151
|
Displacement of the Na +/K + pump's transmembrane domains demonstrates conserved conformational changes in P-type 2 ATPases. Proc Natl Acad Sci U S A 2021; 118:2019317118. [PMID: 33597302 DOI: 10.1073/pnas.2019317118] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Cellular survival requires the ion gradients built by the Na+/K+ pump, an ATPase that alternates between two major conformations (E1 and E2). Here we use state-specific engineered-disulfide cross-linking to demonstrate that transmembrane segment 2 (M2) of the pump's α-subunit moves in directions that are inconsistent with distances observed in existing crystal structures of the Na+/K+ pump in E1 and E2. We characterize this movement with voltage-clamp fluorometry in single-cysteine mutants. Most mutants in the M1-M2 loop produced state-dependent fluorescence changes upon labeling with tetramethylrhodamine-6-maleimide (TMRM), which were due to quenching by multiple endogenous tryptophans. To avoid complications arising from multiple potential quenchers, we analyzed quenching of TMRM conjugated to R977C (in the static M9-M10 loop) by tryptophans introduced, one at a time, in M1-M2. This approach showed that tryptophans introduced in M2 quench TMRM only in E2, with D126W and L130W on the same helix producing the largest fluorescence changes. These observations indicate that M2 moves outward as Na+ is deoccluded from the E1 conformation, a mechanism consistent with cross-linking results and with proposals for other P-type 2 ATPases.
Collapse
|
152
|
Lorenzo-Gutiérrez D, Gómez-Gil L, Guarro J, Roncero MIG, Capilla J, López-Fernández L. Cu transporter protein CrpF protects against Cu-induced toxicity in Fusarium oxysporum. Virulence 2021; 11:1108-1121. [PMID: 32862758 PMCID: PMC7549990 DOI: 10.1080/21505594.2020.1809324] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Cu is an essential trace element for cell growth and proliferation. However, excess of Cu accumulation leads to cellular toxicity. Thus, precise and tight regulation of Cu homeostasis processes, including transport, delivery, storage, detoxification, and efflux machineries, is required. Moreover, the maintenance of Cu homeostasis is critical for the survival and virulence of fungal pathogens. Cu homeostasis has been extensively studied in mammals, bacteria, and yeast, but it has not yet been well documented in filamentous fungi. In the present work, we investigated Cu tolerance in the filamentous fungus Fusarium oxysporum by analysing the Cu transporter coding gene crpF, previously studied in Aspergillus fumigatus. The expression studies demonstrated that crpF is upregulated in the presence of Cu and its deletion leads to severe sensitivity to low levels of CuSO4 in F. oxysporum. Targeted deletion of crpF did not significantly alter the resistance of the fungus to macrophage killing, nor its pathogenic behaviour on the tomato plants. However, the targeted deletion mutant ΔcrpF showed increased virulence in a murine model of systemic infection compared to wild-type strain (wt).
Collapse
Affiliation(s)
- Damaris Lorenzo-Gutiérrez
- Unitat de Microbiologia, Facultat de Medicina i Ciències de la Salut and Institut d'Investigació Sanitària Pere Virgili (IISPV), Universitat Rovira i Virgili , Reus, Spain
| | - Lucía Gómez-Gil
- Departamento de Genetica, Facultad de Ciencias and Campus De Excelencia Internacional Agroalimentario ceiA3, Universidad de Cordoba , Cordoba, Spain
| | - Josep Guarro
- Unitat de Microbiologia, Facultat de Medicina i Ciències de la Salut and Institut d'Investigació Sanitària Pere Virgili (IISPV), Universitat Rovira i Virgili , Reus, Spain
| | - M Isabel G Roncero
- Departamento de Genetica, Facultad de Ciencias and Campus De Excelencia Internacional Agroalimentario ceiA3, Universidad de Cordoba , Cordoba, Spain
| | - Javier Capilla
- Unitat de Microbiologia, Facultat de Medicina i Ciències de la Salut and Institut d'Investigació Sanitària Pere Virgili (IISPV), Universitat Rovira i Virgili , Reus, Spain
| | - Loida López-Fernández
- Unitat de Microbiologia, Facultat de Medicina i Ciències de la Salut and Institut d'Investigació Sanitària Pere Virgili (IISPV), Universitat Rovira i Virgili , Reus, Spain
| |
Collapse
|
153
|
Biondo ED, Spontarelli K, Ababioh G, Méndez L, Artigas P. Diseases caused by mutations in the Na +/K + pump α1 gene ATP1A1. Am J Physiol Cell Physiol 2021; 321:C394-C408. [PMID: 34232746 DOI: 10.1152/ajpcell.00059.2021] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Human cell survival requires function of the Na+/K+ pump; the heteromeric protein that hydrolyzes ATP to extrude Na+ and import K+ across the plasmalemma, thereby building and maintaining these ions' electrochemical gradients. Numerous dominant diseases caused by mutations in genes encoding for Na+/K+ pump catalytic (α) subunit isoforms highlight the importance of this protein. Here, we review literature describing disorders caused by missense mutations in ATP1A1, the gene encoding the ubiquitously expressed α1 isoform of the Na+/K+ pump. These various maladies include primary aldosteronism with secondary hypertension, an endocrine syndrome, Charcot-Marie-Tooth disease, a peripheral neuropathy, complex spastic paraplegia, another neuromuscular disorder, as well as hypomagnesemia accompanied by seizures and cognitive delay, a condition affecting the renal and central nervous systems. This article focuses on observed commonalities among these mutations' functional effects, as well as on the special characteristics that enable each particular mutation to exclusively affect a certain system, without affecting others. In this respect, it is clear how somatic mutations localized to adrenal adenomas increase aldosterone production without compromising other systems. However, it remains largely unknown how and why some but not all de novo germline or familial mutations (where the mutant must be expressed in numerous tissues) produce a specific disease and not the other diseases. We propose hypotheses to explain this observation and the approaches that we think will drive future research on these debilitating disorders to develop novel patient-specific treatments by combining the use of heterologous protein-expression systems, patient-derived pluripotent cells, and gene-edited cell and mouse models.
Collapse
Affiliation(s)
- Elisa D Biondo
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, Texas
| | - Kerri Spontarelli
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, Texas
| | - Giovanna Ababioh
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, Texas
| | - Lois Méndez
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, Texas
| | - Pablo Artigas
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, Texas
| |
Collapse
|
154
|
Tang LTH, Trivedi M, Freund J, Salazar CJ, Rahman M, Ramirez-Suarez NJ, Lee G, Wang Y, Grant BD, Bülow HE. The CATP-8/P5A-type ATPase functions in multiple pathways during neuronal patterning. PLoS Genet 2021; 17:e1009475. [PMID: 34197450 PMCID: PMC8279360 DOI: 10.1371/journal.pgen.1009475] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 07/14/2021] [Accepted: 06/10/2021] [Indexed: 11/18/2022] Open
Abstract
The assembly of neuronal circuits involves the migrations of neurons from their place of birth to their final location in the nervous system, as well as the coordinated growth and patterning of axons and dendrites. In screens for genes required for patterning of the nervous system, we identified the catp-8/P5A-ATPase as an important regulator of neural patterning. P5A-ATPases are part of the P-type ATPases, a family of proteins known to serve a conserved function as transporters of ions, lipids and polyamines in unicellular eukaryotes, plants, and humans. While the function of many P-type ATPases is relatively well understood, the function of P5A-ATPases in metazoans remained elusive. We show here, that the Caenorhabditis elegans ortholog catp-8/P5A-ATPase is required for defined aspects of nervous system development. Specifically, the catp-8/P5A-ATPase serves functions in shaping the elaborately sculpted dendritic trees of somatosensory PVD neurons. Moreover, catp-8/P5A-ATPase is required for axonal guidance and repulsion at the midline, as well as embryonic and postembryonic neuronal migrations. Interestingly, not all axons at the midline require catp-8/P5A-ATPase, although the axons run in the same fascicles and navigate the same space. Similarly, not all neuronal migrations require catp-8/P5A-ATPase. A CATP-8/P5A-ATPase reporter is localized to the ER in most, if not all, tissues and catp-8/P5A-ATPase can function both cell-autonomously and non-autonomously to regulate neuronal development. Genetic analyses establish that catp-8/P5A-ATPase can function in multiple pathways, including the Menorin pathway, previously shown to control dendritic patterning in PVD, and Wnt signaling, which functions to control neuronal migrations. Lastly, we show that catp-8/P5A-ATPase is required for localizing select transmembrane proteins necessary for dendrite morphogenesis. Collectively, our studies suggest that catp-8/P5A-ATPase serves diverse, yet specific, roles in different genetic pathways and may be involved in the regulation or localization of transmembrane and secreted proteins to specific subcellular compartments.
Collapse
Affiliation(s)
- Leo T. H. Tang
- Department of Genetics Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Meera Trivedi
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Jenna Freund
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Christopher J. Salazar
- Department of Genetics Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Maisha Rahman
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Nelson J. Ramirez-Suarez
- Department of Genetics Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Garrett Lee
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Yu Wang
- Department of Molecular Biology & Biochemistry, Rutgers Center for Lipid Research, Rutgers University, Piscataway, New Jersey, United States of America
| | - Barth D. Grant
- Department of Molecular Biology & Biochemistry, Rutgers Center for Lipid Research, Rutgers University, Piscataway, New Jersey, United States of America
| | - Hannes E. Bülow
- Department of Genetics Albert Einstein College of Medicine, Bronx, New York, United States of America
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, United States of America
| |
Collapse
|
155
|
Yang Z, Shi Y, Cui H, Yang S, Gao H, Yuan J. A malaria parasite phospholipid flippase safeguards midgut traversal of ookinetes for mosquito transmission. SCIENCE ADVANCES 2021; 7:7/30/eabf6015. [PMID: 34301597 PMCID: PMC8302136 DOI: 10.1126/sciadv.abf6015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 06/08/2021] [Indexed: 05/03/2023]
Abstract
Mosquito midgut epithelium traversal is essential for malaria parasite transmission. Phospholipid flippases are eukaryotic type 4 P-type adenosine triphosphatases (P4-ATPases), which, in association with CDC50, translocate phospholipids across the membrane lipid bilayers. In this study, we investigated the function of a putative P4-ATPase, ATP7, from the rodent malaria parasite Plasmodium yoelii Disruption of ATP7 blocks the parasite infection of mosquitoes. ATP7 is localized on the ookinete plasma membrane. While ATP7-depleted ookinetes are capable of invading the midgut, they are eliminated within the epithelial cells by a process independent from the mosquito complement-like immunity. ATP7 colocalizes and interacts with the flippase cofactor CDC50C. Depletion of CDC50C phenocopies ATP7 deficiency. ATP7-depleted ookinetes fail to uptake phosphatidylcholine across the plasma membrane. Ookinete microinjection into the mosquito hemocoel reverses the ATP7 deficiency phenotype. Our study identifies Plasmodium flippase as a mechanism of parasite survival in the midgut epithelium that is required for mosquito transmission.
Collapse
Affiliation(s)
- Zhenke Yang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signal Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Yang Shi
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signal Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Huiting Cui
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signal Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Shuzhen Yang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signal Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Han Gao
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signal Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Jing Yuan
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signal Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China.
| |
Collapse
|
156
|
Abstract
In human cells, P5B-ATPases execute the active export of physiologically important polyamines such as spermine from lysosomes to the cytosol, a function linked to a palette of disorders. Yet, the overall shape of P5B-ATPases and the mechanisms of polyamine recognition, uptake and transport remain elusive. Here we describe a series of cryo-electron microscopy structures of a yeast homolog of human ATP13A2-5, Ypk9, determined at resolutions reaching 3.4 Å, and depicting three separate transport cycle intermediates, including spermine-bound conformations. Surprisingly, in the absence of cargo, Ypk9 rests in a phosphorylated conformation auto-inhibited by the N-terminus. Spermine uptake is accomplished through an electronegative cleft lined by transmembrane segments 2, 4 and 6. Despite the dramatically different nature of the transported cargo, these findings pinpoint shared principles of transport and regulation among the evolutionary related P4-, P5A- and P5B-ATPases. The data also provide a framework for analysis of associated maladies, such as Parkinson’s disease. In human cells, P5B‐ATPases execute export of spermine from lysosomes to the cytosol, but the mechanisms of spermine recognition, uptake and transport remain elusive. Here the authors present cryo‐EM structures of a yeast homolog of human ATP13A2‐5, Ypk9, which depict three separate transport cycle intermediates, including spermine‐bound conformations
Collapse
|
157
|
Dubey V, Stokes DL, Pedersen BP, Khandelia H. An Intracellular Pathway Controlled by the N-terminus of the Pump Subunit Inhibits the Bacterial KdpFABC Ion Pump in High K + Conditions. J Mol Biol 2021; 433:167008. [PMID: 33951450 DOI: 10.1016/j.jmb.2021.167008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 04/19/2021] [Accepted: 04/19/2021] [Indexed: 12/01/2022]
Abstract
The heterotetrameric bacterial KdpFABC transmembrane protein complex is an ion channel-pump hybrid that consumes ATP to import K+ against its transmembrane chemical potential gradient in low external K+ environments. The KdpB ion-pump subunit of KdpFABC is a P-type ATPase, and catalyses ATP hydrolysis. Under high external K+ conditions, K+ can diffuse into the cells through passive ion channels. KdpFABC must therefore be inhibited in high K+ conditions to conserve cellular ATP. Inhibition is thought to occur via unusual phosphorylation of residue Ser162 of the TGES motif of the cytoplasmic A domain. It is proposed that phosphorylation most likely traps KdpB in an inactive E1-P like conformation, but the molecular mechanism of phosphorylation-mediated inhibition remains unknown. Here, we employ molecular dynamics (MD) simulations of the dephosphorylated and phosphorylated versions of KdpFABC to demonstrate that phosphorylated KdpB is trapped in a conformation where the ion-binding site is hydrated by an intracellular pathway between transmembrane helices M1 and M2 which opens in response to the rearrangement of cytoplasmic domains resulting from phosphorylation. Cytoplasmic access of water to the ion-binding site is accompanied by a remarkable loss of secondary structure of the KdpB N-terminus and disruption of a key salt bridge between Glu87 in the A domain and Arg212 in the P domain. Our results provide the molecular basis of a unique mechanism of regulation amongst P-type ATPases, and suggest that the N-terminus has a significant role to play in the conformational cycle and regulation of KdpFABC.
Collapse
Affiliation(s)
- Vikas Dubey
- PHYLIFE: Physical Life Science, Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, Odense 5230 M, Denmark
| | - David L Stokes
- Skirball Institute, Dept. of Cell Biology, New York University School of Medicine, New York, NY 10016, USA
| | | | - Himanshu Khandelia
- PHYLIFE: Physical Life Science, Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, Odense 5230 M, Denmark.
| |
Collapse
|
158
|
Pizzagalli MD, Bensimon A, Superti‐Furga G. A guide to plasma membrane solute carrier proteins. FEBS J 2021; 288:2784-2835. [PMID: 32810346 PMCID: PMC8246967 DOI: 10.1111/febs.15531] [Citation(s) in RCA: 241] [Impact Index Per Article: 60.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 08/07/2020] [Accepted: 08/17/2020] [Indexed: 12/13/2022]
Abstract
This review aims to serve as an introduction to the solute carrier proteins (SLC) superfamily of transporter proteins and their roles in human cells. The SLC superfamily currently includes 458 transport proteins in 65 families that carry a wide variety of substances across cellular membranes. While members of this superfamily are found throughout cellular organelles, this review focuses on transporters expressed at the plasma membrane. At the cell surface, SLC proteins may be viewed as gatekeepers of the cellular milieu, dynamically responding to different metabolic states. With altered metabolism being one of the hallmarks of cancer, we also briefly review the roles that surface SLC proteins play in the development and progression of cancer through their influence on regulating metabolism and environmental conditions.
Collapse
Affiliation(s)
- Mattia D. Pizzagalli
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of SciencesViennaAustria
| | - Ariel Bensimon
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of SciencesViennaAustria
| | - Giulio Superti‐Furga
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of SciencesViennaAustria
- Center for Physiology and PharmacologyMedical University of ViennaAustria
| |
Collapse
|
159
|
López-Marqués RL, Davis JA, Harper JF, Palmgren M. Dynamic membranes: the multiple roles of P4 and P5 ATPases. PLANT PHYSIOLOGY 2021; 185:619-631. [PMID: 33822217 PMCID: PMC8133672 DOI: 10.1093/plphys/kiaa065] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 10/24/2020] [Indexed: 05/31/2023]
Abstract
The lipid bilayer of biological membranes has a complex composition, including high chemical heterogeneity, the presence of nanodomains of specific lipids, and asymmetry with respect to lipid composition between the two membrane leaflets. In membrane trafficking, membrane vesicles constantly bud off from one membrane compartment and fuse with another, and both budding and fusion events have been proposed to require membrane lipid asymmetry. One mechanism for generating asymmetry in lipid bilayers involves the action of the P4 ATPase family of lipid flippases; these are biological pumps that use ATP as an energy source to flip lipids from one leaflet to the other. The model plant Arabidopsis (Arabidopsis thaliana) contains 12 P4 ATPases (AMINOPHOSPHOLIPID ATPASE1-12; ALA1-12), many of which are functionally redundant. Studies of P4 ATPase mutants have confirmed the essential physiological functions of these pumps and pleiotropic mutant phenotypes have been observed, as expected when genes required for basal cellular functions are disrupted. For instance, phenotypes associated with ala3 (dwarfism, pollen defects, sensitivity to pathogens and cold, and reduced polar cell growth) can be related to membrane trafficking problems. P5 ATPases are evolutionarily related to P4 ATPases, and may be the counterpart of P4 ATPases in the endoplasmic reticulum. The absence of P4 and P5 ATPases from prokaryotes and their ubiquitous presence in eukaryotes make these biological pumps a defining feature of eukaryotic cells. Here, we review recent advances in the field of plant P4 and P5 ATPases.
Collapse
Affiliation(s)
- Rosa L López-Marqués
- Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Frederiksberg, Denmark
| | - James A Davis
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Reno, NV 89557, USA
| | - Jeffrey F Harper
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Reno, NV 89557, USA
| | - Michael Palmgren
- Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Frederiksberg, Denmark
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan 528000, China
| |
Collapse
|
160
|
Salles PA, Mata IF, Brünger T, Lal D, Fernandez HH. ATP1A3-Related Disorders: An Ever-Expanding Clinical Spectrum. Front Neurol 2021; 12:637890. [PMID: 33868146 PMCID: PMC8047318 DOI: 10.3389/fneur.2021.637890] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 03/09/2021] [Indexed: 01/29/2023] Open
Abstract
The Na+/K+ ATPases are Sodium-Potassium exchanging pumps, with a heteromeric α-β-γ protein complex. The α3 isoform is required as a rescue pump, after repeated action potentials, with a distribution predominantly in neurons of the central nervous system. This isoform is encoded by the ATP1A3 gene. Pathogenic variants in this gene have been implicated in several phenotypes in the last decades. Carriers of pathogenic variants in this gene manifest neurological and non-neurological features in many combinations, usually with an acute onset and paroxysmal episodes triggered by fever or other factors. The first three syndromes described were: (1) rapid-onset dystonia parkinsonism; (2) alternating hemiplegia of childhood; and, (3) cerebellar ataxia, pes cavus, optic atrophy, and sensorineural hearing loss (CAPOS syndrome). Since their original description, an expanding number of cases presenting with atypical and overlapping features have been reported. Because of this, ATP1A3-disorders are now beginning to be viewed as a phenotypic continuum representing discrete expressions along a broadly heterogeneous clinical spectrum.
Collapse
Affiliation(s)
- Philippe A Salles
- Department of Neurology and Center for Neurological Restoration, Neurological Institute, Cleveland Clinic, Cleveland, OH, United States.,Centro de Trastornos del Movimiento, Centro de Trastornos del Movimiento (CETRAM), Santiago, Chile
| | - Ignacio F Mata
- Cleveland Clinic Foundation, Genomic Medicine, Lerner Research Institute, Cleveland, OH, United States
| | - Tobias Brünger
- Cologne Center for Genomics, University Cologne, Cologne, Germany
| | - Dennis Lal
- Cleveland Clinic Foundation, Genomic Medicine, Lerner Research Institute, Cleveland, OH, United States
| | - Hubert H Fernandez
- Department of Neurology and Center for Neurological Restoration, Neurological Institute, Cleveland Clinic, Cleveland, OH, United States
| |
Collapse
|
161
|
Espinoza-Fonseca LM. Structural Basis for the Function of the C-Terminal Proton Release Pathway in the Calcium Pump. Int J Mol Sci 2021; 22:ijms22073507. [PMID: 33805255 PMCID: PMC8037123 DOI: 10.3390/ijms22073507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 03/22/2021] [Accepted: 03/25/2021] [Indexed: 11/16/2022] Open
Abstract
The calcium pump (sarco/endoplasmic reticulum Ca2+-ATPase, SERCA) plays a major role in calcium homeostasis in muscle cells by clearing cytosolic Ca2+ during muscle relaxation. Active Ca2+ transport by SERCA involves the structural transition from a low-Ca2+ affinity E2 state toward a high-Ca2+ affinity E1 state of the pump. This structural transition is accompanied by the countertransport of protons to stabilize the negative charge and maintain the structural integrity of the transport sites and partially compensate for the positive charges of the two Ca2+ ions passing through the membrane. X-ray crystallography studies have suggested that a hydrated pore located at the C-terminal domain of SERCA serves as a conduit for proton countertransport, but the existence and function of this pathway have not yet been fully characterized. We used atomistic simulations to demonstrate that in the protonated E2 state and the absence of initially bound water molecules, the C-terminal pore becomes hydrated in the nanosecond timescale. Hydration of the C-terminal pore is accompanied by the formation of water wires that connect the transport sites with the cytosol. Water wires are known as ubiquitous proton-transport devices in biological systems, thus supporting the notion that the C-terminal domain serves as a conduit for proton release. Additional simulations showed that the release of a single proton from the transport sites induces bending of transmembrane helix M5 and the interaction between residues Arg762 and Ser915. These structural changes create a physical barrier against full hydration of the pore and prevent the formation of hydrogen-bonded water wires once proton transport has occurred through this pore. Together, these findings support the notion that the C-terminal proton release pathway is a functional element of SERCA and also provide a mechanistic model for its operation in the catalytic cycle of the pump.
Collapse
Affiliation(s)
- L Michel Espinoza-Fonseca
- Center for Arrhythmia Research, Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
162
|
Russum S, Lam KJK, Wong NA, Iddamsetty V, Hendargo KJ, Wang J, Dubey A, Zhang Y, Medrano-Soto A, Saier MH. Comparative population genomic analyses of transporters within the Asgard archaeal superphylum. PLoS One 2021; 16:e0247806. [PMID: 33770091 PMCID: PMC7997004 DOI: 10.1371/journal.pone.0247806] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 02/15/2021] [Indexed: 01/02/2023] Open
Abstract
Upon discovery of the first archaeal species in the 1970s, life has been subdivided into three domains: Eukarya, Archaea, and Bacteria. However, the organization of the three-domain tree of life has been challenged following the discovery of archaeal lineages such as the TACK and Asgard superphyla. The Asgard Superphylum has emerged as the closest archaeal ancestor to eukaryotes, potentially improving our understanding of the evolution of life forms. We characterized the transportomes and their substrates within four metagenome-assembled genomes (MAGs), that is, Odin-, Thor-, Heimdall- and Loki-archaeota as well as the fully sequenced genome of Candidatus Prometheoarchaeum syntrophicum strain MK-D1 that belongs to the Loki phylum. Using the Transporter Classification Database (TCDB) as reference, candidate transporters encoded within the proteomes were identified based on sequence similarity, alignment coverage, compatibility of hydropathy profiles, TMS topologies and shared domains. Identified transport systems were compared within the Asgard superphylum as well as within dissimilar eukaryotic, archaeal and bacterial organisms. From these analyses, we infer that Asgard organisms rely mostly on the transport of substrates driven by the proton motive force (pmf), the proton electrochemical gradient which then can be used for ATP production and to drive the activities of secondary carriers. The results indicate that Asgard archaea depend heavily on the uptake of organic molecules such as lipid precursors, amino acids and their derivatives, and sugars and their derivatives. Overall, the majority of the transporters identified are more similar to prokaryotic transporters than eukaryotic systems although several instances of the reverse were documented. Taken together, the results support the previous suggestions that the Asgard superphylum includes organisms that are largely mixotrophic and anaerobic but more clearly define their metabolic potential while providing evidence regarding their relatedness to eukaryotes.
Collapse
Affiliation(s)
- Steven Russum
- Division of Biological Sciences, Department of Molecular Biology, University of California at San Diego, La Jolla, CA, United States of America
| | - Katie Jing Kay Lam
- Division of Biological Sciences, Department of Molecular Biology, University of California at San Diego, La Jolla, CA, United States of America
| | - Nicholas Alan Wong
- Division of Biological Sciences, Department of Molecular Biology, University of California at San Diego, La Jolla, CA, United States of America
| | - Vasu Iddamsetty
- Division of Biological Sciences, Department of Molecular Biology, University of California at San Diego, La Jolla, CA, United States of America
| | - Kevin J. Hendargo
- Division of Biological Sciences, Department of Molecular Biology, University of California at San Diego, La Jolla, CA, United States of America
| | - Jianing Wang
- Division of Biological Sciences, Department of Molecular Biology, University of California at San Diego, La Jolla, CA, United States of America
| | - Aditi Dubey
- Division of Biological Sciences, Department of Molecular Biology, University of California at San Diego, La Jolla, CA, United States of America
| | - Yichi Zhang
- Division of Biological Sciences, Department of Molecular Biology, University of California at San Diego, La Jolla, CA, United States of America
| | - Arturo Medrano-Soto
- Division of Biological Sciences, Department of Molecular Biology, University of California at San Diego, La Jolla, CA, United States of America
- * E-mail: (MHS); (AMS)
| | - Milton H. Saier
- Division of Biological Sciences, Department of Molecular Biology, University of California at San Diego, La Jolla, CA, United States of America
- * E-mail: (MHS); (AMS)
| |
Collapse
|
163
|
Marsh WS, Heise BW, Krzmarzick MJ, Murdoch RW, Fathepure BZ. Isolation and characterization of a halophilic Modicisalibacter sp. strain Wilcox from produced water. Sci Rep 2021; 11:6943. [PMID: 33767228 PMCID: PMC7994583 DOI: 10.1038/s41598-021-86196-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 03/05/2021] [Indexed: 12/11/2022] Open
Abstract
We report the isolation a halophilic bacterium that degrades both aromatic and aliphatic hydrocarbons as the sole sources of carbon at high salinity from produced water. Phylogenetic analysis of 16S rRNA-gene sequences shows the isolate is a close relative of Modicisalibacter tunisiensis isolated from an oil-field water in Tunisia. We designate our isolate as Modicisalibacter sp. strain Wilcox. Genome analysis of strain Wilcox revealed the presence of a repertoire of genes involved in the metabolism of aliphatic and aromatic hydrocarbons. Laboratory culture studies corroborated the predicted hydrocarbon degradation potential. The strain degraded benzene, toluene, ethylbenzene, and xylenes at salinities ranging from 0.016 to 4.0 M NaCl, with optimal degradation at 1 M NaCl. Also, the strain degraded phenol, benzoate, biphenyl and phenylacetate as the sole sources of carbon at 2.5 M NaCl. Among aliphatic compounds, the strain degraded n-decane and n-hexadecane as the sole sources of carbon at 2.5 M NaCl. Genome analysis also predicted the presence of many heavy metal resistance genes including genes for metal efflux pumps, transport proteins, and enzymatic detoxification. Overall, due to its ability to degrade many hydrocarbons and withstand high salt and heavy metals, strain Wilcox may prove useful for remediation of produced waters.
Collapse
Affiliation(s)
- William S Marsh
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Brenden W Heise
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Mark J Krzmarzick
- Civil and Environmental Engineering, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Robert W Murdoch
- Center for Environmental Biotechnology, University of Tennessee, Knoxville, TN, 37996, USA
- Battelle Memorial Institute, Columbus, OH, 43201, USA
| | - Babu Z Fathepure
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, 74078, USA.
| |
Collapse
|
164
|
Thirman J, Rui H, Roux B. Elusive Intermediate State Key in the Conversion of ATP Hydrolysis into Useful Work Driving the Ca 2+ Pump SERCA. J Phys Chem B 2021; 125:2921-2928. [PMID: 33720716 DOI: 10.1021/acs.jpcb.1c00558] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
A key event in the ATP-driven transport cycle of the calcium pump sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) occurs when autophosphorylation of the pump with two bound ions Ca2+ triggers a large conformational change that opens a gate on the luminal side of the membrane allowing the release of the ions. It is believed that this conformational transition proceeds through a two-step mechanism, with an initial rearrangement of the three cytoplasmic domains of the pump responsible for ATP binding and hydrolysis followed by the opening of the gate toward the luminal side in the transmembrane region. Here, molecular dynamics computation of the free energy landscapes associated with this transition show how, in response to phosphorylation, the cytoplasmic domains are partially reconfigured into an intermediate state on the path toward the E2 state with a closed luminal gate. It is suggested that the free energy associated with this conformational reorganization must subsequently be used to drive the opening of the gate on the luminal side.
Collapse
Affiliation(s)
- Jonathan Thirman
- Department of Chemistry, Gordon Center for Integrative Science, University of Chicago, Chicago, Illinois 60637, United States
| | - Huan Rui
- Department of Chemistry, Gordon Center for Integrative Science, University of Chicago, Chicago, Illinois 60637, United States
| | - Benoît Roux
- Department of Chemistry, Gordon Center for Integrative Science, University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
165
|
Shukla S, Baumgart T. Enzymatic trans-bilayer lipid transport: Mechanisms, efficiencies, slippage, and membrane curvature. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2021; 1863:183534. [PMID: 33340491 PMCID: PMC8351443 DOI: 10.1016/j.bbamem.2020.183534] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 12/03/2020] [Accepted: 12/07/2020] [Indexed: 12/12/2022]
Abstract
The eukaryotic plasma membrane's lipid composition is found to be ubiquitously asymmetric comparing inner and outer leaflets. This membrane lipid asymmetry plays a crucial role in diverse cellular processes critical for cell survival. A specialized set of transmembrane proteins called translocases, or flippases, have evolved to maintain this membrane lipid asymmetry in an energy-dependent manner. One potential consequence of local variations in membrane lipid asymmetry is membrane remodeling, which is essential for cellular processes such as intracellular trafficking. Recently, there has been a surge in the identification and characterization of flippases, which has significantly advanced the understanding of their functional mechanisms. Furthermore, there are intriguing possibilities for a coupling between membrane curvature and flippase activity. In this review we highlight studies that link membrane shape and remodeling to differential stresses generated by the activity of lipid flippases with an emphasis on data obtained through model membrane systems. We review the common mechanistic models of flippase-mediated lipid flipping and discuss common techniques used to test lipid flippase activity. We then compare the existing data on lipid translocation rates by flippases and conclude with potential future directions for this field.
Collapse
Affiliation(s)
- Sankalp Shukla
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Tobias Baumgart
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, United States.
| |
Collapse
|
166
|
The transport mechanism of P4 ATPase lipid flippases. Biochem J 2021; 477:3769-3790. [PMID: 33045059 DOI: 10.1042/bcj20200249] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 09/02/2020] [Accepted: 09/16/2020] [Indexed: 12/18/2022]
Abstract
P4 ATPase lipid flippases are ATP-driven transporters that translocate specific lipids from the exoplasmic to the cytosolic leaflet of biological membranes, thus establishing a lipid gradient between the two leaflets that is essential for many cellular processes. While substrate specificity, subcellular and tissue-specific expression, and physiological functions have been assigned to a number of these transporters in several organisms, the mechanism of lipid transport has been a topic of intense debate in the field. The recent publication of a series of structural models based on X-ray crystallography and cryo-EM studies has provided the first glimpse into how P4 ATPases have adapted the transport mechanism used by the cation-pumping family members to accommodate a substrate that is at least an order of magnitude larger than cations.
Collapse
|
167
|
Elevator-type mechanisms of membrane transport. Biochem Soc Trans 2021; 48:1227-1241. [PMID: 32369548 PMCID: PMC7329351 DOI: 10.1042/bst20200290] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 03/29/2020] [Accepted: 03/31/2020] [Indexed: 12/13/2022]
Abstract
Membrane transporters are integral membrane proteins that mediate the passage of solutes across lipid bilayers. These proteins undergo conformational transitions between outward- and inward-facing states, which lead to alternating access of the substrate-binding site to the aqueous environment on either side of the membrane. Dozens of different transporter families have evolved, providing a wide variety of structural solutions to achieve alternating access. A sub-set of structurally diverse transporters operate by mechanisms that are collectively named 'elevator-type'. These transporters have one common characteristic: they contain a distinct protein domain that slides across the membrane as a rigid body, and in doing so it 'drags" the transported substrate along. Analysis of the global conformational changes that take place in membrane transporters using elevator-type mechanisms reveals that elevator-type movements can be achieved in more than one way. Molecular dynamics simulations and experimental data help to understand how lipid bilayer properties may affect elevator movements and vice versa.
Collapse
|
168
|
Calisto F, Sousa FM, Sena FV, Refojo PN, Pereira MM. Mechanisms of Energy Transduction by Charge Translocating Membrane Proteins. Chem Rev 2021; 121:1804-1844. [PMID: 33398986 DOI: 10.1021/acs.chemrev.0c00830] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Life relies on the constant exchange of different forms of energy, i.e., on energy transduction. Therefore, organisms have evolved in a way to be able to harvest the energy made available by external sources (such as light or chemical compounds) and convert these into biological useable energy forms, such as the transmembrane difference of electrochemical potential (Δμ̃). Membrane proteins contribute to the establishment of Δμ̃ by coupling exergonic catalytic reactions to the translocation of charges (electrons/ions) across the membrane. Irrespectively of the energy source and consequent type of reaction, all charge-translocating proteins follow two molecular coupling mechanisms: direct- or indirect-coupling, depending on whether the translocated charge is involved in the driving reaction. In this review, we explore these two coupling mechanisms by thoroughly examining the different types of charge-translocating membrane proteins. For each protein, we analyze the respective reaction thermodynamics, electron transfer/catalytic processes, charge-translocating pathways, and ion/substrate stoichiometries.
Collapse
Affiliation(s)
- Filipa Calisto
- Instituto de Tecnologia Química e Biológica-António Xavier, Universidade Nova de Lisboa, Av. da República EAN, 2780-157, Oeiras, Portugal.,BioISI-Biosystems & Integrative Sciences Institute, University of Lisboa, Faculty of Sciences, Campo Grande, 1749-016 Lisboa, Portugal
| | - Filipe M Sousa
- Instituto de Tecnologia Química e Biológica-António Xavier, Universidade Nova de Lisboa, Av. da República EAN, 2780-157, Oeiras, Portugal.,BioISI-Biosystems & Integrative Sciences Institute, University of Lisboa, Faculty of Sciences, Campo Grande, 1749-016 Lisboa, Portugal
| | - Filipa V Sena
- Instituto de Tecnologia Química e Biológica-António Xavier, Universidade Nova de Lisboa, Av. da República EAN, 2780-157, Oeiras, Portugal.,BioISI-Biosystems & Integrative Sciences Institute, University of Lisboa, Faculty of Sciences, Campo Grande, 1749-016 Lisboa, Portugal
| | - Patricia N Refojo
- Instituto de Tecnologia Química e Biológica-António Xavier, Universidade Nova de Lisboa, Av. da República EAN, 2780-157, Oeiras, Portugal
| | - Manuela M Pereira
- Instituto de Tecnologia Química e Biológica-António Xavier, Universidade Nova de Lisboa, Av. da República EAN, 2780-157, Oeiras, Portugal.,BioISI-Biosystems & Integrative Sciences Institute, University of Lisboa, Faculty of Sciences, Campo Grande, 1749-016 Lisboa, Portugal
| |
Collapse
|
169
|
Popova LG, Matalin DA, Balnokin YV. Electrogenesis in Plasma Membrane Fraction of Halotolerant Microalga Dunaliella maritima and Effects of N,N'-Dicyclohexylcarbodiimide. BIOCHEMISTRY (MOSCOW) 2021; 85:930-937. [PMID: 33045953 DOI: 10.1134/s0006297920080088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The effects of N,N'-dicyclohexylcarbodiimide (DCCD), non-specific inhibitor of various transport systems functioning in biological membranes, on Na+-transporting P-type ATPase of the green halotolerant microalga Dunaliella maritima were studied in the experiments with vesicular plasma membranes isolated from the alga cells. The effects of DCCD on electrogenic/ion transport function of the enzyme and its ATP hydrolase activity were investigated. Electrogenic/ion transport function of the enzyme was recorded as a Na+-dependent generation of electric potential on the vesicle membranes with the help of the potential-sensitive probe oxonol VI. It was found that unlike many other ion-transporting ATPases, the Na+-ATPase of D. maritima is insensitive to DCCD. This agent did not inhibit either ATP hydrolysis catalyzed by this enzyme or its transport activity. At the same time DCCD affected the ability of the vesicle membranes to maintain electric potential generated by the D. maritima Na+-ATPase. The observed effects can be explained based on the assumption that DCCD interacts with the Na+/H+ antiporter in the plasma membrane of D. maritima.
Collapse
Affiliation(s)
- L G Popova
- Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Moscow, 127276, Russia.
| | - D A Matalin
- Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Moscow, 127276, Russia
| | - Yu V Balnokin
- Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Moscow, 127276, Russia
| |
Collapse
|
170
|
López-Marqués RL. Lipid flippases in polarized growth. Curr Genet 2021; 67:255-262. [PMID: 33388852 DOI: 10.1007/s00294-020-01145-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 12/02/2020] [Accepted: 12/04/2020] [Indexed: 12/31/2022]
Abstract
Polarized growth is required in eukaryotic cells for processes such as cell division, morphogenesis and motility, which involve conserved and interconnected signalling pathways controlling cell cycle progression, cytoskeleton reorganization and secretory pathway functioning. While many of the factors involved in polarized growth are known, it is not yet clear how they are coordinated both spatially and temporally. Several lines of evidence point to the important role of lipid flippases in polarized growth events. Lipid flippases, which mainly belong to the P4 subfamily of P-type ATPases, are active transporters that move different lipids to the cytosolic side of biological membranes at the expense of ATP. The involvement of the Saccharomyces cerevisiae plasma membrane P4 ATPases Dnf1p and Dnf2p in polarized growth and their activation by kinase phosphorylation were established some years ago. However, these two proteins do not seem to be responsible for the phosphatidylserine internalization required for early recruitment of proteins to the plasma membrane during yeast mating and budding. In a recent publication, we demonstrated that the Golgi-localized P4 ATPase Dnf3p has a preference for PS as a substrate, can reach the plasma membrane in a cell cycle-dependent manner, and is regulated by the same kinases that activate Dnf1p and Dnf2p. This finding solves a long-lasting enigma in the field of lipid flippases and suggests that tight and heavily coordinated spatiotemporal control of lipid translocation at the plasma membrane is important for proper polarized growth.
Collapse
Affiliation(s)
- Rosa Laura López-Marqués
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark.
| |
Collapse
|
171
|
Kumar V, Pandita S, Singh Sidhu GP, Sharma A, Khanna K, Kaur P, Bali AS, Setia R. Copper bioavailability, uptake, toxicity and tolerance in plants: A comprehensive review. CHEMOSPHERE 2021; 262:127810. [PMID: 32763578 DOI: 10.1016/j.chemosphere.2020.127810] [Citation(s) in RCA: 213] [Impact Index Per Article: 53.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 07/14/2020] [Accepted: 07/21/2020] [Indexed: 05/04/2023]
Abstract
Copper (Cu) is an essential element for humans and plants when present in lesser amount, while in excessive amounts it exerts detrimental effects. There subsists a narrow difference amid the indispensable, positive and detrimental concentration of Cu in living system, which substantially alters with Cu speciation, and form of living organisms. Consequently, it is vital to monitor its bioavailability, speciation, exposure levels and routes in the living organisms. The ingestion of Cu-laced food crops is the key source of this heavy metal toxicity in humans. Hence, it is necessary to appraise the biogeochemical behaviour of Cu in soil-plant system with esteem to their quantity and speciation. On the basis of existing research, this appraisal traces a probable connexion midst: Cu levels, sources, chemistry, speciation and bioavailability in the soil. Besides, the functions of protein transporters in soil-plant Cu transport, and the detrimental effect of Cu on morphological, physiological and nutrient uptake in plants has also been discussed in the current manuscript. Mechanisms related to detoxification strategies like antioxidative response and generation of glutathione and phytochelatins to combat Cu-induced toxicity in plants is discussed as well. We also delimits the Cu accretion in food crops and allied health perils from soils encompassing less or high Cu quantity. Finally, an overview of various techniques involved in the reclamation and restoration of Cu-contaminated soils has been provided.
Collapse
Affiliation(s)
- Vinod Kumar
- Department of Botany, Government Degree College, Ramban, Jammu, 182144, India.
| | - Shevita Pandita
- Department of Botany, University of Jammu, Jammu and Kashmir, India
| | - Gagan Preet Singh Sidhu
- Centre for Applied Biology in Environment Sciences, Kurukshetra University, Kurukshetra, 136119, India
| | - Anket Sharma
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou, 311300, China
| | - Kanika Khanna
- Independent Researcher, House No.282, Lane no. 3, Friends Colony, Opposite DAV College, Jalandhar, 144008, Punjab, India
| | - Parminder Kaur
- Independent Researcher, House No. 472, Ward No. 8, Dhariwal, Gurdaspur, 143519, Punjab, India
| | - Aditi Shreeya Bali
- Department of Botany, Dyal Singh College, Karnal, Haryana, 132001, India
| | - Raj Setia
- Punjab Remote Sensing Centre, Ludhiana, India
| |
Collapse
|
172
|
Christensen SB, Simonsen HT, Engedal N, Nissen P, Møller JV, Denmeade SR, Isaacs JT. From Plant to Patient: Thapsigargin, a Tool for Understanding Natural Product Chemistry, Total Syntheses, Biosynthesis, Taxonomy, ATPases, Cell Death, and Drug Development. PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS 2021; 115:59-114. [PMID: 33797641 DOI: 10.1007/978-3-030-64853-4_2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Thapsigargin, the first representative of the hexaoxygenated guaianolides, was isolated 40 years ago in order to understand the skin-irritant principles of the resin of the umbelliferous plant Thapsia garganica. The pronounced cytotoxicity of thapsigargin is caused by highly selective inhibition of the intracellular sarco-endoplasmic Ca2+-ATPase (SERCA) situated on the membrane of the endo- or sarcoplasmic reticulum. Thapsigargin is selective to the SERCA pump and to a minor extent the secretory pathway Ca2+/Mn2+ ATPase (SPCA) pump. Thapsigargin has become a tool for investigation of the importance of SERCA in intracellular calcium homeostasis. In addition, complex formation of thapsigargin with SERCA has enabled crystallization and structure determination of calcium-free states by X-ray crystallography. These results led to descriptions of the mechanism of action and kinetic properties of SERCA and other ATPases. Inhibition of SERCA depletes Ca2+ from the sarco- and endoplasmic reticulum provoking the unfolded protein response, and thereby has enabled new studies on the mechanism of cell death. Development of protocols for selective transformation of thapsigargin disclosed the chemistry and facilitated total synthesis of the molecule. Conversion of trilobolide into thapsigargin offered an economically feasible sustainable source of thapsigargin, which enables a future drug production. Principles for prodrug development were used by conjugating a payload derived from thapsigargin with a hydrophilic peptide selectively cleaved by proteases in the tumor. Mipsagargin was developed in order to obtain a drug for treatment of cancer diseases characterized by the presence of prostate specific membrane antigen (PSMA) in the neovascular tissue of the tumors. Even though mipsagargin showed interesting clinical effects the results did not encourage funding and consequently the attempt to register the drug has been abandoned. In spite of this disappointing fact, the research performed to develop the drug has resulted in important scientific discoveries concerning the chemistry, biosynthesis and biochemistry of sesquiterpene lactones, the mechanism of action of ATPases including SERCA, mechanisms for cell death caused by the unfolded protein response, and the use of prodrugs for cancer-targeting cytotoxins. The presence of toxins in only some species belonging to Thapsia also led to a major revision of the taxonomy of the genus.
Collapse
Affiliation(s)
- Søren Brøgger Christensen
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen Ø, Denmark.
| | - Henrik Toft Simonsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, Bld 223, 2800, Kgs. Lyngby, Denmark
| | - Nikolai Engedal
- Department of Tumor Biology, Institute for Cancer Research, University Hospital, Montebello, 0379, Oslo, Norway
| | - Poul Nissen
- Department of Molecular Biology and Genetics, Danish Research Institute of Translational Neuroscience - DANDRITE, Nordic EMBL Partnership for Molecular Medicine, Aarhus University, Gustav Wieds Vej 10C, 8000, Aarhus C, Denmark
| | - Jesper Vuust Møller
- Department of Biomedicine, Aarhus University, Ole Worms Allé 3, Bld 1182, Room 114, 8000, Aarhus C, Denmark
| | - Samuel R Denmeade
- Department of Oncology, Prostate Cancer Program, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins Maryland, The Johns Hopkins University School of Medicine, Baltimore, The Bunting-Blaustein Cancer Research Building, 1650 Orleans Street, Baltimore, MD, 21231, USA
| | - John T Isaacs
- Department of Oncology, Prostate Cancer Program, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins Maryland, The Johns Hopkins University School of Medicine, Baltimore, The Bunting-Blaustein Cancer Research Building, 1650 Orleans Street, Baltimore, MD, 21231, USA
| |
Collapse
|
173
|
Fujii T. [Different Membrane Environments Generate Multiple Functions of P-type Ion Pumps]. YAKUGAKU ZASSHI 2021; 141:1217-1222. [PMID: 34719540 DOI: 10.1248/yakushi.21-00135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
P-type ion pumps (P-type ATPases) are involved in various fundamental biological processes. For example, the gastric proton pump (H+,K+-ATPase) and sodium pump (Na+,K+-ATPase) are responsible for secretion of gastric acid and maintenance of cell membrane potential, respectively. In this review, we summarize three topics of our studies. The first topic is gastric H+,K+-ATPase associated with Cl--transporting proteins (Cl-/H+ exchanger ClC-5 and K+-Cl- cotransporter KCC4). In gastric parietal cells, we found that ClC-5 is predominantly expressed in intracellular tubulovesicles and that KCC4 is predominantly expressed in the apical membrane. Gastric acid (HCl) secretion may be accomplished by the two different complexes of H+,K+-ATPase and Cl--transporting protein. The second topic focuses on the Na+,K+-ATPase α1-isoform (α1NaK) associated with the volume-regulated anion channel (VRAC). In the cholesterol-enriched membrane microdomains of human cancer cells, we found that α1NaK has a receptor-like (non-pumping) function and that binding of low concentrations (nM level) of cardiac glycosides to α1NaK activates VRAC and exerts anti-cancer effects without affecting the pumping function of α1NaK. The third topic is the Na+,K+-ATPase α3-isoform (α3NaK) in human cancer cells. We found that α3NaK is abnormally expressed in the intracellular vesicles of attached cancer cells and that the plasma membrane translocation of α3NaK upon cell detachment contributes to the survival of metastatic cancer cells. Our results indicate that multiple functions of P-type ion pumps are generated by different membrane environments and their associated proteins.
Collapse
Affiliation(s)
- Takuto Fujii
- Department of Pharmaceutical Physiology, Faculty of Pharmaceutical Sciences, University of Toyama
| |
Collapse
|
174
|
Chen K, Günay-Esiyok Ö, Klingeberg M, Marquardt S, Pomorski TG, Gupta N. Aminoglycerophospholipid flipping and P4-ATPases in Toxoplasma gondii. J Biol Chem 2021; 296:100315. [PMID: 33485966 PMCID: PMC7949121 DOI: 10.1016/j.jbc.2021.100315] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 12/29/2020] [Accepted: 01/13/2021] [Indexed: 11/30/2022] Open
Abstract
Lipid flipping in the membrane bilayers is a widespread eukaryotic phenomenon that is catalyzed by assorted P4-ATPases. Its occurrence, mechanism, and importance in apicomplexan parasites have remained elusive, however. Here we show that Toxoplasma gondii, an obligate intracellular parasite with high clinical relevance, can salvage phosphatidylserine (PtdSer) and phosphatidylethanolamine (PtdEtn) but not phosphatidylcholine (PtdCho) probes from its milieu. Consistently, the drug analogs of PtdCho are broadly ineffective in the parasite culture. NBD-PtdSer imported to the parasite interior is decarboxylated to NBD-PtdEtn, while the latter is not methylated to yield PtdCho, which confirms the expression of PtdSer decarboxylase but a lack of PtdEtn methyltransferase activity and suggests a role of exogenous lipids in membrane biogenesis of T. gondii. Flow cytometric quantitation of NBD-probes endorsed the selectivity of phospholipid transport and revealed a dependence of the process on energy and protein. Accordingly, our further work identified five P4-ATPases (TgP4-ATPase1-5), all of which harbor the signature residues and motifs required for phospholipid flipping. Of the four proteins expressed during the lytic cycle, TgP4-ATPase1 is present in the apical plasmalemma; TgP4-ATPase3 resides in the Golgi network along with its noncatalytic partner Ligand Effector Module 3 (TgLem3), whereas TgP4-ATPase2 and TgP4-ATPase5 localize in the plasmalemma as well as endo/cytomembranes. Last but not least, auxin-induced degradation of TgP4-ATPase1-3 impaired the parasite growth in human host cells, disclosing their crucial roles during acute infection. In conclusion, we show selective translocation of PtdEtn and PtdSer at the parasite surface and provide the underlying mechanistic and physiological insights in a model eukaryotic pathogen.
Collapse
Affiliation(s)
- Kai Chen
- Department of Molecular Parasitology, Faculty of Life Sciences, Humboldt University, Berlin, Germany
| | - Özlem Günay-Esiyok
- Department of Molecular Parasitology, Faculty of Life Sciences, Humboldt University, Berlin, Germany
| | - Melissa Klingeberg
- Department of Molecular Parasitology, Faculty of Life Sciences, Humboldt University, Berlin, Germany
| | - Stephan Marquardt
- Department of Molecular Parasitology, Faculty of Life Sciences, Humboldt University, Berlin, Germany; Department of Experimental Biophysics, Faculty of Life Sciences, Humboldt University, Berlin, Germany
| | - Thomas Günther Pomorski
- Department of Experimental Biophysics, Faculty of Life Sciences, Humboldt University, Berlin, Germany
| | - Nishith Gupta
- Department of Molecular Parasitology, Faculty of Life Sciences, Humboldt University, Berlin, Germany; Department of Biological Sciences, Birla Institute of Technology and Science Pilani (BITS-P), Hyderabad, India.
| |
Collapse
|
175
|
Abstract
Plants are an important part of nature because as photoautotrophs, they provide a nutrient source for many other living organisms. Due to their sessile nature, to overcome both biotic and abiotic stresses, plants have developed intricate mechanisms for perception of and reaction to these stresses, both on an external level (perception) and on an internal level (reaction). Specific proteins found within cells play crucial roles in stress mitigation by enhancing cellular processes that facilitate the plants survival during the unfavorable conditions. Well before plants are able to synthesize nascent proteins in response to stress, proteins which already exist in the cell can be subjected to an array of posttranslation modifications (PTMs) that permit a rapid response. These activated proteins can, in turn, aid in further stress responses. Different PTMs have different functions in growth and development of plants. Protein phosphorylation, a reversible form of modification has been well elucidated, and its role in signaling cascades is well documented. In this mini-review, we discuss the integration of protein phosphorylation with other components of abiotic stress-responsive pathways including phytohormones and ion homeostasis. Overall, this review demonstrates the high interconnectivity of the stress response system in plants and how readily plants are able to toggle between various signaling pathways in order to survive harsh conditions. Most notably, fluctuations of the cytosolic calcium levels seem to be a linking component of the various signaling pathways.
Collapse
Affiliation(s)
- Rebecca Njeri Damaris
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Science, Hubei University, Wuhan, China
| | - Pingfang Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Science, Hubei University, Wuhan, China.
| |
Collapse
|
176
|
Golub N, Shynkarchuk A, Kozlovets O, Xinhua S. Influence of Heavy Metals on the Process of Anaerobic Fermentation of Biomass by the Consortia of Anaerobic Microorganisms. INNOVATIVE BIOSYSTEMS AND BIOENGINEERING 2020. [DOI: 10.20535/ibb.2020.4.4.211227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
|
177
|
Zhang Z, Bao YY, Zhou SH. Pump Proton and Laryngeal H +/K + ATPases. Int J Gen Med 2020; 13:1509-1514. [PMID: 33363399 PMCID: PMC7754099 DOI: 10.2147/ijgm.s284952] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 11/20/2020] [Indexed: 12/14/2022] Open
Abstract
Purpose The presence of extra-gastric H+/K+ ATPases may explain the clinically significant effect of proton pump inhibitor (PPI) pharmacotherapy in patients with chronic laryngitis related to laryngopharyngeal reflux disease (LPRD) but without gastroesophageal reflux disease (GERD) symptoms. Given the need for a better understanding of GERD and LPRD, we review the various proton pumps with respect to their classification, function, and distribution. We then consider the potential role of the laryngeal H+/K+ ATPase pump in LPRD. Methods We searched databases of PubMed, EMBASE, and Web of Science to achieve related published before September 15, 2020. Results There were only seven English-literatures meeting inclusive criteria about laryngeal H+/K+ ATPases. Some studies provide convincing evidence of a laryngeal H+/K+ ATPase in normal laryngeal tissues but also suggest the potential role of the proton pump in the abnormal mucus secretion frequently seen in patients with chronic laryngitis. Conclusion A laryngeal H+/K+ ATPase expresses in normal laryngeal tissues. These findings question the current understanding of GERD and LPRD.
Collapse
Affiliation(s)
- Zhe Zhang
- Department of Otolaryngology, Peoples Hospital of Yuyao City, Yuyao 315400, Zhejiang, People's Republic of China
| | - Yang-Yang Bao
- Department of Otolaryngology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, People's Republic of China
| | - Shui-Hong Zhou
- Department of Otolaryngology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, People's Republic of China
| |
Collapse
|
178
|
Dyla M, Kjærgaard M, Poulsen H, Nissen P. Structure and Mechanism of P-Type ATPase Ion Pumps. Annu Rev Biochem 2020; 89:583-603. [PMID: 31874046 DOI: 10.1146/annurev-biochem-010611-112801] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
P-type ATPases are found in all kingdoms of life and constitute a wide range of cation transporters, primarily for H+, Na+, K+, Ca2+, and transition metal ions such as Cu(I), Zn(II), and Cd(II). They have been studied through a wide range of techniques, and research has gained very significant insight on their transport mechanism and regulation. Here, we review the structure, function, and dynamics of P2-ATPases including Ca2+-ATPases and Na,K-ATPase. We highlight mechanisms of functional transitions that are associated with ion exchange on either side of the membrane and how the functional cycle is regulated by interaction partners, autoregulatory domains, and off-cycle states. Finally, we discuss future perspectives based on emerging techniques and insights.
Collapse
Affiliation(s)
- Mateusz Dyla
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark; .,Danish Research Institute of Translational Neuroscience (DANDRITE), Nordic European Molecular Biology Laboratory (EMBL) Partnership for Molecular Medicine, 8000 Aarhus, Denmark
| | - Magnus Kjærgaard
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark; .,Danish Research Institute of Translational Neuroscience (DANDRITE), Nordic European Molecular Biology Laboratory (EMBL) Partnership for Molecular Medicine, 8000 Aarhus, Denmark
| | - Hanne Poulsen
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark; .,Danish Research Institute of Translational Neuroscience (DANDRITE), Nordic European Molecular Biology Laboratory (EMBL) Partnership for Molecular Medicine, 8000 Aarhus, Denmark
| | - Poul Nissen
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark; .,Danish Research Institute of Translational Neuroscience (DANDRITE), Nordic European Molecular Biology Laboratory (EMBL) Partnership for Molecular Medicine, 8000 Aarhus, Denmark
| |
Collapse
|
179
|
Song T, Shen Y, Jin Q, Feng W, Fan L, Cai W. Comparative phosphoproteome analysis to identify candidate phosphoproteins involved in blue light-induced brown film formation in Lentinula edodes. PeerJ 2020; 8:e9859. [PMID: 33384895 PMCID: PMC7751435 DOI: 10.7717/peerj.9859] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 08/12/2020] [Indexed: 01/30/2023] Open
Abstract
Light plays an important role in the growth and differentiation of Lentinula edodes mycelia, and mycelial morphology is influenced by light wavelengths. The blue light-induced formation of brown film on the vegetative mycelial tissues of L. edodes is an important process. However, the mechanisms of L. edodes' brown film formation, as induced by blue light, are still unclear. Using a high-resolution liquid chromatography-tandem mass spectrometry integrated with a highly sensitive immune-affinity antibody method, phosphoproteomes of L. edodes mycelia under red- and blue-light conditions were analyzed. A total of 11,224 phosphorylation sites were identified on 2,786 proteins, of which 9,243 sites on 2,579 proteins contained quantitative information. In total, 475 sites were up-regulated and 349 sites were down-regulated in the blue vs red group. To characterize the differentially phosphorylated proteins, systematic bioinformatics analyses, including gene ontology annotations, domain annotations, subcellular localizations, and Kyoto Encyclopedia of Genes and Genomes pathway annotations, were performed. These differentially phosphorylated proteins were correlated with light signal transduction, cell wall degradation, and melanogenesis, suggesting that these processes are involved in the formation of the brown film. Our study provides new insights into the molecular mechanisms of the blue light-induced brown film formation at the post-translational modification level.
Collapse
Affiliation(s)
- Tingting Song
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Yingyue Shen
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Qunli Jin
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Weilin Feng
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Lijun Fan
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Weiming Cai
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| |
Collapse
|
180
|
Mou YN, Gao BJ, Ren K, Tong SM, Ying SH, Feng MG. P-type Na +/K + ATPases essential and nonessential for cellular homeostasis and insect pathogenicity of Beauveria bassiana. Virulence 2020; 11:1415-1431. [PMID: 33103596 PMCID: PMC7588218 DOI: 10.1080/21505594.2020.1836903] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 08/11/2020] [Accepted: 10/11/2020] [Indexed: 02/06/2023] Open
Abstract
ENA1 and ENA2 are P-type IID/ENA Na+/K+-ATPases required for cellular homeostasis in yeasts but remain poorly understood in filamentous fungal insect pathogens. Here, we characterized seven genes encoding five ENA1/2 homologues (ENA1a-c and ENA2a/b) and two P-type IIC/NK Na+/K+-ATPases (NK1/2) in Beauveria bassiana, an insect-pathogenic fungus serving as a main source of fungal insecticides worldwide. Most of these genes were highly responsive to alkaline pH and Na+/K+ cues at transcription level. Cellular Na+, K+ and H+ homeostasis was disturbed only in the absence of ena1a or ena2b. The disturbed homeostasis featured acceleration of vacuolar acidification, elevation of cytosolic Na+/K+ level at pH 5.0 to 9.0, and stabilization of extracellular H+ level to initial pH 7.5 during a 5-day period of submerged incubation. Despite little defect in hyphal growth and asexual development, the Δena1a and Δena2b mutants were less tolerant to metal cations (Na+, K+, Li+, Zn2+, Mn2+ and Fe3+), cell wall perturbation, oxidation, non-cation hyperosmolarity and UVB irradiation, severely compromised in insect pathogenicity via normal cuticle infection, and attenuated in virulence via hemocoel injection. The deletion mutants of five other ENA and NK genes showed little change in vacuolar pH and all examined phenotypes. Therefore, only ENA1a and ENA2b evidently involved in both transmembrane and vacuolar activities are essential for cellular cation homeostasis, insect pathogenicity and multiple stress tolerance in B. bassiana. These findings provide a novel insight into ENA1a- and ENA2b-dependent vacuolar pH stability, cation-homeostatic process and fungal fitness to host insect and environment.
Collapse
Affiliation(s)
- Ya-Ni Mou
- MOE Laboratory of Biosystems Homeostasis & Protection, Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Ben-Jie Gao
- MOE Laboratory of Biosystems Homeostasis & Protection, Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Kang Ren
- MOE Laboratory of Biosystems Homeostasis & Protection, Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Sen-Miao Tong
- College of Agricultural and Food Science, Zhejiang A&F University, Lin’an, Zhejiang, China
| | - Sheng-Hua Ying
- MOE Laboratory of Biosystems Homeostasis & Protection, Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Ming-Guang Feng
- MOE Laboratory of Biosystems Homeostasis & Protection, Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
181
|
Kozlova MI, Bushmakin IM, Belyaeva JD, Shalaeva DN, Dibrova DV, Cherepanov DA, Mulkidjanian AY. Expansion of the "Sodium World" through Evolutionary Time and Taxonomic Space. BIOCHEMISTRY. BIOKHIMIIA 2020; 85:1518-1542. [PMID: 33705291 DOI: 10.1134/s0006297920120056] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In 1986, Vladimir Skulachev and his colleagues coined the term "Sodium World" for the group of diverse organisms with sodium (Na)-based bioenergetics. Albeit only few such organisms had been discovered by that time, the authors insightfully noted that "the great taxonomic variety of organisms employing the Na-cycle points to the ubiquitous distribution of this novel type of membrane-linked energy transductions". Here we used tools of bioinformatics to follow expansion of the Sodium World through the evolutionary time and taxonomic space. We searched for those membrane protein families in prokaryotic genomes that correlate with the use of the Na-potential for ATP synthesis by different organisms. In addition to the known Na-translocators, we found a plethora of uncharacterized protein families; most of them show no homology with studied proteins. In addition, we traced the presence of Na-based energetics in many novel archaeal and bacterial clades, which were recently identified by metagenomic techniques. The data obtained support the view that the Na-based energetics preceded the proton-dependent energetics in evolution and prevailed during the first two billion years of the Earth history before the oxygenation of atmosphere. Hence, the full capacity of Na-based energetics in prokaryotes remains largely unexplored. The Sodium World expanded owing to the acquisition of new functions by Na-translocating systems. Specifically, most classes of G-protein-coupled receptors (GPCRs), which are targeted by almost half of the known drugs, appear to evolve from the Na-translocating microbial rhodopsins. Thereby the GPCRs of class A, with 700 representatives in human genome, retained the Na-binding site in the center of the transmembrane heptahelical bundle together with the capacity of Na-translocation. Mathematical modeling showed that the class A GPCRs could use the energy of transmembrane Na-potential for increasing both their sensitivity and selectivity. Thus, GPCRs, the largest protein family coded by human genome, stem from the Sodium World, which encourages exploration of other Na-dependent enzymes of eukaryotes.
Collapse
Affiliation(s)
- M I Kozlova
- School of Physics, Osnabrueck University, Osnabrueck, 49069, Germany. .,Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia
| | - I M Bushmakin
- School of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119992, Russia.
| | - J D Belyaeva
- School of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119992, Russia.
| | - D N Shalaeva
- School of Physics, Osnabrueck University, Osnabrueck, 49069, Germany.
| | - D V Dibrova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia.
| | - D A Cherepanov
- Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow, 119991, Russia.
| | - A Y Mulkidjanian
- School of Physics, Osnabrueck University, Osnabrueck, 49069, Germany. .,Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia.,School of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119992, Russia
| |
Collapse
|
182
|
Wang J, Chen J, Hu Y, Ying SH, Feng MG. Roles of six Hsp70 genes in virulence, cell wall integrity, antioxidant activity and multiple stress tolerance of Beauveria bassiana. Fungal Genet Biol 2020; 144:103437. [DOI: 10.1016/j.fgb.2020.103437] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 06/25/2020] [Accepted: 07/19/2020] [Indexed: 12/31/2022]
|
183
|
Qin Q, Zhao T, Zou W, Shen K, Wang X. An Endoplasmic Reticulum ATPase Safeguards Endoplasmic Reticulum Identity by Removing Ectopically Localized Mitochondrial Proteins. Cell Rep 2020; 33:108363. [DOI: 10.1016/j.celrep.2020.108363] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 08/05/2020] [Accepted: 10/19/2020] [Indexed: 11/29/2022] Open
|
184
|
He G, Qin L, Tian W, Meng L, He T, Zhao D. Heavy Metal Transporters-Associated Proteins in S. tuberosum: Genome-Wide Identification, Comprehensive Gene Feature, Evolution and Expression Analysis. Genes (Basel) 2020; 11:genes11111269. [PMID: 33126505 PMCID: PMC7694169 DOI: 10.3390/genes11111269] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/20/2020] [Accepted: 10/25/2020] [Indexed: 02/07/2023] Open
Abstract
Plants have evolved a number of defense and adaptation responses to protect themselves against challenging environmental stresses. Genes containing a heavy metal associated (HMA) domain are required for the spatiotemporal transportation of metal ions that bind with various enzymes and co-factors within the cell. To uncover the underlying mechanisms mediated by StHMA genes, we identified 36 gene members in the StHMA family and divided them into six subfamilies by phylogenetic analysis. The StHMAs had high collinearity and were segmentally duplicated. Structurally, most StHMAs had one HMA domain, StHIPPc and StRNA1 subfamilies had two, and 13 StHMAs may be genetically variable. The StHMA gene structures and motifs varied considerably among the various classifications, this suggests the StHMA family is diverse in genetic functions. The promoter analysis showed that the StHMAs had six main cis-acting elements with abiotic stress. An expression pattern analysis revealed that the StHMAs were expressed tissue specifically, and a variety of abiotic stresses may induce the expression of StHMA family genes. The HMA transporter family may be regulated and expressed by a series of complex signal networks under abiotic stress. The results of this study may help to establish a theoretical foundation for further research investigating the functions of HMA genes in Solanum tuberosum to elucidate their regulatory role in the mechanism governing the response of plants to abiotic stress.
Collapse
Affiliation(s)
- Guandi He
- The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Institute of Agro-Bioengineering and College of Life Sciences, Guizhou University, Guiyang 550025, China; (G.H.); (L.Q.)
| | - Lijun Qin
- The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Institute of Agro-Bioengineering and College of Life Sciences, Guizhou University, Guiyang 550025, China; (G.H.); (L.Q.)
| | - Weijun Tian
- Agricultural College, Guizhou University, Guiyang 550025, China; (W.T.); (L.M.)
| | - Lulu Meng
- Agricultural College, Guizhou University, Guiyang 550025, China; (W.T.); (L.M.)
| | - Tengbing He
- Agricultural College, Guizhou University, Guiyang 550025, China; (W.T.); (L.M.)
- Institute of New Rural Development of Guizhou University, Guiyang 550025, China
- Correspondence: (T.H.); (D.Z.)
| | - Degang Zhao
- The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Institute of Agro-Bioengineering and College of Life Sciences, Guizhou University, Guiyang 550025, China; (G.H.); (L.Q.)
- Guizhou Academy of Agricultural Science, Guiyang 550025, China
- Correspondence: (T.H.); (D.Z.)
| |
Collapse
|
185
|
Kabra R, Singh S. Transporter proteins and its implication in human diseases. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2020; 124:1-21. [PMID: 33632463 DOI: 10.1016/bs.apcsb.2020.08.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Drug transporters, classified in various ways like efflux transporters and influx transporters; secretory transporters and absorptive transporters; ATP-driven transporters and Solute Linked Carrier (SLC) transporters are of great importance while studying pharmacokinetics. They have impeccable roles in the drug discovery process of infectious diseases. Many of these find a pivotal role in synthetic antimicrobial peptides. The chapter briefly elucidates the varied types and their significance.
Collapse
Affiliation(s)
- Ritika Kabra
- National Centre for Cell Science, SP Pune University Campus, Pune, India
| | - Shailza Singh
- National Centre for Cell Science, SP Pune University Campus, Pune, India.
| |
Collapse
|
186
|
Dias T, Pimentel V, Cogo AJD, Costa R, Bertolazi AA, Miranda C, de Souza SB, Melo J, Carolino M, Varma A, Eutrópio F, Olivares FL, Ramos AC, Cruz C. The Free-Living Stage Growth Conditions of the Endophytic Fungus Serendipita indica May Regulate Its Potential as Plant Growth Promoting Microbe. Front Microbiol 2020; 11:562238. [PMID: 33072023 PMCID: PMC7536269 DOI: 10.3389/fmicb.2020.562238] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 08/26/2020] [Indexed: 01/11/2023] Open
Abstract
Serendipita indica (former Piriformospora indica) is a non-obligate endophytic fungus and generally a plant growth and defence promoter with high potential to be used in agriculture. However, S. indica may switch from biotrophy to saprotrophy losing its plant growth promoting traits. Our aim was to understand if the free-living stage growth conditions (namely C availability) regulate S. indica’s phenotype, and its potential as plant-growth-promoting-microbe (PGPM). We grew S. indica in its free-living stage under increasing C availabilities (2–20 g L–1 of glucose or sucrose). We first characterised the effect of C availability during free-living stage growth on fungal phenotype: colonies growth and physiology (plasma membrane proton pumps, stable isotopic signatures, and potential extracellular decomposing enzymes). The effect of the C availability during the free-living stage of the PGPM was evaluated on wheat. We observed that C availability during the free-living stage regulated S. indica’s growth, ultrastructure and physiology, resulting in two distinct colony phenotypes: compact and explorer. The compact phenotype developed at low C, used peptone as the major C and N source, and displayed higher decomposing potential for C providing substrates; while the explorer phenotype developed at high C, used glucose and sucrose as major C sources and casein and yeast extract as major N sources, and displayed higher decomposing potential for N and P providing substrates. The C availability, or the C/N ratio, during the free-living stage left a legacy to the symbiosis stage, regulating S. indica’s potential to promote plant growth: wheat growth promotion by the explorer phenotype was ± 40% higher than that by the compact phenotype. Our study highlights the importance of considering microbial ecology in designing PGPM/biofertilizers. Further studies are needed to test the phenotypes under more extreme conditions, and to understand if the in vitro acquired characteristics persist under field conditions.
Collapse
Affiliation(s)
- Teresa Dias
- Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| | - Vívian Pimentel
- Laboratory of Physiology and Biochemistry of Microorganisms, Universidade Estadual do Norte Fluminense, Campos dos Goytacazes, Brazil
| | | | - Raquel Costa
- Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| | - Amanda Azevedo Bertolazi
- Laboratory of Environmental Microbiology and Biotechnology, Universidade Vila Velha, Vila Velha, Brazil
| | - Camila Miranda
- Laboratory of Environmental Microbiology and Biotechnology, Universidade Vila Velha, Vila Velha, Brazil
| | - Sávio Bastos de Souza
- Plant Physiology Lab, Universidade Estadual do Norte Fluminense, Campos dos Goytacazes, Brazil
| | - Juliana Melo
- Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| | - Manuela Carolino
- Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| | - Ajit Varma
- Amity Institute of Microbial Technology, Amity University Uttar Pradesh, Noida, India
| | | | - Fábio Lopes Olivares
- Cell Tissue and Biology Lab, Universidade Estadual do Norte Fluminense, Campos dos Goytacazes, Brazil
| | - Alessandro Coutinho Ramos
- Laboratory of Environmental Microbiology and Biotechnology, Universidade Vila Velha, Vila Velha, Brazil
| | - Cristina Cruz
- Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
187
|
Sweet ME, Zhang X, Erdjument-Bromage H, Dubey V, Khandelia H, Neubert TA, Pedersen BP, Stokes DL. Serine phosphorylation regulates the P-type potassium pump KdpFABC. eLife 2020; 9:55480. [PMID: 32955430 PMCID: PMC7535926 DOI: 10.7554/elife.55480] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Accepted: 09/19/2020] [Indexed: 12/22/2022] Open
Abstract
KdpFABC is an ATP-dependent K+ pump that ensures bacterial survival in K+-deficient environments. Whereas transcriptional activation of kdpFABC expression is well studied, a mechanism for down-regulation when K+ levels are restored has not been described. Here, we show that KdpFABC is inhibited when cells return to a K+-rich environment. The mechanism of inhibition involves phosphorylation of Ser162 on KdpB, which can be reversed in vitro by treatment with serine phosphatase. Mutating Ser162 to Alanine produces constitutive activity, whereas the phosphomimetic Ser162Asp mutation inactivates the pump. Analyses of the transport cycle show that serine phosphorylation abolishes the K+-dependence of ATP hydrolysis and blocks the catalytic cycle after formation of the aspartyl phosphate intermediate (E1~P). This regulatory mechanism is unique amongst P-type pumps and this study furthers our understanding of how bacteria control potassium homeostasis to maintain cell volume and osmotic potential.
Collapse
Affiliation(s)
- Marie E Sweet
- Skirball Institute, Dept. of Cell Biology, New York University School of Medicine, New York, United States
| | - Xihui Zhang
- Skirball Institute, Dept. of Cell Biology, New York University School of Medicine, New York, United States
| | - Hediye Erdjument-Bromage
- Skirball Institute, Dept. of Cell Biology, New York University School of Medicine, New York, United States
| | - Vikas Dubey
- PHYLIFE, Physical Life Science, Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense, Denmark
| | - Himanshu Khandelia
- PHYLIFE, Physical Life Science, Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense, Denmark
| | - Thomas A Neubert
- Skirball Institute, Dept. of Cell Biology, New York University School of Medicine, New York, United States
| | - Bjørn P Pedersen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - David L Stokes
- Skirball Institute, Dept. of Cell Biology, New York University School of Medicine, New York, United States
| |
Collapse
|
188
|
Tadini-Buoninsegni F. Protein Adsorption on Solid Supported Membranes: Monitoring the Transport Activity of P-Type ATPases. Molecules 2020; 25:molecules25184167. [PMID: 32933017 PMCID: PMC7570688 DOI: 10.3390/molecules25184167] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 09/01/2020] [Accepted: 09/02/2020] [Indexed: 02/07/2023] Open
Abstract
P-type ATPases are a large family of membrane transporters that are found in all forms of life. These enzymes couple ATP hydrolysis to the transport of various ions or phospholipids across cellular membranes, thereby generating and maintaining crucial electrochemical potential gradients. P-type ATPases have been studied by a variety of methods that have provided a wealth of information about the structure, function, and regulation of this class of enzymes. Among the many techniques used to investigate P-type ATPases, the electrical method based on solid supported membranes (SSM) was employed to investigate the transport mechanism of various ion pumps. In particular, the SSM method allows the direct measurement of charge movements generated by the ATPase following adsorption of the membrane-bound enzyme on the SSM surface and chemical activation by a substrate concentration jump. This kind of measurement was useful to identify electrogenic partial reactions and localize ion translocation in the reaction cycle of the membrane transporter. In the present review, we discuss how the SSM method has contributed to investigate some key features of the transport mechanism of P-type ATPases, with a special focus on sarcoplasmic reticulum Ca2+-ATPase, mammalian Cu+-ATPases (ATP7A and ATP7B), and phospholipid flippase ATP8A2.
Collapse
|
189
|
Affiliation(s)
- Philippe Salles
- Department of Neurology, Center for Neurological Restoration, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA; Centro de Trastornos Del Movimiento, CETRAM, Santiago, Chile
| | - Hubert H Fernandez
- Department of Neurology, Center for Neurological Restoration, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA.
| |
Collapse
|
190
|
Khalid S, Newstead S. A Computational Swiss Army Knife Approach to Unraveling the Secrets of Proton Movement through SERCA. Biophys J 2020; 119:890-891. [DOI: 10.1016/j.bpj.2020.07.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 07/30/2020] [Indexed: 10/23/2022] Open
|
191
|
Vandepol N, Liber J, Desirò A, Na H, Kennedy M, Barry K, Grigoriev IV, Miller AN, O'Donnell K, Stajich JE, Bonito G. Resolving the Mortierellaceae phylogeny through synthesis of multi-gene phylogenetics and phylogenomics. FUNGAL DIVERS 2020; 104:267-289. [PMID: 33364917 PMCID: PMC7751987 DOI: 10.1007/s13225-020-00455-5] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 07/25/2020] [Indexed: 12/15/2022]
Abstract
Early efforts to classify Mortierellaceae were based on macro- and micromorphology, but sequencing and phylogenetic studies with ribosomal DNA (rDNA) markers have demonstrated conflicting taxonomic groupings and polyphyletic genera. Although some taxonomic confusion in the family has been clarified, rDNA data alone is unable to resolve higher level phylogenetic relationships within Mortierellaceae. In this study, we applied two parallel approaches to resolve the Mortierellaceae phylogeny: low coverage genome (LCG) sequencing and high-throughput, multiplexed targeted amplicon sequencing to generate sequence data for multi-gene phylogenetics. We then combined our datasets to provide a well-supported genome-based phylogeny having broad sampling depth from the amplicon dataset. Resolving the Mortierellaceae phylogeny into monophyletic groups led to the definition of 14 genera, 7 of which are newly proposed. Low-coverage genome sequencing proved to be a relatively cost-effective means of generating a well-resolved phylogeny. The multi-gene phylogenetics approach enabled much greater sampling depth and breadth than the LCG approach, but was unable to resolve higher-level organization of groups. We present this work to resolve some of the taxonomic confusion and provide a genus-level framework to empower future studies on Mortierellaceae diversity, biology, and evolution.
Collapse
Affiliation(s)
- Natalie Vandepol
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing MI 48824, USA
| | - Julian Liber
- Department of Plant Biology, Michigan State University, East Lansing MI 48824, USA
| | - Alessandro Desirò
- Department of Plant Soil and Microbial Sciences, Michigan State University, East Lansing MI 48824, USA
| | - Hyunsoo Na
- Joint Genome Institute, Berkeley, CA 94720, USA
| | | | | | | | - Andrew N Miller
- Illinois Natural History Survey, University of Illinois Urbana-Champaign, Champaign, IL 61820, USA
| | - Kerry O'Donnell
- United States Department of Agriculture, Agricultural Research Service, Peoria, IL 61604, USA
| | - Jason E Stajich
- Department of Microbiology and Plant Pathology & Institute for Integrative Genome Biology, University of California-Riverside, Riverside CA 92521, USA
| | - Gregory Bonito
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing MI 48824, USA
- Department of Plant Soil and Microbial Sciences, Michigan State University, East Lansing MI 48824, USA
| |
Collapse
|
192
|
Butz ES, Chandrachud U, Mole SE, Cotman SL. Moving towards a new era of genomics in the neuronal ceroid lipofuscinoses. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165571. [DOI: 10.1016/j.bbadis.2019.165571] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 10/12/2019] [Accepted: 10/14/2019] [Indexed: 12/15/2022]
|
193
|
Tolerance to alkaline ambient pH in Aspergillus nidulans depends on the activity of ENA proteins. Sci Rep 2020; 10:14325. [PMID: 32868868 PMCID: PMC7459330 DOI: 10.1038/s41598-020-71297-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 08/12/2020] [Indexed: 11/09/2022] Open
Abstract
Tolerance of microorganisms to abiotic stress is enabled by regulatory mechanisms that coordinate the expression and activity of resistance genes. Alkalinity and high salt concentrations are major environmental physicochemical stresses. Here, we analyzed the roles of sodium-extrusion family (ENA) transporters EnaA, EnaB and EnaC in the response to these stress conditions in the filamentous fungus Aspergillus nidulans. While EnaC has a minor role, EnaB is a key element for tolerance to Na+ and Li+ toxicity. Adaptation to alkaline pH requires the concerted action of EnaB with EnaA. Accordingly, expression of enaA and enaB was induced by Na+, Li+ and pH 8. These expression patterns are altered in a sltAΔ background and completely inhibited in a mutant expressing non-functional PacC protein (palH72). However, a constitutively active PacC form was not sufficient to restore maximum enaA expression. In agreement with their predicted role as membrane ATPases, EnaA localized to the plasma membrane while EnaB accumulated at structures resembling the endoplasmic reticulum. Overall, results suggest different PacC- and SltA-dependent roles for EnaB in pH and salt homeostasis, acting in coordination with EnaA at pH 8 but independently under salt stress.
Collapse
|
194
|
Hilleary R, Paez-Valencia J, Vens CS, Toyota M, Palmgren M, Gilroy S. Tonoplast-localized Ca 2+ pumps regulate Ca 2+ signals during pattern-triggered immunity in Arabidopsis thaliana. Proc Natl Acad Sci U S A 2020; 117:18849-18857. [PMID: 32690691 PMCID: PMC7414185 DOI: 10.1073/pnas.2004183117] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
One of the major events of early plant immune responses is a rapid influx of Ca2+ into the cytosol following pathogen recognition. Indeed, changes in cytosolic Ca2+ are recognized as ubiquitous elements of cellular signaling networks and are thought to encode stimulus-specific information in their duration, amplitude, and frequency. Despite the wealth of observations showing that the bacterial elicitor peptide flg22 triggers Ca2+ transients, there remain limited data defining the molecular identities of Ca2+ transporters involved in shaping the cellular Ca2+ dynamics during the triggering of the defense response network. However, the autoinhibited Ca2+-ATPase (ACA) pumps that act to expel Ca2+ from the cytosol have been linked to these events, with knockouts in the vacuolar members of this family showing hypersensitive lesion-mimic phenotypes. We have therefore explored how the two tonoplast-localized pumps, ACA4 and ACA11, impact flg22-dependent Ca2+ signaling and related defense responses. The double-knockout aca4/11 exhibited increased basal Ca2+ levels and Ca2+ signals of higher amplitude than wild-type plants. Both the aberrant Ca2+ dynamics and associated defense-related phenotypes could be suppressed by growing the aca4/11 seedlings at elevated temperatures. Relocalization of ACA8 from its normal cellular locale of the plasma membrane to the tonoplast also suppressed the aca4/11 phenotypes but not when a catalytically inactive mutant was used. These observations indicate that regulation of vacuolar Ca2+ sequestration is an integral component of plant immune signaling, but also that the action of tonoplast-localized Ca2+ pumps does not require specific regulatory elements not found in plasma membrane-localized pumps.
Collapse
Affiliation(s)
- Richard Hilleary
- Department of Botany, University of Wisconsin-Madison, Madison, WI 53706
- Department of Plant and Environmental Sciences, University of Copenhagen, DK-1871 Frederiksberg C, Denmark
| | - Julio Paez-Valencia
- Laboratory of Cell and Molecular Biology, Department of Botany and Genetics, University of Wisconsin-Madison, Madison, WI 53706
| | - Cullen S Vens
- Department of Botany, University of Wisconsin-Madison, Madison, WI 53706
| | - Masatsugu Toyota
- Department of Biochemistry and Molecular Biology, Saitama University, Sakura-ku, 338-8570 Saitama, Japan
| | - Michael Palmgren
- Department of Plant and Environmental Sciences, University of Copenhagen, DK-1871 Frederiksberg C, Denmark
| | - Simon Gilroy
- Department of Botany, University of Wisconsin-Madison, Madison, WI 53706;
| |
Collapse
|
195
|
Lyons JA, Timcenko M, Dieudonné T, Lenoir G, Nissen P. P4-ATPases: how an old dog learnt new tricks — structure and mechanism of lipid flippases. Curr Opin Struct Biol 2020; 63:65-73. [DOI: 10.1016/j.sbi.2020.04.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/28/2020] [Accepted: 04/05/2020] [Indexed: 12/11/2022]
|
196
|
Braun JL, Hamstra SI, Messner HN, Fajardo VA. SERCA2a tyrosine nitration coincides with impairments in maximal SERCA activity in left ventricles from tafazzin-deficient mice. Physiol Rep 2020; 7:e14215. [PMID: 31444868 PMCID: PMC6708055 DOI: 10.14814/phy2.14215] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 07/31/2019] [Accepted: 08/07/2019] [Indexed: 12/12/2022] Open
Abstract
The sarco/endoplasmic reticulum Ca2+‐ATPase (SERCA) is imperative for normal cardiac function regulating both muscle relaxation and contractility. SERCA2a is the predominant isoform in cardiac muscles and is inhibited by phospholamban (PLN). Under conditions of oxidative stress, SERCA2a may also be impaired by tyrosine nitration. Tafazzin (Taz) is a mitochondrial‐specific transacylase that regulates mature cardiolipin (CL) formation, and its absence leads to mitochondrial dysfunction and excessive production of reactive oxygen/nitrogen species (ROS/RNS). In the present study, we examined SERCA function, SERCA2a tyrosine nitration, and PLN expression/phosphorylation in left ventricles (LV) obtained from young (3‐5 months) and old (10‐12 months) wild‐type (WT) and Taz knockdown (TazKD) male mice. These mice are a mouse model for Barth syndrome, which is characterized by mitochondrial dysfunction, excessive ROS/RNS production, and dilated cardiomyopathy (DCM). Here, we show that maximal SERCA activity was impaired in both young and old TazKD LV, a result that correlated with elevated SERCA2a tyrosine nitration. In addition PLN protein was decreased, and its phosphorylation was increased in TazKD LV compared with control, which suggests that PLN may not contribute to the impairments in SERCA function. These changes in expression and phosphorylation of PLN may be an adaptive response aimed to improve SERCA function in TazKD mice. Nonetheless, we demonstrate for the first time that SERCA function is impaired in LVs obtained from young and old TazKD mice likely due to elevated ROS/RNS production. Future studies should determine whether improving SERCA function can improve cardiac contractility and pathology in TazKD mice.
Collapse
Affiliation(s)
- Jessica L Braun
- Department of Kinesiology, Brock University, St. Catharines, ON, Canada.,Centre for Bone and Muscle Health, Brock University, St. Catharines, ON, Canada
| | - Sophie I Hamstra
- Department of Kinesiology, Brock University, St. Catharines, ON, Canada.,Centre for Bone and Muscle Health, Brock University, St. Catharines, ON, Canada
| | - Holt N Messner
- Department of Kinesiology, Brock University, St. Catharines, ON, Canada.,Centre for Bone and Muscle Health, Brock University, St. Catharines, ON, Canada
| | - Val A Fajardo
- Department of Kinesiology, Brock University, St. Catharines, ON, Canada.,Centre for Bone and Muscle Health, Brock University, St. Catharines, ON, Canada
| |
Collapse
|
197
|
Barahona S, Castro-Severyn J, Dorador C, Saavedra C, Remonsellez F. Determinants of Copper Resistance in Acidithiobacillus Ferrivorans ACH Isolated from the Chilean Altiplano. Genes (Basel) 2020; 11:genes11080844. [PMID: 32722087 PMCID: PMC7463520 DOI: 10.3390/genes11080844] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/22/2020] [Accepted: 07/22/2020] [Indexed: 11/16/2022] Open
Abstract
The use of microorganisms in mining processes is a technology widely employed around the world. Leaching bacteria are characterized by having resistance mechanisms for several metals found in their acidic environments, some of which have been partially described in the Acidithiobacillus genus (mainly on ferrooxidans species). However, the response to copper has not been studied in the psychrotolerant Acidithiobacillus ferrivorans strains. Therefore, we propose to elucidate the response mechanisms of A. ferrivorans ACH to high copper concentrations (0-800 mM), describing its genetic repertoire and transcriptional regulation. Our results show that A. ferrivorans ACH can grow in up to 400 mM of copper. Moreover, we found the presence of several copper-related makers, belonging to cop and cus systems, as well as rusticyanins and periplasmatic acop protein in the genome. Interestingly, the ACH strain is the only one in which we find three copies of copB and copZ genes. Moreover, transcriptional expression showed an up-regulation response (acop, copZ, cusA, rusA, and rusB) to high copper concentrations. Finally, our results support the important role of these genes in A. ferrivorans copper stress resistance, promoting the use of the ACH strain in industrial leaching under low temperatures, which could decrease the activation times of oxidation processes and the energy costs.
Collapse
Affiliation(s)
- Sergio Barahona
- Laboratorio de Microbiología Aplicada y Extremófilos, Departamento de Ingeniería Química, Universidad Católica del Norte, Antofagasta 1240000, Chile;
- Laboratorio de Complejidad Microbiana y Ecología Funcional, Departamento de Biotecnología, Facultad de Ciencias del Mar y Recurso Biológicos, Universidad de Antofagasta, Antofagasta 1240000, Chile;
- Programa de Doctorado en Ingeniería de Procesos de Minerales, Facultad de Ingeniería, Universidad de Antofagasta, Antofagasta 1240000, Chile
- Correspondence: (S.B.); (F.R.)
| | - Juan Castro-Severyn
- Laboratorio de Microbiología Aplicada y Extremófilos, Departamento de Ingeniería Química, Universidad Católica del Norte, Antofagasta 1240000, Chile;
| | - Cristina Dorador
- Laboratorio de Complejidad Microbiana y Ecología Funcional, Departamento de Biotecnología, Facultad de Ciencias del Mar y Recurso Biológicos, Universidad de Antofagasta, Antofagasta 1240000, Chile;
- Centro de Biotecnología y Bioingeniería (CeBiB), Universidad de Antofagasta, Antofagasta 1240000, Chile
| | - Claudia Saavedra
- Laboratorio de Microbiología Molecular, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago 8320000, Chile;
| | - Francisco Remonsellez
- Laboratorio de Microbiología Aplicada y Extremófilos, Departamento de Ingeniería Química, Universidad Católica del Norte, Antofagasta 1240000, Chile;
- Centro de Investigación Tecnológica del Agua en el Desierto (CEITSAZA), Universidad Católica del Norte, Antofagasta 1240000, Chile
- Correspondence: (S.B.); (F.R.)
| |
Collapse
|
198
|
A structural framework for unidirectional transport by a bacterial ABC exporter. Proc Natl Acad Sci U S A 2020; 117:19228-19236. [PMID: 32703810 PMCID: PMC7430982 DOI: 10.1073/pnas.2006526117] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
A specific ATP-binding cassette (ABC) transporter is generally viewed to function as either an exporter or an importer, but in principle ABC transporters can transport substrates in both directions across the membrane. Structural studies of the prokaryotic ABC exporter NaAtm1 demonstrate that progression through the transport cycle is accompanied by changes in transmembrane helix 6 (TM6) that modulate the binding cavity for transported substrate. Significantly, kinking of TM6 in a post-ATP hydrolysis state stabilized by MgADPVO4 eliminates the substrate-binding cavity. The presence of this cavity during the transition from the inward-facing to outward-facing conformational states, and its absence in the reverse direction, thereby provide an elegant and conceptually simple mechanism for enforcing the export directionality of transport. The ATP-binding cassette (ABC) transporter of mitochondria (Atm1) mediates iron homeostasis in eukaryotes, while the prokaryotic homolog from Novosphingobium aromaticivorans (NaAtm1) can export glutathione derivatives and confer protection against heavy-metal toxicity. To establish the structural framework underlying the NaAtm1 transport mechanism, we determined eight structures by X-ray crystallography and single-particle cryo-electron microscopy in distinct conformational states, stabilized by individual disulfide crosslinks and nucleotides. As NaAtm1 progresses through the transport cycle, conformational changes in transmembrane helix 6 (TM6) alter the glutathione-binding site and the associated substrate-binding cavity. Significantly, kinking of TM6 in the post-ATP hydrolysis state stabilized by MgADPVO4 eliminates this cavity, precluding uptake of glutathione derivatives. The presence of this cavity during the transition from the inward-facing to outward-facing conformational states, and its absence in the reverse direction, thereby provide an elegant and conceptually simple mechanism for enforcing the export directionality of transport by NaAtm1. One of the disulfide crosslinked NaAtm1 variants characterized in this work retains significant glutathione transport activity, suggesting that ATP hydrolysis and substrate transport by Atm1 may involve a limited set of conformational states with minimal separation of the nucleotide-binding domains in the inward-facing conformation.
Collapse
|
199
|
Mouhoumed AZ, Mou YN, Tong SM, Ying SH, Feng MG. Three proline rotamases involved in calcium homeostasis play differential roles in stress tolerance, virulence and calcineurin regulation of Beauveria bassiana. Cell Microbiol 2020; 22:e13239. [PMID: 32602171 DOI: 10.1111/cmi.13239] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 06/02/2020] [Accepted: 06/11/2020] [Indexed: 01/20/2023]
Abstract
FK506-sensitive proline rotamases (FPRs), also known as FK506-binding proteins (FKBPs), can mediate immunosuppressive drug resistance in budding yeast but their physiological roles in filamentous fungi remain opaque. Here, we report that three FPRs (cytosolic/nuclear 12.15-kD Fpr1, membrane-associated 14.78-kD Fpr2 and nuclear 50.43-kD Fpr3) are all equally essential for cellular Ca2+ homeostasis and contribute significantly to calcineurin activity at different levels in the insect-pathogenic fungus Beauveria bassiana although the deletion of fpr1 alone conferred resistance to FK506. Radial growth, conidiation, conidial viability and virulence were less compromised in the absence of fpr1 or fpr2 than in the absence of fpr3, which abolished almost all growth on scant media and reduced growth moderately on rich media. The Δfpr3 mutant was more sensitive to Na+ , K+ , Mn2+ , Ca2+ , Cu2+ , metal chelate, heat shock and UVB irradiation than was Δfpr2 while both mutants were equally sensitive to Zn2+ , Mg2+ , Fe2+ , H2 O2 and cell wall-perturbing agents. In contrast, the Δfpr1 mutant was less sensitive to fewer stress cues. Most of 32 examined genes involved in DNA damage repair, Na+ /K+ detoxification or osmotolerance and Ca2+ homeostasis were downregulated sharply in Δfpr2 and Δfpr3 but rarely so affected in Δfpr1, coinciding well with their phenotypic changes. These findings uncover important, but differential, roles of three FPRs in the fungal adaptation to insect host and environment and provide novel insight into their essential roles in calcium signalling pathway.
Collapse
Affiliation(s)
- Amina-Zahra Mouhoumed
- MOE Laboratory of Biosystems Homeostasis & Protection, Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Ya-Ni Mou
- MOE Laboratory of Biosystems Homeostasis & Protection, Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Sen-Miao Tong
- College of Agricultural and Food Science, Zhejiang A&F University, Lin'an, Zhejiang, China
| | - Sheng-Hua Ying
- MOE Laboratory of Biosystems Homeostasis & Protection, Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Ming-Guang Feng
- MOE Laboratory of Biosystems Homeostasis & Protection, Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
200
|
Karitonas R, Jurkonienė S, Sadauskas K, Vaičiūnienė J, Manusadžianas L. Modifying effects of leaf litter extracts from invasive versus native tree species on copper-induced responses in Lemna minor. PeerJ 2020; 8:e9444. [PMID: 32704445 PMCID: PMC7350913 DOI: 10.7717/peerj.9444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 06/08/2020] [Indexed: 11/30/2022] Open
Abstract
Invasive plant species tend to migrate from their native habitats under favourable climatic conditions; therefore, trophic and other relationships in ecosystems are changing. To investigate the effect of natural organic matter derived from native Alnus glutinosa tree species and from invasive in Lithuania Acer negundo tree species on copper toxicity in Lemna minor, we analysed the dynamics of Cu binding in aqueous leaf litter extracts (LLE) and plant accumulation, morphophysiological parameters, and antioxidative response. The results revealed that A. glutinosa LLE contained polyphenols (49 mg pyrogallol acid equivalent (PAE)/g DM) and tannins (7.5 mg PAE/g DM), while A. negundo LLE contained only polyphenols (23 mg PAE/g DM). The ability of LLE to bind Cu increased rapidly over 1.5-3 h to 61% and 49% of the total Cu concentration (6.0 ± 0.9 mg/L), respectively for A. glutinosa (AG) and A. negundo (AN), then remained relatively stable until 48 h. At the same time, L. minor accumulated 384, 241 or 188 µg Cu/g FW when plants were exposed to Cu (100 µM CuSO4), Cu with 100 mg/L dissolved organic carbon (DOC) from either AG LLE or AN LLE, accordingly. Catalase (CAT) and guaiacol peroxidase (POD) played a dominant role in hydrogen peroxide scavenging when plants were exposed to Cu and 10 or 100 mg/L DOCAG mixtures in both the first (up to 6h) and the second (6-48 h) response phases. Due to functioning of oxidative stress enzymes, the levels of the lipid peroxidation product malondialdehyde (MDA) reduced in concentration-dependent manner, compared to Cu treatment. When combining Cu and DOCAN treatments, the most sensitive enzymes were POD, ascorbate peroxidase and glutathione reductase. Their activities collectively with CAT were sufficient to reduce MDA levels to Cu-induced in the initial, but not the second response phase. These data suggest that leaf litter extracts of different phenolic compositions elicited different antioxidant response profiles resulting in different reductions of Cu stress, thus effecting L. minor frond and root development observed after seven days. The complex data from this study may be useful in modelling the response of the aquatic ecosystem to a changing environment.
Collapse
Affiliation(s)
| | | | - Kazys Sadauskas
- Institute of Botany, Nature Research Centre, Vilnius, Lithuania
| | - Jūratė Vaičiūnienė
- Institute of Chemistry, Centre for Physical Sciences and Technology, Vilnius, Lithuania
| | | |
Collapse
|