151
|
Dudzic JP, Curtis CI, Gowen BE, Perlman SJ. A highly divergent Wolbachia with a tiny genome in an insect-parasitic tylenchid nematode. Proc Biol Sci 2022; 289:20221518. [PMID: 36168763 PMCID: PMC9515626 DOI: 10.1098/rspb.2022.1518] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Wolbachia symbionts are the most successful host-associated microbes on the planet, infecting arthropods and nematodes. Their role in nematodes is particularly enigmatic, with filarial nematode species either 100% infected and dependent on symbionts for reproduction and development, or not at all infected. We have discovered a highly divergent strain of Wolbachia in an insect-parasitic tylenchid nematode, Howardula sp., in a nematode clade that has not previously been known to harbour Wolbachia. While this nematode is 100% infected with Wolbachia, we did not detect it in related species. We sequenced the Howardula symbiont (wHow) genome and found that it is highly reduced, comprising only 550 kilobase pairs of DNA, approximately 35% smaller than the smallest Wolbachia nematode symbiont genomes. The wHow genome is a subset of all other Wolbachia genomes and has not acquired any new genetic information. While it has lost many genes, including genes involved in cell wall synthesis and cell division, it has retained the entire haem biosynthesis pathway, suggesting that haem supplementation is critical. wHow provides key insights into our understanding of what are the lower limits of Wolbachia cells, as well as the role of Wolbachia symbionts in the biology and convergent evolution of diverse parasitic nematodes.
Collapse
Affiliation(s)
- Jan P Dudzic
- Department of Biology, University of Victoria, Victoria, British Columbia, Canada
| | - Caitlin I Curtis
- Department of Biology, University of Victoria, Victoria, British Columbia, Canada
| | - Brent E Gowen
- Department of Biology, University of Victoria, Victoria, British Columbia, Canada
| | - Steve J Perlman
- Department of Biology, University of Victoria, Victoria, British Columbia, Canada
| |
Collapse
|
152
|
Su Y, Lin HC, Teh LS, Chevance F, James I, Mayfield C, Golic KG, Gagnon JA, Rog O, Dale C. Rational engineering of a synthetic insect-bacterial mutualism. Curr Biol 2022; 32:3925-3938.e6. [PMID: 35963240 PMCID: PMC10080585 DOI: 10.1016/j.cub.2022.07.036] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/25/2022] [Accepted: 07/14/2022] [Indexed: 10/15/2022]
Abstract
Many insects maintain mutualistic associations with bacterial endosymbionts, but little is known about how they originate in nature. In this study, we describe the establishment and manipulation of a synthetic insect-bacterial symbiosis in a weevil host. Following egg injection, the nascent symbiont colonized many tissues, including prototypical somatic and germinal bacteriomes, yielding maternal transmission over many generations. We then engineered the nascent symbiont to overproduce the aromatic amino acids tyrosine and phenylalanine, which facilitate weevil cuticle strengthening and accelerated larval development, replicating the function of mutualistic symbionts that are widely distributed among weevils and other beetles in nature. Our work provides empirical support for the notion that mutualistic symbioses can be initiated in insects by the acquisition of environmental bacteria. It also shows that certain bacterial genera, including the Sodalis spp. used in our study, are predisposed to develop these associations due to their ability to maintain benign infections and undergo vertical transmission in diverse insect hosts, facilitating the partner-fidelity feedback that is critical for the evolution of obligate mutualism. These experimental advances provide a new platform for laboratory studies focusing on the molecular mechanisms and evolutionary processes underlying insect-bacterial symbiosis.
Collapse
Affiliation(s)
- Yinghua Su
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA.
| | - Ho-Chen Lin
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Li Szhen Teh
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Fabienne Chevance
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Ian James
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Clara Mayfield
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Kent G Golic
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - James A Gagnon
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Ofer Rog
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Colin Dale
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA.
| |
Collapse
|
153
|
Parish AJ, Rice DW, Tanquary VM, Tennessen JM, Newton ILG. Honey bee symbiont buffers larvae against nutritional stress and supplements lysine. THE ISME JOURNAL 2022; 16:2160-2168. [PMID: 35726020 PMCID: PMC9381588 DOI: 10.1038/s41396-022-01268-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 05/17/2022] [Accepted: 06/07/2022] [Indexed: 02/07/2023]
Abstract
Honey bees have suffered dramatic losses in recent years, largely due to multiple stressors underpinned by poor nutrition [1]. Nutritional stress especially harms larvae, who mature into workers unable to meet the needs of their colony [2]. In this study, we characterize the metabolic capabilities of a honey bee larvae-associated bacterium, Bombella apis (formerly Parasaccharibacter apium), and its effects on the nutritional resilience of larvae. We found that B. apis is the only bacterium associated with larvae that can withstand the antimicrobial larval diet. Further, we found that B. apis can synthesize all essential amino acids and significantly alters the amino acid content of synthetic larval diet, largely by supplying the essential amino acid lysine. Analyses of gene gain/loss across the phylogeny suggest that four amino acid transporters were gained in recent B. apis ancestors. In addition, the transporter LysE is conserved across all sequenced strains of B. apis. Finally, we tested the impact of B. apis on developing honey bee larvae subjected to nutritional stress and found that larvae supplemented with B. apis are bolstered against mass reduction despite limited nutrition. Together, these data suggest a novel role of B. apis as a nutritional mutualist of honey bee larvae.
Collapse
Affiliation(s)
- Audrey J Parish
- Department of Biology, Indiana University, Bloomington, IN, 47405, USA
| | - Danny W Rice
- Department of Biology, Indiana University, Bloomington, IN, 47405, USA
| | - Vicki M Tanquary
- Department of Biology, Indiana University, Bloomington, IN, 47405, USA
| | - Jason M Tennessen
- Department of Biology, Indiana University, Bloomington, IN, 47405, USA
| | - Irene L G Newton
- Department of Biology, Indiana University, Bloomington, IN, 47405, USA.
| |
Collapse
|
154
|
Jackson R, Monnin D, Patapiou PA, Golding G, Helanterä H, Oettler J, Heinze J, Wurm Y, Economou CK, Chapuisat M, Henry LM. Convergent evolution of a labile nutritional symbiosis in ants. THE ISME JOURNAL 2022; 16:2114-2122. [PMID: 35701539 PMCID: PMC9381600 DOI: 10.1038/s41396-022-01256-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 05/23/2022] [Accepted: 05/26/2022] [Indexed: 01/07/2023]
Abstract
Ants are among the most successful organisms on Earth. It has been suggested that forming symbioses with nutrient-supplementing microbes may have contributed to their success, by allowing ants to invade otherwise inaccessible niches. However, it is unclear whether ants have evolved symbioses repeatedly to overcome the same nutrient limitations. Here, we address this question by comparing the independently evolved symbioses in Camponotus, Plagiolepis, Formica and Cardiocondyla ants. Our analysis reveals the only metabolic function consistently retained in all of the symbiont genomes is the capacity to synthesise tyrosine. We also show that in certain multi-queen lineages that have co-diversified with their symbiont for millions of years, only a fraction of queens carry the symbiont, suggesting ants differ in their colony-level reliance on symbiont-derived resources. Our results imply that symbioses can arise to solve common problems, but hosts may differ in their dependence on symbionts, highlighting the evolutionary forces influencing the persistence of long-term endosymbiotic mutualisms.
Collapse
Affiliation(s)
- Raphaella Jackson
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, E1 4NS, UK
| | - David Monnin
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, E1 4NS, UK
| | - Patapios A Patapiou
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, E1 4NS, UK
- Department of Pathobiology and Population Sciences, Royal Veterinary College, Hatfield, AL9 7TA, UK
| | - Gemma Golding
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, E1 4NS, UK
| | - Heikki Helanterä
- Ecology and Genetics Research Unit, University of Oulu, Oulu, 90014, Finland
- Tvärminne Zoological Station, University of Helsinki, Hanko, Finland
| | - Jan Oettler
- Zoology/Evolutionary Biology, University of Regensburg, Regensburg, 93040, Germany
| | - Jürgen Heinze
- Zoology/Evolutionary Biology, University of Regensburg, Regensburg, 93040, Germany
| | - Yannick Wurm
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, E1 4NS, UK
- Alan Turing Institute, London, NW1 2DB, UK
| | - Chloe K Economou
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, E1 4NS, UK
| | - Michel Chapuisat
- Department of Ecology and Evolution, University of Lausanne, 1015, Lausanne, Switzerland
| | - Lee M Henry
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, E1 4NS, UK.
| |
Collapse
|
155
|
Abstract
Hereditary symbioses have the potential to drive transgenerational effects, yet the mechanisms responsible for transmission of heritable plant symbionts are still poorly understood. The leaf symbiosis between Dioscorea sansibarensis and the bacterium Orrella dioscoreae offers an appealing model system to study how heritable bacteria are transmitted to the next generation. Here, we demonstrate that inoculation of apical buds with a bacterial suspension is sufficient to colonize newly formed leaves and propagules, and to ensure transmission to the next plant generation. Flagellar motility is not required for movement inside the plant but is important for the colonization of new hosts. Further, tissue-specific regulation of putative symbiotic functions highlights the presence of two distinct subpopulations of bacteria in the leaf gland and at the shoot meristem. We propose that bacteria in the leaf gland dedicate resources to symbiotic functions, while dividing bacteria in the shoot tip ensure successful colonization of meristematic tissue, glands, and propagules. Compartmentalization of intrahost populations together with tissue-specific regulation may serve as a robust mechanism for the maintenance of mutualism in leaf symbiosis.
Collapse
|
156
|
Janke RS, Moog S, Weiss B, Kaltenpoth M, Flórez LV. Morphological adaptation for ectosymbiont maintenance and transmission during metamorphosis in Lagria beetles. Front Physiol 2022; 13:979200. [PMID: 36111144 PMCID: PMC9468232 DOI: 10.3389/fphys.2022.979200] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 07/29/2022] [Indexed: 11/16/2022] Open
Abstract
The diversity and success of holometabolous insects is partly driven by metamorphosis, which allows for the exploitation of different niches and decouples growth and tissue differentiation from reproduction. Despite its benefits, metamorphosis comes with the cost of temporal vulnerability during pupation and challenges associated with tissue reorganizations. These rearrangements can also affect the presence, abundance, and localization of beneficial microbes in the host. However, how symbionts are maintained or translocated during metamorphosis and which adaptations are necessary from each partner during this process remains unknown for the vast majority of symbiotic systems. Here, we show that Lagria beetles circumvent the constraints of metamorphosis by maintaining defensive symbionts on the surface in specialized cuticular structures. The symbionts are present in both sexes throughout larval development and during the pupal phase, in line with a protective role during the beetle’s immature stages. By comparing symbiont titer and morphology of the cuticular structures between sexes using qPCR, fluorescence in situ hybridization, and micro-computed tomography, we found that the organs likely play an important role as a symbiont reservoir for transmission to female adults, since symbiont titers and structures are reduced in male pupae. Using symbiont-sized fluorescent beads, we demonstrate transfer from the region of the dorsal symbiont-housing organs to the opening of the reproductive tract of adult females, suggesting that symbiont relocation on the outer surface is possible, even without specialized symbiont adaptations or motility. Our results illustrate a strategy for holometabolous insects to cope with the challenge of symbiont maintenance during metamorphosis via an external route, circumventing problems associated with internal tissue reorganization. Thereby, Lagria beetles keep a tight relationship with their beneficial partners during growth and metamorphosis.
Collapse
Affiliation(s)
- Rebekka S. Janke
- Department of Evolutionary Ecology, Institute of Organismic and Molecular Evolution, Johannes Gutenberg University, Mainz, Germany
| | - Safira Moog
- Department of Evolutionary Ecology, Institute of Organismic and Molecular Evolution, Johannes Gutenberg University, Mainz, Germany
| | - Benjamin Weiss
- Department of Evolutionary Ecology, Institute of Organismic and Molecular Evolution, Johannes Gutenberg University, Mainz, Germany
- Department of Insect Symbiosis, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Martin Kaltenpoth
- Department of Evolutionary Ecology, Institute of Organismic and Molecular Evolution, Johannes Gutenberg University, Mainz, Germany
- Department of Insect Symbiosis, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Laura V. Flórez
- Department of Evolutionary Ecology, Institute of Organismic and Molecular Evolution, Johannes Gutenberg University, Mainz, Germany
- Department of Plant and Environmental Sciences, Section for Organismal Biology, University of Copenhagen, Copenhagen, Denmark
- *Correspondence: Laura V. Flórez,
| |
Collapse
|
157
|
Nishide Y, Oguchi K, Murakami M, Moriyama M, Koga R, Fukatsu T. Endosymbiotic bacteria of the boar louse Haematopinus apri (Insecta: Phthiraptera: Anoplura). Front Microbiol 2022; 13:962252. [PMID: 36003934 PMCID: PMC9393614 DOI: 10.3389/fmicb.2022.962252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 07/08/2022] [Indexed: 11/13/2022] Open
Abstract
Insects exclusively feeding on vertebrate blood are usually dependent on symbiotic bacteria for provisioning of B vitamins. Among them, sucking lice are prominent in that their symbiotic bacteria as well as their symbiotic organs exhibit striking diversity. Here we investigated the bacterial diversity associated with the boar louse Haematopinus apri in comparison with the hog louse Haematopinus suis. Amplicon sequencing analysis identified the primary endosymbiont predominantly detected from all populations of H. apri with some minor secondary bacterial associates. Sequencing and phylogenetic analysis of bacterial 16S rRNA gene confirmed that the endosymbionts of the boar louse H. apri, the hog louse H. suis and the cattle louse Haematopinus eurysternus form a distinct clade in the Gammaproteobacteria. The endosymbiont clade of Haematopinus spp. was phylogenetically distinct from the primary endosymbionts of other louse lineages. Fluorescence in situ hybridization visualized the endosymbiont localization within midgut epithelium, ovarial ampulla and posterior oocyte of H. apri, which were substantially the same as the endosymbiont localization previously described in H. suis and H. eurysternus. Mitochondrial haplotype analysis revealed that, although the domestic pig was derived from the wild boar over the past 8,000 years of human history, the populations of H. apri constituted a distinct sister clade to the populations of H. suis. Based on these results, we discussed possible evolutionary trajectories of the boar louse, the hog louse and their endosymbionts in the context of swine domestication. We proposed ‘Candidatus Haematopinicola symbiotica’ for the distinct clade of the endosymbionts of Haematopinus spp.
Collapse
Affiliation(s)
- Yudai Nishide
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Tsukuba, Japan
- *Correspondence: Yudai Nishide,
| | - Kohei Oguchi
- National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
- Misaki Marine Biological Station, School of Science, The University of Tokyo, Miura, Japan
| | - Maria Murakami
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Tsukuba, Japan
| | - Minoru Moriyama
- National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Ryuichi Koga
- National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Takema Fukatsu
- National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
- Takema Fukatsu,
| |
Collapse
|
158
|
Kwak Y, Argandona JA, Degnan PH, Hansen AK. Chromosomal-level assembly of Bactericera cockerelli reveals rampant gene family expansions impacting genome structure, function and insect-microbe-plant-interactions. Mol Ecol Resour 2022; 23:233-252. [PMID: 35925827 PMCID: PMC10087415 DOI: 10.1111/1755-0998.13693] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/24/2022] [Accepted: 08/01/2022] [Indexed: 11/27/2022]
Abstract
Lineage specific expansions and gene duplications are some of the most important sources of evolutionary novelty in eukaryotes. Although not as prevalent in eukaryotes compared to bacteria, horizontal gene transfer events can also result in key adaptations for insects, especially for those involved in insect-microbe interactions. In this study we assemble the first chromosomal assembly of the psyllid Bactericera cockerelli and reveal that the B. cockerelli genome has experienced significantly more gene expansion events compared to other Hemipteran representatives with fully sequenced genomes. We also reveal that B. cockerelli's genome is the largest psyllid genome (567 Mb) sequenced to date and is ~15% larger than the other two psyllid species genomes sequenced (Pachypsylla venusta and Diaphorina citri). Structurally, B. cockerelli appears to have an additional chromosome compared to the distantly related psyllid species P. venusta due to a previous chromosomal fission or fusion event. The increase in genome size and dynamic nature of the B. cockerelli genome may largely be contributed to the widespread expansion of type I and type II repeat elements that are rampant across all of B. cockerelli's. chromosomes. These repeat elements are distributed near equally in both euchromatic and heterochromatic regions. Furthermore, significant gene family expansions and gene duplications were uncovered for genes that are expected to be important in its adaptation to insect-plant and microbe interactions, which include transcription factors, proteases, odorant receptors, and horizontally transferred genes that are involved in the nutritional symbioses with their long-term nutritional endosymbiont Carsonella.
Collapse
Affiliation(s)
- Younghwan Kwak
- Department of Entomology, University of California, CA, USA
| | | | - Patrick H Degnan
- Department of Microbiology and Plant Pathology, University of California, CA, USA
| | | |
Collapse
|
159
|
Mahajan S, Agashe D. Evolutionary jumps in bacterial GC content. G3 (BETHESDA, MD.) 2022; 12:jkac108. [PMID: 35579351 PMCID: PMC9339322 DOI: 10.1093/g3journal/jkac108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 04/20/2022] [Indexed: 11/29/2022]
Abstract
Genomic GC (Guanine-Cytosine) content is a fundamental molecular trait linked with many key genomic features such as codon and amino acid use. Across bacteria, GC content is surprisingly diverse and has been studied for many decades; yet its evolution remains incompletely understood. Since it is difficult to observe GC content evolve on laboratory time scales, phylogenetic comparative approaches are instrumental; but this dimension is rarely studied systematically in the case of bacterial GC content. We applied phylogenetic comparative models to analyze GC content evolution in multiple bacterial groups across 2 major bacterial phyla. We find that GC content diversifies via a combination of gradual evolution and evolutionary "jumps." Surprisingly, unlike prior reports that solely focused on reductions in GC, we found a comparable number of jumps with both increased and decreased GC content. Overall, many of the identified jumps occur in lineages beyond the well-studied peculiar examples of endosymbiotic and AT-rich marine bacteria and do not support the predicted role of oxygen dependence. Our analysis of rapid and large shifts in GC content thus identifies new clades and novel contexts to further understand the ecological and evolutionary drivers of this important genomic trait.
Collapse
Affiliation(s)
- Saurabh Mahajan
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru 560065, India
- Atria University, Bengaluru 560024, India
| | - Deepa Agashe
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru 560065, India
| |
Collapse
|
160
|
Diaphorin, a Polyketide Produced by a Bacterial Symbiont of the Asian Citrus Psyllid, Inhibits the Growth and Cell Division of Bacillus subtilis but Promotes the Growth and Metabolic Activity of Escherichia coli. Microbiol Spectr 2022; 10:e0175722. [PMID: 35894614 PMCID: PMC9430481 DOI: 10.1128/spectrum.01757-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Diaphorin is a polyketide produced by “Candidatus Profftella armatura” (Gammaproteobacteria: Burkholderiales), an obligate symbiont of a notorious agricultural pest, the Asian citrus psyllid Diaphorina citri (Hemiptera: Psyllidae). Diaphorin belongs to the pederin family of bioactive agents found in various host-symbiont systems, including beetles, lichens, and sponges, harboring phylogenetically diverse bacterial producers. Previous studies showed that diaphorin, which is present in D. citri at concentrations of 2 to 20 mM, has inhibitory effects on various eukaryotes, including the natural enemies of D. citri. However, little is known about its effects on prokaryotic organisms. To address this issue, the present study assessed the biological activities of diaphorin on two model prokaryotes, Escherichia coli (Gammaproteobacteria: Enterobacterales) and Bacillus subtilis (Firmicutes: Bacilli). Their growth and morphological features were analyzed using spectrophotometry, optical microscopy followed by image analysis, and transmission electron microscopy. The metabolic activity of E. coli was further assessed using the β-galactosidase assay. The results revealed that physiological concentrations of diaphorin inhibit the growth and cell division of B. subtilis but promote the growth and metabolic activity of E. coli. This finding implies that diaphorin functions as a defensive agent of the holobiont (host plus symbionts) against some bacterial lineages but is metabolically beneficial for others, which potentially include obligate symbionts of D. citri. IMPORTANCE Certain secondary metabolites, including antibiotics, evolve to mediate interactions among organisms. These molecules have distinct spectra for microorganisms and are often more effective against Gram-positive bacteria than Gram-negative ones. However, it is rare that a single molecule has completely opposite activities on distinct bacterial lineages. The present study revealed that a secondary metabolite synthesized by an organelle-like bacterial symbiont of psyllids inhibits the growth of Gram-positive Bacillus subtilis but promotes the growth of Gram-negative Escherichia coli. This finding not only provides insights into the evolution of microbiomes in animal hosts but also may potentially be exploited to promote the effectiveness of industrial material production by microorganisms.
Collapse
|
161
|
Renoz F, Ambroise J, Bearzatto B, Fakhour S, Parisot N, Ribeiro Lopes M, Gala JL, Calevro F, Hance T. The Di-Symbiotic Systems in the Aphids Sipha maydis and Periphyllus lyropictus Provide a Contrasting Picture of Recent Co-Obligate Nutritional Endosymbiosis in Aphids. Microorganisms 2022; 10:microorganisms10071360. [PMID: 35889078 PMCID: PMC9317480 DOI: 10.3390/microorganisms10071360] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/01/2022] [Accepted: 07/04/2022] [Indexed: 11/25/2022] Open
Abstract
Dependence on multiple nutritional bacterial symbionts forming a metabolic unit has repeatedly evolved in many insect species that feed on nutritionally unbalanced diets such as plant sap. This is the case for aphids of the subfamilies Lachninae and Chaitophorinae, which have evolved di-symbiotic systems in which the ancient obligate nutritional symbiont Buchnera aphidicola is metabolically complemented by an additional nutritional symbiont acquired more recently. Deciphering how different symbionts integrate both metabolically and anatomically in such systems is crucial to understanding how complex nutritional symbiotic systems function and evolve. In this study, we sequenced and analyzed the genomes of the symbionts B. aphidicola and Serratia symbiotica associated with the Chaitophorinae aphids Sipha maydis and Periphyllus lyropictus. Our results show that, in these two species, B. aphidicola and S. symbiotica complement each other metabolically (and their hosts) for the biosynthesis of essential amino acids and vitamins, but with distinct metabolic reactions supported by each symbiont depending on the host species. Furthermore, the S. symbiotica symbiont associated with S. maydis appears to be strictly compartmentalized into the specialized host cells housing symbionts in aphids, the bacteriocytes, whereas the S. symbiotica symbiont associated with P. lyropictus exhibits a highly invasive phenotype, presumably because it is capable of expressing a larger set of virulence factors, including a complete flagellum for bacterial motility. Such contrasting levels of metabolic and anatomical integration for two S. symbiotica symbionts that were recently acquired as nutritional co-obligate partners reflect distinct coevolutionary processes specific to each association.
Collapse
Affiliation(s)
- François Renoz
- Biodiversity Research Centre, Earth and Life Institute, Université Catholique de Louvain (UCLouvain), 1348 Louvain-la-Neuve, Belgium;
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR203, F-69621 Villeurbanne, France; (N.P.); (M.R.L.); (F.C.)
- Correspondence:
| | - Jérôme Ambroise
- Center for Applied Molecular Technologies, Institute of Experimental and Clinical Research, Université Catholique de Louvain (UCLouvain), 1200 Woluwe-Saint-Lambert, Belgium; (J.A.); (B.B.); (J.-L.G.)
| | - Bertrand Bearzatto
- Center for Applied Molecular Technologies, Institute of Experimental and Clinical Research, Université Catholique de Louvain (UCLouvain), 1200 Woluwe-Saint-Lambert, Belgium; (J.A.); (B.B.); (J.-L.G.)
| | - Samir Fakhour
- Department of Plant Protection, National Institute of Agricultural Research, Avenue Ennasr, BP 415 Rabat Principale, Rabat 10090, Morocco;
| | - Nicolas Parisot
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR203, F-69621 Villeurbanne, France; (N.P.); (M.R.L.); (F.C.)
| | - Mélanie Ribeiro Lopes
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR203, F-69621 Villeurbanne, France; (N.P.); (M.R.L.); (F.C.)
| | - Jean-Luc Gala
- Center for Applied Molecular Technologies, Institute of Experimental and Clinical Research, Université Catholique de Louvain (UCLouvain), 1200 Woluwe-Saint-Lambert, Belgium; (J.A.); (B.B.); (J.-L.G.)
| | - Federica Calevro
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR203, F-69621 Villeurbanne, France; (N.P.); (M.R.L.); (F.C.)
| | - Thierry Hance
- Biodiversity Research Centre, Earth and Life Institute, Université Catholique de Louvain (UCLouvain), 1348 Louvain-la-Neuve, Belgium;
| |
Collapse
|
162
|
Camus MF, Alexander-Lawrie B, Sharbrough J, Hurst GDD. Inheritance through the cytoplasm. Heredity (Edinb) 2022; 129:31-43. [PMID: 35525886 PMCID: PMC9273588 DOI: 10.1038/s41437-022-00540-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 04/19/2022] [Accepted: 04/20/2022] [Indexed: 12/11/2022] Open
Abstract
Most heritable information in eukaryotic cells is encoded in the nuclear genome, with inheritance patterns following classic Mendelian segregation. Genomes residing in the cytoplasm, however, prove to be a peculiar exception to this rule. Cytoplasmic genetic elements are generally maternally inherited, although there are several exceptions where these are paternally, biparentally or doubly-uniparentally inherited. In this review, we examine the diversity and peculiarities of cytoplasmically inherited genomes, and the broad evolutionary consequences that non-Mendelian inheritance brings. We first explore the origins of vertical transmission and uniparental inheritance, before detailing the vast diversity of cytoplasmic inheritance systems across Eukaryota. We then describe the evolution of genomic organisation across lineages, how this process has been shaped by interactions with the nuclear genome and population genetics dynamics. Finally, we discuss how both nuclear and cytoplasmic genomes have evolved to co-inhabit the same host cell via one of the longest symbiotic processes, and all the opportunities for intergenomic conflict that arise due to divergence in inheritance patterns. In sum, we cannot understand the evolution of eukaryotes without understanding hereditary symbiosis.
Collapse
Affiliation(s)
- M Florencia Camus
- Department of Genetics, Evolution and Environment, University College London, London, UK.
| | | | - Joel Sharbrough
- Biology Department, New Mexico Institute of Mining and Technology, Socorro, NM, USA
| | - Gregory D D Hurst
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, England
| |
Collapse
|
163
|
Manthey JD, Girón JC, Hruska JP. Impact of host demography and evolutionary history on endosymbiont molecular evolution: A test in carpenter ants (genus Camponotus) and their Blochmannia endosymbionts. Ecol Evol 2022; 12:e9026. [PMID: 35795355 PMCID: PMC9251289 DOI: 10.1002/ece3.9026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 05/25/2022] [Accepted: 05/26/2022] [Indexed: 11/28/2022] Open
Abstract
Obligate endosymbioses are tight associations between symbionts and the hosts they live inside. Hosts and their associated obligate endosymbionts generally exhibit codiversification, which has been documented in taxonomically diverse insect lineages. Host demography (e.g., effective population sizes) may impact the demography of endosymbionts, which may lead to an association between host demography and the patterns and processes of endosymbiont molecular evolution. Here, we used whole-genome sequencing data for carpenter ants (Genus Camponotus; subgenera Camponotus and Tanaemyrmex) and their Blochmannia endosymbionts as our study system to address whether Camponotus demography shapes Blochmannia molecular evolution. Using whole-genome phylogenomics, we confirmed previous work identifying codiversification between carpenter ants and their Blochmannia endosymbionts. We found that Blochmannia genes have evolved at a pace ~30× faster than that of their hosts' molecular evolution and that these rates are positively associated with host rates of molecular evolution. Using multiple tests for selection in Blochmannia genes, we found signatures of positive selection and shifts in selection strength across the phylogeny. Host demography was associated with Blochmannia shifts toward increased selection strengths, but not associated with Blochmannia selection relaxation, positive selection, genetic drift rates, or genome size evolution. Mixed support for relationships between host effective population sizes and Blochmannia molecular evolution suggests weak or uncoupled relationships between host demography and Blochmannia population genomic processes. Finally, we found that Blochmannia genome size evolution was associated with genome-wide estimates of genetic drift and number of genes with relaxed selection pressures.
Collapse
Affiliation(s)
- Joseph D. Manthey
- Department of Biological SciencesTexas Tech UniversityLubbockTexasUSA
| | - Jennifer C. Girón
- Department of EntomologyPurdue UniversityWest LafayetteIndianaUSA
- Natural Science Research LaboratoryMuseum of Texas Tech UniversityLubbockTexasUSA
| | - Jack P. Hruska
- Department of Biological SciencesTexas Tech UniversityLubbockTexasUSA
| |
Collapse
|
164
|
Abstract
Animal development is an inherently complex process that is regulated by highly conserved genomic networks, and the resulting phenotype may remain plastic in response to environmental signals. Despite development having been studied in a more natural setting for the past few decades, this framework often precludes the role of microbial prokaryotes in these processes. Here, we address how microbial symbioses impact animal development from the onset of gametogenesis through adulthood. We then provide a first assessment of which developmental processes may or may not be influenced by microbial symbioses and, in doing so, provide a holistic view of the budding discipline of developmental symbiosis.
Collapse
Affiliation(s)
- Tyler J Carrier
- GEOMAR Helmholtz Centre for Ocean Research, Kiel 24105, Germany.,Zoological Institute, Christian-Albrechts University of Kiel, Kiel 24118, Germany
| | - Thomas C G Bosch
- Zoological Institute, Christian-Albrechts University of Kiel, Kiel 24118, Germany
| |
Collapse
|
165
|
Amandine C, Ebert D, Stukenbrock E, Rodríguez de la Vega RC, Tiffin P, Croll D, Tellier A. Unraveling coevolutionary dynamics using ecological genomics. Trends Genet 2022; 38:1003-1012. [PMID: 35715278 DOI: 10.1016/j.tig.2022.05.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 05/08/2022] [Accepted: 05/10/2022] [Indexed: 11/27/2022]
Abstract
Coevolutionary interactions, from the delicate co-dependency in mutualistic interactions to the antagonistic relationship of hosts and parasites, are a ubiquitous driver of adaptation. Surprisingly, little is known about the genomic processes underlying coevolution in an ecological context. However, species comprise genetically differentiated populations that interact with temporally variable abiotic and biotic environments. We discuss the recent advances in coevolutionary theory and genomics as well as shortcomings, to identify coevolving genes that take into account this spatial and temporal variability of coevolution, and propose a practical guide to understand the dynamic of coevolution using an ecological genomics lens.
Collapse
Affiliation(s)
- Cornille Amandine
- Université Paris Saclay, INRAE, CNRS, AgroParisTech, GQE - Le Moulon, 91190 Gif-sur-Yvette, France.
| | - Dieter Ebert
- Department of Environmental Sciences, Zoology, University of Basel, Vesalgasse 1, 4051 Basel, Switzerland
| | - Eva Stukenbrock
- Max Planck Institute for Terrestrial Microbiology, Max Planck Research Group, Fungal Biodiversity, Marburg, Germany
| | | | - Peter Tiffin
- Department of Plant and Microbial Biology, 250 Biological Sciences, 1445 Gortner Ave., University of Minnesota, Saint Paul, MN 55108, USA
| | - Daniel Croll
- Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchâtel, 2000 Neuchâtel, Switzerland.
| | - Aurélien Tellier
- Population Genetics, Department of Life Science Systems, Technical University of Munich, Liesel-Beckman-Str. 2, 85354 Freising, Germany.
| |
Collapse
|
166
|
Pollmann M, Moore LD, Krimmer E, D'Alvise P, Hasselmann M, Perlman SJ, Ballinger MJ, Steidle JL, Gottlieb Y. Highly transmissible cytoplasmic incompatibility by the extracellular insect symbiont Spiroplasma. iScience 2022; 25:104335. [PMID: 35602967 PMCID: PMC9118660 DOI: 10.1016/j.isci.2022.104335] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 04/06/2022] [Accepted: 04/26/2022] [Indexed: 11/19/2022] Open
Abstract
Cytoplasmic incompatibility (CI) is a form of reproductive manipulation caused by maternally inherited endosymbionts infecting arthropods, like Wolbachia, whereby matings between infected males and uninfected females produce few or no offspring. We report the discovery of a new CI symbiont, a strain of Spiroplasma causing CI in the parasitoid wasp Lariophagus distinguendus. Its extracellular occurrence enabled us to establish CI in uninfected adult insects by transferring Spiroplasma-infected hemolymph. We sequenced the CI-Spiroplasma genome and did not find any homologues of any of the cif genes discovered to cause CI in Wolbachia, suggesting independent evolution of CI. Instead, the genome contains other potential CI-causing candidate genes, such as homologues of high-mobility group (HMG) box proteins that are crucial in eukaryotic development but rare in bacterial genomes. Spiroplasma's extracellular nature and broad host range encompassing medically and agriculturally important arthropods make it a promising tool to study CI and its applications.
Collapse
Affiliation(s)
- Marie Pollmann
- Department of Chemical Ecology 190t, Institute of Biology, University of Hohenheim, 70599 Stuttgart, Germany
| | - Logan D. Moore
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS 39762, USA
| | - Elena Krimmer
- Department of Animal Ecology and Tropical Biology, Biocenter, University of Wuerzburg, 97074 Wuerzburg, Germany
| | - Paul D'Alvise
- Institute of Medical Microbiology and Hygiene, University Hospital of Tuebingen, 72016 Tuebingen, Germany
| | - Martin Hasselmann
- Department of Livestock Population Genomics 460h, Institute of Animal Science, University of Hohenheim, 70599 Stuttgart, Germany
| | - Steve J. Perlman
- Department of Biology, University of Victoria, Victoria, BC V8W 3N5, Canada
| | - Matthew J. Ballinger
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS 39762, USA
| | - Johannes L.M. Steidle
- Department of Chemical Ecology 190t, Institute of Biology, University of Hohenheim, 70599 Stuttgart, Germany
- KomBioTa - Center of Biodiversity and Integrative Taxonomy, University of Hohenheim, 70599 Stuttgart, Germany
| | - Yuval Gottlieb
- Koret School of Veterinary Medicine, Robert H. Smith Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, POB 12, Rehovot 76100, Israel
| |
Collapse
|
167
|
Rafiqi AM, Polo PG, Milat NS, Durmuş ZÖ, Çolak-Al B, Alarcón ME, Çağıl FZ, Rajakumar A. Developmental Integration of Endosymbionts in Insects. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.846586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In endosymbiosis, two independently existing entities are inextricably intertwined such that they behave as a single unit. For multicellular hosts, the endosymbiont must be integrated within the host developmental genetic network to maintain the relationship. Developmental integration requires innovations in cell type, gene function, gene regulation, and metabolism. These innovations are contingent upon the existing ecological interactions and may evolve mutual interdependence. Recent studies have taken significant steps toward characterizing the proximate mechanisms underlying interdependence. However, the study of developmental integration is only in its early stages of investigation. Here, we review the literature on mutualistic endosymbiosis to explore how unicellular endosymbionts developmentally integrate into their multicellular hosts with emphasis on insects as a model. Exploration of this process will help gain a more complete understanding of endosymbiosis. This will pave the way for a better understanding of the endosymbiotic theory of evolution in the future.
Collapse
|
168
|
No Evidence of Bacterial Symbionts Influencing Host Specificity in Aphis gossypii Glover (Hemiptera: Aphididae). INSECTS 2022; 13:insects13050462. [PMID: 35621797 PMCID: PMC9146880 DOI: 10.3390/insects13050462] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/06/2022] [Accepted: 05/11/2022] [Indexed: 02/01/2023]
Abstract
The cotton-melon aphid, Aphis gossypii Glover, is a polyphagous insect pest with many host-specialized biotypes, such as the Cucurbitaceae- and Malvaceae-specialized (CU and MA) biotypes. Bacterial symbionts were reported to determine the host range in some aphids. Whether this is the case in A. gossypii remains unknown. Here, we tested the host specificity of the CU and MA biotypes, compared the host specificity between the wingless and winged morph within the same biotype, and analyzed the composition of the bacterial symbionts. The reproduction of the CU and MA biotypes reduced by 66.67% and 82.79%, respectively, on non-native hosts, compared with on native hosts. The composition of bacterial symbionts was not significantly different between the CU and MA biotypes, with a Buchnera abundance >95% in both biotypes. Meanwhile, the winged morph produced significantly more nymphs than the wingless morph on non-native hosts, and the Buchnera abundance in the winged morph was only about 10% of that in the wingless morph. There seemed to be a relationship between the Buchnera abundance and host specificity. We regulated the Buchnera abundance by temperature and antibiotics, but did not find that a low Buchnera abundance resulted in the high reproduction on non-native hosts. We conclude that the host specificity of A. gossypii is not controlled by specific bacterial symbionts or by Buchnera abundance.
Collapse
|
169
|
Weyandt N, Aghdam SA, Brown AMV. Discovery of Early-Branching Wolbachia Reveals Functional Enrichment on Horizontally Transferred Genes. Front Microbiol 2022; 13:867392. [PMID: 35547116 PMCID: PMC9084900 DOI: 10.3389/fmicb.2022.867392] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 03/24/2022] [Indexed: 11/13/2022] Open
Abstract
Wolbachia is a widespread endosymbiont of insects and filarial nematodes that profoundly influences host biology. Wolbachia has also been reported in rhizosphere hosts, where its diversity and function remain poorly characterized. The discovery that plant-parasitic nematodes (PPNs) host Wolbachia strains with unknown roles is of interest evolutionarily, ecologically, and for agriculture as a potential target for developing new biological controls. The goal of this study was to screen communities for PPN endosymbionts and analyze genes and genomic patterns that might indicate their role. Genome assemblies revealed 1 out of 16 sampled sites had nematode communities hosting a Wolbachia strain, designated wTex, that has highly diverged as one of the early supergroup L strains. Genome features, gene repertoires, and absence of known genes for cytoplasmic incompatibility, riboflavin, biotin, and other biosynthetic functions placed wTex between mutualist C + D strains and reproductive parasite A + B strains. Functional terms enriched in group L included protoporphyrinogen IX, thiamine, lysine, fatty acid, and cellular amino acid biosynthesis, while dN/dS analysis suggested the strongest purifying selection on arginine and lysine metabolism, and vitamin B6, heme, and zinc ion binding, suggesting these as candidate roles in PPN Wolbachia. Higher dN/dS pathways between group L, wPni from aphids, wFol from springtails, and wCfeT from cat fleas suggested distinct functional changes characterizing these early Wolbachia host transitions. PPN Wolbachia had several putative horizontally transferred genes, including a lysine biosynthesis operon like that of the mitochondrial symbiont Midichloria, a spirochete-like thiamine synthesis operon shared only with wCfeT, an ATP/ADP carrier important in Rickettsia, and a eukaryote-like gene that may mediate plant systemic acquired resistance through the lysine-to-pipecolic acid system. The Discovery of group L-like variants from global rhizosphere databases suggests diverse PPN Wolbachia strains remain to be discovered. These findings support the hypothesis of plant-specialization as key to shaping early Wolbachia evolution and present new functional hypotheses, demonstrating promise for future genomics-based rhizosphere screens.
Collapse
Affiliation(s)
- Nicholas Weyandt
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, United States
| | - Shiva A Aghdam
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, United States
| | - Amanda M V Brown
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, United States
| |
Collapse
|
170
|
Moriyama M, Hayashi T, Fukatsu T. A mucin protein predominantly expressed in the female-specific symbiotic organ of the stinkbug Plautia stali. Sci Rep 2022; 12:7782. [PMID: 35546182 PMCID: PMC9095716 DOI: 10.1038/s41598-022-11895-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 04/28/2022] [Indexed: 12/04/2022] Open
Abstract
Diverse insects are obligatorily associated with microbial symbionts, wherein the host often develops special symbiotic organs and vertically transmits the symbiont to the next generation. What molecular factors underpin the host-symbiont relationship is of great interest but poorly understood. Here we report a novel protein preferentially produced in a female-specific symbiotic organ of the stinkbug Plautia stali, whose posterior midgut develops numerous crypts to host a Pantoea-allied bacterial mutualist. In adult females, several posteriormost crypts are conspicuously enlarged, presumably specialized for vertical symbiont transmission. We detected conspicuous protein bands specific to the female’s swollen crypts by gel electrophoresis, and identified them as representing a novel mucin-like glycoprotein. Histological inspections confirmed that the mucin protein is localized to the female’s swollen crypts, coexisting with a substantial population of the symbiotic bacteria, and excreted from the swollen crypts to the midgut main tract together with the symbiotic bacteria. Using RNA interference, we successfully suppressed production of the mucin protein in adult females of P. stali. However, although the mucin protein was depleted, the symbiont population persisted in the swollen crypts, and vertical symbiont transmission to the next generation occurred. Possible biological roles and evolutionary trajectory of the symbiosis-related mucin protein are discussed.
Collapse
Affiliation(s)
- Minoru Moriyama
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, 305-8566, Japan.
| | - Toshinari Hayashi
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, 305-8566, Japan.,Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo, 113-0033, Japan
| | - Takema Fukatsu
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, 305-8566, Japan. .,Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo, 113-0033, Japan. .,Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, 305-8572, Japan.
| |
Collapse
|
171
|
Species interactions constrain adaptation and preserve ecological stability in an experimental microbial community. THE ISME JOURNAL 2022; 16:1442-1452. [PMID: 35066567 PMCID: PMC9039033 DOI: 10.1038/s41396-022-01191-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 12/31/2021] [Accepted: 01/06/2022] [Indexed: 01/16/2023]
Abstract
Species loss within a microbial community can increase resource availability and spur adaptive evolution. Environmental shifts that cause species loss or fluctuations in community composition are expected to become more common, so it is important to understand the evolutionary forces that shape the stability and function of the emergent community. Here we study experimental cultures of a simple, ecologically stable community of Saccharomyces cerevisiae and Lactobacillus plantarum, in order to understand how the presence or absence of a species impacts coexistence over evolutionary timescales. We found that evolution in coculture led to drastically altered evolutionary outcomes for L. plantarum, but not S. cerevisiae. Both monoculture- and co-culture-evolved L. plantarum evolved dozens of mutations over 925 generations of evolution, but only L. plantarum that had evolved in isolation from S. cerevisiae lost the capacity to coexist with S. cerevisiae. We find that the evolutionary loss of ecological stability corresponds with fitness differences between monoculture-evolved L. plantarum and S. cerevisiae and genetic changes that repeatedly evolve across the replicate populations of L. plantarum. This work shows how coevolution within a community can prevent destabilising evolution in individual species, thereby preserving ecological diversity and stability, despite rapid adaptation.
Collapse
|
172
|
Cournoyer J, Altman SD, Gao YL, Wallace CL, Zhang D, Lo GH, Haskin NT, Mehta AP. Engineering artificial photosynthetic life-forms through endosymbiosis. Nat Commun 2022; 13:2254. [PMID: 35474066 PMCID: PMC9042829 DOI: 10.1038/s41467-022-29961-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 04/08/2022] [Indexed: 12/28/2022] Open
Abstract
The evolutionary origin of the photosynthetic eukaryotes drastically altered the evolution of complex lifeforms and impacted global ecology. The endosymbiotic theory suggests that photosynthetic eukaryotes evolved due to endosymbiosis between non-photosynthetic eukaryotic host cells and photosynthetic cyanobacterial or algal endosymbionts. The photosynthetic endosymbionts, propagating within the cytoplasm of the host cells, evolved, and eventually transformed into chloroplasts. Despite the fundamental importance of this evolutionary event, we have minimal understanding of this remarkable evolutionary transformation. Here, we design and engineer artificial, genetically tractable, photosynthetic endosymbiosis between photosynthetic cyanobacteria and budding yeasts. We engineer various mutants of model photosynthetic cyanobacteria as endosymbionts within yeast cells where, the engineered cyanobacteria perform bioenergetic functions to support the growth of yeast cells under defined photosynthetic conditions. We anticipate that these genetically tractable endosymbiotic platforms can be used for evolutionary studies, particularly related to organelle evolution, and also for synthetic biology applications.
Collapse
Affiliation(s)
- Jay Cournoyer
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S Mathews Avenue, Urbana, IL, 61801, USA
| | - Sarah D Altman
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S Mathews Avenue, Urbana, IL, 61801, USA
| | - Yang-le Gao
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S Mathews Avenue, Urbana, IL, 61801, USA
| | - Catherine L Wallace
- The Imaging Technology Group, Beckman Institute for Advanced Science & Technology, University of Illinois at Urbana-Champaign, 405 North Mathews Avenue, Urbana, IL, 61801, USA
| | - Dianwen Zhang
- The Imaging Technology Group, Beckman Institute for Advanced Science & Technology, University of Illinois at Urbana-Champaign, 405 North Mathews Avenue, Urbana, IL, 61801, USA
| | - Guo-Hsuen Lo
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S Mathews Avenue, Urbana, IL, 61801, USA
| | - Noah T Haskin
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S Mathews Avenue, Urbana, IL, 61801, USA
| | - Angad P Mehta
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S Mathews Avenue, Urbana, IL, 61801, USA.
| |
Collapse
|
173
|
Darrington M, Leftwich PT, Holmes NA, Friend LA, Clarke NVE, Worsley SF, Margaritopolous JT, Hogenhout SA, Hutchings MI, Chapman T. Characterisation of the symbionts in the Mediterranean fruit fly gut. Microb Genom 2022; 8. [PMID: 35446250 PMCID: PMC9453069 DOI: 10.1099/mgen.0.000801] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Symbioses between bacteria and their insect hosts can range from loose associations through to obligate interdependence. While fundamental evolutionary insights have been gained from the in-depth study of obligate mutualisms, there is increasing interest in the evolutionary potential of flexible symbiotic associations between hosts and their gut microbiomes. Understanding relationships between microbes and hosts also offers the potential for exploitation for insect control. Here, we investigate the gut microbiome of a global agricultural pest, the Mediterranean fruit fly (Ceratitis capitata). We used 16S rRNA profiling to compare the gut microbiomes of laboratory and wild strains raised on different diets and from flies collected from various natural plant hosts. The results showed that medfly guts harbour a simple microbiome that is primarily determined by the larval diet. However, regardless of the laboratory diet or natural plant host on which flies were raised, Klebsiella spp. dominated medfly microbiomes and were resistant to removal by antibiotic treatment. We sequenced the genome of the dominant putative Klebsiella spp. (‘Medkleb’) isolated from the gut of the Toliman wild-type strain. Genome-wide ANI analysis placed Medkleb within the K. oxytoca / michiganensis group. Species level taxonomy for Medkleb was resolved using a mutli-locus phylogenetic approach - and molecular, sequence and phenotypic analyses all supported its identity as K. michiganensis. Medkleb has a genome size (5825435 bp) which is 1.6 standard deviations smaller than the mean genome size of free-living Klebsiella spp. Medkleb also lacks some genes involved in environmental sensing. Moreover, the Medkleb genome contains at least two recently acquired unique genomic islands as well as genes that encode pectinolytic enzymes capable of degrading plant cell walls. This may be advantageous given that the medfly diet includes unripe fruits containing high proportions of pectin. The results suggest that the medfly harbours a commensal gut bacterium that may have developed a mutualistic association with its host and provide nutritional benefits.
Collapse
Affiliation(s)
- Mike Darrington
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Philip T Leftwich
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Neil A Holmes
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK.,Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Lucy A Friend
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Naomi V E Clarke
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Sarah F Worsley
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - John T Margaritopolous
- Department of Plant Protection, Institute of Industrial and Fodder Crops, Hellenic Agricultural Organization-DEMETER, Volos, Greece
| | - Saskia A Hogenhout
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, NR4 7UH, Norwich, UK
| | - Matthew I Hutchings
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK.,Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Tracey Chapman
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| |
Collapse
|
174
|
Hoang KL, King KC. Symbiont-mediated immune priming in animals through an evolutionary lens. MICROBIOLOGY (READING, ENGLAND) 2022; 168. [PMID: 35442184 DOI: 10.1099/mic.0.001181] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Protective symbionts can defend hosts from parasites through several mechanisms, from direct interference to modulating host immunity, with subsequent effects on host and parasite fitness. While research on symbiont-mediated immune priming (SMIP) has focused on ecological impacts and agriculturally important organisms, the evolutionary implications of SMIP are less clear. Here, we review recent advances made in elucidating the ecological and molecular mechanisms by which SMIP occurs. We draw on current works to discuss the potential for this phenomenon to drive host, parasite, and symbiont evolution. We also suggest approaches that can be used to address questions regarding the impact of immune priming on host-microbe dynamics and population structures. Finally, due to the transient nature of some symbionts involved in SMIP, we discuss what it means to be a protective symbiont from ecological and evolutionary perspectives and how such interactions can affect long-term persistence of the symbiosis.
Collapse
Affiliation(s)
- Kim L Hoang
- Department of Zoology, University of Oxford, 11a Mansfield Road, Oxford, OX1 3SZ, UK
| | - Kayla C King
- Department of Zoology, University of Oxford, 11a Mansfield Road, Oxford, OX1 3SZ, UK
| |
Collapse
|
175
|
Symbiont-Induced Phagosome Changes Rather than Extracellular Discrimination Contribute to the Formation of Social Amoeba Farming Symbiosis. Microbiol Spectr 2022; 10:e0172721. [PMID: 35442071 PMCID: PMC9241765 DOI: 10.1128/spectrum.01727-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Symbiont recognition is essential in many symbiotic relationships, especially for horizontally transferred symbionts. Therefore, how to find the right partner is a crucial challenge in these symbiotic relationships. Previous studies have demonstrated that both animals and plants have evolved various mechanisms to recognize their symbionts. However, studies about the mechanistic basis of establishing protist-bacterium symbioses are scarce. This study investigated this question using a social amoeba Dictyostelium discoideum and their Burkholderia symbionts. We found no evidence that D. discoideum hosts could distinguish different Burkholderia extracellularly in chemotaxis assays. Instead, symbiont-induced phagosome biogenesis contributed to the formation of social amoeba symbiosis, and D. discoideum hosts have a higher phagosome pH when carrying symbiotic Burkholderia than nonsymbiotic Burkholderia. In conclusion, the establishment of social amoeba symbiosis is not linked with extracellular discrimination but related to symbiont-induced phagosome biogenesis, which provides new insights into the mechanisms of endosymbiosis formation between protists and their symbionts. IMPORTANCE Protists are single-celled, extremely diverse eukaryotic microbes. Like animals and plants, they live with bacterial symbionts and have complex relationships. In protist-bacterium symbiosis, while some symbionts are strictly vertically transmitted, others need to reestablish and acquire symbionts from the environment frequently. However, the mechanistic basis of establishing protist-bacterium symbioses is mostly unclear. This study uses a novel amoeba-symbiont system to show that the establishment of this symbiosis is not linked with extracellular discrimination. Instead, symbiont-induced phagosome biogenesis contributes to the formation of social amoeba-bacterium symbiosis. This study increases our understanding of the mechanistic basis of establishing protist-bacterium symbioses.
Collapse
|
176
|
A viral mutualist employs posthatch transmission for vertical and horizontal spread among parasitoid wasps. Proc Natl Acad Sci U S A 2022; 119:e2120048119. [PMID: 35412888 PMCID: PMC9169864 DOI: 10.1073/pnas.2120048119] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mutualistic viruses remain a rarity among known animal–microbe symbioses. Yet, several beneficial viruses have been identified within insects called parasitoid wasps. Most of these viral entities are permanent components of wasp genomes. However, a mutualistic poxvirus found within Diachasmimorpha longicaudata wasps maintains an independent genome and may therefore behave in ways more similar to cellular microbial symbionts. In this study, we discovered unique properties of viral symbiont transmission, including an evolved dependence on parasitoid wasps for virus spread among fruit fly hosts and a distinct mode of faithful virus transmission among parasitoid wasps. These findings demonstrate that certain symbiont transmission pathways have arisen independently across disparate life forms to play pivotal roles in insect biology and evolution. Heritable symbionts display a wide variety of transmission strategies to travel from one insect generation to the next. Parasitoid wasps, one of the most diverse insect groups, maintain several heritable associations with viruses that are beneficial for wasp survival during their development as parasites of other insects. Most of these beneficial viral entities are strictly transmitted through the wasp germline as endogenous viral elements within wasp genomes. However, a beneficial poxvirus inherited by Diachasmimorpha longicaudata wasps, known as Diachasmimorpha longicaudata entomopoxvirus (DlEPV), is not integrated into the wasp genome and therefore may employ different tactics to infect future wasp generations. Here, we demonstrated that transmission of DlEPV is primarily dependent on parasitoid wasps, since viral transmission within fruit fly hosts of the wasps was limited to injection of the virus directly into the larval fly body cavity. Additionally, we uncovered a previously undocumented form of posthatch transmission for a mutualistic virus that entails external acquisition and localization of the virus within the adult wasp venom gland. We showed that this route is extremely effective for vertical and horizontal transmission of the virus within D. longicaudata wasps. Furthermore, the beneficial phenotype provided by DlEPV during parasitism was also transmitted with perfect efficiency, indicating an effective mode of symbiont spread to the advantage of infected wasps. These results provide insight into the transmission of beneficial viruses among insects and indicate that viruses can share features with cellular microbes during their evolutionary transitions into symbionts.
Collapse
|
177
|
Extreme Polyploidy of
Carsonella
, an Organelle-Like Bacterium with a Drastically Reduced Genome. Microbiol Spectr 2022; 10:e0035022. [PMID: 35435757 PMCID: PMC9241722 DOI: 10.1128/spectrum.00350-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mitochondria and plastids are endosymbiotic organelles in eukaryotic cells and are derived from free-living bacteria. They have many highly reduced genomes from which numerous genes have been transferred to the host nucleus.
Collapse
|
178
|
Kumar D, Sharma SR, Adegoke A, Kennedy A, Tuten HC, Li AY, Karim S. Recently Evolved Francisella-Like Endosymbiont Outcompetes an Ancient and Evolutionarily Associated Coxiella-Like Endosymbiont in the Lone Star Tick ( Amblyomma americanum) Linked to the Alpha-Gal Syndrome. Front Cell Infect Microbiol 2022; 12:787209. [PMID: 35493735 PMCID: PMC9039623 DOI: 10.3389/fcimb.2022.787209] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 03/18/2022] [Indexed: 12/04/2022] Open
Abstract
Background Ticks are hematophagous arthropods that transmit various bacterial, viral, and protozoan pathogens of public health significance. The lone star tick (Amblyomma americanum) is an aggressive human-biting tick that transmits bacterial and viral pathogens, and its bites are suspected of eliciting the alpha-gal syndrome, a newly emerged delayed hypersensitivity following consumption of red meat in the United States. While ongoing studies have attempted to investigate the contribution of different tick-inherent factors to the induction of alpha-gal syndrome, an otherwise understudied aspect is the contribution of the tick microbiome and specifically obligate endosymbionts to the establishment of the alpha-gal syndrome in humans. Materials and Methods Here we utilized a high-throughput metagenomic sequencing approach to cataloging the entire microbial communities residing within different developmental stages and tissues of unfed and blood-fed ticks from laboratory-maintained ticks and three new geographical locations in the United States. The Quantitative Insights Into Microbial Ecology (QIIME2) pipeline was used to perform data analysis and taxonomic classification. Moreover, using a SparCC (Sparse Correlations for Compositional data) network construction model, we investigated potential interactions between members of the microbial communities from laboratory-maintained and field-collected ticks. Results Overall, Francisellaceae was the most dominant bacteria identified in the microbiome of both laboratory-raised and field-collected Am. americanum across all tissues and developmental stages. Likewise, microbial diversity was seen to be significantly higher in field-collected ticks compared with laboratory-maintained ticks as seen with a higher number of both Operational Taxonomic Units and measures of species richness. Several potential positive and negative correlations were identified from our network analysis. We observed a strong positive correlation between Francisellaceae, Rickettsiaceae, and Midichloriaceae in both developmental stages and tissues from laboratory-maintained ticks, whereas ovarian tissues had a strong positive correlation of bacteria in the family Xanthobacteraceae and Rhizobiaceae. A negative interaction was observed between Coxiellaceae and Francisellaceae in Illinois, and all the bacteria detected from ticks from Delaware were negatively correlated. Conclusion This study is the first to catalog the microbiome of Am. americanum throughout its developmental stages and different tissue niches and report the potential replacement of Coxiellaceae by Francisellaceae across developmental stages and tissues tested except in ovarian tissues. These unique and significant findings advance our knowledge and open a new avenue of research to further understand the role of tick microbiome in tick-borne diseases and develop a holistic strategy to control alpha-gal syndrome.
Collapse
Affiliation(s)
- Deepak Kumar
- School of Biological, Environmental, and Earth Sciences, University of Southern Mississippi, Hattiesburg, MS, United States
| | - Surendra Raj Sharma
- School of Biological, Environmental, and Earth Sciences, University of Southern Mississippi, Hattiesburg, MS, United States
| | - Abdulsalam Adegoke
- School of Biological, Environmental, and Earth Sciences, University of Southern Mississippi, Hattiesburg, MS, United States
| | - Ashley Kennedy
- Delaware Division of Fish & Wildlife, Delaware Mosquito Control Sect., Newark, DE, United States
| | - Holly C. Tuten
- Illinois Natural History Survey (INHS), University of Illinois Urbana-Champaign, Champaign, IL, United States
| | - Andrew Y. Li
- Invasive Insect Biocontrol & Behavior Laboratory, United States Department of Agriculture, Agricultural Research Service (USDA ARS), Beltsville, MD, United States
| | - Shahid Karim
- School of Biological, Environmental, and Earth Sciences, University of Southern Mississippi, Hattiesburg, MS, United States
- Center for Molecular and Cellular Biosciences, University of Southern Mississippi, Hattiesburg, MS, United States
| |
Collapse
|
179
|
Savio C, Mugo-Kamiri L, Upfold JK. Bugs in Bugs: The Role of Probiotics and Prebiotics in Maintenance of Health in Mass-Reared Insects. INSECTS 2022; 13:376. [PMID: 35447818 PMCID: PMC9025317 DOI: 10.3390/insects13040376] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/07/2022] [Accepted: 04/08/2022] [Indexed: 02/07/2023]
Abstract
Interactions between insects and their microbiota affect insect behaviour and evolution. When specific microorganisms are provided as a dietary supplement, insect reproduction, food conversion and growth are enhanced and health is improved in cases of nutritional deficiency or pathogen infection. The purpose of this review is to provide an overview of insect-microbiota interactions, to review the role of probiotics, their general use in insects reared for food and feed, and their interactions with the host microbiota. We review how bacterial strains have been selected for insect species reared for food and feed and discuss methods used to isolate and measure the effectiveness of a probiotic. We outline future perspectives on probiotic applications in mass-reared insects.
Collapse
Affiliation(s)
- Carlotta Savio
- University of Paris Saclay, INRAE, Micalis, GME, 78350 Jouy en Josas, France;
- Laboratory of Entomology, Wageningen University, 6708 PB Wageningen, The Netherlands
| | - Loretta Mugo-Kamiri
- Institut de Recherche sur la Biologie de l’Insecte, UMR 7261, CNRS-University of Tours, 37200 Tours, France;
- Centre for Ecology and Conservation, Penryn Campus, College of Life and Environmental Science, University of Exeter, Cornwall TR10 9FE, UK
| | - Jennifer K. Upfold
- University of Paris Saclay, INRAE, Micalis, GME, 78350 Jouy en Josas, France;
- Department of Plant and Environmental Science, University of Copenhagen, Thorvaildsensvej 40, 1871 Frederiksberg, Denmark
| |
Collapse
|
180
|
Buysse M, Binetruy F, Leibson R, Gottlieb Y, Duron O. Ecological Contacts and Host Specificity Promote Replacement of Nutritional Endosymbionts in Ticks. MICROBIAL ECOLOGY 2022; 83:776-788. [PMID: 34235554 DOI: 10.1007/s00248-021-01773-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 05/12/2021] [Indexed: 06/13/2023]
Abstract
Symbiosis with vitamin-provisioning microbes is essential for the nutrition of animals with some specialized feeding habits. While coevolution favors the interdependence between symbiotic partners, their associations are not necessarily stable: Recently acquired symbionts can replace ancestral symbionts. In this study, we demonstrate successful replacement by Francisella-like endosymbionts (-LE), a group of B-vitamin-provisioning endosymbionts, across tick communities driven by horizontal transfers. Using a broad collection of Francisella-LE-infected tick species, we determined the diversity of Francisella-LE haplotypes through a multi-locus strain typing approach and further characterized their phylogenetic relationships and their association with biological traits of their tick hosts. The patterns observed showed that Francisella-LE commonly transfer through similar ecological networks and geographic distributions shared among different tick species and, in certain cases, through preferential shuffling across congeneric tick species. Altogether, these findings reveal the importance of geographic, ecological, and phylogenetic proximity in shaping the replacement pattern in which new nutritional symbioses are initiated.
Collapse
Affiliation(s)
- Marie Buysse
- Maladies Infectieuses et Vecteurs : Ecologie, Génétique, Evolution et Contrôle), Centre National de la Recherche Scientifique (CNRS) - Institut pour la Recherche et le Développement (IRD), Université de Montpellier (UM), Montpellier, France.
- CREES (Centre de Recherche en Écologie et Évolution de la Santé), Montpellier, France.
| | - Florian Binetruy
- Maladies Infectieuses et Vecteurs : Ecologie, Génétique, Evolution et Contrôle), Centre National de la Recherche Scientifique (CNRS) - Institut pour la Recherche et le Développement (IRD), Université de Montpellier (UM), Montpellier, France
| | - Raz Leibson
- Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Yuval Gottlieb
- Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel.
| | - Olivier Duron
- Maladies Infectieuses et Vecteurs : Ecologie, Génétique, Evolution et Contrôle), Centre National de la Recherche Scientifique (CNRS) - Institut pour la Recherche et le Développement (IRD), Université de Montpellier (UM), Montpellier, France.
- CREES (Centre de Recherche en Écologie et Évolution de la Santé), Montpellier, France.
| |
Collapse
|
181
|
Zhu DT, Rao Q, Zou C, Ban FX, Zhao JJ, Liu SS. Genomic and transcriptomic analyses reveal metabolic complementarity between whiteflies and their symbionts. INSECT SCIENCE 2022; 29:539-549. [PMID: 34264019 DOI: 10.1111/1744-7917.12943] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 06/10/2021] [Accepted: 06/15/2021] [Indexed: 06/13/2023]
Abstract
Nutritional mutualism between insects and symbiotic bacteria is widespread. The various sap-feeding whitefly species within the Bemisia tabaci complex associate with the same obligate symbiont (Portiera) and multiple secondary symbionts. It is often assumed that some of the symbionts residing in the whiteflies play crucial roles in the nutritional physiology of their insect hosts. Although effort has been made to understand the functions of the whitefly symbionts, the metabolic complementarity offered by these symbionts to the hosts is not yet well understood. We examined two secondary symbionts, Arsenophonus and Wolbachia, in two species of the B. tabaci whitefly complex, provisionally named as Asia II 3 and China 1. Genomic sequence analyses revealed that Arsenophonus and Wolbachia retained genes responsible for the biosynthesis of B vitamins. We then conducted transcriptomic surveys of the bacteriomes in these two species of whiteflies together with that in another species named MED of this whitefly complex previously reported. The analyses indicated that several key genes in B vitamin syntheses from the three whitefly species were identical. Our findings suggest that, similar to another secondary symbiont Hamiltonella, Arsenophonus and Wolbachia function in the nutrient provision of host whiteflies. Although phylogenetically distant species of symbionts are associated with their respective hosts, they have evolved and retained similar functions in biosynthesis of some B vitamins. Such metabolic complementarity between whiteflies and symbionts represents an important feature of their coevolution.
Collapse
Affiliation(s)
- Dan-Tong Zhu
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, 310029, China
| | - Qiong Rao
- School of Agriculture and Food Science, Zhejiang Agriculture and Forestry University, Lin'an, Hangzhou, 311300, China
| | - Chi Zou
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, 310029, China
| | - Fei-Xue Ban
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, 310029, China
| | - Juan-Juan Zhao
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, 310029, China
| | - Shu-Sheng Liu
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, 310029, China
| |
Collapse
|
182
|
Li H, Meier-Kolthoff JP, Hu C, Wang Z, Zhu J, Zheng W, Tian Y, Guo F. Panoramic Insights into Microevolution and Macroevolution of A Prevotella copri-containing Lineage in Primate Guts. GENOMICS, PROTEOMICS & BIOINFORMATICS 2022; 20:334-349. [PMID: 35123073 PMCID: PMC9684210 DOI: 10.1016/j.gpb.2021.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 10/23/2021] [Accepted: 11/01/2021] [Indexed: 01/05/2023]
Abstract
Prevotella copri and its related taxa are widely detected in mammalian gut microbiomes and have been linked with an enterotype in humans. However, their microevolution and macroevolution among hosts are poorly characterized. In this study, extensively collected marker genes and genomes were analyzed to trace their evolutionary history, host specificity, and biogeographic distribution. Investigations based on marker genes and genomes suggest that a P. copri-containing lineage (PCL) harbors diverse species in higher primates. Firstly, P. copri in the human gut consisted of multiple groups exhibiting high genomic divergence and conspicuous but non-strict biogeographic patterns. Most African strains with high genomic divergence from other strains were phylogenetically located at the root of the species, indicating the co-evolutionary history of P. copri and Homo sapiens. Secondly, although long-term co-evolution between PCL and higher primates was revealed, sporadic signals of co-speciation and extensive host jumping of PCL members were suggested among higher primates. Metagenomic and phylogenetic analyses indicated that P. copri and other PCL species found in domesticated mammals had been recently transmitted from humans. Thirdly, strong evidence was found on the extensively horizontal transfer of genes (e.g., genes encoding carbohydrate-active enzymes) among sympatric P. copri groups and PCL species in the same primate host. Our study provides panoramic insights into the combined effects of vertical and horizontal transmission, as well as potential niche adaptation, on the microevolutionary and macroevolutionary history for an enterotype-representative lineage.
Collapse
Affiliation(s)
- Hao Li
- School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Jan P. Meier-Kolthoff
- Department of Bioinformatics, Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, D-38124 Braunschweig, Germany
| | - Canxin Hu
- School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Zhongjie Wang
- School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Jun Zhu
- School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Wei Zheng
- School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Yun Tian
- School of Life Sciences, Xiamen University, Xiamen 361102, China,Fujian Provincial Universities Key Laboratory of Microbial Resource, Xiamen University, Xiamen 361102, China
| | - Feng Guo
- School of Life Sciences, Xiamen University, Xiamen 361102, China,Fujian Provincial Universities Key Laboratory of Microbial Resource, Xiamen University, Xiamen 361102, China,Corresponding author.
| |
Collapse
|
183
|
Moustafa MAM, Mohamed WMA, Lau AC, Chatanga E, Qiu Y, Hayashi N, Naguib D, Sato K, Takano A, Mastuno K, Nonaka N, Taylor D, Kawabata H, Nakao R. Novel symbionts and potential human pathogens excavated from argasid tick microbiomes that are shaped by dual or single symbiosis. Comput Struct Biotechnol J 2022; 20:1979-1992. [PMID: 35521555 PMCID: PMC9062450 DOI: 10.1016/j.csbj.2022.04.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 04/15/2022] [Accepted: 04/15/2022] [Indexed: 11/27/2022] Open
Abstract
Research on vector-associated microbiomes has been expanding due to increasing emergence of vector-borne pathogens and awareness of the importance of symbionts in the vector physiology. However, little is known about microbiomes of argasid (or soft-bodied) ticks due to limited access to specimens. We collected four argasid species (Argas japonicus, Carios vespertilionis, Ornithodoros capensis, and Ornithodoros sawaii) from the nests or burrows of their vertebrate hosts. One laboratory-reared argasid species (Ornithodoros moubata) was also included. Attempts were then made to isolate and characterize potential symbionts/pathogens using arthropod cell lines. Microbial community structure was distinct for each tick species. Coxiella was detected as the predominant symbiont in four tick species where dual symbiosis between Coxiella and Rickettsia or Coxiella and Francisella was observed in C. vespertilionis and O. moubata, respectively. Of note, A. japonicus lacked Coxiella and instead had Occidentia massiliensis and Thiotrichales as alternative symbionts. Our study found strong correlation between tick species and life stage. We successfully isolated Oc. massiliensis and characterized potential pathogens of genera Ehrlichia and Borrelia. The results suggest that there is no consistent trend of microbiomes in relation to tick life stage that fit all tick species and that the final interpretation should be related to the balance between environmental bacterial exposure and endosymbiont ecology. Nevertheless, our findings provide insights on the ecology of tick microbiomes and basis for future investigations on the capacity of argasid ticks to carry novel pathogens with public health importance.
Collapse
|
184
|
Katlav A, Cook JM, Riegler M. Common endosymbionts affect host fitness and sex allocation via egg size provisioning. Proc Biol Sci 2022; 289:20212582. [PMID: 35350856 PMCID: PMC8965393 DOI: 10.1098/rspb.2021.2582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
It is hard to overemphasize the importance of endosymbionts in arthropod biology, ecology and evolution. Some endosymbionts can complement host metabolic function or provide defence against pathogens; others, such as ubiquitous Wolbachia and Cardinium, have evolved strategies to manipulate host reproduction. A common reproductive manipulation strategy is cytoplasmic incompatibility (CI) between differently infected individuals which can result in female mortality or male development of fertilized eggs in haplodiploid hosts. Recently, an additional role of endosymbionts has been recognized in the modification of sex allocation in sexually reproducing haplodiploids. This was theoretically expected due to the maternal inheritance of endosymbionts and natural selection for them to increase infected female production, yet the underlying mechanism remained unknown. Here, we tested whether and how Cardinium and Wolbachia causing different CI types interact to increase female production in a haplodiploid thrips species where sex allocation depends on both maternal condition and egg size provisioning. We found that Cardinium augmented female production by increasing maternal fitness and egg size, thereby boosting fertilization rate and offspring fitness. Wolbachia, in contrast, reduced the beneficial effects of Cardinium. Our results demonstrate different invasion strategies and antagonistic effects of endosymbiotic bacteria on host fitness and evolution of sex allocation.
Collapse
Affiliation(s)
- Alihan Katlav
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, New South Wales 2751, Australia
| | - James M. Cook
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, New South Wales 2751, Australia
| | - Markus Riegler
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, New South Wales 2751, Australia
| |
Collapse
|
185
|
Sun X, Liu BQ, Li CQ, Chen ZB, Xu XR, Luan JB. A novel microRNA regulates cooperation between symbiont and a laterally acquired gene in the regulation of pantothenate biosynthesis within Bemisia tabaci whiteflies. Mol Ecol 2022; 31:2611-2624. [PMID: 35243711 DOI: 10.1111/mec.16416] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 02/22/2022] [Accepted: 02/25/2022] [Indexed: 11/30/2022]
Abstract
Horizontally transferred genes (HTGs) play a key role in animal symbiosis, and some horizontally transferred genes or proteins are highly expressed in specialized host cells (bacteriocytes). However, it is not clear how HTGs are regulated, but miRNAs are prime candidates given their previously demonstrated roles in symbiosis and impacts on the expression of host genes. A horizontally acquired PanBC that is highly expressed in whitefly bacteriocytes can cooperate with an obligate symbiont Portiera for pantothenate production, facilitating whitefly performance and Portiera titer. Here, we found that a whitefly miRNA novel-m0780-5p was up-regulated and its target panBC was down-regulated in Portiera-eliminated whiteflies. This miRNA was located to the cytoplasmic region of whitefly bacteriocytes. A novel-m0780-5p agomir injection reduced the expression of PanBC in whitefly bacteriocytes, while a novel-m0780-5p antagomir injection enhanced PanBC expression. Agomir injection also reduced the pantothenate level, Portiera titer and whitefly performance. Supplementation with pantothenate restored Portiera titer and the fitness of agomir-injected whiteflies. Thus, we demonstrated that a whitefly miRNA regulates panBC-mediated host-symbiont collaboration required for pantothenate synthesis, benefiting the whitefly-Portiera symbiosis. Both panBC and novel-m0780-5p are present in the genomes of six B. tabaci species. The expression of a novel miRNA in multiple B. tabaci species suggests that the miRNA evolved after panBC acquisition, and allowed this gene to be more tightly regulated. Our discovery provides the first account of a HTG being regulated by a miRNA from the host genome, and suggests key roles for interactions between miRNAs and HTGs in the functioning of symbiosis.
Collapse
Affiliation(s)
- Xiang Sun
- Liaoning Key Laboratory of Economic and Applied Entomology, College of Plant Protection, Shenyang Agricultural University, Shenyang, 110866, China
| | - Bing-Qi Liu
- Liaoning Key Laboratory of Economic and Applied Entomology, College of Plant Protection, Shenyang Agricultural University, Shenyang, 110866, China
| | - Chu-Qiao Li
- Liaoning Key Laboratory of Economic and Applied Entomology, College of Plant Protection, Shenyang Agricultural University, Shenyang, 110866, China
| | - Zhan-Bo Chen
- Liaoning Key Laboratory of Economic and Applied Entomology, College of Plant Protection, Shenyang Agricultural University, Shenyang, 110866, China
| | - Xiao-Rui Xu
- Liaoning Key Laboratory of Economic and Applied Entomology, College of Plant Protection, Shenyang Agricultural University, Shenyang, 110866, China
| | - Jun-Bo Luan
- Liaoning Key Laboratory of Economic and Applied Entomology, College of Plant Protection, Shenyang Agricultural University, Shenyang, 110866, China
| |
Collapse
|
186
|
Li NN, Jiang S, Lu KY, Hong JS, Wang YB, Yan JY, Luan JB. Bacteriocyte development is sexually differentiated in Bemesia tabaci. Cell Rep 2022; 38:110455. [PMID: 35235797 DOI: 10.1016/j.celrep.2022.110455] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 12/27/2021] [Accepted: 02/07/2022] [Indexed: 11/16/2022] Open
Abstract
Some symbiotic microbes are restricted to specialized host cells called bacteriocytes. However, the molecular and cellular mechanisms underlying the development of bacteriocytes are largely obscure. We find that maternally inherited bacteriocytes proliferate in adult females but degenerate in adult males of the whitefly Bemisia tabaci. Single-cell transcriptomics and immunohistochemistry reveal that cell division only occurs in the bacteriocytes of adult females, whereas autophagy and apoptosis are induced in the bacteriocytes of adult males. A transcription factor, Adf-1, enriched in bacteriocytes, is highly expressed in female bacteriocytes relative to male bacteriocytes. Silencing Adf-1 reduces the bacteriocyte number and Portiera titer and activates autophagy and apoptosis in females. The differential dynamics of both cell division and death in bacteriocytes and distinct expression of Adf-1 in bacteriocytes between whitefly sexes underlie the sexual differentiation of bacteriocyte development. Our study reveals that insect sex affects the development of bacteriocytes by cellular and molecular remodeling.
Collapse
Affiliation(s)
- Na-Na Li
- Liaoning Key Laboratory of Economic and Applied Entomology, College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
| | - Shan Jiang
- Liaoning Key Laboratory of Economic and Applied Entomology, College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
| | - Kun-Yu Lu
- Liaoning Key Laboratory of Economic and Applied Entomology, College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
| | - Ji-Sheng Hong
- Liaoning Key Laboratory of Economic and Applied Entomology, College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
| | - Yan-Bin Wang
- Liaoning Key Laboratory of Economic and Applied Entomology, College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
| | - Jin-Yang Yan
- Liaoning Key Laboratory of Economic and Applied Entomology, College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
| | - Jun-Bo Luan
- Liaoning Key Laboratory of Economic and Applied Entomology, College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China.
| |
Collapse
|
187
|
Ashraf HJ, Ramos Aguila LC, Akutse KS, Ilyas M, Abbasi A, Li X, Wang L. Comparative microbiome analysis of Diaphorina citri and its associated parasitoids Tamarixia radiata and Diaphorencyrtus aligarhensis reveals Wolbachia as a dominant endosymbiont. Environ Microbiol 2022; 24:1638-1652. [PMID: 35229443 DOI: 10.1111/1462-2920.15948] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 02/14/2022] [Accepted: 02/20/2022] [Indexed: 11/30/2022]
Abstract
Microbiome analysis in a host-parasitoid interaction network was conducted to compare the taxonomic composition of bacterial communities of Diaphornia citri, Tamarixia radiata, and Diaphorencyrtus aligarhensis. The comparative analysis revealed differences in the composition and diversity of the symbiont populations across the host and its associated parasitoids. Proteobacteria was the most dominant phylum, representing 67.80% of the total bacterial community, while Candidatus Profftella armature and Wolbachia were the dominant genera across the host and parasitoids. There were clear differences observed in alpha and beta diversity of microbiota through the host and its associated parasitoids. The function prediction of bacterial communities and Pearson correlation analysis showed that specific bacterial communities displayed positive correlations with the carbohydrate metabolism pathway. Furthermore, when symbiotic bacteria were eliminated using a broad-spectrum antibiotic, tetracycline hydrochloride, the parasitoids' median survival time and longevity were significantly reduced. We confirmed the physiological effects of symbiotic bacteria on the fitness of parasitoids and demonstrated the effect of antibiotics in decreasing the food intake and measurement of amino acids in the hemolymph. This study sheds light on basic information about the mutualism between parasitoids and bacteria, which may be a potential source for biocontrol strategies for citrus psyllid, especially D. citri. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Hafiza Javaria Ashraf
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.,Institute of Applied Ecology and Research Centre for Biodiversity and Eco-Safety, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Luis Carlos Ramos Aguila
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.,Institute of Applied Ecology and Research Centre for Biodiversity and Eco-Safety, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Komivi Senyo Akutse
- Plant Health Theme, International Centre of Insect Physiology and Ecology, P.O. Box 30772-00100, Nairobi, Kenya
| | - Muhammad Ilyas
- Department of Management Science and Engineering, School of Business, Qingdao University, Qingdao, 266071, China
| | - Asim Abbasi
- Department of Zoology, University of Central Punjab, Bahawalpur, 63100, Pakistan
| | - Xiaofang Li
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.,Institute of Applied Ecology and Research Centre for Biodiversity and Eco-Safety, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Liande Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.,Institute of Applied Ecology and Research Centre for Biodiversity and Eco-Safety, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| |
Collapse
|
188
|
Pawar MM, Shivanna B, Prasannakumar MK, Parivallal PB, Suresh K, Meenakshi NH. Spatial distribution and community structure of microbiota associated with cowpea aphid ( Aphis craccivora Koch). 3 Biotech 2022; 12:75. [PMID: 35251878 PMCID: PMC8861231 DOI: 10.1007/s13205-022-03142-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 02/07/2022] [Indexed: 01/01/2023] Open
Abstract
Aphid populations were collected on cowpea, dolichos, redgram and black gram from Belagavi and Udupi locations. The samples were shotgun sequenced using the Illumina NovaSeq 6000 system to understand the spatial distribution and community structure of microbiota (especially bacteria) associated with aphids. In the present study, we identified obligatory nutritional symbiont Buchnera aphidicola and facultative symbionts Rickettsia sp. and Bacteroidetes endosymbiont of Geopemphigus sp. in all the aphid samples studied, although in varied abundance. On the other hand, Serratia symbiotica, Arsenophonus sp. and Acinetobacter sp. were only found in aphids on specific host plants, suggesting that host plants might influence the bacterial community structure. Furthermore, our study revealed that microbiota other than bacteria were highly insignificant in the aphid populations. Additionally, functional annotation of aphid metagenomes identified several pathways and enzymes involved in various physiological and ecological functions. Amino acid and vitamin biosynthesis-related pathways were predominant than carbohydrate metabolism, owing to their feeding habit and nutritional requirement. Chaperones related to stress tolerance such as GroEL and DnaK were identified. Enzymes involved in toxic chemical metabolisms such as glutathione transferase, phosphodiesterases and ABC transferases were observed. These enzymes may confer resistance to pesticides in the aphid populations. Overall, our results support the importance of host plants in structuring bacterial communities in aphids and show the functional roles of symbionts in aphid survival and development. Thus, these findings can be the basis for further detailed investigations and devising better strategies to manage the pests in field conditions. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13205-022-03142-1.
Collapse
Affiliation(s)
- Madhusudan M. Pawar
- grid.413008.e0000 0004 1765 8271Insect Molecular Biology Laboratory, Department of Agricultural Entomology, University of Agricultural Sciences, Bangalore, 560065 India
| | - B. Shivanna
- grid.413008.e0000 0004 1765 8271Insect Molecular Biology Laboratory, Department of Agricultural Entomology, University of Agricultural Sciences, Bangalore, 560065 India
| | - M. K. Prasannakumar
- grid.413008.e0000 0004 1765 8271Plant PathoGenOmic Laboratory, Department of Plant Pathology, University of Agricultural Sciences, Bangalore, 560065 India
| | - P. Buela Parivallal
- grid.413008.e0000 0004 1765 8271Plant PathoGenOmic Laboratory, Department of Plant Pathology, University of Agricultural Sciences, Bangalore, 560065 India
| | - Kiran Suresh
- grid.10388.320000 0001 2240 3300Department of Ecophysiology, University of Bonn, 53115 Bonn, Germany
| | - N. H. Meenakshi
- grid.413008.e0000 0004 1765 8271Insect Molecular Biology Laboratory, Department of Agricultural Entomology, University of Agricultural Sciences, Bangalore, 560065 India
| |
Collapse
|
189
|
Chen Y, Chen H, Yang C, Shiu J, Hoh DZ, Chiang P, Chow WS, Chen CA, Shih T, Lin S, Yang C, Reimer JD, Hirose E, Iskandar BH, Huang H, Schupp PJ, Tan CHJ, Yamashiro H, Liao M, Tang S. Prevalence, complete genome, and metabolic potentials of a phylogenetically novel cyanobacterial symbiont in the coral-killing sponge, Terpios hoshinota. Environ Microbiol 2022; 24:1308-1325. [PMID: 34708512 PMCID: PMC9298193 DOI: 10.1111/1462-2920.15824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 10/13/2021] [Indexed: 11/29/2022]
Abstract
Terpios hoshinota is an aggressive, space-competing sponge that kills various stony corals. Outbreaks of this species have led to intense damage to coral reefs in many locations. Here, the first large-scale 16S rRNA gene survey across three oceans revealed that bacteria related to the taxa Prochloron, Endozoicomonas, SAR116, Ruegeria, and unclassified Proteobacteria were prevalent in T. hoshinota. A Prochloron-related bacterium was the most dominant and prevalent cyanobacterium in T. hoshinota. The complete genome of this uncultivated cyanobacterium and pigment analysis demonstrated that it has phycobiliproteins and lacks chlorophyll b, which is inconsistent with the definition of Prochloron. Furthermore, the cyanobacterium was phylogenetically distinct from Prochloron, strongly suggesting that it should be a sister taxon to Prochloron. Therefore, we proposed this symbiotic cyanobacterium as a novel species under the new genus Candidatus Paraprochloron terpiosi. Comparative genomic analyses revealed that 'Paraprochloron' and Prochloron exhibit distinct genomic features and DNA replication machinery. We also characterized the metabolic potentials of 'Paraprochloron terpiosi' in carbon and nitrogen cycling and propose a model for interactions between it and T. hoshinota. This study builds a foundation for the study of the T. hoshinota microbiome and paves the way for better understanding of ecosystems involving this coral-killing sponge.
Collapse
Affiliation(s)
- Yu‐Hsiang Chen
- Bioinformatics Program, Taiwan International Graduate ProgramNational Taiwan UniversityTaipeiTaiwan
- Bioinformatics ProgramInstitute of Information Science, Taiwan International Graduate Program, Academia SinicaTaipeiTaiwan
- Biodiversity Research Center, Academia SinicaTaipeiTaiwan
| | - Hsing‐Ju Chen
- Biodiversity Research Center, Academia SinicaTaipeiTaiwan
| | - Cheng‐Yu Yang
- Biodiversity Research Center, Academia SinicaTaipeiTaiwan
| | - Jia‐Ho Shiu
- Biodiversity Research Center, Academia SinicaTaipeiTaiwan
| | - Daphne Z. Hoh
- Biodiversity Research Center, Academia SinicaTaipeiTaiwan
- Biodiversity Program, Taiwan International Graduate ProgramAcademia Sinica and National Taiwan Normal UniversityTaipeiTaiwan
- Department of Life ScienceNational Taiwan Normal UniversityTaipeiTaiwan
| | - Pei‐Wen Chiang
- Biodiversity Research Center, Academia SinicaTaipeiTaiwan
| | - Wenhua Savanna Chow
- Biodiversity Research Center, Academia SinicaTaipeiTaiwan
- Biodiversity Program, Taiwan International Graduate ProgramAcademia Sinica and National Taiwan Normal UniversityTaipeiTaiwan
- Department of Life ScienceNational Taiwan Normal UniversityTaipeiTaiwan
| | - Chaolun Allen Chen
- Biodiversity Research Center, Academia SinicaTaipeiTaiwan
- Biodiversity Program, Taiwan International Graduate ProgramAcademia Sinica and National Taiwan Normal UniversityTaipeiTaiwan
| | - Tin‐Han Shih
- Biodiversity Research Center, Academia SinicaTaipeiTaiwan
| | - Szu‐Hsien Lin
- Biodiversity Research Center, Academia SinicaTaipeiTaiwan
| | - Chi‐Ming Yang
- Biodiversity Research Center, Academia SinicaTaipeiTaiwan
| | - James Davis Reimer
- Department of Chemistry, Biology and Marine Science, Faculty of ScienceUniversity of the RyukyusNishihara, OkinawaJapan
- Tropical Biosphere Research CenterUniversity of the RyukyusNishihara, OkinawaJapan
| | - Euichi Hirose
- Department of Chemistry, Biology and Marine Science, Faculty of ScienceUniversity of the RyukyusNishihara, OkinawaJapan
| | - Budhi Hascaryo Iskandar
- Department of Fishery Resources Utilization, Faculty of Fisheries and Marine ScienceBogor Agricultural UniversityBogorIndonesia
| | - Hui Huang
- Tropical Marine Biological Research Station in HainanChinese Academy of SciencesSanyaChina
| | - Peter J. Schupp
- Institute of Chemistry and Biology of the Marine EnvironmentUniversity of OldenburgWilhelmshavenGermany
| | - Chun Hong James Tan
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Kuala NerusTerengganuMalaysia
- Institute of Oceanography and EnvironmentUniversiti Malaysia Terengganu, Kuala NerusTerengganuMalaysia
| | - Hideyuki Yamashiro
- Tropical Biosphere Research CenterUniversity of the RyukyusNishihara, OkinawaJapan
| | - Ming‐Hui Liao
- Biodiversity Research Center, Academia SinicaTaipeiTaiwan
| | - Sen‐Lin Tang
- Bioinformatics ProgramInstitute of Information Science, Taiwan International Graduate Program, Academia SinicaTaipeiTaiwan
- Biodiversity Research Center, Academia SinicaTaipeiTaiwan
- Biodiversity Program, Taiwan International Graduate ProgramAcademia Sinica and National Taiwan Normal UniversityTaipeiTaiwan
- Department of Life ScienceNational Taiwan Normal UniversityTaipeiTaiwan
| |
Collapse
|
190
|
Transitional genomes and nutritional role reversals identified for dual symbionts of adelgids (Aphidoidea: Adelgidae). THE ISME JOURNAL 2022; 16:642-654. [PMID: 34508228 PMCID: PMC8857208 DOI: 10.1038/s41396-021-01102-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 08/11/2021] [Accepted: 08/19/2021] [Indexed: 02/08/2023]
Abstract
Many plant-sap-feeding insects have maintained a single, obligate, nutritional symbiont over the long history of their lineage. This senior symbiont may be joined by one or more junior symbionts that compensate for gaps in function incurred through genome-degradative forces. Adelgids are sap-sucking insects that feed solely on conifer trees and follow complex life cycles in which the diet fluctuates in nutrient levels. Adelgids are unusual in that both senior and junior symbionts appear to have been replaced repeatedly over their evolutionary history. Genomes can provide clues to understanding symbiont replacements, but only the dual symbionts of hemlock adelgids have been examined thus far. Here, we sequence and compare genomes of four additional dual-symbiont pairs in adelgids. We show that these symbionts are nutritional partners originating from diverse bacterial lineages and exhibiting wide variation in general genome characteristics. Although dual symbionts cooperate to produce nutrients, the balance of contributions varies widely across pairs, and total genome contents reflect a range of ages and degrees of degradation. Most symbionts appear to be in transitional states of genome reduction. Our findings support a hypothesis of periodic symbiont turnover driven by fluctuating selection for nutritional provisioning related to gains and losses of complex life cycles in their hosts.
Collapse
|
191
|
Temperature effects on cellular host-microbe interactions explain continent-wide endosymbiont prevalence. Curr Biol 2022; 32:878-888.e8. [PMID: 34919808 PMCID: PMC8891084 DOI: 10.1016/j.cub.2021.11.065] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 11/09/2021] [Accepted: 11/26/2021] [Indexed: 01/03/2023]
Abstract
Endosymbioses influence host physiology, reproduction, and fitness, but these relationships require efficient microbe transmission between host generations to persist. Maternally transmitted Wolbachia are the most common known endosymbionts,1 but their frequencies vary widely within and among host populations for unknown reasons.2,3 Here, we integrate genomic, cellular, and phenotypic analyses with mathematical models to provide an unexpectedly simple explanation for global wMel Wolbachia prevalence in Drosophila melanogaster. Cooling temperatures decrease wMel cellular abundance at a key stage of host oogenesis, producing temperature-dependent variation in maternal transmission that plausibly explains latitudinal clines of wMel frequencies on multiple continents. wMel sampled from a temperate climate targets the germline more efficiently in the cold than a recently differentiated tropical variant (∼2,200 years ago), indicative of rapid wMel adaptation to climate. Genomic analyses identify a very narrow list of wMel alleles-most notably, a derived stop codon in the major Wolbachia surface protein WspB-that underlie thermal sensitivity of cellular Wolbachia abundance and covary with temperature globally. Decoupling temperate wMel and host genomes further reduces transmission in the cold, a pattern that is characteristic of host-microbe co-adaptation to a temperate climate. Complex interactions among Wolbachia, hosts, and the environment (GxGxE) mediate wMel cellular abundance and maternal transmission, implicating temperature as a key determinant of Wolbachia spread and equilibrium frequencies, in conjunction with Wolbachia effects on host fitness and reproduction.4,5 Our results motivate the strategic use of locally selected wMel variants for Wolbachia-based biocontrol efforts, which protect millions of individuals from arboviruses that cause human disease.6.
Collapse
|
192
|
Evolutionary Dynamics of Host Organs for Microbial Symbiosis in Tortoise Leaf Beetles (Coleoptera: Chrysomelidae: Cassidinae). mBio 2022; 13:e0369121. [PMID: 35073753 PMCID: PMC8787481 DOI: 10.1128/mbio.03691-21] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Diverse insects host specific microbial symbionts that play important roles for their growth, survival, and reproduction. They often develop specialized symbiotic organs for harboring the microbial partners. While such intimate associations tend to be stably maintained over evolutionary time, the microbial symbionts may have been lost or replaced occasionally. How symbiont acquisitions, replacements, and losses are linked to the development of the host's symbiotic organs is an important but poorly understood aspect of microbial symbioses. Cassidine leaf beetles are associated with a specific gammaproteobacterial lineage, Stammera, whose reduced genome is streamlined for producing pectin-degrading enzymes to assist the host's digestion of food plants. We investigated the symbiotic system of 24 Japanese cassidine species and found that (i) most species harbored Stammera within paired symbiotic organs located at the foregut-midgut junction, (ii) the host phylogeny was largely congruent with the symbiont phylogeny, indicating stable host-symbiont association over evolutionary time, (iii) meanwhile, the symbiont was not detected in three distinct host lineages, uncovering recurrent losses of the ancient microbial mutualist, (iv) the symbiotic organs were vestigial but present in the symbiont-free lineages, indicating evolutionary persistence of the symbiotic organs even in the absence of the symbiont, and (v) the number of the symbiotic organs was polymorphic among the cassidine species, either two or four, unveiling a dynamic evolution of the host organs for symbiosis. These findings are discussed as to what molecular mechanisms and evolutionary trajectories underpin the recurrent symbiont losses and the morphogenesis of the symbiotic organs in the herbivorous insect group. IMPORTANCE Insects represent the biodiversity of the terrestrial ecosystem, and their prosperity is attributable to their association with symbiotic microorganisms. By sequestering microbial functionality into their bodies, organs, tissues, or cells, diverse insects have successfully exploited otherwise inaccessible ecological niches and resources, including herbivory enabled by utilization of indigestible plant cell wall components. In leaf beetles of the subfamily Cassininae, an ancient symbiont lineage, Stammera, whose genome is extremely reduced and specialized for encoding pectin-degrading enzymes, is hosted in gut-associated symbiotic organs and contributes to the host's food plant digestion. Here, we demonstrate that multiple symbiont losses and recurrent structural switching of the symbiotic organs have occurred in the evolutionary course of cassidine leaf beetles, which sheds light on the evolutionary and developmental dynamics of the insect's symbiotic organs and provides a model system to investigate how microbial symbionts affect the host's development and morphogenesis and vice versa.
Collapse
|
193
|
The 'other' Rickettsiales: an overview of the family ' Candidatus Midichloriaceae'. Appl Environ Microbiol 2022; 88:e0243221. [PMID: 35108076 DOI: 10.1128/aem.02432-21] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The family 'Candidatus Midichloriaceae' constitutes the most diverse but least studied lineage within the important order of intracellular bacteria Rickettsiales. Midichloriaceae endosymbionts are found in many hosts, including terrestrial arthropods, aquatic invertebrates, and protists. Representatives of the family are not documented to be pathogenic, but some are associated with diseased fish or corals. Different genera display a range of unusual features, such as full sets of flagellar genes without visible flagella, or the ability to invade host mitochondria. Since studies on 'Ca. Midichloriaceae' tend to focus on the host, the family is rarely addressed as a unit and we therefore lack a coherent picture of its diversity. Here we provide four new midichloriaceae genomes and we survey molecular and ecological data from the entire family. Features like genome size, ecological context, and host transitions vary considerably even among closely related midichloriaceae, suggesting a high frequency of such shifts, incomplete sampling, or both. Important functional traits involved in energy metabolism, flagella and secretion systems were independently reduced multiple times with no obvious correspondence to host or habitat, corroborating the idea that many features of these 'professional symbionts' are largely independent of host identity. Finally, despite 'Ca. Midichloriaceae' being predominantly studied in ticks, our analyses show that the clade is mainly aquatic, with a few terrestrial offshoots. This highlights the importance of considering aquatic hosts, and protists in particular, when reconstructing the evolution of these endosymbionts and by extension all Rickettsiales. Importance Among endosymbiotic bacterial lineages, few are as intensely studied as Rickettsiales, which include the causative agents of spotted fever, typhus, and anaplasmosis. And yet, an important subgroup called 'Candidatus Midichloriaceae' receives little attention despite accounting for a third of the diversity of Rickettsiales and harbouring a wide range of bacteria with unique features, like the ability to infect mitochondria. Midichloriaceae are found in many hosts, from ticks to corals to unicellular protozoa, and studies on them tend to focus on the host groups. Here, for the first time since the establishment of this clade, we address the genomics, evolution, and ecology of 'Ca. Midichloriaceae' as a whole, highlighting trends and patterns, the remaining gaps in our knowledge, and its importance for the understanding of symbiotic processes in intracellular bacteria.
Collapse
|
194
|
Baker LJ, Reich HG, Kitchen SA, Grace Klinges J, Koch HR, Baums IB, Muller EM, Thurber RV. The coral symbiont Candidatus Aquarickettsia is variably abundant in threatened Caribbean acroporids and transmitted horizontally. THE ISME JOURNAL 2022; 16:400-411. [PMID: 34363004 PMCID: PMC8776821 DOI: 10.1038/s41396-021-01077-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 06/28/2021] [Accepted: 07/22/2021] [Indexed: 02/07/2023]
Abstract
The symbiont "Candidatus Aquarickettsia rohweri" infects a diversity of aquatic hosts. In the threatened Caribbean coral, Acropora cervicornis, Aquarickettsia proliferates in response to increased nutrient exposure, resulting in suppressed growth and increased disease susceptibility and mortality of coral. This study evaluated the extent, as well as the ecology and evolution of Aquarickettsia infecting threatened corals, Ac. cervicornis, and Ac. palmata and their hybrid ("Ac. prolifera"). Aquarickettsia was found in all acroporids, with coral host and geographic location impacting the infection magnitude. Phylogenomic and genome-wide single-nucleotide variant analysis of Aquarickettsia found phylogenetic clustering by geographic region, not by coral taxon. Analysis of Aquarickettsia fixation indices suggests multiple sequential infections of the same coral colony are unlikely. Furthermore, relative to other Rickettsiales species, Aquarickettsia is undergoing positive selection, with Florida populations experiencing greater positive selection relative to other Caribbean locations. This may be due in part to Aquarickettsia proliferating in response to greater nutrient stress in Florida, as indicated by greater in situ replication rates in these corals. Aquarickettsia was not found to significantly codiversify with either the coral animal or the coral's algal symbiont (Symbiodinium "fitti"). Quantitative PCR analysis showed that gametes, larvae, recruits, and juveniles from susceptible, captive-reared coral genets were not infected with Aquarickettsia. Thus, horizontal transmission of Aquarickettsia via coral mucocytes or an unidentified host is more likely. The prevalence of Aquarickettsia in Ac. cervicornis and its high abundance in the Florida coral population suggests that coral disease mitigation efforts focus on preventing early infection via horizontal transmission.
Collapse
Affiliation(s)
- Lydia J Baker
- Department of Microbiology, Oregon State University, Corvallis, OR, USA.
| | - Hannah G Reich
- Department of Biology, The Pennsylvania State University, University Park, PA, USA
| | - Sheila A Kitchen
- Division of Biology and Biological Engineering, California Institute of Science and Technology, Pasadena, CA, USA
| | - J Grace Klinges
- Department of Microbiology, Oregon State University, Corvallis, OR, USA
| | - Hanna R Koch
- Coral Restoration Program, Mote Marine Laboratory, Summerland Key, FL, USA
| | - Iliana B Baums
- Department of Biology, The Pennsylvania State University, University Park, PA, USA
| | - Erinn M Muller
- Coral Restoration Program, Mote Marine Laboratory, Summerland Key, FL, USA
| | | |
Collapse
|
195
|
Konecka E. Fifty shades of bacterial endosymbionts and some of them still remain a mystery: Wolbachia and Cardinium in oribatid mites (Acari: Oribatida). J Invertebr Pathol 2022; 189:107733. [DOI: 10.1016/j.jip.2022.107733] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 02/11/2022] [Accepted: 02/15/2022] [Indexed: 11/28/2022]
|
196
|
Wu W, Shan HW, Li JM, Zhang CX, Chen JP, Mao Q. Roles of Bacterial Symbionts in Transmission of Plant Virus by Hemipteran Vectors. Front Microbiol 2022; 13:805352. [PMID: 35154053 PMCID: PMC8829006 DOI: 10.3389/fmicb.2022.805352] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 01/03/2022] [Indexed: 11/13/2022] Open
Abstract
The majority of plant viruses are transmitted by hemipteran insects. Bacterial symbionts in hemipteran hosts have a significant impact on the host life, physiology and ecology. Recently, the involvement of bacterial symbionts in hemipteran vector-virus and vector-plant interactions has been documented. Thus, the exploitation and manipulation of bacterial symbionts have great potential for plant viral disease control. Herein, we review the studies performed on the impact of symbiotic bacteria on plant virus transmission, including insect-bacterial symbiont associations, the role of these bacterial symbionts in viral acquisition, stability and release during viral circulation in insect bodies, and in viral vertical transmission. Besides, we prospect further studies aimed to understand tripartite interactions of the virus-symbiotic microorganisms-insect vector.
Collapse
|
197
|
Limited Evidence for Microbial Transmission in the Phylosymbiosis between Hawaiian Spiders and Their Microbiota. mSystems 2022; 7:e0110421. [PMID: 35076268 PMCID: PMC8788326 DOI: 10.1128/msystems.01104-21] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The degree of similarity between the microbiotas of host species often mirrors the phylogenetic proximity of the hosts. This pattern, referred to as phylosymbiosis, is widespread in animals and plants. While phylosymbiosis was initially interpreted as the signal of symbiotic transmission and coevolution between microbes and their hosts, it is now recognized that similar patterns can emerge even if the microbes are environmentally acquired. Distinguishing between these two scenarios, however, remains challenging. We recently developed HOME (host-microbiota evolution), a cophylogenetic model designed to detect vertically transmitted microbes and host switches from amplicon sequencing data. Here, we applied HOME to the microbiotas of Hawaiian spiders of the genus Ariamnes, which experienced a recent radiation on the archipelago. We demonstrate that although Hawaiian Ariamnes spiders display a significant phylosymbiosis, there is little evidence of microbial vertical transmission. Next, we performed simulations to validate the absence of transmitted microbes in Ariamnes spiders. We show that this is not due to a lack of detection power because of the low number of segregating sites or an effect of phylogenetically driven or geographically driven host switches. Ariamnes spiders and their associated microbes therefore provide an example of a pattern of phylosymbiosis likely emerging from processes other than vertical transmission. IMPORTANCE How host-associated microbiotas assemble and evolve is one of the outstanding questions of microbial ecology. Studies aiming at answering this question have repeatedly found a pattern of “phylosymbiosis,” that is, a phylogenetic signal in the composition of host-associated microbiotas. While phylosymbiosis was often interpreted as evidence for vertical transmission and host-microbiota coevolution, simulations have now shown that it can emerge from other processes, including host filtering of environmentally acquired microbes. However, distinguishing the processes driving phylosymbiosis in nature remains challenging. We recently developed a cophylogenetic method that can detect vertical transmission. Here, we applied this method to the microbiotas of recently diverged spiders from the Hawaiian archipelago, which display a clear phylosymbiosis pattern. We found that none of the bacterial operational taxonomic units is vertically transmitted. We show with simulations that this result is not due to methodological artifacts. Thus, we provide a striking empirical example of phylosymbiosis emerging from processes other than vertical transmission.
Collapse
|
198
|
Uthanumallian K, Iha C, Repetti SI, Chan CX, Bhattacharya D, Duchene S, Verbruggen H. Tightly Constrained Genome Reduction and Relaxation of Purifying Selection during Secondary Plastid Endosymbiosis. Mol Biol Evol 2022; 39:msab295. [PMID: 34613411 PMCID: PMC8763093 DOI: 10.1093/molbev/msab295] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Endosymbiosis, the establishment of a former free-living prokaryotic or eukaryotic cell as an organelle inside a host cell, can dramatically alter the genomic architecture of the endosymbiont. Plastids or chloroplasts, the light-harvesting organelle of photosynthetic eukaryotes, are excellent models to study this phenomenon because plastid origin has occurred multiple times in evolution. Here, we investigate the genomic signature of molecular processes acting through secondary plastid endosymbiosis-the origination of a new plastid from a free-living eukaryotic alga. We used phylogenetic comparative methods to study gene loss and changes in selective regimes on plastid genomes, focusing on green algae that have given rise to three independent lineages with secondary plastids (euglenophytes, chlorarachniophytes, and Lepidodinium). Our results show an overall increase in gene loss associated with secondary endosymbiosis, but this loss is tightly constrained by the retention of genes essential for plastid function. The data show that secondary plastids have experienced temporary relaxation of purifying selection during secondary endosymbiosis. However, this process is tightly constrained, with selection relaxed only relative to the background in primary plastids. Purifying selection remains strong in absolute terms even during the endosymbiosis events. Selection intensity rebounds to pre-endosymbiosis levels following endosymbiosis events, demonstrating the changes in selection efficiency during different origin phases of secondary plastids. Independent endosymbiosis events in the euglenophytes, chlorarachniophytes, and Lepidodinium differ in their degree of relaxation of selection, highlighting the different evolutionary contexts of these events. This study reveals the selection-drift interplay during secondary endosymbiosis and evolutionary parallels during organellogenesis.
Collapse
Affiliation(s)
| | - Cintia Iha
- School of BioSciences, University of Melbourne, Melbourne, VIC, Australia
| | - Sonja I Repetti
- School of BioSciences, University of Melbourne, Melbourne, VIC, Australia
| | - Cheong Xin Chan
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | | | - Sebastian Duchene
- Deptartment of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Heroen Verbruggen
- School of BioSciences, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
199
|
Nakabachi A, Inoue H, Hirose Y. Microbiome analyses of 12 psyllid species of the family Psyllidae identified various bacteria including Fukatsuia and Serratia symbiotica, known as secondary symbionts of aphids. BMC Microbiol 2022; 22:15. [PMID: 34996376 PMCID: PMC8740488 DOI: 10.1186/s12866-021-02429-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 12/20/2021] [Indexed: 01/04/2023] Open
Abstract
Background Psyllids (Hemiptera: Psylloidea) comprise a group of plant sap-sucking insects that includes important agricultural pests. They have close associations not only with plant pathogens, but also with various microbes, including obligate mutualists and facultative symbionts. Recent studies are revealing that interactions among such bacterial populations are important for psyllid biology and host plant pathology. In the present study, to obtain further insight into the ecological and evolutionary behaviors of bacteria in Psylloidea, we analyzed the microbiomes of 12 psyllid species belonging to the family Psyllidae (11 from Psyllinae and one from Macrocorsinae), using high-throughput amplicon sequencing of the 16S rRNA gene. Results The analysis showed that all 12 psyllids have the primary symbiont, Candidatus Carsonella ruddii (Gammaproteobacteria: Oceanospirillales), and at least one secondary symbiont. The majority of the secondary symbionts were gammaproteobacteria, especially those of the family Enterobacteriaceae (order: Enterobacteriales). Among them, symbionts belonging to “endosymbionts3”, which is a genus-level monophyletic group assigned by the SILVA rRNA database, were the most prevalent and were found in 9 of 11 Psyllinae species. Ca. Fukatsuia symbiotica and Serratia symbiotica, which were recognized only as secondary symbionts of aphids, were also identified. In addition to other Enterobacteriaceae bacteria, including Arsenophonus, Sodalis, and “endosymbionts2”, which is another genus-level clade, Pseudomonas (Pseudomonadales: Pseudomonadaceae) and Diplorickettsia (Diplorickettsiales: Diplorickettsiaceae) were identified. Regarding Alphaproteobacteria, the potential plant pathogen Ca. Liberibacter europaeus (Rhizobiales: Rhizobiaceae) was detected for the first time in Anomoneura mori (Psyllinae), a mulberry pest. Wolbachia (Rickettsiales: Anaplasmataceae) and Rickettsia (Rickettsiales: Rickettsiaceae), plausible host reproduction manipulators that are potential tools to control pest insects, were also detected. Conclusions The present study identified various bacterial symbionts including previously unexpected lineages in psyllids, suggesting considerable interspecific transfer of arthropod symbionts. The findings provide deeper insights into the evolution of interactions among insects, bacteria, and plants, which may be exploited to facilitate the control of pest psyllids in the future. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-021-02429-2.
Collapse
Affiliation(s)
- Atsushi Nakabachi
- Electronics-Inspired Interdisciplinary Research Institute (EIIRIS), Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku, Toyohashi, Aichi, 441-8580, Japan. .,Department of Applied Chemistry and Life Sciences, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku, Toyohashi, Aichi, 441-8580, Japan.
| | - Hiromitsu Inoue
- Institute for Plant Protection, National Agriculture and Food Research Organization, Higashihiroshima, Hiroshima, 739-2494, Japan
| | - Yuu Hirose
- Department of Applied Chemistry and Life Sciences, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku, Toyohashi, Aichi, 441-8580, Japan
| |
Collapse
|
200
|
Development of common leaf-footed bug pests depends on the presence and identity of their environmentally-acquired symbionts. Appl Environ Microbiol 2022; 88:e0177821. [PMID: 34986009 DOI: 10.1128/aem.01778-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Many beneficial symbioses between bacteria and their terrestrial arthropod hosts are vertically transmitted from mother to offspring, ensuring the progeny acquire necessary partners. Unusually, in several families of coreoid and lygeoid bugs (Hemiptera), nymphs must instead ingest the beneficial symbiont, Burkholderia (sensu lato), from the environment early in development. We studied the effects of Burkholderia on development of two species of leaf-footed bug (Coreidae) in the genus Leptoglossus, L. zonatus and L. phyllopus. We found no evidence for vertical transmission of the symbiont, but found stark differences in performance between symbiotic and aposymbiotic individuals. Symbiotic nymphs grew more rapidly, were approximately four times more likely to survive to adulthood than aposymbiotic bugs, and were two times larger. These findings suggest that Burkholderia is an obligate symbiont for Leptoglossus species. We also tested for variation in fitness effects conferred by four symbiont isolates representing different species within Burkholderia's insect-associated Stinkbug Beneficial and Environmental (SBE) clade. While three isolates conferred similar benefits to hosts, nymphs associated with the fourth isolate grew more slowly and weighed significantly less as adults. The effects of the four isolates were similar for both Leptoglossus species. This work indicates that both Burkholderia acquisition and isolate identity play critical roles in the growth and development of Leptoglossus. Importance Leptoglossus zonatus and L. phyllopus are important polyphagous pests and both species have been well-studied, but generally without regard to their dependance on a bacterial symbiont. Our results indicate that the central role of Burkholderia in the biology of these insects, as well as in other leaf-footed bugs, should be considered in future studies of coreid life history, ecology and pest management. Our work suggests acquisition of Burkholderia is critical for the growth and development of Leptoglossus species. Further, we found that there was variation in performance outcomes according to symbiont identity, even among members of the Stinkbug Beneficial and Environmental clade. This suggests that although environmental acquisition of a symbiont can provide extraordinary flexibility in partner associations, it also carries a risk if the partner is sub-optimal.
Collapse
|