151
|
Levis NA, Pfennig DW. How stabilizing selection and nongenetic inheritance combine to shape the evolution of phenotypic plasticity. J Evol Biol 2019; 32:706-716. [PMID: 30968503 DOI: 10.1111/jeb.13475] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 04/01/2019] [Accepted: 04/03/2019] [Indexed: 12/22/2022]
Abstract
Relatively little is known about whether and how nongenetic inheritance interacts with selection to impact the evolution of phenotypic plasticity. Here, we empirically evaluated how stabilizing selection and a common form of nongenetic inheritance-maternal environmental effects-jointly influence the evolution of phenotypic plasticity in natural populations of spadefoot toads. We compared populations that previous fieldwork has shown to have evolved conspicuous plasticity in resource-use phenotypes ("resource polyphenism") with those that, owing to stabilizing selection favouring a narrower range of such phenotypes, appear to have lost this plasticity. We show that: (a) this apparent loss of plasticity in nature reflects a condition-dependent maternal effect and not a genetic loss of plasticity, that is "genetic assimilation," and (b) this plasticity is not costly. By shielding noncostly plasticity from selection, nongenetic inheritance generally, and maternal effects specifically, can preclude genetic assimilation from occurring and consequently impede adaptive (genetic) evolution.
Collapse
Affiliation(s)
- Nicholas A Levis
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina
| | - David W Pfennig
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina
| |
Collapse
|
152
|
Ameri M, Kemp DJ, Barry KL, Herberstein ME. Age-Specific Reproductive Investment and Offspring Performance in an Orb-web Spider, Argiope radon. Evol Biol 2019. [DOI: 10.1007/s11692-019-09476-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
153
|
Evans JP, Wilson AJ, Pilastro A, Garcia-Gonzalez F. Ejaculate-mediated paternal effects: evidence, mechanisms and evolutionary implications. Reproduction 2019; 157:R109-R126. [PMID: 30668523 DOI: 10.1530/rep-18-0524] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 01/21/2019] [Indexed: 12/29/2022]
Abstract
Despite serving the primary objective of ensuring that at least one sperm cell reaches and fertilises an ovum, the male ejaculate (i.e. spermatozoa and seminal fluid) is a compositionally complex 'trait' that can respond phenotypically to subtle changes in conditions. In particular, recent research has shown that environmentally and genetically induced changes to ejaculates can have implications for offspring traits that are independent of the DNA sequence encoded into the sperm's haploid genome. In this review, we compile evidence from several disciplines and numerous taxonomic systems to reveal the extent of such ejaculate-mediated paternal effects (EMPEs). We consider a number of environmental and genetic factors that have been shown to impact offspring phenotypes via ejaculates, and where possible, we highlight the putative mechanistic pathways by which ejaculates can act as conduits for paternal effects. We also highlight how females themselves can influence EMPEs, and in some cases, how maternally derived sources of variance may confound attempts to test for EMPEs. Finally, we consider a range of putative evolutionary implications of EMPEs and suggest a number of potentially useful approaches for exploring these further. Overall, our review confirms that EMPEs are both widespread and varied in their effects, although studies reporting their evolutionary effects are still in their infancy.
Collapse
Affiliation(s)
- Jonathan P Evans
- Centre for Evolutionary Biology, School of Biological Sciences, University of Western Australia, Crawley, Western Australia, Australia
| | - Alastair J Wilson
- Centre for Ecology and Evolution, University of Exeter, Cornwall Campus, Penryn, UK
| | | | - Francisco Garcia-Gonzalez
- Centre for Evolutionary Biology, School of Biological Sciences, University of Western Australia, Crawley, Western Australia, Australia.,Estacion Biologica de Doñana-CSIC, Sevilla, Spain
| |
Collapse
|
154
|
Costantini D. Hormesis Promotes Evolutionary Change. Dose Response 2019; 17:1559325819843376. [PMID: 31040761 PMCID: PMC6484245 DOI: 10.1177/1559325819843376] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 03/07/2019] [Accepted: 03/20/2019] [Indexed: 01/01/2023] Open
Abstract
Exposure to moderate environmental stress is one important source of evolutionary change. This evidence would support the hypothesis that hormesis is an evolutionary expectation. In this short review, I discuss relevant examples of genetic and phenotypic responses to moderate stress exposure that are compatible with hormesis and with paradigms of evolutionary theory such as evolutionary rescue or phenotypic plasticity. Genetic recombination, nonlethal mutations, activity of transposable elements, or gene expression are some of the molecular mechanisms through which hormesis might enable organisms to maintain or even increase evolutionary fitness in stressful environments. These mechanisms span the tree of life from plants to vertebrates.
Collapse
Affiliation(s)
- David Costantini
- UMR 7221 CNRS/MNHN, Muséum National d’Histoire Naturelle, Sorbonne Universités, Paris, France
| |
Collapse
|
155
|
Plard F, Turek D, Grüebler MU, Schaub M. IPM
2
: toward better understanding and forecasting of population dynamics. ECOL MONOGR 2019. [DOI: 10.1002/ecm.1364] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Floriane Plard
- Swiss Ornithological Institute CH‐6204 Sempach Switzerland
| | - Daniel Turek
- Department of Mathematics and Statistics Williams College 18 Hoxsey Street Williamstown Massachusetts 01267 USA
| | | | - Michael Schaub
- Swiss Ornithological Institute CH‐6204 Sempach Switzerland
| |
Collapse
|
156
|
Dasgupta P, Sarkar S, Das AA, Verma T, Nandy B. Intergenerational paternal effect of adult density in Drosophila melanogaster. Ecol Evol 2019; 9:3553-3563. [PMID: 30962910 PMCID: PMC6434557 DOI: 10.1002/ece3.4988] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 01/22/2019] [Accepted: 01/22/2019] [Indexed: 11/19/2022] Open
Abstract
Notwithstanding recent evidences, paternal environment is thought to be a potential but unlikely source of fitness variation that can affect trait evolution. Here we studied intergenerational effects of males' exposure to varying adult density in Drosophila melanogasterlaboratory populations.We held sires at normal (N), medium (M) and high (H) adult densities for 2 days before allowing them to mate with virgin females. This treatment did not introduce selection through differential mortality. Further, we randomly paired males and females and allowed a single round of mating between the sires and the dams. We then collected eggs from the dams and measured the egg size. Finally, we investigated the effect of the paternal treatment on juvenile and adult (male) fitness components.We found a significant treatment effect on juvenile competitive ability where the progeny sired by the H-males had higher competitive ability. Since we did not find the treatment to affect egg size, this effect is unlikely to be mediated through variation in female provisioning.Male fitness components were also found to have a significant treatment effect: M-sons had lower dry weight at eclosion, higher mating latency, and lower competitive mating success.While being the first study to show both adaptive and non-adaptive effect of the paternal density in Drosophila, our results highlight the importance of considering paternal environment as important source of fitness variation.
Collapse
Affiliation(s)
- Purbasha Dasgupta
- Indian Institute of Science Education and Research BerhampurBerhampurIndia
| | | | | | - Tanya Verma
- Indian Institute of Science Education and Research BerhampurBerhampurIndia
| | - Bodhisatta Nandy
- Indian Institute of Science Education and Research BerhampurBerhampurIndia
| |
Collapse
|
157
|
Epigenetic gene silencing alters the mechanisms and rate of evolutionary adaptation. Nat Ecol Evol 2019; 3:491-498. [PMID: 30718851 DOI: 10.1038/s41559-018-0781-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 12/10/2018] [Indexed: 12/22/2022]
Abstract
Epigenetic, non-DNA sequence-based inheritance can potentially contribute to adaptation but, due to its transient nature and the difficulty involved in uncoupling it from genetic variation, it is unclear whether it has any effect on long-term evolution. However, short-term epigenetic inheritance may interact with genetic change by modifying the rate and type of adaptive mutations. Here, we test this notion in an experimental evolution set-up in yeast. We tune low, intermediate and high levels of heritable silencing of a URA3 reporter under selection by insertion at different positions within silent subtelomeric chromatin in otherwise isogenic Saccharomyces cerevisiae. Heritable silencing does not impact mutation rate but drives population size expansion and rapid epigenetic adaptation. This eventually leads to genetic assimilation of the silent phenotype by mutations that reduce or abolish URA3 expression. Moreover, at intermediate or low levels of heritable silencing we find that populations evolve more rapidly by accumulation of adaptive mutations, in part through acquisition of novel alleles that enhance gene silencing, aiding accelerated adaptation. We provide an experimental proof of concept that defines the impact and mechanisms of how short-term epigenetic inheritance can shape adaptive evolution.
Collapse
|
158
|
Liester MB, Sullivan EE. A review of epigenetics in human consciousness. COGENT PSYCHOLOGY 2019. [DOI: 10.1080/23311908.2019.1668222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Affiliation(s)
- Mitchell B. Liester
- Department of Psychiatry, University of Colorado School of Medicine, P.O. Box 302 153 N. Washington Street, Suite 103, Monument, CO 80132, USA
| | - Erin E. Sullivan
- Computer Science, University of Oklahoma, P.O. Box 302, Monument, CO 80132, USA
| |
Collapse
|
159
|
Ecological effects of elevated CO2 on marine and freshwater fishes: From individual to community effects. FISH PHYSIOLOGY 2019. [DOI: 10.1016/bs.fp.2019.07.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
160
|
Schell CJ, Young JK, Lonsdorf EV, Santymire RM, Mateo JM. Parental habituation to human disturbance over time reduces fear of humans in coyote offspring. Ecol Evol 2018; 8:12965-12980. [PMID: 30619597 PMCID: PMC6308887 DOI: 10.1002/ece3.4741] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 10/10/2018] [Accepted: 10/24/2018] [Indexed: 12/18/2022] Open
Abstract
A fundamental tenet of maternal effects assumes that maternal variance over time should have discordant consequences for offspring traits across litters. Yet, seldom are parents observed across multiple reproductive bouts, with few studies considering anthropogenic disturbances as an ecological driver of maternal effects. We observed captive coyote (Canis latrans) pairs over two successive litters to determine whether among‐litter differences in behavior (i.e., risk‐taking) and hormones (i.e., cortisol and testosterone) corresponded with parental plasticity in habituation. Thus, we explicitly test the hypothesis that accumulating experiences of anthropogenic disturbance reduces parental fear across reproductive bouts, which should have disparate phenotypic consequences for first‐ and second‐litter offspring. To quantify risk‐taking behavior, we used foraging assays from 5–15 weeks of age with a human observer present as a proxy for human disturbance. At 5, 10, and 15 weeks of age, we collected shaved hair to quantify pup hormone levels. We then used a quantitative genetic approach to estimate heritability, repeatability, and between‐trait correlations. We found that parents were riskier (i.e., foraged more frequently) with their second versus first litters, supporting our prediction that parents become increasingly habituated over time. Second‐litter pups were also less risk‐averse than their first‐litter siblings. Heritability for all traits did not differ from zero (0.001–0.018); however, we found moderate support for repeatability in all observed traits (r = 0.085–0.421). Lastly, we found evidence of positive phenotypic and cohort correlations among pup traits, implying that cohort identity (i.e., common environment) contributes to the development of phenotypic syndromes in coyote pups. Our results suggest that parental habituation may be an ecological cue for offspring to reduce their fear response, thus emphasizing the role of parental plasticity in shaping their pups’ behavioral and hormonal responses toward humans.
Collapse
Affiliation(s)
- Christopher J Schell
- Committee on Evolutionary Biology University of Chicago Chicago Illinois.,School of Interdisciplinary Arts and Sciences University of Washington Tacoma Tacoma Washington
| | - Julie K Young
- USDA-WS-NWRC Predator Research Facility, Department of Wildland Resources Utah State University Logan Utah
| | | | - Rachel M Santymire
- Committee on Evolutionary Biology University of Chicago Chicago Illinois.,Conservation and Science Department Lincoln Park Zoo Chicago Illinois
| | - Jill M Mateo
- Committee on Evolutionary Biology University of Chicago Chicago Illinois
| |
Collapse
|
161
|
Grieshop K, Arnqvist G. Sex-specific dominance reversal of genetic variation for fitness. PLoS Biol 2018; 16:e2006810. [PMID: 30533008 PMCID: PMC6303075 DOI: 10.1371/journal.pbio.2006810] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 12/21/2018] [Accepted: 11/27/2018] [Indexed: 11/18/2022] Open
Abstract
The maintenance of genetic variance in fitness represents one of the most longstanding enigmas in evolutionary biology. Sexually antagonistic (SA) selection may contribute substantially to maintaining genetic variance in fitness by maintaining alternative alleles with opposite fitness effects in the two sexes. This is especially likely if such SA loci exhibit sex-specific dominance reversal (SSDR)-wherein the allele that benefits a given sex is also dominant in that sex-which would generate balancing selection and maintain stable SA polymorphisms for fitness. However, direct empirical tests of SSDR for fitness are currently lacking. Here, we performed a full diallel cross among isogenic strains derived from a natural population of the seed beetle Callosobruchus maculatus that is known to exhibit SA genetic variance in fitness. We measured sex-specific competitive lifetime reproductive success (i.e., fitness) in >500 sex-by-genotype F1 combinations and found that segregating genetic variation in fitness exhibited pronounced contributions from dominance variance and sex-specific dominance variance. A closer inspection of the nature of dominance variance revealed that the fixed allelic variation captured within each strain tended to be dominant in one sex but recessive in the other, revealing genome-wide SSDR for SA polymorphisms underlying fitness. Our findings suggest that SA balancing selection could play an underappreciated role in maintaining fitness variance in natural populations.
Collapse
Affiliation(s)
- Karl Grieshop
- Department of Ecology and Genetics, Animal Ecology, Uppsala University, Uppsala, Sweden
- * E-mail:
| | - Göran Arnqvist
- Department of Ecology and Genetics, Animal Ecology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
162
|
He HM, Xiao HJ, Xue FS. Parental effect of diapause in relation to photoperiod and temperature in the cabbage beetle, Colaphellus bowringi (Coleoptera: Chrysomelidae). BULLETIN OF ENTOMOLOGICAL RESEARCH 2018; 108:773-780. [PMID: 29397053 DOI: 10.1017/s0007485318000019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Increasing evidence has demonstrated that the environmental conditions experienced by parents can shape offspring phenotypes. Here, we examined the effects of the photoperiod and temperature experienced by parents on the incidence of diapause in their progeny in the cabbage beetle, Colaphellus bowringi, using three experiments. The first experiment examined parental diapause incidence under different photoperiods at 25°C and the incidence of diapause in progeny from both non-diapausing and diapausing parents under the same rearing conditions. The results revealed that the incidence of diapause among progeny was exactly opposite to that of their parents, i.e., higher parental diapause incidence led to lower progeny diapause incidence, showing a negative relationship in diapause incidence between the parental generation and the progeny generation. The incidence of diapause among progeny produced by diapausing parents was higher than that in progeny produced by non-diapausing parents. The second experiment examined parental diapause incidence at different temperatures under LD 12:12 and the incidence of diapause in progeny from both non-diapausing and diapausing parents under the same rearing conditions. Similarly, the incidence of diapause in progeny was also opposite to that of their parents. However, the incidence of diapause in progeny produced by non-diapausing parents was different from that in progeny produced by diapausing parents. In the third experiment, naturally diapausing adults were maintained at a constant temperature of 9, 28°C or the mean daily summer temperature of 27.84°C under continuous darkness for 3 months of dormancy. After dormancy, the progeny of these post-diapause parents were reared under different photoperiods at 25°C. The results showed that the incidence of diapause among progeny was higher when their parents experienced high temperatures than when they experienced low temperatures. All results demonstrate that the photoperiod and temperature experienced by parents may significantly affect the diapause incidence among progeny.
Collapse
Affiliation(s)
- H-M He
- Institute of Entomology, Jiangxi Agricultural University Nanchang,330045,China
| | - H-J Xiao
- Institute of Entomology, Jiangxi Agricultural University Nanchang,330045,China
| | - F-S Xue
- Institute of Entomology, Jiangxi Agricultural University Nanchang,330045,China
| |
Collapse
|
163
|
Affiliation(s)
- Agustín Fuentes
- 296 Corbett Family Hall, University of Notre Dame, Notre Dame, IN 46556-5611, E-mail:
| |
Collapse
|
164
|
Lago TS, Silva JA, Lago EL, Carvalho EM, Zanette DL, Castellucci LC. The miRNA 361-3p, a Regulator of GZMB and TNF Is Associated With Therapeutic Failure and Longer Time Healing of Cutaneous Leishmaniasis Caused by L. (viannia) braziliensis. Front Immunol 2018; 9:2621. [PMID: 30487794 PMCID: PMC6247993 DOI: 10.3389/fimmu.2018.02621] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 10/25/2018] [Indexed: 12/16/2022] Open
Abstract
L. (viannia) braziliensis infection causes American Tegumentary Leishmaniasis (ATL), with prolonged time to healing lesions. The potent inflammatory response developed by the host is important to control the parasite burden and infection however an unbalanced immunity may cooperate to the tissue damage observed. The range of mechanisms underlying the pathological responses associated with ATL still needs to be better understood. That includes epigenetic regulation by non-coding MicroRNAs (miRNAs), non-coding sequences around 22 nucleotides that act as post-transcriptional regulators of RNAs encoding proteins. The miRNAs have been associated with diverse parasitic diseases, including leishmaniasis. Here we evaluated miRNAs that targeted genes expressed in cutaneous leishmaniasis lesions (CL) by comparing its expression in both CL and normal skin obtained from the same individual. In addition, we evaluated if the miRNAs expression would be correlated with clinical parameters such as therapeutic failure, healing time as well as lesion size. The miR-361-3p and miR-140-3p were significantly more expressed in CL lesions compared to normal skin samples (p = 0.0001 and p < 0.0001, respectively). In addition, the miR-361-3p was correlated with both, therapeutic failure and healing time of disease (r = 0.6, p = 0.003 and r = 0.5, p = 0.007, respectively). In addition, complementary analysis shown that miR-361-3p is able to identify with good sensitivity (81.2%) and specificity (100%) patients who tend to fail initial treatment with pentavalent antimonial (Sbv). Finally, the survival analysis considering "cure" as the endpoint showed that the higher the expression of miR-361-3p, the longer the healing time of CL. Overall, our data suggest the potential of miR-361-3p as a prognostic biomarker in CL caused by L. braziliensis.
Collapse
Affiliation(s)
- Tainã S. Lago
- Serviço de Imunologia, Universidade Federal da Bahia, Salvador, Brazil
- Laboratório de Investigação em Genética e Hematologia Tanslacional do Instituto Gonçalo Moniz–Fiocruz-Ba, Salvador, Brazil
| | | | - Ednaldo L. Lago
- Serviço de Imunologia, Universidade Federal da Bahia, Salvador, Brazil
| | - Edgar M. Carvalho
- Serviço de Imunologia, Universidade Federal da Bahia, Salvador, Brazil
- Laboratório de Pesquisa Clínica (LAPEC) do Instituto Gonçalo Moniz–Fiocruz-Ba, Salvador, Brazil
- Instituto Nacional de Ciência e Tecnologia em Doenças Tropicais (INCT-DT), Salvador, Brazil
- Programa de Pós-graduação em Ciências da Saúde, Universidade Federal da Bahia, Salvador, Brazil
| | - Dalila L. Zanette
- Laboratório de Investigação em Genética e Hematologia Tanslacional do Instituto Gonçalo Moniz–Fiocruz-Ba, Salvador, Brazil
| | - Léa Cristina Castellucci
- Serviço de Imunologia, Universidade Federal da Bahia, Salvador, Brazil
- Instituto Nacional de Ciência e Tecnologia em Doenças Tropicais (INCT-DT), Salvador, Brazil
- Programa de Pós-graduação em Ciências da Saúde, Universidade Federal da Bahia, Salvador, Brazil
| |
Collapse
|
165
|
Zirbel KE, Alto BW. Maternal and paternal nutrition in a mosquito influences offspring life histories but not infection with an arbovirus. Ecosphere 2018. [DOI: 10.1002/ecs2.2469] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Affiliation(s)
- Kylie E. Zirbel
- Florida Medical Entomology Laboratory, Entomology and Nematology Department; Institute of Food and Agricultural Sciences; University of Florida; Vero Beach Florida 32962 USA
| | - Barry W. Alto
- Florida Medical Entomology Laboratory, Entomology and Nematology Department; Institute of Food and Agricultural Sciences; University of Florida; Vero Beach Florida 32962 USA
| |
Collapse
|
166
|
Thomson CE, Winney IS, Salles OC, Pujol B. A guide to using a multiple-matrix animal model to disentangle genetic and nongenetic causes of phenotypic variance. PLoS One 2018; 13:e0197720. [PMID: 30312317 PMCID: PMC6193571 DOI: 10.1371/journal.pone.0197720] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 09/19/2018] [Indexed: 11/19/2022] Open
Abstract
Non-genetic influences on phenotypic traits can affect our interpretation of genetic variance and the evolutionary potential of populations to respond to selection, with consequences for our ability to predict the outcomes of selection. Long-term population surveys and experiments have shown that quantitative genetic estimates are influenced by nongenetic effects, including shared environmental effects, epigenetic effects, and social interactions. Recent developments to the "animal model" of quantitative genetics can now allow us to calculate precise individual-based measures of non-genetic phenotypic variance. These models can be applied to a much broader range of contexts and data types than used previously, with the potential to greatly expand our understanding of nongenetic effects on evolutionary potential. Here, we provide the first practical guide for researchers interested in distinguishing between genetic and nongenetic causes of phenotypic variation in the animal model. The methods use matrices describing individual similarity in nongenetic effects, analogous to the additive genetic relatedness matrix. In a simulation of various phenotypic traits, accounting for environmental, epigenetic, or cultural resemblance between individuals reduced estimates of additive genetic variance, changing the interpretation of evolutionary potential. These variances were estimable for both direct and parental nongenetic variances. Our tutorial outlines an easy way to account for these effects in both wild and experimental populations. These models have the potential to add to our understanding of the effects of genetic and nongenetic effects on evolutionary potential. This should be of interest both to those studying heritability, and those who wish to understand nongenetic variance.
Collapse
Affiliation(s)
- Caroline E. Thomson
- Laboratoire Evolution & Diversité Biologique (EDB UMR 5174), Université Fédérale Toulouse, Midi-Pyrénées, CNRS, ENSFEA, IRD, UPS, France
| | - Isabel S. Winney
- Laboratoire Evolution & Diversité Biologique (EDB UMR 5174), Université Fédérale Toulouse, Midi-Pyrénées, CNRS, ENSFEA, IRD, UPS, France
| | - Océane C. Salles
- Laboratoire Evolution & Diversité Biologique (EDB UMR 5174), Université Fédérale Toulouse, Midi-Pyrénées, CNRS, ENSFEA, IRD, UPS, France
| | - Benoit Pujol
- Laboratoire Evolution & Diversité Biologique (EDB UMR 5174), Université Fédérale Toulouse, Midi-Pyrénées, CNRS, ENSFEA, IRD, UPS, France
- Laboratoire d’Excellence “CORAIL”, Perpignan, France
| |
Collapse
|
167
|
Abstract
Cytoplasmic components and their interactions with the nuclear genome may mediate patterns of phenotypic expression to form a joint inheritance system. However, proximate mechanisms underpinning these interactions remain elusive. To independently assess nuclear genetic and epigenetic cytoplasmic effects, we created a full-factorial design in which representative cytoplasms and nuclear backgrounds from each of two geographically disjunct populations of Drosophila melanogaster were matched together in all four possible combinations. To capture slowly-accumulating epimutations in addition to immediately occurring ones, these constructed populations were examined one year later. We found the K4 methylation of histone H3, H3K4me3, an epigenetic marker associated with transcription start-sites had diverged across different cytoplasms. The loci concerned mainly related to metabolism, mitochondrial function, and reproduction. We found little overlap (<8%) in sites that varied genetically and epigenetically, suggesting that epigenetic changes have diverged independently from any cis-regulatory sequence changes. These results are the first to show cytoplasm-specific effects on patterns of nuclear histone methylation. Our results highlight that experimental nuclear-cytoplasm mismatch may be used to provide a platform to identify epigenetic candidate loci to study the molecular mechanisms of cyto-nuclear interactions.
Collapse
|
168
|
Banta JA, Richards CL. Quantitative epigenetics and evolution. Heredity (Edinb) 2018; 121:210-224. [PMID: 29980793 PMCID: PMC6082842 DOI: 10.1038/s41437-018-0114-x] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Revised: 06/07/2018] [Accepted: 06/15/2018] [Indexed: 01/05/2023] Open
Abstract
Epigenetics refers to chemical modifications of chromatin or transcribed DNA that can influence gene activity and expression without changes in DNA sequence. The last 20 years have yielded breakthroughs in our understanding of epigenetic processes that impact many fields of biology. In this review, we discuss how epigenetics relates to quantitative genetics and evolution. We argue that epigenetics is important for quantitative genetics because: (1) quantitative genetics is increasingly being combined with genomics, and therefore we should expand our thinking to include cellular-level mechanisms that can account for phenotypic variance and heritability besides just those that are hard-coded in the DNA sequence; and (2) epigenetic mechanisms change how phenotypic variance is partitioned, and can thereby change the heritability of traits and how those traits are inherited. To explicate these points, we show that epigenetics can influence all aspects of the phenotypic variance formula: VP (total phenotypic variance) = VG (genetic variance) + VE (environmental variance) + VGxE (genotype-by-environment interaction) + 2COVGE (the genotype-environment covariance) + Vɛ (residual variance), requiring new strategies to account for different potential sources of epigenetic effects on phenotypic variance. We also demonstrate how each of the components of phenotypic variance not only can be influenced by epigenetics, but can also have evolutionary consequences. We argue that no sources of epigenetic effects on phenotypic variance can be easily cast aside in a quantitative genetic research program that seeks to understand evolutionary processes.
Collapse
Affiliation(s)
- Joshua A Banta
- Department of Biology, University of Texas at Tyler, Tyler, TX, 75799, USA.
| | - Christina L Richards
- Department of Integrative Biology, University of South Florida, Tampa, FL, 33620, USA
| |
Collapse
|
169
|
Archer E, Pavela G, McDonald S, Lavie CJ, Hill JO. Cell-Specific "Competition for Calories" Drives Asymmetric Nutrient-Energy Partitioning, Obesity, and Metabolic Diseases in Human and Non-human Animals. Front Physiol 2018; 9:1053. [PMID: 30147656 PMCID: PMC6097573 DOI: 10.3389/fphys.2018.01053] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 07/16/2018] [Indexed: 12/20/2022] Open
Abstract
The mammalian body is a complex physiologic “ecosystem” in which cells compete for calories (i.e., nutrient-energy). Axiomatically, cell-types with competitive advantages acquire a greater number of consumed calories, and when possible, increase in size and/or number. Thus, it is logical and parsimonious to posit that obesity is the competitive advantages of fat-cells (adipocytes) driving a disproportionate acquisition and storage of nutrient-energy. Accordingly, we introduce two conceptual frameworks. Asymmetric Nutrient-Energy Partitioning describes the context-dependent, cell-specific competition for calories that determines the partitioning of nutrient-energy to oxidation, anabolism, and/or storage; and Effective Caloric Intake which describes the number of calories available to constrain energy-intake via the inhibition of the sensorimotor appetitive cells in the liver and brain that govern ingestive behaviors. Inherent in these frameworks is the independence and dissociation of the energetic demands of metabolism and the neuro-muscular pathways that initiate ingestive behaviors and energy intake. As we demonstrate, if the sensorimotor cells suffer relative caloric deprivation via asymmetric competition from other cell-types (e.g., skeletal muscle- or fat-cells), energy-intake is increased to compensate for both real and merely apparent deficits in energy-homeostasis (i.e., true and false signals, respectively). Thus, we posit that the chronic positive energy balance (i.e., over-nutrition) that leads to obesity and metabolic diseases is engendered by apparent deficits (i.e., false signals) driven by the asymmetric inter-cellular competition for calories and concomitant differential partitioning of nutrient-energy to storage. These frameworks, in concert with our previous theoretic work, the Maternal Resources Hypothesis, provide a parsimonious and rigorous explanation for the rapid rise in the global prevalence of increased body and fat mass, and associated metabolic dysfunctions in humans and other mammals inclusive of companion, domesticated, laboratory, and feral animals.
Collapse
Affiliation(s)
| | - Gregory Pavela
- The University of Alabama at Birmingham, Birmingham, AL, United States
| | | | - Carl J Lavie
- School of Medicine, John Ochsner Heart and Vascular Institute, The University of Queensland, New Orleans, LA, United States
| | - James O Hill
- Center for Human Nutrition, University of Colorado Health Sciences Center, Denver, CO, United States
| |
Collapse
|
170
|
Karniski C, Krzyszczyk E, Mann J. Senescence impacts reproduction and maternal investment in bottlenose dolphins. Proc Biol Sci 2018; 285:20181123. [PMID: 30051841 PMCID: PMC6083244 DOI: 10.1098/rspb.2018.1123] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 06/22/2018] [Indexed: 01/13/2023] Open
Abstract
Reproductive senescence is evident across many mammalian species. An emerging perspective considers components of reproductive senescence as evolutionarily distinct phenomena: fertility senescence and maternal-effect senescence. While fertility senescence is regarded as the ageing of reproductive physiology, maternal-effect senescence pertains to the declining capacity to provision and rear surviving offspring due to age. Both contribute to reproductive failure in utero making it difficult to differentiate between the two prenatally in the wild. We investigated both components in a long-lived mammal with prolonged maternal care through three parameters: calf survival, interbirth interval (IBI) and lactation period. We provide clear evidence for reproductive senescence in a wild population of bottlenose dolphins (Tursiops aduncus) using 34+ years of longitudinal data on 229 adult females and 562 calves. Calf survival decreased with maternal age, and calves with older mothers had lower survival than predicted by birth order, suggesting maternal-effect senescence. Both lactation period and IBIs increased with maternal age, and IBIs increased regardless of calf mortality, indicating interactions between fertility and maternal-effect senescence. Of calves that survived to weaning, last-born calves weaned later than earlier-born calves, evidence of terminal investment, a mitigating strategy given reduced reproductive value caused by either components of reproductive senescence.
Collapse
Affiliation(s)
- Caitlin Karniski
- Department of Biology, Georgetown University, Washington, DC 20057, USA
| | - Ewa Krzyszczyk
- Department of Biology, Georgetown University, Washington, DC 20057, USA
| | - Janet Mann
- Department of Biology, Georgetown University, Washington, DC 20057, USA
- Department of Psychology, Georgetown University, Washington, DC 20057, USA
| |
Collapse
|
171
|
Abstract
Many physical and behavioral traits in animals, including humans, are inherited both genetically and culturally. The presence of different inheritance systems affecting the same trait can result in complex evolutionary dynamics. Here, we present a general model that elucidates the distinct roles of cultural and genetic inheritance systems and their interaction in driving the evolution of complex phenotypes. In particular, we derive a Price equation that incorporates both cultural and genetic inheritance of a phenotype where the effects of genes and culture are additive. We then use this equation to investigate whether a genetically maladaptive phenotype can evolve under dual transmission. We examine the special case of altruism using an illustrative model and show that cultural selection can overcome genetic selection when the variance in culture is sufficiently high with respect to genes. We also show that the presence of cultural transmission can modify genetic selection itself, making genetic selection more favorable to a trait than under purely genetic inheritance. Last, we consider the effect of different timescales of genetic and cultural transmission. We discuss the implications of our results for understanding the evolution of important coinherited behaviors, including how our framework can be used to generate quantitative estimates of selection pressures required for a genetically maladaptive trait to evolve.
Collapse
|
172
|
Lind MI, Spagopoulou F. Evolutionary consequences of epigenetic inheritance. Heredity (Edinb) 2018; 121:205-209. [PMID: 29976958 PMCID: PMC6082883 DOI: 10.1038/s41437-018-0113-y] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 06/15/2018] [Indexed: 12/14/2022] Open
Affiliation(s)
- Martin I Lind
- Department of Ecology and Genetics, Animal Ecology, Uppsala University, Uppsala, 752 36, Sweden.
| | - Foteini Spagopoulou
- Department of Ecology and Genetics, Animal Ecology, Uppsala University, Uppsala, 752 36, Sweden.
| |
Collapse
|
173
|
Zirbel K, Eastmond B, Alto BW. Parental and offspring larval diets interact to influence life-history traits and infection with dengue virus in Aedes aegypti. ROYAL SOCIETY OPEN SCIENCE 2018; 5:180539. [PMID: 30109101 PMCID: PMC6083674 DOI: 10.1098/rsos.180539] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 06/13/2018] [Indexed: 05/07/2023]
Abstract
The environmental conditions experienced by parents can influence offspring phenotype along with the conditions experienced by offspring. These parental effects are clear in organisms that display parental care and are less clear in other organisms. Here, we consider effects of parental and offspring larval nutrition on offspring development time, survivorship and infection with dengue virus in Aedes aegypti, the mosquito vector of dengue, chikungunya, yellow fever and Zika. Parents were raised on either high or low larval detritus inputs with subsequent offspring being divided into two groups, one receiving high nutrients and the other low. Low nutrient females from low nutrient parents (LL) developed significantly slower than those from high nutrient parents (HL). Females from all parent by offspring nutrient treatment groups were equally likely to become infected with dengue virus at 24 h, 3 days and 14 days. After 14 days, high nutrient females from low nutrient parents (LH) had 11 times higher viral titres and more disseminated infections than high nutrient females from high nutrient parents (HH). These results suggest that carry-over environmental stress from the parental generation can influence life histories and arbovirus infection in Ae. aegypti females. We found males to be robust to the life-history parameters measured, suggesting sex-specific differences which may relate to their lower nutrient requirements for metamorphosis.
Collapse
Affiliation(s)
- Kylie Zirbel
- Florida Medical Entomology Laboratory, Entomology and Nematology Department, Institute of Food and Agricultural Sciences, University of Florida, Vero Beach, FL 32962, USA
| | | | | |
Collapse
|
174
|
Guenther A, Groothuis AGG, Krüger O, Goerlich-Jansson VC. Cortisol during adolescence organises personality traits and behavioural syndromes. Horm Behav 2018; 103:129-139. [PMID: 29953885 DOI: 10.1016/j.yhbeh.2018.06.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 06/22/2018] [Accepted: 06/23/2018] [Indexed: 12/16/2022]
Abstract
Despite the growing evidence for the importance of developmental experiences shaping consistent individual differences in behaviour and physiology, the role of endocrine factors underlying the development and maintenance of such differences across multiple traits, remains poorly understood. Here, we investigated how an experimental manipulation of circulating glucocorticoids during early adolescence affects behavioural and physiological variation and covariation later in life in the precocial cavy (Cavia aperea). Plasma cortisol concentrations were experimentally elevated by administering cortisol via food for 3 weeks. Struggle docility, escape latency, boldness, exploration and social behaviour were then tested three times after individuals attained sexual maturity. In addition, blood samples were taken repeatedly to monitor circulating cortisol concentrations. Exogenous cortisol affected mean trait expression of plasma cortisol levels, struggle docility and escape latency. Repeatability of cortisol and escape latency was increased and repeatability of struggle docility tended to be higher (approaching significance) in treated individuals. Increased repeatability was mainly caused by an increase of among-individual variance. Correlations among docility, escape latency and cortisol were stronger in treated animals compared to control animals. These results suggest that exposure to elevated levels of cortisol during adolescence can alter animal personality traits as well as behavioural syndromes. Social and risk-taking traits showed no correlation with cortisol levels and were unaffected by the experimental manipulation, indicating behavioural modularity. Taken together, our data highlight that cortisol can have organising effects during adolescence on the development of personality traits and behavioural syndromes, adding to the increasing evidence that not only early life but also adolescence is an important sensitive period for behavioural development.
Collapse
Affiliation(s)
- A Guenther
- Department of Animal Behaviour, Bielefeld University, Germany; GELIFES - Groningen Institute for Evolutionary Life Sciences, University of Groningen, the Netherlands.
| | - A G G Groothuis
- GELIFES - Groningen Institute for Evolutionary Life Sciences, University of Groningen, the Netherlands
| | - O Krüger
- Department of Animal Behaviour, Bielefeld University, Germany
| | - V C Goerlich-Jansson
- Department of Animals in Science and Society, Utrecht University, Yalelaan 2, 3508, TD, Utrecht, the Netherlands.
| |
Collapse
|
175
|
The Contributions of ‘Diet’, ‘Genes’, and Physical Activity to the Etiology of Obesity: Contrary Evidence and Consilience. Prog Cardiovasc Dis 2018; 61:89-102. [DOI: 10.1016/j.pcad.2018.06.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Accepted: 06/10/2018] [Indexed: 12/12/2022]
|
176
|
Tran TT, Janssens L, Dinh KV, Stoks R. Transgenerational interactions between pesticide exposure and warming in a vector mosquito. Evol Appl 2018; 11:906-917. [PMID: 29928299 PMCID: PMC5999214 DOI: 10.1111/eva.12605] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 01/23/2018] [Indexed: 12/21/2022] Open
Abstract
While transgenerational plasticity may buffer ectotherms to warming and pesticides separately, it remains unknown how combined exposure to warming and pesticides in the parental generation shapes the vulnerability to these stressors in the offspring. We studied the transgenerational effects of single and combined exposure to warming (4°C increase) and the pesticide chlorpyrifos on life-history traits of the vector mosquito Culex pipiens. Parental exposure to a single stressor, either warming or the pesticide, had negative effects on the offspring: parental exposure to both warming and the pesticide resulted in an overall lower offspring survival, and a delayed offspring metamorphosis. Parental exposure to a single stressor did, however, not alter the vulnerability of the offspring to the same stressor in terms of survival. Parental pesticide exposure resulted in larger offspring when the offspring experienced the same stressor as the parents. Within both the parental and offspring generations, warming made the pesticide more toxic in terms of survival. Yet, this synergism disappeared in the offspring of parents exposed to both stressors simultaneously because in this condition, the pesticide was already more lethal at the lower temperature. Our results indicate that transgenerational effects will not increase the ability of this vector species to deal with pesticides in a warming world. Bifactorial transgenerational experiments are crucial to understand the combined impact of warming and pesticides across generations, hence to assess the efficacy of vector control in a warming world.
Collapse
Affiliation(s)
- Tam T. Tran
- Evolutionary Stress Ecology and EcotoxicologyUniversity of LeuvenLeuvenBelgium
- Institute of AquacultureNha Trang UniversityNha TrangVietnam
| | - Lizanne Janssens
- Evolutionary Stress Ecology and EcotoxicologyUniversity of LeuvenLeuvenBelgium
| | - Khuong V. Dinh
- Institute of AquacultureNha Trang UniversityNha TrangVietnam
- National Institute of Aquatic ResourcesTechnical University of DenmarkLyngbyDenmark
| | - Robby Stoks
- Evolutionary Stress Ecology and EcotoxicologyUniversity of LeuvenLeuvenBelgium
| |
Collapse
|
177
|
The sperm factor: paternal impact beyond genes. Heredity (Edinb) 2018; 121:239-247. [PMID: 29959427 DOI: 10.1038/s41437-018-0111-0] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 06/12/2018] [Accepted: 06/16/2018] [Indexed: 12/20/2022] Open
Abstract
The fact that sperm carry more than the paternal DNA has only been discovered just over a decade ago. With this discovery, the idea that the paternal condition may have direct implications for the fitness of the offspring had to be revisited. While this idea is still highly debated, empirical evidence for paternal effects is accumulating. Male condition not only affects male fertility but also offspring early development and performance later in life. Several factors have been identified as possible carriers of non-genetic information, but we still know little about their origin and function and even less about their causation. I consider four possible non-mutually exclusive adaptive and non-adaptive explanations for the existence of paternal effects in an evolutionary context. In addition, I provide a brief overview of the main non-genetic components found in sperm including DNA methylation, chromatin modifications, RNAs and proteins. I discuss their putative functions and present currently available examples for their role in transferring non-genetic information from the father to the offspring. Finally, I identify some of the most important open questions and present possible future research avenues.
Collapse
|
178
|
Dubuc-Messier G, Caro SP, Perrier C, van Oers K, Réale D, Charmantier A. Gene flow does not prevent personality and morphological differentiation between two blue tit populations. J Evol Biol 2018; 31:1127-1137. [PMID: 29791058 DOI: 10.1111/jeb.13291] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 05/02/2018] [Accepted: 05/13/2018] [Indexed: 11/28/2022]
Abstract
Understanding the causes and consequences of population phenotypic divergence is a central goal in ecology and evolution. Phenotypic divergence among populations can result from genetic divergence, phenotypic plasticity or a combination of the two. However, few studies have deciphered these mechanisms for populations geographically close and connected by gene flow, especially in the case of personality traits. In this study, we used a common garden experiment to explore the genetic basis of the phenotypic divergence observed between two blue tit (Cyanistes caeruleus) populations inhabiting contrasting habitats separated by 25 km, for two personality traits (exploration speed and handling aggression), one physiological trait (heart rate during restraint) and two morphological traits (tarsus length and body mass). Blue tit nestlings were removed from their population and raised in a common garden for up to 5 years. We then compared adult phenotypes between the two populations, as well as trait-specific Qst and Fst . Our results revealed differences between populations similar to those found in the wild, suggesting a genetic divergence for all traits. Qst -Fst comparisons revealed that the trait divergences likely result from dissimilar selection patterns rather than from genetic drift. Our study is one of the first to report a Qst -Fst comparison for personality traits and adds to the growing body of evidence that population genetic divergence is possible at a small scale for a variety of traits including behavioural traits.
Collapse
Affiliation(s)
- Gabrielle Dubuc-Messier
- Centre d'Écologie Fonctionnelle et Évolutive, Unité Mixte de Recherche CNRS 5175, Montpellier, France.,Département des sciences biologiques, Université du Québec à Montréal, Montréal, QC, Canada
| | - Samuel P Caro
- Centre d'Écologie Fonctionnelle et Évolutive, Unité Mixte de Recherche CNRS 5175, Montpellier, France.,Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
| | - Charles Perrier
- Centre d'Écologie Fonctionnelle et Évolutive, Unité Mixte de Recherche CNRS 5175, Montpellier, France
| | - Kees van Oers
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
| | - Denis Réale
- Département des sciences biologiques, Université du Québec à Montréal, Montréal, QC, Canada
| | - Anne Charmantier
- Centre d'Écologie Fonctionnelle et Évolutive, Unité Mixte de Recherche CNRS 5175, Montpellier, France.,Département des sciences biologiques, Université du Québec à Montréal, Montréal, QC, Canada
| |
Collapse
|
179
|
Recent advances in vertebrate and invertebrate transgenerational immunity in the light of ecology and evolution. Heredity (Edinb) 2018; 121:225-238. [PMID: 29915335 DOI: 10.1038/s41437-018-0101-2] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 05/06/2018] [Accepted: 05/31/2018] [Indexed: 12/18/2022] Open
Abstract
Parental experience with parasites and pathogens can lead to increased offspring resistance to infection, through a process known as transgenerational immune priming (TGIP). Broadly defined, TGIP occurs across a wide range of taxa, and can be viewed as a type of phenotypic plasticity, with hosts responding to the pressures of relevant local infection risk by altering their offspring's immune defenses. There are ever increasing examples of both invertebrate and vertebrate TGIP, which go beyond classical examples of maternal antibody transfer. Here we critically summarize the current evidence for TGIP in both invertebrates and vertebrates. Mechanisms underlying TGIP remain elusive in many systems, but while it is unlikely that they are conserved across the range of organisms with TGIP, recent insight into epigenetic modulation may challenge this view. We place TGIP into a framework of evolutionary ecology, discussing costs and relevant environmental variation. We highlight how the ecology of species or populations should affect if, where, when, and how TGIP is realized. We propose that the field can progress by incorporating evolutionary ecology focused designs to the study of the so far well chronicled, but mostly descriptive TGIP, and how rapidly developing -omic methods can be employed to further understand TGIP across taxa.
Collapse
|
180
|
Vega‐Trejo R, Kruuk LEB, Jennions MD, Head ML. What happens to offspring when parents are inbred, old or had a poor start in life? Evidence for sex‐specific parental effects. J Evol Biol 2018; 31:1138-1151. [DOI: 10.1111/jeb.13292] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 04/30/2018] [Accepted: 05/14/2018] [Indexed: 12/23/2022]
Affiliation(s)
- Regina Vega‐Trejo
- Division of Ecology & Evolution, Research School of Biology The Australian National University, Acton Canberra ACT Australia
| | - Loeske E. B. Kruuk
- Division of Ecology & Evolution, Research School of Biology The Australian National University, Acton Canberra ACT Australia
| | - Michael D. Jennions
- Division of Ecology & Evolution, Research School of Biology The Australian National University, Acton Canberra ACT Australia
| | - Megan L. Head
- Division of Ecology & Evolution, Research School of Biology The Australian National University, Acton Canberra ACT Australia
| |
Collapse
|
181
|
Landy JA, Travis J. Unique maternal and environmental effects on the body morphology of the Least Killifish, Heterandria formosa. Ecol Evol 2018; 8:6265-6279. [PMID: 29988417 PMCID: PMC6024122 DOI: 10.1002/ece3.4166] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 04/02/2018] [Accepted: 04/04/2018] [Indexed: 01/06/2023] Open
Abstract
An important step in diagnosing local adaptation is the demonstration that phenotypic variation among populations is at least in part genetically based. To do this, many methods experimentally minimize the environmental effect on the phenotype to elucidate the genetic effect. Minimizing the environmental effect often includes reducing possible environmental maternal effects. However, maternal effects can be an important factor in patterns of local adaptation as well as adaptive plasticity. Here, we report the results of an experiment with males from two populations of the poeciliid fish, Heterandria formosa, designed to examine the relative influence of environmental maternal effects and environmental effects experienced during growth and development on body morphology, and, in addition, whether the balance among those effects is unique to each population. We used a factorial design that varied thermal environment and water chemistry experienced by mothers and thermal environment and water chemistry experienced by offspring. We found substantial differences between the two populations in their maternal and offspring norms of reaction of male body morphology to differences in thermal environment and water chemistry. We also found that the balance between maternal effects and postparturition environmental effects differed from one thermal regime to another and among traits. These results indicate that environmental maternal effects can be decidedly population-specific and, as a result, might either contribute to the appearance of or blur evidence for local adaptation. These results also suggest that local adaptation might also occur through the evolution of maternal norms of reaction to important, and varying, environmental factors.
Collapse
Affiliation(s)
- J Alex Landy
- Department of Biological ScienceFlorida State UniversityTallahasseeFlorida
| | - Joseph Travis
- Department of Biological ScienceFlorida State UniversityTallahasseeFlorida
| |
Collapse
|
182
|
Fernandes VFL, Macaspac C, Lu L, Yoshizawa M. Evolution of the developmental plasticity and a coupling between left mechanosensory neuromasts and an adaptive foraging behavior. Dev Biol 2018; 441:262-271. [PMID: 29782817 DOI: 10.1016/j.ydbio.2018.05.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 05/10/2018] [Accepted: 05/15/2018] [Indexed: 11/30/2022]
Abstract
Many animal species exhibit laterality in sensation and behavioral responses, namely, the preference for using either the left or right side of the sensory system. For example, some fish use their left eye when observing social stimuli, whereas they use their right eye to observe novel objects. However, it is largely unknown whether such laterality in sensory-behavior coupling evolves during rapid adaptation processes. Here, in the Mexican tetra, Astyanax mexicanus, we investigate the laterality in the relationship between an evolved adaptive behavior, vibration attraction behavior (VAB), and its main sensors, mechanosensory neuromasts. A. mexicanus has a surface-dwelling form and cave-dwelling forms (cavefish), whereby a surface fish ancestor colonized the new environment of a cave, eventually evolving cave-type morphologies such as increased numbers of neuromasts at the cranium. These neuromasts are known to regulate VAB, and it is known that, in teleosts, the budding (increasing) process of neuromasts is accompanied with dermal bone formation. This bone formation is largely regulated by endothelin signaling. To assess the evolutionary relationship between bone formation, neuromast budding, and VAB, we treated 1-3 month old juvenile fish with endothelin receptor antagonists. This treatment significantly increased cranial neuromasts in both surface and cavefish, and the effect was significantly more pronounced in cavefish. Antagonist treatment also increased the size of dermal bones in cavefish, but neuromast enhancement was observed earlier than dermal bone formation, suggesting that endothelin signaling may independently regulate neuromast development and bone formation. In addition, although we did not detect a major change in VAB level under this antagonist treatment, cavefish did show a positive correlation of VAB with the number of neuromasts on their left side but not their right. This laterality in correlation was observed when VAB emerged during cavefish development, but it was not seen in surface fish under any conditions tested, suggesting this laterality emerged through an evolutionary process. Above all, cavefish showed higher developmental plasticity in neuromast number and bone formation, and they showed an asymmetric correlation between the number of left-right neuromasts and VAB.
Collapse
Affiliation(s)
| | - Christian Macaspac
- Department of Biology, University of Hawai'i at Mānoa, Honolulu, HI 96822, USA
| | - Louise Lu
- Department of Biology, University of Hawai'i at Mānoa, Honolulu, HI 96822, USA
| | - Masato Yoshizawa
- Department of Biology, University of Hawai'i at Mānoa, Honolulu, HI 96822, USA.
| |
Collapse
|
183
|
Kostenko VV, Kolot NV. Aging-Associated Changes in the Reproductive Function of Drosophila melanogaster Offspring. ADVANCES IN GERONTOLOGY 2018. [DOI: 10.1134/s207905701802008x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
184
|
Wong JM, Johnson KM, Kelly MW, Hofmann G. Transcriptomics reveal transgenerational effects in purple sea urchin embryos: Adult acclimation to upwelling conditions alters the response of their progeny to differential
p
CO
2
levels. Mol Ecol 2018; 27:1120-1137. [DOI: 10.1111/mec.14503] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Revised: 12/19/2017] [Accepted: 01/08/2018] [Indexed: 01/01/2023]
Affiliation(s)
- Juliet M. Wong
- Department of Ecology, Evolution and Marine Biology University of California, Santa Barbara Santa Barbara CA USA
| | - Kevin M. Johnson
- Department of Ecology, Evolution and Marine Biology University of California, Santa Barbara Santa Barbara CA USA
- Department of Biological Sciences Louisiana State University Baton Rouge LA USA
| | - Morgan W. Kelly
- Department of Biological Sciences Louisiana State University Baton Rouge LA USA
| | - Gretchen E. Hofmann
- Department of Ecology, Evolution and Marine Biology University of California, Santa Barbara Santa Barbara CA USA
| |
Collapse
|
185
|
Matsuura K, Mizumoto N, Kobayashi K, Nozaki T, Fujita T, Yashiro T, Fuchikawa T, Mitaka Y, Vargo EL. A Genomic Imprinting Model of Termite Caste Determination: Not Genetic but Epigenetic Inheritance Influences Offspring Caste Fate. Am Nat 2018; 191:677-690. [PMID: 29750562 DOI: 10.1086/697238] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Eusocial insects exhibit the most striking example of phenotypic plasticity. There has been a long controversy over the factors determining caste development of individuals in social insects. Here we demonstrate that parental phenotypes influence the social status of offspring not through genetic inheritance but through genomic imprinting in termites. Our extensive field survey and genetic analysis of the termite Reticulitermes speratus show that its breeding system is inconsistent with a genetic caste determination model. We therefore developed a genomic imprinting model, in which queen- and king-specific epigenetic marks antagonistically influence sexual development of offspring. The model accounts for all known empirical data on caste differentiation of R. speratus and other related species. By conducting colony-founding experiments and additively incorporating relevant socio-environmental factors into our genomic imprinting model, we show the relative importance of genomic imprinting and environmental factors in caste determination. The idea of epigenetic inheritance of sexual phenotypes solves the puzzle of why parthenogenetically produced daughters carrying only maternal chromosomes exclusively develop into queens and why parental phenotypes (nymph- or worker-derived reproductives) strongly influence caste differentiation of offspring. According to our model, the worker caste is seen as a "neuter" caste whose sexual development is suppressed due to counterbalanced maternal and paternal imprinting and opens new avenues for understanding the evolution of caste systems in social insects.
Collapse
|
186
|
Global change scenarios trigger carry-over effects across life stages and generations of the intertidal limpet, Siphonaria australis. PLoS One 2018; 13:e0194645. [PMID: 29561900 PMCID: PMC5862487 DOI: 10.1371/journal.pone.0194645] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 03/07/2018] [Indexed: 02/01/2023] Open
Abstract
For organisms with complex life histories, carry-over effects (COEs) can manifest between life stages, when conditions experienced by one stage influence the next, as well as trans-generationally, when the parental environment affects offspring. Here we used multiple global change-associated stressors to examine both forms of COE simultaneously in an intertidal limpet with mixed development (i.e. planktonic larvae hatch from benthic egg masses). Adult Siphonaria australis were subjected to four treatments over four weeks: an ambient control, a treatment featuring elevated water temperature (25°C) and UVB (1.7 W m-2), a copper pollution treatment (5.0 μg L-1), and a treatment incorporating all three stressors. Egg masses laid by these adults were then redistributed among the same four treatments (producing 16 adult-to-egg treatment histories) and stressed until hatching. Finally, hatching larvae were reared under ambient conditions for 24 days. While adult survivorship was unaffected by treatment, embryonic viability in egg masses responded strongly to egg mass treatment, as well as parental stress exposure, therefore displaying trans-generational COEs. These trans-generational COEs interacted with COEs originating in egg masses to produce highly context-dependent hatching sizes and larval growth. This demonstrates that the performance of a given organism at a given time reflects not only conditions experienced during embryonic development, but also those of the parental generation, and suggests that COEs play an important but underestimated role in responses to global change scenarios.
Collapse
|
187
|
Odorico A, Rünneburger E, Le Rouzic A. Modelling the influence of parental effects on gene-network evolution. J Evol Biol 2018; 31:687-700. [PMID: 29473251 DOI: 10.1111/jeb.13255] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 02/09/2018] [Accepted: 02/13/2018] [Indexed: 11/27/2022]
Abstract
Understanding the importance of nongenetic heredity in the evolutionary process is a major topic in modern evolutionary biology. We modified a classical gene-network model by allowing parental transmission of gene expression and studied its evolutionary properties through individual-based simulations. We identified ontogenetic time (i.e. the time gene networks have to stabilize before being submitted to natural selection) as a crucial factor in determining the evolutionary impact of this phenotypic inheritance. Indeed, fast-developing organisms display enhanced adaptation and greater robustness to mutations when evolving in presence of nongenetic inheritance (NGI). In contrast, in our model, long development reduces the influence of the inherited state of the gene network. NGI thus had a negligible effect on the evolution of gene networks when the speed at which transcription levels reach equilibrium is not constrained. Nevertheless, simulations show that intergenerational transmission of the gene-network state negatively affects the evolution of robustness to environmental disturbances for either fast- or slow-developing organisms. Therefore, these results suggest that the evolutionary consequences of NGI might not be sought only in the way species respond to selection, but also on the evolution of emergent properties (such as environmental and genetic canalization) in complex genetic architectures.
Collapse
Affiliation(s)
- Andreas Odorico
- Laboratoire Évolution, Génomes, Comportement, Écologie, CNRS, IRD, Univ. Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Estelle Rünneburger
- Laboratoire Évolution, Génomes, Comportement, Écologie, CNRS, IRD, Univ. Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Arnaud Le Rouzic
- Laboratoire Évolution, Génomes, Comportement, Écologie, CNRS, IRD, Univ. Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| |
Collapse
|
188
|
Schell CJ, Young JK, Lonsdorf EV, Mateo JM, Santymire RM. It takes two: Evidence for reduced sexual conflict over parental care in a biparental canid. J Mammal 2018. [DOI: 10.1093/jmammal/gyx150] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
189
|
Freudenstein JV, Broe MB, Folk RA, Sinn BT. Biodiversity and the Species Concept-Lineages are not Enough. Syst Biol 2018; 66:644-656. [PMID: 27798406 DOI: 10.1093/sysbio/syw098] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 10/14/2016] [Indexed: 11/13/2022] Open
Abstract
The nature and definition of species continue to be matters of debate. Current views of species often focus on their nature as lineages-maximal reproductive communities through time. Whereas many authors point to the Evolutionary Species Concept as optimal, in its original form it stressed the ecological role of species as well as their history as lineages, but most recent authors have ignored the role aspect of the concept, making it difficult to apply unambiguously in a time-extended way. This trend has been exacerbated by the application of methods and concepts emphasizing the notion of monophyly, originally applied only at higher levels, to the level of individuals, as well as by the current emphasis on molecular data. Hence, some current authors recognize units that are no more than probable exclusive lineages as species. We argue that biodiversity is inherently a phenotypic concept and that role, as manifested in the organismal extended phenotype, is a necessary component of the species concept. Viewing species as historically connected populations with unique role brings together the temporal and phenotypic natures of species, providing a clear way to view species both in a time-limited and time-extended way. Doing so alleviates perceived issues with "paraphyletic species" and returns the focus of species to units that are most relevant for biodiversity.
Collapse
Affiliation(s)
- John V Freudenstein
- Department of Evolution, Ecology and Organismal Biology, The Ohio State University Herbarium, 1315 Kinnear Road, Columbus, OH 43212, USA
| | - Michael B Broe
- Department of Evolution, Ecology and Organismal Biology, The Ohio State University Herbarium, 1315 Kinnear Road, Columbus, OH 43212, USA
| | - Ryan A Folk
- Department of Evolution, Ecology and Organismal Biology, The Ohio State University Herbarium, 1315 Kinnear Road, Columbus, OH 43212, USA.,Florida Museum of Natural History, University of Florida, 1659 Museum Road, Gainesville, FL 32611, USA
| | - Brandon T Sinn
- Department of Evolution, Ecology and Organismal Biology, The Ohio State University Herbarium, 1315 Kinnear Road, Columbus, OH 43212, USA.,New York Botanical Garden, 2900 Southern Blvd., Bronx, NY 10458, USA
| |
Collapse
|
190
|
Baker BH, Berg LJ, Sultan SE. Context-Dependent Developmental Effects of Parental Shade Versus Sun Are Mediated by DNA Methylation. FRONTIERS IN PLANT SCIENCE 2018; 9:1251. [PMID: 30210520 PMCID: PMC6119717 DOI: 10.3389/fpls.2018.01251] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 08/06/2018] [Indexed: 05/12/2023]
Abstract
Parental environment influences progeny development in numerous plant and animal systems. Such inherited environmental effects may alter offspring phenotypes in a consistent way, for instance when resource-deprived parents produce low quality offspring due to reduced maternal provisioning. However, because development of individual organisms is guided by both inherited and immediate environmental cues, parental conditions may have different effects depending on progeny environment. Such context-dependent transgenerational plasticity suggests a mechanism of environmental inheritance that can precisely interact with immediate response pathways, such as epigenetic modification. We show that parental light environment (shade versus sun) resulted in context-dependent effects on seedling development in a common annual plant, and that these effects were mediated by DNA methylation. We grew replicate parents of five highly inbred Polygonum persicaria genotypes in glasshouse shade versus sun and, in a fully factorial design, measured ecologically important traits of their isogenic seedling offspring in both environments. Compared to the offspring of sun-grown parents, the offspring of shade-grown parents produced leaves with greater mean and specific leaf area, and had higher total leaf area and biomass. These shade-adaptive effects of parental shade were pronounced and highly significant for seedlings growing in shade, but slight and generally non-significant for seedlings growing in sun. Based on both regression and covariate analysis, inherited effects of parental shade were not mediated by changes to seed provisioning. To test for a role of DNA methylation, we exposed replicate offspring of isogenic shaded and fully insolated parents to either the demethylating agent zebularine or to control conditions during germination, then raised them in simulated growth chamber shade. Partial demethylation of progeny DNA had no phenotypic effect on offspring of shaded parents, but caused offspring of sun-grown parents to develop as if their parents had been shaded, with larger leaves and greater total canopy area and biomass. These results contribute to the increasing body of evidence that DNA methylation can mediate transgenerational environmental effects, and show that such effects may contribute to nuanced developmental interactions between parental and immediate environments.
Collapse
|
191
|
Donelson JM, Salinas S, Munday PL, Shama LNS. Transgenerational plasticity and climate change experiments: Where do we go from here? GLOBAL CHANGE BIOLOGY 2018; 24:13-34. [PMID: 29024256 DOI: 10.1111/gcb.13903] [Citation(s) in RCA: 209] [Impact Index Per Article: 29.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 08/30/2017] [Indexed: 05/18/2023]
Abstract
Phenotypic plasticity, both within and across generations, is an important mechanism that organisms use to cope with rapid climate change. While an increasing number of studies show that plasticity across generations (transgenerational plasticity or TGP) may occur, we have limited understanding of key aspects of TGP, such as the environmental conditions that may promote it, its relationship to within-generation plasticity (WGP) and its role in evolutionary potential. In this review, we consider how the detection of TGP in climate change experiments is affected by the predictability of environmental variation, as well as the timing and magnitude of environmental change cues applied. We also discuss the need to design experiments that are able to distinguish TGP from selection and TGP from WGP in multigenerational experiments. We conclude by suggesting future research directions that build on the knowledge to date and admit the limitations that exist, which will depend on the way environmental change is simulated and the type of experimental design used. Such an approach will open up this burgeoning area of research to a wider variety of organisms and allow better predictive capacity of the role of TGP in the response of organisms to future climate change.
Collapse
Affiliation(s)
- Jennifer M Donelson
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Qld, Australia
- School of Life Sciences, University of Technology Sydney, Broadway, NSW, Australia
| | | | - Philip L Munday
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Qld, Australia
| | - Lisa N S Shama
- Coastal Ecology Section, Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, Wadden Sea Station Sylt, List, Germany
| |
Collapse
|
192
|
Gasparini C, Lu C, Dingemanse NJ, Tuni C. Paternal‐effects in a terrestrial ectotherm are temperature dependent but no evidence for adaptive effects. Funct Ecol 2017. [DOI: 10.1111/1365-2435.13022] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Clelia Gasparini
- Centre for Evolutionary BiologySchool of Biological SciencesUniversity of Western Australia Crawley Australia
| | - ChuChu Lu
- Behavioural EcologyDepartment of BiologyLudwig Maximilian University Munich Germany
| | - Niels J. Dingemanse
- Behavioural EcologyDepartment of BiologyLudwig Maximilian University Munich Germany
| | - Cristina Tuni
- Behavioural EcologyDepartment of BiologyLudwig Maximilian University Munich Germany
| |
Collapse
|
193
|
Nicoglou A, Merlin F. Epigenetics: A way to bridge the gap between biological fields. STUDIES IN HISTORY AND PHILOSOPHY OF BIOLOGICAL AND BIOMEDICAL SCIENCES 2017; 66:73-82. [PMID: 29033228 DOI: 10.1016/j.shpsc.2017.10.002] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 09/28/2017] [Accepted: 10/02/2017] [Indexed: 06/07/2023]
Abstract
The concept of epigenetics has evolved since Waddington defined it from the late 1930s as the study of the causal mechanisms at work in development. It has become a multi-faceted notion with different meanings, depending on the disciplinary context it is used. In this article, we first analyse the transformations of the concept of epigenetics, from Waddington to contemporary accounts, in order to identify its different meanings and traditions, and to come up with a typology of epigenetics throughout its history. Second, we show on this basis that epigenetics has progressively turned its main focus from biological problems regarding development, toward issues concerning evolution. Yet, both these different epistemological aspects of epigenetics still coexist. Third, we claim that the classical opposition between epigenesis and preformationism as ways of thinking about the developmental process is part of the history of epigenetics and has contributed to its current various meanings. With these objectives in mind, we first show how Waddington introduced the term "epigenetics" in a biological context in order to solve a developmental problem, and we then build on this by presenting Nanney's, Riggs' and Holliday's definitions, which form the basis for the current conception of "molecular epigenetics". Then, we show that the evo-devo research field is where some particular uses of epigenetics have started shifting from developmental issues to evolutionary problems. We also show that epigenetics has progressively focused on the issue of epigenetic inheritance within the Extended Evolutionary Synthesis' framework. Finally, we conclude by presenting a typology of the different conceptions of epigenetics throughout time, and analyse the connections between them. We argue that, since Waddington, epigenetics, as an integrative research area, has been used to bridge the gap between different biological fields.
Collapse
Affiliation(s)
- Antonine Nicoglou
- CRPMS & IJM (University of Paris 7), Associate at IHPST, Paris, France.
| | - Francesca Merlin
- IHPST (CNRS, University of Paris 1, ENS), 13 rue du Four, 75006 Paris, France
| |
Collapse
|
194
|
Kokko H. Give one species the task to come up with a theory that spans them all: what good can come out of that? Proc Biol Sci 2017; 284:20171652. [PMID: 29142112 PMCID: PMC5719169 DOI: 10.1098/rspb.2017.1652] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 10/16/2017] [Indexed: 01/01/2023] Open
Abstract
Does the progress in understanding evolutionary theory depend on the species that is doing the investigation? This question is difficult to answer scientifically, as we are dealing with an n = 1 scenario: every individual who has ever written about evolution is a human being. I will discuss, first, whether we get the correct answer to questions if we begin with ourselves and expand outwards, and second, whether we might fail to ask all the interesting questions unless we combat our tendencies to favour taxa that are close to us. As a whole, the human tendency to understand general biological phenomena via 'putting oneself in another organism's shoes' has upsides and downsides. As an upside, our intuitive ability to rethink strategies if the situation changes can lead to ready generation of adaptive hypotheses. Downsides occur if we trust this intuition too much, and particular danger zones exist for traits where humans are an unusual species. I argue that the levels of selection debate might have proceeded differently if human cooperation patterns were not so unique, as this brings about unique challenges in biology teaching; and that theoretical insights regarding inbreeding avoidance versus tolerance could have spread faster if we were not extrapolating our emotional reactions to incest disproportionately depending on whether we study animals or plants. I also discuss patterns such as taxonomic chauvinism, i.e. less attention being paid to species that differ more from human-like life histories. Textbooks on evolution reinforce such biases insofar as they present, as a default case, systems that resemble ours in terms of life cycles and other features (e.g. gonochorism). Additionally, societal norms may have led to incorrect null hypotheses such as females not mating multiply.
Collapse
Affiliation(s)
- Hanna Kokko
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| |
Collapse
|
195
|
Kronholm I, Bassett A, Baulcombe D, Collins S. Epigenetic and Genetic Contributions to Adaptation in Chlamydomonas. Mol Biol Evol 2017; 34:2285-2306. [PMID: 28535256 DOI: 10.1093/molbev/msx166] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Epigenetic modifications, such as DNA methylation or histone modifications, can be transmitted between cellular or organismal generations. However, there are no experiments measuring their role in adaptation, so here we use experimental evolution to investigate how epigenetic variation can contribute to adaptation. We manipulated DNA methylation and histone acetylation in the unicellular green alga Chlamydomonas reinhardtii both genetically and chemically to change the amount of epigenetic variation generated or transmitted in adapting populations in three different environments (salt stress, phosphate starvation, and high CO2) for two hundred asexual generations. We find that reducing the amount of epigenetic variation available to populations can reduce adaptation in environments where it otherwise happens. From genomic and epigenomic sequences from a subset of the populations, we see changes in methylation patterns between the evolved populations over-represented in some functional categories of genes, which is consistent with some of these differences being adaptive. Based on whole genome sequencing of evolved clones, the majority of DNA methylation changes do not appear to be linked to cis-acting genetic mutations. Our results show that transgenerational epigenetic effects play a role in adaptive evolution, and suggest that the relationship between changes in methylation patterns and differences in evolutionary outcomes, at least for quantitative traits such as cell division rates, is complex.
Collapse
Affiliation(s)
- Ilkka Kronholm
- Department of Biological and Environmental Science, Centre of Excellence in Biological Interactions, University of Jyväskylä, Jyväskylä, Finland
| | - Andrew Bassett
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Cambridge, United Kingdom
| | - David Baulcombe
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Sinéad Collins
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
196
|
Stotz GC, Gianoli E, Cahill JF. Maternal experience and soil origin influence interactions between resident species and a dominant invasive species. Oecologia 2017; 186:247-257. [PMID: 29110075 DOI: 10.1007/s00442-017-3996-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 10/28/2017] [Indexed: 01/28/2023]
Abstract
Invasive species dominance in invaded communities may not be long-lasting due to regulatory processes, such as plant-soil feedbacks and neighboring species adaptation. Further, the change in species competitive ability may be contingent upon neighbor identity (i.e., specialized response) or consistent across neighbors (i.e., generalized response). Specialized responses can facilitate overall coexistence, while generalized responses may result in competitive exclusion. We set up a greenhouse experiment to test, in three species, the effect of soil conditions (non-invaded vs. invaded soil) and maternal experience (offspring of maternal plants from invaded vs. non-invaded areas) on species competitive ability against the invader Bromus inermis and conspecifics. If changes in species competitive ability against B. inermis were also evident when interacting with conspecifics, it would suggest a generalized increased/decreased competitive ability. Maternal experience resulted in reduced suppression of B. inermis in the three species and no change in tolerance. On the other hand, tolerance to B. inermis was enhanced when plants grew in soil from invaded areas, compared to non-brome soil. Importantly, both the decreased suppression due to maternal experience with B. inermis and the increased tolerance in invaded soil appear to be invader specific, as no such effects were observed when interacting with conspecifics. Specialized responses should facilitate coexistence, as no individual/species is a weaker or stronger competitor against all other neighbors or under all local soil conditions. Further, the negative plant-soil feedback for B. inermis should facilitate native species recovery in invaded areas and result in lower B. inermis performance and dominance over time.
Collapse
Affiliation(s)
- Gisela C Stotz
- Department of Biological Sciences, University of Alberta, Alberta, T6G 2E9, Canada.
- Instituto de Investigación Multidisciplinario en Ciencia y Tecnología, Universidad de La Serena, La Serena, Chile.
| | - Ernesto Gianoli
- Departamento de Biología, Universidad de la Serena, Casilla 554, La Serena, Chile
- Departmento de Botánica, Universidad de Concepción, Casilla 160-C, Concepción, Chile
| | - James F Cahill
- Department of Biological Sciences, University of Alberta, Alberta, T6G 2E9, Canada
| |
Collapse
|
197
|
Bonduriansky R, Crean AJ. What are parental condition‐transfer effects and how can they be detected? Methods Ecol Evol 2017. [DOI: 10.1111/2041-210x.12848] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Russell Bonduriansky
- Evolution & Ecology Research Centre and School of Biological, Earth and Environmental Sciences University of New South Wales Australia Sydney NSW Australia
| | - Angela J. Crean
- Animal Reproduction Group School of Life and Environmental Sciences Faculty of Veterinary Science University of Sydney Sydney NSW Australia
| |
Collapse
|
198
|
Abstract
Evolutionary theory has been extended almost continually since the evolutionary synthesis (ES), but except for the much greater importance afforded genetic drift, the principal tenets of the ES have been strongly supported. Adaptations are attributable to the sorting of genetic variation by natural selection, which remains the only known cause of increase in fitness. Mutations are not adaptively directed, but as principal authors of the ES recognized, the material (structural) bases of biochemistry and development affect the variety of phenotypic variations that arise by mutation and recombination. Against this historical background, I analyse major propositions in the movement for an 'extended evolutionary synthesis'. 'Niche construction' is a new label for a wide variety of well-known phenomena, many of which have been extensively studied, but (as with every topic in evolutionary biology) some aspects may have been understudied. There is no reason to consider it a neglected 'process' of evolution. The proposition that phenotypic plasticity may engender new adaptive phenotypes that are later genetically assimilated or accommodated is theoretically plausible; it may be most likely when the new phenotype is not truly novel, but is instead a slight extension of a reaction norm already shaped by natural selection in similar environments. However, evolution in new environments often compensates for maladaptive plastic phenotypic responses. The union of population genetic theory with mechanistic understanding of developmental processes enables more complete understanding by joining ultimate and proximate causation; but the latter does not replace or invalidate the former. Newly discovered molecular phenomena have been easily accommodated in the past by elaborating orthodox evolutionary theory, and it appears that the same holds today for phenomena such as epigenetic inheritance. In several of these areas, empirical evidence is needed to evaluate enthusiastic speculation. Evolutionary theory will continue to be extended, but there is no sign that it requires emendation.
Collapse
Affiliation(s)
- Douglas J. Futuyma
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, NY, USA
| |
Collapse
|
199
|
Ouwehand J, Burger C, Both C. Shifts in hatch dates do not provide pied flycatchers with a rapid ontogenetic route to adjust offspring time schedules to climate change. Funct Ecol 2017. [DOI: 10.1111/1365-2435.12940] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Janne Ouwehand
- Conservation Ecology GroupGroningen Institute for Evolutionary Life SciencesUniversity of Groningen Groningen The Netherlands
| | | | - Christiaan Both
- Conservation Ecology GroupGroningen Institute for Evolutionary Life SciencesUniversity of Groningen Groningen The Netherlands
| |
Collapse
|
200
|
Saastamoinen M, Bocedi G, Cote J, Legrand D, Guillaume F, Wheat CW, Fronhofer EA, Garcia C, Henry R, Husby A, Baguette M, Bonte D, Coulon A, Kokko H, Matthysen E, Niitepõld K, Nonaka E, Stevens VM, Travis JMJ, Donohue K, Bullock JM, Del Mar Delgado M. Genetics of dispersal. Biol Rev Camb Philos Soc 2017; 93:574-599. [PMID: 28776950 PMCID: PMC5811798 DOI: 10.1111/brv.12356] [Citation(s) in RCA: 129] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 07/03/2017] [Accepted: 07/05/2017] [Indexed: 12/12/2022]
Abstract
Dispersal is a process of central importance for the ecological and evolutionary dynamics of populations and communities, because of its diverse consequences for gene flow and demography. It is subject to evolutionary change, which begs the question, what is the genetic basis of this potentially complex trait? To address this question, we (i) review the empirical literature on the genetic basis of dispersal, (ii) explore how theoretical investigations of the evolution of dispersal have represented the genetics of dispersal, and (iii) discuss how the genetic basis of dispersal influences theoretical predictions of the evolution of dispersal and potential consequences. Dispersal has a detectable genetic basis in many organisms, from bacteria to plants and animals. Generally, there is evidence for significant genetic variation for dispersal or dispersal‐related phenotypes or evidence for the micro‐evolution of dispersal in natural populations. Dispersal is typically the outcome of several interacting traits, and this complexity is reflected in its genetic architecture: while some genes of moderate to large effect can influence certain aspects of dispersal, dispersal traits are typically polygenic. Correlations among dispersal traits as well as between dispersal traits and other traits under selection are common, and the genetic basis of dispersal can be highly environment‐dependent. By contrast, models have historically considered a highly simplified genetic architecture of dispersal. It is only recently that models have started to consider multiple loci influencing dispersal, as well as non‐additive effects such as dominance and epistasis, showing that the genetic basis of dispersal can influence evolutionary rates and outcomes, especially under non‐equilibrium conditions. For example, the number of loci controlling dispersal can influence projected rates of dispersal evolution during range shifts and corresponding demographic impacts. Incorporating more realism in the genetic architecture of dispersal is thus necessary to enable models to move beyond the purely theoretical towards making more useful predictions of evolutionary and ecological dynamics under current and future environmental conditions. To inform these advances, empirical studies need to answer outstanding questions concerning whether specific genes underlie dispersal variation, the genetic architecture of context‐dependent dispersal phenotypes and behaviours, and correlations among dispersal and other traits.
Collapse
Affiliation(s)
- Marjo Saastamoinen
- Department of Biosciences, Metapopulation Research Centre, University of Helsinki, P.O. Box 65, 00014 Helsinki, Finland
| | - Greta Bocedi
- School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, U.K
| | - Julien Cote
- Laboratoire Évolution & Diversité Biologique UMR5174, CNRS, Université Toulouse III Paul Sabatier, 31062 Toulouse, France
| | - Delphine Legrand
- Centre National de la Recherche Scientifique and Université Paul Sabatier Toulouse III, SETE Station d'Ecologie Théorique et Expérimentale, UMR 5321, 09200 Moulis, France
| | - Frédéric Guillaume
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, CH-8057 Zurich, Switzerland
| | - Christopher W Wheat
- Population Genetics, Department of Zoology, Stockholm University, S-10691 Stockholm, Sweden
| | - Emanuel A Fronhofer
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, CH-8057 Zurich, Switzerland.,Department of Aquatic Ecology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, CH-8600 Dubendorf, Switzerland
| | - Cristina Garcia
- CIBIO-InBIO, Universidade do Porto, 4485-661 Vairão, Portugal
| | - Roslyn Henry
- School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, U.K.,School of GeoSciences, University of Edinburgh, Edinburgh EH89XP, U.K
| | - Arild Husby
- Department of Biosciences, Metapopulation Research Centre, University of Helsinki, P.O. Box 65, 00014 Helsinki, Finland
| | - Michel Baguette
- Centre National de la Recherche Scientifique and Université Paul Sabatier Toulouse III, SETE Station d'Ecologie Théorique et Expérimentale, UMR 5321, 09200 Moulis, France.,Museum National d'Histoire Naturelle, Institut Systématique, Evolution, Biodiversité, UMR 7205, F-75005 Paris, France
| | - Dries Bonte
- Department of Biology, Ghent University, B-9000 Ghent, Belgium
| | - Aurélie Coulon
- PSL Research University, CEFE UMR 5175, CNRS, Université de Montpellier, Université Paul-Valéry Montpellier, EPHE, Biogéographie et Ecologie des Vertébrés, 34293 Montpellier, France.,CESCO UMR 7204, Bases écologiques de la conservation, Muséum national d'Histoire naturelle, 75005 Paris, France
| | - Hanna Kokko
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, CH-8057 Zurich, Switzerland
| | - Erik Matthysen
- Evolutionary Ecology Group, Department of Biology, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Kristjan Niitepõld
- Department of Biosciences, Metapopulation Research Centre, University of Helsinki, P.O. Box 65, 00014 Helsinki, Finland
| | - Etsuko Nonaka
- Department of Biosciences, Metapopulation Research Centre, University of Helsinki, P.O. Box 65, 00014 Helsinki, Finland
| | - Virginie M Stevens
- Centre National de la Recherche Scientifique and Université Paul Sabatier Toulouse III, SETE Station d'Ecologie Théorique et Expérimentale, UMR 5321, 09200 Moulis, France
| | - Justin M J Travis
- School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, U.K
| | | | - James M Bullock
- NERC Centre for Ecology & Hydrology, Wallingford OX10 8BB, U.K
| | | |
Collapse
|