151
|
Serre A, Snyder EY, Mallet J, Buchet D. Overexpression of basic helix-loop-helix transcription factors enhances neuronal differentiation of fetal human neural progenitor cells in various ways. Stem Cells Dev 2011; 21:539-53. [PMID: 21561385 DOI: 10.1089/scd.2011.0079] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
In a perspective of regenerative medicine, multipotent human neural progenitor cells (hNPCs) offer a therapeutic advantage over pluripotent stem cells in that they are already invariantly "neurally committed" and lack tumorigenicity. However, some of their intrinsic properties, such as slow differentiation and uncontrolled multipotency, remain among the obstacles to their routine use for transplantation. Although rodent NPCs have been genetically modified in vitro to overcome some of these limitations, the translation of this strategy to human cells remains in its early stages. In the present study, we compare the actions of 4 basic helix-loop-helix transcription factors on the proliferation, specification, and terminal differentiation of hNPCs isolated from the fetal dorsal telencephalon. Consistent with their proneural activity, Ngn1, Ngn2, Ngn3, and Mash1 prompted rapid commitment of the cells. The Ngns induced a decrease in proliferation, whereas Mash1 maintained committed progenitors in a proliferative state. As opposed to Ngn1 and Ngn3, which had no effect on glial differentiation, Ngn2 induced an increase in astrocytes in addition to neurons, whereas Mash1 led to both neuronal and oligodendroglial specification. GABAergic, cholinergic, and motor neuron differentiations were considerably increased by overexpression of Ngn2 and, to a lesser extent, of Ngn3 and Mash1. Thus, we provide evidence that hNPCs can be efficiently, rapidly, and safely expanded in vitro as well as rapidly differentiated toward mature neural (typically neuronal) lineages by the overexpression of select proneural genes.
Collapse
Affiliation(s)
- Angéline Serre
- Centre de Recherche de l'Institut du Cerveau et de la Moelle Epinière, Université Pierre et Marie Curie-Paris 6, UMR-S975, Paris, France
| | | | | | | |
Collapse
|
152
|
Transcription factor Lhx2 is necessary and sufficient to suppress astrogliogenesis and promote neurogenesis in the developing hippocampus. Proc Natl Acad Sci U S A 2011; 108:E265-74. [PMID: 21690374 DOI: 10.1073/pnas.1101109108] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The sequential production of neurons and astrocytes from neuroepithelial precursors is a fundamental feature of central nervous system development. We report that LIM-homeodomain (LIM-HD) transcription factor Lhx2 regulates this transition in the developing hippocampus. Disrupting Lhx2 function in the embryonic hippocampus by in utero electroporation and in organotypic slice culture caused the premature production of astrocytes at stages when neurons are normally generated. Lhx2 function is therefore necessary to suppress astrogliogenesis during the neurogenic period. Furthermore, Lhx2 overexpression was sufficient to suppress astrogliogenesis and prolong the neurogenic period. We provide evidence that Lhx2 overexpression can counteract the instructive astrogliogenic effect of Notch activation. Lhx2 overexpression was also able to override and suppress the activation of the GFAP promoter by Nfia, a Notch-regulated transcription factor that is required for gliogenesis. Thus, Lhx2 appears to act as a "brake" on Notch/Nfia-mediated astrogliogenesis. This critical role for Lhx2 is spatially restricted to the hippocampus, because loss of Lhx2 function in the neocortex did not result in premature astrogliogenesis at the expense of neurogenesis. Our results therefore place Lhx2 as a central regulator of the neuron-glia cell fate decision in the hippocampus and reveal a striking regional specificity of this fundamental function within the dorsal telencephalon.
Collapse
|
153
|
Luu B, Ellisor D, Zervas M. The lineage contribution and role of Gbx2 in spinal cord development. PLoS One 2011; 6:e20940. [PMID: 21698205 PMCID: PMC3116860 DOI: 10.1371/journal.pone.0020940] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2010] [Accepted: 05/16/2011] [Indexed: 12/30/2022] Open
Abstract
Background Forging a relationship between progenitors with dynamically changing gene expression and their terminal fate is instructive for understanding the logic of how cell-type diversity is established. The mouse spinal cord is an ideal system to study these mechanisms in the context of developmental genetics and nervous system development. Here we focus on the Gastrulation homeobox 2 (Gbx2) transcription factor, which has not been explored in spinal cord development. Methodology/Principal Findings We determined the molecular identity of Gbx2-expressing spinal cord progenitors. We also utilized genetic inducible fate mapping to mark the Gbx2 lineage at different embryonic stages in vivo in mouse. Collectively, we uncover cell behaviors, cytoarchitectonic organization, and the terminal cell fate of the Gbx2 lineage. Notably, both ventral motor neurons and interneurons are derived from the Gbx2 lineage, but only during a short developmental period. Short-term fate mapping during mouse spinal cord development shows that Gbx2 expression is transient and is extinguished ventrally in a rostral to caudal gradient. Concomitantly, a permanent lineage restriction boundary ensures that spinal cord neurons derived from the Gbx2 lineage are confined to a dorsal compartment that is maintained in the adult and that this lineage generates inhibitory interneurons of the spinal cord. Using lineage tracing and molecular markers to follow Gbx2-mutant cells, we show that the loss of Gbx2 globally affects spinal cord patterning including the organization of interneuron progenitors. Finally, long-term lineage analysis reveals that the presence and timing of Gbx2 expression in interneuron progenitors results in the differential contribution to subtypes of terminally differentiated interneurons in the adult spinal cord. Conclusions/Significance We illustrate the complex cellular nature of Gbx2 expression and lineage contribution to the mouse spinal cord. In a broader context, this study provides a direct link between spinal cord progenitors undergoing dynamic changes in molecular identity and terminal neuronal fate.
Collapse
Affiliation(s)
- Brian Luu
- Division of Biology and Medicine, Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island, United States of America
| | - Debra Ellisor
- Division of Biology and Medicine, Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island, United States of America
| | - Mark Zervas
- Division of Biology and Medicine, Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island, United States of America
- * E-mail:
| |
Collapse
|
154
|
Isl1 is required for multiple aspects of motor neuron development. Mol Cell Neurosci 2011; 47:215-22. [PMID: 21569850 DOI: 10.1016/j.mcn.2011.04.007] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2011] [Accepted: 04/26/2011] [Indexed: 12/23/2022] Open
Abstract
The LIM homeodomain transcription factor Islet1 (Isl1) is expressed in multiple organs and plays essential roles during embryogenesis. Isl1 is required for the survival and specification of spinal cord motor neurons. Due to early embryonic lethality and loss of motor neurons, the role of Isl1 in other aspects of motor neuron development remains unclear. In this study, we generated Isl1 mutant mouse lines expressing graded doses of Isl1. Our study has revealed essential roles of Isl1 in multiple aspects of motor neuron development, including motor neuron cell body localization, motor column formation and axon growth. In addition, Isl1 is required for survival of cranial ganglia neurons.
Collapse
|
155
|
Li S, Misra K, Xiang M. A Cre transgenic line for studying V2 neuronal lineages and functions in the spinal cord. Genesis 2011; 48:667-72. [PMID: 20806357 DOI: 10.1002/dvg.20669] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
During spinal neurogenesis, the p2 progenitor domain generates at least two subclasses of interneurons named V2a and V2b, which are components of the locomotor central pattern generator. The winged-helix/forkhead transcription factor Foxn4 is expressed in a subset of p2 progenitors and required for specifying V2b interneurons. Here, we report the generation of a Foxn4-Cre BAC transgenic mouse line that drives Cre recombinase expression mimicking endogenous Foxn4 expression pattern in the developing spinal cord. We used this transgenic line to map neuronal lineages derived from Foxn4-expressing progenitors and found that they gave rise to all neurons of the V2a, V2b, and the newly identified V2c lineages. These data suggest that Foxn4 may be transiently expressed by all p2 progenitors and that the Foxn4-Cre line may serve as a useful genetic tool not only for lineage analysis but also for functional studies of genes and neurons involved in locomotion.
Collapse
Affiliation(s)
- Shengguo Li
- Center for Advanced Biotechnology and Medicine and Department of Pediatrics, UMDNJ-Robert Wood Johnson Medical School, Piscataway, New Jersey, USA
| | | | | |
Collapse
|
156
|
|
157
|
Silva SD, Wang F. Retrograde neural circuit specification by target-derived neurotrophins and growth factors. Curr Opin Neurobiol 2011; 21:61-7. [PMID: 20810276 PMCID: PMC3008758 DOI: 10.1016/j.conb.2010.07.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Revised: 07/15/2010] [Accepted: 07/21/2010] [Indexed: 01/13/2023]
Abstract
Neural circuit assembly during development involves a series of highly regulated steps. While genetically pre-determined programs play key roles in the early steps including neurogenesis, migration, and initial growth and guidance of axons; increasing evidence indicates that as the axons reach their targets, the late steps of neuronal differentiation and connectivity formation may be influenced or even specified by target-derived signals. Here we attempt to provide a brief synthesized review on the roles of retrograde neurotrophin and growth factor signaling in regulating the final stages of neural circuit specificity such as axonal projection, dendritic patterning, neurotransmitter phenotype acquisition, and synapse formation.
Collapse
Affiliation(s)
- Susana da Silva
- Department of Cell Biology, Duke University Medical Center, Box 3709, Durham, NC 27710
- PhD Program in Experimental Biology and Biomedicine, Center for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal
| | - Fan Wang
- Department of Cell Biology, Duke University Medical Center, Box 3709, Durham, NC 27710
| |
Collapse
|
158
|
Zhao H, Maruyama T, Hattori Y, Sugo N, Takamatsu H, Kumanogoh A, Shirasaki R, Yamamoto N. A molecular mechanism that regulates medially oriented axonal growth of upper layer neurons in the developing neocortex. J Comp Neurol 2011; 519:834-48. [DOI: 10.1002/cne.22536] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
159
|
Zhang Y, Wang J, Chen G, Fan D, Deng M. Inhibition of Sirt1 promotes neural progenitors toward motoneuron differentiation from human embryonic stem cells. Biochem Biophys Res Commun 2010; 404:610-4. [PMID: 21144831 DOI: 10.1016/j.bbrc.2010.12.014] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2010] [Accepted: 12/02/2010] [Indexed: 12/14/2022]
Abstract
Several protocols direct human embryonic stem cells (hESCs) toward differentiation into functional motoneurons, but the efficiency of motoneuron generation varies based on the human ESC line used. We aimed to develop a novel protocol to increase the formation of motoneurons from human ESCs. In this study, we tested a nuclear histone deacetylase protein, Sirt1, to promote neural precursor cell (NPC) development during differentiation of human ESCs into motoneurons. A specific inhibitor of Sirt1, nicotinamide, dramatically increased motoneuron formation. We found that about 60% of the cells from the total NPCs expressed HB9 and βIII-tubulin, commonly used motoneuronal markers found in neurons derived from ESCs following nicotinamide treatment. Motoneurons derived from ESC expressed choline acetyltransferase (ChAT), a positive marker of mature motoneuron. Moreover, we also examined the transcript levels of Mash1, Ngn2, and HB9 mRNA in the differentiated NPCs treated with the Sirt1 activator resveratrol (50 μM) or inhibitor nicotinamide (100 μM). The levels of Mash1, Ngn2, and HB9 mRNA were significantly increased after nicotinamide treatment compared with control groups, which used the traditional protocol. These results suggested that increasing Mash1 and Ngn2 levels by inhibiting Sirt1 could elevate HB9 expression, which promotes motoneuron differentiation. This study provides an alternative method for the production of transplantable motoneurons, a key requirement in the development of hESC-based cell therapy in motoneuron disease.
Collapse
Affiliation(s)
- Yun Zhang
- Department of Neurology, Peking University Third Hospital, Haidian District, Beijing 100191, China
| | | | | | | | | |
Collapse
|
160
|
Receptor tyrosine phosphatase PTPγ is a regulator of spinal cord neurogenesis. Mol Cell Neurosci 2010; 46:469-82. [PMID: 21112398 PMCID: PMC3038263 DOI: 10.1016/j.mcn.2010.11.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2010] [Revised: 10/12/2010] [Accepted: 11/17/2010] [Indexed: 12/12/2022] Open
Abstract
During spinal cord development the proliferation, migration and survival of neural progenitors and precursors is tightly controlled, generating the fine spatial organisation of the cord. In order to understand better the control of these processes, we have examined the function of an orphan receptor protein tyrosine phosphatase (RPTP) PTPγ, in the developing chick spinal cord. Widespread expression of PTPγ occurs post-embryonic day 3 in the early cord and is consistent with a potential role in either neurogenesis or neuronal maturation. Using gain-of-function and loss-of-function approaches in ovo, we show that PTPγ perturbation significantly reduces progenitor proliferation rates and neuronal precursor numbers, resulting in hypoplasia of the neuroepithelium. PTPγ gain-of-function causes widespread suppression of Wnt/β-catenin-driven TCF signalling. One potential target of PTPγ may therefore be β-catenin itself, since PTPγ can dephosphorylate it in vitro, but alternative targets are also likely. PTPγ loss-of-function is not sufficient to alter TCF signalling. Instead, loss-of-function leads to increased apoptosis and defective cell–cell adhesion in progenitors and precursors. Furthermore, motor neuron precursor migration is specifically defective. PTPγ therefore regulates neurogenesis during a window of spinal cord development, with molecular targets most likely related to Wnt/β-catenin signalling, cell survival and cell adhesion.
Collapse
|
161
|
Sen S, Hartmann B, Reichert H, Rodrigues V. Expression and function of the empty spiracles gene in olfactory sense organ development of Drosophila melanogaster. Development 2010; 137:3687-95. [PMID: 20940227 DOI: 10.1242/dev.052407] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In Drosophila, the cephalic gap gene empty spiracles plays key roles in embryonic patterning of the peripheral and central nervous system. During postembryonic development, it is involved in the development of central olfactory circuitry in the antennal lobe of the adult. However, its possible role in the postembryonic development of peripheral olfactory sense organs has not been investigated. Here, we show that empty spiracles acts in a subset of precursors that generate the olfactory sense organs of the adult antenna. All empty spiracles-expressing precursor cells co-express the proneural gene amos and the early patterning gene lozenge. Moreover, the expression of empty spiracles in these precursor cells is dependent on both amos and lozenge. Functional analysis reveals two distinct roles of empty spiracles in the development of olfactory sense organs. Genetic interaction studies in a lozenge-sensitized background uncover a requirement of empty spiracles in the formation of trichoid and basiconic olfactory sensilla. MARCM-based clonal mutant analysis reveals an additional role during axonal targeting of olfactory sensory neurons to glomeruli within the antennal lobe. Our findings on empty spiracles action in olfactory sense organ development complement previous studies that demonstrate its requirement in olfactory interneurons and, taken together with studies on the murine homologs of empty spiracles, suggest that conserved molecular genetic programs might be responsible for the formation of both peripheral and central olfactory circuitry in insects and mammals.
Collapse
Affiliation(s)
- Sonia Sen
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bellary Road, Bangalore 560065, India
| | | | | | | |
Collapse
|
162
|
Holz A, Kollmus H, Ryge J, Niederkofler V, Dias J, Ericson J, Stoeckli ET, Kiehn O, Arnold HH. The transcription factors Nkx2.2 and Nkx2.9 play a novel role in floor plate development and commissural axon guidance. Development 2010; 137:4249-60. [PMID: 21068056 DOI: 10.1242/dev.053819] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The transcription factors Nkx2.2 and Nkx2.9 have been proposed to execute partially overlapping functions in neuronal patterning of the ventral spinal cord in response to graded sonic hedgehog signaling. The present report shows that in mice lacking both Nkx2 proteins, the presumptive progenitor cells in the p3 domain of the neural tube convert to motor neurons (MN) and never acquire the fate of V3 interneurons. This result supports the concept that Nkx2 transcription factors are required to establish V3 progenitor cells by repressing the early MN lineage-specific program, including genes like Olig2. Nkx2.2 and Nkx2.9 proteins also perform an additional, hitherto unknown, function in the development of non-neuronal floor plate cells. Here, we demonstrate that loss of both Nkx2 genes results in an anatomically smaller and functionally impaired floor plate causing severe defects in axonal pathfinding of commissural neurons. Defective floor plates were also seen in Nkx2.2(+/-);Nkx2.9(-/-) compound mutants and even in single Nkx2.9(-/-) mutants, suggesting that floor plate development is sensitive to dose and/or timing of Nkx2 expression. Interestingly, adult Nkx2.2(+/-);Nkx2.9(-/-) compound-mutant mice exhibit abnormal locomotion, including a permanent or intermittent hopping gait. Drug-induced locomotor-like activity in spinal cords of mutant neonates is also affected, demonstrating increased variability of left-right and flexor-extensor coordination. Our data argue that the Nkx2.2 and Nkx2.9 transcription factors contribute crucially to the formation of neuronal networks that function as central pattern generators for locomotor activity in the spinal cord. As both factors affect floor plate development, control of commissural axon trajectories might be the underlying mechanism.
Collapse
Affiliation(s)
- Andreas Holz
- Cell and Molecular Biology, University of Braunschweig, Spielmannstrasse 7, 38106 Braunschweig, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
163
|
Abstract
Astrocytes are the most abundant cell type in the mammalian brain. Interest in astrocyte function has increased dramatically in recent years because of their newly discovered roles in synapse formation, maturation, efficacy, and plasticity. However, our understanding of astrocyte development has lagged behind that of other brain cell types. We do not know the molecular mechanism by which astrocytes are specified, how they grow to assume their complex morphologies, and how they interact with and sculpt developing neuronal circuits. Recent work has provided a basic understanding of how intrinsic and extrinsic mechanisms govern the production of astrocytes from precursor cells and the generation of astrocyte diversity. Moreover, new studies of astrocyte morphology have revealed that mature astrocytes are extraordinarily complex, interact with many thousands of synapses, and tile with other astrocytes to occupy unique spatial domains in the brain. A major challenge for the field is to understand how astrocytes talk to each other, and to neurons, during development to establish appropriate astrocytic and neuronal network architectures.
Collapse
Affiliation(s)
- Marc R Freeman
- Department of Neurobiology, Howard Hughes Medical Institute, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
164
|
Nizzardo M, Simone C, Falcone M, Locatelli F, Riboldi G, Comi GP, Corti S. Human motor neuron generation from embryonic stem cells and induced pluripotent stem cells. Cell Mol Life Sci 2010; 67:3837-47. [PMID: 20668908 PMCID: PMC11115886 DOI: 10.1007/s00018-010-0463-y] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2010] [Revised: 06/15/2010] [Accepted: 07/09/2010] [Indexed: 12/11/2022]
Abstract
Motor neuron diseases (MNDs) are a group of neurological disorders that selectively affect motor neurons. There are currently no cures or efficacious treatments for these diseases. In recent years, significant developments in stem cell research have been applied to MNDs, particularly regarding neuroprotection and cell replacement. However, a consistent source of motor neurons for cell replacement is required. Human embryonic stem cells (hESCs) could provide an inexhaustible supply of differentiated cell types, including motor neurons that could be used for MND therapies. Recently, it has been demonstrated that induced pluripotent stem (iPS) cells may serve as an alternative source of motor neurons, since they share ES characteristics, self-renewal, and the potential to differentiate into any somatic cell type. In this review, we discuss several reproducible methods by which hESCs or iPS cells are efficiently isolated and differentiated into functional motor neurons, and possible clinical applications.
Collapse
Affiliation(s)
- M Nizzardo
- Department of Neurological Sciences, Dino Ferrari Centre, University of Milan, Istituto di Ricovero e Cura a Carattere Scientifico Foundation, Milan, Italy.
| | | | | | | | | | | | | |
Collapse
|
165
|
Benito-Sipos J, Estacio-Gómez A, Moris-Sanz M, Baumgardt M, Thor S, Díaz-Benjumea FJ. A genetic cascade involving klumpfuss, nab and castor specifies the abdominal leucokinergic neurons in the Drosophila CNS. Development 2010; 137:3327-36. [PMID: 20823069 DOI: 10.1242/dev.052233] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Identification of the genetic mechanisms underlying the specification of large numbers of different neuronal cell fates from limited numbers of progenitor cells is at the forefront of developmental neurobiology. In Drosophila, the identities of the different neuronal progenitor cells, the neuroblasts, are specified by a combination of spatial cues. These cues are integrated with temporal competence transitions within each neuroblast to give rise to a specific repertoire of cell types within each lineage. However, the nature of this integration is poorly understood. To begin addressing this issue, we analyze the specification of a small set of peptidergic cells: the abdominal leucokinergic neurons. We identify the progenitors of these neurons, the temporal window in which they are specified and the influence of the Notch signaling pathway on their specification. We also show that the products of the genes klumpfuss, nab and castor play important roles in their specification via a genetic cascade.
Collapse
Affiliation(s)
- Jonathan Benito-Sipos
- Centro de Biología Molecular-Severo Ochoa, Universidad Autónoma-C.S.I.C., Madrid, Spain
| | | | | | | | | | | |
Collapse
|
166
|
Williams ME, de Wit J, Ghosh A. Molecular mechanisms of synaptic specificity in developing neural circuits. Neuron 2010; 68:9-18. [PMID: 20920787 PMCID: PMC3327884 DOI: 10.1016/j.neuron.2010.09.007] [Citation(s) in RCA: 130] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/13/2010] [Indexed: 10/19/2022]
Abstract
The function of the brain depends on highly specific patterns of connections between populations of neurons. The establishment of these connections requires the targeting of axons and dendrites to defined zones or laminae, the recognition of individual target cells, the formation of synapses on particular regions of the dendritic tree, and the differentiation of pre- and postsynaptic specializations. Recent studies provide compelling evidence that transmembrane adhesion proteins of the immunoglobulin, cadherin, and leucine-rich repeat protein families, as well as secreted proteins such as semaphorins and FGFs, regulate distinct aspects of neuronal connectivity. These observations suggest that the coordinated actions of a number of molecular signals contribute to the specification and differentiation of synaptic connections in the developing brain.
Collapse
Affiliation(s)
- Megan E. Williams
- Neurobiology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093-0366
| | - Joris de Wit
- Neurobiology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093-0366
| | - Anirvan Ghosh
- Neurobiology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093-0366
| |
Collapse
|
167
|
Abstract
Motor neurons are functionally related, but represent a diverse collection of cells that show strict preferences for specific axon pathways during embryonic development. In this article, we describe the ligands and receptors that guide motor axons as they extend toward their peripheral muscle targets. Motor neurons share similar guidance molecules with many other neuronal types, thus one challenge in the field of axon guidance has been to understand how the vast complexity of brain connections can be established with a relatively small number of factors. In the context of motor guidance, we highlight some of the temporal and spatial mechanisms used to optimize the fidelity of pathfinding and increase the functional diversity of the signaling proteins.
Collapse
Affiliation(s)
- Dario Bonanomi
- Gene Expression Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | | |
Collapse
|
168
|
Jung H, Lacombe J, Mazzoni EO, Liem KF, Grinstein J, Mahony S, Mukhopadhyay D, Gifford DK, Young RA, Anderson KV, Wichterle H, Dasen JS. Global control of motor neuron topography mediated by the repressive actions of a single hox gene. Neuron 2010; 67:781-96. [PMID: 20826310 PMCID: PMC2955411 DOI: 10.1016/j.neuron.2010.08.008] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/23/2010] [Indexed: 10/19/2022]
Abstract
In the developing spinal cord, regional and combinatorial activities of Hox transcription factors are critical in controlling motor neuron fates along the rostrocaudal axis, exemplified by the precise pattern of limb innervation by more than fifty Hox-dependent motor pools. The mechanisms by which motor neuron diversity is constrained to limb levels are, however, not well understood. We show that a single Hox gene, Hoxc9, has an essential role in organizing the motor system through global repressive activities. Hoxc9 is required for the generation of thoracic motor columns, and in its absence, neurons acquire the fates of limb-innervating populations. Unexpectedly, multiple Hox genes are derepressed in Hoxc9 mutants, leading to motor pool disorganization and alterations in the connections by thoracic and forelimb-level subtypes. Genome-wide analysis of Hoxc9 binding suggests that this mode of repression is mediated by direct interactions with Hox regulatory elements, independent of chromatin marks typically associated with repressed Hox genes.
Collapse
Affiliation(s)
- Heekyung Jung
- Howard Hughes Medical Institute, Smilow Neuroscience Program, Department of Physiology and Neuroscience, New York University School of Medicine, New York, NY 10016, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
169
|
Lesch BJ, Bargmann CI. The homeodomain protein hmbx-1 maintains asymmetric gene expression in adult C. elegans olfactory neurons. Genes Dev 2010; 24:1802-15. [PMID: 20713521 DOI: 10.1101/gad.1932610] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Differentiated neurons balance the need to maintain a stable identity with their flexible responses to dynamic environmental inputs. Here we characterize these opposing influences on gene expression in Caenorhabditis elegans olfactory neurons. Using transcriptional reporters that are expressed differentially in two olfactory neurons, AWC(ON) and AWC(OFF), we identify mutations that affect the long-term maintenance of appropriate chemoreceptor expression. A newly identified gene from this screen, the conserved transcription factor hmbx-1, stabilizes AWC gene expression in adult animals through dosage-sensitive interactions with its transcriptional targets. The late action of hmbx-1 complements the early role of the transcriptional repressor gene nsy-7: Both repress expression of multiple AWC(OFF) genes in AWC(ON) neurons, but they act at different developmental stages. Environmental signals are superimposed onto this stable cell identity through at least two different transcriptional pathways that regulate individual chemoreceptor genes: a cGMP pathway regulated by sensory activity, and a daf-7 (TGF-beta)/daf-3 (SMAD repressor) pathway regulated by specific components of the density-dependent C. elegans dauer pheromone.
Collapse
Affiliation(s)
- Bluma J Lesch
- Howard Hughes Medical Institute, Laboratory of Neural Circuits and Behavior, The Rockefeller University, New York, NY 10065, USA
| | | |
Collapse
|
170
|
Losada-Pérez M, Gabilondo H, del Saz D, Baumgardt M, Molina I, León Y, Monedero I, Díaz-Benjumea F, Torroja L, Benito-Sipos J. Lineage-unrelated neurons generated in different temporal windows and expressing different combinatorial codes can converge in the activation of the same terminal differentiation gene. Mech Dev 2010; 127:458-71. [DOI: 10.1016/j.mod.2010.08.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2010] [Revised: 08/17/2010] [Accepted: 08/17/2010] [Indexed: 01/12/2023]
|
171
|
Chakrabarti L, Best TK, Cramer NP, Carney RS, Isaac JT, Galdzicki Z, Haydar TF. Olig1 and Olig2 triplication causes developmental brain defects in Down syndrome. Nat Neurosci 2010; 13:927-34. [PMID: 20639873 PMCID: PMC3249618 DOI: 10.1038/nn.2600] [Citation(s) in RCA: 173] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2010] [Accepted: 06/21/2010] [Indexed: 11/08/2022]
Abstract
Over-inhibition is thought to be one of the underlying causes of the cognitive deficits in Ts65Dn mice, the most widely used model of Down syndrome. We found a direct link between gene triplication and defects in neuron production during embryonic development. These neurogenesis defects led to an imbalance between excitatory and inhibitory neurons and to increased inhibitory drive in the Ts65Dn forebrain. We discovered that Olig1 and Olig2, two genes that are triplicated in Down syndrome and in Ts65Dn mice, were overexpressed in the Ts65Dn forebrain. To test the hypothesis that Olig triplication causes the neurological phenotype, we used a genetic approach to normalize the dosage of these two genes and thereby rescued the inhibitory neuron phenotype in the Ts65Dn brain. These data identify seminal alterations during brain development and suggest a mechanistic relationship between triplicated genes and these brain abnormalities in the Ts65Dn mouse.
Collapse
Affiliation(s)
- Lina Chakrabarti
- Center for Neuroscience Research, Children’s National Medical Center, Washington DC, 20010
| | - Tyler K. Best
- Department of Anatomy, Physiology and Genetics, School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814
| | - Nathan P. Cramer
- Department of Anatomy, Physiology and Genetics, School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814
| | - Rosalind S.E. Carney
- Center for Neuroscience Research, Children’s National Medical Center, Washington DC, 20010
| | - John T.R. Isaac
- Developmental Synaptic Plasticity Section, NINDS, Bethesda, MD 20892
| | - Zygmunt Galdzicki
- Department of Anatomy, Physiology and Genetics, School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814
| | - Tarik F. Haydar
- Center for Neuroscience Research, Children’s National Medical Center, Washington DC, 20010
| |
Collapse
|
172
|
Marie B, Pym E, Bergquist S, Davis GW. Synaptic homeostasis is consolidated by the cell fate gene gooseberry, a Drosophila pax3/7 homolog. J Neurosci 2010; 30:8071-82. [PMID: 20554858 PMCID: PMC3291498 DOI: 10.1523/jneurosci.5467-09.2010] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2009] [Revised: 04/22/2010] [Accepted: 04/30/2010] [Indexed: 11/21/2022] Open
Abstract
In a large-scale screening effort, we identified the gene gooseberry (gsb) as being necessary for synaptic homeostasis at the Drosophila neuromuscular junction. The gsb gene encodes a pair-rule transcription factor that participates in embryonic neuronal cell fate specification. Here, we define a new postembryonic role for gooseberry. We show that gsb becomes widely expressed in the postembryonic CNS, including within mature motoneurons. Loss of gsb does not alter neuromuscular growth, morphology, or the distribution of essential synaptic proteins. However, gsb function is required postembryonically for the sustained expression of synaptic homeostasis. In GluRIIA mutant animals, miniature EPSP (mEPSP) amplitudes are significantly decreased, and there is a compensatory homeostatic increase in presynaptic release that restores normal muscle excitation. Loss of gsb significantly impairs the homeostatic increase in presynaptic release in the GluRIIA mutant. Interestingly, gsb is not required for the rapid induction of synaptic homeostasis. Furthermore, gsb seems to be specifically involved in the mechanisms responsible for a homeostatic increase in presynaptic release, since it is not required for the homeostatic decrease in presynaptic release observed following an increase in mEPSP amplitude. Finally, Gsb has been shown to antagonize Wingless signaling during embryonic fate specification, and we present initial evidence that this activity is conserved during synaptic homeostasis. Thus, we have identified a gene (gsb) that distinguishes between rapid induction versus sustained expression of synaptic homeostasis and distinguishes between the mechanisms responsible for homeostatic increase versus decrease in synaptic vesicle release.
Collapse
Affiliation(s)
- Bruno Marie
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California 94158-2822
| | - Edward Pym
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California 94158-2822
| | - Sharon Bergquist
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California 94158-2822
| | - Graeme W. Davis
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California 94158-2822
| |
Collapse
|
173
|
Guidance of postural motoneurons requires MAPK/ERK signaling downstream of fibroblast growth factor receptor 1. J Neurosci 2010; 30:6595-606. [PMID: 20463222 DOI: 10.1523/jneurosci.4932-09.2010] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Identification of intracellular signaling pathways necessary for appropriate axon guidance is challenging because many CNS populations used to study these events contain multiple cell types. Here, we resolve this issue by using mouse embryonic stem (ES) cells that were directed to differentiate into a population of motoneurons that exclusively innervate epaxial muscles [medial median motor column (MMCm) motoneurons]. These ES cell-derived MMCm motoneurons, like their endogenous counterparts, express fibroblast growth factor receptor 1 (FGFR1) and selectively extend axons toward the epaxial trophin FGF8. Unlike wild-type MMCm motoneurons, FGFR1(-/-) MMCm motoneurons show guidance defects when transplanted into the neural tube of chick embryos. Furthermore, activation of FGFR1 selectively signals through mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) for appropriate guidance in vitro, whereas overexpression of constitutively active MAPK/ERK in transplanted, or endogenous chick, MMCm cells causes guidance defects in vivo. These results indicate that MAPK/ERK activation downstream of FGFR1 is necessary for MMCm motor axon guidance and that ES cell-derived neurons provide an important tool for dissecting intracellular pathways required for axon guidance.
Collapse
|
174
|
Van Buskirk C, Sternberg PW. Paired and LIM class homeodomain proteins coordinate differentiation of the C. elegans ALA neuron. Development 2010; 137:2065-74. [PMID: 20501595 PMCID: PMC2875845 DOI: 10.1242/dev.040881] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/20/2010] [Indexed: 11/20/2022]
Abstract
The ancient origin of sleep is evidenced by deeply conserved signaling pathways regulating sleep-like behavior, such as signaling through the Epidermal growth factor receptor (EGFR). In Caenorhabditis elegans, a sleep-like state can be induced at any time during development or adulthood through conditional expression of LIN-3/EGF. The behavioral response to EGF is mediated by EGFR activity within a single cell, the ALA neuron, and mutations that impair ALA differentiation are expected to confer EGF-resistance. Here we describe three such EGF-resistant mutants. One of these corresponds to the LIM class homeodomain (HD) protein CEH-14/Lhx3, and the other two correspond to Paired-like HD proteins CEH-10/Chx10 and CEH-17/Phox2. Whereas CEH-14 is required for ALA-specific gene expression throughout development, the Prd-like proteins display complementary temporal contributions to gene expression, with the requirement for CEH-10 decreasing as that of CEH-17 increases. We present evidence that CEH-17 participates in a positive autoregulatory loop with CEH-14 in ALA, and that CEH-10, in addition to its role in ALA differentiation, functions in the generation of the ALA neuron. Similarly to CEH-17, CEH-10 is required for the posterior migration of the ALA axons, but CEH-14 appears to regulate an aspect of ALA axon outgrowth that is distinct from that of the Prd-like proteins. Our findings reveal partial modularity among the features of a neuronal differentiation program and their coordination by Prd and LIM class HD proteins.
Collapse
Affiliation(s)
- Cheryl Van Buskirk
- Howard Hughes Medical Institute, Division of Biology 156-29, California Institute of Technology, 1200 E. California Boulevard, Pasadena, CA 91125, USA
| | - Paul W. Sternberg
- Howard Hughes Medical Institute, Division of Biology 156-29, California Institute of Technology, 1200 E. California Boulevard, Pasadena, CA 91125, USA
| |
Collapse
|
175
|
Quiñones HI, Savage TK, Battiste J, Johnson JE. Neurogenin 1 (Neurog1) expression in the ventral neural tube is mediated by a distinct enhancer and preferentially marks ventral interneuron lineages. Dev Biol 2010; 340:283-92. [PMID: 20171205 PMCID: PMC2854235 DOI: 10.1016/j.ydbio.2010.02.012] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2009] [Revised: 01/18/2010] [Accepted: 02/09/2010] [Indexed: 01/02/2023]
Abstract
The bHLH transcription factor Neurog1 (Ngn1, Neurod3, neurogenin 1) is involved in neuronal differentiation and cell-type specification in distinct regions of the developing nervous system. Here, transgenic mouse models were developed that use a Bacterial Artificial Chromosome (BAC) containing 208kb flanking the Neurog1 gene to efficiently drive expression of GFP and Cre in all Neurog1 domains. Two characteristics of Neurog1 gene regulation were uncovered. First, a 4kb region previously shown to be sufficient for driving expression of a reporter gene to a subset of the Neurog1 pattern in the developing midbrain, hindbrain, and spinal cord is required uniformly for high levels of expression in all Neurog1 domains, even those not originally identified as being regulated by this region. Second, a 0.8 kb enhancer was identified that is sufficient to drive Neurog1-like expression specifically in the ventral neural tube. Furthermore, Neurog1 progenitor cells in the ventral neural tube are largely fated to interneuron lineages rather than to motoneurons. These studies provide new tools for directing tissue specific expression in the developing neural tube, define Neurog1 lineages in the spinal cord, and further define the complex genomic structure required for obtaining the correct levels and spatial restriction of the neuronal differentiation gene Neurog1.
Collapse
Affiliation(s)
- Herson I. Quiñones
- Department of Neuroscience, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390-9111
| | - Trisha K. Savage
- Department of Neuroscience, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390-9111
| | - James Battiste
- Department of Neuroscience, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390-9111
| | - Jane E. Johnson
- Department of Neuroscience, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390-9111
| |
Collapse
|
176
|
George L, Kasemeier-Kulesa J, Nelson BR, Koyano-Nakagawa N, Lefcort F. Patterned assembly and neurogenesis in the chick dorsal root ganglion. J Comp Neurol 2010; 518:405-22. [PMID: 20017208 DOI: 10.1002/cne.22248] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The birth of small-diameter TrkA+ neurons that mediate pain and thermoreception begins approximately 24 hours after the cessation of neural crest cell migration from progenitors residing in the nascent dorsal root ganglion. Although multiple geographically distinct progenitor pools have been proposed, this study is the first to comprehensively characterize the derivation of small-diameter neurons. In the developing chick embryo we identify novel patterns in neural crest cell migration and colonization that sculpt the incipient ganglion into a postmitotic neuronal core encapsulated by a layer of proliferative progenitor cells. Furthermore, we show that this outer progenitor layer is composed of three spatially, temporally, and molecularly distinct progenitor zones, two of which give rise to distinct populations of TrkA+ neurons.
Collapse
Affiliation(s)
- Lynn George
- Department of Cell Biology and Neuroscience, Montana State University, Bozeman, Montana 59717, USA.
| | | | | | | | | |
Collapse
|
177
|
Abstract
The chicken spinal cord is an excellent model for the study of early neural development in vertebrates. However, the lack of robust, stable and versatile transgenic methods has limited the usefulness of chick embryos for the study of later neurodevelopmental events. Here we describe a new transgenic approach utilizing the PiggyBac (PB) transposon to facilitate analysis of late-stage neural development such as axon targeting and synaptic connection in the chicken embryo. Using PB transgenic approaches we achieved temporal and spatial regulation of transgene expression and performed stable RNA interference (RNAi). With these new capabilities, we mapped axon projection patterns of V2b subset of spinal interneurons and visualized maturation of the neuromuscular junction (NMJ). Furthermore, PB-mediated RNAi in the chick recapitulated the phenotype of loss of agrin function in the mouse NMJ. The simplicity and versatility of PB-mediated transgenic strategies hold great promise for large-scale genetic analysis of neuronal connectivity in the chick.
Collapse
Affiliation(s)
| | | | - Xiaozhong Wang
- *To whom correspondence should be addressed. Tel: +1 847 467 4897; Fax: +1 847 467 1380;
| |
Collapse
|
178
|
Lee YJ, Hung SC, Chu MS. Involvement of Notch1 inhibition in serum-stimulated glia and oligodendrocyte differentiation from human mesenchymal stem cells. STEM CELLS AND CLONING-ADVANCES AND APPLICATIONS 2010; 3:165-73. [PMID: 24198522 PMCID: PMC3781741 DOI: 10.2147/sccaa.s14388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The use of in vitro oligodendrocyte differentiation for transplantation of stem cells to treat demyelinating diseases is an important consideration. In this study, we investigated the effects of serum on glia and oligodendrocyte differentiation from human mesenchymal stem cells (KP-hMSCs). We found that serum deprivation resulted in a reversible downregulation of glial- and oligodendrocyte-specific markers. Serum stimulated expression of oligodendrocyte markers, such as galactocerebroside, as well as Notch1 and JAK1 transcripts. Inhibition of Notch1 activation by the Notch inhibitor, MG132, led to enhanced expression of a serum-stimulated oligodendrocyte marker. This marker was undetectable in serum-deprived KP-hMSCs treated with MG132, suggesting that inhibition of Notch1 function is additive to serum-stimulated oligodendrocyte differentiation. Furthermore, a dominant-negative mutant RBP-J protein also inhibited Notch1 function and led to upregulation of oligodendrocyte-specific markers. Our results demonstrate that serum-stimulated oligodendrocyte differentiation is enhanced by the inhibition of Notch1-associated functions.
Collapse
Affiliation(s)
- Yi-Jang Lee
- Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei, Taiwan
| | | | | |
Collapse
|
179
|
Francius C, Clotman F. Dynamic expression of the Onecut transcription factors HNF-6, OC-2 and OC-3 during spinal motor neuron development. Neuroscience 2010; 165:116-29. [DOI: 10.1016/j.neuroscience.2009.09.076] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2009] [Revised: 09/01/2009] [Accepted: 09/27/2009] [Indexed: 10/20/2022]
|
180
|
Margeta MA, Shen K. Molecular mechanisms of synaptic specificity. Mol Cell Neurosci 2009; 43:261-7. [PMID: 19969086 DOI: 10.1016/j.mcn.2009.11.009] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2009] [Accepted: 11/30/2009] [Indexed: 11/27/2022] Open
Abstract
Synapses are specialized junctions that mediate information flow between neurons and their targets. A striking feature of the nervous system is the specificity of its synaptic connections: an individual neuron will form synapses only with a small subset of available presynaptic and postsynaptic partners. Synaptic specificity has been classically thought to arise from homophilic or heterophilic interactions between adhesive molecules acting across the synaptic cleft. Over the past decade, many new mechanisms giving rise to synaptic specificity have been identified. Synapses can be specified by secreted molecules that promote or inhibit synaptogenesis, and their source can be a neighboring guidepost cell, not just presynaptic and postsynaptic neurons. Furthermore, lineage, fate, and timing of development can also play critical roles in shaping neural circuits. Future work utilizing large-scale screens will aim to elucidate the full scope of cellular mechanisms and molecular players that can give rise to synaptic specificity.
Collapse
Affiliation(s)
- Milica A Margeta
- Howard Hughes Medical Institute and Department of Biology, Stanford University, Stanford, CA 94305-5020, USA
| | | |
Collapse
|
181
|
Fragkouli A, van Wijk NV, Lopes R, Kessaris N, Pachnis V. LIM homeodomain transcription factor-dependent specification of bipotential MGE progenitors into cholinergic and GABAergic striatal interneurons. Development 2009; 136:3841-51. [PMID: 19855026 DOI: 10.1242/dev.038083] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Coordination of voluntary motor activity depends on the generation of the appropriate neuronal subtypes in the basal ganglia and their integration into functional neuronal circuits. The largest nucleus of the basal ganglia, the striatum, contains two classes of neurons: the principal population of medium-sized dense spiny neurons (MSNs; 97-98% of all striatal neurons in rodents), which project to the globus pallidus and the substantia nigra, and the locally projecting striatal interneurons (SINs; 2-3% in rodents). SINs are further subdivided into two non-overlapping groups: those producing acetylcholine (cholinergic) and those producing gamma-amino butyric acid (GABAergic). Despite the pivotal role of SINs in integrating the output of striatal circuits and the function of neuronal networks in the ventral forebrain, the lineage relationship of SIN subtypes and the molecular mechanisms that control their differentiation are currently unclear. Using genetic fate mapping, we demonstrate here that the majority of cholinergic and GABAergic SINs are derived from common precursors generated in the medial ganglionic eminence during embryogenesis. These precursors express the LIM homeodomain protein Lhx6 and have characteristics of proto-GABAergic neurons. By combining gene expression analysis with loss-of-function and misexpression experiments, we provide evidence that the differentiation of the common precursor into mature SIN subtypes is regulated by the combinatorial activity of the LIM homeodomain proteins Lhx6, Lhx7 (Lhx8) and Isl1. These studies suggest that a LIM homeodomain transcriptional code confers cell-fate specification and neurotransmitter identity in neuronal subpopulations of the ventral forebrain.
Collapse
Affiliation(s)
- Apostolia Fragkouli
- MRC National Institute for Medical Research, The Ridgeway, London NW7 1AA, UK
| | | | | | | | | |
Collapse
|
182
|
Abellan A, Menuet A, Dehay C, Medina L, Rétaux S. Differential expression of LIM-homeodomain factors in Cajal-Retzius cells of primates, rodents, and birds. Cereb Cortex 2009; 20:1788-98. [PMID: 19923199 DOI: 10.1093/cercor/bhp242] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Reelin-expressing Cajal-Retzius (CR) cells are among the earliest generated cells in the mammalian cerebral cortex and are believed to be crucial for both the development and the evolution of a laminated pattern in the pallial wall of the telencephalon. LIM-homeodomain (LIM-hd) transcription factors are expressed during brain development in a highly restricted and combinatorial manner, and they specify regional and cellular identity. We have investigated the expression of the LIM-hd members Lhx1/Lhx2/Lhx5/Lhx6/Lhx9 in the reelin-expressing cells, the pallium, and the regions of origin of CR cells including the cortical hem of 3 amniote species: the mouse, the chick, and the macaque monkey. We found major differences in the combinatorial LIM-hd expression in the marginal zone as well as in the hem. 1) Lhx5 is a "preferential LIM-hd" for CR cells in mammals but not expressed by these cells in chicks. 2) Lhx2 is expressed in the hem of the chick, whereas it is excluded from this region in mouse. 3) Whereas mouse CR cells express Lhx5/Lhx1, their monkey counterparts express 4 of these factors: Lhx1/Lhx2/Lhx5/Lhx9. We discuss our findings in evolutionary terms for the specification of the midline hem and CR cell type and the emergence of the cortical lamination pattern.
Collapse
Affiliation(s)
- Antonio Abellan
- Laboratory of Brain Development and Evolution, Department of Experimental Medicine, Faculty of Medicine, University of Lleida, Institute of Biomedical Research of Lleida, 25008 Lleida, Spain
| | | | | | | | | |
Collapse
|
183
|
Du Y, Yip H. Effects of bone morphogenetic protein 2 on Id expression and neuroblastoma cell differentiation. Differentiation 2009; 79:84-92. [PMID: 19889495 DOI: 10.1016/j.diff.2009.10.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2009] [Revised: 10/12/2009] [Accepted: 10/14/2009] [Indexed: 01/08/2023]
Abstract
Bone morphogenetic proteins (BMPs) are secretory signal molecules that have a variety of regulatory functions during embryonic morphogenesis. BMP2 has been shown to induce differentiation in many cell types, mediated through the activation of its target genes: the inhibitors of differentiation (Id1-3) and key transcription factors. In this study, we investigated the effects of BMP2 on mouse neuroblastoma (Neuro2a) cell differentiation and regulation of the expression of Id1-3 and neural-specific transcription factors. Our results showed that BMP2 stimulation upregulated Id1-3 expression at the early stage of application by involvement of the Smad signaling pathway. BMP2 caused phosphorylation of Smad1/5/8 followed by upregulation of Id1-3. Co-incubation with Noggin, a BMP antagonist, or Smad1 siRNA transfection significantly inhibited phosphorylation of Smad1/5/8 and upregulation of Id protein. Furthermore, our results showed that BMP2-induced differentiation of Neuro2a cells into neurons by downregulating the expression of Id1-3 proteins and upregulating the expression of neural-specific transcriptional factors Dlx2, Brn3a, and NeuroD6. The results suggested that the transient upregulation of Id1-3 expression during the early phase of BMP stimulation may play a role in lineage specification and promote differentiation of neuroblastoma cells towards a neuronal phenotype. Subsequently, a coordinated increase in expression of proneural transcription factors and a decrease in Id1-3 expression may culminate in the transition from proliferation to neurogenesis and the terminal neuronal differentiation of neuroblastoma cells.
Collapse
Affiliation(s)
- Yang Du
- Department of Anatomy, The University of Hong Kong, SAR, China.
| | | |
Collapse
|
184
|
Generating diversity: Mechanisms regulating the differentiation of autonomic neuron phenotypes. Auton Neurosci 2009; 151:17-29. [PMID: 19819195 DOI: 10.1016/j.autneu.2009.08.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Sympathetic and parasympathetic postganglionic neurons innervate a wide range of target tissues. The subpopulation of neurons innervating each target tissue can express unique combinations of neurotransmitters, neuropeptides, ion channels and receptors, which together comprise the chemical phenotype of the neurons. The target-specific chemical phenotype shown by autonomic postganglionic neurons arises during development. In this review, we examine the different mechanisms that generate such a diversity of neuronal phenotypes from the pool of apparently homogenous neural crest progenitor cells that form the sympathetic ganglia. There is evidence that the final chemical phenotype of autonomic postganglionic neurons is generated by both signals at the level of the cell body that trigger cell-autonomous programs, as well as signals from the target tissues they innervate.
Collapse
|
185
|
Hwang DH, Kim BG, Kim EJ, Lee SI, Joo IS, Suh-Kim H, Sohn S, Kim SU. Transplantation of human neural stem cells transduced with Olig2 transcription factor improves locomotor recovery and enhances myelination in the white matter of rat spinal cord following contusive injury. BMC Neurosci 2009; 10:117. [PMID: 19772605 PMCID: PMC2758886 DOI: 10.1186/1471-2202-10-117] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2009] [Accepted: 09/22/2009] [Indexed: 01/19/2023] Open
Abstract
Background Contusive spinal cord injury is complicated by a delayed loss of oligodendrocytes, resulting in chronic progressive demyelination. Therefore, transplantation strategies to provide oligodendrocyte lineage cells and to enhance the extent of myelination appear to be justified for spinal cord repair. The present study investigated whether transplantation of human neural stem cells (NSCs) genetically modified to express Olig2 transcription factor, an essential regulator of oligodendrocyte development, can improve locomotor recovery and enhance myelination in a rat contusive spinal cord injury model. Results HB1.F3 (F3) immortalized human NSC line was transduced with a retroviral vector encoding Olig2, an essential regulator of oligodendrocyte development. Overexpression of Olig2 in human NSCs (F3.Olig2) induced activation of NKX2.2 and directed differentiation of NSCs into oligodendrocyte lineage cells in vitro. Introduction of Olig2 conferred higher proliferative activity, and a much larger number of F3.Olig2 NSCs were detected by 7 weeks after transplantation into contused spinal cord than that of parental F3 NSCs. F3.Olig2 NSCs exhibited frequent migration towards the white matter, whereas F3 NSCs were mostly confined to the gray matter or around the lesion cavities. Most of F3.Olig2 NSCs occupying the spared white matter differentiated into mature oligodendrocytes. Transplantation of F3.Olig2 NSCs increased the volume of spared white matter and reduced the cavity volume. Moreover, F3.Olig2 grafts significantly increased the thickness of myelin sheath around the axons in the spared white matter. Finally, animals with F3.Olig2 grafts showed an improvement in the quality of hindlimbs locomotion. Conclusion Transplantation of NSCs genetically modified to differentiate into an oligodendrocytic lineage may be an effective strategy to improve functional outcomes following spinal cord trauma. The present study suggests that molecular factors governing cell fate decisions can be manipulated to enhance reparative potential of the cell-based therapy.
Collapse
Affiliation(s)
- Dong H Hwang
- Brain Disease Research Center, Institute for Medical Sciences, Ajou University School of Medicine, Suwon, Korea.
| | | | | | | | | | | | | | | |
Collapse
|
186
|
Brierley DJ, Blanc E, Reddy OV, VijayRaghavan K, Williams DW. Dendritic targeting in the leg neuropil of Drosophila: the role of midline signalling molecules in generating a myotopic map. PLoS Biol 2009; 7:e1000199. [PMID: 19771147 PMCID: PMC2737123 DOI: 10.1371/journal.pbio.1000199] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2009] [Accepted: 08/12/2009] [Indexed: 01/19/2023] Open
Abstract
Neural maps are emergent, highly ordered structures that are essential for organizing and presenting synaptic information. Within the embryonic nervous system of Drosophila motoneuron dendrites are organized topographically as a myotopic map that reflects their pattern of innervation in the muscle field. Here we reveal that this fundamental organizational principle exists in adult Drosophila, where the dendrites of leg motoneurons also generate a myotopic map. A single postembryonic neuroblast sequentially generates different leg motoneuron subtypes, starting with those innervating proximal targets and medial neuropil regions and producing progeny that innervate distal muscle targets and lateral neuropil later in the lineage. Thus the cellular distinctions in peripheral targets and central dendritic domains, which make up the myotopic map, are linked to the birth-order of these motoneurons. Our developmental analysis of dendrite growth reveals that this myotopic map is generated by targeting. We demonstrate that the medio-lateral positioning of motoneuron dendrites in the leg neuropil is controlled by the midline signalling systems Slit-Robo and Netrin-Fra. These results reveal that dendritic targeting plays a major role in the formation of myotopic maps and suggests that the coordinate spatial control of both pre- and postsynaptic elements by global neuropilar signals may be an important mechanism for establishing the specificity of synaptic connections.
Collapse
Affiliation(s)
- David J. Brierley
- Medical Research Council (MRC) Centre for Developmental Neurobiology, King's College London, London, United Kingdom
| | - Eric Blanc
- Medical Research Council (MRC) Centre for Developmental Neurobiology, King's College London, London, United Kingdom
| | - O. Venkateswara Reddy
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
| | - K. VijayRaghavan
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
| | - Darren W. Williams
- Medical Research Council (MRC) Centre for Developmental Neurobiology, King's College London, London, United Kingdom
| |
Collapse
|
187
|
Placantonakis DG, Tomishima MJ, Lafaille F, Desbordes SC, Jia F, Socci ND, Viale A, Lee H, Harrison N, Tabar V, Studer L. BAC transgenesis in human embryonic stem cells as a novel tool to define the human neural lineage. Stem Cells 2009; 27:521-32. [PMID: 19074416 DOI: 10.1634/stemcells.2008-0884] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Human embryonic stem cells (hESCs) have enormous potential for applications in basic biology and regenerative medicine. However, harnessing the potential of hESCs toward generating homogeneous populations of specialized cells remains challenging. Here we describe a novel technology for the genetic identification of defined hESC-derived neural cell types using bacterial artificial chromosome (BAC) transgenesis. We generated hESC lines stably expressing Hes5::GFP, Dll1::GFP, and HB9::GFP BACs that yield green fluorescent protein (GFP)(+) neural stem cells, neuroblasts, and motor neurons, respectively. Faithful reporter expression was confirmed by cell fate analysis and appropriate transgene regulation. Prospective isolation of HB9::GFP(+) cells yielded purified human motor neurons with proper marker expression and electrophysiological activity. Global mRNA and microRNA analyses of Hes5::GFP(+) and HB9::GFP(+) populations revealed highly specific expression signatures, suggesting that BAC transgenesis will be a powerful tool for establishing expression libraries that define the human neural lineage and for accessing defined cell types in applications of human disease.
Collapse
Affiliation(s)
- Dimitris G Placantonakis
- Department of Neurosurgery, Sloan-Kettering Institute for Cancer Research, New York, New York, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
188
|
Schotman H, Karhinen L, Rabouille C. Integrins mediate their unconventional, mechanical-stress-induced secretion via RhoA and PINCH in Drosophila. J Cell Sci 2009; 122:2662-72. [PMID: 19584096 DOI: 10.1242/jcs.039347] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
During the epithelium remodelling such as the flattening of the Drosophila follicular epithelium, the alpha-integrin subunits are unconventionally secreted through a dGRASP-dependent route that is built de novo. The biogenetic process starts with the upregulation of a small subset of targeted mRNAs, including dgrasp. Here, we show that dgrasp mRNA upregulation is triggered by the tension of the underlying oocyte and by applied external forces at the basal side of the follicular epithelium. We show that integrins are also involved in dgrasp mRNA upregulation and the epithelium remodelling. Tension leads to the recruitment of RhoA to the plasma membrane, where it participates in its remodelling. The LIM protein PINCH can cycle to the nucleus and is involved in dgrasp mRNA upregulation. We propose that integrins are involved in triggering the biogenesis of their own unconventional secretion route that they use to strengthen adhesion and ensure epithelial integrity at the next stages of development, perhaps by acting as mechanosensors of the underlying tension through RhoA and PINCH.
Collapse
Affiliation(s)
- Hans Schotman
- The Cell Microscopy Centre, Department of Cell Biology and Institute of Biomembrane, University Medical Centre Utrecht, AZU Rm G02.525, Heidelberglaan 100, 3584CX Utrecht, The Netherlands
| | | | | |
Collapse
|
189
|
Abstract
Neurobiologists have long sought to understand how circuits in the nervous system are organized to generate the precise neural outputs that underlie particular behaviours. The motor circuits in the spinal cord that control locomotion, commonly referred to as central pattern generator networks, provide an experimentally tractable model system for investigating how moderately complex ensembles of neurons generate select motor behaviours. The advent of novel molecular and genetic techniques coupled with recent advances in our knowledge of spinal cord development means that a comprehensive understanding of how the motor circuitry is organized and operates may be within our grasp.
Collapse
Affiliation(s)
- Martyn Goulding
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, California 92037, USA.
| |
Collapse
|
190
|
Avraham O, Hadas Y, Vald L, Zisman S, Schejter A, Visel A, Klar A. Transcriptional control of axonal guidance and sorting in dorsal interneurons by the Lim-HD proteins Lhx9 and Lhx1. Neural Dev 2009; 4:21. [PMID: 19545367 PMCID: PMC2704203 DOI: 10.1186/1749-8104-4-21] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2009] [Accepted: 06/19/2009] [Indexed: 01/24/2023] Open
Abstract
Background Lim-HD proteins control crucial aspects of neuronal differentiation, including subtype identity and axonal guidance. The Lim-HD proteins Lhx2/9 and Lhx1/5 are expressed in the dorsal spinal interneuron populations dI1 and dI2, respectively. While they are not required for cell fate acquisition, their role in patterning the axonal trajectory of dI1 and dI2 neurons remains incompletely understood. Results Using newly identified dI1- and dI2-specific enhancers to trace axonal trajectories originating from these interneurons, we found that each population is subdivided into several distinct groups according to their axonal pathways. dI1 neurons project axons rostrally, either ipsi- or contra-laterally, while dI2 are mostly commissural neurons that project their axons rostrally and caudally. The longitudinal axonal tracks of each neuronal population self-fasciculate to form dI1- and dI2-specific bundles. The dI1 bundles are spatially located ventral relative to dI2 bundles. To examine the functional contribution of Lim-HD proteins to establishment of dI axonal projections, the Lim-HD code of dI neurons was altered by cell-specific ectopic expression. Expression of Lhx1 in dI1 neurons caused a repression of Lhx2/9 and imposed caudal projection to the caudal commissural dI1 neurons. Complementarily, when expressed in dI2 neurons, Lhx9 repressed Lhx1/5 and triggered a bias toward rostral projection in otherwise caudally projecting dI2 neurons, and ventral shift of the longitudinal axonal fascicule. Conclusion The Lim-HD proteins Lhx9 and Lhx1 serve as a binary switch in controlling the rostral versus caudal longitudinal turning of the caudal commissural axons. Lhx1 determines caudal turning and Lhx9 triggers rostral turning.
Collapse
Affiliation(s)
- Oshri Avraham
- Department of Medical Neurobiology, IMRIC, Hebrew University, Hadassah Medical School, Jerusalem, Israel.
| | | | | | | | | | | | | |
Collapse
|
191
|
Sibilla S, Ballerini L. GABAergic and glycinergic interneuron expression during spinal cord development: dynamic interplay between inhibition and excitation in the control of ventral network outputs. Prog Neurobiol 2009; 89:46-60. [PMID: 19539686 DOI: 10.1016/j.pneurobio.2009.06.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2008] [Revised: 04/10/2009] [Accepted: 06/09/2009] [Indexed: 11/28/2022]
Abstract
A key objective of neuroscience research is to understand the processes leading to mature neural circuitries in the central nervous system (CNS) that enable the control of different behaviours. During development, network-constitutive neurons undergo dramatic rearrangements, involving their intrinsic properties, such as the blend of ion channels governing their firing activity, and their synaptic interactions. The spinal cord is no exception to this rule; in fact, in the ventral horn the maturation of motor networks into functional circuits is a complex process where several mechanisms cooperate to achieve the development of motor control. Elucidating such a process is crucial in identifying neurons more vulnerable to degenerative or traumatic diseases or in developing new strategies aimed at rebuilding damaged tissue. The focus of this review is on recent advances in understanding the spatio-temporal expression of the glycinergic/GABAergic system and on the contribution of this system to early network function and to motor pattern transformation along with spinal maturation. During antenatal development, the operation of mammalian spinal networks strongly depends on the activity of glycinergic/GABAergic neurons, whose action is often excitatory until shortly before birth when locomotor networks acquire the ability to generate alternating motor commands between flexor and extensor motor neurons. At this late stage of prenatal development, GABA-mediated excitation is replaced by synaptic inhibition mediated by glycine and/or GABA. At this stage of spinal maturation, the large majority of GABAergic neurons are located in the dorsal horn. We propose that elucidating the role of inhibitory systems in development will improve our knowledge on the processes regulating spinal cord maturation.
Collapse
Affiliation(s)
- Sara Sibilla
- Life Science Department, Center for Neuroscience B.R.A.I.N., University of Trieste, via Fleming 22, 34127 Trieste, Italy
| | | |
Collapse
|
192
|
Yasuoka Y, Kobayashi M, Kurokawa D, Akasaka K, Saiga H, Taira M. Evolutionary origins of blastoporal expression and organizer activity of the vertebrate gastrula organizer gene lhx1 and its ancient metazoan paralog lhx3. Development 2009; 136:2005-14. [DOI: 10.1242/dev.028530] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Expression of the LIM homeobox gene lhx1 (lim1) is specific to the vertebrate gastrula organizer. Lhx1 functions as a transcriptional regulatory core protein to exert `organizer' activity in Xenopus embryos. Its ancient paralog, lhx3 (lim3),is expressed around the blastopore in amphioxus and ascidian, but not vertebrate, gastrulae. These two genes are thus implicated in organizer evolution, and we addressed the evolutionary origins of their blastoporal expression and organizer activity. Gene expression analysis of organisms ranging from cnidarians to chordates suggests that blastoporal expression has its evolutionary root in or before the ancestral eumetazoan for lhx1,but possibly in the ancestral chordate for lhx3, and that in the ascidian lineage, blastoporal expression of lhx1 ceased, whereas endodermal expression of lhx3 has persisted. Analysis of organizer activity using Xenopus embryos suggests that a co-factor of LIM homeodomain proteins, Ldb, has a conserved function in eumetazoans to activate Lhx1, but that Lhx1 acquired organizer activity in the bilaterian lineage,Lhx3 acquired organizer activity in the deuterostome lineage and ascidian Lhx3 acquired a specific transactivation domain to confer organizer activity on this molecule. Knockdown analysis using cnidarian embryos suggests that Lhx1 is required for chordin expression in the blastoporal region. These data suggest that Lhx1 has been playing fundamental roles in the blastoporal region since the ancestral eumetazoan arose, that it contributed as an`original organizer gene' to the evolution of the vertebrate gastrula organizer, and that Lhx3 could be involved in the establishment of organizer gene networks.
Collapse
Affiliation(s)
- Yuuri Yasuoka
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Masaaki Kobayashi
- Department of Biological Sciences, Graduate School of Science and Engineering,Tokyo Metropolitan University, 1-1 Minamiohsawa, Hachiohji, Tokyo 192-0397,Japan
| | - Daisuke Kurokawa
- Misaki Marine Biological Station, Graduate School of Science, University of Tokyo, 1024 Koajiro, Misaki, Miura Kanagawa, 238-0225, Japan
| | - Koji Akasaka
- Misaki Marine Biological Station, Graduate School of Science, University of Tokyo, 1024 Koajiro, Misaki, Miura Kanagawa, 238-0225, Japan
| | - Hidetoshi Saiga
- Department of Biological Sciences, Graduate School of Science and Engineering,Tokyo Metropolitan University, 1-1 Minamiohsawa, Hachiohji, Tokyo 192-0397,Japan
| | - Masanori Taira
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
193
|
Misra M, Shah V, Carpenter E, McCaffery P, Lance-Jones C. Restricted patterns of Hoxd10 and Hoxd11 set segmental differences in motoneuron subtype complement in the lumbosacral spinal cord. Dev Biol 2009; 330:54-72. [PMID: 19306865 PMCID: PMC2699214 DOI: 10.1016/j.ydbio.2009.03.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2008] [Revised: 03/09/2009] [Accepted: 03/11/2009] [Indexed: 02/01/2023]
Abstract
During normal vertebrate development, Hoxd10 and Hoxd11 are expressed by differentiating motoneurons in restricted patterns along the rostrocaudal axis of the lumbosacral (LS) spinal cord. To assess the roles of these genes in the attainment of motoneuron subtypes characteristic of LS subdomains, we examined subtype complement after overexpression of Hoxd10 or Hoxd11 in the embryonic chick LS cord and in a Hoxd10 loss-of-function mouse embryo. Data presented here provide evidence that Hoxd10 defines the position of the lateral motor column (LMC) as a whole and, in rostral LS segments, specifically promotes the development of motoneurons of the lateral subdivision of the lateral motor column (LMCl). In contrast, Hoxd11 appears to impart a caudal and medial LMC (LMCm) identity to some motoneurons and molecular profiles suggestive of a suppression of LMC development in others. We also provide evidence that Hoxd11 suppresses the expression of Hoxd10 and the retinoic acid synthetic enzyme, retinaldehyde dehydrogenase 2 (RALDH2). In a normal chick embryo, Hoxd10 and RALDH2 are expressed throughout the LS region at early stages of motoneuron differentiation but their levels decline in Hoxd11-expressing caudal LS segments that ultimately contain few LMCl motoneurons. We hypothesize that one of the roles played by Hoxd11 is to modulate Hoxd10 and local retinoic acid levels and thus, perhaps define the caudal boundaries of the LMC and its subtype complement.
Collapse
Affiliation(s)
- Mala Misra
- Department of Neurobiology and Center for Neuroscience, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261
| | - Veeral Shah
- Department of Neurobiology and Center for Neuroscience, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261
| | - Ellen Carpenter
- Mental Retardation Research Center, Department of Psychiatry and Biobehavioral Science, UCLA School of Medicine, NRB 303, 635 Charles E. Young Drive South, Los Angeles, CA 90095
| | - Peter McCaffery
- Institute of Medical Science, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK
| | - Cynthia Lance-Jones
- Department of Neurobiology and Center for Neuroscience, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261
| |
Collapse
|
194
|
|
195
|
Okaty BW, Miller MN, Sugino K, Hempel CM, Nelson SB. Transcriptional and electrophysiological maturation of neocortical fast-spiking GABAergic interneurons. J Neurosci 2009; 29:7040-52. [PMID: 19474331 PMCID: PMC2749660 DOI: 10.1523/jneurosci.0105-09.2009] [Citation(s) in RCA: 227] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2009] [Revised: 03/17/2009] [Accepted: 04/21/2009] [Indexed: 11/21/2022] Open
Abstract
Fast-spiking (FS) interneurons are important elements of neocortical circuitry that constitute the primary source of synaptic inhibition in adult cortex and impart temporal organization on ongoing cortical activity. The highly specialized intrinsic membrane and firing properties that allow cortical FS interneurons to perform these functions are attributable to equally specialized gene expression, which is ultimately coordinated by cell-type-specific transcriptional regulation. Although embryonic transcriptional events govern the initial steps of cell-type specification in most cortical interneurons, including FS cells, the electrophysiological properties that distinguish adult cortical cell types emerge relatively late in postnatal development, and the transcriptional events that drive this maturational process are not known. To address this, we used mouse whole-genome microarrays and whole-cell patch clamp to characterize the transcriptional and electrophysiological maturation of cortical FS interneurons between postnatal day 7 (P7) and P40. We found that the intrinsic and synaptic physiology of FS cells undergoes profound regulation over the first 4 postnatal weeks and that these changes are correlated with primarily monotonic but bidirectional transcriptional regulation of thousands of genes belonging to multiple functional classes. Using our microarray screen as a guide, we discovered that upregulation of two-pore K(+) leak channels between P10 and P25 contributes to one of the major differences between the intrinsic membrane properties of immature and adult FS cells and found a number of other candidate genes that likely confer cell-type specificity on mature FS cells.
Collapse
Affiliation(s)
- Benjamin W. Okaty
- Department of Biology, Brandeis University, Waltham, Massachusetts 02453
| | - Mark N. Miller
- Department of Biology, Brandeis University, Waltham, Massachusetts 02453
| | - Ken Sugino
- Department of Biology, Brandeis University, Waltham, Massachusetts 02453
| | - Chris M. Hempel
- Department of Biology, Brandeis University, Waltham, Massachusetts 02453
| | - Sacha B. Nelson
- Department of Biology, Brandeis University, Waltham, Massachusetts 02453
| |
Collapse
|
196
|
Erclik T, Hartenstein V, McInnes RR, Lipshitz HD. Eye evolution at high resolution: the neuron as a unit of homology. Dev Biol 2009; 332:70-9. [PMID: 19467226 DOI: 10.1016/j.ydbio.2009.05.565] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2009] [Revised: 05/17/2009] [Accepted: 05/19/2009] [Indexed: 01/09/2023]
Abstract
Based on differences in morphology, photoreceptor-type usage and lens composition it has been proposed that complex eyes have evolved independently many times. The remarkable observation that different eye types rely on a conserved network of genes (including Pax6/eyeless) for their formation has led to the revised proposal that disparate complex eye types have evolved from a shared and simpler prototype. Did this ancestral eye already contain the neural circuitry required for image processing? And what were the evolutionary events that led to the formation of complex visual systems, such as those found in vertebrates and insects? The recent identification of unexpected cell-type homologies between neurons in the vertebrate and Drosophila visual systems has led to two proposed models for the evolution of complex visual systems from a simple prototype. The first, as an extension of the finding that the neurons of the vertebrate retina share homologies with both insect (rhabdomeric) and vertebrate (ciliary) photoreceptor cell types, suggests that the vertebrate retina is a composite structure, made up of neurons that have evolved from two spatially separate ancestral photoreceptor populations. The second model, based largely on the conserved role for the Vsx homeobox genes in photoreceptor-target neuron development, suggests that the last common ancestor of vertebrates and flies already possessed a relatively sophisticated visual system that contained a mixture of rhabdomeric and ciliary photoreceptors as well as their first- and second-order target neurons. The vertebrate retina and fly visual system would have subsequently evolved by elaborating on this ancestral neural circuit. Here we present evidence for these two cell-type homology-based models and discuss their implications.
Collapse
Affiliation(s)
- Ted Erclik
- Program in Developmental and Stem Cell Biology, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
| | | | | | | |
Collapse
|
197
|
Flames N, Hobert O. Gene regulatory logic of dopamine neuron differentiation. Nature 2009; 458:885-9. [PMID: 19287374 PMCID: PMC2671564 DOI: 10.1038/nature07929] [Citation(s) in RCA: 188] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2009] [Accepted: 02/26/2009] [Indexed: 01/25/2023]
Abstract
Dopamine signalling regulates a variety of complex behaviours, and defects in dopamine neuron function or survival result in severe human pathologies, such as Parkinson's disease. The common denominator of all dopamine neurons is the expression of dopamine pathway genes, which code for a set of phylogenetically conserved proteins involved in dopamine synthesis and transport. Gene regulatory mechanisms that result in the direct activation of dopamine pathway genes and thereby ultimately determine the identity of dopamine neurons are poorly understood in all systems studied so far. Here we show that a simple cis-regulatory element, the dopamine (DA) motif, controls the expression of all dopamine pathway genes in all dopaminergic cell types in Caenorhabditis elegans. The DA motif is activated by the ETS transcription factor AST-1. Loss of ast-1 results in the failure of all distinct dopaminergic neuronal subtypes to terminally differentiate. Ectopic expression of ast-1 is sufficient to activate the dopamine pathway in some cellular contexts. Vertebrate dopamine pathway genes also contain phylogenetically conserved DA motifs that can be activated by the mouse ETS transcription factor Etv1 (also known as ER81), and a specific class of dopamine neurons fails to differentiate in mice lacking Etv1. Moreover, ectopic Etv1 expression induces dopaminergic fate marker expression in neuronal primary cultures. Mouse Etv1 can also functionally substitute for ast-1 in C. elegans. Our studies reveal a simple and apparently conserved regulatory logic of dopamine neuron terminal differentiation and may provide new entry points into the diagnosis or therapy of conditions in which dopamine neurons are defective.
Collapse
Affiliation(s)
- Nuria Flames
- Howard Hughes Medical Institute, Department of Biochemistry and Molecular Biophysics, Columbia University Medical Center, New York, New York 10032, USA.
| | | |
Collapse
|
198
|
Nobrega-Pereira S, Marin O. Transcriptional Control of Neuronal Migration in the Developing Mouse Brain. Cereb Cortex 2009; 19 Suppl 1:i107-13. [DOI: 10.1093/cercor/bhp044] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
|
199
|
Suga A, Taira M, Nakagawa S. LIM family transcription factors regulate the subtype-specific morphogenesis of retinal horizontal cells at post-migratory stages. Dev Biol 2009; 330:318-28. [PMID: 19361492 DOI: 10.1016/j.ydbio.2009.04.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2008] [Revised: 03/30/2009] [Accepted: 04/01/2009] [Indexed: 11/17/2022]
Abstract
In the nervous system, transcription factor expression in progenitor and/or nascent neurons regulates cell type specification. Although the functions of these transcription factors at early stages are well established, whether or not they are required during late developmental periods remains an open question. To address this issue, we conditionally manipulated gene expression using a recently developed transposon-mediated gene transfer system combined with in ovo electroporation. In chicken retinas, horizontal cells are classified into three subtypes according to their characteristic neuronal morphology. Two LIM family transcription factors, Lim1 and Isl1, begin to be expressed in a distinct subset of nascent retinal neurons, which results in complementary expression of these genes in mature retinas in type I and type II/III horizontal cells, respectively. Overexpression of Isl1 in post-migratory horizontal cells represses endogenous Lim1 expression and increases the number of neurons with a dendritic morphology characteristic of type II horizontal cells, which normally express Isl1. Inhibition of Lim1 function by expression of a dominant negative form Lim1 perturbs axonal morphogenesis of type I horizontal cells. Therefore, we propose that LIM family transcription factors are required for subtype-specific morphogenesis of horizontal cells at later stages of retinal development.
Collapse
Affiliation(s)
- Akiko Suga
- Nakagawa Initiative Research Unit, RIKEN Advanced Science Institute, 2-1, Hirosawa, Wako, Saitama 351-0198, Japan
| | | | | |
Collapse
|
200
|
Agalliu D, Takada S, Agalliu I, McMahon AP, Jessell TM. Motor neurons with axial muscle projections specified by Wnt4/5 signaling. Neuron 2009; 61:708-20. [PMID: 19285468 PMCID: PMC2741579 DOI: 10.1016/j.neuron.2008.12.026] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2008] [Revised: 12/15/2008] [Accepted: 12/22/2008] [Indexed: 12/11/2022]
Abstract
Axial muscles are innervated by motor neurons of the median motor column (MMC). In contrast to the segmentally restricted motor columns that innervate limb, body wall, and neuronal targets, MMC neurons are generated along the entire length of the spinal cord. We show that the specification of MMC fate involves a dorsoventral signaling program mediated by three Wnt proteins (Wnt4, Wnt5a, and Wnt5b) expressed in and around the floor plate. These Wnts appear to establish a ventralhigh to dorsallow signaling gradient and promote MMC identity and connectivity by maintaining expression of the LIM homeodomain proteins Lhx3/4 in spinal motor neurons. Elevation of Wnt4/5 activity generates additional MMC neurons at the expense of other motor neuron columnar subtypes, whereas depletion of Wnt4/5 activity inhibits the production of MMC neurons. Thus, two dorsoventral signaling pathways, mediated by Shh and Wnt4/5, are required to establish an early binary divergence in motor neuron columnar identity.
Collapse
Affiliation(s)
- Dritan Agalliu
- Howard Hughes Medical Institute, Kavli Institute for Brain Science, Departments of Neuroscience and Biochemistry and Molecular Biophysics, Columbia University Medical Center, New York, NY 10032, USA
- Department of Genetics and Development, Columbia University Medical Center, New York, NY 10032, USA
| | - Shinji Takada
- Department of Molecular and Cellular Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
- Okazaki Institute for Integrative Biosciences, National Institutes of Natural Sciences, Okazaki 444-8787, Japan
| | - Ilir Agalliu
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Andrew P. McMahon
- Department of Molecular and Cellular Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| | - Thomas M. Jessell
- Howard Hughes Medical Institute, Kavli Institute for Brain Science, Departments of Neuroscience and Biochemistry and Molecular Biophysics, Columbia University Medical Center, New York, NY 10032, USA
- Corresponding author
| |
Collapse
|