterlogging. This study aimed to compare the waterlogging tolerance of mungbean and blackgram genotypes under the varying duration of waterlogging stress at germination and seedling stages. We evaluated the responses to different durations of transient waterlogging in a sandy clay loam under temperature-controlled glasshouse conditions. Waterlogging durations were 0, 1, 2, 3, 4, 5, 6, 7, and 8 days during germination and 0, 2, 4, 8, and 16 days during the seedling stage. We used two mungbean genotypes (green testa), Celera II-AU (small-seeded), and Jade-AU (large-seeded), contrasting in seed size and hypocotyl pigmentation, and a blackgram genotype (black testa), Onyx-AU. Waterlogging reduced soil redox potential, delayed or even prevented germination, decreased seedling establishment, and affected shoot and root development. In the seedlings waterlogged (WL) at 15 days after sowing (DAS), adventitious root formation and crown nodulation varied between the genotypes, and 16 days of waterlogging substantially reduced growth but did not result in plant death. Plants in soil with waterlogging for 8-16 days followed by drainage and sampling at 39 DAS had reduced shoot and root dry mass by 60-65% in mungbean and 40% in blackgram compared with continuously drained controls, due at least in part to fewer lateral roots. Soil plant analysis development (SPAD) chlorophyll content was also reduced. Onyx-AU, a blackgram genotype, was more tolerant to transient waterlogging than Jade-AU and Celera II-AU in both growth stages. Of the two mungbean genotypes, Celera II-AU had a greater seedling establishment than Jade-AU post waterlogging imposed at sowing. In contrast, Jade-AU had more plant biomass and greater recovery growth than Celera II-AU after waterlogging and recovery during the seedling stage. Both species were delayed in emergence in response to the shorter periods of transient waterlogging at germination, and with the longer waterlogging germination and emergence failed, whereas at the seedling stage both showed adaptation by the formation of adventitious roots.
Collapse
Affiliation(s)
- Khin Lay Kyu
- Centre for Plant Genetics and Breeding (PGB), University of Western Australia (UWA) School of Agriculture and Environment, Perth, WA, Australia
- UWA Institute of Agriculture, The University of Western Australia, Perth, WA, Australia
| | - Al Imran Malik
- Centre for Plant Genetics and Breeding (PGB), University of Western Australia (UWA) School of Agriculture and Environment, Perth, WA, Australia
- UWA Institute of Agriculture, The University of Western Australia, Perth, WA, Australia
| | - Timothy David Colmer
- Centre for Plant Genetics and Breeding (PGB), University of Western Australia (UWA) School of Agriculture and Environment, Perth, WA, Australia
- UWA Institute of Agriculture, The University of Western Australia, Perth, WA, Australia
| | - Kadambot H. M. Siddique
- Centre for Plant Genetics and Breeding (PGB), University of Western Australia (UWA) School of Agriculture and Environment, Perth, WA, Australia
- UWA Institute of Agriculture, The University of Western Australia, Perth, WA, Australia
| | - William Erskine
- Centre for Plant Genetics and Breeding (PGB), University of Western Australia (UWA) School of Agriculture and Environment, Perth, WA, Australia
- UWA Institute of Agriculture, The University of Western Australia, Perth, WA, Australia
| |
Collapse
|
193
|
Han G, Qiao Z, Li Y, Wang C, Wang B. The Roles of CCCH Zinc-Finger Proteins in Plant Abiotic Stress Tolerance. Int J Mol Sci 2021; 22:ijms22158327. [PMID: 34361093 PMCID: PMC8347928 DOI: 10.3390/ijms22158327] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/27/2021] [Accepted: 07/29/2021] [Indexed: 01/07/2023] Open
Abstract
Zinc-finger proteins, a superfamily of proteins with a typical structural domain that coordinates a zinc ion and binds nucleic acids, participate in the regulation of growth, development, and stress adaptation in plants. Most zinc fingers are C2H2-type or CCCC-type, named after the configuration of cysteine (C) and histidine (H); the less-common CCCH zinc-finger proteins are important in the regulation of plant stress responses. In this review, we introduce the domain structures, classification, and subcellular localization of CCCH zinc-finger proteins in plants and discuss their functions in transcriptional and post-transcriptional regulation via interactions with DNA, RNA, and other proteins. We describe the functions of CCCH zinc-finger proteins in plant development and tolerance to abiotic stresses such as salt, drought, flooding, cold temperatures and oxidative stress. Finally, we summarize the signal transduction pathways and regulatory networks of CCCH zinc-finger proteins in their responses to abiotic stress. CCCH zinc-finger proteins regulate the adaptation of plants to abiotic stress in various ways, but the specific molecular mechanisms need to be further explored, along with other mechanisms such as cytoplasm-to-nucleus shuttling and post-transcriptional regulation. Unraveling the molecular mechanisms by which CCCH zinc-finger proteins improve stress tolerance will facilitate the breeding and genetic engineering of crops with improved traits.
Collapse
Affiliation(s)
- Guoliang Han
- Correspondence: (G.H.); (B.W.); Tel./Fax: +86-531-8618-0197 (B.W.)
| | | | | | | | - Baoshan Wang
- Correspondence: (G.H.); (B.W.); Tel./Fax: +86-531-8618-0197 (B.W.)
| |
Collapse
|
194
|
Li Z, Zhang M, Chow WS, Chen F, Xie Z, Fan D. Carbohydrate saving or biomass maintenance: which is the main determinant of the plant's long-term submergence tolerance? PHOTOSYNTHESIS RESEARCH 2021; 149:155-170. [PMID: 33131005 DOI: 10.1007/s11120-020-00791-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 10/23/2020] [Indexed: 06/11/2023]
Abstract
It is hypothesized that plant submergence tolerance could be assessed from the decline of plant biomass due to submergence, as biomass integrates all eco-physiological processes leading to fitness. An alternative hypothesis stated that the consumption rate of carbohydrate is essential in differing tolerance to submergence. In the present study, the responses of biomass, biomass allocation, and carbohydrate content to simulated long-term winter submergence were assessed in four tolerant and four sensitive perennials. The four tolerant perennials occur in a newly established riparian ecosystem created by The Three Gorges Dam, China. They had 100% survival after 120 days' simulated submergence, and had full photosynthesis recovery after 30 days' re-aeration, and the photosynthetic rate was positively related to the growth during the recovery period. Tolerant perennials were characterized by higher carbohydrate levels, compared with the four sensitive perennials (0% survival) at the end of submergence. Additionally, by using a method which simulates posterior estimates, and bootstraps the confidence interval for the difference between strata means, it was found that the biomass response to post-hypoxia, rather than that to submergence, could be a reliable indicator to assess submergence tolerance. Interestingly, the differences of changes in carbohydrate content between tolerant and sensitive perennials during submergence were significant, which were distinct from the biomass response, supporting the hypothesis that tolerant perennials could sacrifice non-vital components of biomass to prioritize the saving of carbohydrates for later recovery. Our study provides some insight into the underlying mechanism(s) of perennials' tolerance to submergence in ecosystems such as temperate wetland and reservoir riparian.
Collapse
Affiliation(s)
- Zhaojia Li
- College of Forestry, Beijing Forestry University, Beijing, 100083, China
- Key Laboratory of State Forestry Administration on Tropical Forestry Research, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou, 510520, China
| | - Mengmeng Zhang
- College of Life Science, Heilongjiang University, Ha'erbin, 150080, China
| | - Wah Soon Chow
- Division of Plant Sciences, Research School of Biology, The Australian National University, Acton, ACT, 2601, Australia
| | - Fangqing Chen
- College of Chemistry and Life Science, China Three Gorges University, Yichang, 443000, Hubei, China
| | - Zongqiang Xie
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Dayong Fan
- College of Forestry, Beijing Forestry University, Beijing, 100083, China.
- Division of Plant Sciences, Research School of Biology, The Australian National University, Acton, ACT, 2601, Australia.
| |
Collapse
|
195
|
Tong C, Hill CB, Zhou G, Zhang XQ, Jia Y, Li C. Opportunities for Improving Waterlogging Tolerance in Cereal Crops-Physiological Traits and Genetic Mechanisms. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10081560. [PMID: 34451605 PMCID: PMC8401455 DOI: 10.3390/plants10081560] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/12/2021] [Accepted: 07/28/2021] [Indexed: 05/22/2023]
Abstract
Waterlogging occurs when soil is saturated with water, leading to anaerobic conditions in the root zone of plants. Climate change is increasing the frequency of waterlogging events, resulting in considerable crop losses. Plants respond to waterlogging stress by adventitious root growth, aerenchyma formation, energy metabolism, and phytohormone signalling. Genotypes differ in biomass reduction, photosynthesis rate, adventitious roots development, and aerenchyma formation in response to waterlogging. We reviewed the detrimental effects of waterlogging on physiological and genetic mechanisms in four major cereal crops (rice, maize, wheat, and barley). The review covers current knowledge on waterlogging tolerance mechanism, genes, and quantitative trait loci (QTL) associated with waterlogging tolerance-related traits, the conventional and modern breeding methods used in developing waterlogging tolerant germplasm. Lastly, we describe candidate genes controlling waterlogging tolerance identified in model plants Arabidopsis and rice to identify homologous genes in the less waterlogging-tolerant maize, wheat, and barley.
Collapse
Affiliation(s)
- Cen Tong
- Western Crop Genetic Alliance, College of Science, Health, Engineering and Education, Murdoch University, 90 South Street, Murdoch, WA 6150, Australia; (C.T.); (C.B.H.); (G.Z.); (X.-Q.Z.); (Y.J.)
- Western Australian State Agricultural Biotechnology Centre, Murdoch University, 90 South Street, Murdoch, WA 6150, Australia
| | - Camilla Beate Hill
- Western Crop Genetic Alliance, College of Science, Health, Engineering and Education, Murdoch University, 90 South Street, Murdoch, WA 6150, Australia; (C.T.); (C.B.H.); (G.Z.); (X.-Q.Z.); (Y.J.)
- Western Australian State Agricultural Biotechnology Centre, Murdoch University, 90 South Street, Murdoch, WA 6150, Australia
| | - Gaofeng Zhou
- Western Crop Genetic Alliance, College of Science, Health, Engineering and Education, Murdoch University, 90 South Street, Murdoch, WA 6150, Australia; (C.T.); (C.B.H.); (G.Z.); (X.-Q.Z.); (Y.J.)
- Western Australian State Agricultural Biotechnology Centre, Murdoch University, 90 South Street, Murdoch, WA 6150, Australia
| | - Xiao-Qi Zhang
- Western Crop Genetic Alliance, College of Science, Health, Engineering and Education, Murdoch University, 90 South Street, Murdoch, WA 6150, Australia; (C.T.); (C.B.H.); (G.Z.); (X.-Q.Z.); (Y.J.)
- Western Australian State Agricultural Biotechnology Centre, Murdoch University, 90 South Street, Murdoch, WA 6150, Australia
| | - Yong Jia
- Western Crop Genetic Alliance, College of Science, Health, Engineering and Education, Murdoch University, 90 South Street, Murdoch, WA 6150, Australia; (C.T.); (C.B.H.); (G.Z.); (X.-Q.Z.); (Y.J.)
- Western Australian State Agricultural Biotechnology Centre, Murdoch University, 90 South Street, Murdoch, WA 6150, Australia
| | - Chengdao Li
- Western Crop Genetic Alliance, College of Science, Health, Engineering and Education, Murdoch University, 90 South Street, Murdoch, WA 6150, Australia; (C.T.); (C.B.H.); (G.Z.); (X.-Q.Z.); (Y.J.)
- Western Australian State Agricultural Biotechnology Centre, Murdoch University, 90 South Street, Murdoch, WA 6150, Australia
- Department of Primary Industries and Regional Development, 3-Baron-Hay Court, South Perth, WA 6151, Australia
- Correspondence: ; Tel.: +61-893-607-519
| |
Collapse
|
196
|
Shen C, Yuan J, Ou X, Ren X, Li X. Genome-wide identification of alcohol dehydrogenase (ADH) gene family under waterlogging stress in wheat ( Triticum aestivum). PeerJ 2021; 9:e11861. [PMID: 34386306 PMCID: PMC8312495 DOI: 10.7717/peerj.11861] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 07/05/2021] [Indexed: 11/20/2022] Open
Abstract
Background Alcohol dehydrogenase (ADH) plays an important role in plant survival under anaerobic conditions. Although some research about ADH in many plants have been carried out, the bioinformatics analysis of the ADH gene family from Triticum aestivum and their response to abiotic stress is unclear. Methods A total of 22 ADH genes were identified from the wheat genome, and these genes could be divided into two subfamilies (subfamily I and subfamily II). All TaADH genes belonged to the Medium-chain ADH subfamily. Sequence alignment analysis showed that all TaADH proteins contained a conservative GroES-like domain and Zinc-binding domain. A total of 64 duplicated gene pairs were found, and the Ka/Ks value of these gene pairs was less than 1, which indicated that these genes were relatively conservative and did not change greatly in the process of duplication. Results The organizational analysis showed that nine TaADH genes were highly expressed in all organs, and the rest of TaADH genes had tissue specificity. Cis-acting element analysis showed that almost all of the TaADH genes contained an anaerobic response element. The expression levels of ADH gene in waterlogging tolerant and waterlogging sensitive wheat seeds were analyzed by quantitative real-time PCR (qRT-PCR). This showed that some key ADH genes were significantly responsive to waterlogging stress at the seed germination stage, and the response of waterlogging tolerant and waterlogging sensitive wheat seeds to waterlogging stress was regulated by different ADH genes. The results may be helpful to further study the function of TaADH genes and to determine the candidate gene for wheat stress resistance breeding.
Collapse
Affiliation(s)
- Changwei Shen
- School of Resources and Environmental Sciences, Henan Institute of Science and Technology, Xinxiang, Henan, China
| | - Jingping Yuan
- School of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang, Henan, China
| | - Xingqi Ou
- School of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, Henan, China
| | - Xiujuan Ren
- School of Resources and Environmental Sciences, Henan Institute of Science and Technology, Xinxiang, Henan, China
| | - Xinhua Li
- School of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, Henan, China
| |
Collapse
|
197
|
Yuan Z, Ni X, Arif M, Dong Z, Zhang L, Tan X, Li J, Li C. Transcriptomic Analysis of the Photosynthetic, Respiration, and Aerenchyma Adaptation Strategies in Bermudagrass ( Cynodon dactylon) under Different Submergence Stress. Int J Mol Sci 2021; 22:ijms22157905. [PMID: 34360668 PMCID: PMC8347729 DOI: 10.3390/ijms22157905] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/19/2021] [Accepted: 07/20/2021] [Indexed: 12/20/2022] Open
Abstract
Submergence impedes photosynthesis and respiration but facilitates aerenchyma formation in bermudagrass. Still, the regulatory genes underlying these physiological responses are unclear in the literature. To identify differentially expressed genes (DEGs) related to these physiological mechanisms, we studied the expression of DEGs in aboveground and underground tissues of bermudagrass after a 7 d treatment under control (CK), shallow submergence (SS), and deep submergence (DS). Results show that compared with CK, 12276 and 12559 DEGs were identified under SS and DS, respectively. Among them, the DEGs closely related to the metabolism of chlorophyll biosynthesis, light-harvesting, protein complex, and carbon fixation were down-regulated in SS and DS. Meanwhile, a large number of DEGs involved in starch and sucrose hydrolase activities, glycolysis/gluconeogenesis, tricarboxylic acid (TCA) cycle, and oxidative phosphorylation were down-regulated in aboveground tissues of bermudagrass in SS and DS. Whereas in underground tissues of bermudagrass these DEGs were all up-regulated under SS, only beta-fructofuranosidase and α-amylase related genes were up-regulated under DS. In addition, we found that DEGs associated with ethylene signaling, Ca2+-ROS signaling, and cell wall modification were also up-regulated during aerenchyma formation in underground tissues of bermudagrass under SS and DS. These results provide the basis for further exploration of the regulatory and functional genes related to the adaptability of bermudagrass to submergence.
Collapse
Affiliation(s)
- Zhongxun Yuan
- Key Laboratory of Eco-Environments in the Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, College of Life Sciences, Southwest University, Chongqing 400715, China; (Z.Y.); (M.A.); (Z.D.); (L.Z.); (X.T.); (J.L.)
| | - Xilu Ni
- Breeding Base for State Key Laboratory of Land Degradation and Ecological Restoration of North-Western China, Key Lab for Restoration and Reconstruction of Degraded Ecosystem in North-Western China (Ministry of Education), Ningxia University, Yinchuan 750021, China;
| | - Muhammad Arif
- Key Laboratory of Eco-Environments in the Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, College of Life Sciences, Southwest University, Chongqing 400715, China; (Z.Y.); (M.A.); (Z.D.); (L.Z.); (X.T.); (J.L.)
| | - Zhi Dong
- Key Laboratory of Eco-Environments in the Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, College of Life Sciences, Southwest University, Chongqing 400715, China; (Z.Y.); (M.A.); (Z.D.); (L.Z.); (X.T.); (J.L.)
| | - Limiao Zhang
- Key Laboratory of Eco-Environments in the Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, College of Life Sciences, Southwest University, Chongqing 400715, China; (Z.Y.); (M.A.); (Z.D.); (L.Z.); (X.T.); (J.L.)
| | - Xue Tan
- Key Laboratory of Eco-Environments in the Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, College of Life Sciences, Southwest University, Chongqing 400715, China; (Z.Y.); (M.A.); (Z.D.); (L.Z.); (X.T.); (J.L.)
| | - Jiajia Li
- Key Laboratory of Eco-Environments in the Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, College of Life Sciences, Southwest University, Chongqing 400715, China; (Z.Y.); (M.A.); (Z.D.); (L.Z.); (X.T.); (J.L.)
| | - Changxiao Li
- Key Laboratory of Eco-Environments in the Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, College of Life Sciences, Southwest University, Chongqing 400715, China; (Z.Y.); (M.A.); (Z.D.); (L.Z.); (X.T.); (J.L.)
- Correspondence:
| |
Collapse
|
198
|
Aslam S, Gul N, Mir MA, Asgher M, Al-Sulami N, Abulfaraj AA, Qari S. Role of Jasmonates, Calcium, and Glutathione in Plants to Combat Abiotic Stresses Through Precise Signaling Cascade. FRONTIERS IN PLANT SCIENCE 2021; 12:668029. [PMID: 34367199 PMCID: PMC8340019 DOI: 10.3389/fpls.2021.668029] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 05/21/2021] [Indexed: 05/11/2023]
Abstract
Plant growth regulators have an important role in various developmental processes during the life cycle of plants. They are involved in abiotic stress responses and tolerance. They have very well-developed capabilities to sense the changes in their external milieu and initiate an appropriate signaling cascade that leads to the activation of plant defense mechanisms. The plant defense system activation causes build-up of plant defense hormones like jasmonic acid (JA) and antioxidant systems like glutathione (GSH). Moreover, calcium (Ca2+) transients are also seen during abiotic stress conditions depicting the role of Ca2+ in alleviating abiotic stress as well. Therefore, these growth regulators tend to control plant growth under varying abiotic stresses by regulating its oxidative defense and detoxification system. This review highlights the role of Jasmonates, Calcium, and glutathione in abiotic stress tolerance and activation of possible novel interlinked signaling cascade between them. Further, phyto-hormone crosstalk with jasmonates, calcium and glutathione under abiotic stress conditions followed by brief insights on omics approaches is also elucidated.
Collapse
Affiliation(s)
- Saima Aslam
- Department of Biotechnology, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri, India
| | - Nadia Gul
- Department of Biotechnology, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri, India
| | - Mudasir A. Mir
- Division of Plant Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir (SKUAST-K), Srinagar, India
| | - Mohd. Asgher
- Department of Botany, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri, India
| | - Nadiah Al-Sulami
- Department of Biological Sciences, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Aala A. Abulfaraj
- Department of Biological Sciences, Science and Arts College, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Sameer Qari
- Genetics and Molecular Biology Central Laboratory (GMCL), Department of Biology, Aljumun University College, Umm Al-Qura University, Mecca, Saudi Arabia
| |
Collapse
|
199
|
Zhang G, Liu Y, Gui R, Wang Z, Li Z, Han Y, Guo X, Sun J. Comparative multi-omics analysis of hypoxic germination tolerance in weedy rice embryos and coleoptiles. Genomics 2021; 113:3337-3348. [PMID: 34298069 DOI: 10.1016/j.ygeno.2021.07.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 06/04/2021] [Accepted: 07/17/2021] [Indexed: 10/20/2022]
Abstract
Hypoxic germination tolerance is an important trait for seedling establishment of direct-seeded rice. Our comparative metabolomics analysis revealed that weedy rice accumulated more sugar and amino acids than cultivated rice accumulated in the embryo and coleoptile tissues under hypoxic stress. At the transcriptional level, oxidative phosphorylation activity in weedy rice was higher than in cultivated rice that likely led to more efficient energy metabolism during hypoxic stress. Based on our comparative proteomics analysis, enriched proteins related to cell wall implied that the advantages in energy metabolism of weedy rice were ultimately reflected in the formation of tissue structures. In this study, we found that most of key hypoxic germination tolerance (HGT) genes shared the same genetic backgrounds with Oryza japonica, however, several of them genetically similar to other Oryza plant also play important roles. Our findings suggest weedy rice can serve as genetic resources for the improvement of direct-seeding rice.
Collapse
Affiliation(s)
- Guangchen Zhang
- Rice Research Institute, Shenyang Agricultural University, Shenyang 110161, China
| | - Youhong Liu
- Institute of Crop Cultivation and Tillage, Heilongjiang Academy of Agricultural Sciences, Heilongjiang Provincial Key Laboratory of Crop Molecular Design and Germplasm Innovation, Haerbin, 150086, China
| | - Rui Gui
- Rice Research Institute, Shenyang Agricultural University, Shenyang 110161, China
| | - Ziming Wang
- College of forestry, Shenyang Agricultural University, Shenyang 110161, China
| | - Zhuan Li
- Rice Research Institute, Shenyang Agricultural University, Shenyang 110161, China
| | - Yuqing Han
- Rice Research Institute, Shenyang Agricultural University, Shenyang 110161, China
| | - Xiaojia Guo
- Jinzhou Institute of Science and Technology, Jinzhou, 121000, China
| | - Jian Sun
- Rice Research Institute, Shenyang Agricultural University, Shenyang 110161, China.
| |
Collapse
|
200
|
Waterlogging Resistance Evaluation Index and Photosynthesis Characteristics Selection: Using Machine Learning Methods to Judge Poplar’s Waterlogging Resistance. MATHEMATICS 2021. [DOI: 10.3390/math9131542] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Flood disasters are the major natural disaster that affects the growth of agriculture and forestry crops. Due to rapid growth and strong waterlogging resistance characteristics, many studies have explained the waterlogging resistance mechanism of poplar from different perspectives. However, there is no accurate method to define the evaluation index of waterlogging resistance. In addition, there is also a lack of research on predicting the waterlogging resistance of poplars. Based on the changes of poplar biomass and seedling height, the evaluation index of poplar resistance to waterlogging was well determined, and the characteristics of photosynthesis were used to predict the waterlogging resistance of poplars. First, four methods of hierarchical clustering, lasso, stepwise regression and all-subsets regression were used to extract the photosynthesis characteristics. After that, the support vector regression model of poplar resistance to waterlogging was established by using the characteristic parameters of photosynthesis. Finally, the results show that the SVR model based on Stepwise regression and Lasso method has high precision. On the test set, the coefficient of determination (R2) was 0.8581 and 0.8492, the mean square error (MSE) was 0.0104 and 0.0341, and the mean relative error (MRE) was 9.78% and 9.85%, respectively. Therefore, using the characteristic parameters of photosynthesis to predict the waterlogging resistance of poplars is feasible.
Collapse
|