151
|
Pickard BS, Millar JK, Porteous DJ, Muir WJ, Blackwood DHR. Cytogenetics and gene discovery in psychiatric disorders. THE PHARMACOGENOMICS JOURNAL 2005; 5:81-8. [PMID: 15668732 DOI: 10.1038/sj.tpj.6500293] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The disruption of genes by balanced translocations and other rare germline chromosomal abnormalities has played an important part in the discovery of many common Mendelian disorder genes, somatic oncogenes and tumour supressors. A search of published literature has identified 15 genes whose genomic sequences are directly disrupted by translocation breakpoints in individuals with neuropsychiatric illness. In these cases, it is reasonable to hypothesise that haploinsufficiency is a major factor contributing to illness. These findings suggest that the predicted polygenic nature of psychiatric illness may not represent the complete picture; genes of large individual effect appear to exist. Cytogenetic events may provide important insights into neurochemical pathways and cellular processes critical for the development of complex psychiatric phenotypes in the population at large.
Collapse
Affiliation(s)
- B S Pickard
- Medical Genetics, School of Molecular and Clinical Medicine, Molecular Medicine Centre, University of Edinburgh, Western General Hospital, Edinburgh, UK.
| | | | | | | | | |
Collapse
|
152
|
Eguchi M, Eguchi-Ishimae M, Green A, Enver T, Greaves M. Directing oncogenic fusion genes into stem cells via an SCL enhancer. Proc Natl Acad Sci U S A 2005; 102:1133-8. [PMID: 15650051 PMCID: PMC545834 DOI: 10.1073/pnas.0405318102] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
TEL-TRKC is a fusion gene generated by chromosomal translocation and encodes an activated tyrosine kinase. Uniquely, it is found in both solid tumors and leukemia. However, a single exon difference (in TEL) in TEL-TRKC fusions is associated with the two sets of cancer phenotypes. We expressed the two TEL-TRKC variants in vivo by using the 3' regulatory element of SCL that is selectively active in a subset of mesodermal cell lineages, including endothelial and hematopoietic stem cells and progenitors. The leukemia form of TEL-TRKC (-exon 5 of TEL) enhanced hematopoietic stem cell renewal and initiated leukemia. In contrast, the TEL-TRKC solid tumor variant (+ TEL exon 5) elicited an embryonic lethal phenotype with impairment of both angiogenesis and hematopoiesis indicative of an effect at the level of the hemangioblasts. The ability of TEL-TRKC to repress expression of Flk1, a critical regulator of early endothelial and hematopoietic cells, depended on TEL exon 5. These data indicate that related oncogenic fusion proteins similarly expressed in a hierarchy of early stem cells can have selective, cell type-specific developmental impacts.
Collapse
Affiliation(s)
- Mariko Eguchi
- Section of Haemato-Oncology, Institute of Cancer Research, Chester Beatty Laboratories, 237 Fulham Road, London SW3 6JB, United Kingdom
| | | | | | | | | |
Collapse
|
153
|
Iijima K, Honma Y, Niitsu N. Granulocytic differentiation of leukemic cells with t(9;11)(p22;q23) induced by all-trans-retinoic acid. Leuk Lymphoma 2004; 45:1017-24. [PMID: 15291362 DOI: 10.1080/1042819031000163887] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Acute leukemia patients with MLL (mixed linage leukemia) rearrangements tend to respond poorly to conventional therapies. We examined differentiation of human myeloid leukemia cells displaying the MLL-AF9 gene, using several differentiation agents. When MOLM-14 cells were treated with all-trans retinoic acid (ATRA) or 1beta,25-dihydroxyvitamin D3, significant induced differentiation was observed. Trichostatin A (TSA), an inhibitor of histone deacetylase, demonstrated enhance effects with ATRA in regard to growth inhibition and differentiation induction in MOLM-14 cells. Pretreatment with TSA before exposure to ATRA displayed increased effect. Based on these findings, combined treatment with ATRA and TSA may be clinically useful in therapy for acute leukemia displaying MLL-AF9 fusion gene.
Collapse
MESH Headings
- Acute Disease
- Cell Cycle Proteins/genetics
- Cell Differentiation/drug effects
- Cell Line, Tumor
- Chromosomes, Human, Pair 11
- Chromosomes, Human, Pair 9
- Cyclin-Dependent Kinase Inhibitor p21
- Drug Synergism
- Granulocytes/drug effects
- Granulocytes/pathology
- Humans
- Hydroxamic Acids/pharmacology
- Leukemia, Myeloid/drug therapy
- Leukemia, Myeloid/genetics
- Leukemia, Myeloid/pathology
- Receptors, Retinoic Acid/genetics
- Retinoic Acid Receptor alpha
- Translocation, Genetic
- Tretinoin/pharmacology
- Up-Regulation/drug effects
Collapse
Affiliation(s)
- Kimiko Iijima
- First Department of Internal Medicine, Toho University School of Medicine, Tokyo, Japan
| | | | | |
Collapse
|
154
|
Abstract
The revolution in cancer research can be summed up in a single sentence: cancer is, in essence, a genetic disease. In the last decade, many important genes responsible for the genesis of various cancers have been discovered, their mutations precisely identified, and the pathways through which they act characterized. The purposes of this review are to highlight examples of progress in these areas, indicate where knowledge is scarce and point out fertile grounds for future investigation.
Collapse
Affiliation(s)
- Bert Vogelstein
- Howard Hughes Medical Institute and The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University Medical Institutions, Baltimore, Maryland 21231, USA.
| | | |
Collapse
|
155
|
Kirman CR, Sweeney LM, Teta MJ, Sielken RL, Valdez-Flores C, Albertini RJ, Gargas ML. Addressing nonlinearity in the exposure-response relationship for a genotoxic carcinogen: cancer potency estimates for ethylene oxide. RISK ANALYSIS : AN OFFICIAL PUBLICATION OF THE SOCIETY FOR RISK ANALYSIS 2004; 24:1165-1183. [PMID: 15563286 DOI: 10.1111/j.0272-4332.2004.00517.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Ethylene oxide (EO) has been identified as a carcinogen in laboratory animals. Although the precise mechanism of action is not known, tumors in animals exposed to EO are presumed to result from its genotoxicity. The overall weight of evidence for carcinogenicity from a large body of epidemiological data in the published literature remains limited. There is some evidence for an association between EO exposure and lympho/hematopoietic cancer mortality. Of these cancers, the evidence provided by two large cohorts with the longest follow-up is most consistent for leukemia. Together with what is known about human leukemia and EO at the molecular level, there is a body of evidence that supports a plausible mode of action for EO as a potential leukemogen. Based on a consideration of the mode of action, the events leading from EO exposure to the development of leukemia (and therefore risk) are expected to be proportional to the square of the dose. In support of this hypothesis, a quadratic dose-response model provided the best overall fit to the epidemiology data in the range of observation. Cancer dose-response assessments based on human and animal data are presented using three different assumptions for extrapolating to low doses: (1) risk is linearly proportionate to dose; (2) there is no appreciable risk at low doses (margin-of-exposure or reference dose approach); and (3) risk below the point of departure continues to be proportionate to the square of the dose. The weight of evidence for EO supports the use of a nonlinear assessment. Therefore, exposures to concentrations below 37 microg/m3 are not likely to pose an appreciable risk of leukemia in human populations. However, if quantitative estimates of risk at low doses are desired and the mode of action for EO is considered, these risks are best quantified using the quadratic estimates of cancer potency, which are approximately 3.2- to 32-fold lower, using alternative points of departure, than the linear estimates of cancer potency for EO. An approach is described for linking the selection of an appropriate point of departure to the confidence in the proposed mode of action. Despite high confidence in the proposed mode of action, a small linear component for the dose-response relationship at low concentrations cannot be ruled out conclusively. Accordingly, a unit risk value of 4.5 x 10(-8) (microg/m3)(-1) was derived for EO, with a range of unit risk values of 1.4 x 10(-8) to 1.4 x 10(-7) (microg/m3)(-1) reflecting the uncertainty associated with a theoretical linear term at low concentrations.
Collapse
Affiliation(s)
- C R Kirman
- The Sapphire Group, Inc., Cleveland, OH 44122, USA.
| | | | | | | | | | | | | |
Collapse
|
156
|
Maroc N, Morel A, Beillard E, De La Chapelle AL, Fund X, Mozziconacci MJ, Dupont M, Cayuela JM, Gabert J, Koki A, Fert V, Hermitte F. A diagnostic biochip for the comprehensive analysis of MLL translocations in acute leukemia. Leukemia 2004; 18:1522-30. [PMID: 15322560 DOI: 10.1038/sj.leu.2403439] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Reciprocal rearrangements of the MLL gene are among the most common chromosomal abnormalities in both Acute Lymphoblastic and Myeloid Leukemia. The MLL gene, located on the 11q23 chromosomal band, is involved in more than 40 recurrent translocations. In the present study, we describe the development and validation of a biochip-based assay designed to provide a comprehensive molecular analysis of MLL rearrangements when used in a standard clinical pathology laboratory. A retrospective blind study was run with cell lines (n=5), and MLL positive and negative patient samples (n=31), to evaluate assay performance. The limits of detection determined on cell line data were 10(-1), and the precision studies yielded 100% repeatability and 98% reproducibility. The study shows that the device can detect frequent (AF4, AF6, AF10, ELL or ENL) as well as rare partner genes (AF17, MSF). The identified fusion transcripts can then be used as molecular phenotypic markers of disease for the precise evaluation of minimal residual disease by RQ-PCR. This biochip-based molecular diagnostic tool allows, in a single experiment, rapid and accurate identification of MLL gene rearrangements among 32 different fusion gene (FG) partners, precise breakpoint positioning and comprehensive screening of all currently characterized MLL FGs.
Collapse
Affiliation(s)
- N Maroc
- IPSOGEN SAS, Case 923, 163, Av. de Luminy, Marseille Cedex 9, France.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
157
|
Srinivasan RS, Nesbit JB, Marrero L, Erfurth F, LaRussa VF, Hemenway CS. The synthetic peptide PFWT disrupts AF4–AF9 protein complexes and induces apoptosis in t(4;11) leukemia cells. Leukemia 2004; 18:1364-72. [PMID: 15269783 DOI: 10.1038/sj.leu.2403415] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The MLL gene at chromosome band 11q23 is commonly involved in reciprocal translocations detected in acute leukemias. A number of experiments show that the resulting MLL fusion genes directly contribute to leukemogenesis. Among the many known MLL fusion partners, AF4 is relatively common, particularly in acute lymphoblastic leukemia in infants. The AF4 protein interacts with the product of another gene, AF9, which is also fused to MLL in acute leukemias. Based on mapping studies of the AF9-binding domain of AF4, we have developed a peptide, designated PFWT, which disrupts the AF4-AF9 interaction in vitro and in vivo. We provide evidence that this peptide is able to inhibit the proliferation of leukemia cells with t(4;11) chromosomal translocations expressing MLL-AF4 fusion genes. Further, we show that this inhibition is mediated through apoptosis. Importantly, the peptide does not affect the proliferative capacity of hematopoietic progenitor cells. Our findings indicate that the AF4-AF9 protein complex is a promising new target for leukemia therapy and that the PFWT peptide may serve as a lead compound for drug development.
Collapse
Affiliation(s)
- R S Srinivasan
- Program in Molecular and Cellular Biology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | | | | | | | | | | |
Collapse
|
158
|
Kosak ST, Groudine M. Form follows function: The genomic organization of cellular differentiation. Genes Dev 2004; 18:1371-84. [PMID: 15198979 DOI: 10.1101/gad.1209304] [Citation(s) in RCA: 178] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The extent to which the nucleus is functionally organized has broad biological implications. Evidence supports the idea that basic nuclear functions, such as transcription, are structurally integrated within the nucleus. Moreover, recent studies indicate that the linear arrangement of genes within eukaryotic genomes is nonrandom. We suggest that determining the relationship between nuclear organization and the linear arrangement of genes will lead to a greater understanding of how transcriptomes, dedicated to a particular cellular function or fate, are coordinately regulated. Current network theories may provide a useful framework for modeling the inherent complexity the functional organization of the nucleus.
Collapse
Affiliation(s)
- Steven T Kosak
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | | |
Collapse
|
159
|
Armstrong SA, Golub TR, Korsmeyer SJ. MLL-rearranged leukemias: insights from gene expression profiling. Semin Hematol 2004; 40:268-73. [PMID: 14582077 DOI: 10.1016/s0037-1963(03)00196-3] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Gene expression analysis of human leukemias has provided insight into disease classification and mechanisms of oncogenesis. Its success is particularly evident for acute leukemias with rearrangement of the mixed lineage leukemia (MLL) gene on chromosome 11q23. Unlike most other recurrent translocations, MLL rearrangements are found in leukemias classified as acute myelogenous leukemia (AML) or acute lymphoblastic leukemia (ALL). In addition, MLL-rearranged leukemias often express both myeloid- and lymphoid-associated genes. These unusual characteristics have generated much interest in the cell of origin and the mechanism of transformation by MLL rearrangements. Here we review insights gained from characterization of MLL-rearranged human leukemias by genome-wide expression profiling and compare these to data from model systems.
Collapse
Affiliation(s)
- Scott A Armstrong
- Department of Pediatric Oncology, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA
| | | | | |
Collapse
|
160
|
Zelent A, Greaves M, Enver T. Role of the TEL-AML1 fusion gene in the molecular pathogenesis of childhood acute lymphoblastic leukaemia. Oncogene 2004; 23:4275-83. [PMID: 15156184 DOI: 10.1038/sj.onc.1207672] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Balanced chromosomal translocations are frequently associated with haematopoietic neoplasms and often involve genes that encode transcription factors, which play critical roles in normal haematopoiesis. Fusion oncoproteins that arise from chimeric genes generated by such translocations are usually stable and consistent molecular markers for a given disease subtype and contribute to the leukaemogenic processes. The t(12;21)(p13;q22) chromosomal translocation is the most frequent illegitimate gene recombination in paediatric cancer, occurring in approximately 25% of common (c) B-cell precursor acute lymphoblastic leukaemia (cALL) cases. The rearrangement results in the in-frame fusion of the 5' region of the ETS-related gene, TEL (ETV6), to almost the entire AML1 (RUNX1) locus and is associated with favourable prognosis following conventional therapeutic strategies. We discuss here the prenatal origins of the TEL/AML1 translocation as an initiating mutation, the role of TEL-AML1 in cellular transformation and the molecular mechanisms by which the chimeric protein imposes altered patterns of gene expression.
Collapse
Affiliation(s)
- Arthur Zelent
- Section of Haematological Oncology, Institute of Cancer Research, Chester Beatty Laboratories, 237 Fulham Road, London SW3 6JB, UK.
| | | | | |
Collapse
|
161
|
Khobta A, Carlo-Stella C, Capranico G. Specific histone patterns and acetylase/deacetylase activity at the breakpoint-cluster region of the human MLL gene. Cancer Res 2004; 64:2656-62. [PMID: 15087374 DOI: 10.1158/0008-5472.can-03-1126] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The MLL gene breakpoint-cluster region (BCR) is a known hot-spot for chromosomal translocations in human leukemias. We mapped core histone modifications and histone H1 along the MLL gene in Jurkat cells and human CD34(+) progenitor blood cells by chromatin immunoprecipitation. Within the BCR, we found specific histone patterns that were different from other genomic regions and a histone H1-free fragment at the telomeric end. Core histone acetylase/deacetylase activities were also found within the BCR. In the studied cell models, chromatin components at the MLL BCR suggest an asymmetric organization that may influence early molecular events eventually leading to chromosomal translocations.
Collapse
Affiliation(s)
- Andriy Khobta
- G. Moruzzi Department of Biochemistry, Alma Mater Studiorum University of Bologna, Bologna, Italy
| | | | | |
Collapse
|
162
|
Hayashi Y. Gene expression profiling in childhood acute leukemia: progress and perspectives. Int J Hematol 2004; 78:414-20. [PMID: 14704033 DOI: 10.1007/bf02983813] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Recent advances in treatment have transformed childhood acute leukemias into curable diseases. However, 20% to 40% of acute leukemia patients still experience a relapse. Microarrays typically contain thousands of oligonucleotides or complementary DNAs and are rapidly becoming important research tools for the identification of novel classifications of leukemias and lymphomas. Microarray-based identification of several translocations has been performed in acute lymphoblastic leukemia (ALL), leading to the discovery of t(1;19), t(12;21), and 11q23 translocations, and in acute myeloid leukemia (AML), finding t(8;21), inv(16), and t(15;17). Correlations between gene expression profiles and clinical features have been reported in ALL and AML. Recently, it was reported that gene expression profiling can be used to predict the prognosis of childhood acute leukemia. In this report, the recent progress in microarray analysis of childhood acute leukemia is reviewed. Gene expression profiling provides new insights into the biological mechanisms of leukemogenesis and the prognosis of childhood acute leukemia.
Collapse
|
163
|
Daser A, Rabbitts TH. Extending the repertoire of the mixed-lineage leukemia gene MLL in leukemogenesis. Genes Dev 2004; 18:965-74. [PMID: 15132992 DOI: 10.1101/gad.1195504] [Citation(s) in RCA: 132] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- Angelika Daser
- MRC Laboratory of Molecular Biology, Cambridge CB2 2QH, UK
| | | |
Collapse
|
164
|
Liu H, Chen B, Xiong H, Huang QH, Zhang QH, Wang ZG, Li BL, Chen Z, Chen SJ. Functional contribution of EEN to leukemogenic transformation by MLL-EEN fusion protein. Oncogene 2004; 23:3385-94. [PMID: 15077184 DOI: 10.1038/sj.onc.1207402] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The EEN (extra eleven nineteen) gene was originally cloned from a case of acute myeloid leukemia M5 subtype with translocation t (11; 19)(q23; p13), in which EEN was fused with MLL. To explore the involvement of EEN in leukemogenesis caused by MLL-EEN, we studied the transformation potential of the MLL-EEN fusion protein. MLL-EEN had oncogenic features, while, as a control, MLLDelta, the truncated form of MLL lacking the EEN moiety, did not show any oncogenic potential. MLL-EEN exerted a dominant-negative effect over wild-type EEN in terms of subcellular localization. Normally, EEN was found in the cytoplasm, but the MLL-EEN fusion protein was located in the nucleus, and EEN could be delocalized by MLL-EEN. This interaction is via a coiled-coil dimerization domain of EEN, which is reserved in the fusion protein. In addition, MLL-EEN might act as a potential transcriptional factor with the MLL part providing the DNA-binding domain and the EEN part providing the transcription activation domain, though EEN seems to have no direct role in transcriptional regulation. As an aberrant transcriptional factor, MLL-EEN could transactivate the promoter of HoxA7, a potential target gene of MLL.
Collapse
Affiliation(s)
- Han Liu
- State Key Laboratory for Medical Genomics, Shanghai Institute of Hematology, Ruijin Hospital affiliated to Shanghai Second Medical University, 197 Ruijin Road II, Shanghai 200025, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
165
|
Hardan I, Rothman R, Gelibter A, Cohen N, Shimoni A, Sokolovsky M, Reichart M, Ishoev G, Amariglio N, Rechavi G, Nagler A, Trakhtenbrot L. Determination of chromosome 13 status in bone marrow cells of patients with multiple myeloma using combined morphologic and fluorescence in situ hybridization analysis. Exp Hematol 2004; 32:254-60. [PMID: 15003310 DOI: 10.1016/j.exphem.2003.12.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2003] [Revised: 11/13/2003] [Accepted: 12/17/2003] [Indexed: 10/26/2022]
Abstract
Deletion of chromosome 13q is believed to be an adverse prognostic marker in patients with multiple myeloma (MM). Interphase fluorescence in situ hybridization (I-FISH) is the method of choice for detection of chromosome 13q deletion (del13q). However, I-FISH has high false-positive rates attributed to a low percentage of plasma cells (PC), which are responsible for MM, in bone marrow (BM) samples from MM patients. In an attempt to overcome this problem, combined morphologic and I-FISH analyses were performed by a unique system that allows rapid automatic scanning of a large number of cells with simultaneous determination of the lineage of specific cells carrying del13q. The percentage of PC with del13q in BM samples from 40 MM patients was calculated. In addition, we established a useful prognostic ratio defined as the number of PC with del13q divided by the number of non-PC with del13q (PDP/PDNP), which may help to precisely define the putative role of del13q in prediction response of MM patients to new therapeutic compounds. We suggest this technique as a novel sensitive and specific method for detection of del13q in a minor PC population of MM patients.
Collapse
Affiliation(s)
- Izhar Hardan
- Department of Bone Marrow Transplantation, Hematology and the Sheba Cancer Research Center, The Chaim Sheba Medical Center, Tel-Hashomer, Israel
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
166
|
Heng HHQ, Stevens JB, Liu G, Bremer SW, Ye CJ. Imaging genome abnormalities in cancer research. CELL & CHROMOSOME 2004; 3:1. [PMID: 14720303 PMCID: PMC331418 DOI: 10.1186/1475-9268-3-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2003] [Accepted: 01/13/2004] [Indexed: 02/09/2023]
Abstract
Increasing attention is focusing on chromosomal and genome structure in cancer research due to the fact that genomic instability plays a principal role in cancer initiation, progression and response to chemotherapeutic agents. The integrity of the genome (including structural, behavioral and functional aspects) of normal and cancer cells can be monitored with direct visualization by using a variety of cutting edge molecular cytogenetic technologies that are now available in the field of cancer research. Examples are presented in this review by grouping these methodologies into four categories visualizing different yet closely related major levels of genome structures. An integrated discussion is also presented on several ongoing projects involving the illustration of mitotic and meiotic chromatin loops; the identification of defective mitotic figures (DMF), a new type of chromosomal aberration capable of monitoring condensation defects in cancer; the establishment of a method that uses Non-Clonal Chromosomal Aberrations (NCCAs) as an index to monitor genomic instability; and the characterization of apoptosis related chromosomal fragmentations caused by drug treatments.
Collapse
Affiliation(s)
- Henry HQ Heng
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, USA
- Department of Pathology, Wayne State University School of Medicine, Detroit, MI, USA
- Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA
| | - Joshua B Stevens
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, USA
| | - Guo Liu
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, USA
| | - Steven W Bremer
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, USA
| | - Christine J Ye
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, USA
- SeeDNA Biotech Inc, Windsor, Ontario, Canada
| |
Collapse
|
167
|
Maia AT, Tussiwand R, Cazzaniga G, Rebulla P, Colman S, Biondi A, Greaves M. Identification of preleukemic precursors of hyperdiploid acute lymphoblastic leukemia in cord blood. Genes Chromosomes Cancer 2004; 40:38-43. [PMID: 15034866 DOI: 10.1002/gcc.20010] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Previous studies involving identical twins with concordant leukemia and retrospective scrutiny of archived neonatal blood spots have shown that common chromosome translocations of pediatric leukemia frequently arise before birth. The IGH/TCR clonotypic sequences used as surrogate molecular markers suggest this is also likely to be true for hyperdiploid acute lymphoblastic leukemia (ALL). Yet evidence that hyperdiploidy itself is an early or initiating event occurring prenatally has been limited. Now, however, we can provide direct evidence of this from our identification of CD34+/CD19+ B-lineage progenitor cells with triploid chromosomes in the stored cord blood of an individual who subsequently developed hyperdiploid ALL.
Collapse
|
168
|
Shago M, Bouman D, Kamel-Reid S, Minden M, Chun K. Cryptic insertion ofMLL gene into 9p22 leads toMLL-MLLT3 (AF9) fusion in a case of acute myelogenous leukemia. Genes Chromosomes Cancer 2004; 40:349-54. [PMID: 15188459 DOI: 10.1002/gcc.20045] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The formation of a leukemogenic fusion product in hematopoietic malignancies is commonly achieved by chromosomal translocation. Alternate and cytogenetically undetectable mechanisms of fusion transcript generation have been documented for BCR-AB1, AML1-ETO, PML-RARA, NPM/ALK, and MLL-MLLT2 (AF4). Here, we report the investigation of a cryptic rearrangement leading to MLL-MLLT3 transcript formation. Cytogenetic analysis of peripheral blood from a 50-year-old acute myeloid leukemia patient yielded a karyotype of 47,XY,+8,del(11)(q21q23) in all metaphase cells examined. Metaphase fluorescence in situ hybridization analysis using the MLL probe at 11q23 revealed that the 5' portion of the MLL gene was inserted into chromosome 9 at band p22, whereas the 3' region of the MLL gene remained on chromosome 11. Whole-chromosome paint analysis confirmed the cryptic transfer of chromosome 11 material to 9p22. With this information, the karyotype was reassigned as 47,XY,+8,der(9)ins(9;11)(p22;q23q23),del(11)(q21q23). RT-PCR was used to show that the cryptic rearrangement in this patient led to the fusion of the MLL and MLLT3 transcripts on the der(9). The presence of the MLL-MLLT3 transcript is consistent with the clinical findings in this patient.
Collapse
Affiliation(s)
- Mary Shago
- Department of Paediatric Laboratory Medicine, Hospital for Sick Children, Toronto, Ontario, Canada
| | | | | | | | | |
Collapse
|
169
|
Baldwin EL, Byl JAW, Osheroff N. Cobalt Enhances DNA Cleavage Mediated by Human Topoisomerase IIαin Vitroand in Cultured Cells†. Biochemistry 2004; 43:728-35. [PMID: 14730977 DOI: 10.1021/bi035472f] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Although cobalt is an essential trace element for humans, the metal is genotoxic and mutagenic at higher concentrations. Treatment of cells with cobalt generates DNA strand breaks and covalent protein-DNA complexes. However, the basis for these effects is not well understood. Since the toxic events induced by cobalt resemble those of topoisomerase II poisons, the effect of the metal on human topoisomerase IIalpha was examined. The level of enzyme-mediated DNA scission increased 6-13-fold when cobalt(II) replaced magnesium(II) in cleavage reactions. Cobalt(II) stimulated cleavage at all DNA sites observed in the presence of magnesium(II), and the enzyme cut DNA at several "cobalt-specific" sites. The increased level of DNA cleavage in the presence of cobalt(II) was partially due to a decrease in the rate of enzyme-mediated religation. Topoisomerase IIalpha retained many of its catalytic properties in reactions that included cobalt(II), including sensitivity to the anticancer drug etoposide and the ability to relax and decatenate DNA. Finally, cobalt(II) stimulated topoisomerase IIalpha-mediated DNA cleavage in the presence of magnesium(II) in purified systems and in human MCF-7 cells. These findings demonstrate that cobalt(II) is a topoisomerase II poison in vitro and in cultured cells and suggest that at least some of the genotoxic effects of the metal are mediated through topoisomerase IIalpha.
Collapse
Affiliation(s)
- Erin L Baldwin
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146, USA
| | | | | |
Collapse
|
170
|
Metzler M, Brehm U, Langer T, Viehmann S, Borkhardt A, Stanulla M, Schrappe M, Harbott J, Beck JD, Rascher W, Repp R. Asymmetric multiplex-polymerase chain reaction - a high throughput method for detection and sequencing genomic fusion sites in t(4;11). Br J Haematol 2003; 124:47-54. [PMID: 14675407 DOI: 10.1046/j.1365-2141.2003.04740.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Chromosomal translocations are a characteristic feature of leukaemia and other malignant diseases. As clonal markers, they can be applied to identify and quantify the number of malignant cells by polymerase chain reaction (PCR) methods. The translocation t(4;11) is present in >60% of infant leukaemia. In order to facilitate the sequencing of chromosomal breakpoints, we developed an optimized set of 30 PCR primers and a new approach, designated as asymmetric multiplex PCR (am-PCR). Due to the high number of primers, small breakpoint-spanning DNA fragments are obtained in one nested multiplex PCR reaction. All PCR products contain an identical binding site for the initiation of direct sequencing. By using am-PCR, the translocation t(4;11) was examined in bone marrow and blood samples from children with acute leukaemia. Compared with previously described methods for the determination of genomic breakpoints, am-PCR may be advantageous with regard to its simplicity and rapidity. Breakpoint-spanning sequences were also evaluated with regard to their applicability as unique clonal markers to design primers and probes for minimal residual disease quantification by real-time PCR. This approach can easily be adapted to other chromosomal translocations in malignant diseases for the detection and analysis of clone-specific DNA markers.
Collapse
Affiliation(s)
- M Metzler
- Department of Paediatrics, University of Erlangen-Nuremberg, Erlangen, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
171
|
Eguchi M, Eguchi-Ishimae M, Greaves M. The role of the MLL gene in infant leukemia. Int J Hematol 2003; 78:390-401. [PMID: 14704031 DOI: 10.1007/bf02983811] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2003] [Accepted: 10/21/2003] [Indexed: 02/06/2023]
Abstract
The MLL gene is a major player in leukemia, particularly in infant leukemia and in secondary, therapy-related acute leukemia. The normal MLL gene plays a key role in developmental regulation of gene expression (including HOX genes), and in leukemia this function is subverted by breakage, recombination, and chimeric fusion with one of 40 or more alternative partner genes. In infant leukemias, the chromosome translocations involving MLL arise during fetal hematopoiesis, possibly in a primitive lymphomyeloid stem cell. In general, these leukemias have a very poor prognosis. The malignancy of these leukemias is all the more dramatic considering their very short preclinical natural history or latency. These data raise fundamental issues of how such divergent MLL chimeric genes transform cells, why they so rapidly evolve to a malignant status, and what alternative or novel therapeutic strategies might be considered. We review here progress in tackling these questions.
Collapse
MESH Headings
- Acute Disease
- Age of Onset
- Animals
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/therapeutic use
- Cell Transformation, Neoplastic/genetics
- Chromosomes, Human, Pair 11/genetics
- Chromosomes, Human, Pair 11/ultrastructure
- DNA-Binding Proteins/chemistry
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/physiology
- Disease Progression
- Drug Design
- Histone-Lysine N-Methyltransferase
- Humans
- Infant
- Infant, Newborn
- Leukemia, Myeloid/drug therapy
- Leukemia, Myeloid/embryology
- Leukemia, Myeloid/epidemiology
- Leukemia, Myeloid/genetics
- Mice
- Mice, Knockout
- Myeloid-Lymphoid Leukemia Protein
- Oligonucleotide Array Sequence Analysis
- Oncogene Proteins, Fusion/chemistry
- Oncogene Proteins, Fusion/genetics
- Proto-Oncogenes
- Structure-Activity Relationship
- Transcription Factors
- Translocation, Genetic
Collapse
Affiliation(s)
- Mariko Eguchi
- LRF Centre for Cell and Molecular Biology of Leukaemia, Institute of Cancer Research, London, UK
| | | | | |
Collapse
|
172
|
Abstract
Chromosome translocations are often early or initiating events in leukaemogenesis, occurring prenatally in most cases of childhood leukaemia. Although these genetic changes are necessary, they are usually not sufficient to cause leukaemia. How, when and where do translocations arise? And can these insights aid our understanding of the natural history, pathogenesis and causes of leukaemia?
Collapse
Affiliation(s)
- Mel F Greaves
- LRF Centre for Cell and Molecular Biology, Institute of Cancer Research, Chester Beatty Laboratories, 237 Fulham Road, London SW3 6JB, UK.
| | | |
Collapse
|
173
|
Abstract
Chromosome aberrations in human solid tumors are hallmarks of gene deregulation and genome instability. This review summarizes current knowledge regarding aberrations, discusses their functional importance, suggests mechanisms by which aberrations may form during cancer progression and provides examples of clinical advances that have come from studies of chromosome aberrations.
Collapse
Affiliation(s)
- Donna G Albertson
- Cancer Research Institute, University of California San Francisco, San Francisco, California 94143-0808, USA.
| | | | | | | |
Collapse
|
174
|
Sabourin M, Nitiss JL, Nitiss KC, Tatebayashi K, Ikeda H, Osheroff N. Yeast recombination pathways triggered by topoisomerase II-mediated DNA breaks. Nucleic Acids Res 2003; 31:4373-84. [PMID: 12888496 PMCID: PMC169887 DOI: 10.1093/nar/gkg497] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Topoisomerase II is a ubiquitous enzyme that removes knots and tangles from the genetic material by generating transient double-strand DNA breaks. While the enzyme cannot perform its essential cellular functions without cleaving DNA, this scission activity is inherently dangerous to chromosomal integrity. In fact, etoposide and other clinically important anticancer drugs kill cells by increasing levels of topoisomerase II-mediated DNA breaks. Cells rely heavily on recombination to repair double-strand DNA breaks, but the specific pathways used to repair topoisomerase II-generated DNA damage have not been defined. Therefore, Saccharomyces cerevisiae was used as a model system to delineate the recombination pathways that repair DNA breaks generated by topoisomerase II. Yeast cells that expressed wild-type or a drug-hypersensitive mutant topoisomerase II or overexpressed the wild-type enzyme were examined. Based on cytotoxicity and recombination induced by etoposide in different repair-deficient genetic backgrounds, double-strand DNA breaks generated by topoisomerase II appear to be repaired primarily by the single-strand invasion pathway of homologous recombination. Non-homologous end joining also was triggered by etoposide treatment, but this pathway was considerably less active than single-strand invasion and did not contribute significantly to cell survival in S.cerevisiae.
Collapse
Affiliation(s)
- Michelle Sabourin
- Department of Biochemistry,Vanderbilt University School of Medicine, Nashville, TN 37232-0146, USA
| | | | | | | | | | | |
Collapse
|
175
|
Roix JJ, McQueen PG, Munson PJ, Parada LA, Misteli T. Spatial proximity of translocation-prone gene loci in human lymphomas. Nat Genet 2003; 34:287-91. [PMID: 12808455 DOI: 10.1038/ng1177] [Citation(s) in RCA: 312] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2003] [Accepted: 05/12/2003] [Indexed: 11/08/2022]
Abstract
Cancer cells frequently have disease-specific chromosome rearrangements. It is poorly understood why translocations between chromosomes recur at specific breakpoints in the genome. Here we provide evidence that higher-order spatial genome organization is a contributing factor in the formation of recurrent translocations. We show that MYC, BCL and immunoglobulin loci, which are recurrently translocated in various B-cell lymphomas, are preferentially positioned in close spatial proximity relative to each other in normal B cells. Loci in spatial proximity are non-randomly positioned towards the nuclear interior in normal B cells. This locus proximity is the consequence of higher-order genome structure rather than a property of individual genes. Our results suggest that the formation of specific translocations in human lymphomas, and perhaps other tissues, is determined in part by higher-order spatial organization of the genome.
Collapse
Affiliation(s)
- Jeffrey J Roix
- National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | |
Collapse
|
176
|
Deveney R, Chervinsky DS, Jani-Sait SN, Grossi M, Aplan PD. Insertion of MLL sequences into chromosome band 5q31 results in an MLL-AF5Q31 fusion and is a rare but recurrent abnormality associated with infant leukemia. Genes Chromosomes Cancer 2003; 37:326-31. [PMID: 12759932 DOI: 10.1002/gcc.10224] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
MLL gene rearrangements leading to production of MLL fusion proteins are commonly detected in infant leukemia patients; the most common MLL fusion associated with infant leukemia is the MLL-AF4 fusion. A single case of chromosomal rearrangement leading to production of an MLL fusion with AF5Q31, a gene structurally similar to AF4, has been detected recently in the malignant cells of an infant leukemia patient. We have identified a second case of MLL-AF5Q31 fusion, arising from an insertion of MLL sequences into chromosome 5, also in an infant leukemia patient. Because MLL and AF5Q31 are transcribed in opposite orientations, a simple balanced chromosomal translocation cannot produce a fusion protein, and complex chromosomal rearrangements such as insertions and inversions are required to produce an MLL-AF5Q31 fusion protein. This report demonstrates that chromosomal insertion of MLL sequences is a rare but recurrent abnormality associated with infant leukemia.
Collapse
Affiliation(s)
- Ramona Deveney
- Genetics Branch, Center for Cancer Research, National Cancer Institute, Gaithersburg, Maryland 20892, USA
| | | | | | | | | |
Collapse
|
177
|
Shi RZ, Morrissey JM, Rowley JD. Screening and quantification of multiple chromosome translocations in human leukemia. Clin Chem 2003; 49:1066-73. [PMID: 12816902 DOI: 10.1373/49.7.1066] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND Characterization of fusion gene transcripts in leukemia that result from chromosome translocations provides valuable information regarding appropriate treatment and prognosis. However, screening for multiple fusion gene transcripts is difficult with conventional PCR and state-of-the-art real-time PCR and high-density microarrays. METHODS We developed a multiplex reverse transcription-PCR (RT-PCR) assay for screening and quantification of fusion gene transcripts in human leukemia cells. Chimeric primers were used that contained gene-specific and universal sequences. PCR amplification of fusion and control gene transcripts was achieved with use of an excess of universal primers to allow the ratio of abundance of fusion gene to endogenous or exogenous controls to be maintained throughout PCR. Multiplex RT-PCR products analyzed by an ABI 310 Genetic Analyzer were consistent with those of duplex RT-PCR (single analytical sample plus control). In addition, multiplex RT-PCR results were analyzed by an assay using an oligonucleotide microarray that contained probes for the splice-junction sequences of various fusion transcripts. RESULTS The multiplex RT-PCR assay enabled screening of >10 different fusion gene transcripts in a single reaction. RT-PCR followed by analysis with the ABI Prism 310 Genetic Analyzer consistently detected 1 fusion-transcript-carrying leukemia cell in 100-10 000 cells. The assay covered a 1000-fold range. Preliminary results indicate that multiplex RT-PCR products can also be analyzed by hybridization-based microarray assay. CONCLUSIONS The multiplex RT-PCR analyzed by either ABI Prism 310 Genetic Analyzer or microarray provides a sensitive and specific assay for screening of multiple fusion transcripts in leukemia, with the latter an assay that is adaptable to a high-throughput system for clinical screening.
Collapse
Affiliation(s)
- Run Zhang Shi
- Motorola Corporate Laboratories, Ft. Lauderdale, FL 33322, USA.
| | | | | |
Collapse
|
178
|
Echlin-Bell DR, Smith LL, Li L, Strissel PL, Strick R, Gupta V, Banerjee J, Larson R, Relling MV, Raimondi SC, Hayashi Y, Taki T, Zeleznik-Le N, Rowley JD. Polymorphisms in the MLL breakpoint cluster region (BCR). Hum Genet 2003; 113:80-91. [PMID: 12665971 DOI: 10.1007/s00439-003-0936-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2002] [Accepted: 02/03/2003] [Indexed: 02/03/2023]
Abstract
The MLL gene is involved in many chromosomal translocations leading to both acute myeloid and lymphoid leukemia. Some patients treated for primary malignancies with chemotherapeutic agents that inhibit DNA topoisomerase II (topo II) develop treatment-related leukemia (t-AML) caused by MLL gene rearrangement. Whether these patients are unusually susceptible to anti-topo II drugs, or whether this is a random adverse event is unknown. To discover genetic polymorphisms that may predispose patients to t-AML development, we sequenced the 8.3-kb MLL breakpoint cluster region (BCR) from 22 patients who had been treated with topo II inhibitors and who developed t-AML and from 37 patients who did not, and from eight infants and 20 normal individuals. Four polymorphic sites within Alu repetitive elements were identified; three affected the length of poly-A tracts and one altered the size of a trinucleotide repeat. The three poly-A tract polymorphisms occurred with equal frequency in leukemic patients and controls and hence are not predictors of risk. The trinucleotide GAA repeat has three alleles: (GAA)4, (GAA)5, and (GAA)6. The (GAA)6 allele is very rare. The adult t-AML patients are almost exclusively (GAA)4/5 heterozygotes (83%), whereas the normal population is only 55% (GAA)4/5 heterozygotic and is represented equally by (GAA)4 and (GAA)5 homozygotes (20% each). Only certain trends could be established because of the small sample size of these leukemic groups. Whereas adult t-AML patients are more likely to be (GAA)4/5 heterozygotes, this is not statistically significant, and this polymorphism within the MLL BCR has only a suggestive association with t-AML development.
Collapse
Affiliation(s)
- Deborah R Echlin-Bell
- Section of Hematology/Oncology, University of Chicago, 5841 S. Maryland Avenue, Chicago, IL 60637, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
179
|
Pevzner P, Tesler G. Human and mouse genomic sequences reveal extensive breakpoint reuse in mammalian evolution. Proc Natl Acad Sci U S A 2003; 100:7672-7. [PMID: 12810957 PMCID: PMC164646 DOI: 10.1073/pnas.1330369100] [Citation(s) in RCA: 238] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2003] [Accepted: 05/05/2003] [Indexed: 11/18/2022] Open
Abstract
The human and mouse genomic sequences provide evidence for a larger number of rearrangements than previously thought and reveal extensive reuse of breakpoints from the same short fragile regions. Breakpoint clustering in regions implicated in cancer and infertility have been reported in previous studies; we report here on breakpoint clustering in chromosome evolution. This clustering reveals limitations of the widely accepted random breakage theory that has remained unchallenged since the mid-1980s. The genome rearrangement analysis of the human and mouse genomes implies the existence of a large number of very short "hidden" synteny blocks that were invisible in the comparative mapping data and ignored in the random breakage model. These blocks are defined by closely located breakpoints and are often hard to detect. Our results suggest a model of chromosome evolution that postulates that mammalian genomes are mosaics of fragile regions with high propensity for rearrangements and solid regions with low propensity for rearrangements.
Collapse
Affiliation(s)
- Pavel Pevzner
- Department of Computer Science and Engineering, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0114, USA
| | | |
Collapse
|
180
|
Hiwatari M, Taki T, Taketani T, Taniwaki M, Sugita K, Okuya M, Eguchi M, Ida K, Hayashi Y. Fusion of an AF4-related gene, LAF4, to MLL in childhood acute lymphoblastic leukemia with t(2;11)(q11;q23). Oncogene 2003; 22:2851-5. [PMID: 12743608 DOI: 10.1038/sj.onc.1206389] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We showed that the LAF4 gene on 2q11.2-12 was fused to the MLL gene on 11q23 in a pediatric patient with CD10 positive acute lymphoblastic leukemia (ALL) having t(2;11)(q11;q23). The LAF4 gene, which encodes a lymphoid nuclear protein of 1227 amino acids with transactivation potential, is thought to have a role in early lymphoid development. The LAF4 protein was homologous to AF4 and AF5q31 proteins that are fused to MLL in infant early pre-B ALL and the breakpoint of LAF4 was located within the region homologous to the transactivation domain of AF4 and AF5q31. Expression of the 8.5-kb LAF4 transcript was detected in the adult heart, brain, and placenta and in the fetal brain. LAF4 expression was found to be higher in ALL cell lines than in AML and Epstein-Barr virus-transformed B-lymphocyte cell lines. These findings suggest that LAF4, AF4 and AF5q31 might define a new family particularly involved in the pathogenesis of 11q23-associated ALL.
Collapse
Affiliation(s)
- Mitsuteru Hiwatari
- Department of Pediatrics, Graduate School of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
181
|
Affiliation(s)
- Louis M Staudt
- Metabolism Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA.
| |
Collapse
|
182
|
Abstract
Treatment of acute lymphoblastic leukemia in adults focuses on the initial assessment of prognostic relevant genetic features as well as response-guided therapy based on molecular data. In at least half of adult acute lymphoblastic leukemia patients, clonal chromosomal abnormalities can be identified that deregulate candidate oncogenes or transcription factors by introducing a heterologous promoter or enhancer. Altered cell cycle progression or upregulated tyrosine kinase activity are other important mechanisms. Most of the translocations can lead to the generation of fusion genes that are translated into chimeric oncogeneic proteins, such as BCR-ABL, providing targets for novel therapeutic agents.
Collapse
Affiliation(s)
- Beate Gleissner
- Department of Medicine, University Hospital Benjamin Franklin, Free University of Berlin, Hindenburgdamm 30, 12200 Berlin, Germany.
| | | |
Collapse
|
183
|
Forster A, Pannell R, Drynan LF, McCormack M, Collins EC, Daser A, Rabbitts TH. Engineering de novo reciprocal chromosomal translocations associated with Mll to replicate primary events of human cancer. Cancer Cell 2003; 3:449-58. [PMID: 12781363 DOI: 10.1016/s1535-6108(03)00106-5] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The etiology of human tumors often involves chromosomal translocations. Models that emulate translocations are essential to understanding the determinants of frank malignancy, those dictating the restriction of translocations to specific lineages, and as a basis for development of rational therapeutic methods. We demonstrate that developmentally regulated Cre-loxP-mediated interchromosomal recombination between the Mll gene, whose human counterpart is involved in a spectrum of leukemias, and the Enl gene creates reciprocal chromosomal translocations that cause myeloid tumors. There is a rapid onset and high penetrance of leukemogenesis in these translocator mice, and high proportions of cells carrying chromosomal translocations can be found in bone marrow as early as 12 days after birth. This de novo strategy is a direct recapitulation of naturally occurring human cancer-associated translocations.
Collapse
Affiliation(s)
- Alan Forster
- MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
184
|
Rassool FV. DNA double strand breaks (DSB) and non-homologous end joining (NHEJ) pathways in human leukemia. Cancer Lett 2003; 193:1-9. [PMID: 12691817 DOI: 10.1016/s0304-3835(02)00692-4] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
DNA double strand breaks (DSB) are considered the most lethal form of DNA damage for eukaryotic cells. DSB can either be properly repaired, restoring genomic integrity, or misrepaired resulting in drastic consequences, such as cell death, genomic instability, and cancer. It is well established that exposure to DSB-inducing agents is associated with chromosomal abnormalities and leukemogenesis. The non-homologous end joining (NHEJ) pathway is considered a major route for the repair DSB in mammalian cells. Although the mechanism(s) by which repair of DSB lead to leukemia are poorly understood, recent evidence is beginning to emerge that a poorly defined and error-prone branch of the NHEJ pathway plays a pivotal role in this process. This review discusses some of the ways in which error-prone NHEJ repair may be involved in the development of genomic instability and leukemia.
Collapse
Affiliation(s)
- Feyruz Virgilia Rassool
- Department of Haematological Medicine, Leukemia Sciences Laboratories, The Rayne Institute, GKT School of Medicine, Denmark Hill, London, SE5 9NU, UK.
| |
Collapse
|
185
|
French CA, Alexander EK, Cibas ES, Nose V, Laguette J, Faquin W, Garber J, Moore F, Fletcher JA, Larsen PR, Kroll TG. Genetic and biological subgroups of low-stage follicular thyroid cancer. THE AMERICAN JOURNAL OF PATHOLOGY 2003; 162:1053-60. [PMID: 12651598 PMCID: PMC1851238 DOI: 10.1016/s0002-9440(10)63902-8] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Investigations of cancer-specific gene rearrangements have increased our understanding of human neoplasia and led to the use of the rearrangements in pathological diagnosis of blood cell and connective tissue malignancies. Here, we have investigated 3p25 rearrangements of the peroxisome proliferator-activated receptor gamma (PPAR gamma) gene in follicular epithelial tumors of the human thyroid gland. Eleven of 42 (26%) low-stage follicular carcinomas, 0 of 40 follicular adenomas, 1 of 30 Hurthle cell carcinomas, 1 of 90 papillary carcinomas, and 0 of 10 nodular goiters had 3p25 rearrangements by interphase fluorescence in situ hybridization. All 11 follicular carcinomas with 3p25 rearrangement exhibited strong, diffuse nuclear immunoreactivity for PPAR gamma, consistent with expression of PPAR gamma fusion protein. Twelve of 42 (29%) low-stage follicular carcinomas had 3p25 aneusomy without PPAR gamma rearrangement (P = 0.01), suggesting that PPAR gamma rearrangement and aneuploidy are independent early events in follicular cancer. Eleven of 12 follicular carcinomas with 3p25 aneusomy exhibited no PPAR gamma immunoreactivity, supporting the existence of two independent pathways. Follicular carcinoma patients with PPAR gamma rearrangement more frequently had vascular invasion (P = 0.01), areas of solid/nested tumor histology (P < 0.001), and previous non-thyroid cancers (P < 0.01) compared with follicular carcinoma patients without PPAR gamma rearrangement. Our experiments identify genetic subgroups of low-stage follicular thyroid cancer and provide evidence that follicular carcinomas with PPAR gamma rearrangement are a distinct biological entity. The findings support a model in which separate genetic alterations initiate distinct pathways of oncogenesis in thyroid carcinoma subtypes.
Collapse
Affiliation(s)
- Christopher A French
- Division of Endocrinology, Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
186
|
Langer T, Metzler M, Reinhardt D, Viehmann S, Borkhardt A, Reichel M, Stanulla M, Schrappe M, Creutzig U, Ritter J, Leis T, Jacobs U, Harbott J, Beck JD, Rascher W, Repp R. Analysis of t(9;11) chromosomal breakpoint sequences in childhood acute leukemia: almost identical MLL breakpoints in therapy-related AML after treatment without etoposides. Genes Chromosomes Cancer 2003; 36:393-401. [PMID: 12619163 DOI: 10.1002/gcc.10167] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The translocation t(9;11)(p22;q23) is a recurring chromosomal abnormality in acute myeloid leukemia (AML) fusing two genes designated as MLL and AF9. Within MLL, almost all rearrangements cluster in an 8.3-kb restricted region and fuse 5' portions of MLL to a variety of heterologous genes in various 11q23 translocations. AF9 is one of the most common fusion partners of MLL. It spans more than 100 kb, and two breakpoint cluster regions (BCRs) have been identified in a telomeric region of intron 4 (BCR1) and within introns 7 and 8 (BCR2). We investigated 11 children's bone marrow or peripheral blood samples (3 AML, 5 t-AML, 2 ALL, 1 ALL relapse) and two cell lines (THP-1 and Mono-Mac-6) with cytogenetically diagnosed translocations t(9;11). By use of an optimized multiplex nested long-range PCR assay, a breakpoint-spanning DNA fragment from each sample was amplified and directly sequenced. In four patients and two cell lines, the AF9 breakpoints were located within BCR1 and in two patients within BCR2, respectively. However, in five patients the AF9 breakpoints were found outside the previously described BCRs within the centromeric region of intron 4 and even within intron 3 in one case. All five patients with a secondary AML, who had not received etoposides during treatment of the primary malignant disease, revealed almost identical MLL breakpoints very close to a breakage hot spot inducible by topoisomerase II inhibitors or apoptotic triggers in vitro. Sequence patterns around the breakpoints indicated involvement of a "damage-repair mechanism" in the development of t(9;11) similar to t(4;11) in infants' acute leukemia.
Collapse
MESH Headings
- Acute Disease
- Adolescent
- Amino Acid Sequence
- Child
- Child, Preschool
- Chromosome Breakage/genetics
- Chromosomes, Human, Pair 11/genetics
- Chromosomes, Human, Pair 9/genetics
- DNA-Binding Proteins/genetics
- Etoposide/therapeutic use
- Female
- Histone-Lysine N-Methyltransferase
- Humans
- Infant
- Leukemia, Myeloid/chemically induced
- Leukemia, Myeloid/genetics
- Male
- Molecular Sequence Data
- Myeloid-Lymphoid Leukemia Protein
- Neoplasm Recurrence, Local/diagnosis
- Neoplasm Recurrence, Local/genetics
- Neoplasms, Second Primary/genetics
- Nuclear Proteins/genetics
- Oncogene Proteins, Fusion/genetics
- Precursor Cell Lymphoblastic Leukemia-Lymphoma/diagnosis
- Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics
- Proto-Oncogenes
- Transcription Factors
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Thorsten Langer
- Hospital for Children and Adolescents, University of Erlangen, Erlangen, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
187
|
Testa G, Zhang Y, Vintersten K, Benes V, Pijnappel WWMP, Chambers I, Smith AJH, Smith AG, Stewart AF. Engineering the mouse genome with bacterial artificial chromosomes to create multipurpose alleles. Nat Biotechnol 2003; 21:443-7. [PMID: 12627172 DOI: 10.1038/nbt804] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2002] [Accepted: 01/15/2003] [Indexed: 11/08/2022]
Abstract
The mouse is the leading vertebrate model because its genome can be altered by both random transgenesis and homologous recombination with targeting constructs. Both approaches have been hindered by the size and site limitations implicit in conventional Escherichia coli DNA-engineering methods. Homologous recombination in E. coli, or 'recombineering', has overcome these limitations for bacterial artificial chromosome (BAC) transgenesis. Here we applied Red/ET recombineering (using the lambda Redalpha/Redbeta recombinase pair) to generate a 64 kilobase targeting construct that carried two selectable cassettes permitting the simultaneous mutation of the target gene, Mll, at sites 43 kb apart in one round of mouse embryonic stem (ES) cell targeting. The targeting frequency after dual selection was 6%. Because the two selectable cassettes were flanked by FRT or loxP sites, three more alleles can be generated by site-specific recombination. Our approach represents a simple way to introduce changes at two or more sites in a genetic locus, and thereafter generate allele combinations. The size of BAC templates offers new freedom for the design of targeting constructs. Combined with the use of two selectable cassettes placed far apart, BAC-based targeting constructs may be applicable to tasks such as regional exchanges, deletions, and insertions.
Collapse
Affiliation(s)
- Giuseppe Testa
- Biotec, Technische Universität Dresden, GmbH, c/o Max Planck Institute for Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, Dresden, Germany 01307
| | | | | | | | | | | | | | | | | |
Collapse
|
188
|
Bromberg KD, Burgin AB, Osheroff N. Quinolone action against human topoisomerase IIalpha: stimulation of enzyme-mediated double-stranded DNA cleavage. Biochemistry 2003; 42:3393-8. [PMID: 12653542 DOI: 10.1021/bi027383t] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Several important antineoplastic drugs kill cells by increasing levels of topoisomerase II-mediated DNA breaks. These compounds act by two distinct mechanisms. Agents such as etoposide inhibit the ability of topoisomerase II to ligate enzyme-linked DNA breaks. Conversely, compounds such as quinolones have little effect on ligation and are believed to stimulate the forward rate of topoisomerase II-mediated DNA cleavage. The fact that there are two scissile bonds per double-stranded DNA break implies that there are two sites for drug action in every enzyme-DNA cleavage complex. However, since agents in the latter group are believed to act by locally perturbing DNA structure, it is possible that quinolone interactions at a single scissile bond are sufficient to distort both strands of the double helix and generate an enzyme-mediated double-stranded DNA break. Therefore, an oligonucleotide system was established to further define the actions of topoisomerase II-targeted drugs that stimulate the forward rate of DNA cleavage. Results indicate that the presence of the quinolone CP-115,953 at one scissile bond increased the extent of enzyme-mediated scission at the opposite scissile bond and was sufficient to stimulate the formation of a double-stranded DNA break by human topoisomerase IIalpha. These findings stand in marked contrast to those for etoposide, which must be present at both scissile bonds to stabilize a double-stranded DNA break [Bromberg, K. D., et al. (2003) J. Biol. Chem. 278, 7406-7412]. Moreover, they underscore important mechanistic differences between drugs that enhance DNA cleavage and those that inhibit ligation.
Collapse
Affiliation(s)
- Kenneth D Bromberg
- Department of Biochemistry, (Hematology/Oncology), Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146, USA
| | | | | |
Collapse
|
189
|
Abstract
The robotic mouse is an autosomal dominant mutant that arose from a large-scale chemical mutagenesis program. It has a jerky, ataxic gait and develops adult-onset Purkinje cell loss in the cerebellum in a striking region-specific pattern, as well as cataracts. Genetic and physical mapping of the disease locus led to the identification of a missense mutation in a highly conserved region of Af4, a putative transcription factor that has been previously implicated in leukemogenesis. We demonstrate that Af4 is specifically expressed in Purkinje cells, and we hypothesize that the expression of mutant Af4 leads to neurodegeneration. This function was not identified through knock-out studies, highlighting the power of phenotype-driven mutagenesis in the mouse to identify new pathways involved in neurological disease.
Collapse
|
190
|
Kuefer MU, Chinwalla V, Zeleznik-Le NJ, Behm FG, Naeve CW, Rakestraw KM, Mukatira ST, Raimondi SC, Morris SW. Characterization of the MLL partner gene AF15q14 involved in t(11;15)(q23;q14). Oncogene 2003; 22:1418-24. [PMID: 12618768 DOI: 10.1038/sj.onc.1206272] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Translocations interrupting the mixed lineage leukemia gene (MLL) occur in 7-10% of acute lymphoblastic leukemia (ALL) and 5-6% of acute myeloid leukemia (AML) cases. One of these translocations, t(11;15)(q23;q14), occurs rarely in both ALL and AML. The gene on chromosome 15, AF15q14, was cloned recently in a patient with AML-M4. We have identified the same gene in a de novo T-ALL patient. However, both the MLL and AF15q14 breakpoints in these patients differed: in the previously reported AML-M4, both gene breaks were within exons, while in our ALL case the MLL break is intronic and the AF15q14 break is exonic. The MLL-AF15q14 fusion described previously shares no AF15q14 residues in common with the chimera reported here. The fusion proteins also differ with respect to MLL--the previously described fusion contains 55 extra amino acids as its MLL break is in exon 11, while the chimera we report breaks in intron 9. Contrary to the originally described normal AF15q14 (5925-bp cDNA encoding a 1833-aa protein), we identify a 7542-bp cDNA and a 2342-aa AF15q14 protein. AF15q14 appears identical to an mRNA previously found to be expressed in melanoma rendered nontumorigenic by microcell-mediated introduction of normal chromosome 6, suggesting the gene may function normally to suppress cell growth and/or enhance maturation.
Collapse
MESH Headings
- Amino Acid Sequence
- Carrier Proteins
- Chromosome Breakage
- Chromosomes, Human, Pair 11/genetics
- Chromosomes, Human, Pair 11/ultrastructure
- Chromosomes, Human, Pair 15/genetics
- Chromosomes, Human, Pair 15/ultrastructure
- Chromosomes, Human, Pair 6/genetics
- Genetic Complementation Test
- Hematopoiesis/genetics
- Humans
- Introns/genetics
- Leukemia, Myelomonocytic, Acute/genetics
- Leukemia-Lymphoma, Adult T-Cell/genetics
- Melanoma/genetics
- Melanoma/pathology
- Microtubule-Associated Proteins
- Molecular Sequence Data
- Myeloid-Lymphoid Leukemia Protein
- Oncogene Proteins, Fusion/genetics
- Proteins/genetics
- Proteins/physiology
- RNA, Messenger/genetics
- Translocation, Genetic/genetics
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Martin U Kuefer
- Landratsamt Ostallgäu, Abteilung Gesundheitswesen, Marktoberdorf, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
191
|
de Guzman CG, Johnson A, Klug CA. The ETO domain is necessary for the developmental abnormalities associated with AML1-ETO expression in the hematopoietic stem cell compartment in vivo. Blood Cells Mol Dis 2003; 30:201-6. [PMID: 12732184 DOI: 10.1016/s1079-9796(03)00025-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Translocation of the ETO gene on human chromosome 8 with the AML1 gene on chromosome 21 (AML1-ETO) is a recurrent cytogenetic abnormality associated with approximately 12% of acute myelogenous leukemia (AML) cases. To understand the contribution of the t(8;21) to AML, we transduced purified hematopoietic stem cells (HSC) with a retroviral vector that coexpressed AML1-ETO or just the AML1 portion (AML1d) of the translocation along with a green fluorescent protein reporter gene. Animals reconstituted with AML1-ETO-expressing cells exhibited many of the hematopoietic developmental abnormalities seen in the bone marrow of human patients with the t(8;21), although the animals did not develop acute leukemia. We noted a gradual increase in primitive myeloblasts that accounted for approximately 10% of bone marrow by 10 months posttransplant. Consistent with this observation was a 50-fold increase in myeloid colony-forming cells in vitro. In addition, accumulation of late stage metamyelocytes was observed in bone marrow along with an increase in immature eosinophil myelocytes that showed abnormal basophilic granulation. There was also a gradual increase in both the frequency and absolute number of AML1-ETO-expressing HSC so that by 10 months posttransplant, there were 29-fold greater HSC numbers than in transplant-matched control mice. These phenotypes were not observed in animals reconstituted with cells expressing only the DNA-binding domain of AML1, suggesting that the ETO domain is necessary to establish the developmental abnormalities associated with AML1-ETO expression in HSC.
Collapse
MESH Headings
- Acute Disease
- Animals
- Bone Marrow Cells/cytology
- Bone Marrow Cells/physiology
- Bone Marrow Transplantation
- Chromosomes, Human, Pair 21
- Chromosomes, Human, Pair 8
- Cloning, Molecular
- Coculture Techniques
- Congenital Abnormalities/genetics
- Core Binding Factor Alpha 2 Subunit
- Disease Models, Animal
- Gene Expression Regulation, Developmental
- Genes, Reporter
- Green Fluorescent Proteins
- Hematopoietic Stem Cells/cytology
- Hematopoietic Stem Cells/physiology
- Humans
- Leukemia, Myeloid/genetics
- Luminescent Proteins/genetics
- Mice
- Mice, Inbred C57BL
- Oncogene Proteins, Fusion/genetics
- Proto-Oncogene Proteins/genetics
- RUNX1 Translocation Partner 1 Protein
- Transcription Factors/genetics
- Translocation, Genetic
Collapse
Affiliation(s)
- Cristina G de Guzman
- Department of Human Genetics, University of Alabama at Birmingham, AL 35294, USA
| | | | | |
Collapse
|
192
|
Bromberg KD, Burgin AB, Osheroff N. A two-drug model for etoposide action against human topoisomerase IIalpha. J Biol Chem 2003; 278:7406-12. [PMID: 12473657 DOI: 10.1074/jbc.m212056200] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The widely used anticancer drug etoposide kills cells by increasing levels of topoisomerase II-mediated DNA breaks. While it is known that the drug acts by inhibiting the ability of topoisomerase II to ligate cleaved DNA molecules, the precise mechanism by which it accomplishes this action is not well understood. Because there are two scissile bonds per enzyme-mediated double-stranded DNA break, it has been assumed that there are two sites for etoposide in every cleavage complex. However, it is not known whether the action of etoposide at only one scissile bond is sufficient to stabilize a double-stranded DNA break or whether both drug sites need to be occupied. An oligonucleotide system was utilized to address this important issue. Results of DNA cleavage and ligation assays support a two-drug model for the action of etoposide against human topoisomerase IIalpha. This model postulates that drug interactions at both scissile bonds are required in order to increase enzyme-mediated double-stranded DNA breaks. Etoposide actions at either of the two scissile bonds appear to be independent of one another, with each individual drug molecule stabilizing a strand-specific nick rather than a double-stranded DNA break. This finding suggests (at least in the presence of drug) that there is little or no communication between the two promoter active sites of topoisomerase II. The two-drug model has implications for cancer chemotherapy, the cellular processing of etoposide-stabilized enzyme-DNA cleavage complexes, and the catalytic mechanism of eukaryotic topoisomerase II.
Collapse
Affiliation(s)
- Kenneth D Bromberg
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146, USA
| | | | | |
Collapse
|
193
|
Armstrong SA, Kung AL, Mabon ME, Silverman LB, Stam RW, Den Boer ML, Pieters R, Kersey JH, Sallan SE, Fletcher JA, Golub TR, Griffin JD, Korsmeyer SJ. Inhibition of FLT3 in MLL. Validation of a therapeutic target identified by gene expression based classification. Cancer Cell 2003; 3:173-83. [PMID: 12620411 DOI: 10.1016/s1535-6108(03)00003-5] [Citation(s) in RCA: 285] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
We recently found that MLL-rearranged acute lymphoblastic leukemias (MLL) have a unique gene expression profile including high level expression of the receptor tyrosine kinase FLT3. We hypothesized that FLT3 might be a therapeutic target in MLL and found that 5 of 30 MLLs contain mutations in the activation loop of FLT3 that result in constitutive activation. Three are a newly described deletion of I836 and the others are D835 mutations. The recently described FLT3 inhibitor PKC412 proved cytotoxic to Ba/F3 cells dependent upon activated FLT3 containing either mutation. PKC412 is also differentially cytotoxic to leukemia cells with MLL translocations and FLT3 that is activated by either overexpression of the wild-type receptor or mutation. Finally, we developed a mouse model of MLL and used bioluminescent imaging to determine that PKC412 is active against MLL in vivo.
Collapse
Affiliation(s)
- Scott A Armstrong
- Dana Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
194
|
Mercher T, Courtois G, Berger R, Bernard OA. [Molecular basis of the t(1;22)(p13;q13) specific for human acute megakaryoblastic leukemia]. PATHOLOGIE-BIOLOGIE 2003; 51:27-32. [PMID: 12628289 DOI: 10.1016/s0369-8114(02)00354-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The t(1;22)(p13;q13) translocation is specifically associated with infant acute megakaryoblastic leukemia (M7). We have recently characterized the two genes involved in this translocation: OTT (One Two Two) and MAL (Megakaryoblastic Acute Leukemia) respectively located on chromosome 1 and 22. The t(1;22) translocation results in the fusion of these genes in all the cases studied to date. We summarize here present knowledge regarding this translocation.
Collapse
Affiliation(s)
- T Mercher
- Inserm EMI 0210, 27, rue Juliette-Dodu, 75010, Paris, France
| | | | | | | |
Collapse
|
195
|
Cowell JK, Nowak NJ. High-Resolution Analysis of Genetic Events in Cancer Cells Using Bacterial Artificial Chromosome Arrays and Comparative Genome Hybridization. Adv Cancer Res 2003; 90:91-125. [PMID: 14710948 DOI: 10.1016/s0065-230x(03)90003-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Chromosome analysis of cancer cells has been one of the primary means of identifying key genetic events in the development of cancer. The relatively low resolution of metaphase chromosomes, however, only allows characterization of major genetic events that are defined at the megabase level. The development of the human genome-wide bacterial artificial chromosome (BAC) libraries that were used as templates for the human genome project made it possible to design microarrays containing these BACs that can theoretically span the genome uninterrupted. Competitive hybridization to these arrays using tumor and normal DNA samples reveals numerical chromosome abnormalities (deletions and amplifications) that can be accurately defined depending on the density of the arrays. At present, we are using arrays with 6,000 BACs, which provide an average resolution of less than 700 kb. Analysis of tumor DNA samples using these arrays reveals small deletions and amplifications that were not detectable by chromosome analysis and provides a global view of these genetic changes in a single hybridization experiment in 24 hours. The extent of the genetic changes can then be determined precisely and the gene content of the affected regions established. These arrays have widespread application to the analysis of cancer patients and their tumors and can detect constitutional abnormalities as well. The availability of these high-density arrays now provides the opportunity to classify tumors based on their genetic fingerprints, which will assist in staging, diagnosis, and even prediction of response to therapy. Importantly, subtle genetic changes that occur consistently in tumor cell types may eventually be used to stratify patients for clinical trials and to predict their response to custom therapies.
Collapse
Affiliation(s)
- John K Cowell
- Roswell Park Cancer Institute, Department of Cancer Genetics, Elm and Carlton Streets, Buffalo, New York 14263, USA
| | | |
Collapse
|
196
|
Perrin L, Bloyer S, Ferraz C, Agrawal N, Sinha P, Dura JM. The leucine zipper motif of the Drosophila AF10 homologue can inhibit PRE-mediated repression: implications for leukemogenic activity of human MLL-AF10 fusions. Mol Cell Biol 2003; 23:119-30. [PMID: 12482966 PMCID: PMC140655 DOI: 10.1128/mcb.23.1.119-130.2003] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In a screen for Drosophila genes that interfere with transcriptional repression mediated by the Polycomb group of genes, we identified a dominant mutation affecting the Alhambra (Alh) gene, the fly homologue of the human AF10 gene. AF10 has been identified as a fusion partner of both MLL and CALM in infant leukemias. Both fusion proteins retain the leucine zipper domain of AF10 but not its PHD domain. We show here that, while the full-length ALH protein has no activity on Polycomb group-responsive elements (PREs), overexpression of the isolated ALH leucine zipper domain activates several PREs. Within the ALH full-length protein, the PHD domain inhibits the PRE deregulation mediated by the leucine zipper domain. This deregulation is conserved in the human AF10 leucine zipper domain, which confers the same activity on an oncogenic MLL-AF10 fusion protein expressed in Drosophila melanogaster. These data reveal new properties for the leucine zipper domain and thus might provide new clues to understanding the mechanisms by which AF10 fusion proteins in which the PHD domain is lost might trigger leukemias in humans.
Collapse
Affiliation(s)
- Laurent Perrin
- Institut de Génétique Humaine, CNRS, UPR 1142, 34396 Montpellier Cedex 5, France.
| | | | | | | | | | | |
Collapse
|
197
|
Pane F, Intrieri M, Quintarelli C, Izzo B, Muccioli GC, Salvatore F. BCR/ABL genes and leukemic phenotype: from molecular mechanisms to clinical correlations. Oncogene 2002; 21:8652-67. [PMID: 12476311 DOI: 10.1038/sj.onc.1206094] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The Philadelphia chromosome (Ph), a minute chromosome that derives from the balanced translocation between chromosomes 9 and 22, was first described in 1960 and was for a long time the only genetic lesion consistently associated with human cancer. This chromosomal translocation results in the fusion between the 5' part of BCR gene, normally located on chromosome 22, and the 3' part of the ABL gene on chromosome 9 giving origin to a BCR/ABL fusion gene which is transcribed and then translated into a hybrid protein. Three main variants of the BCR/ABL gene have been described, that, depending on the length of the sequence of the BCR gene included, encode for the p190(BCR/ABL), P210(BCR/ABL), and P230(BCR/ABL) proteins. These three main variants are associated with distinct clinical types of human leukemias. Herein we review the data on the correlations between the type of BCR/ABL gene and the corresponding leukemic clinical features. Lastly, drawing on experimental data, we provide insight into the different transforming power of the three hybrid BCR/ABL proteins.
Collapse
Affiliation(s)
- Fabrizio Pane
- CEINGE Biotechnologie Avanzate, and Dipartimento di Biochimica e Biotecnologie Mediche, Facoltà di Medicina, Università di Napoli Federico II, Italy.
| | | | | | | | | | | |
Collapse
|
198
|
Kebriaei P, Anastasi J, Larson RA. Acute lymphoblastic leukaemia: diagnosis and classification. Best Pract Res Clin Haematol 2002; 15:597-621. [PMID: 12617866 DOI: 10.1053/beha.2002.0224] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Acute lymphoblastic leukaemia (ALL) is a heterogeneous disease with distinct biological and prognostic groupings. Diagnosis relies on traditional cytomorphological and immunohistochemical evaluation of the leukaemic blasts. Subsequently, cytogenetic analysis identifies clonal numeric and/or structural chromosomal abnormalities that may be present, thus confirming the subtype classification and providing important prognostic information for treatment planning. The major chromosomal abnormalities in ALL are t(9;22)(q34;q11), t(12;21)(p13;q22), t(4;11)(q21;q23), t(1;19)(q23;p13), 8q24 translocations and hyperdiploidy. Generally, hyperdiploidy, occurring most frequently in paediatric cases, is associated with a good prognosis, while hypodiploidy confers a poor prognosis. Among structural chromosomal abnormalities, the t(9;22)(q34;q11) resulting in the BCR/ABL fusion protein, and rearrangements of the MLL gene, confer a poor prognosis in both children and adults, while t(12;21)(p13;q22), resulting in the TEL/AML1 fusion protein, and del (12p) confer a good prognosis. More recently, additional diagnostic and prognostic information has been gained from fluorescence in situ hybridization (FISH) and DNA microarray techniques.
Collapse
Affiliation(s)
- Partow Kebriaei
- Section of Hematology/Oncology, Department of Medicine and Cancer Research Center, University of Chicago, Chicago, Illinois 60637, USA
| | | | | |
Collapse
|
199
|
Mayotte N, Roy DC, Yao J, Kroon E, Sauvageau G. Oncogenic interaction between BCR-ABL and NUP98-HOXA9 demonstrated by the use of an in vitro purging culture system. Blood 2002; 100:4177-84. [PMID: 12393433 DOI: 10.1182/blood-2002-04-1244] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Chronic myelogenous leukemia (CML) is a clonal stem cell disease caused by the BCR-ABL oncoprotein and is characterized, in its early phase, by excessive accumulation of mature myeloid cells, which eventually leads to acute leukemia. The genetic events involved in CML's progression to acute leukemia remain largely unknown. Recent studies have detected the presence of the NUP98-HOXA9 fusion oncogene in acute leukemia derived from CML patients, which suggests that these 2 oncoproteins may interact and influence CML disease progression. Using in vitro purging of BCR-ABL-transduced mouse bone marrow cells, we can now report that recipients of bone marrow cells engineered to coexpress BCR-ABL with NUP98-HOXA9 develop acute leukemia within 7 to 10 days after transplantation. However, no disease is detected for more than 2 months in mice receiving bone marrow cells expressing either BCR-ABL or NUP98-HOXA9. We also provide evidence of high levels of HOXA9 expressed in leukemic blasts from acute-phase CML patients and that it interacts significantly on a genetic level with BCR-ABL in our in vivo CML model. Together, these studies support a causative, as opposed to a consequential, role for NUP98-HOXA9 (and possibly HOXA9) in CML disease progression.
Collapse
MESH Headings
- Animals
- Bone Marrow Cells/metabolism
- Bone Marrow Purging/methods
- Bone Marrow Transplantation
- Cell Culture Techniques/methods
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/pathology
- Disease Models, Animal
- Fusion Proteins, bcr-abl/genetics
- Homeodomain Proteins/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/etiology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/therapy
- Mice
- Mice, Inbred C57BL
- Nuclear Pore Complex Proteins/genetics
- Oncogene Proteins, Fusion/genetics
- Transduction, Genetic
Collapse
Affiliation(s)
- Nadine Mayotte
- Laboratory of Molecular Genetics of Stem Cells, Clinical Research Institute of Montreal, QC, Canada
| | | | | | | | | |
Collapse
|
200
|
Imamura T, Morimoto A, Ikushima S, Kakazu N, Hada S, Tabata Y, Yagi T, Inaba T, Hibi S, Sugimoto T, Imashuku S. A novel infant acute lymphoblastic leukemia cell line with MLL-AF5q31 fusion transcript. Leukemia 2002; 16:2302-8. [PMID: 12399976 DOI: 10.1038/sj.leu.2402665] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2001] [Accepted: 05/28/2002] [Indexed: 01/14/2023]
Abstract
Infant acute lymphoblastic leukemia (ALL) is characterized by the presence of the proB phenotype (CD10(-)/CD19(+)), poor prognosis and frequent rearrangement of the mixed lineage leukemia (MLL) gene. The most frequent rearrangement is t(4;11)(q21;q23), the role of whose product, the MLL-AF4 fusion transcript, has been extensively studied in leukemogenesis. In a cell line of infant leukemia with MLL rearrangement denoted KP-L-RY, panhandle PCR amplification of cDNA revealed the presence of a fusion transcript, MLL-AF5q31, indicating that AF5q31 is also a partner gene of MLL. In this fusion transcript the MLL exon 6 is fused in frame to the 5' side of the putative transactivation domain of AF5q31. The AF5q31 protein is a member of the AF4/LAF4/FMR2-related family of proteins, which have been suggested to play a role in hematopoietic cell growth and differentiation. The MLL-AF5q31 fusion transcript, although probably rare, appears to be associated with the pathogenesis of infant ALL like MLL-AF4. Co-expression of HoxA9 and Meis1 genes in the KP-L-RY cell line indicated possible functional similarity between MLL-AF4 and MLL-AF5q31. Further understanding of the function of AF5q31 as well as the specific leukemogenic mechanism of MLL-AF5q31 awaits future studies.
Collapse
MESH Headings
- Acute Disease
- Artificial Gene Fusion
- Biomarkers, Tumor/genetics
- Blotting, Southern
- Cell Line
- Chromosome Mapping
- Chromosomes, Human, Pair 11/genetics
- Chromosomes, Human, Pair 4/genetics
- DNA Primers/chemistry
- DNA, Neoplasm/analysis
- Exons
- Homeodomain Proteins/genetics
- Homeodomain Proteins/metabolism
- Humans
- In Situ Hybridization, Fluorescence
- Infant
- Male
- Myeloid Ecotropic Viral Integration Site 1 Protein
- Myeloid-Lymphoid Leukemia Protein
- Neoplasm Proteins/genetics
- Neoplasm Proteins/metabolism
- Oncogene Proteins, Fusion/genetics
- Polymerase Chain Reaction
- Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics
- Translocation, Genetic
Collapse
Affiliation(s)
- T Imamura
- Department of Pediatrics, Kyoto Prefectural University of Medicine, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|