151
|
Labarriere N, Khammari A, Lang F, Dreno B. Is antigen specificity the key to efficient adoptive T-cell therapy? Immunotherapy 2011; 3:495-505. [DOI: 10.2217/imt.11.16] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Adoptive transfer of T cells remains a promising approach in melanoma. Initial clinical trials performed with polyclonal tumor-infiltrating lymphocyte gave limited clinical results. Nonetheless, encouraging results have been reported in adjuvant setting (stage III melanoma), and when tumor-infiltrating lymphocytes were associated with lymphodepleting regimens. Specificity of adoptive cell therapy has been achieved with the infusion of antigen specific cytotoxic T-lymphocyte clones, associated with some clinical responses. Antigen specificity can also be obtained by the allogeneic transfer of high-avidity T-cell receptors into autologous T cells. We propose an alternative strategy based on the selection of antigen-specific T cells with magnetic beads coated with HLA–peptide multimers. Future improvements of adoptive melanoma immunotherapy may be achieved by its association with other therapeutic strategies such as targeted therapy against signaling pathways.
Collapse
Affiliation(s)
- Nathalie Labarriere
- Unite Mixte de Recherche Institut National de la Sante et de la Recherche Medicale, Unite 892, Centre de Recherche en Canerologie Nantes-Angers, F-44007 Nantes, France
| | - Amir Khammari
- Unite Mixte de Recherche Institut National de la Sante et de la Recherche Medicale, Unite 892, Centre de Recherche en Canerologie Nantes-Angers, F-44007 Nantes, France
- Centre Hospitalo-Universitaire de Nantes, Unit of Skin Cancer, F-44093 Nantes, France
| | - Francois Lang
- Unite Mixte de Recherche Institut National de la Sante et de la Recherche Medicale, Unite 892, Centre de Recherche en Canerologie Nantes-Angers, F-44007 Nantes, France
- Université de Nantes, Unite de Formation et de Recherche des Sciences Pharmaceutiques, F-44093 Nantes, France
| | | |
Collapse
|
152
|
Abstract
It recently has become clear that multiple molecular subtypes of melanoma likely exist that may be associated with clinical response to defined therapeutic modalities. Gene expression profiling has revealed a signature that is associated with clinical benefit to melanoma vaccines, with preliminary work suggesting a correlation with response to other immunotherapy agents as well. Activating mutations in B-Raf and c-kit are associated with clinical response to the specific kinase inhibitors PLX4032 and imatinib, respectively. Several other signal transduction pathways have been found to be constitutively active or mutated in other subsets of melanoma tumors that are potentially targetable with new agents. Together, these emerging data suggest the evolution of a new paradigm in melanoma therapy in which molecular analysis of the tumor will be used to assign the most appropriate therapeutic modality for each individual patient, to maximize therapeutic success.
Collapse
Affiliation(s)
- Thomas F Gajewski
- Department of Pathology, The University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
153
|
Wang SF, Fouquet S, Chapon M, Salmon H, Regnier F, Labroquère K, Badoual C, Damotte D, Validire P, Maubec E, Delongchamps NB, Cazes A, Gibault L, Garcette M, Dieu-Nosjean MC, Zerbib M, Avril MF, Prévost-Blondel A, Randriamampita C, Trautmann A, Bercovici N. Early T cell signalling is reversibly altered in PD-1+ T lymphocytes infiltrating human tumors. PLoS One 2011; 6:e17621. [PMID: 21408177 PMCID: PMC3049782 DOI: 10.1371/journal.pone.0017621] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2011] [Accepted: 02/02/2011] [Indexed: 12/18/2022] Open
Abstract
To improve cancer immunotherapy, a better understanding of the weak efficiency of tumor-infiltrating T lymphocytes (TIL) is necessary. We have analyzed the functional state of human TIL immediately after resection of three types of tumors (NSCLC, melanoma and RCC). Several signalling pathways (calcium, phosphorylation of ERK and Akt) and cytokine secretion are affected to different extents in TIL, and show a partial spontaneous recovery within a few hours in culture. The global result is an anergy that is quite distinct from clonal anergy induced in vitro, and closer to adaptive tolerance in mice. PD-1 (programmed death -1) is systematically expressed by TIL and may contribute to their anergy by its mere expression, and not only when it interacts with its ligands PD-L1 or PD-L2, which are not expressed by every tumor. Indeed, the TCR-induced calcium and ERK responses were reduced in peripheral blood T cells transfected with PD-1. Inhibition by sodium stibogluconate of the SHP-1 and SHP-2 phosphatases that associate with several inhibitory receptors including PD-1, relieves part of the anergy apparent in TIL or in PD-1-transfected T cells. This work highlights some of the molecular modifications contributing to functional defects of human TIL.
Collapse
Affiliation(s)
- Shu-Fang Wang
- Inserm, U1016, Institut Cochin, Paris, France
- Cnrs, UMR8104, Paris, France
- Univ Paris Descartes, Paris, France
| | - Stéphane Fouquet
- Inserm, U1016, Institut Cochin, Paris, France
- Cnrs, UMR8104, Paris, France
- Univ Paris Descartes, Paris, France
| | - Maxime Chapon
- Inserm, U1016, Institut Cochin, Paris, France
- Cnrs, UMR8104, Paris, France
- Univ Paris Descartes, Paris, France
| | - Hélène Salmon
- Inserm, U1016, Institut Cochin, Paris, France
- Cnrs, UMR8104, Paris, France
- Univ Paris Descartes, Paris, France
| | - Fabienne Regnier
- Inserm, U1016, Institut Cochin, Paris, France
- Cnrs, UMR8104, Paris, France
- Univ Paris Descartes, Paris, France
| | - Karine Labroquère
- Inserm, U1016, Institut Cochin, Paris, France
- Cnrs, UMR8104, Paris, France
- Univ Paris Descartes, Paris, France
| | - Cécile Badoual
- Inserm U970, Univ Paris Descartes, PARCC, Paris, France
- Service d'Anatomie-Pathologique, Hôpital Européen Georges Pompidou, APHP, Paris, France
| | - Diane Damotte
- Laboratoire Microenvironnement immunitaire et tumeurs, INSERM U872, Centre de Recherche des Cordeliers, Paris, France
- Univ Pierre et Marie Curie, UMR S872, Paris, France
- Univ Paris Descartes, UMR S872, Paris, France
- Service d'Anatomie-Pathologie, Hôpital Hôtel Dieu, AP-HP, Paris, France
| | - Pierre Validire
- Service d'Anatomie-Pathologie, Institut Mutualiste Montsouris, Paris, France
| | - Eve Maubec
- APHP, UnivParis Diderot, Service de Dermatologie, Hôpital Bichat, Paris, France
| | | | - Aurélie Cazes
- Service d'Anatomie-Pathologique, Hôpital Européen Georges Pompidou, APHP, Paris, France
- Inserm U833, Collège de France, Université Paris Descartes, Paris, France
| | - Laure Gibault
- Service d'anatomie et cytologie pathologiques, Groupe Hospitalier Cochin-Saint Vincent de Paul, Univ Paris Descartes, Paris, France
| | - Marylène Garcette
- Inserm, U1016, Institut Cochin, Paris, France
- Cnrs, UMR8104, Paris, France
- Univ Paris Descartes, Paris, France
| | - Marie-Caroline Dieu-Nosjean
- Laboratoire Microenvironnement immunitaire et tumeurs, INSERM U872, Centre de Recherche des Cordeliers, Paris, France
- Univ Pierre et Marie Curie, UMR S872, Paris, France
- Univ Paris Descartes, UMR S872, Paris, France
| | - Marc Zerbib
- APHP, Hôpital Cochin, service d'Urologie, Paris, France
| | - Marie-Françoise Avril
- Inserm, U1016, Institut Cochin, Paris, France
- Cnrs, UMR8104, Paris, France
- Univ Paris Descartes, Paris, France
- APHP, Hôpital Cochin, Service de Dermatologie, Paris, France
| | - Armelle Prévost-Blondel
- Inserm, U1016, Institut Cochin, Paris, France
- Cnrs, UMR8104, Paris, France
- Univ Paris Descartes, Paris, France
| | - Clotilde Randriamampita
- Inserm, U1016, Institut Cochin, Paris, France
- Cnrs, UMR8104, Paris, France
- Univ Paris Descartes, Paris, France
| | - Alain Trautmann
- Inserm, U1016, Institut Cochin, Paris, France
- Cnrs, UMR8104, Paris, France
- Univ Paris Descartes, Paris, France
- * E-mail: (AT); (NB)
| | - Nadège Bercovici
- Inserm, U1016, Institut Cochin, Paris, France
- Cnrs, UMR8104, Paris, France
- Univ Paris Descartes, Paris, France
- * E-mail: (AT); (NB)
| |
Collapse
|
154
|
Progressive upregulation of PD-1 in primary and metastatic melanomas associated with blunted TCR signaling in infiltrating T lymphocytes. J Invest Dermatol 2011; 131:1300-7. [PMID: 21346771 DOI: 10.1038/jid.2011.30] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Programmed death-1 (PD-1) is involved in T-cell tolerance to self-antigens. For some cancers, it has been suggested that the expression of a ligand of PD-1, namely PD-L1, could contribute to tumor escape from immune destruction. Nevertheless, the relationship between PD-1 expression on tumor-infiltrating T lymphocytes (TILs), disease stage, and TIL responsiveness is still poorly documented. In this study, we show that freshly isolated CD4(+) and CD8(+) TILs express substantial levels of PD-1 in primary melanomas. The expression of PD-1 was further increased at later stages in distant cutaneous metastases, especially on CD8(+) TILs. The expression of PD-1 ligands was frequent only in metastases, on both tumor cells and tumor-derived myeloid cells. TILs isolated from these cutaneous tumors are poorly reactive ex vivo, with blunted calcium response and IFN-γ production after TCR stimulation. Surprisingly, in distinct parts of a primary melanoma, either invasive or regressing, we show that TILs similarly express PD-1 and remain dysfunctional. The expressions of PD-1 and PD-L1 in metastatic melanoma lesions could be considered as witnesses of an unsuccessful anti-tumoral immune response, but the direct involvement of PD-1 in the severity of the disease, and the importance of TILs in tumor regression, remain to be established.
Collapse
|
155
|
McDonnell AM, Nowak AK, Lake RA. Contribution of the immune system to the chemotherapeutic response. Semin Immunopathol 2011; 33:353-67. [PMID: 21274535 DOI: 10.1007/s00281-011-0246-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Accepted: 01/11/2011] [Indexed: 01/28/2023]
Abstract
The immune system plays an important role in the surveillance of neoplastic cells by eliminating them before they manifest as full-blown cancer. Despite this, tumors do develop in the presence of a functioning immune system. Conventional chemotherapy and its ability to directly kill tumor cells is one of the most effective weapons in the fight against cancer, however, increasing evidence suggests that the therapeutic efficacy of some cytotoxic drugs relies on their capacity to interact with the immune system. Killing of tumor cells in a manner that favors their capture by immune cells or selective targeting of immunosuppressive pathways by specific chemotherapies promotes the generation of an effective anti-cancer response; however, this alone is rarely sufficient to cause elimination of advanced disease. An understanding of the immunological events occurring in both animal models and patients undergoing chemotherapy will guide decisions for the development of appropriate combinations and scheduling for the integration of chemotherapy with immunotherapy.
Collapse
Affiliation(s)
- Alison M McDonnell
- National Centre for Asbestos-Related Diseases and School of Medicine and Pharmacology, The University of Western Australia, Perth, 6009 Western Australia, Australia
| | | | | |
Collapse
|
156
|
Vazquez-Cintron EJ, Monu NR, Frey AB. Tumor-induced disruption of proximal TCR-mediated signal transduction in tumor-infiltrating CD8+ lymphocytes inactivates antitumor effector phase. THE JOURNAL OF IMMUNOLOGY 2011; 185:7133-40. [PMID: 21127315 DOI: 10.4049/jimmunol.1001157] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The presence in cancer tissue of Ag-specific, activated tumor infiltrating CD8(+) T cells proves that tumors express Ags capable of eliciting immune response. Therefore, in general, tumor escape from immune-mediated clearance is not attributable to immunological ignorance. However, tumor-infiltrating lymphocytes are defective in effector phase function, demonstrating tumor-induced immune suppression that likely underlies tumor escape. Since exocytosis of lytic granules is dependent upon TCR-mediated signal transduction, it is a reasonable contention that tumors may induce defective signal transduction in tumor infiltrating T cells. In this review, we consider the biochemical basis for antitumor T cell dysfunction, focusing on the role of inhibitory signaling receptors in restricting TCR-mediated signaling in tumor-infiltrating lymphocytes.
Collapse
Affiliation(s)
- Edwin J Vazquez-Cintron
- Department of Cell Biology, New York University Langone Medical Center, 550 First Avenue, New York, NY 10016, USA
| | | | | |
Collapse
|
157
|
Abstract
For the last two decades the immunotherapy of patients with solid and hematopoietic tumors has met with variable success. We have reviewed the field of tumor vaccines to examine what has worked and what has not, why this has been the case, how the anti-tumor responses were examined, and how we can make tumor immunity successful for the majority of individuals rather than for the exceptional patients who currently show successful immune responses against their tumors.
Collapse
Affiliation(s)
- Jan Joseph Melenhorst
- Stem Cell Allogeneic Transplant Section, Hematology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | |
Collapse
|
158
|
Profile of a serial killer: cellular and molecular approaches to study individual cytotoxic T-cells following therapeutic vaccination. J Biomed Biotechnol 2010; 2011:452606. [PMID: 21113290 PMCID: PMC2989374 DOI: 10.1155/2011/452606] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2010] [Accepted: 09/29/2010] [Indexed: 12/28/2022] Open
Abstract
T-cell vaccination may prevent or treat cancer and infectious diseases, but further progress is required to increase clinical efficacy. Step-by-step improvements of T-cell vaccination in phase I/II clinical studies combined with very detailed analysis of T-cell responses at the single cell level are the strategy of choice for the identification of the most promising vaccine candidates for testing in subsequent large-scale phase III clinical trials. Major aims are to fully identify the most efficient T-cells in anticancer therapy, to characterize their TCRs, and to pinpoint the mechanisms of T-cell recruitment and function in well-defined clinical situations. Here we discuss novel strategies for the assessment of human T-cell responses, revealing in part unprecedented insight into T-cell biology and novel structural principles that govern TCR-pMHC recognition. Together, the described approaches advance our knowledge of T-cell mediated-protection from human diseases.
Collapse
|
159
|
Pardee AD, McCurry D, Alber S, Hu P, Epstein AL, Storkus WJ. A therapeutic OX40 agonist dynamically alters dendritic, endothelial, and T cell subsets within the established tumor microenvironment. Cancer Res 2010; 70:9041-52. [PMID: 21045144 DOI: 10.1158/0008-5472.can-10-1369] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Little preclinical modeling currently exists to support the use of OX40 agonists as therapeutic agents in the setting of advanced cancers, as well as the mechanisms through which therapeutic efficacy is achieved. We show that treatment of mice bearing well-established day 17 sarcomas with a novel OX40 ligand-Fc fusion protein (OX40L-Fc) resulted in tumor regression or dormancy in the majority of treated animals. Unexpectedly, dendritic cells (DC) in the progressive tumor microenvironment (TME) acquire OX40 expression and bind fluorescently labeled OX40L-Fc. Furthermore, longitudinal analyses revealed that DCs become enriched in the tumor-draining lymph node (TDLN) of both wild-type and Rag-/- mice within 3 days after OX40L-Fc treatment. By day 7 after treatment, a significant expansion of CXCR3+ T effector cells was noted in the TDLN, and by day 10 after treatment, type 1 polarized T cells exhibiting a reactivated memory phenotype had accumulated in the tumors. High levels of CXCL9 (a CXCR3 ligand) and enhanced expression of VCAM-1 by vascular endothelial cells (VEC) were observed in the TME early after treatment with OX40L-Fc. Notably, these vascular alterations were maintained in Rag-/- mice, indicating that the OX40L-Fc-mediated activation of both DC and VEC occurs in a T-cell-independent manner. Collectively, these findings support a paradigm in which the stimulation of DC, T cells, and the tumor vasculature by an OX40 agonist dynamically orchestrates the activation, expansion, and recruitment of therapeutic T cells into established tumors.
Collapse
Affiliation(s)
- Angela D Pardee
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, USA
| | | | | | | | | | | |
Collapse
|
160
|
Lee CG, Kwon HK, Ryu JH, Kang SJ, Im CR, II Kim J, Im SH. Abalone visceral extract inhibit tumor growth and metastasis by modulating Cox-2 levels and CD8+ T cell activity. Altern Ther Health Med 2010; 10:60. [PMID: 20961430 PMCID: PMC2972231 DOI: 10.1186/1472-6882-10-60] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2010] [Accepted: 10/20/2010] [Indexed: 12/18/2022]
Abstract
BACKGROUND Abalone has long been used as a valuable food source in East Asian countries. Although the nutritional importance of abalone has been reported through in vitro and in vivo studies, there is little evidence about the potential anti-tumor effects of abalone visceral extract. The aim of the present study is to examine anti-tumor efficacy of abalone visceral extract and to elucidate its working mechanism. METHODS In the present study, we used breast cancer model using BALB/c mouse-derived 4T1 mammary carcinoma and investigated the effect of abalone visceral extract on tumor development. Inhibitory effect against tumor metastasis was assessed by histopathology of lungs. Cox-2 productions by primary and secondary tumor were measured by real-time RT-PCR and immunoblotting (IB). Proliferation assay based on [3H]-thymidine incorporation and measurement of cytokines and effector molecules by RT-PCR were used to confirm tumor suppression efficacy of abalone visceral extract by modulating cytolytic CD8+ T cells. The cytotoxicity of CD8+ T cell was compared by JAM test. RESULTS Oral administration of abalone visceral extract reduced tumor growth (tumor volume and weight) and showed reduced metastasis as confirmed by decreased level of splenomegaly (spleen size and weight) and histological analysis of the lung metastasis (gross analysis and histological staining). Reduced expression of Cox-2 (mRNA and protein) from primary tumor and metastasized lung was also detected. In addition, treatment of abalone visceral extract increased anti-tumor activities of CD8+ T cells by increasing the proliferation capacity and their cytolytic activity. CONCLUSIONS Our results suggest that abalone visceral extract has anti-tumor effects by suppressing tumor growth and lung metastasis through decreasing Cox-2 expression level as well as promoting proliferation and cytolytic function of CD8+ T cells.
Collapse
|
161
|
Zhou Q, Xiao H, Liu Y, Peng Y, Hong Y, Yagita H, Chandler P, Munn DH, Mellor A, Fu N, He Y. Blockade of programmed death-1 pathway rescues the effector function of tumor-infiltrating T cells and enhances the antitumor efficacy of lentivector immunization. THE JOURNAL OF IMMUNOLOGY 2010; 185:5082-92. [PMID: 20926790 DOI: 10.4049/jimmunol.1001821] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Despite intensive effort, the antitumor efficacy of tumor vaccines remains limited in treating established tumors regardless of the potent systemic tumor-specific immune response and the increases of tumor infiltration of T effector cells. In the current study, we demonstrated that although lentivector (lv) immunization markedly increased Ag-dependent tumor infiltration of CD8 and CD4 T cells and generated Ag-specific antitumor effect, it simultaneously increased the absolute number of myeloid-derived suppressor cells and regulatory T cells in the tumor lesions. In addition, lv immunization induced expression of programmed death-ligand 1 in the tumor lesions. Furthermore, the tumor-infiltrating CD8 T cells expressed high levels of programmed death-1 and were partially dysfunctional, producing lower amounts of effector cytokines and possessing a reduced cytotoxicity. Together, these immune-suppression mechanisms in the tumor microenvironment pose a major obstacle to effective tumor immunotherapy and may explain the limited antitumor efficacy of lv immunization. The loss of effector function in the tumor microenvironment is reversible, and the effector function of CD8 T cells in the tumor could be partially rescued by blocking programmed death-1 and programmed death-ligand 1 pathway in vitro and in vivo, resulting in enhanced antitumor efficacy of lv immunization. These data suggest that immunization alone may exacerbate immune suppression in the tumor lesions and that methods to improve the tumor microenvironment and to rescue the effector functions of tumor-infiltrating T cells should be incorporated into immunization strategies to achieve enhanced antitumor efficacy.
Collapse
Affiliation(s)
- Qifeng Zhou
- Immunology/Immunotherapy Program, Medical College of Georgia Cancer Center, Medical College of Georgia, Augusta, GA 30912, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
162
|
Abstract
Advances in basic immunology have led to an improved understanding of the interactions between the immune system and tumours, generating renewed interest in approaches that aim to treat cancer immunologically. As clinical and preclinical studies of tumour immunotherapy illustrate several immunological principles, a review of these data is broadly instructive and is particularly timely now that several agents are beginning to show evidence of efficacy. This is especially relevant in the case of prostate cancer, as recent approval of sipuleucel-T by the US Food and Drug Administration marks the first antigen-specific immunotherapy approved for cancer treatment. Although this Review focuses on immunotherapy for prostate cancer, the principles discussed are applicable to many tumour types, and the approaches discussed are highlighted in that context.
Collapse
Affiliation(s)
- Charles G Drake
- Johns Hopkins Kimmel Cancer Center, 1650 Orleans Street-CRB 410, Baltimore, Maryland 21231, USA.
| |
Collapse
|
163
|
Demotte N, Wieërs G, Van Der Smissen P, Moser M, Schmidt C, Thielemans K, Squifflet JL, Weynand B, Carrasco J, Lurquin C, Courtoy PJ, van der Bruggen P. A galectin-3 ligand corrects the impaired function of human CD4 and CD8 tumor-infiltrating lymphocytes and favors tumor rejection in mice. Cancer Res 2010; 70:7476-88. [PMID: 20719885 DOI: 10.1158/0008-5472.can-10-0761] [Citation(s) in RCA: 126] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Human CD8(+) tumor-infiltrating T lymphocytes (TIL), in contrast with CD8(+) blood cells, show impaired IFN-γ secretion on ex vivo restimulation. We have attributed the impaired IFN-γ secretion to a decreased mobility of T-cell receptors on trapping in a lattice of glycoproteins clustered by extracellular galectin-3. Indeed, we have previously shown that treatment with N-acetyllactosamine, a galectin ligand, restored this secretion. We strengthened this hypothesis here by showing that CD8(+) TIL treated with an anti-galectin-3 antibody had an increased IFN-γ secretion. Moreover, we found that GCS-100, a polysaccharide in clinical development, detached galectin-3 from TIL and boosted cytotoxicity and secretion of different cytokines. Importantly, we observed that not only CD8(+) TIL but also CD4(+) TIL treated with GCS-100 secreted more IFN-γ on ex vivo restimulation. In tumor-bearing mice vaccinated with a tumor antigen, injections of GCS-100 led to tumor rejection in half of the mice, whereas all control mice died. In nonvaccinated mice, GCS-100 had no effect by itself. These results suggest that a combination of galectin-3 ligands and therapeutic vaccination may induce more tumor regressions in cancer patients than vaccination alone.
Collapse
Affiliation(s)
- Nathalie Demotte
- Ludwig Institute for Cancer Research and Université Catholique de Louvain, de Duve Institute, Brussels, Belgium
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
164
|
Lin Y, Gallardo HF, Ku GY, Li H, Manukian G, Rasalan TS, Xu Y, Terzulli SL, Old LJ, Allison JP, Houghton AN, Wolchok JD, Yuan J. Optimization and validation of a robust human T-cell culture method for monitoring phenotypic and polyfunctional antigen-specific CD4 and CD8 T-cell responses. Cytotherapy 2010; 11:912-22. [PMID: 19903103 DOI: 10.3109/14653240903136987] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND AIMS Monitoring cellular immune responses is one prerequisite for the rational development of cancer vaccines. METHODS We describe an extensive effort to optimize and validate quantitatively an in vitro T-cell culture method by determining the phenotype and function of both CD4(+) and CD8(+) T cells, including measurement of the phenotype markers CCR7, CD45RA, CD28 and CD27 and the functional markers interferon (IFN)-gamma, interleukin (IL)-2, macrophage inflammatory protein (MIP)-1beta, tumor necrosis factor (TNF)-alpha and CD107a. RESULTS Autologous peripheral blood mononuclear cells (PBMC) were potent stimulators that expanded antigen (Ag)-specific CD8(+) T cells during short-term culture with the addition of IL-2 and IL-15 cytokines. Polyfunctional Ag-specific CD4(+) and CD8(+) T cells were detectable using this method. CONCLUSIONS Our culture system represents a robust human T-cell culture protocol that permits phenotypic, quantitative and qualitative evaluation of vaccine-induced CD4(+) and CD8(+) T-cell responses.
Collapse
Affiliation(s)
- Yun Lin
- Ludwig Center for Cancer Immunotherapy, Immunology Program, Sloan-Kettering Institute, Newy York, New York 10021, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
165
|
Soudja SM, Wehbe M, Mas A, Chasson L, de Tenbossche CP, Huijbers I, Van den Eynde B, Schmitt-Verhulst AM. Tumor-initiated inflammation overrides protective adaptive immunity in an induced melanoma model in mice. Cancer Res 2010; 70:3515-25. [PMID: 20406967 DOI: 10.1158/0008-5472.can-09-4354] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We studied the effect of the immune system on two differentially aggressive melanomas developing in mice on conditional deletion of the INK4A/ARF tumor suppressor gene, with concomitant expression of oncogene H-Ras(G12V) and a natural cancer-germline tumor antigen (TA). "Slow progressor" melanomas contained no activated T lymphocytes (TL). In contrast, "aggressive" melanomas were infiltrated by activated TLs lacking effector molecules and expressing high levels of PD-1, indicating an exhausted phenotype. Aggressive melanomas were also infiltrated by immature myeloid cells (IMC). Infiltration was associated with local inflammation and systemic Th2/Th17-oriented chronic inflammation that seemed to impair further activation of TLs, as tumor-specific T cells adoptively transferred into mice bearing aggressive melanomas were poorly activated and failed to infiltrate the melanoma. This immunosuppression also led to the incapacity of these mice to reject inoculated TA-positive tumors, in contrast to slow-progressing melanoma-bearing mice, which were responsive. To test the role of adaptive immunity in tumor progression, we induced melanomas in immunodeficient RagKO compound mice. These mice developed aggressive but not slow-progressing melanomas at a higher frequency and with a shorter latency than immunocompetent mice. Immunodeficient mice also developed abnormal inflammation and infiltration of IMCs in a manner similar to immunocompetent mice, indicating that this phenotype was not dependent on adaptive immunity. Therefore, tumor-intrinsic factors distinguishing the two melanoma types control the initiation of inflammation, which was independent of adaptive immunity. The latter delayed development of aggressive melanomas but was overridden by inflammation.
Collapse
Affiliation(s)
- Saïdi M Soudja
- Centre d'Immunologie de Marseille-Luminy, Université de la Méditerranée, Institut National de la Sante et de la Recherche Medicale, U631 Centre National de la Recherche Scientifique, UMR6102, Marseille, France
| | | | | | | | | | | | | | | |
Collapse
|
166
|
Brayer J, Cheng F, Wang H, Horna P, Vicente-Suarez I, Pinilla-Ibarz J, Sotomayor EM. Enhanced CD8 T cell cross-presentation by macrophages with targeted disruption of STAT3. Immunol Lett 2010; 131:126-30. [PMID: 20346983 DOI: 10.1016/j.imlet.2010.03.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2009] [Revised: 02/11/2010] [Accepted: 03/19/2010] [Indexed: 11/28/2022]
Abstract
CD8 T cell tolerance, once thought to be largely a result of clonal deletion, is now appreciated to be much more complex, additionally involving multiple permutations of partial loss of effector function in residual clonal populations. This is especially important in the context of tumor immunity, in which persistent tolerized cytotoxic CD8 T cells (CTL), if reactivated, could potentially mount a protective response. Previously we have shown that antigen-presenting cells (APCs) with a targeted disruption of STAT3 break tolerance in CD4 T cells. Here we evaluate the STAT3-defective APC in terms of its ability to induce a productive CTL response. Our data demonstrate that macrophages derived from conditional STAT3 knockout mice are superior to wild-type macrophages in terms of their ability to prime cognate CTL responses, and to cross-present tumor-derived antigen to CTLs in vitro. CTLs cultured with STAT3-deficient APCs demonstrated a stronger proliferative response and produced increased amounts of IFN-gamma and TNF-alpha, all of which have been shown to be diminished in tumor-tolerized CD8 T cells. Targeting STAT3 signaling represents therefore an enticing strategy to augment CTL responses in the tumor-bearing host.
Collapse
Affiliation(s)
- Jason Brayer
- Department of Immunology and Department of Malignant Hematology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, United States
| | | | | | | | | | | | | |
Collapse
|
167
|
Abstract
PURPOSE OF REVIEW Cancer immunology became scientifically credible only some 20 years ago with the demonstration of the existence of human tumor antigens. In this short time span, outcomes of cancer vaccine trials have raised hopes and also surfaced disappointments. This review focuses on the prospects of peptide-based vaccines in cancer immunotherapy. RECENT FINDINGS Accurate descriptions of the natural immune responses to cancer allow for a more precise targeting of such tumors by boosting preexisting antitumor immune responses in patients. The development of synthetic long-peptide vaccines avoids many of the pitfalls of previous vaccination trials through the presence of multiple epitopes that may elicit memory antitumor immune responses. Furthermore, the combination of standard therapy with newly developed immunomodulating agents, such as antibodies blocking cytotoxic T lymphocyte-associated antigen-4 or programmed death receptor-1, and more efficient immune adjuvants has shown promising results. SUMMARY Immunotherapy is becoming an effective means of targeting human cancers, and the application of such approaches in combination with current standard schemes of treatment can lead to a significant benefit in survival and quality of life for cancer patients.
Collapse
|
168
|
Camus M, Galon J. Memory T-Cell Responses and Survival in Human Cancer: Remember to Stay Alive. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 684:166-77. [DOI: 10.1007/978-1-4419-6451-9_13] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
169
|
Derré L, Rivals JP, Jandus C, Pastor S, Rimoldi D, Romero P, Michielin O, Olive D, Speiser DE. BTLA mediates inhibition of human tumor-specific CD8+ T cells that can be partially reversed by vaccination. J Clin Invest 2009; 120:157-67. [PMID: 20038811 DOI: 10.1172/jci40070] [Citation(s) in RCA: 225] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2009] [Accepted: 10/07/2009] [Indexed: 12/12/2022] Open
Abstract
The function of antigen-specific CD8+ T cells, which may protect against both infectious and malignant diseases, can be impaired by ligation of their inhibitory receptors, which include CTL-associated protein 4 (CTLA-4) and programmed cell death 1 (PD-1). Recently, B and T lymphocyte attenuator (BTLA) was identified as a novel inhibitory receptor with structural and functional similarities to CTLA-4 and PD-1. BTLA triggering leads to decreased antimicrobial and autoimmune T cell responses in mice, but its functions in humans are largely unknown. Here we have demonstrated that as human viral antigen-specific CD8+ T cells differentiated from naive to effector cells, their surface expression of BTLA was gradually downregulated. In marked contrast, human melanoma tumor antigen-specific effector CD8+ T cells persistently expressed high levels of BTLA in vivo and remained susceptible to functional inhibition by its ligand herpes virus entry mediator (HVEM). Such persistence of BTLA expression was also found in tumor antigen-specific CD8+ T cells from melanoma patients with spontaneous antitumor immune responses and after conventional peptide vaccination. Remarkably, addition of CpG oligodeoxynucleotides to the vaccine formulation led to progressive downregulation of BTLA in vivo and consequent resistance to BTLA-HVEM-mediated inhibition. Thus, BTLA activation inhibits the function of human CD8+ cancer-specific T cells, and appropriate immunotherapy may partially overcome this inhibition.
Collapse
Affiliation(s)
- Laurent Derré
- Ludwig Institute for Cancer Research, Hôpital Orthopédique, Niveau 5 Est, Av. Pierre-Decker 4, Lausanne, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
170
|
Jandus C, Speiser D, Romero P. Recent advances and hurdles in melanoma immunotherapy. Pigment Cell Melanoma Res 2009; 22:711-23. [DOI: 10.1111/j.1755-148x.2009.00634.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
171
|
Adamina M, Rosenthal R, Weber WP, Frey DM, Viehl CT, Bolli M, Huegli RW, Jacob AL, Heberer M, Oertli D, Marti W, Spagnoli GC, Zajac P. Intranodal immunization with a vaccinia virus encoding multiple antigenic epitopes and costimulatory molecules in metastatic melanoma. Mol Ther 2009; 18:651-9. [PMID: 19935776 DOI: 10.1038/mt.2009.275] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Recombinant vaccinia virus (rVV) encoding tumor-associated antigens (TAAs) and adhesion or costimulatory molecules may represent important immunogenic reagents for cancer immunotherapy. Recently, intranodal (IN) antigen administration was suggested to be more immunogenic than intradermal (ID) vaccination. However, IN rVV administration has not been attempted so far. We used a rVV encoding gp100(280-288), Melan-A/MART-1(27-35) and tyrosinase(1-9) HLA-A0201 restricted epitopes and CD80 and CD86 costimulatory molecules in stage III and IV melanoma patients in a phase 1/2 trial. Of 15 patients initiating treatment, including two cycles of IN immunization, each comprising one rVV administration and three recall injections of the corresponding peptides, accompanied by subcutaneous granulocyte macrophage-colony stimulating factor supplementation, five withdrew due to progressing disease. Of 10 remaining patients seven showed evidence of induction of cytotoxic T lymphocytes (CTLs) directed against at least one epitope under investigation, as detectable by limiting dilution analysis (LDA) of specific precursors and multimer staining. Adverse reactions were mild (National Cancer Institute (NCI) grade 1-2) and mainly represented by fever, skin rashes, and pruritus. These data indicate that IN administration of rVV encoding melanoma-associated epitopes and costimulatory molecules is safe and immunogenic.
Collapse
Affiliation(s)
- Michel Adamina
- Institute of Surgical Research and Hospital Management, University of Basel, Basel, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
172
|
Attig S, Hennenlotter J, Pawelec G, Klein G, Koch SD, Pircher H, Feyerabend S, Wernet D, Stenzl A, Rammensee HG, Gouttefangeas C. Simultaneous infiltration of polyfunctional effector and suppressor T cells into renal cell carcinomas. Cancer Res 2009; 69:8412-9. [PMID: 19843860 DOI: 10.1158/0008-5472.can-09-0852] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Renal cell carcinoma is frequently infiltrated by cells of the immune system. This makes it important to understand interactions between cancer cells and immune cells so they can be manipulated to bring clinical benefit. Here, we analyze subsets and functions of T lymphocytes infiltrating renal cell tumors directly ex vivo following mechanical disaggregation and without any culture step. Subpopulations of memory and effector CD4(+) Th1, Th2, and Th17 and CD8(+) Tc1 cells were identified based on surface phenotype, activation potential, and multicytokine production. Compared with the same patient's peripheral blood, T lymphocytes present inside tumors were found to be enriched in functional CD4(+) cells of the Th1 lineage and in effector memory CD8(+) cells. Additionally, several populations of CD4(+) and CD8(+) regulatory T cells were identified that may synergize to locally dampen antitumor T-cell responses.
Collapse
Affiliation(s)
- Sebastian Attig
- Department of Immunology, Institute for Cell Biology, Eberhard-Karls University, Tübingen, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
173
|
Berinstein NL. Strategies to enhance the therapeutic activity of cancer vaccines: using melanoma as a model. Ann N Y Acad Sci 2009; 1174:107-17. [PMID: 19769743 DOI: 10.1111/j.1749-6632.2009.04935.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Although there has been initial success with some types of immunotherapy, such as adoptive cellular therapy and monoclonal antibody therapy for cancer, the experience with therapeutic cancer vaccines has been much less encouraging. Almost all randomized phase III trials testing therapeutic cancer vaccines have failed to meet their end points. There are several potential explanations for this, ranging from factors related to the clinical trial design and the vaccine itself. Perhaps the most important are host-related factors. Specifically, progression and metastases of many cancers are associated with induction of multiple cancer-specific immune-inhibitory pathways. These inhibitory pathways include induction of T-cell anergy through dendritic cell dysfunction, release of immunosuppressive cytokines, T-cell exhaustion through inhibitory T-cell signaling and T regulatory cell-mediated tumor-specific immune suppression. All of these pathways have been shown to be operational in patients with melanoma. To enhance the activity of therapeutic cancer vaccines, these immunosupressive pathways need to be addressed and reversed. A number of new immunomodulatory reagents that are able to interfere with some of these pathways are now being assessed in the clinic. Sanofi Pasteur designed a clinical trial in patients with advanced or metastatic melanoma that is intended to both induce tumor-specific T-cell responses and modulate or reverse some of the immune suppression pathways that the melanoma has induced. To accomplish this, the recently optimized ALVAC melanoma multi-antigen vaccine is administered with high doses of IFN-alpha. Clinical trial parameters have also been optimized to enhance the likelihood of inducing and documenting antitumor activity. Success with other therapeutic cancer vaccine approaches will likely require similar approaches in which promising immunogenic vaccines are integrated with biologically and clinically active immunomodulatory reagents.
Collapse
Affiliation(s)
- Neil L Berinstein
- Departments of Medicine, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
174
|
Wang W, Lau R, Yu D, Zhu W, Korman A, Weber J. PD1 blockade reverses the suppression of melanoma antigen-specific CTL by CD4+ CD25(Hi) regulatory T cells. Int Immunol 2009; 21:1065-77. [PMID: 19651643 DOI: 10.1093/intimm/dxp072] [Citation(s) in RCA: 223] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Regulatory CD4(+)CD25(Hi) T cells (Treg) and programmed death-1 (PD-1) molecule have emerged as pivotal players in immune regulation. However, the underlying mechanisms by which they impact antigen-specific CD8(+) immune responses in cancer patients and how they interact with each other under physiologic conditions remain unclear. Herein, we examined the relationship of PD-1 and its abrogation to the function of Treg in patients with melanoma using short-term in vitro assays to generate melanoma-specific T cells. We identified Treg in the circulation of vaccinated melanoma patients and detected PD-1 expression on vaccine-induced melanoma antigen-specific CTLs, as well as on and within Treg from patients' peripheral blood. Programmed death ligand (PD-L) 1 expression was also detected on patients' Treg. PD-1 blockade promoted the generation of melanoma antigen-specific CTLs and masked their inhibition by Treg. The mechanisms by which PD-1 blockade mediated immune enhancement included direct augmentation of melanoma antigen-specific CTL proliferation, heightening their resistance to inhibition by Treg and direct limitation of the inhibitory ability of Treg. PD-1 blockade reversed the increased expression of PD-1 and PD-L1 on melanoma antigen-specific CTL by Treg, rescued INF-gamma and IL-2 or INF-gamma and tumor necrosis factor-alpha co-expression and expression of IL-7 receptor by melanoma antigen-specific CTL which were diminished by Treg. PD-1 blockade also resulted in down-regulation of intracellular FoxP3 expression by Treg. These data suggest that PD-1 is importantly implicated in the regulation of Treg function in melanoma patients.
Collapse
Affiliation(s)
- Wenshi Wang
- Donald A Adam Comprehensive Melanoma Research Center, Department of Immunology and Immunotherapy, Moffitt Cancer Center, 12902 Magnolia Drive, SRB-24324, Tampa, FL 33612, USA.
| | | | | | | | | | | |
Collapse
|
175
|
Abstract
Tumor immunotherapy harnesses the potential of the host immune system to recognize and eradicate neoplastic tissue. The efficiency of the immune system in mediating tumor regression depends on the induction of antigen-specific T-cell responses through physiologic immune surveillance, priming by vaccination, or following adoptive transfer of T-cells. Although a variety of tumor-associated antigens have been identified and many immunotherapeutic strategies have been tested, objective clinical responses are rare. The reasons for this include the inability of current immunotherapy approaches to generate efficient T-cell responses, the presence of regulatory cells that inhibit T-cell responses, and other tumor escape mechanisms. The activation of effector T-cells depends on interactions between the T-cell receptor (TCR) and cognate antigen presented as peptides within the major histocompatibility complex (MHC) and costimulatory signals delivered by CD28, which binds to B7.1 and B7.2. More recently, several new molecular receptors and ligands have been identified that integrate into stimulatory or inhibitory activity for T-cells. These signals have been loosely associated with the costimulatory molecules but actually represent a diverse group of molecular pathways that have unique and overlapping functions. This review will focus on these pathways and emphasize their role in mediating T-cell activation for the purpose of enhancing tumor immunotherapy. As we gain a better understanding of the molecular and cellular consequences of T-cell signaling through the costimulatory pathways, a more rational approach to the activation or inhibition of T-cell responses can be developed for the treatment of cancer and other immune-mediated diseases.
Collapse
Affiliation(s)
- Robert C Ward
- The Tumor Immunology Laboratory, Division of Surgical Oncology, Columbia University, New York, New York 10032, USA
| | | |
Collapse
|
176
|
Lévy F, Colombetti S. Promises and Limitations of Murine Models in the Development of Anticancer T-Cell Vaccines. Int Rev Immunol 2009; 25:269-95. [PMID: 17169777 DOI: 10.1080/08830180600992407] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Murine models have been instrumental in defining the basic mechanisms of antitumor immunity. Most of these mechanisms have since been shown to operate in humans as well. Based on these similarities, active vaccination strategies aimed at eliciting antitumor T-cell responses have been elaborated and successfully implemented in various mouse models. However, the results of human antitumor vaccination trials have been rather disappointing thus far. This review summarizes the different experimental approaches used in mice to induce antitumor T-cell responses and identifies some critical parameters that should be considered when evaluating results from murine models.
Collapse
Affiliation(s)
- Frédéric Lévy
- Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne, Epalinges, Switzerland.
| | | |
Collapse
|
177
|
Behavior of endogenous tumor-associated macrophages assessed in vivo using a functionalized nanoparticle. Neoplasia 2009; 11:459-68, 2 p following 468. [PMID: 19412430 DOI: 10.1593/neo.09356] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2009] [Revised: 02/20/2009] [Accepted: 02/22/2009] [Indexed: 12/20/2022] Open
Abstract
Tumor-associated macrophages (TAMs) invade the tumor stroma in many cancers, yet their role is incompletely understood. To visualize and better understand these critical cells in tumor progression, we screened a portfolio of rationally selected, injectable agents to image endogenous TAMs ubiquitously in three different cancer models (colon carcinoma, lung adenocarcinoma, and soft tissue sarcoma). AMTA680, a functionally derivatized magneto-fluorescent nanoparticle, labeled a subset of myeloid cells with an "M2" macrophage phenotype, whereas other neighboring cells, including tumor cells and a variety of other leukocytes, remained unlabeled. We further show that AMTA680-labeled endogenous TAMs are not altered and can be tracked noninvasively at different resolutions and using various imaging modalities, e.g., fluorescence molecular tomography, magnetic resonance imaging, and multiphoton and confocal intravital microscopy. Quantitative assessment of TAM distribution and activity in vivo identified that these cells cluster in delimited foci within tumors, show relatively low motility, and extend cytoplasmic protrusions for prolonged physical interactions with neighboring tumor cells. Noninvasive imaging can also be used to monitor TAM-depleting regimen quantitatively. Thus, AMTA680 or related cell-targeting agents represent appropriate injectable vehicles for in vivo analysis of the tumor microenvironment.
Collapse
|
178
|
Abstract
Tumor immunotherapy depends on the interactions between the host, the tumor, and the immune system. Recent data suggests that priming of antigen-specific T cells alone may not be adequate for mediating regression of established tumors because of the immune inhibitory influences within the tumor microenvironment. Thus, we developed a recombinant vaccinia virus vector to express single or multiple T cell costimulatory molecules as a vector for local gene therapy in patients with malignant melanoma. This approach is feasible and generated local and systemic tumor immunity and induced objective clinical responses in patients with metastatic disease. This chapter reviews the details and major issues related to using live, replicating, recombinant poxviruses for gene delivery and antitumor vaccination within the tumor microenvironment.
Collapse
|
179
|
Impaired interferon signaling is a common immune defect in human cancer. Proc Natl Acad Sci U S A 2009; 106:9010-5. [PMID: 19451644 DOI: 10.1073/pnas.0901329106] [Citation(s) in RCA: 190] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Immune dysfunction develops in patients with many cancer types and may contribute to tumor progression and failure of immunotherapy. Mechanisms underlying cancer-associated immune dysfunction are not fully understood. Efficient IFN signaling is critical to lymphocyte function; animals rendered deficient in IFN signaling develop cancer at higher rates. We hypothesized that altered IFN signaling may be a key mechanism of immune dysfunction common to cancer. To address this, we assessed the functional responses to IFN in peripheral blood lymphocytes from patients with 3 major cancers: breast cancer, melanoma, and gastrointestinal cancer. Type-I IFN (IFN-alpha)-induced signaling was reduced in T cells and B cells from all 3 cancer-patient groups compared to healthy controls. Type-II IFN (IFN-gamma)-induced signaling was reduced in B cells from all 3 cancer patient groups, but not in T cells or natural killer cells. Impaired-IFN signaling was equally evident in stage II, III, and IV breast cancer patients, and downstream functional defects in T cell activation were identified. Taken together, these findings indicate that defects in lymphocyte IFN signaling arise in patients with breast cancer, melanoma, and gastrointestinal cancer, and these defects may represent a common cancer-associated mechanism of immune dysfunction.
Collapse
|
180
|
Tumor antigen-specific CD8 T cells infiltrating the tumor express high levels of PD-1 and are functionally impaired. Blood 2009; 114:1537-44. [PMID: 19423728 DOI: 10.1182/blood-2008-12-195792] [Citation(s) in RCA: 1357] [Impact Index Per Article: 84.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Tumor antigen-specific T cells are found within melanomas, yet tumors continue to grow. Although the tumor microenvironment is thought to influence the suppression of tumor-reactive T cells, the underlying mechanisms for this T-cell dysfunction are not clear. Here, we report that the majority of tumor infiltrating T lymphocytes (TIL), including MART-1/Melan-A melanoma antigen-specific CD8 T cells, predominantly expressed PD-1, in contrast to T cells in normal tissues and peripheral blood T lymphocytes (PBL). PD-1(+) TIL expressed CTLA-4 and Ki-67, markers that were not expressed by PD-1(-) TIL and T cells in the normal tissues and PBL. Moreover, PD-1(+) TIL were primarily HLA-DR(+) and CD127(-), in contrast to PD-1(-) TIL. Effector cytokine production by PD-1(+) TIL was impaired compared with PD-1(-) TIL and PBL. Collectively, the phenotypic and functional characterizations of TIL revealed a significantly higher frequency and level of PD-1 expression on TIL compared with normal tissue T-cell infiltrates and PBL, and PD-1 expression correlated with an exhausted phenotype and impaired effector function. These findings suggest that the tumor microenvironment can lead to up-regulation of PD-1 on tumor-reactive T cells and contribute to impaired antitumor immune responses.
Collapse
|
181
|
Bricard G, Cesson V, Devevre E, Bouzourene H, Barbey C, Rufer N, Im JS, Alves PM, Martinet O, Halkic N, Cerottini JC, Romero P, Porcelli SA, Macdonald HR, Speiser DE. Enrichment of human CD4+ V(alpha)24/Vbeta11 invariant NKT cells in intrahepatic malignant tumors. THE JOURNAL OF IMMUNOLOGY 2009; 182:5140-51. [PMID: 19342695 DOI: 10.4049/jimmunol.0711086] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Invariant NKT cells (iNKT cells) recognize glycolipid Ags via an invariant TCR alpha-chain and play a central role in various immune responses. Although human CD4(+) and CD4(-) iNKT cell subsets both produce Th1 cytokines, the CD4(+) subset displays an enhanced ability to secrete Th2 cytokines and shows regulatory activity. We performed an ex vivo analysis of blood, liver, and tumor iNKT cells from patients with hepatocellular carcinoma and metastases from uveal melanoma or colon carcinoma. Frequencies of Valpha24/Vbeta11 iNKT cells were increased in tumors, especially in patients with hepatocellular carcinoma. The proportions of CD4(+), double negative, and CD8alpha(+) iNKT cell subsets in the blood of patients were similar to those of healthy donors. However, we consistently found that the proportion of CD4(+) iNKT cells increased gradually from blood to liver to tumor. Furthermore, CD4(+) iNKT cell clones generated from healthy donors were functionally distinct from their CD4(-) counterparts, exhibiting higher Th2 cytokine production and lower cytolytic activity. Thus, in the tumor microenvironment the iNKT cell repertoire is modified by the enrichment of CD4(+) iNKT cells, a subset able to generate Th2 cytokines that can inhibit the expansion of tumor Ag-specific CD8(+) T cells. Because CD4(+) iNKT cells appear inefficient in tumor defense and may even favor tumor growth and recurrence, novel iNKT-targeted therapies should restore CD4(-) iNKT cells at the tumor site and specifically induce Th1 cytokine production from all iNKT cell subsets.
Collapse
Affiliation(s)
- Gabriel Bricard
- Division of Clinical Onco-Immunology, Ludwig Institute for Cancer Research, Lausanne Branch, Lausanne, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
182
|
Walker EB, Miller W, Haley D, Floyd K, Curti B, Urba WJ. Characterization of the class I-restricted gp100 melanoma peptide-stimulated primary immune response in tumor-free vaccine-draining lymph nodes and peripheral blood. Clin Cancer Res 2009; 15:2541-51. [PMID: 19318471 DOI: 10.1158/1078-0432.ccr-08-2806] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE The aim of this study was to characterize the primary gp100(209-2M)-specific T-cell response in vaccine-draining, metastases-free lymph nodes and peripheral blood of peptide-vaccinated stage I to III melanoma patients. EXPERIMENTAL DESIGN After two or three gp100(209-2M) vaccinations, sentinel lymph nodes that drained both the primary tumor and adjacent vaccine sites were excised concomitant with wide excision of the tumor. Comparative 7-color flow cytometry phenotype analysis was done on gp100 tetramer-positive CD8(+) T cells from sentinel lymph nodes, closely proximate time-related peripheral blood mononuclear cells (PBMC) collected 2 to 4 weeks after sentinel lymph node excision, and on PBMC collected 6 months later after 7 or 11 more immunizations. Lymph node and peripheral blood T cells were tested for proliferative response, functional avidity, and tumor cell-induced CD107 mobilization. RESULTS The frequencies of gp100-specific CD8(+) T cells from time-related PBMC and sentinel lymph nodes were comparable and were similar to those reported for virus-specific memory T cells. Their respective in vitro proliferation responses were also equivalent but statistically higher than proliferation responses of peripheral blood T cells collected after completion of the entire vaccine regimen. By contrast, functional avidity and CD107 responses were significantly higher in circulating T cells. Sentinel lymph node-derived, gp100-specific CD8(+) T cells predominantly expressed central and effector memory phenotype signatures, whereas there were higher frequencies of effector T cells in the peripheral blood. CONCLUSION Priming immunization with gp100(209-2M) without coadministration of CD4(+) helper T cell-restricted antigens induced the effective expansion of peptide-specific central and effector memory CD8(+) T cells with high proliferation potential in vaccine-draining lymph nodes of stage I to III melanoma patients. Lymph node memory T cells gave rise to circulating gp100-specific effector T cells exhibiting increased functional maturation.
Collapse
Affiliation(s)
- Edwin B Walker
- Robert W Franz Cancer Research Center, Earle A Chiles Research Institute, Providence Portland Medical Center, Portland, Oregon 97213, USA.
| | | | | | | | | | | |
Collapse
|
183
|
Knights AJ, Nuber N, Thomson CW, de la Rosa O, Jäger E, Tiercy JM, van den Broek M, Pascolo S, Knuth A, Zippelius A. Modified tumour antigen-encoding mRNA facilitates the analysis of naturally occurring and vaccine-induced CD4 and CD8 T cells in cancer patients. Cancer Immunol Immunother 2009; 58:325-38. [PMID: 18663444 PMCID: PMC11030140 DOI: 10.1007/s00262-008-0556-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2008] [Accepted: 06/25/2008] [Indexed: 10/21/2022]
Abstract
The development of effective anti-cancer vaccines requires precise assessment of vaccine-induced immunity. This is often hampered by low ex vivo frequencies of antigen-specific T cells and limited defined epitopes. This study investigates the applicability of modified, in vitro-transcribed mRNA encoding a therapeutically relevant tumour antigen to analyse T cell responses in cancer patients. In this study transfection of antigen presenting cells, by mRNA encoding the tumour antigen NY-ESO-1, was optimised and applied to address spontaneous and vaccine-induced T cell responses in cancer patients. Memory CD8+ T cells from lung cancer patients having detectable humoral immune responses directed towards NY-ESO-1 could be efficiently detected in peripheral blood. Specific T cells utilised a range of different T cell receptors, indicating a polyclonal response. Specific killing of a panel of NY-ESO-1 expressing tumour cell lines indicates recognition restricted to several HLA allelic variants, including a novel HLA-B49 epitope. Using a modified mRNA construct targeting the translated antigen to the secretory pathway, detection of NY-ESO-1-specific CD4+ T cells in patients could be enhanced, which allowed the in-depth characterisation of established T cell clones. Moreover, broad CD8+ and CD4+ T cell responses covering multiple epitopes were detected following mRNA stimulation of patients treated with a recombinant vaccinia/fowlpox NY-ESO-1 vaccine. This approach allows for a precise monitoring of responses to tumour antigens in a setting that addresses the breadth and magnitude of antigen-specific T cell responses, and that is not limited to a particular combination of known epitopes and HLA-restrictions.
Collapse
Affiliation(s)
- Ashley J. Knights
- Medical Oncology, Department of Internal Medicine, University Hospital Zurich, Rämistrasse 100, 8091 Zurich, Switzerland
| | - Natko Nuber
- Medical Oncology, Department of Internal Medicine, University Hospital Zurich, Rämistrasse 100, 8091 Zurich, Switzerland
| | - Christopher W. Thomson
- Medical Oncology, Department of Internal Medicine, University Hospital Zurich, Rämistrasse 100, 8091 Zurich, Switzerland
| | - Olga de la Rosa
- Medical Oncology, Department of Internal Medicine, University Hospital Zurich, Rämistrasse 100, 8091 Zurich, Switzerland
| | - Elke Jäger
- Krankenhaus Nordwest, Frankfurt, Germany
| | | | - Maries van den Broek
- Medical Oncology, Department of Internal Medicine, University Hospital Zurich, Rämistrasse 100, 8091 Zurich, Switzerland
| | - Steve Pascolo
- Medical Oncology, Department of Internal Medicine, University Hospital Zurich, Rämistrasse 100, 8091 Zurich, Switzerland
| | - Alexander Knuth
- Medical Oncology, Department of Internal Medicine, University Hospital Zurich, Rämistrasse 100, 8091 Zurich, Switzerland
| | - Alfred Zippelius
- Medical Oncology, Department of Internal Medicine, University Hospital Zurich, Rämistrasse 100, 8091 Zurich, Switzerland
- Present Address: University Hospital Basel, Basel, Switzerland
| |
Collapse
|
184
|
Faure F, Mantegazza A, Sadaka C, Sedlik C, Jotereau F, Amigorena S. Long-lasting cross-presentation of tumor antigen in human DC. Eur J Immunol 2009; 39:380-90. [PMID: 19130478 DOI: 10.1002/eji.200838669] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
DC cross-present exogenous antigens on MHC class I molecules, a process required for the onset of anti-tumor immune responses. In order to study the cross-presentation of tumor antigens by human DC, we compared the pathways of cross-presentation of long peptides requiring internalization and intracellular processing with the direct presentation of short peptides, which does not require intracellular processing. We found that, after brief incubations with DC, short peptides were presented to CD8(+) T cells with higher efficiencies than long peptides. After longer times of chase in the absence of peptide, however, the efficiency of presentation of the two types of peptides was reversed. After 2-3 days, DC pulsed with long peptides still activated T cells efficiently, while DC pulsed with short peptides failed to do so. Long-lasting presentation of the long peptides was, at least in part, due to a stored persistent pool of antigen, which was still available for loading on MHC class I molecules after several days of chase. These results show that the use of long synthetic peptides allows the efficient, long-lasting, presentation of tumor antigens, suggesting that long peptides represent an interesting approach for active anti-tumor vaccination.
Collapse
|
185
|
King JW, Thomas S, Corsi F, Gao L, Dina R, Gillmore R, Pigott K, Kaisary A, Stauss HJ, Waxman J. IL15 Can Reverse the Unresponsiveness of Wilms' Tumor Antigen-Specific CTL in Patients with Prostate Cancer. Clin Cancer Res 2009; 15:1145-54. [DOI: 10.1158/1078-0432.ccr-08-1821] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
186
|
Abstract
The immune response to cancer has been long recognized, including both innate and adaptive responses, showing that the immune system can recognize protein products of genetic and epigenetic changes in transformed cells. The accumulation of antigen-specific T cells within the tumor, the draining lymph node, and the circulation, either in newly diagnosed patients or resultant from experimental immunotherapy, proves that tumors produce antigens and that priming occurs. Unfortunately, just as obviously, tumors grow, implying that anti-tumor immune responses are either not sufficiently vigorous to eliminate the cancer or that anti-tumor immunity is suppressed. Both possibilities are supported by current data. In experimental animal models of cancer and also in patients, systemic immunity is usually not dramatically suppressed, because tumor-bearing animals and patients develop T-cell-dependent immune responses to microbes and to either model antigens or experimental cancer vaccines. However, inhibition of specific anti-tumor immunity is common, and several possible explanations of tolerance to tumor antigens or tumor-induced immunesuppression have been proposed. Inhibition of effective anti-tumor immunity results from the tumor or the host response to tumor growth, inhibiting the activation, differentiation, or function of anti-tumor immune cells. As a consequence, anti-tumor T cells cannot respond productively to developmental, targeting, or activation cues. While able to enhance the number and phenotype of anti-tumor T cells, the modest success of immunotherapy has shown the necessity to attempt to reverse tolerance in anti-tumor T cells, and the vanguard of experimental therapy now focuses on vaccination in combination with blockade of immunosuppressive mechanisms. This review discusses several potential mechanisms by which anti-tumor T cells may be inhibited in function.
Collapse
Affiliation(s)
- Alan B Frey
- Department of Cell Biology, New York University School of Medicine, New York, NY 10016, USA.
| | | |
Collapse
|
187
|
Kwon HK, Jeon WK, Hwang JS, Lee CG, So JS, Park JA, Ko BS, Im SH. Cinnamon extract suppresses tumor progression by modulating angiogenesis and the effector function of CD8+ T cells. Cancer Lett 2009; 278:174-182. [PMID: 19203831 DOI: 10.1016/j.canlet.2009.01.015] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2008] [Revised: 12/29/2008] [Accepted: 01/05/2009] [Indexed: 12/31/2022]
Abstract
Cinnamon is one of the most widely used herbal medicines with diverse bioactive effects. However, little evidence has been reported about the potential anti-tumor effects of cinnamon. In vitro and in vivo system, cinnamon treatment strongly inhibited the expression of pro-angiogenic factors and master regulators of tumor progression not only in melanoma cell lines but also in experimental melanoma model. In addition, cinnamon treatment increased the anti-tumor activities of CD8(+) T cells by increasing the levels of cytolytic molecules and their cytotoxic activity. In conclusion, cinnamon extract has the potential to be an alternative medicine for tumor treatment.
Collapse
Affiliation(s)
- Ho-Keun Kwon
- Department of Life Sciences, Gwangju Institute of Science and Technology (GIST), 1 Oryong-dong, Puk-ku, Gwangju 500-712, Republic of Korea
| | - Won Kyung Jeon
- Department of Herbal Resources Research and Quality Control Team, Korea Institute of Oriental Medicine, 305-811 Daejeon, Republic of Korea
| | - Ji-Sun Hwang
- Department of Life Sciences, Gwangju Institute of Science and Technology (GIST), 1 Oryong-dong, Puk-ku, Gwangju 500-712, Republic of Korea
| | - Choong-Gu Lee
- Department of Life Sciences, Gwangju Institute of Science and Technology (GIST), 1 Oryong-dong, Puk-ku, Gwangju 500-712, Republic of Korea
| | - Jae-Seon So
- Department of Life Sciences, Gwangju Institute of Science and Technology (GIST), 1 Oryong-dong, Puk-ku, Gwangju 500-712, Republic of Korea
| | - Jin-A Park
- Department of Life Sciences, Gwangju Institute of Science and Technology (GIST), 1 Oryong-dong, Puk-ku, Gwangju 500-712, Republic of Korea
| | - Byoung Seob Ko
- Department of Herbal Resources Research and Quality Control Team, Korea Institute of Oriental Medicine, 305-811 Daejeon, Republic of Korea
| | - Sin-Hyeog Im
- Department of Life Sciences, Gwangju Institute of Science and Technology (GIST), 1 Oryong-dong, Puk-ku, Gwangju 500-712, Republic of Korea; Center for Distributed Sensor Network Gwangju Institute of Science and Technology (GIST), 1 Oryong-dong, Puk-ku, Gwangju 500-712, Republic of Korea.
| |
Collapse
|
188
|
Abstract
PURPOSE OF REVIEW Tumors recruit various immune cells with seemingly contrasting functions. Yet, the precise role of these cells in situ remains vastly unknown. This review presents a new discovery effort that employs intravital imaging to study immune players directly in tissues. RECENT FINDINGS Cytotoxic T lymphocytes (CTLs) that recognize cognate antigenic peptide can infiltrate tumors from the periphery to the center, and physically engage and eliminate antigen-presenting tumor cells. Nevertheless, the reported kinetics for tumor cell killing by CTLs in vivo is surprisingly low as it takes several hours for one CTL to eliminate one tumor cell. Also, T regulatory (Treg) cells can create a suppressive milieu that restricts the release of CTL cytotoxic granules, which protects tumor cells from being killed. CTLs may be further subverted during lengthy interactions with tumor-associated macrophages (TAMs). Finally, TAMs can directly facilitate tumor invasion by recruiting tumor cells nearby vessels and promoting their intravasation. SUMMARY Intravital imaging has started to uncover tumor-related immune events as they unfold in vivo. The technology should be exploited in the coming years to dissect further the tumor microenvironment and to define therapeutics that augment antitumor immunity.
Collapse
Affiliation(s)
- Mikael J Pittet
- Center for Systems Biology and Center for Molecular Imaging Research, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, USA.
| |
Collapse
|
189
|
Imai N, Ikeda H, Tawara I, Shiku H. Tumor progression inhibits the induction of multifunctionality in adoptively transferred tumor-specific CD8+ T cells. Eur J Immunol 2008; 39:241-53. [DOI: 10.1002/eji.200838824] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
190
|
Umansky V, Abschuetz O, Osen W, Ramacher M, Zhao F, Kato M, Schadendorf D. Melanoma-specific memory T cells are functionally active in Ret transgenic mice without macroscopic tumors. Cancer Res 2008; 68:9451-8. [PMID: 19010920 DOI: 10.1158/0008-5472.can-08-1464] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We previously reported that bone marrows of breast cancer patients contained tumor antigen-specific CD8(+) T cells with central or effector memory phenotype. Using a recently developed ret transgenic mouse melanoma model, we now show that bone marrows and tumors of transgenic mice contain high frequencies of CD8(+) T cells specific for the melanoma antigen tyrosinase-related protein 2 and showing mostly effector memory phenotype. Moreover, increased numbers of bone marrow tyrosinase-related protein-2-specific effector memory CD8(+) T cells are also detected in transgenic animals older than 20 weeks with disseminated melanoma cells in the bone marrow and lymph nodes but showing no visible skin tumors and no further melanoma progression. After a short-term coincubation with dendritic cells generated from the bone marrow and pulsed with melanoma lysates, bone marrow memory T cells from mice without macroscopic melanomas produced IFN-gamma in vitro and exerted antitumor activity in vivo after adoptive transfer into melanoma-bearing mice. Our data indicate that functionally active bone marrow-derived melanoma-specific memory T cells are detectable at the phase of microscopic tumor load, suggesting that thereby they could control disseminated melanoma cells.
Collapse
Affiliation(s)
- Viktor Umansky
- Skin Cancer Unit, German Cancer Research Center and University Hospital Mannheim, Heidelberg, Germany.
| | | | | | | | | | | | | |
Collapse
|
191
|
Chattopadhyay PK, Melenhorst JJ, Ladell K, Gostick E, Scheinberg P, Barrett AJ, Wooldridge L, Roederer M, Sewell AK, Price DA. Techniques to improve the direct ex vivo detection of low frequency antigen-specific CD8+ T cells with peptide-major histocompatibility complex class I tetramers. Cytometry A 2008; 73:1001-9. [PMID: 18836993 DOI: 10.1002/cyto.a.20642] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The ability to quantify and characterize antigen-specific CD8+ T cells irrespective of functional readouts using fluorochrome-conjugated peptide-major histocompatibility complex class I (pMHCI) tetramers in conjunction with flow cytometry has transformed our understanding of cellular immune responses over the past decade. In the case of prevalent CD8+ T cell populations that engage cognate pMHCI tetramers with high avidities, direct ex vivo identification and subsequent data interpretation is relatively straightforward. However, the accurate identification of low frequency antigen-specific CD8+ T cell populations can be complicated, especially in situations where T cell receptor-mediated tetramer binding occurs at low avidities. Here, we highlight a few simple techniques that can be employed to improve the visual resolution, and hence the accurate quantification, of tetramer binding CD8+ T cell populations by flow cytometry. These methodological modifications enhance signal intensity, especially in the case of specific CD8+ T cell populations that bind cognate antigen with low avidities, minimize background noise, and enable improved discrimination of true pMHCI tetramer binding events from nonspecific uptake.
Collapse
Affiliation(s)
- Pratip K Chattopadhyay
- Immunotechnology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
192
|
Jandus C, Bioley G, Speiser DE, Romero P. Selective accumulation of differentiated FOXP3(+) CD4 (+) T cells in metastatic tumor lesions from melanoma patients compared to peripheral blood. Cancer Immunol Immunother 2008; 57:1795-805. [PMID: 18414854 PMCID: PMC11030612 DOI: 10.1007/s00262-008-0507-4] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2008] [Accepted: 03/22/2008] [Indexed: 01/04/2023]
Abstract
Precise identification of regulatory T cells is crucial in the understanding of their role in human cancers. Here, we analyzed the frequency and phenotype of regulatory T cells (Tregs), in both healthy donors and melanoma patients, based on the expression of the transcription factor FOXP3, which, to date, is the most reliable marker for Tregs, at least in mice. We observed that FOXP3 expression is not confined to human CD25(+/high) CD4(+) T cells, and that these cells are not homogenously FOXP3(+). The circulating relative levels of FOXP3(+) CD4(+) T cells may fluctuate close to 2-fold over a short period of observation and are significantly higher in women than in men. Further, we showed that FOXP3(+) CD4(+) T cells are over-represented in peripheral blood of melanoma patients, as compared to healthy donors, and that they are even more enriched in tumor-infiltrated lymph nodes and at tumor sites, but not in normal lymph nodes. Interestingly, in melanoma patients, a significantly higher proportion of functional, antigen-experienced FOXP3(+) CD4(+) T was observed at tumor sites, compared to peripheral blood. Together, our data suggest that local accumulation and differentiation of Tregs is, at least in part, tumor-driven, and illustrate a reliable combination of markers for their monitoring in various clinical settings.
Collapse
Affiliation(s)
- Camilla Jandus
- Division of Clinical Onco-Immunology, Ludwig Institute for Cancer Research, Lausanne Branch, University Hospital (CHUV), Hôpital Orthopédique Niv. 5, aile est, Av. Pierre Decker 4, 1005 Lausanne, Switzerland
- National Center for Competence in Research, Molecular Oncology, Epalinges, Switzerland
| | - Gilles Bioley
- Division of Clinical Onco-Immunology, Ludwig Institute for Cancer Research, Lausanne Branch, University Hospital (CHUV), Hôpital Orthopédique Niv. 5, aile est, Av. Pierre Decker 4, 1005 Lausanne, Switzerland
- Present Address: Laboratory of Cancer Vaccinotherapy, INSERM U601, CLCC René Gauducheau, Saint-Herblain, France
| | - Daniel E. Speiser
- Division of Clinical Onco-Immunology, Ludwig Institute for Cancer Research, Lausanne Branch, University Hospital (CHUV), Hôpital Orthopédique Niv. 5, aile est, Av. Pierre Decker 4, 1005 Lausanne, Switzerland
- National Center for Competence in Research, Molecular Oncology, Epalinges, Switzerland
| | - Pedro Romero
- Division of Clinical Onco-Immunology, Ludwig Institute for Cancer Research, Lausanne Branch, University Hospital (CHUV), Hôpital Orthopédique Niv. 5, aile est, Av. Pierre Decker 4, 1005 Lausanne, Switzerland
- National Center for Competence in Research, Molecular Oncology, Epalinges, Switzerland
| |
Collapse
|
193
|
Abstract
Immunotherapy for melanoma has undergone significant change since the first attempts to treat patients with high dose IL-2. Herein, strategies to boost patient antitumor immunity through vaccination, treatment with agents that augment host immunity, and adoptive cell transfer will be discussed. The first two strategies have yielded only limited clinical success, but adoptive cell transfer therapy, particularly following a lymphodepleting, preconditioning regimen has resulted in objective response rates approaching 50%. For a number of reasons, lymphodepletion appears to be critical for maintenance of circulating antitumor T cells following adoptive cell transfer. Balancing antitumor efficacy, autoimmunity, and reconstitution of a functioning immune system remain challenging and potentially life-threatening issues.
Collapse
Affiliation(s)
- Lei Fang
- Dermatology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Anke S Lonsdorf
- Dermatology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Sam T Hwang
- Dermatology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA.
| |
Collapse
|
194
|
DeBenedette MA, Calderhead DM, Ketteringham H, Gamble AH, Horvatinovich JM, Tcherepanova IY, Nicolette CA, Healey DG. Priming of a novel subset of CD28+ rapidly expanding high-avidity effector memory CTL by post maturation electroporation-CD40L dendritic cells is IL-12 dependent. THE JOURNAL OF IMMUNOLOGY 2008; 181:5296-305. [PMID: 18832685 DOI: 10.4049/jimmunol.181.8.5296] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Dendritic cell (DC)-based immunotherapeutics must induce robust CTL capable of killing tumor or virally infected cells in vivo. In this study, we show that RNA electroporated post maturation and coelectroporated with CD40L mRNA (post maturation electroporation (PME)-CD40L DC) generate high-avidity CTL in vitro that lyse naturally processed and presented tumor Ag. Unlike cytokine mixture-matured DC which induce predominantly nonproliferative effector memory CD45RA(+) CTL, PME-CD40L DC prime a novel subset of Ag-specific CTL that can be expanded to large numbers upon sequential DC stimulation in vitro. We have defined these cells as rapidly expanding high-avidity (REHA) CTL based on: 1) the maintenance of CD28 expression, 2) production of high levels of IFN-gamma and IL-2 in response to Ag, and 3) the demonstration of high-avidity TCR that exhibit strong cytolytic activity toward limiting amounts of native Ag. We demonstrate that induction of REHA CTL is dependent at least in part on the production of IL-12. Interestingly, neutralization of IL-12 did not effect cytolytic activity of REHA CTL when Ag is not limiting, but did result in lower TCR avidity of Ag-reactive CTL. These results suggest that PME-CD40L DC are uniquely capable of delivering the complex array of signals needed to generate stable CD28(+) REHA CTL, which if generated in vivo may have significant clinical benefit for the treatment of infectious disease and cancer.
Collapse
|
195
|
Tsuji K, Hamada T, Uenaka A, Wada H, Sato E, Isobe M, Asagoe K, Yamasaki O, Shiku H, Ritter G, Murphy R, Hoffman EW, Old LJ, Nakayama E, Iwatsuki K. Induction of immune response against NY-ESO-1 by CHP-NY-ESO-1 vaccination and immune regulation in a melanoma patient. Cancer Immunol Immunother 2008; 57:1429-37. [PMID: 18311489 PMCID: PMC11030644 DOI: 10.1007/s00262-008-0478-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2007] [Accepted: 02/04/2008] [Indexed: 10/22/2022]
Abstract
BACKGROUND NY-ESO-1 is a cancer/testis antigen highly immunogenic in cancer patients. Cholesterol-bearing hydrophobized pullulan (CHP) is a nanoparticle-forming antigen-delivery vehicle and CHP complexed with NY-ESO-1 protein (CHP-NY-ESO-1) efficiently activates CD4 and CD8 T cells in vitro. AIM In this study we report on a 50-year-old male melanoma patient with multiple skin and organ metastases (T4N3M1c) who was vaccinated with CHP-NY-ESO-1 at biweekly intervals and who had an unusual disease course. We characterized in this patient humoral and cellular immune responses, immune regulatory cells, and cytokine profiles in the peripheral blood and at local tumor sites. RESULTS Ten days after the second CHP-NY-ESO-1 vaccination (day 25), blisters appeared on the skin at the metastatic lesions associated with inflammatory changes. A skin biopsy showed the presence of many NY-ESO-1-expressing apoptotic melanoma cells as determined by a terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick end labeling (TUNEL) test. However, the tumors continued to grow, and the patient died of pulmonary failure due to multiple metastases on day 48. Serum antibody responses were detected after the second CHP-NY-ESO-1 vaccination and antibody titer increased with subsequent vaccinations. Th1 dependent IgG1 was the predominant immunoglobulin subtype. Both, NY-ESO-1-specific CD4 and CD8 T cell responses were detected in PBMC by IFN-gamma secretion assays. After CHP-NY-ESO-1 vaccination a slight decrease in CD4(+)CD25(+)Foxp3(+) Tregs was observed in PBMC but significantly increased numbers of CD4(+)CD25(+)Foxp3(+) Tregs and CD68(+) immunoregulatory macrophages were detected at the local tumor sites. CD4(+)CD25(+)Foxp3(+) Tregs were also increased in the blister fluid. Cytokines in the serum suggested a polarization towards a Th1 pattern in the PBMC and those in the blister fluid suggested a Th2-type response at the tumor site. CONCLUSIONS Our observations indicate induction of specific humoral and cellular immune responses against NY-ESO-1 after CHP-NY-ESO-1 vaccination in a melanoma patient. The concomitant appearance of regulatory T cells and of immune regulatory macrophages and cytokines at the local tumor sites in this patient may explain immune escape.
Collapse
Affiliation(s)
- Kazuhide Tsuji
- Department of Dermatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
196
|
Stern E, Steenblock ER, Reed MA, Fahmy TM. Label-free electronic detection of the antigen-specific T-cell immune response. NANO LETTERS 2008; 8:3310-4. [PMID: 18763834 PMCID: PMC2714189 DOI: 10.1021/nl801693k] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Detection of antigen-specific T-cells is critical for diagnostic assessment and design of therapeutic strategies for many disease states. Effective monitoring of these cells requires technologies that assess their numbers as well as functional response. Current detection of antigen-specific T-cells involves flow cytometry and functional assays and requires fluorescently labeled, soluble forms of peptide-loaded major histocompatability complexes (MHC). We demonstrate that nanoscale solid-state complementary metal-oxide-semiconductor (CMOS) technology can be employed to allow direct, label-free electronic detection of antigen-specific T-cell responses within seconds after stimulation. Our approach relies on detection of extracellular acidification arising from a small number of T-cells (as few as approximately 200), whose activation is induced by triggering the T-cell antigen receptor. We show that T-cell triggering by a nonspecific anti-CD3 stimulus can be detected within 10 s after exposure to the stimulus. In contrast, antigen-specific T-cell responses are slower with response times greater than 40 s after exposure to peptide/MHC agonists. The speed and sensitivity of this technique has the potential to elucidate new understandings of the kinetics of activation-induced T-cell responses. This combined with its ease of integration into conventional electronics potentially enable rapid clinical testing and high-throughput epitope and drug screening.
Collapse
Affiliation(s)
- Eric Stern
- Department of Biomedical Engineering, Yale University, 55 Prospect Street, New Haven, Connecticut 06511, USA
| | | | | | | |
Collapse
|
197
|
Melenhorst JJ, Scheinberg P, Chattopadhyay PK, Lissina A, Gostick E, Cole DK, Wooldridge L, van den Berg HA, Bornstein E, Hensel NF, Douek DC, Roederer M, Sewell AK, Barrett AJ, Price DA. Detection of low avidity CD8(+) T cell populations with coreceptor-enhanced peptide-major histocompatibility complex class I tetramers. J Immunol Methods 2008; 338:31-9. [PMID: 18675271 PMCID: PMC2714739 DOI: 10.1016/j.jim.2008.07.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2008] [Revised: 05/08/2008] [Accepted: 07/01/2008] [Indexed: 10/21/2022]
Abstract
The development of soluble recombinant peptide-major histocompatibility complex class I (pMHCI) molecules conjugated in multimeric form to fluorescent labels has enabled the physical quantification and characterization of antigen-specific CD8(+) T cell populations by flow cytometry. Several factors determine the binding threshold that enables visualization of cognate CD8(+) T cells with these reagents; these include the affinity of the T cell receptor (TCR) for pMHCI antigen. Here, we show that multimers constructed from peptide-human leukocyte antigen (pHLA) A0201 monomers engineered in the heavy chain alpha2 domain to enhance CD8 binding (K(D) approximately 85 microM) without impacting the TCR binding platform can detect cognate CD8(+) T cells bearing low affinity TCRs that are not visible with the corresponding wildtype pHLA A0201 multimeric complexes. Mechanistically, this effect is mediated by a disproportionate enhancement of the TCR/pMHCI association rate. In direct ex vivo applications, these coreceptor-enhanced multimers exhibit faithful cognate binding properties; concomitant increases in background staining within the non-cognate CD8(+) T cell population can be resolved phenotypically using polychromatic flow cytometry as a mixture of naïve and memory cells. These findings provide the first validation of a novel approach to the physical detection of low avidity antigen-specific CD8(+) T cell populations; such coreceptor-enhanced multimeric reagents are likely to be useful in a multitude of settings for the detection of auto-immune, tumor-specific and cross-reactive CD8(+) T cells.
Collapse
Affiliation(s)
- J. Joseph Melenhorst
- Hematology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Phillip Scheinberg
- Hematology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
- Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Pratip K. Chattopadhyay
- Immunotechnology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Anna Lissina
- Department of Medical Biochemistry and Immunology, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK
| | - Emma Gostick
- Department of Medical Biochemistry and Immunology, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK
| | - David K. Cole
- Department of Medical Biochemistry and Immunology, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK
| | - Linda Wooldridge
- Department of Medical Biochemistry and Immunology, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK
| | | | - Ethan Bornstein
- Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nancy F. Hensel
- Hematology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Daniel C. Douek
- Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mario Roederer
- Immunotechnology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Andrew K. Sewell
- Department of Medical Biochemistry and Immunology, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK
| | - A. John Barrett
- Hematology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - David A. Price
- Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
- Department of Medical Biochemistry and Immunology, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK
| |
Collapse
|
198
|
Dudley ME, Yang JC, Sherry R, Hughes MS, Royal R, Kammula U, Robbins PF, Huang J, Citrin DE, Leitman SF, Wunderlich J, Restifo NP, Thomasian A, Downey SG, Smith FO, Klapper J, Morton K, Laurencot C, White DE, Rosenberg SA. Adoptive cell therapy for patients with metastatic melanoma: evaluation of intensive myeloablative chemoradiation preparative regimens. J Clin Oncol 2008; 26:5233-9. [PMID: 18809613 DOI: 10.1200/jco.2008.16.5449] [Citation(s) in RCA: 1054] [Impact Index Per Article: 62.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
PURPOSE The two approved treatments for patients with metastatic melanoma, interleukin (IL)-2 and dacarbazine, mediate objective response rates of 12% to 15%. We previously reported that adoptive cell therapy (ACT) with autologous antitumor lymphocytes in lymphodepleted hosts mediated objective responses in 51% of 35 patients. Here, we update that study and evaluate the safety and efficacy of two increased-intensity myeloablative lymphodepleting regimens. PATIENTS AND METHODS We performed two additional sequential trials of ACT with autologous tumor-infiltrating lymphocytes (TIL) in patients with metastatic melanoma. Increasing intensity of host preparative lymphodepletion consisting of cyclophosphamide and fludarabine with either 2 (25 patients) or 12 Gy (25 patients) of total-body irradiation (TBI) was administered before cell transfer. Objective response rates by Response Evaluation Criteria in Solid Tumors (RECIST) and survival were evaluated. Immunologic correlates of effective treatment were studied. RESULTS Although nonmyeloablative chemotherapy alone showed an objective response rate of 49%, when 2 or 12 Gy of TBI was added, the response rates were 52% and 72% respectively. Responses were seen in all visceral sites including brain. There was one treatment-related death in the 93 patients. Host lymphodepletion was associated with increased serum levels of the lymphocyte homeostatic cytokines IL-7 and IL-15. Objective responses were correlated with the telomere length of the transferred cells. CONCLUSION Host lymphodepletion followed by autologous TIL transfer and IL-2 results in objective response rates of 50% to 70% in patients with metastatic melanoma refractory to standard therapies.
Collapse
Affiliation(s)
- Mark E Dudley
- Surgery Branch, National Cancer Institute, NIH, Bethesda, MD 20892-1201, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
199
|
Abstract
Malignant melanoma is a highly aggressive although immunogenic tumor which can be recognized and destroyed by the immune system. Therefore, immunotherapy has been represented an essential part of the therapeutic arsenal for decades. Besides non-specific immunotherapeutic approaches (whole tumor cell vaccine, cytokine therapy, toll-like receptor agonists), targeted immunotherapy has been made possible by the identification of tumor-associated antigens. Despite undisputable successes, the ultimate breakthrough has not yet been achieved. This overview deals with the fundamental aspects of antigen-specific immunotherapy and highlights future strategies to improve its clinical efficacy.
Collapse
Affiliation(s)
- E S Schultz
- Klinik für Dermatologie und Allergologie, Universitätsklinikum Giessen und Marburg GmbH, Deutschhausstrasse 9, 35037, Marburg, Deutschland.
| | | |
Collapse
|
200
|
Feder-Mengus C, Ghosh S, Reschner A, Martin I, Spagnoli GC. New dimensions in tumor immunology: what does 3D culture reveal? Trends Mol Med 2008; 14:333-40. [DOI: 10.1016/j.molmed.2008.06.001] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2008] [Revised: 06/06/2008] [Accepted: 06/06/2008] [Indexed: 01/01/2023]
|