151
|
A septo-temporal molecular gradient of sfrp3 in the dentate gyrus differentially regulates quiescent adult hippocampal neural stem cell activation. Mol Brain 2015; 8:52. [PMID: 26337530 PMCID: PMC4559945 DOI: 10.1186/s13041-015-0143-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2015] [Accepted: 08/25/2015] [Indexed: 12/13/2022] Open
Abstract
Background A converging body of evidence indicates that levels of adult hippocampal neurogenesis vary along the septo-temporal axis of the dentate gyrus, but the molecular mechanisms underlying this regional heterogeneity are not known. We previously identified a niche mechanism regulating proliferation and neuronal development in the adult mouse dentate gyrus resulting from the activity-regulated expression of secreted frizzled-related protein 3 (sfrp3) by mature neurons, which suppresses activation of radial glia-like neural stem cells (RGLs) through inhibition of Wingless/INT (WNT) protein signaling. Results Here, we show that activation rates within the quiescent RGL population decrease gradually along the septo-temporal axis in the adult mouse dentate gyrus, as defined by MCM2 expression in RGLs. Using in situ hybridization and quantitative real-time PCR, we identified an inverse septal-to-temporal increase in the expression of sfrp3 that emerges during postnatal development. Elimination of sfrp3 and its molecular gradient leads to increased RGL activation, preferentially in the temporal region of the adult dentate gyrus. Conclusions Our study identifies a niche mechanism that contributes to the graded distribution of neurogenesis in the adult dentate gyrus and has important implications for understanding functional differences associated with adult hippocampal neurogenesis along the septo-temporal axis.
Collapse
|
152
|
Abstract
DNA replication in eukaryotes is strictly regulated by several mechanisms. A central step in this replication is the assembly of the heterohexameric minichromosome maintenance (MCM2-7) helicase complex at replication origins during G1 phase as an inactive double hexamer. Here, using cryo-electron microscopy, we report a near-atomic structure of the MCM2-7 double hexamer purified from yeast G1 chromatin. Our structure shows that two single hexamers, arranged in a tilted and twisted fashion through interdigitated amino-terminal domain interactions, form a kinked central channel. Four constricted rings consisting of conserved interior β-hairpins from the two single hexamers create a narrow passageway that tightly fits duplex DNA. This narrow passageway, reinforced by the offset of the two single hexamers at the double hexamer interface, is flanked by two pairs of gate-forming subunits, MCM2 and MCM5. These unusual features of the twisted and tilted single hexamers suggest a concerted mechanism for the melting of origin DNA that requires structural deformation of the intervening DNA.
Collapse
|
153
|
Abstract
Cutaneous basal cell carcinoma (BCC) and squamous cell carcinoma (SCC) represent 45.5% and 37.02%, respectively, of total malignant skin cancer according to the latest registry of Egyptian National Cancer Institute. Minichromosome maintenance (MCM) proteins are essential replication initiation factors. The current study examined the immunohistochemical expression of MCM2 in normal skin (10 cases), some proliferative skin lesions (6 psoriasis, 2 keratoacanthoma, and 2 seborrheic keratosis), and nonmelanoma epithelial skin cancers (20 BCC and 21 SCC). MCM2 was expressed in basal layer of normal epidermis and upregulated in proliferative skin lesions and nonmelanoma epithelial skin cancers without significant differences between the latter groups (P > 0.05). Mean and median values of MCM2 percentage of expression in BCC were higher than that of SCC (P = 0.004). MCM2 promotes proliferative capacity of the cells manifested by its expression in basal layer of epidermis, hyperproliferative skin lesions, and malignant cutaneous tumors. Proliferative capacity of BCC may be higher than SCC and this does not necessarily reflect aggressive behavior.
Collapse
|
154
|
Amrein I, Nosswitz M, Slomianka L, van Dijk RM, Engler S, Klaus F, Raineteau O, Azim K. Septo-temporal distribution and lineage progression of hippocampal neurogenesis in a primate (Callithrix jacchus) in comparison to mice. Front Neuroanat 2015; 9:85. [PMID: 26175670 PMCID: PMC4484228 DOI: 10.3389/fnana.2015.00085] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 06/11/2015] [Indexed: 12/17/2022] Open
Abstract
Adult born neurons in the hippocampus show species-specific differences in their numbers, the pace of their maturation and their spatial distribution. Here, we present quantitative data on adult hippocampal neurogenesis in a New World primate, the common marmoset (Callithrix jacchus) that demonstrate parts of the lineage progression and age-related changes. Proliferation was largely (∼70%) restricted to stem cells or early progenitor cells, whilst the remainder of the cycling pool could be assigned almost exclusively to Tbr2+ intermediate precursor cells in both neonate and adult animals (20–122 months). Proliferating DCX+ neuroblasts were virtually absent in adults, although rare MCM2+/DCX+ co-expression revealed a small, persisting proliferative potential. Co-expression of DCX with calretinin was very limited in marmosets, suggesting that these markers label distinct maturational stages. In adult marmosets, numbers of MCM2+, Ki67+, and significantly Tbr2+, DCX+, and CR+ cells declined with age. The distributions of granule cells, proliferating cells and DCX+ young neurons along the hippocampal longitudinal axis were equal in marmosets and mice. In both species, a gradient along the hippocampal septo-temporal axis was apparent for DCX+ and resident granule cells. Both cell numbers are higher septally than temporally, whilst proliferating cells were evenly distributed along this axis. Relative to resident granule cells, however, the ratio of proliferating cells and DCX+ neurons remained constant in the septal, middle, and temporal hippocampus. In marmosets, the extended phase of the maturation of young neurons that characterizes primate hippocampal neurogenesis was due to the extension in a large CR+/DCX- cell population. This clear dissociation between DCX+ and CR+ young neurons has not been reported for other species and may therefore represent a key primate-specific feature of adult hippocampal neurogenesis.
Collapse
Affiliation(s)
- Irmgard Amrein
- Functional Neuroanatomy, Institute of Anatomy, University of Zürich Zürich, Switzerland ; Neuroscience Center Zurich, University of Zürich and ETH Zürich Zürich, Switzerland
| | - Michael Nosswitz
- Functional Neuroanatomy, Institute of Anatomy, University of Zürich Zürich, Switzerland
| | - Lutz Slomianka
- Functional Neuroanatomy, Institute of Anatomy, University of Zürich Zürich, Switzerland
| | - R Maarten van Dijk
- Functional Neuroanatomy, Institute of Anatomy, University of Zürich Zürich, Switzerland ; Institute of Human Movement Sciences and Sport, Department of Health Sciences and Technology, ETH Zürich Zürich, Switzerland
| | - Stefanie Engler
- Functional Neuroanatomy, Institute of Anatomy, University of Zürich Zürich, Switzerland
| | - Fabienne Klaus
- Functional Neuroanatomy, Institute of Anatomy, University of Zürich Zürich, Switzerland
| | - Olivier Raineteau
- Inserm U846, Stem Cell and Brain Research Institute, Bron France ; Université de Lyon, Bron France
| | - Kasum Azim
- Neuroscience Center Zurich, University of Zürich and ETH Zürich Zürich, Switzerland
| |
Collapse
|
155
|
Suppression of cell division-associated genes by Helicobacter pylori attenuates proliferation of RAW264.7 monocytic macrophage cells. Sci Rep 2015; 5:11046. [PMID: 26078204 PMCID: PMC4468580 DOI: 10.1038/srep11046] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Accepted: 05/07/2015] [Indexed: 02/06/2023] Open
Abstract
Helicobacter pylori at multiplicity of infection (MOI ≥ 50) have been shown to cause apoptosis in RAW264.7 monocytic macrophage cells. Because chronic gastric infection by H. pylori results in the persistence of macrophages in the host's gut, it is likely that H. pylori is present at low to moderate, rather than high numbers in the infected host. At present, the effect of low-MOI H. pylori infection on macrophage has not been fully elucidated. In this study, we investigated the genome-wide transcriptional regulation of H. pylori-infected RAW264.7 cells at MOI 1, 5 and 10 in the absence of cellular apoptosis. Microarray data revealed up- and down-regulation of 1341 and 1591 genes, respectively. The expression of genes encoding for DNA replication and cell cycle-associated molecules, including Aurora-B kinase (AurkB) were down-regulated. Immunoblot analysis verified the decreased expression of AurkB and downstream phosphorylation of Cdk1 caused by H. pylori infection. Consistently, we observed that H. pylori infection inhibited cell proliferation and progression through the G1/S and G2/M checkpoints. In summary, we suggest that H. pylori disrupts expression of cell cycle-associated genes, thereby impeding proliferation of RAW264.7 cells, and such disruption may be an immunoevasive strategy utilized by H. pylori.
Collapse
|
156
|
Choi H, Jo Y, Lian S, Jo KM, Chu H, Yoon JY, Choi SK, Kim KH, Cho WK. Comparative analysis of chrysanthemum transcriptome in response to three RNA viruses: Cucumber mosaic virus, Tomato spotted wilt virus and Potato virus X. PLANT MOLECULAR BIOLOGY 2015; 88:233-48. [PMID: 25904110 DOI: 10.1007/s11103-015-0317-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 04/02/2015] [Indexed: 05/21/2023]
Abstract
The chrysanthemum is one of popular flowers in the world and a host for several viruses. So far, molecular interaction studies between the chrysanthemum and viruses are limited. In this study, we carried out a transcriptome analysis of chrysanthemum in response to three different viruses including Cucumber mosaic virus (CMV), Tomato spotted wilt virus (TSWV) and Potato virus X (PVX). A chrysanthemum 135K microarray derived from expressed sequence tags was successfully applied for the expression profiles of the chrysanthemum at early stage of virus infection. Finally, we identified a total of 125, 70 and 124 differentially expressed genes (DEGs) for CMV, TSWV and PVX, respectively. Many DEGs were virus specific; however, 33 DEGs were commonly regulated by three viruses. Gene ontology (GO) enrichment analysis identified a total of 132 GO terms, and of them, six GO terms related stress response and MCM complex were commonly identified for three viruses. Several genes functioning in stress response such as chitin response and ethylene mediated signaling pathway were up-regulated indicating their involvement in establishment of host immune system. In particular, TSWV infection significantly down-regulated genes related to DNA metabolic process including DNA replication, chromatin organization, histone modification and cytokinesis, and they are mostly targeted to nucleosome and MCM complex. Taken together, our comparative transcriptome analysis revealed several genes related to hormone mediated viral stress response and DNA modification. The identified chrysanthemums genes could be good candidates for further functional study associated with resistant to various plant viruses.
Collapse
Affiliation(s)
- Hoseong Choi
- Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
157
|
Hesketh EL, Parker-Manuel RP, Chaban Y, Satti R, Coverley D, Orlova EV, Chong JPJ. DNA induces conformational changes in a recombinant human minichromosome maintenance complex. J Biol Chem 2015; 290:7973-9. [PMID: 25648893 PMCID: PMC4367295 DOI: 10.1074/jbc.m114.622738] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 02/02/2015] [Indexed: 11/30/2022] Open
Abstract
ATP-dependent DNA unwinding activity has been demonstrated for recombinant archaeal homohexameric minichromosome maintenance (MCM) complexes and their yeast heterohexameric counterparts, but in higher eukaryotes such as Drosophila, MCM-associated DNA helicase activity has been observed only in the context of a co-purified Cdc45-MCM-GINS complex. Here, we describe the production of the recombinant human MCM (hMCM) complex in Escherichia coli. This protein displays ATP hydrolysis activity and is capable of unwinding duplex DNA. Using single-particle asymmetric EM reconstruction, we demonstrate that recombinant hMCM forms a hexamer that undergoes a conformational change when bound to DNA. Recombinant hMCM produced without post-translational modifications is functional in vitro and provides an important tool for biochemical reconstitution of the human replicative helicase.
Collapse
Affiliation(s)
- Emma L Hesketh
- From the Department of Biology, University of York, York YO10 5DD and
| | | | - Yuriy Chaban
- the Department of Crystallography, Birkbeck College London, London WC1E 7HX, United Kingdom
| | - Rabab Satti
- From the Department of Biology, University of York, York YO10 5DD and
| | - Dawn Coverley
- From the Department of Biology, University of York, York YO10 5DD and
| | - Elena V Orlova
- the Department of Crystallography, Birkbeck College London, London WC1E 7HX, United Kingdom
| | - James P J Chong
- From the Department of Biology, University of York, York YO10 5DD and
| |
Collapse
|
158
|
Deraco M, Cabras A, Baratti D, Kusamura S. Immunohistochemical Evaluation of Minichromosome Maintenance Protein 7 (MCM7), Topoisomerase IIα, and Ki-67 in Diffuse Malignant Peritoneal Mesothelioma Patients Using Tissue Microarray. Ann Surg Oncol 2015; 22:4344-51. [PMID: 25777091 DOI: 10.1245/s10434-015-4498-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Indexed: 12/18/2022]
Abstract
PURPOSE Immunohistochemistry and tissue microarray (TMA) were used to perform a prognostic analysis of markers related to cell proliferation in diffuse malignant peritoneal mesothelioma (DMPM). METHODS Clinicopathologic data were extracted from a prospectively collected database containing cases of peritoneal mesothelioma treated with cytoreductive surgery and hyperthermic intraperitoneal chemotherapy in the National Cancer Institute of Milan from 1995 to 2013. Eighty-one DMPM patients were recruited and their tissue samples were used to construct TMAs. We evaluated the immunoexpressions of markers related to cell proliferation-topoisomerase IIα, minichromosome maintenance protein 7 (MCM7), and Ki-67-and then conducted a multivariate Cox model to identify the predictors of overall survival (OS) and progression-free survival (PFS) among the following parameters: age, sex, Eastern Cooperative Oncology Group (ECOG) performance status, baseline serum albumin, Charlson Comorbidity Index, previous systemic chemotherapy, histological subtype (epithelioid vs. biphasic/sarcomatoid), peritoneal cancer index, completeness of cytoreduction (CC), and proliferative biological markers. RESULTS The rates of high/intermediate immunoreactivity were 95 % for topoisomerase IIα and 90 % for MCM7, and the median Ki-67 labeling index was 5 %. The independent predictors of OS were baseline serum albumin >3.5 g/dl, CC, and Ki-67 >5 %, whereas those for PFS were an ECOG performance status of 0, baseline serum albumin >3.5 g/dl, Charlson Comorbidity Index >3, previous systemic chemotherapy, morbidity G3-5, and Ki-67 >5 %. The remaining biological markers were not associated with outcome. CONCLUSIONS Ki-67 was found to be a new powerful determinant of outcome. Patients with a Ki-67 labeling index >5 % carry a very poor prognosis and do not benefit from the combined procedure. Further studies should be conducted to confirm the present data.
Collapse
Affiliation(s)
- Marcello Deraco
- Peritoneal Surface Malignancy Program, Department of Surgery, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy.
| | - Antonello Cabras
- Department of Pathology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Dario Baratti
- Peritoneal Surface Malignancy Program, Department of Surgery, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Shigeki Kusamura
- Peritoneal Surface Malignancy Program, Department of Surgery, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| |
Collapse
|
159
|
Sun Q, Tian H, Qu H, Sun D, Chen Z, Duan L, Zhang W, Qian J. Discrimination between streptavidin and avidin with fluorescent affinity-based probes. Analyst 2015; 140:4648-53. [DOI: 10.1039/c5an00585j] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
SPS3 showed a high fluorescence response toward streptavidin and could discriminate biotin receptor over-expressed Hela cells from other cells.
Collapse
Affiliation(s)
- Qian Sun
- Shanghai Key Laboratory of Functional Materials Chemistry
- School of Chemistry and Molecular Engineering
- East China University of Science and Technology
- Shanghai
- China
| | - Haiyu Tian
- Shanghai Key Laboratory of Functional Materials Chemistry
- School of Chemistry and Molecular Engineering
- East China University of Science and Technology
- Shanghai
- China
| | - Haoran Qu
- Shanghai Key Laboratory of Functional Materials Chemistry
- School of Chemistry and Molecular Engineering
- East China University of Science and Technology
- Shanghai
- China
| | - Deheng Sun
- School of Pharmacy
- East China University of Science and Technology
- Shanghai
- China
| | - Zhuo Chen
- School of Pharmacy
- East China University of Science and Technology
- Shanghai
- China
| | - Liping Duan
- National Institute of Parasitic Diseases
- Chinese Center for Disease Control and Prevention
- Shanghai
- China
| | - Weibing Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry
- School of Chemistry and Molecular Engineering
- East China University of Science and Technology
- Shanghai
- China
| | - Junhong Qian
- Shanghai Key Laboratory of Functional Materials Chemistry
- School of Chemistry and Molecular Engineering
- East China University of Science and Technology
- Shanghai
- China
| |
Collapse
|
160
|
Transcriptomic profiling of gametogenesis in triploid Pacific Oysters Crassostrea gigas: towards an understanding of partial sterility associated with triploidy. PLoS One 2014; 9:e112094. [PMID: 25375782 PMCID: PMC4222980 DOI: 10.1371/journal.pone.0112094] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 10/13/2014] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Triploidy can occur in many animal species but is often lethal. Among invertebrates, amphibians and fishes, triploids are viable although often sterile or infertile. Most triploids of the Pacific oyster Crassostrea gigas are almost sterile (named "3nβ") yet a low but significant proportion show an advanced gametogenesis (named "3nα"). These oysters thus constitute an interesting model to study the effect of triploidy on germ cell development. We used microarrays to compare the gonad transcriptomes of diploid 2n and the abovementioned triploid 3nβ and 3nα male and female oysters throughout gametogenesis. RESULTS All triploids displayed an upregulation of genes related to DNA repair and apoptosis and a downregulation of genes associated with cell division. The comparison of 3nα and 3nβ transcriptomes with 2n revealed the likely involvement of a cell cycle checkpoint during mitosis in the successful but delayed development of gonads in 3nα individuals. In contrast, a disruption of sex differentiation mechanisms may explain the sterility of 3nβ individuals with 3nβ females expressing male-specific genes and 3nβ males expressing female-specific genes. CONCLUSIONS The disruption of sex differentiation and mitosis may be responsible for the impaired gametogenesis of triploid Pacific oysters. The function of the numerous candidate genes identified in our study should now be studied in detail in order to elucidate their role in sex determination, mitosis/meiosis control, pachytene cell cycle checkpoint, and the control of DNA repair/apoptosis.
Collapse
|
161
|
MCM Paradox: Abundance of Eukaryotic Replicative Helicases and Genomic Integrity. Mol Biol Int 2014; 2014:574850. [PMID: 25386362 PMCID: PMC4217321 DOI: 10.1155/2014/574850] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 09/30/2014] [Indexed: 12/03/2022] Open
Abstract
As a crucial component of DNA replication licensing system, minichromosome maintenance (MCM) 2–7 complex acts as the eukaryotic DNA replicative helicase. The six related MCM proteins form a heterohexamer and bind with ORC, CDC6, and Cdt1 to form the prereplication complex. Although the MCMs are well known as replicative helicases, their overabundance and distribution patterns on chromatin present a paradox called the “MCM paradox.” Several approaches had been taken to solve the MCM paradox and describe the purpose of excess MCMs distributed beyond the replication origins. Alternative functions of these MCMs rather than a helicase had also been proposed. This review focuses on several models and concepts generated to solve the MCM paradox coinciding with their helicase function and provides insight into the concept that excess MCMs are meant for licensing dormant origins as a backup during replication stress. Finally, we extend our view towards the effect of alteration of MCM level. Though an excess MCM constituent is needed for normal cells to withstand stress, there must be a delineation of the threshold level in normal and malignant cells. This review also outlooks the future prospects to better understand the MCM biology.
Collapse
|
162
|
Subbotin RI, Chait BT. A pipeline for determining protein-protein interactions and proximities in the cellular milieu. Mol Cell Proteomics 2014; 13:2824-35. [PMID: 25172955 DOI: 10.1074/mcp.m114.041095] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
It remains extraordinarily challenging to elucidate endogenous protein-protein interactions and proximities within the cellular milieu. The dynamic nature and the large range of affinities of these interactions augment the difficulty of this undertaking. Among the most useful tools for extracting such information are those based on affinity capture of target bait proteins in combination with mass spectrometric readout of the co-isolated species. Although highly enabling, the utility of affinity-based methods is generally limited by difficulties in distinguishing specific from nonspecific interactors, preserving and isolating all unique interactions including those that are weak, transient, or rapidly exchanging, and differentiating proximal interactions from those that are more distal. Here, we have devised and optimized a set of methods to address these challenges. The resulting pipeline involves flash-freezing cells in liquid nitrogen to preserve the cellular environment at the moment of freezing; cryomilling to fracture the frozen cells into intact micron chunks to allow for rapid access of a chemical reagent and to stabilize the intact endogenous subcellular assemblies and interactors upon thawing; and utilizing the high reactivity of glutaraldehyde to achieve sufficiently rapid stabilization at low temperatures to preserve native cellular interactions. In the course of this work, we determined that relatively low molar ratios of glutaraldehyde to reactive amines within the cellular milieu were sufficient to preserve even labile and transient interactions. This mild treatment enables efficient and rapid affinity capture of the protein assemblies of interest under nondenaturing conditions, followed by bottom-up MS to identify and quantify the protein constituents. For convenience, we have termed this approach Stabilized Affinity Capture Mass Spectrometry. Here, we demonstrate that Stabilized Affinity Capture Mass Spectrometry allows us to stabilize and elucidate local, distant, and transient protein interactions within complex cellular milieux, many of which are not observed in the absence of chemical stabilization.
Collapse
Affiliation(s)
- Roman I Subbotin
- From the ‡The Rockefeller University 1230 York Ave, New York, New York
| | - Brian T Chait
- From the ‡The Rockefeller University 1230 York Ave, New York, New York
| |
Collapse
|
163
|
Hua C, Zhao G, Li Y, Bie L. Minichromosome Maintenance (MCM) Family as potential diagnostic and prognostic tumor markers for human gliomas. BMC Cancer 2014; 14:526. [PMID: 25046975 PMCID: PMC4223428 DOI: 10.1186/1471-2407-14-526] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Accepted: 07/15/2014] [Indexed: 12/15/2022] Open
Abstract
Background Gliomas are the most common type of all central nervous system tumors. Almost all patients diagnosed with these tumors have a poor prognostic outcome. We aimed to identify novel glioma prognosis-associated candidate genes. Methods We applied WebArrayDB software to span platform integrate and analyze the microarray datasets. We focused on a subset of the significantly up-regulated genes, the minichromosome maintenance (MCM) family. We used frozen glioma samples to predict the relationship between the expression of MCMs and patients outcome by qPCR and western blot. Results We found that MCMs expression was significantly up-regulated in glioma samples. MCM2-7 and MCM10 expressions were associated with WHO tumor grade. High MCM2 mRNA expression appeared to be strongly associated with poor overall survival in patients with high grade glioma. Furthermore, we report that MCM7 is strongly correlated with patient outcome in patients with WHO grade II-IV tumor. MCM3 expression was found to be up-regulated in glioma and correlated with overall survival in patients with WHO grade III tumor. MCM2, MCM3 and MCM7 expression levels were of greater prognostic relevance than histological diagnosis according to the current WHO classification system. Conclusions High expression of MCM 2, MCM3 and MCM7 mRNA correlated with poor outcome and may be clinically useful molecular prognostic markers in glioma.
Collapse
Affiliation(s)
| | | | | | - Li Bie
- Department of Neurosurgery of the First Clinical Hospital, Jilin University, 71 Xinmin St, Changchun, Jilin 130021, China.
| |
Collapse
|
164
|
Bilyk KT, Cheng CHC. RNA-seq analyses of cellular responses to elevated body temperature in the high Antarctic cryopelagic nototheniid fish Pagothenia borchgrevinki. Mar Genomics 2014; 18 Pt B:163-71. [PMID: 24999838 DOI: 10.1016/j.margen.2014.06.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2013] [Revised: 06/17/2014] [Accepted: 06/17/2014] [Indexed: 11/18/2022]
Abstract
Through evolution in the isolated, freezing (-1.9°C) Southern Ocean, Antarctic notothenioid fish have become cold-adapted as well as cold-specialized. Notothenioid cold specialization is most evident in their limited tolerance to heat challenge, and an apparent loss of the near universal inducible heat shock (HSP70) response. Beyond these it remains unclear how broadly cold specialization pervades the underlying tissue-wide cellular responses. We report the first analysis of massively parallel RNA sequencing (RNA-seq) to identify gene expression changes in the liver in response to elevated body temperature of a high-latitude Antarctic nototheniid, the highly cold-adapted and cold-specialized cryopelagic bald notothen, Pagothenia borchgrevinki. From a large (14,873) mapped set of qualified, annotated liver transcripts, we identified hundreds of significantly differentially expressed genes following two and four days of 4°C exposure, suggesting substantial transcriptional reorganization in the liver when body temperature was raised 5°C above native water temperature. Most notably, and in sharp contrast to heat stressed non-polar fish species, was a widespread down-regulation of nearly all classes of molecular chaperones including HSP70, as well as polyubiquitins that are associated with proteosomal degradation of damaged proteins. In parallel, genes involved in the cell cycle were down-regulated by day two of 4°C exposure, signifying slowing cellular proliferation; by day four, genes associated with transcriptional and translational machineries were down-regulated, signifying general slowing of protein biosynthesis. The log2 fold differential transcriptional changes are generally of small magnitudes but significant, and in total portray a broad down turn of cellular activities in response to four days of elevated body temperature in the cold-specialized bald notothen.
Collapse
Affiliation(s)
- Kevin T Bilyk
- Department of Animal Biology, School of Integrative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| | - C-H Christina Cheng
- Department of Animal Biology, School of Integrative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| |
Collapse
|
165
|
Functional conservation of the pre-sensor one beta-finger hairpin (PS1-hp) structures in mini-chromosome maintenance proteins of Saccharomyces cerevisiae and archaea. G3-GENES GENOMES GENETICS 2014; 4:1319-26. [PMID: 24875627 PMCID: PMC4455780 DOI: 10.1534/g3.114.011668] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Mini-chromosome maintenance (MCM) proteins form complexes that are required for DNA replication and are highly conserved throughout evolution. The replicative helicase of eukaryotic organisms is composed of the six paralogs MCM2-7, which form a heterohexameric ring structure. In contrast, the structure of the archaean replicative MCM helicase is a single Mcm protein that forms a homohexameric complex. Atomic structures of archaeal MCMs have identified multiple beta-finger structures in Mcm proteins whose in vivo function is unknown. In the present study, we have investigated the physiological role of the pre-sensor 1 beta-hairpin (PS1-hp) beta-fingers of Saccharomyces cerevisiaeMcm4p and Mcm5p in DNA replication initiation and elongation in vivo. The PS1-hp beta-finger mutant of Mcm5p (mcm5-HAT K506A::URA3) has a growth defect at both 18° and 37°. Mutation of the Mcm4p PS1-hp beta-finger (mcm4-HA K658A::TRP1) does not have a growth defect, indicating different functional contributions of the PS1-hp beta-finger structures of different MCM helicase subunits. Both Mcm4p and Mcm5p PS1-hp beta-finger mutants can coimmunoprecipitate Mcm2p, indicating the formation of the hexameric MCM helicase complex. Both PS1-hp beta-finger mutants have a plasmid loss phenotype that is suppressible by origin dosage, indicating a defective replication initiation. Surprisingly, a defect in the binding of PS1-hp MCM mutants to origins of DNA replication was not found by chromatin immunoprecipitation, suggesting a novel interpretation in which the defect is in a subsequent step of DNA strand separation by the MCM helicase. The double mutant mcm4-HA K658A::TRP1mcm5-HAT K506A::URA3 is lethal, displaying a terminal MCM mutant phenotype of large budded cells.
Collapse
|
166
|
Diversity of the DNA replication system in the Archaea domain. ARCHAEA-AN INTERNATIONAL MICROBIOLOGICAL JOURNAL 2014; 2014:675946. [PMID: 24790526 PMCID: PMC3984812 DOI: 10.1155/2014/675946] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Accepted: 02/16/2014] [Indexed: 12/11/2022]
Abstract
The precise and timely duplication of the genome is essential for cellular life. It is achieved by DNA replication, a complex process that is conserved among the three domains of life. Even though the cellular structure of archaea closely resembles that of bacteria, the information processing machinery of archaea is evolutionarily more closely related to the eukaryotic system, especially for the proteins involved in the DNA replication process. While the general DNA replication mechanism is conserved among the different domains of life, modifications in functionality and in some of the specialized replication proteins are observed. Indeed, Archaea possess specific features unique to this domain. Moreover, even though the general pattern of the replicative system is the same in all archaea, a great deal of variation exists between specific groups.
Collapse
|
167
|
Lee EJ, Malik A, Pokharel S, Ahmad S, Mir BA, Cho KH, Kim J, Kong JC, Lee DM, Chung KY, Kim SH, Choi I. Identification of genes differentially expressed in myogenin knock-down bovine muscle satellite cells during differentiation through RNA sequencing analysis. PLoS One 2014; 9:e92447. [PMID: 24647404 PMCID: PMC3960249 DOI: 10.1371/journal.pone.0092447] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Accepted: 02/21/2014] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND The expression of myogenic regulatory factors (MRFs) consisting of MyoD, Myf5, myogenin (MyoG) and MRF4 characterizes various phases of skeletal muscle development including myoblast proliferation, cell-cycle exit, cell fusion and the maturation of myotubes to form myofibers. Although it is well known that the function of MyoG cannot be compensated for other MRFs, the molecular mechanism by which MyoG controls muscle cell differentiation is still unclear. Therefore, in this study, RNA-Seq technology was applied to profile changes in gene expression in response to MyoG knock-down (MyoGkd) in primary bovine muscle satellite cells (MSCs). RESULTS About 61-64% of the reads of over 42 million total reads were mapped to more than 13,000 genes in the reference bovine genome. RNA-Seq analysis identified 8,469 unique genes that were differentially expressed in MyoGkd. Among these genes, 230 were up-regulated and 224 were down-regulated by at least four-fold. DAVID Functional Annotation Cluster (FAC) and pathway analysis of all up- and down-regulated genes identified overrepresentation for cell cycle and division, DNA replication, mitosis, organelle lumen, nucleoplasm and cytosol, phosphate metabolic process, phosphoprotein phosphatase activity, cytoskeleton and cell morphogenesis, signifying the functional implication of these processes and pathways during skeletal muscle development. The RNA-Seq data was validated by real time RT-PCR analysis for eight out of ten genes as well as five marker genes investigated. CONCLUSIONS This study is the first RNA-Seq based gene expression analysis of MyoGkd undertaken in primary bovine MSCs. Computational analysis of the differentially expressed genes has identified the significance of genes such as SAP30-like (SAP30L), Protein lyl-1 (LYL1), various matrix metalloproteinases, and several glycogenes in myogenesis. The results of the present study widen our knowledge of the molecular basis of skeletal muscle development and reveal the vital regulatory role of MyoG in retaining muscle cell differentiation.
Collapse
Affiliation(s)
- Eun Ju Lee
- School of Biotechnology, Yeungnam University, Gyeongsan, Republic of Korea
- Bovine Genome Resources Bank, Yeungnam University, Gyeongsan, Republic of Korea
| | - Adeel Malik
- School of Biotechnology, Yeungnam University, Gyeongsan, Republic of Korea
| | - Smritee Pokharel
- School of Biotechnology, Yeungnam University, Gyeongsan, Republic of Korea
| | - Sarafraz Ahmad
- School of Biotechnology, Yeungnam University, Gyeongsan, Republic of Korea
| | - Bilal Ahmad Mir
- School of Biotechnology, Yeungnam University, Gyeongsan, Republic of Korea
| | - Kyung Hyun Cho
- School of Biotechnology, Yeungnam University, Gyeongsan, Republic of Korea
| | - Jihoe Kim
- School of Biotechnology, Yeungnam University, Gyeongsan, Republic of Korea
| | - Joon Chan Kong
- Biomedical Manufacturing Technology Center, Korea Institute of Industrial Technology, Yeongcheon-si, Republic of Korea
| | - Dong-Mok Lee
- Biomedical Manufacturing Technology Center, Korea Institute of Industrial Technology, Yeongcheon-si, Republic of Korea
| | - Ki Yong Chung
- Hanwoo Experiment Station, National Institute of Animal Science, RDA, Pyeongchang, Republic of Korea
| | - Sang Hoon Kim
- Department of Biology, Kyung Hee University, Seoul, Republic of Korea
| | - Inho Choi
- School of Biotechnology, Yeungnam University, Gyeongsan, Republic of Korea
- Bovine Genome Resources Bank, Yeungnam University, Gyeongsan, Republic of Korea
- * E-mail:
| |
Collapse
|
168
|
Cell cycle: mechanisms of control and dysregulation in cancer. Mol Oncol 2013. [DOI: 10.1017/cbo9781139046947.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
169
|
Tanaka S, Araki H. Helicase activation and establishment of replication forks at chromosomal origins of replication. Cold Spring Harb Perspect Biol 2013; 5:a010371. [PMID: 23881938 DOI: 10.1101/cshperspect.a010371] [Citation(s) in RCA: 124] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Many replication proteins assemble on the pre-RC-formed replication origins and constitute the pre-initiation complex (pre-IC). This complex formation facilitates the conversion of Mcm2-7 in the pre-RC to an active DNA helicase, the Cdc45-Mcm-GINS (CMG) complex. Two protein kinases, cyclin-dependent kinase (CDK) and Dbf4-dependent kinase (DDK), work to complete the formation of the pre-IC. Each kinase is responsible for a distinct step of the process in yeast; Cdc45 associates with origins in a DDK-dependent manner, whereas the association of GINS with origins depends on CDK. These associations with origins also require specific initiation proteins: Sld3 for Cdc45; and Dpb11, Sld2, and Sld3 for GINS. Functional homologs of these proteins exist in metazoa, although pre-IC formation cannot be separated by requirement of DDK and CDK because of experimental limitations. Once the replicative helicase is activated, the origin DNA is unwound, and bidirectional replication forks are established.
Collapse
Affiliation(s)
- Seiji Tanaka
- Division of Microbial Genetics, National Institute of Genetics, and Department of Genetics, SOKENDAI, Mishima, Shizuoka 411-8540, Japan
| | | |
Collapse
|
170
|
Abstract
DNA damage is one of many possible perturbations that challenge the mechanisms that preserve genetic stability during the copying of the eukaryotic genome in S phase. This short review provides, in the first part, a general introduction to the topic and an overview of checkpoint responses. In the second part, the mechanisms of error-free tolerance in response to fork-arresting DNA damage will be discussed in some detail.
Collapse
Affiliation(s)
- Nimrat Chatterjee
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas 77030
| | | |
Collapse
|
171
|
Pathways enrichment analysis for differentially expressed genes in squamous lung cancer. Pathol Oncol Res 2013; 20:197-202. [PMID: 24114512 DOI: 10.1007/s12253-013-9685-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Accepted: 07/30/2013] [Indexed: 10/26/2022]
Abstract
Squamous lung cancer (SQLC) is a common type of lung cancer, but its oncogenesis mechanism is not so clear. The aim of this study was to screen the potential pathways changed in SQLC and elucidate the mechanism of it. Published microarray data of GSE3268 series was downloaded from Gene Expression Omnibus (GEO). Significance analysis of microarrays was performed using software R, and differentially expressed genes (DEGs) were harvested. The functions and pathways of DEGs were mapped in Gene Otology and KEGG pathway database, respectively. A total of 2961 genes were filtered as DEGs between normal and SQLC cells. Cell cycle and metabolism were the mainly changed functions of SQLC cells. Meanwhile genes such as MCM, RFC, FEN1, and POLD may induce SQLC through DNA replication pathway, and genes such as PTTG1, CCNB1, CDC6, and PCNA may be involved in SQLC through cell cycle pathway. It is demonstrated that pathway analysis is useful in the identification of target genes in SQLC.
Collapse
|
172
|
Lott K, Li J, Fisk JC, Wang H, Aletta JM, Qu J, Read LK. Global proteomic analysis in trypanosomes reveals unique proteins and conserved cellular processes impacted by arginine methylation. J Proteomics 2013; 91:210-25. [PMID: 23872088 PMCID: PMC3935770 DOI: 10.1016/j.jprot.2013.07.010] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Revised: 06/26/2013] [Accepted: 07/07/2013] [Indexed: 12/14/2022]
Abstract
Arginine methylation is a common posttranslational modification with reported functions in transcription, RNA processing and translation, and DNA repair. Trypanosomes encode five protein arginine methyltransferases, suggesting that arginine methylation exerts widespread impacts on the biology of these organisms. Here, we performed a global proteomic analysis of Trypanosoma brucei to identify arginine methylated proteins and their sites of modification. Using an approach entailing two-dimensional chromatographic separation and alternating electron transfer dissociation and collision induced dissociation, we identified 1332 methylarginines in 676 proteins. The resulting data set represents the largest compilation of arginine methylated proteins in any organism to date. Functional classification revealed numerous arginine methylated proteins involved in flagellar function, RNA metabolism, DNA replication and repair, and intracellular protein trafficking. Thus, arginine methylation has the potential to impact aspects of T. brucei gene expression, cell biology, and pathogenesis. Interestingly, pathways with known methylated proteins in higher eukaryotes were identified in this study, but often different components of the pathway were methylated in trypanosomes. Methylarginines were often identified in glycine rich contexts, although exceptions to this rule were detected. Collectively, these data inform on a multitude of aspects of trypanosome biology and serve as a guide for the identification of homologous arginine methylated proteins in higher eukaryotes. BIOLOGICAL SIGNIFICANCE T. brucei is a protozoan parasite that causes lethal African sleeping sickness in humans and nagana in livestock, thereby imposing a significant medical and economic burden on sub-Saharan Africa. The parasite encounters very different environments as it cycles between mammalian and insect hosts, and must exert cellular responses to these varying milieus. One mechanism by which all cells respond to changing environments is through posttranslational modification of proteins. Arginine methylation is one such modification that can dramatically impact protein-protein and protein-nucleic acid interactions and subcellular localization of proteins. To define the breadth of arginine methylation in trypanosomes and identify target proteins, we performed a global proteomic analysis of arginine methylated proteins in insect stage T. brucei. We identified 1332 methylarginines in 676 proteins, generating the largest compilation of methylarginine containing proteins in any organism to date. Numerous arginine methylated proteins function in RNA and DNA related processes, suggesting this modification can impact T. brucei genome integrity and gene regulation at numerous points. Other processes that appear to be strongly influenced by arginine methylation are intracellular protein trafficking, signaling, protein folding and degradation, and flagellar function. The widespread nature of arginine methylation in trypanosomes highlights its potential to greatly affect parasite biology and pathogenesis.
Collapse
Affiliation(s)
- Kaylen Lott
- Department of Microbiology and Immunology, School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, New York, United States of America
| | - Jun Li
- Department of Pharmaceutical Sciences, University at Buffalo, Buffalo, NY, United States of America
| | - John C. Fisk
- Department of Microbiology and Immunology, School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, New York, United States of America
| | - Hao Wang
- Department of Pharmaceutical Sciences, University at Buffalo, Buffalo, NY, United States of America
| | - John M. Aletta
- CH3 BioSystems, New York State Center of Excellence in Bioinformatics and Life Sciences, Buffalo, NY, United States of America
| | - Jun Qu
- Department of Pharmaceutical Sciences, University at Buffalo, Buffalo, NY, United States of America
| | - Laurie K. Read
- Department of Microbiology and Immunology, School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, New York, United States of America
| |
Collapse
|
173
|
Igci YZ, Erkilic S, Igci M, Arslan A. MCM3 protein expression in follicular and classical variants of papillary thyroid carcinoma. Pathol Oncol Res 2013; 20:87-91. [PMID: 23821456 DOI: 10.1007/s12253-013-9662-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Accepted: 06/03/2013] [Indexed: 01/18/2023]
Abstract
Minichromosome maintenance (MCM) proteins are needed as licensors in the DNA replication of eukaryotic cells and transcriptional control of MCM genes has critical role in the regulation of MCM functions. Different MCM protein family members are proposed as diagnostic or prognostic markers in various cancers due to their increased proliferative potential. Among MCM family members, minichromosome maintenance protein 3 (MCM3) expressions in both mRNA and protein levels were shown to be associated with papillary thyroid carcinoma (PTC). But, the usability of MCM3 in some histological variants of PTC might be controversial due to tissue specific molecular heterogeneities. In follicular variant of papillary thyroid carcinoma (FVPTC), a number of genes including MCM3 were shown to be differentially expressed which were specific to this kind of variant. Using immunohistochemistry method, MCM3 protein expression levels were compared in FVPTC, classic variant of papillary thyroid carcinoma (CVPTC), and multi-nodular goiter (MNG) tissues in a group of 32 cases. There was meaningful differences between MNG vs. FVPTC (p = 0.016) and MNG vs. CVPTC (p = 0.019) while there was no significant difference in the comparison FVPTC vs. CVPTC (p = 0.15). Four of the 5 CVPTC cases having surrounding tissue invasion had high expression values. For FVPTC and CVPTC, MCM3 protein expression results were parallel to our previous mRNA expression study while there was downregulation in protein expression despite the increased expression of MCM3 mRNA in MNG suggesting tissue-specific post-transcriptional events in benign thyroid neoplasms of which should be focused on. Moreover, the relatively lower MCM3 protein expression in FVPTC comparing to CVPTC could be due to a different tumorigenic pathway favored in this type of tissue.
Collapse
Affiliation(s)
- Yusuf Ziya Igci
- Faculty of Medicine, Department of Medical Biology, University of Gaziantep, 27310, Gaziantep, Turkey,
| | | | | | | |
Collapse
|
174
|
Chang HJ, Lee JH, Hwang KJ, Kim MR, Yoo JH. Peroxisome proliferator-activated receptor γ agonist suppresses human telomerase reverse transcriptase expression and aromatase activity in eutopic endometrial stromal cells from endometriosis. Clin Exp Reprod Med 2013; 40:67-75. [PMID: 23875162 PMCID: PMC3714431 DOI: 10.5653/cerm.2013.40.2.67] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2013] [Revised: 05/27/2013] [Accepted: 06/03/2013] [Indexed: 01/16/2023] Open
Abstract
Objective To investigate the effect of peroxisome proliferator activated receptor γ (PPARγ) agonist on the cell proliferation properties and expression of human telomerase reverse transcriptase (hTERT) and aromatase in cultured endometrial stromal cell (ESC) from patients with endometriosis. Methods Human endometrial tissues were obtained from women with endometriosis and healthy women (controls) using endometrial biopsy. Isolated ESCs were cultured and the cell proliferation was measured by 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide assay and expression of hTERT, aromatase, and cyclooxygenase (COX)-2 by western blotting according to the addition of rosiglitazone (PPARγ agonist). Results We demonstrate that the cultured ESCs of endometriosis showed hTERT protein overexpression and increased cellular proliferation, which was inhibited by rosiglitazone, in a dose-dependent manner. At the same time, PPARγ agonist also inhibited aromatase and COX-2 expression, resulting in decreased prostaglandin E2 production in the ESCs of endometriosis. Conclusion This study suggests that PPARγ agonist plays an inhibitory role in the proliferative properties of eutopic endometrium with endometriosis by down-regulation of hTERT and COX-2 expression; this could be a new treatment target for endometriosis.
Collapse
Affiliation(s)
- Hye Jin Chang
- Health Promotion Center, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | | | | | | | | |
Collapse
|
175
|
Huang TH, Huo L, Wang YN, Xia W, Wei Y, Chang SS, Chang WC, Fang YF, Chen CT, Lang JY, Tu C, Wang Y, Hsu MC, Kuo HP, Ko HW, Shen J, Lee HH, Lee PC, Wu Y, Chen CH, Hung MC. Epidermal growth factor receptor potentiates MCM7-mediated DNA replication through tyrosine phosphorylation of Lyn kinase in human cancers. Cancer Cell 2013; 23:796-810. [PMID: 23764002 PMCID: PMC3703149 DOI: 10.1016/j.ccr.2013.04.027] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Revised: 11/17/2012] [Accepted: 04/26/2013] [Indexed: 12/14/2022]
Abstract
Epidermal growth factor receptor (EGFR) initiates a signaling cascade that leads to DNA synthesis and cell proliferation, but its role in regulating DNA replication licensing is unclear. Here, we show that activated EGFR phosphorylates the p56 isoform of Lyn, p56(Lyn), at Y32, which then phosphorylates MCM7, a licensing factor critical for DNA replication, at Y600 to increase its association with other minichromosome maintenance complex proteins, thereby promoting DNA synthesis complex assembly and cell proliferation. Both p56(Lyn) Y32 and MCM7 Y600 phosphorylation are enhanced in proliferating cells and correlated with poor survival of breast cancer patients. These results establish a signaling cascade in which EGFR enhances MCM7 phosphorylation and DNA replication through Lyn phosphorylation in human cancer cells.
Collapse
Affiliation(s)
- Tzu-Hsuan Huang
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA.
| | - Longfei Huo
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA.
| | - Ying-Nai Wang
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA.
- Center for Molecular Medicine and Graduate Institute of Cancer Biology, China Medical University, Taichung 404, Taiwan.
- Asia University, Taichung 413, Taiwan.
| | - Weiya Xia
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA.
| | - Yongkun Wei
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA.
| | - Shih-Shin Chang
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA.
- The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas 77030, USA.
| | - Wei-Chao Chang
- The Genomics Research Center, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 115, Taiwan.
- Center for Molecular Medicine and Graduate Institute of Cancer Biology, China Medical University, Taichung 404, Taiwan.
| | - Yueh-Fu Fang
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA.
| | - Chun-Te Chen
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA.
| | - Jing-Yu Lang
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA.
| | - Chun Tu
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA.
| | - Yan Wang
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA.
| | - Ming-Chuan Hsu
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA.
| | - Hsu-Ping Kuo
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA.
| | - How-Wen Ko
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA.
| | - Jia Shen
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA.
- The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas 77030, USA.
| | - Heng-Huan Lee
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA.
- The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas 77030, USA.
| | - Pei-Chih Lee
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA.
| | - Yun Wu
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA.
| | - Chung-Hsuan Chen
- The Genomics Research Center, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 115, Taiwan.
| | - Mien-Chie Hung
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA.
- The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas 77030, USA.
- Center for Molecular Medicine and Graduate Institute of Cancer Biology, China Medical University, Taichung 404, Taiwan.
- Asia University, Taichung 413, Taiwan.
- To whom correspondence should be addressed: Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Box 108, 1515 Holcombe Boulevard, Houston, TX 77030.
| |
Collapse
|
176
|
p16 is superior to ProEx C in identifying high-grade squamous intraepithelial lesions (HSIL) of the anal canal. Am J Surg Pathol 2013; 37:659-68. [PMID: 23552383 DOI: 10.1097/pas.0b013e31828706c0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Although the incidence of human papillomavirus (HPV)-associated anal neoplasia is increasing, interobserver and intraobserver reproducibility in the grading of biopsy specimens from this area remains unacceptably low. Attempts to produce a more reproducible grading scheme have led to the use of biomarkers for the detection of high-risk HPV (HR-HPV). We evaluated the performance of standard morphology and biomarkers p16, ProEx C, and Ki-67 in a set of 75 lesions [17 nondysplastic lesions, 23 low-grade squamous intraepithelial lesions (LSIL)/condyloma, 20 high-grade squamous intraepithelial lesions (HSIL), 15 invasive squamous cell carcinomas] from the anal and perianal region in 65 patients and correlated these findings with HPV subtype on the basis of a type-specific multiplex real-time polymerase chain reaction assay designed to detect HR-HPV. A subset of cases with amplifiable HPV DNA was also sequenced. HSIL was typically flat (15/20), and only a minority (4/20) had koilocytes. In contrast, only 1 LSIL was flat (1/23), and the remainder were exophytic. The majority of LSIL had areas of koilocytic change (20/23). HR-HPV DNA was detected in the majority (89%) of invasive carcinomas and HSIL biopsies, 86% and 97% of which were accurately labeled by strong and diffuse block-positive p16 and ProEx C, respectively. LSIL cases, however, only infrequently harbored HR-HPV (13%); most harbored low-risk HPV (LR-HPV) types 6 and 11. Within the LSIL group, p16 outperformed ProEx C, resulting in fewer false-positive cases (5% vs. 75%). Ki-67 was also increased in HR-HPV-positive lesions, although biopsies with increased inflammation and reactive changes also showed higher Ki-67 indices. These data suggest that strong and diffuse block-positive nuclear and cytoplasmic labeling with p16 is a highly specific biomarker for the presence of HR-HPV in anal biopsies and that this finding correlates with high-grade lesions.
Collapse
|
177
|
Wei Q, Li J, Liu T, Tong X, Ye X. Phosphorylation of minichromosome maintenance protein 7 (MCM7) by cyclin/cyclin-dependent kinase affects its function in cell cycle regulation. J Biol Chem 2013; 288:19715-25. [PMID: 23720738 DOI: 10.1074/jbc.m112.449652] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
MCM7 is one of the subunits of the MCM2-7 complex that plays a critical role in DNA replication initiation and cell proliferation of eukaryotic cells. After forming the pre-replication complex (pre-RC) with other components, the MCM2-7 complex is activated by DDK/cyclin-dependent kinase to initiate DNA replication. Each subunit of the MCM2-7 complex functions differently under regulation of various kinases on the specific site, which needs to be investigated in detail. In this study, we demonstrated that MCM7 is a substrate of cyclin E/Cdk2 and can be phosphorylated on Ser-121. We found that the distribution of MCM7-S121A is different from wild-type MCM7 and that the MCM7-S121A mutant is much less efficient to form a pre-RC complex with MCM3/MCM5/cdc45 compared with wild-type MCM7. By using the Tet-On inducible HeLa cell line, we revealed that overexpression of wild-type MCM7 but not MCM7-S121A can block S phase entry, suggesting that an excess of the pre-RC complex may activate the cell cycle checkpoint. Further analysis indicates that the Chk1 pathway is activated in MCM7-overexpressed cells in a p53-dependent manner. We performed experiments with the human normal cell line HL-7702 and also observed that overexpression of MCM7 can cause S phase block through checkpoint activation. In addition, we found that MCM7 could also be phosphorylated by cyclin B/Cdk1 on Ser-121 both in vitro and in vivo. Furthermore, overexpression of MCM7-S121A causes an obvious M phase exit delay, which suggests that phosphorylation of MCM7 on Ser-121 in M phase is very important for a proper mitotic exit. These data suggest that the phosphorylation of MCM7 on Ser-121 by cyclin/Cdks is involved in preventing DNA rereplication as well as in regulation of the mitotic exit.
Collapse
Affiliation(s)
- Qian Wei
- Chinese Academy of Sciences Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | | | | | | | | |
Collapse
|
178
|
Xu M, Chang YP, Chen XS. Expression, purification and biochemical characterization of Schizosaccharomyces pombe Mcm4, 6 and 7. BMC BIOCHEMISTRY 2013; 14:5. [PMID: 23444842 PMCID: PMC3605359 DOI: 10.1186/1471-2091-14-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Accepted: 02/13/2013] [Indexed: 11/10/2022]
Abstract
Background The hetero-hexamer of the eukaryotic minichromosome maintenance (MCM) proteins plays an essential role in replication of genomic DNA. The ring-shaped Mcm2-7 hexamers comprising one of each subunit show helicase activity in vitro, and form double-hexamers on DNA. The Mcm4/6/7 also forms a hexameric complex with helicase activity in vitro. Results We used an Escherichiai coli expression system to express various domains of Schizosaccharomyces pombe Mcm4, 6 and 7 in order to characterize their domain structure, oligomeric states, and possible inter-/intra-subunit interactions. We also successfully employed a co-expression system to express Mcm4/6/7 at the same time in Escherichiai coli, and have purified functional Mcm4/6/7 complex in a hexameric state in high yield and purity, providing a means for generating large quantity of proteins for future structural and biochemical studies. Conclusions Based on our results and those of others, models were proposed for the subunit arrangement and architecture of both the Mcm4/6/7 hexamer and the Mcm2-7 double-hexamer.
Collapse
Affiliation(s)
- Meng Xu
- Graduate Program in Genetics, Molecular and Cell Biology, University of Southern California, Los Angeles, CA 90089, USA
| | | | | |
Collapse
|
179
|
Abstract
The initiation of DNA replication represents a committing step to cell proliferation. Appropriate replication onset depends on multiprotein complexes that help properly distinguish origin regions, generate nascent replication bubbles, and promote replisome formation. This review describes initiation systems employed by bacteria, archaea, and eukaryotes, with a focus on comparing and contrasting molecular mechanisms among organisms. Although commonalities can be found in the functional domains and strategies used to carry out and regulate initiation, many key participants have markedly different activities and appear to have evolved convergently. Despite significant advances in the field, major questions still persist in understanding how initiation programs are executed at the molecular level.
Collapse
Affiliation(s)
- Alessandro Costa
- Clare Hall Laboratories, London Research Institute, Cancer Research UK, Hertfordshire, EN6 3LD United Kingdom
| | - Iris V. Hood
- Department of Molecular and Cell Biology, California Institute for Quantitative Biosciences, University of California, Berkeley, California 94720
| | - James M. Berger
- Department of Molecular and Cell Biology, California Institute for Quantitative Biosciences, University of California, Berkeley, California 94720
| |
Collapse
|
180
|
Wang X, Li J, Schowalter RM, Jiao J, Buck CB, You J. Bromodomain protein Brd4 plays a key role in Merkel cell polyomavirus DNA replication. PLoS Pathog 2012; 8:e1003021. [PMID: 23144621 PMCID: PMC3493480 DOI: 10.1371/journal.ppat.1003021] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Accepted: 09/24/2012] [Indexed: 12/15/2022] Open
Abstract
Merkel cell polyomavirus (MCV or MCPyV) is the first human polyomavirus to be definitively linked to cancer. The mechanisms of MCV-induced oncogenesis and much of MCV biology are largely unexplored. In this study, we demonstrate that bromodomain protein 4 (Brd4) interacts with MCV large T antigen (LT) and plays a critical role in viral DNA replication. Brd4 knockdown inhibits MCV replication, which can be rescued by recombinant Brd4. Brd4 colocalizes with the MCV LT/replication origin complex in the nucleus and recruits replication factor C (RFC) to the viral replication sites. A dominant negative inhibitor of the Brd4-MCV LT interaction can dissociate Brd4 and RFC from the viral replication complex and abrogate MCV replication. Furthermore, obstructing the physiologic interaction between Brd4 and host chromatin with the chemical compound JQ1(+) leads to enhanced MCV DNA replication, demonstrating that the role of Brd4 in MCV replication is distinct from its role in chromatin-associated transcriptional regulation. Our findings demonstrate mechanistic details of the MCV replication machinery; providing novel insight to elucidate the life cycle of this newly discovered oncogenic DNA virus. MCV is a novel human polyomavirus that has recently been discovered in Merkel cell carcinoma (MCC), a rare but highly aggressive skin cancer. Several independent studies have confirmed that MCV is present in ∼80% of MCC tumors. However, very little is known about how the interaction between MCV and its human hosts contributes to the virus-induced cancers. Many aspects of the infectious life cycle of MCV are largely unexplored. In this study, we demonstrate that the MCV-encoded large T antigen can bind to host protein Brd4, which in turn serves as a scaffold that functionally recruits cellular DNA replication factors for replication of MCV viral DNA in host cells. This study is the first report to demonstrate mechanistic details of MCV's recruitment of the host cell DNA replication machinery; providing novel insight to elucidate the life cycle of this newly discovered oncogenic DNA virus. Importantly, our work demonstrates that blocking the Brd4 and MCV LT interaction can prevent MCV from replicating in host cells. This study identifies the Brd4-MCV LT interaction as an important target for potential development of effective therapeutic strategies to treat MCV infection.
Collapse
Affiliation(s)
- Xin Wang
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Jing Li
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Rachel M. Schowalter
- Tumor Virus Molecular Biology Section, Laboratory of Cellular Oncology, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Jing Jiao
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Christopher B. Buck
- Tumor Virus Molecular Biology Section, Laboratory of Cellular Oncology, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Jianxin You
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
181
|
Michoel T, Nachtergaele B. Alignment and integration of complex networks by hypergraph-based spectral clustering. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2012; 86:056111. [PMID: 23214847 DOI: 10.1103/physreve.86.056111] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Indexed: 06/01/2023]
Abstract
Complex networks possess a rich, multiscale structure reflecting the dynamical and functional organization of the systems they model. Often there is a need to analyze multiple networks simultaneously, to model a system by more than one type of interaction, or to go beyond simple pairwise interactions, but currently there is a lack of theoretical and computational methods to address these problems. Here we introduce a framework for clustering and community detection in such systems using hypergraph representations. Our main result is a generalization of the Perron-Frobenius theorem from which we derive spectral clustering algorithms for directed and undirected hypergraphs. We illustrate our approach with applications for local and global alignment of protein-protein interaction networks between multiple species, for tripartite community detection in folksonomies, and for detecting clusters of overlapping regulatory pathways in directed networks.
Collapse
Affiliation(s)
- Tom Michoel
- Freiburg Institute for Advanced Studies (FRIAS), University of Freiburg, Albertstrasse 19, D-79104 Freiburg, Germany.
| | | |
Collapse
|
182
|
Shen Z, Prasanth SG. Emerging players in the initiation of eukaryotic DNA replication. Cell Div 2012; 7:22. [PMID: 23075259 PMCID: PMC3520825 DOI: 10.1186/1747-1028-7-22] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Accepted: 10/12/2012] [Indexed: 12/23/2022] Open
Abstract
Faithful duplication of the genome in eukaryotes requires ordered assembly of a multi-protein complex called the pre-replicative complex (pre-RC) prior to S phase; transition to the pre-initiation complex (pre-IC) at the beginning of DNA replication; coordinated progression of the replisome during S phase; and well-controlled regulation of replication licensing to prevent re-replication. These events are achieved by the formation of distinct protein complexes that form in a cell cycle-dependent manner. Several components of the pre-RC and pre-IC are highly conserved across all examined eukaryotic species. Many of these proteins, in addition to their bona fide roles in DNA replication are also required for other cell cycle events including heterochromatin organization, chromosome segregation and centrosome biology. As the complexity of the genome increases dramatically from yeast to human, additional proteins have been identified in higher eukaryotes that dictate replication initiation, progression and licensing. In this review, we discuss the newly discovered components and their roles in cell cycle progression.
Collapse
Affiliation(s)
- Zhen Shen
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, 601 S, Goodwin Avenue, Urbana, IL 61801, USA.
| | | |
Collapse
|
183
|
Global gene expression in Coprinopsis cinerea meiotic mutants reflects checkpoint arrest. G3-GENES GENOMES GENETICS 2012; 2:1213-21. [PMID: 23050232 PMCID: PMC3464114 DOI: 10.1534/g3.112.003046] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Accepted: 08/14/2012] [Indexed: 11/23/2022]
Abstract
The basidiomycete Coprinopsis cinerea is well-suited to studies of meiosis because meiosis progresses synchronously in 10 million cells within each mushroom cap. Approximately 20% of C. cinerea genes exhibit changing expression during meiosis, but meiosis and mushroom development happen concurrently and therefore differentially expressed genes might not be directly involved in meiotic processes. By using microarrays, we examined global gene expression across a meiotic time course in two mutants in which meiosis arrests but mushrooms develop normally. Genes differentially expressed in the mutants compared with the wild type are likely to be involved in meiosis and sporulation as opposed to mushroom development. In rad50-1, which arrests in late prophase, RNA abundance for a group of early meiotic genes remains high, whereas the expression of a group of late meiotic genes is never induced. In contrast, in msh5-22 (which fails to undergo premeiotic DNA replication), both early and late meiotic genes are underexpressed relative to wild type at late meiotic time points as the cells die. Genes that are differentially expressed relative to wild type in both mutants are particularly strong candidates for playing roles in meiosis and sporulation.
Collapse
|
184
|
Uno S, You Z, Masai H. Purification of replication factors using insect and mammalian cell expression systems. Methods 2012; 57:214-21. [PMID: 22800621 DOI: 10.1016/j.ymeth.2012.06.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Revised: 06/12/2012] [Accepted: 06/25/2012] [Indexed: 10/28/2022] Open
Abstract
Purification of factors for DNA replication in an amount sufficient for detailed biochemical characterization is essential to elucidating its mechanisms. Insect cell expression systems are commonly used for purification of the factors proven to be difficult to deal with in bacteria. We describe first the detailed protocols for purification of mammalian Mcm complexes including the Mcm2/3/4/5/6/7 heterohexamer expressed in insect cells. We then describe a convenient and economical system in which large-sized proteins and multi-factor complexes can be transiently overexpressed in human 293T cells and be rapidly purified in a large quantity. We describe various expression vectors and detailed methods for transfection and purification of various replication factors which have been difficult to obtain in a sufficient amount in other systems. Availability of efficient methods to overproduce and purify the proteins that have been challenging would facilitate the enzymatic analyses of the processes of DNA replication.
Collapse
Affiliation(s)
- Shuji Uno
- Department of Genome Medicine, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | | | | |
Collapse
|
185
|
Shapiro JS, Langlois RA, Pham AM, tenOever BR. Evidence for a cytoplasmic microprocessor of pri-miRNAs. RNA (NEW YORK, N.Y.) 2012; 18:1338-46. [PMID: 22635403 PMCID: PMC3383965 DOI: 10.1261/rna.032268.112] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
microRNAs (miRNAs) represent a class of noncoding RNAs that fine-tune gene expression through post-transcriptional silencing. While miRNA biogenesis occurs in a stepwise fashion, initiated by the nuclear microprocessor, rare noncanonical miRNAs have also been identified. Here we characterize the molecular components and unique attributes associated with the processing of virus-derived cytoplasmic primary miRNAs (c-pri-miRNAs). RNA in situ hybridization and inhibition of cellular division demonstrated a complete lack of nuclear involvement in c-pri-miRNA cleavage while genetic studies revealed that maturation still relied on the canonical nuclear RNase III enzyme, Drosha. The involvement of Drosha was mediated by a dramatic relocalization to the cytoplasm following virus infection. Deep sequencing analyses revealed that the cytoplasmic localization of Drosha does not impact the endogenous miRNA landscape during infection, despite allowing for robust synthesis of virus-derived miRNAs in the cytoplasm. Taken together, this research describes a unique function for Drosha in the processing of highly structured cytoplasmic RNAs in the context of virus infection.
Collapse
Affiliation(s)
- Jillian S. Shapiro
- Department of Microbiology, Mount Sinai School of Medicine, New York, New York 10029, USA
| | - Ryan A. Langlois
- Department of Microbiology, Mount Sinai School of Medicine, New York, New York 10029, USA
| | - Alissa M. Pham
- Department of Microbiology, Mount Sinai School of Medicine, New York, New York 10029, USA
| | - Benjamin R. tenOever
- Department of Microbiology, Mount Sinai School of Medicine, New York, New York 10029, USA
- Corresponding authorE-mail
| |
Collapse
|
186
|
Analysis of dynamic changes in the proteome of a Bcl-XL overexpressing Chinese hamster ovary cell culture during exponential and stationary phases. Biotechnol Prog 2012; 28:814-23. [DOI: 10.1002/btpr.1534] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Revised: 02/23/2012] [Indexed: 11/07/2022]
|
187
|
Structure, replication efficiency and fragility of yeast ARS elements. Res Microbiol 2012; 163:243-53. [DOI: 10.1016/j.resmic.2012.03.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Accepted: 01/21/2012] [Indexed: 11/16/2022]
|
188
|
KLF15 negatively regulates estrogen-induced epithelial cell proliferation by inhibition of DNA replication licensing. Proc Natl Acad Sci U S A 2012; 109:E1334-43. [PMID: 22538816 DOI: 10.1073/pnas.1118515109] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
In the epithelial compartment of the uterus, estradiol-17β (E(2)) induces cell proliferation while progesterone (P(4)) inhibits this response and causes differentiation of the cells. In this study, we identified the mechanism whereby E(2) and P(4) reciprocally regulate the expression of minichromosome maintenance (MCM)-2, a protein that is an essential component of the hexameric MCM-2 to 7 complex required for DNA synthesis initiation. We show in the uterine epithelium that Kruppel-like transcription (KLF) factors, KLF 4 and 15, are inversely expressed; most importantly, they bind to the Mcm2 promoter under the regulation of E(2) and P(4)E(2), respectively. After P(4)E(2) exposure and in contrast to E(2) treated mice, the Mcm2 promoter displays increased histone 3 (H3) methylation and the recruitment of histone deacetylase 1 and 3 with the concomitant deacetylation of H3. This increased methylation and decreased acetylation is associated with an inhibition of RNA polymerase II binding, indicating an inactive Mcm2 promoter following P(4)E(2) treatment. Using transient transfection assays in the Ishikawa endometrial cell line, we demonstrate that Mcm2 promoter activity is hormonally stimulated by E(2) and that KLF15 inhibits this E(2) enhanced transcription. KLF15 expression also blocks Ishikawa cell proliferation through inhibition of MCM2 protein level. Importantly, in vivo expression of KLF15 in an estrogenized uterus mimics P(4)'s action by inhibiting E(2)-induced uterine epithelial MCM-2 expression and DNA synthesis. KLF15 is therefore a downstream physiological mediator of progesterone's cell cycle inhibitory action in the uterine epithelium.
Collapse
|
189
|
Osumi Y, Shibata SB, Kanda S, Yagi M, Ooka H, Shimano T, Asako M, Kawamoto K, Kuriyama H, Inoue T, Nishiyama T, Yamashita T, Tomoda K. Downregulation of N-methyl-D-aspartate receptor ζ1 subunit (GluN1) gene in inferior colliculus with aging. Brain Res 2012; 1454:23-32. [PMID: 22483791 DOI: 10.1016/j.brainres.2012.03.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Revised: 02/17/2012] [Accepted: 03/06/2012] [Indexed: 11/15/2022]
Abstract
Presbycusis is the impairment of auditory function associated with aging, which stems from peripheral cochlear lesions and degeneration of the central auditory process. The effect of age-induced peripheral hearing loss on the central auditory process is not fully understood. C57Bl/6 (C57) mice present accelerated peripheral hearing loss, which is well developed by middle-age and mimics the human presbycusis pattern. The aim of this study was to elucidate the molecular effects of peripheral hearing loss in the inferior colliculus (IC) with age between young and middle-aged C57 mice using cDNA microarray. Glutamate receptor ionotropic NMDA ζ1 (GluN1) exhibited the greatest decrease in the middle-aged group as determined using cDNA microarray and by further assessment using real-time PCR (qPCR). Histological assessment with in situ hybridization of GluN1 showed significantly decreased expression in all IC subdivisions of the middle-aged group. GluN1 is a receptor for excitatory neurotransmission, and significant downregulation of this gene may be subsequent to the decline of afferent input from the cochlea in aging C57 mice. Consequently, using the combination of microarray, qPCR, and in situ hybridization, we showed that the decline of GluN1 in the IC of aging animals might have a key role in the pathogenesis of presbycusis.
Collapse
Affiliation(s)
- Yasunori Osumi
- Department of Otolaryngology, Kansai Medical University, Takii Hospital, 10-15 Fumizono-cho, Moriguchi, Osaka 570-8506, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
190
|
Hughes CR, Guasti L, Meimaridou E, Chuang CH, Schimenti JC, King PJ, Costigan C, Clark AJL, Metherell LA. MCM4 mutation causes adrenal failure, short stature, and natural killer cell deficiency in humans. J Clin Invest 2012; 122:814-20. [PMID: 22354170 DOI: 10.1172/jci60224] [Citation(s) in RCA: 179] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Accepted: 01/04/2012] [Indexed: 11/17/2022] Open
Abstract
An interesting variant of familial glucocorticoid deficiency (FGD), an autosomal recessive form of adrenal failure, exists in a genetically isolated Irish population. In addition to hypocortisolemia, affected children show signs of growth failure, increased chromosomal breakage, and NK cell deficiency. Targeted exome sequencing in 8 patients identified a variant (c.71-1insG) in minichromosome maintenance-deficient 4 (MCM4) that was predicted to result in a severely truncated protein (p.Pro24ArgfsX4). Western blotting of patient samples revealed that the major 96-kDa isoform present in unaffected human controls was absent, while the presence of the minor 85-kDa isoform was preserved. Interestingly, histological studies with Mcm4-depleted mice showed grossly abnormal adrenal morphology that was characterized by non-steroidogenic GATA4- and Gli1-positive cells within the steroidogenic cortex, which reduced the number of steroidogenic cells in the zona fasciculata of the adrenal cortex. Since MCM4 is one part of a MCM2-7 complex recently confirmed as the replicative helicase essential for normal DNA replication and genome stability in all eukaryotes, it is possible that our patients may have an increased risk of neoplastic change. In summary, we have identified what we believe to be the first human mutation in MCM4 and have shown that it is associated with adrenal insufficiency, short stature, and NK cell deficiency.
Collapse
Affiliation(s)
- Claire R Hughes
- Queen Mary University of London, Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, London,, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
191
|
Araki H. Initiation of chromosomal DNA replication in eukaryotic cells; contribution of yeast genetics to the elucidation. Genes Genet Syst 2012; 86:141-9. [PMID: 21952204 DOI: 10.1266/ggs.86.141] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Chromosomal DNA replication is a fundamental process in the transmission of genetic information through generations. While the molecular mechanism of DNA replication has been studied for a long time, knowledge regarding this process in eukaryotic cells has advanced rapidly in the past 20 years. Yeast genetics contributed profoundly to this rapid advancement. Reverse genetics and genetic screenings identified all genes encoding replication proteins in budding yeast. Moreover, the genetic interactions that were used in screenings and analyses provided an insight into the molecular mechanism of chromosomal DNA replication. Further studies showed that complicated but sophisticated mechanisms govern chromosomal DNA replication. The retrospective view of the genetic approaches used to elucidate DNA replication in eukaryotes, together with current knowledge, tell us the reasons why some of the genetic screenings are successful, and also provide ideas for future directions.
Collapse
Affiliation(s)
- Hiroyuki Araki
- Division of Microbial Genetics, National Institute of Genetics, Department of Genetics, Sokendai, Yata 1111, Mishima, Shizuoka 411-8540, Japan.
| |
Collapse
|
192
|
Abstract
The discovery of microRNAs (miRNAs) revealed an unappreciated level of post-transcriptional control used by the cell to maintain optimal protein levels. This process has represented an attractive strategy for therapeutics that is currently limited by in vivo delivery constraints. Here, we describe the generation of a single-stranded, cytoplasmic virus of negative polarity capable of producing functional miRNAs. Cytoplasmic RNA virus-derived miRNAs accumulated to high levels in vitro, generated significant amounts of miRNA star strand, associated with the RNA-induced silencing complex (RISC), and conferred post transcriptional gene silencing in a sequence-specific manner. Furthermore, we demonstrate that these vectors could deliver miRNAs to a wide range of tissues, and sustain prolonged expression capable of achieving measurable knockdown of physiological targets in vivo. Taken together, these results validate noncanonical processing of cytoplasmic-derived miRNAs and provide a novel platform for small RNA delivery.
Collapse
|
193
|
Fu YV, Yardimci H, Long DT, Ho TV, Guainazzi A, Bermudez VP, Hurwitz J, van Oijen A, Schärer OD, Walter JC. Selective bypass of a lagging strand roadblock by the eukaryotic replicative DNA helicase. Cell 2011; 146:931-41. [PMID: 21925316 DOI: 10.1016/j.cell.2011.07.045] [Citation(s) in RCA: 296] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Revised: 05/17/2011] [Accepted: 07/29/2011] [Indexed: 12/13/2022]
Abstract
The eukaryotic replicative DNA helicase, CMG, unwinds DNA by an unknown mechanism. In some models, CMG encircles and translocates along one strand of DNA while excluding the other strand. In others, CMG encircles and translocates along duplex DNA. To distinguish between these models, replisomes were confronted with strand-specific DNA roadblocks in Xenopus egg extracts. An ssDNA translocase should stall at an obstruction on the translocation strand but not the excluded strand, whereas a dsDNA translocase should stall at obstructions on either strand. We found that replisomes bypass large roadblocks on the lagging strand template much more readily than on the leading strand template. Our results indicate that CMG is a 3' to 5' ssDNA translocase, consistent with unwinding via "steric exclusion." Given that MCM2-7 encircles dsDNA in G1, the data imply that formation of CMG in S phase involves remodeling of MCM2-7 from a dsDNA to a ssDNA binding mode.
Collapse
Affiliation(s)
- Yu V Fu
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
194
|
Liu DC, Yang ZL. Clinicopathologic significance of minichromosome maintenance protein 2 and Tat-interacting protein 30 expression in benign and malignant lesions of the gallbladder. Hum Pathol 2011; 42:1676-83. [DOI: 10.1016/j.humpath.2010.12.026] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2010] [Revised: 11/29/2010] [Accepted: 12/03/2010] [Indexed: 12/29/2022]
|
195
|
Sugiyama T, Chino M, Tsurimoto T, Nozaki N, Ishimi Y. Interaction of heliquinomycin with single-stranded DNA inhibits MCM4/6/7 helicase. ACTA ACUST UNITED AC 2011; 151:129-37. [DOI: 10.1093/jb/mvr130] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
196
|
Minichromosome maintenance helicase paralog MCM9 is dispensible for DNA replication but functions in germ-line stem cells and tumor suppression. Proc Natl Acad Sci U S A 2011; 108:17702-7. [PMID: 21987787 DOI: 10.1073/pnas.1113524108] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Effective DNA replication is critical to the health and reproductive success of organisms. The six MCM2-7 proteins, which form the replicative helicase, are essential for high-fidelity replication of the genome. Many eukaryotes have a divergent paralog, MCM9, that was reported to be essential for loading MCM2-7 onto replication origins in the Xenopus oocyte extract system. To address the in vivo role of mammalian MCM9, we created and analyzed the phenotypes of mice with various mutations in Mcm9 and an intronic DNA replication-related gene Asf1a. Ablation of Mcm9 was compatible with cell proliferation and mouse viability, showing that it is nonessential for MCM2-7 loading or DNA replication. Mcm9 mutants underwent p53-independent embryonic germ-cell depletion in both sexes, with males also exhibiting defective spermatogonial stem-cell renewal. MCM9-deficient cells had elevated genomic instability and defective cell cycle reentry following replication stress, and mutant animals were prone to sex-specific cancers, most notably hepatocellular carcinoma in males. The phenotypes of mutant mice and cells suggest that MCM9 evolved a specialized but nonessential role in DNA replication or replication-linked quality-control mechanisms that are especially important for germ-line stem cells, and also for tumor suppression and genome maintenance in the soma.
Collapse
|
197
|
Pan M, Santangelo TJ, Li Z, Reeve JN, Kelman Z. Thermococcus kodakarensis encodes three MCM homologs but only one is essential. Nucleic Acids Res 2011; 39:9671-80. [PMID: 21821658 PMCID: PMC3239210 DOI: 10.1093/nar/gkr624] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The minichromosome maintenance (MCM) complex is thought to function as the replicative helicase in archaea and eukaryotes. In eukaryotes, this complex is an assembly of six different but related polypeptides (MCM2-7) but, in most archaea, one MCM protein assembles to form a homohexameric complex. Atypically, the Thermococcus kodakarensis genome encodes three archaeal MCM homologs, here designated MCM1-3, although MCM1 and MCM2 are unusual in having long and unique N-terminal extensions. The results reported establish that MCM2 and MCM3 assemble into homohexamers and exhibit DNA binding, helicase and ATPase activities in vitro typical of archaeal MCMs. In contrast, MCM1 does not form homohexamers and although MCM1 binds DNA and has ATPase activity, it has only minimal helicase activity in vitro. Removal of the N-terminal extension had no detectable effects on MCM1 but increased the helicase activity of MCM2. A T. kodakarensis strain with the genes TK0096 (MCM1) and TK1361 (MCM2) deleted has been constructed that exhibits no detectable defects in growth or viability, but all attempts to delete TK1620 (MCM3) have been unsuccessful arguing that that MCM3 is essential and is likely the replicative helicase in T. kodakarensis. The origins and possible function(s) of the three MCM proteins are discussed.
Collapse
Affiliation(s)
- Miao Pan
- Institute for Bioscience and Biotechnology Research, University of Maryland, 9600 Gudelsky Drive, Rockville, MD 20850, USA
| | | | | | | | | |
Collapse
|
198
|
Hubbi ME, Luo W, Baek JH, Semenza GL. MCM proteins are negative regulators of hypoxia-inducible factor 1. Mol Cell 2011; 42:700-12. [PMID: 21658608 PMCID: PMC3131976 DOI: 10.1016/j.molcel.2011.03.029] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2010] [Revised: 01/28/2011] [Accepted: 03/21/2011] [Indexed: 11/18/2022]
Abstract
MCM proteins are components of a DNA helicase that plays an essential role in DNA replication and cell proliferation. However, MCM proteins are present in excess relative to origins of replication, suggesting they may serve other functions. Decreased proliferation is a fundamental physiological response to hypoxia in many cell types, and hypoxia-inducible factor 1 (HIF-1) has been implicated in this process. Here, we demonstrate that multiple MCM proteins bind directly to the HIF-1α subunit and synergistically inhibit HIF-1 transcriptional activity via distinct O(2)-dependent mechanisms. MCM3 inhibits transactivation domain function, whereas MCM7 enhances HIF-1α ubiquitination and proteasomal degradation. HIF-1 activity decreases when quiescent cells re-enter the cell cycle, and this effect is MCM dependent. Exposure to hypoxia leads to MCM2-7 downregulation in diverse cell types. These studies reveal a function of MCM proteins apart from their DNA helicase activity and establish a direct link between HIF-1 and the cell-cycle machinery.
Collapse
Affiliation(s)
- Maimon E Hubbi
- Graduate Training Program in Cellular and Molecular Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | | | |
Collapse
|
199
|
Huang B, Hu B, Su M, Tian D, Guo Y, Lian S, Liu Z, Wu X, Li Q, Zheng R, Gao Y. Potential role of minichromosome maintenance protein 2 as a screening biomarker in esophageal cancer high-risk population in China. Hum Pathol 2011; 42:808-16. [PMID: 21237484 DOI: 10.1016/j.humpath.2010.04.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2010] [Revised: 03/18/2010] [Accepted: 04/02/2010] [Indexed: 02/05/2023]
Abstract
Minichromosome maintenance proteins are novel proliferative markers that have been proposed as diagnostic markers in many cancers. We evaluated the potential role of minichromosome maintenance protein 2 as a screening biomarker and compared it with proliferating cell nuclear antigen and Ki67 in a population survey of esophageal squamous cell carcinoma. A total of 299 esophageal samples from a high-risk region in China, including 171 from an endoscopy population survey, 30 from brushing cytology, and 98 from surgery and autopsy, underwent immunostaining with minichromosome maintenance protein 2, proliferating cell nuclear antigen, and Ki67 antibodies. Minichromosome maintenance protein 2 expression was confined to the proliferative compartment of normal and abnormal esophageal epithelium and particularly manifested in the surface layer of dysplasia and carcinoma in situ. The expression of proliferating cell nuclear antigen and Ki67 was positively correlated with that of minichromosome maintenance protein 2 (r(s) >0.39, P < .01); but their positive nuclei seldom reached the surface layer, and the labeling indices were significantly lower than those for minichromosome maintenance protein 2 in dysplasia (P < .05) and carcinoma in situ (P < .001). The sensitivity and specificity of minichromosome maintenance protein 2 in diagnosing dysplasia were 91.3% and 61.8%, respectively, higher than those for proliferating cell nuclear antigen (88.4% and 47.1%) and Ki67 (78.3% and 57.8%). Nine of 10 cancer and paracancerous surface-brushing samples expressed minichromosome maintenance protein 2, and the detection was higher than that for proliferating cell nuclear antigen (8/10 and 7/10) and Ki67 (7/10 and 7/10). However, none of 10 normal surface-brushing samples expressed the 3 markers. Minichromosome maintenance protein 2 is more sensitive and specific than proliferating cell nuclear antigen and Ki67 in indicating esophageal dysplasia. Minichromosome maintenance protein 2 immunostaining combined with surface brushing could be valuable in screening patients at high risk of cancer in mass surveys.
Collapse
Affiliation(s)
- Bo Huang
- Department of Pathology & Institute for Clinical Pathology, Shantou University Medical College, Shantou 515031, Guangdong Province, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
200
|
Igci YZ, Arslan A, Akarsu E, Erkilic S, Igci M, Oztuzcu S, Cengiz B, Gogebakan B, Cakmak EA, Demiryurek AT. Differential expression of a set of genes in follicular and classic variants of papillary thyroid carcinoma. Endocr Pathol 2011; 22:86-96. [PMID: 21509594 DOI: 10.1007/s12022-011-9157-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Fine-needle aspiration biopsy (FNA) is currently the best initial diagnostic test for evaluation of a thyroid nodule. FNA cytology cannot discriminate between benign and malignant thyroid nodules in up to 30% of thyroid nodules. Therefore, an adjunct to FNA is needed to clarify these lesions as benign or malignant. Using differential display-polymerase chain reaction method, the gene expression differences between follicular and classic variants of papillary thyroid carcinoma (PTC) and benign thyroid nodules were evaluated in a group of 42 patients. Computational gene function analyses via Cytoscape, FuncBASE, and GeneMANIA led us to a functional network of 17 genes in which a core sub-network of five genes coexists. Although the exact mechanisms underlying in thyroid cancer biogenesis are not currently known, our data suggest that the pattern of transformation from healthy cells to cancer cells of PTC is different in follicular variant than in classic variant.
Collapse
MESH Headings
- Adolescent
- Adult
- Aged
- Aged, 80 and over
- Biopsy, Fine-Needle
- Carcinoma
- Carcinoma, Papillary/diagnosis
- Carcinoma, Papillary/genetics
- Carcinoma, Papillary, Follicular/diagnosis
- Carcinoma, Papillary, Follicular/genetics
- Female
- Gene Expression Regulation, Neoplastic
- Humans
- Male
- Middle Aged
- Reverse Transcriptase Polymerase Chain Reaction
- Thyroid Cancer, Papillary
- Thyroid Neoplasms/diagnosis
- Thyroid Neoplasms/genetics
- Thyroid Nodule/diagnosis
- Thyroid Nodule/genetics
- Young Adult
Collapse
Affiliation(s)
- Yusuf Ziya Igci
- Department of Medical Biology, Faculty of Medicine, University of Gaziantep, 27310, Gaziantep, Turkey.
| | | | | | | | | | | | | | | | | | | |
Collapse
|