151
|
Han K, Pierce SE, Li A, Spees K, Anderson GR, Seoane JA, Lo YH, Dubreuil M, Olivas M, Kamber RA, Wainberg M, Kostyrko K, Kelly MR, Yousefi M, Simpkins SW, Yao D, Lee K, Kuo CJ, Jackson PK, Sweet-Cordero A, Kundaje A, Gentles AJ, Curtis C, Winslow MM, Bassik MC. CRISPR screens in cancer spheroids identify 3D growth-specific vulnerabilities. Nature 2020; 580:136-141. [PMID: 32238925 PMCID: PMC7368463 DOI: 10.1038/s41586-020-2099-x] [Citation(s) in RCA: 198] [Impact Index Per Article: 39.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 01/10/2020] [Indexed: 12/18/2022]
Abstract
Cancer genomics studies have identified thousands of putative cancer driver genes1. Development of high-throughput and accurate models to define the functions of these genes is a major challenge. Here we devised a scalable cancer-spheroid model and performed genome-wide CRISPR screens in 2D monolayers and 3D lung-cancer spheroids. CRISPR phenotypes in 3D more accurately recapitulated those of in vivo tumours, and genes with differential sensitivities between 2D and 3D conditions were highly enriched for genes that are mutated in lung cancers. These analyses also revealed drivers that are essential for cancer growth in 3D and in vivo, but not in 2D. Notably, we found that carboxypeptidase D is responsible for removal of a C-terminal RKRR motif2 from the α-chain of the insulin-like growth factor 1 receptor that is critical for receptor activity. Carboxypeptidase D expression correlates with patient outcomes in patients with lung cancer, and loss of carboxypeptidase D reduced tumour growth. Our results reveal key differences between 2D and 3D cancer models, and establish a generalizable strategy for performing CRISPR screens in spheroids to reveal cancer vulnerabilities.
Collapse
Affiliation(s)
- Kyuho Han
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA.
| | - Sarah E Pierce
- Program in Cancer Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Amy Li
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Kaitlyn Spees
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Gray R Anderson
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Jose A Seoane
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Yuan-Hung Lo
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Michael Dubreuil
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
- Program in Cancer Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Micah Olivas
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Roarke A Kamber
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Michael Wainberg
- Department of Computer Science, Stanford University, Stanford, CA, USA
| | - Kaja Kostyrko
- Department of Pediatrics, University of California San Francisco, San Francisco, CA, USA
| | - Marcus R Kelly
- Program in Cancer Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Maryam Yousefi
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Scott W Simpkins
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - David Yao
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Keonil Lee
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Calvin J Kuo
- Program in Cancer Biology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Peter K Jackson
- Program in Cancer Biology, Stanford University School of Medicine, Stanford, CA, USA
- Baxter Laboratory, Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | | | - Anshul Kundaje
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
- Department of Computer Science, Stanford University, Stanford, CA, USA
| | - Andrew J Gentles
- Departments of Medicine and Biomedical Data Science, Stanford University School of Medicine, Stanford, CA, USA
| | - Christina Curtis
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
- Program in Cancer Biology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Monte M Winslow
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
- Program in Cancer Biology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Michael C Bassik
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA.
- Program in Cancer Biology, Stanford University School of Medicine, Stanford, CA, USA.
- Program in Chemistry, Engineering and Medicine for Human Health (ChEM-H), Stanford University, Stanford, CA, USA.
| |
Collapse
|
152
|
Pyo DH, Hong HK, Lee WY, Cho YB. Patient-derived cancer modeling for precision medicine in colorectal cancer: beyond the cancer cell line. Cancer Biol Ther 2020; 21:495-502. [PMID: 32208894 DOI: 10.1080/15384047.2020.1738907] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Since effective immunotherapeutic agents such as immune checkpoint blockade to treat cancer have emerged, the need for reliable preclinical cancer models that can evaluate and discover such drugs became stronger than ever before. The traditional preclinical cancer model using a cancer cell line has several limitations to recapitulate intra-tumor heterogeneity and in-vivo tumor activity including interactions between tumor-microenvironment. In this review, we will go over various preclinical cancer models recently discovered including patient-derived xenografts, humanized mice, organoids, organotypic-tumor spheroids, and organ-on-a-chip models. Moreover, we will discuss the future directions of preclinical cancer research.
Collapse
Affiliation(s)
- Dae Hee Pyo
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Hye Kyung Hong
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.,Institute for Future Medicine, Samsung Medical Center, Seoul, Korea
| | - Woo Yong Lee
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.,Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, Korea
| | - Yong Beom Cho
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.,Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, Korea
| |
Collapse
|
153
|
Wang H, Pan X, Wang X, Wang W, Huang Z, Gu K, Liu S, Zhang F, Shen H, Yuan Q, Ma J, Yuan W, Liu H. Degradable Carbon-Silica Nanocomposite with Immunoadjuvant Property for Dual-Modality Photothermal/Photodynamic Therapy. ACS NANO 2020; 14:2847-2859. [PMID: 31909977 DOI: 10.1021/acsnano.9b06168] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Carbon nanomaterials have flourished for cancer therapy for decades. However, their practical applications on clinical bases still pose a challenge to address the dilemma of metabolism in vivo. In this study, an attempt is made to design a degradable carbon-silica nanocomposite (CSN) with immunoadjuvant property, which could undergo an enzyme-free degradation process into small particles (∼5 nm) and facilitate its clinical application. CSN harbors photothermal and photodynamic properties and as an immunoadjuvant would help to generate tumor-associated antigens and mature dendritic cells (DCs). Potent antitumor effects have been achieved in both 4T1 and patient-derived xenograft tumor models with tumor inhibition efficiencies of 93.2% and 92.5%, respectively. We believe that this strategy will benefit the possible clinical translation and carbon-silica-nanomaterial-based cancer therapy.
Collapse
Affiliation(s)
- Hongyu Wang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Bionanomaterials & Translational Engineering Laboratory, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Xueting Pan
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Bionanomaterials & Translational Engineering Laboratory, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Xiaotong Wang
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, People's Republic of China
| | - Weiwei Wang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Bionanomaterials & Translational Engineering Laboratory, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Zhijun Huang
- Beijing National Laboratory of Molecular Sciences, Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, People's Republic of China
| | - Kai Gu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Bionanomaterials & Translational Engineering Laboratory, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Shuang Liu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Bionanomaterials & Translational Engineering Laboratory, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Fengrong Zhang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Bionanomaterials & Translational Engineering Laboratory, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Heyun Shen
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Bionanomaterials & Translational Engineering Laboratory, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Qipeng Yuan
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Bionanomaterials & Translational Engineering Laboratory, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Jie Ma
- Department of Biotherapy, Beijing Hospital, National Center of Gerontology, Beijing, 100730, People's Republic of China
| | - Wei Yuan
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, People's Republic of China
| | - Huiyu Liu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Bionanomaterials & Translational Engineering Laboratory, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| |
Collapse
|
154
|
Cuyàs E, Gumuzio J, Verdura S, Brunet J, Bosch-Barrera J, Martin-Castillo B, Alarcón T, Encinar JA, Martin ÁG, Menendez JA. The LSD1 inhibitor iadademstat (ORY-1001) targets SOX2-driven breast cancer stem cells: a potential epigenetic therapy in luminal-B and HER2-positive breast cancer subtypes. Aging (Albany NY) 2020; 12:4794-4814. [PMID: 32191225 PMCID: PMC7138538 DOI: 10.18632/aging.102887] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Accepted: 02/05/2020] [Indexed: 12/21/2022]
Abstract
SOX2 is a core pluripotency-associated transcription factor causally related to cancer initiation, aggressiveness, and drug resistance by driving the self-renewal and seeding capacity of cancer stem cells (CSC). Here, we tested the ability of the clinically proven inhibitor of the lysine-specific demethylase 1 (LSD1/KDM1A) iadademstat (ORY-100) to target SOX2-driven CSC in breast cancer. Iadademstat blocked CSC-driven mammosphere formation in breast cancer cell lines that are dependent on SOX2 expression to maintain their CSC phenotype. Iadademstat prevented the activation of an LSD1-targeted stemness-specific SOX2 enhancer in CSC-enriched 3-dimensional spheroids. Using high-throughput transcriptional data available from the METABRIC dataset, high expression of SOX2 was significantly more common in luminal-B and HER2-enriched subtypes according to PAM50 classifier and in IntClust1 (high proliferating luminal-B) and IntClust 5 (luminal-B and HER2-amplified) according to integrative clustering. Iadademstat significantly reduced mammospheres formation by CSC-like cells from a multidrug-resistant luminal-B breast cancer patient-derived xenograft but not of those from a treatment-naïve luminal-A patient. Iadademstat reduced the expression of SOX2 in luminal-B but not in luminal-A mammospheres, likely indicating a selective targeting of SOX2-driven CSC. The therapeutic relevance of targeting SOX2-driven breast CSC suggests the potential clinical use of iadademstat as an epigenetic therapy in luminal-B and HER2-positive subtypes.
Collapse
Affiliation(s)
- Elisabet Cuyàs
- Program Against Cancer Therapeutic Resistance (ProCURE), Metabolism and Cancer Group, Catalan Institute of Oncology, Girona, Spain.,Girona Biomedical Research Institute (IDIBGI), Girona, Spain
| | | | - Sara Verdura
- Program Against Cancer Therapeutic Resistance (ProCURE), Metabolism and Cancer Group, Catalan Institute of Oncology, Girona, Spain.,Girona Biomedical Research Institute (IDIBGI), Girona, Spain
| | - Joan Brunet
- Medical Oncology, Catalan Institute of Oncology (ICO), Girona, Spain.,Department of Medical Sciences, Medical School University of Girona, Girona, Spain.,Hereditary Cancer Program, Catalan Institute of Oncology (ICO), Bellvitge Institute for Biomedical Research (IDIBELL), L'Hospitalet del Llobregat, Barcelona, Spain.,Hereditary Cancer Program, Catalan Institute of Oncology (ICO), Girona Biomedical Research Institute (IDIBGI), Girona, Spain
| | - Joaquim Bosch-Barrera
- Medical Oncology, Catalan Institute of Oncology (ICO), Girona, Spain.,Department of Medical Sciences, Medical School University of Girona, Girona, Spain
| | | | - Tomás Alarcón
- ICREA, Barcelona, Spain.,Centre de Recerca Matemàtica (CRM), Barcelona, Spain.,Departament de Matemàtiques, Universitat Autònoma de Barcelona, Barcelona, Spain.,Barcelona Graduate School of Mathematics (BGSMath), Barcelona, Spain
| | - José Antonio Encinar
- Institute of Research, Development and Innovation in Biotechnology of Elche (IDiBE) and Molecular and Cell Biology Institute (IBMC), Miguel Hernández University (UMH), Elche, Spain
| | | | - Javier A Menendez
- Program Against Cancer Therapeutic Resistance (ProCURE), Metabolism and Cancer Group, Catalan Institute of Oncology, Girona, Spain.,Girona Biomedical Research Institute (IDIBGI), Girona, Spain
| |
Collapse
|
155
|
Liu Y, Zhu YP, Cai MZ, Ke B, Li B, Liu N, Xue Q, Zhan HJ, Deng JY, Zhang L, Hao YP, Wang ZQ, Wang L, Liang H. A Preliminary Study on the Establishment of the PDTX Model. Cancer Manag Res 2020; 12:1969-1979. [PMID: 32256107 PMCID: PMC7096243 DOI: 10.2147/cmar.s230668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 12/22/2019] [Indexed: 11/23/2022] Open
Abstract
OBJECTIVE The current study aims to explore the establishment of the patient-derived tumor xenograft (PDTX) model. MATERIALS AND METHODS Twenty patients with gastric cancer, 10 males and 10 females, were enrolled in the current study. Firstly, the volume, invasion and metastasis of the xenografts were observed. Subsequently, the correlation between tumor tissues of the PDTX mouse model and the patients' primary tumor tissues was evaluated by pathological H&E staining and immunohistochemistry. RESULTS The results showed that the PDTX models corresponding to 15 of the 20 patients were successfully established, and the success rate of PDTX model establishment was 75%. Furthermore, the PDTX models maintained the differentiation degree, morphological characteristics and structural characteristics of tumor cells. CONCLUSION A PDTX model can be used as a substitute for cancer patients in clinical practice and may be suitable for clinical pharmacodynamic screening and new drug development.
Collapse
Affiliation(s)
- Yong Liu
- Department of Gastroenterology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Centre for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin’s Clinical Research Center for Cancer, Tianjin300060, People’s Republic of China
| | - Yan-Ping Zhu
- Nanjing Personal Oncology Biological Technology Co. Ltd., Nanjing211100, Jiangsu, People’s Republic of China
| | - Ming-Zhi Cai
- Department of Gastroenterology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Centre for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin’s Clinical Research Center for Cancer, Tianjin300060, People’s Republic of China
| | - Bin Ke
- Department of Gastroenterology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Centre for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin’s Clinical Research Center for Cancer, Tianjin300060, People’s Republic of China
| | - Bin Li
- Department of Gastroenterology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Centre for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin’s Clinical Research Center for Cancer, Tianjin300060, People’s Republic of China
| | - Ning Liu
- Department of Gastroenterology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Centre for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin’s Clinical Research Center for Cancer, Tianjin300060, People’s Republic of China
| | - Qiang Xue
- Department of Gastroenterology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Centre for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin’s Clinical Research Center for Cancer, Tianjin300060, People’s Republic of China
| | - Hong-Jie Zhan
- Department of Gastroenterology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Centre for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin’s Clinical Research Center for Cancer, Tianjin300060, People’s Republic of China
| | - Jing-Yu Deng
- Department of Gastroenterology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Centre for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin’s Clinical Research Center for Cancer, Tianjin300060, People’s Republic of China
| | - Li Zhang
- Department of Gastroenterology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Centre for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin’s Clinical Research Center for Cancer, Tianjin300060, People’s Republic of China
| | - Yan-Peng Hao
- Nanjing Personal Oncology Biological Technology Co. Ltd., Nanjing211100, Jiangsu, People’s Republic of China
| | - Zhi-Qiang Wang
- Nanjing Personal Oncology Biological Technology Co. Ltd., Nanjing211100, Jiangsu, People’s Republic of China
| | - Li Wang
- Nanjing Personal Oncology Biological Technology Co. Ltd., Nanjing211100, Jiangsu, People’s Republic of China
| | - Han Liang
- Department of Gastroenterology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Centre for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin’s Clinical Research Center for Cancer, Tianjin300060, People’s Republic of China
| |
Collapse
|
156
|
Hulton CH, Costa EA, Shah NS, Quintanal-Villalonga A, Heller G, de Stanchina E, Rudin CM, Poirier JT. Direct genome editing of patient-derived xenografts using CRISPR-Cas9 enables rapid in vivo functional genomics. ACTA ACUST UNITED AC 2020; 1:359-369. [PMID: 33345196 DOI: 10.1038/s43018-020-0040-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Patient-derived xenografts are high fidelity in vivo tumor models that accurately reflect many key aspects of human cancer. In contrast to either cancer cell lines or genetically engineered mouse models, the utility of PDXs has been limited by the inability to perform targeted genome editing of these tumors. To address this limitation, we have developed methods for CRISPR-Cas9 editing of PDXs using a tightly regulated, inducible Cas9 vector that does not require in vitro culture for selection of transduced cells. We demonstrate the utility of this platform in PDXs (1) to analyze genetic dependencies by targeted gene disruption and (2) to analyze mechanisms of acquired drug resistance by site-specific gene editing using templated homology-directed repair. This flexible system has broad application to other explant models and substantially augments the utility of PDXs as genetically programmable models of human cancer.
Collapse
Affiliation(s)
- Christopher H Hulton
- Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Emily A Costa
- Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY, USA
| | - Nisargbhai S Shah
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Alvaro Quintanal-Villalonga
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Glenn Heller
- Department of Epidemiology & Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Elisa de Stanchina
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Charles M Rudin
- Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY, USA.,Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - John T Poirier
- Perlmutter Cancer Center, New York University Langone Health, New York, NY, USA
| |
Collapse
|
157
|
Richards JR, Yoo JH, Shin D, Odelberg SJ. Mouse models of uveal melanoma: Strengths, weaknesses, and future directions. Pigment Cell Melanoma Res 2020; 33:264-278. [PMID: 31880399 PMCID: PMC7065156 DOI: 10.1111/pcmr.12853] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 12/21/2019] [Indexed: 12/14/2022]
Abstract
Uveal melanoma is the most common primary malignancy of the eye, and a number of discoveries in the last decade have led to a more thorough molecular characterization of this cancer. However, the prognosis remains dismal for patients with metastases, and there is an urgent need to identify treatments that are effective for this stage of disease. Animal models are important tools for preclinical studies of uveal melanoma. A variety of models exist, and they have specific advantages, disadvantages, and applications. In this review article, these differences are explored in detail, and ideas for new models that might overcome current challenges are proposed.
Collapse
Affiliation(s)
- Jackson R. Richards
- Department of Oncological SciencesUniversity of UtahSalt Lake CityUTUSA
- Program in Molecular MedicineUniversity of UtahSalt Lake CityUTUSA
| | - Jae Hyuk Yoo
- Program in Molecular MedicineUniversity of UtahSalt Lake CityUTUSA
| | - Donghan Shin
- Program in Molecular MedicineUniversity of UtahSalt Lake CityUTUSA
| | - Shannon J. Odelberg
- Program in Molecular MedicineUniversity of UtahSalt Lake CityUTUSA
- Department of Internal MedicineDivision of Cardiovascular MedicineUniversity of UtahSalt Lake CityUTUSA
- Department of Neurobiology and AnatomyUniversity of UtahSalt Lake CityUTUSA
| |
Collapse
|
158
|
Feng F, Huang C, Xiao M, Wang H, Gao Q, Chen Z, Xu X, Zhou J, Li F, Li Y, Zhang D, Chang Y, Jiang X. Establishment and characterization of patient-derived primary cell lines as preclinical models for gallbladder carcinoma. Transl Cancer Res 2020; 9:1698-1710. [PMID: 35117518 PMCID: PMC8798768 DOI: 10.21037/tcr.2020.02.04] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 01/18/2020] [Indexed: 01/18/2023]
Abstract
Background Gallbladder carcinoma (GBC) is one of the most lethal malignancies which do not have a targeted drug in the clinic. Patient-derived primary cell lines (PDCs) are useful in assessment of cancer complexity and heterogeneity, drug-sensitivity tests, and personalized-drug-selection guidance. The aim of this study is to establish GBC PDCs and characterize their biological features. Methods The characterization of PDCs was defined by morphology, growth kinetics, chromosomal analysis, short tandem repeat (STR) analysis, RNA-seq and tumorigenicity. Glycosylation of PDCs derived from GBC was first studied, and the PDC model’s performance were also tested and evaluated using seven molecular target inhibitors. Results Three novel GBC cell lines from three GBC patients were successfully established and denoted as JXQ-3D-902R4, JXQ-3D-4494R, and JXQ-3D-4786R. These cell lines demonstrated the heterogeneous characteristics of tumor morphology and phenotypes which are consistent with primary GBC, such as irregular cell shape, varied chromosomal numbers, and different STR patterns. Moreover, the growth activity and tumorigenicity ability varied among the cell lines, of which JXQ-3D-4494R exhibited the best growth rate. Furthermore, glycan profiling of whole proteins were detected and characterized. Unique N-glycans of each PDC were identified, JXQ-3D-902R4, JXQ-3D-4494R and JXQ-3D-4786R contained ten, four and seven unique glycans, respectively. The epithelial origins of three PDCs were confirmed using RNA-seq based on the highly expressed typical epithelial marker genes. Moreover, the drug-sensitivity results demonstrated that the three PDCs exhibited different responses to the seven-most commonly used targeted medicines belonging to three groups: cell-cycle inhibitors, PI3K/AKT/mTOR signaling-pathway inhibitors, and ErbB inhibitors. JXQ-3D-4494R was sensitive to most of the inhibitors, JXQ-3D-4786R was sensitive to ErbB inhibitors, and JXQ-3D-902R4 was sensitive to PI3K/AKT/mTOR inhibitors. Conclusions These results indicate that PDCs may be efficient preclinical models for further investigation of the biological behaviors and potential targeted therapies of human GBC.
Collapse
Affiliation(s)
- Feiling Feng
- Department of Biliary I, Shanghai Eastern Hepatobiliary Surgery Hospital, Navy Military Medical University, Shanghai 200438, China
| | - Chuncui Huang
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Mingjia Xiao
- Department of Biliary I, Shanghai Eastern Hepatobiliary Surgery Hospital, Navy Military Medical University, Shanghai 200438, China
| | - Huizhen Wang
- Research and Development Institute of Precision Medicine, 3D Medicines Inc., Shanghai 201114, China
| | - Qingxiang Gao
- Department of Biliary I, Shanghai Eastern Hepatobiliary Surgery Hospital, Navy Military Medical University, Shanghai 200438, China
| | - Zishuo Chen
- Research and Development Institute of Precision Medicine, 3D Medicines Inc., Shanghai 201114, China
| | - Xiaoya Xu
- Research and Development Institute of Precision Medicine, 3D Medicines Inc., Shanghai 201114, China
| | - Jun Zhou
- Research and Development Institute of Precision Medicine, 3D Medicines Inc., Shanghai 201114, China
| | - Fugen Li
- Research and Development Institute of Precision Medicine, 3D Medicines Inc., Shanghai 201114, China
| | - Yan Li
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dadong Zhang
- Research and Development Institute of Precision Medicine, 3D Medicines Inc., Shanghai 201114, China
| | - Yanxin Chang
- Biliary Tract Surgery Department, Shanghai Eastern Hepatobiliary Surgery Hospital, Navy Military Medical University, Shanghai 200438, China
| | - Xiaoqing Jiang
- Department of Biliary I, Shanghai Eastern Hepatobiliary Surgery Hospital, Navy Military Medical University, Shanghai 200438, China
| |
Collapse
|
159
|
Shafiee A. Design and Fabrication of Three-Dimensional Printed Scaffolds for Cancer Precision Medicine. Tissue Eng Part A 2020; 26:305-317. [PMID: 31992154 DOI: 10.1089/ten.tea.2019.0278] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Three-dimensional (3D)-engineered scaffolds have been widely investigated as drug delivery systems (DDS) or cancer models with the aim to develop effective cancer therapies. The in vitro and in vivo models developed via 3D printing (3DP) and tissue engineering concepts have significantly contributed to our understanding of cell-cell and cell-extracellular matrix interactions in the cancer microenvironment. Moreover, 3D tumor models were used to study the therapeutic efficiency of anticancer drugs. The present study aims to provide an overview of applying the 3DP and tissue engineering concepts for cancer studies with suggestions for future research directions. The 3DP technologies being used for the fabrication of personalized DDS have been highlighted and the potential technical approaches and challenges associated with the fused deposition modeling, the inkjet-powder bed, and stereolithography as the most promising 3DP techniques for drug delivery purposes are briefly described. Then, the advances, challenges, and future perspectives in tissue-engineered cancer models for precision medicine are discussed. Overall, future advances in this arena depend on the continuous integration of knowledge from cancer biology, biofabrication techniques, multiomics and patient data, and medical needs to develop effective treatments ultimately leading to improved clinical outcomes. Impact statement Three-dimensional printing (3DP) enables the fabrication of personalized medicines and drug delivery systems. The convergence of 3DP, tissue engineering concepts, and cancer biology could significantly improve our understanding of cancer biology and contribute to the development of new cancer therapies.
Collapse
Affiliation(s)
- Abbas Shafiee
- UQ Diamantina Institute, Translational Research Institute, The University of Queensland, Brisbane, Australia.,Centre in Regenerative Medicine, Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), Brisbane, Australia.,Royal Brisbane and Women's Hospital, Metro North Hospital and Health Service, Brisbane, Australia
| |
Collapse
|
160
|
Turner TH, Alzubi MA, Harrell JC. Identification of synergistic drug combinations using breast cancer patient-derived xenografts. Sci Rep 2020; 10:1493. [PMID: 32001757 PMCID: PMC6992640 DOI: 10.1038/s41598-020-58438-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 01/15/2020] [Indexed: 12/21/2022] Open
Abstract
Compared with other breast cancer subtypes, triple-negative breast cancer (TNBC) is associated with relatively poor outcomes due to its metastatic propensity, frequent failure to respond to chemotherapy, and lack of alternative, targeted treatment options, despite decades of major research efforts. Our studies sought to identify promising targeted therapeutic candidates for TNBC through in vitro screening of 1,363 drugs in patient-derived xenograft (PDX) models. Using this approach, we generated a dataset that can be used to assess and compare responses of various breast cancer PDXs to many different drugs. Through a series of further drug screening assays and two-drug combination testing, we identified that the combination of afatinib (epidermal growth factor receptor (EGFR) inhibitor) and YM155 (inhibitor of baculoviral inhibitor of apoptosis repeat-containing 5 (BIRC5; survivin) expression) is synergistically cytotoxic across multiple models of basal-like TNBC and reduces PDX mammary tumor growth in vivo. We found that YM155 reduces EGFR expression in TNBC cells, shedding light on its potential mechanism of synergism with afatinib. Both EGFR and BIRC5 are highly expressed in basal-like PDXs, cell lines, and patients, and high expression of both genes reduces metastasis-free survival, suggesting that co-targeting of these proteins holds promise for potential clinical success in TNBC.
Collapse
Affiliation(s)
- Tia H Turner
- Department of Pathology, Virginia Commonwealth University, Richmond, VA, USA.,Wright Center for Clinical and Translational Research, Virginia Commonwealth University, Richmond, VA, USA
| | - Mohammad A Alzubi
- Department of Pathology, Virginia Commonwealth University, Richmond, VA, USA.,Integrative Life Sciences Doctoral Program, Virginia Commonwealth University, Richmond, VA, USA
| | - J Chuck Harrell
- Department of Pathology, Virginia Commonwealth University, Richmond, VA, USA. .,Wright Center for Clinical and Translational Research, Virginia Commonwealth University, Richmond, VA, USA. .,Integrative Life Sciences Doctoral Program, Virginia Commonwealth University, Richmond, VA, USA. .,Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA.
| |
Collapse
|
161
|
Zhao J, Dean DC, Hornicek FJ, Yu X, Duan Z. Emerging next-generation sequencing-based discoveries for targeted osteosarcoma therapy. Cancer Lett 2020; 474:158-167. [PMID: 31987920 DOI: 10.1016/j.canlet.2020.01.020] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 01/18/2020] [Accepted: 01/20/2020] [Indexed: 12/28/2022]
Abstract
Osteosarcoma (OS) is the most common primary bone malignancy and is frequently lethal via metastasis to the lung. While surgical techniques and adjuvant chemotherapies have emerged to combat this deadly cancer, the 5-year survival rate has plateaued over the past four decades. Therapeutic progress has been notably poor because past technologies have not been able to reveal obscured OS biomarkers and targets. With the advent and implementation of large-scale next-generation sequencing (NGS) studies, various somatic mutations and copy number changes involved in OS progression and metastasis have surfaced. These findings have significantly expanded the amount of genome-informed pathways and candidate genes suitable for targeting in pre-clinical models. Furthermore, NGS analyses comparing primary and matched pulmonary metastatic tumor tissues have catalogued previously unknown prognostic biomarkers in OS. In this review, we delineate the most recent findings in NGS for OS therapy and how this technology has advanced personalized therapy.
Collapse
Affiliation(s)
- Jie Zhao
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, 250355, China; Department of Orthopaedic Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA; Department of Orthopaedic Surgery, The 960th Hospital of the PLA Joint Logistics Support Force, Jinan, Shandong, 250031, China.
| | - Dylan C Dean
- Department of Orthopaedic Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA.
| | - Francis J Hornicek
- Department of Orthopaedic Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA.
| | - Xiuchun Yu
- Department of Orthopaedic Surgery, The 960th Hospital of the PLA Joint Logistics Support Force, Jinan, Shandong, 250031, China.
| | - Zhenfeng Duan
- Department of Orthopaedic Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA.
| |
Collapse
|
162
|
Rozga P, Kloska D, Pawlak S, Teska-Kaminska M, Galazka M, Bukato K, Pieczykolan A, Jaworski A, Molga-Kaczmarska A, Kopacz A, Badyra B, Kachamakova-Trojanowska N, Zolnierkiewicz O, Targosz-Korecka M, Poleszak K, Szymanik M, Zerek B, Pieczykolan J, Jozkowicz A, Grochot-Przeczek A. Novel engineered TRAIL-based chimeric protein strongly inhibits tumor growth and bypasses TRAIL resistance. Int J Cancer 2020; 147:1117-1130. [PMID: 31863596 DOI: 10.1002/ijc.32845] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 09/23/2019] [Accepted: 09/26/2019] [Indexed: 01/07/2023]
Abstract
Targeting of the TRAIL-DR4/5 pathway was proposed as a promising approach for specific induction of apoptosis in cancer cells. Clinical trials, however, showed inadequate efficiency of TRAIL as a monotherapy. It is a widely held view that the application of multifunctional molecules or combination therapy may lead to substantial improvement. Here, we demonstrate the effectiveness and safety of a novel chimeric protein, AD-O51.4, which is a TRAIL equipped with positively charged VEGFA-derived effector peptides. The study was performed in multiple cancer cell line- and patient-derived xenografts. A pharmacokinetic profile was established in monkeys. AD-O51.4 strongly inhibits tumor growth, even leading to complete long-term tumor remission. Neither mice nor monkeys treated with AD-O51.4 demonstrate symptoms of drug toxicity. AD-O51.4 exhibits a satisfactory half-life in plasma and accumulates preferentially in tumors. The cellular mechanism of AD-O51.4 activity involves both cytotoxic effects in tumor cells and antiangiogenic effects on the endothelium. The presence of DRs in cancer cells is crucial for AD-O51.4-driven apoptosis execution. The TRAIL component of the fusion molecule serves as an apoptosis inducer and a cellular anchor for the effector peptides in TRAIL-sensitive and TRAIL-resistant cancer cells, respectively. The FADD-dependent pathway, however, seems to be not indispensable in death signal transduction; thus, AD-O51.4 is capable of bypassing the refractoriness of TRAIL. AD-O51.4-driven cell death, which exceeds TRAIL activity, is achieved due to the N-terminally fused polypeptide, containing VEGFA-derived effector peptides. The high anticancer efficiency of AD-O51.4 combined with its safety has led to the entry of AD-O51.4 into toxicological studies.
Collapse
Affiliation(s)
- Piotr Rozga
- Department of Drug Discovery, Adamed Pharma S.A. Pienkow, Czosnow, Poland
| | - Damian Kloska
- Department of Medical Biotechnology, Faculty of Biochemistry Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Sebastian Pawlak
- Department of Drug Discovery, Adamed Pharma S.A. Pienkow, Czosnow, Poland
| | | | - Marlena Galazka
- Department of Drug Discovery, Adamed Pharma S.A. Pienkow, Czosnow, Poland
| | - Katarzyna Bukato
- Department of Drug Discovery, Adamed Pharma S.A. Pienkow, Czosnow, Poland
| | - Anna Pieczykolan
- Department of Drug Discovery, Adamed Pharma S.A. Pienkow, Czosnow, Poland
| | - Albert Jaworski
- Department of Drug Discovery, Adamed Pharma S.A. Pienkow, Czosnow, Poland
| | | | - Aleksandra Kopacz
- Department of Medical Biotechnology, Faculty of Biochemistry Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Bogna Badyra
- Department of Medical Biotechnology, Faculty of Biochemistry Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Neli Kachamakova-Trojanowska
- Department of Medical Biotechnology, Faculty of Biochemistry Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Olga Zolnierkiewicz
- Department of Medical Biotechnology, Faculty of Biochemistry Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Marta Targosz-Korecka
- Department of Physics of Nanostructures and Nanotechnology, Institute of Physics, Jagiellonian University, Krakow, Poland
| | - Katarzyna Poleszak
- Department of Drug Discovery, Adamed Pharma S.A. Pienkow, Czosnow, Poland
| | - Michal Szymanik
- Department of Drug Discovery, Adamed Pharma S.A. Pienkow, Czosnow, Poland
| | - Bartlomiej Zerek
- Department of Drug Discovery, Adamed Pharma S.A. Pienkow, Czosnow, Poland
| | - Jerzy Pieczykolan
- Department of Drug Discovery, Adamed Pharma S.A. Pienkow, Czosnow, Poland
| | - Alicja Jozkowicz
- Department of Medical Biotechnology, Faculty of Biochemistry Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Anna Grochot-Przeczek
- Department of Medical Biotechnology, Faculty of Biochemistry Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| |
Collapse
|
163
|
Accelerating development of high-risk neuroblastoma patient-derived xenograft models for preclinical testing and personalised therapy. Br J Cancer 2020; 122:680-691. [PMID: 31919402 PMCID: PMC7054410 DOI: 10.1038/s41416-019-0682-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 09/18/2019] [Accepted: 09/20/2019] [Indexed: 01/17/2023] Open
Abstract
Background Predictive preclinical models play an important role in the assessment of new treatment strategies and as avatar models for personalised medicine; however, reliable and timely model generation is challenging. We investigated the feasibility of establishing patient-derived xenograft (PDX) models of high-risk neuroblastoma from a range of tumour-bearing patient materials and assessed approaches to improve engraftment efficiency. Methods PDX model development was attempted in NSG mice by using tumour materials from 12 patients, including primary and metastatic solid tumour samples, bone marrow, pleural fluid and residual cells from cytogenetic analysis. Subcutaneous, intramuscular and orthotopic engraftment were directly compared for three patients. Results PDX models were established for 44% (4/9) of patients at diagnosis and 100% (5/5) at relapse. In one case, attempted engraftment from pleural fluid resulted in an EBV-associated atypical lymphoid proliferation. Xenogeneic graft versus host disease was observed with attempted engraftment from lymph node and bone marrow tumour samples but could be prevented by T-cell depletion. Orthotopic engraftment was more efficient than subcutaneous or intramuscular engraftment. Conclusions High-risk neuroblastoma PDX models can be reliably established from diverse sample types. Orthotopic implantation allows more rapid model development, increasing the likelihood of developing an avatar model within a clinically useful timeframe.
Collapse
|
164
|
Shao S, Hu Q, Wu W, Wang M, Huang J, Zhao X, Tang G, Liang T. Tumor-triggered personalized microRNA cocktail therapy for hepatocellular carcinoma. Biomater Sci 2020; 8:6579-6591. [PMID: 33231584 DOI: 10.1039/d0bm00794c] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
miRNA cocktail therapy based on pH-responsive nanoparticles featuring PEG detachment and size transformation is a potential strategy for HCC treatment.
Collapse
Affiliation(s)
- Shiyi Shao
- Department of Hepatobiliary and Pancreatic Surgery
- First Affiliated Hospital
- Zhejiang University School of Medicine
- Hangzhou 310003
- China
| | - Qida Hu
- Department of Hepatobiliary and Pancreatic Surgery
- First Affiliated Hospital
- Zhejiang University School of Medicine
- Hangzhou 310003
- China
| | - Wangteng Wu
- Department of Hepatobiliary and Pancreatic Surgery
- First Affiliated Hospital
- Zhejiang University School of Medicine
- Hangzhou 310003
- China
| | - Meng Wang
- Department of Hepatobiliary and Pancreatic Surgery
- First Affiliated Hospital
- Zhejiang University School of Medicine
- Hangzhou 310003
- China
| | - Junming Huang
- Department of Hepatobiliary and Pancreatic Surgery
- First Affiliated Hospital
- Zhejiang University School of Medicine
- Hangzhou 310003
- China
| | - Xinyu Zhao
- Department of Hepatobiliary and Pancreatic Surgery
- First Affiliated Hospital
- Zhejiang University School of Medicine
- Hangzhou 310003
- China
| | - Guping Tang
- Institute of Chemistry Biology and Pharmaceutical Chemistry
- Zhejiang University
- Hangzhou 310028
- China
| | - Tingbo Liang
- Department of Hepatobiliary and Pancreatic Surgery
- First Affiliated Hospital
- Zhejiang University School of Medicine
- Hangzhou 310003
- China
| |
Collapse
|
165
|
Xu W, Zhao ZY, An QM, Dong B, Lv A, Li CP, Guan XY, Tian XY, Wu JH, Hao CY. Comprehensive comparison of patient-derived xenograft models in Hepatocellular Carcinoma and metastatic Liver Cancer. Int J Med Sci 2020; 17:3073-3081. [PMID: 33173428 PMCID: PMC7646096 DOI: 10.7150/ijms.46686] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Accepted: 10/07/2020] [Indexed: 02/07/2023] Open
Abstract
Patient-derived xenograft (PDX) models are effective preclinical cancer models that reproduce the tumor microenvironment of the human body. The methods have been widely used for drug screening, biomarker development, co-clinical trials, and personalized medicine. However, the low success rate and the long tumorigenesis period have largely limited their usage. In the present studies, we compared the PDX establishment between hepatocellular cancer (HCC) and metastatic liver cancer (MLC), and identified the key factors affecting the transplantation rate of PDXs. Surgically resected tumor specimens obtained from patients were subcutaneously inoculated into immunodeficient mice to construct PDX models. The overall transplantation rate was 38.5% (20/52), with the HCC group (28.1%, 9/32) being lower than MLC group (56.2%, 9/16). In addition, HCC group took significantly longer latency period than MLC group to construct PDX models. Hematoxylin and eosin staining results showed that the histopathology of all generations in PDX models was similar to the original tumor in all three types of cancer. The transplantation rate of PDX models in HCC patients was significantly associated with blood type (P=0.001), TNM stage (P=0.023), lymph node metastasis (P=0.042) and peripheral blood CA19-9 level (P=0.049), while the transplantation rate of PDX models in MLC patients was significantly associated with tumor size (P=0.034). This study demonstrates that PDX models can effectively reproduce the histological patterns of human tumors. The transplantation rate depends on the type of original tumor. Furthermore, it shows that the invasiveness of the original liver cancer affects the possibility of its growth in immunodeficient mice.
Collapse
Affiliation(s)
- Wei Xu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Hepato-Pancreato-Biliary Surgery, Peking University Cancer Hospital & Institute, Beijing, China
| | - Zheng-Yun Zhao
- Department of Chemistry, Durham University, Stockton Road, Durham DH1 3LE, U.K
| | - Qi-Ming An
- Department of Gastrointestinal Surgery, the Affiliated Hospital of Inner Mongolia Medical University, Hohhot 010050, China
| | - Bin Dong
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Center laboratory, Peking University Cancer Hospital & Institute, Beijing, China
| | - Ang Lv
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Hepato-Pancreato-Biliary Surgery, Peking University Cancer Hospital & Institute, Beijing, China
| | - Cheng-Peng Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Hepato-Pancreato-Biliary Surgery, Peking University Cancer Hospital & Institute, Beijing, China
| | - Xiao-Ya Guan
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Hepato-Pancreato-Biliary Surgery, Peking University Cancer Hospital & Institute, Beijing, China
| | - Xiu-Yun Tian
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Hepato-Pancreato-Biliary Surgery, Peking University Cancer Hospital & Institute, Beijing, China
| | - Jian-Hui Wu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Hepato-Pancreato-Biliary Surgery, Peking University Cancer Hospital & Institute, Beijing, China
| | - Chun-Yi Hao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Hepato-Pancreato-Biliary Surgery, Peking University Cancer Hospital & Institute, Beijing, China
| |
Collapse
|
166
|
Mendes N, Dias Carvalho P, Martins F, Mendonça S, Malheiro AR, Ribeiro A, Carvalho J, Velho S. Animal Models to Study Cancer and Its Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1219:389-401. [PMID: 32130710 DOI: 10.1007/978-3-030-34025-4_20] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Cancers are complex tissues composed by genetically altered cancer cells and stromal elements such as inflammatory/immune cells, fibroblasts, endothelial cells and pericytes, neuronal cells, and a non-cellular component, the extracellular matrix. The complex network of interactions and crosstalk established between cancer cells and the supportig cellular and non-cellular components of the microenvironment are of extreme importance for tumor initiation and progression, strongly impacting the course and the outcome of the disease. Therefore, a better understanding of the tumorigenic processes implies the combined study of the cancer cell and the biologic, chemical and mechanic constituents of the tumor microenvironment, as their concerted action plays a major role in the carcinogenic pathway and is a key determinant of the efficacy of anti-cancer treatments. The use of animal models (e.g. Mouse, Zebrafish and Drosophila) to study cancer has greatly impacted our understanding of the processes governing initiation, progression and metastasis and allowed the discovery and pre-clinical validation of novel cancer treatments as it allows to recreate tumor development in a more pathophysiologic environment.
Collapse
Affiliation(s)
- N Mendes
- i3S, Instituto de Investigação e Inovação em Saúde, Porto, Portugal.
- IPATIMUP, Instituto de Patologia Molecular e Imunologia da Universidade do Porto, Porto, Portugal.
| | - P Dias Carvalho
- i3S, Instituto de Investigação e Inovação em Saúde, Porto, Portugal
- IPATIMUP, Instituto de Patologia Molecular e Imunologia da Universidade do Porto, Porto, Portugal
| | - F Martins
- i3S, Instituto de Investigação e Inovação em Saúde, Porto, Portugal
- IPATIMUP, Instituto de Patologia Molecular e Imunologia da Universidade do Porto, Porto, Portugal
| | - S Mendonça
- i3S, Instituto de Investigação e Inovação em Saúde, Porto, Portugal
- IPATIMUP, Instituto de Patologia Molecular e Imunologia da Universidade do Porto, Porto, Portugal
| | - A R Malheiro
- i3S, Instituto de Investigação e Inovação em Saúde, Porto, Portugal
- IBMC, Instituto de Biologia Molecular e Celular da Universidade do Porto, Porto, Portugal
| | - A Ribeiro
- i3S, Instituto de Investigação e Inovação em Saúde, Porto, Portugal
- IPATIMUP, Instituto de Patologia Molecular e Imunologia da Universidade do Porto, Porto, Portugal
| | - J Carvalho
- i3S, Instituto de Investigação e Inovação em Saúde, Porto, Portugal
- IPATIMUP, Instituto de Patologia Molecular e Imunologia da Universidade do Porto, Porto, Portugal
| | - S Velho
- i3S, Instituto de Investigação e Inovação em Saúde, Porto, Portugal.
- IPATIMUP, Instituto de Patologia Molecular e Imunologia da Universidade do Porto, Porto, Portugal.
| |
Collapse
|
167
|
Landberg G, Fitzpatrick P, Isakson P, Jonasson E, Karlsson J, Larsson E, Svanström A, Rafnsdottir S, Persson E, Gustafsson A, Andersson D, Rosendahl J, Petronis S, Ranji P, Gregersson P, Magnusson Y, Håkansson J, Ståhlberg A. Patient-derived scaffolds uncover breast cancer promoting properties of the microenvironment. Biomaterials 2019; 235:119705. [PMID: 31978840 DOI: 10.1016/j.biomaterials.2019.119705] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 11/26/2019] [Accepted: 12/18/2019] [Indexed: 12/15/2022]
Abstract
Tumor cells interact with the microenvironment that specifically supports and promotes tumor development. Key components in the tumor environment have been linked to various aggressive cancer features and can further influence the presence of subpopulations of cancer cells with specific functions, including cancer stem cells and migratory cells. To model and further understand the influence of specific microenvironments we have developed an experimental platform using cell-free patient-derived scaffolds (PDSs) from primary breast cancers infiltrated with standardized breast cancer cell lines. This PDS culture system induced a series of orchestrated changes in differentiation, epithelial-mesenchymal transition, stemness and proliferation of the cancer cell population, where an increased cancer stem cell pool was confirmed using functional assays. Furthermore, global gene expression profiling showed that PDS cultures were similar to xenograft cultures. Mass spectrometry analyses of cell-free PDSs identified subgroups based on their protein composition that were linked to clinical properties, including tumor grade. Finally, we observed that an induction of epithelial-mesenchymal transition-related genes in cancer cells growing on the PDSs were significantly associated with clinical disease recurrences in breast cancer patients. Patient-derived scaffolds thus mimics in vivo-like growth conditions and uncovers unique information about the malignancy-inducing properties of tumor microenvironment.
Collapse
Affiliation(s)
- Göran Landberg
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, Sahlgrenska Cancer Center, University of Gothenburg, SE-41390, Gothenburg, Sweden.
| | - Paul Fitzpatrick
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, Sahlgrenska Cancer Center, University of Gothenburg, SE-41390, Gothenburg, Sweden
| | - Pauline Isakson
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, Sahlgrenska Cancer Center, University of Gothenburg, SE-41390, Gothenburg, Sweden
| | - Emma Jonasson
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, Sahlgrenska Cancer Center, University of Gothenburg, SE-41390, Gothenburg, Sweden
| | - Joakim Karlsson
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE-41390, Gothenburg, Sweden
| | - Erik Larsson
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE-41390, Gothenburg, Sweden
| | - Andreas Svanström
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, Sahlgrenska Cancer Center, University of Gothenburg, SE-41390, Gothenburg, Sweden
| | - Svanheidur Rafnsdottir
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, Sahlgrenska Cancer Center, University of Gothenburg, SE-41390, Gothenburg, Sweden
| | - Emma Persson
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, Sahlgrenska Cancer Center, University of Gothenburg, SE-41390, Gothenburg, Sweden
| | - Anna Gustafsson
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, Sahlgrenska Cancer Center, University of Gothenburg, SE-41390, Gothenburg, Sweden
| | - Daniel Andersson
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, Sahlgrenska Cancer Center, University of Gothenburg, SE-41390, Gothenburg, Sweden
| | - Jennifer Rosendahl
- RISE, Research Institutes of Sweden, Bioscience and Materials - Medical Device Technology, SE-50115, Borås, Sweden
| | - Sarunas Petronis
- RISE, Research Institutes of Sweden, Bioscience and Materials - Medical Device Technology, SE-50115, Borås, Sweden
| | - Parmida Ranji
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, Sahlgrenska Cancer Center, University of Gothenburg, SE-41390, Gothenburg, Sweden
| | - Pernilla Gregersson
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, Sahlgrenska Cancer Center, University of Gothenburg, SE-41390, Gothenburg, Sweden
| | - Ylva Magnusson
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, Sahlgrenska Cancer Center, University of Gothenburg, SE-41390, Gothenburg, Sweden
| | - Joakim Håkansson
- RISE, Research Institutes of Sweden, Bioscience and Materials - Medical Device Technology, SE-50115, Borås, Sweden
| | - Anders Ståhlberg
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, Sahlgrenska Cancer Center, University of Gothenburg, SE-41390, Gothenburg, Sweden; Wallenberg Center for Molecular and Translational Medicine, University of Gothenburg, SE-41390, Gothenburg, Sweden; Department of Clinical Genetics and Genomics, Sahlgrenska University Hospital, SE-41390, Gothenburg, Sweden.
| |
Collapse
|
168
|
Black M, Ghasemi F, Sun RX, Stecho W, Datti A, Meens J, Pinto N, Ruicci KM, Khan MI, Han MW, Shaikh M, Yoo J, Fung K, MacNeil D, Palma DA, Winquist E, Howlett CJ, Mymryk JS, Ailles L, Boutros PC, Barrett JW, Nichols AC. Spleen tyrosine kinase expression is correlated with human papillomavirus in head and neck cancer. Oral Oncol 2019; 101:104529. [PMID: 31864959 DOI: 10.1016/j.oraloncology.2019.104529] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 11/25/2019] [Accepted: 12/15/2019] [Indexed: 12/25/2022]
Abstract
OBJECTIVES Spleen tyrosine kinase (SYK) is a promoter of cell survival in a variety of cell types, including normal and cancerous epithelial cells. We hypothesized that SYK would an important therapeutic target to inhibit for the treatment of HNSCC. MATERIALS AND METHODS SYK protein abundance in patient tumours was evaluated. SYK protein and mRNA abundance was used to examine patient survival and human papillomavirus (HPV) status. Small-interfering RNAs and gene editing with CRISPR/Cas9 were used to evaluate SYK expression on proliferation in HNSCC cell lines. The potency of SYK inhibitor ER27319 maleate on cellular proliferation was tested using a panel of 28 HNSCC cell lines and in vivo in HNSCC patient-derived xenograft (PDX) models. RESULTS Moderate to high protein expression of SYK was observed in 24% of patient tumors and high SYK expression was exclusively observed in HPV-positive samples (p < 0.001). SYK inhibition with RNA interference, gene editing or a SYK inhibitor (ER27319) decreased cell proliferation and migration. Treatment of PDXs with ER27319 maleate was observed to reduce tumour burden in vivo in two of three models. CONCLUSIONS HPV-positive HNSCC harbours high SYK protein levels. We demonstrate that proliferation, migration and overall burden of these tumours can be reduced by genetic or pharmacologic inhibition of SYK. Taken together, these data establish SYK as a therapeutic target for HNSCC.
Collapse
Affiliation(s)
- Morgan Black
- Department of Otolaryngology, London Health Sciences Centre, London, Ontario, Canada; Department of Oncology, London Health Sciences Centre, London, Ontario, Canada
| | - Farhad Ghasemi
- Department of Otolaryngology, London Health Sciences Centre, London, Ontario, Canada
| | - Ren X Sun
- Informatics & Biocomputing Program, Ontario Institute for Cancer Research, Toronto, Ontario, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - William Stecho
- Department of Pathology and Laboratory Medicine, London Health Sciences Centre, London, Ontario, Canada
| | - Alessandro Datti
- Department of Agricultural, Food, and Environmental Sciences, University of Perugia, Perugia, Italy.
| | - Jalna Meens
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Nicole Pinto
- Department of Otolaryngology, London Health Sciences Centre, London, Ontario, Canada; Department of Oncology, London Health Sciences Centre, London, Ontario, Canada
| | - Kara M Ruicci
- Department of Otolaryngology, London Health Sciences Centre, London, Ontario, Canada; Department of Oncology, London Health Sciences Centre, London, Ontario, Canada
| | - M Imran Khan
- Department of Otolaryngology, London Health Sciences Centre, London, Ontario, Canada
| | - Myung Woul Han
- Department of Otolaryngology, London Health Sciences Centre, London, Ontario, Canada
| | - Mushfiq Shaikh
- Department of Otolaryngology, London Health Sciences Centre, London, Ontario, Canada
| | - John Yoo
- Department of Otolaryngology, London Health Sciences Centre, London, Ontario, Canada; Department of Oncology, London Health Sciences Centre, London, Ontario, Canada
| | - Kevin Fung
- Department of Otolaryngology, London Health Sciences Centre, London, Ontario, Canada; Department of Oncology, London Health Sciences Centre, London, Ontario, Canada
| | - Danielle MacNeil
- Department of Otolaryngology, London Health Sciences Centre, London, Ontario, Canada; Department of Oncology, London Health Sciences Centre, London, Ontario, Canada
| | - David A Palma
- Department of Oncology, London Health Sciences Centre, London, Ontario, Canada
| | - Eric Winquist
- Department of Oncology, London Health Sciences Centre, London, Ontario, Canada
| | - Christopher J Howlett
- Department of Pathology and Laboratory Medicine, London Health Sciences Centre, London, Ontario, Canada
| | - Joe S Mymryk
- Department of Otolaryngology, London Health Sciences Centre, London, Ontario, Canada; Department of Oncology, London Health Sciences Centre, London, Ontario, Canada; Department of Microbiology and Immunology, University of Western Ontario, London, Ontario, Canada
| | - Laurie Ailles
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Paul C Boutros
- Informatics & Biocomputing Program, Ontario Institute for Cancer Research, Toronto, Ontario, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - John W Barrett
- Department of Otolaryngology, London Health Sciences Centre, London, Ontario, Canada; Department of Oncology, London Health Sciences Centre, London, Ontario, Canada
| | - Anthony C Nichols
- Department of Otolaryngology, London Health Sciences Centre, London, Ontario, Canada; Department of Oncology, London Health Sciences Centre, London, Ontario, Canada.
| |
Collapse
|
169
|
Veeranki OL, Tong Z, Mejia A, Verma A, Katkhuda R, Bassett R, Kim TB, Wang J, Lang W, Mino B, Solis L, Kingsley C, Norton W, Tailor R, Wu JY, Krishnan S, Lin SH, Blum M, Hofstetter W, Ajani J, Kopetz S, Maru D. A novel patient-derived orthotopic xenograft model of esophageal adenocarcinoma provides a platform for translational discoveries. Dis Model Mech 2019; 12:dmm.041004. [PMID: 31732509 PMCID: PMC6918774 DOI: 10.1242/dmm.041004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 11/08/2019] [Indexed: 12/17/2022] Open
Abstract
Mouse models of gastroesophageal junction (GEJ) cancer strive to recapitulate the intratumoral heterogeneity and cellular crosstalk within patient tumors to improve clinical translation. GEJ cancers remain a therapeutic challenge due to the lack of a reliable mouse model for preclinical drug testing. In this study, a novel patient-derived orthotopic xenograft (PDOX) was established from GEJ cancer via transabdominal surgical implantation. Patient tumor was compared to subcutaneously implanted patient-derived tumor xenograft (PDX) and PDOX by Hematoxylin and Eosin staining, immunohistochemistry and next-generation sequencing. Treatment efficacy studies of radiotherapy were performed. We observed that mechanical abrasion of mouse GEJ prior to surgical implantation of a patient-derived tumor in situ promotes tumor engraftment (100%, n=6). Complete PDOX engraftment was observed with rapid intra- and extraluminal tumor growth, as evidenced by magnetic resonance imaging. PDOXs contain fibroblasts, tumor-associated macrophages, immune and inflammatory cells, vascular and lymphatic vessels. Stromal hallmarks of aggressive GEJ cancers are recapitulated in a GEJ PDOX mouse model. PDOXs demonstrate tumor invasion into vasculature and perineural space. Next-generation sequencing revealed loss of heterozygosity with very high allelic frequency in NOTCH3, TGFB1, EZH2 and KMT2C in the patient tumor, the subcutaneous PDX and the PDOX. Immunohistochemical analysis of Her2/neu (also known as ERBB2), p53 (also known as TP53) and p16 (also known as CDKN2A) in PDX and PDOX revealed maintenance of expression of proteins found in patient tumors, but membranous EGFR overexpression in patient tumor cells was absent in both xenografts. Targeted radiotherapy in this model suggested a decrease in size by 61% according to Response Evaluation Criteria in Solid Tumors (RECIST), indicating a partial response to radiation therapy. Our GEJ PDOX model exhibits remarkable fidelity to human disease and captures the precise tissue microenvironment present within the local GEJ architecture, providing a novel tool for translating findings from studies on human GEJ cancer. This model can be applied to study metastatic progression and to develop novel therapeutic approaches for the treatment of GEJ cancer. This article has an associated First Person interview with the first author of the paper. Editor's choice: The patient-derived orthotopic xenograft model of gastroesophageal adenocarcinoma maintains the morphological and molecular characteristics despite being highly heterogeneous, emphasizing its use as a powerful investigational platform to evaluate new therapies.
Collapse
Affiliation(s)
- Omkara Lakshmi Veeranki
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Zhimin Tong
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Alicia Mejia
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Anuj Verma
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Riham Katkhuda
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Roland Bassett
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Tae-Beom Kim
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jing Wang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Wenhua Lang
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Barbara Mino
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Luisa Solis
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Charles Kingsley
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - William Norton
- Department of Veterinary Medicine and Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Ramesh Tailor
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Ji Yuan Wu
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Sunil Krishnan
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Steven H Lin
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Mariela Blum
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Wayne Hofstetter
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jaffer Ajani
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Scott Kopetz
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Dipen Maru
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA .,Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
170
|
Zhao Y, Zhao X, Chen V, Feng Y, Wang L, Croniger C, Conlon RA, Markowitz S, Fearon E, Puchowicz M, Brunengraber H, Hao Y, Wang Z. Colorectal cancers utilize glutamine as an anaplerotic substrate of the TCA cycle in vivo. Sci Rep 2019; 9:19180. [PMID: 31844152 PMCID: PMC6915720 DOI: 10.1038/s41598-019-55718-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 11/28/2019] [Indexed: 12/13/2022] Open
Abstract
Cancer cells in culture rely on glutamine as an anaplerotic substrate to replenish tricarboxylic acid (TCA) cycle intermediates that have been consumed. but it is uncertain whether cancers in vivo depend on glutamine for anaplerosis. Here, following in vivo infusions of [13C5]-glutamine in mice bearing subcutaneous colon cancer xenografts, we showed substantial amounts of infused [13C5]-glutamine enters the TCA cycle in the tumors. Consistent with our prior observation that colorectal cancers (CRCs) with oncogenic mutations in the phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic (PIK3CA) subunit are more dependent on glutamine than CRCs with wild type PIK3CA, labeling from glutamine to most TCA cycle intermediates was higher in PIK3CA-mutant subcutaneous xenograft tumors than in wild type PIK3CA tumors. Moreover, using orthotopic mouse colon tumors estalished from human CRC cells or patient-derived xenografts, we demonstrated substantial amounts of infused [13C5]-glutamine enters the TCA cycle in the tumors and tumors utilize anaplerotic glutamine to a greater extent than adjacent normal colon tissues. Similar results were seen in spontaneous colon tumors arising in genetically engineered mice. Our studies provide compelling evidence CRCs utilizes glutamine to replenish the TCA cycle in vivo, suggesting that targeting glutamine metabolism could be a therapeutic approach for CRCs, especially for PIK3CA-mutant CRCs.
Collapse
Affiliation(s)
- Yiqing Zhao
- Department of Genetics and Genome Sciences, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio, 44106, USA.,Case Comprehensive Cancer Center, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio, 44106, USA
| | - Xuan Zhao
- Department of Genetics and Genome Sciences, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio, 44106, USA.,Case Comprehensive Cancer Center, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio, 44106, USA
| | - Vanessa Chen
- Department of Genetics and Genome Sciences, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio, 44106, USA.,Department of Nutrition, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio, 44106, USA
| | - Ying Feng
- Departments of Internal Medicine, Human Genetics, and Pathology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Lan Wang
- Department of Nutrition, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio, 44106, USA
| | - Colleen Croniger
- Department of Nutrition, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio, 44106, USA
| | - Ronald A Conlon
- Department of Genetics and Genome Sciences, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio, 44106, USA.,Case Comprehensive Cancer Center, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio, 44106, USA
| | - Sanford Markowitz
- Department of Genetics and Genome Sciences, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio, 44106, USA.,Case Comprehensive Cancer Center, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio, 44106, USA.,Department of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio, 44106, USA.,Seidman Cancer Center, University Hospitals Cleveland Medical Center, Cleveland, OH, 44106, USA
| | - Eric Fearon
- Departments of Internal Medicine, Human Genetics, and Pathology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Michelle Puchowicz
- Department of Nutrition, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio, 44106, USA
| | - Henri Brunengraber
- Department of Nutrition, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio, 44106, USA
| | - Yujun Hao
- Department of Genetics and Genome Sciences, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio, 44106, USA. .,Case Comprehensive Cancer Center, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio, 44106, USA. .,Shanghai Cancer Institute, Shanghai Jiao-Tong University School of Medicine Renji Hospital, 25/Ln 2200 Xietu Road, Shanghai, 200032, P.R. China.
| | - Zhenghe Wang
- Department of Genetics and Genome Sciences, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio, 44106, USA. .,Case Comprehensive Cancer Center, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio, 44106, USA.
| |
Collapse
|
171
|
Park HS, Lee JD, Kim JY, Park S, Kim JH, Han HJ, Choi YA, Choi AR, Sohn JH, Kim SI. Establishment of chemosensitivity tests in triple-negative and BRCA-mutated breast cancer patient-derived xenograft models. PLoS One 2019; 14:e0225082. [PMID: 31821346 PMCID: PMC6903765 DOI: 10.1371/journal.pone.0225082] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 10/28/2019] [Indexed: 01/05/2023] Open
Abstract
PURPOSE A patient-derived xenograft (PDX) model is an in vivo animal model which provides biological and genomic profiles similar to a primary tumor. The characterization of factors that influence the establishment of PDX is crucial. Furthermore, PDX models can provide a platform for chemosensitivity tests to evaluate the effectiveness of a target agent before applying it in clinical trials. METHODS We implanted 83 cases of breast cancer into NOD.Cg-Prkdcscid Il2rgtm1Sug/Jic mice, to develop PDX models. Clinicopathological factors of primary tumors were reviewed to identify the factors affecting engraftment success rates. After the establishment of PDX models, we performed olaparib and carboplatin chemosensitivity tests. We used PDX models from triple-negative breast cancer (TNBC) with neoadjuvant chemotherapy and/or germline BRCA1 mutations in chemosensitivity tests. RESULTS The univariate analyses (p<0.05) showed factors which were significantly associated with successful engraftment of PDX models include poor histologic grade, presence of BRCA mutation, aggressive diseases, and death. Factors which were independently associated with successful engraftment of PDX models on multivariate analyses include poor histologic grade and aggressive diseases status. In chemosensitivity tests, a PDX model with the BRCA1 L1780P mutation showed partial response to olaparib and complete response to carboplatin. CONCLUSIONS Successful engraftment of PDX models was significantly associated with aggressive diseases. Patients who have aggressive diseases status, large tumors, and poor histologic grade are ideal candidates for developing successful PDX models. Chemosensitivity tests using the PDX models provide additional information about alternative treatment strategies for residual TNBC after neoadjuvant chemotherapy.
Collapse
Affiliation(s)
- Hyung Seok Park
- Department of Surgery, Yonsei University College of Medicine, Seoul, Korea
| | - Jeong Dong Lee
- Department of Human Biology and Genomics, Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul, Korea
| | - Jee Ye Kim
- Department of Surgery, Yonsei University College of Medicine, Seoul, Korea
| | - Seho Park
- Department of Surgery, Yonsei University College of Medicine, Seoul, Korea
| | - Joo Heung Kim
- Department of Surgery, Yonsei University College of Medicine, Seoul, Korea
| | - Hyun Ju Han
- Avison Biomedical Research Center, Yonsei University College of Medicine, Seoul, Korea
| | - Yeon A. Choi
- Avison Biomedical Research Center, Yonsei University College of Medicine, Seoul, Korea
| | - Ae Ran Choi
- Avison Biomedical Research Center, Yonsei University College of Medicine, Seoul, Korea
| | - Joo Hyuk Sohn
- Division of Medical Oncology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Seung Il Kim
- Department of Surgery, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
172
|
Carpenter R, Oh HJ, Ham IH, Kim D, Hur H, Lee J. Scaffold-Assisted Ectopic Transplantation of Internal Organs and Patient-Derived Tumors. ACS Biomater Sci Eng 2019; 5:6667-6678. [PMID: 33423485 PMCID: PMC7808342 DOI: 10.1021/acsbiomaterials.9b00978] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Xenotransplantation of human tissues into immunodeficient mice has emerged as an invaluable preclinical model to study human biology and disease progression and predict clinical response. The most common anatomical site for tissue transplantation is the subcutaneous pocket due to simple surgical procedures and accessibility for gross monitoring and advanced imaging modalities. However, subcutaneously implanted tissues initially experience a sharp change in oxygen and nutrient supply and increased mechanical deformation. During this acute phase of tissue integration to the host vasculature, substantial cell death and tissue fibrosis occur limiting engraftment efficiency. Previously, we demonstrated that the implantation of inverted colloidal crystal hydrogel scaffolds triggers proangiogenic and immunomodulatory functions without characteristic foreign body encapsulation. In this study, we examine the use of this unique host response to improve the ectopic transplantation of tissues to the subcutaneous site. Scaffold-assisted tissues preserved morphological features and blood vessel density compared to native tissues, whereas scaffold-free tissues collapsed and were less vascularized. Notably, the supporting biomaterial scaffold modulated the foreign body response to reduce the localization of Ly6G+ cells within the transplanted tissues. Cotransplantation of patient-derived gastric cancer with a scaffold resulted in a comparable level of engraftment to conventional methods; however, detailed immunohistological characterization revealed significantly better retention of proliferative cells (Ki67+) and human immune cells (CD45+) by the end of the study. We envision that leveraging the immunomodulatory properties of biomaterial interfaces can be an attractive strategy to improve the functional engraftment of xenotransplants and accelerate individualized diagnostics and the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Ryan Carpenter
- Department of Chemical Engineering, Institute for Applied Life Sciences, University of Massachusetts, Amherst, 240 Thatcher Road, Amherst, Massachusetts 01003, United States
| | - Hye Jeong Oh
- Department of Surgery, Ajou University School of Medicine, 164 Worldcup-ro, Yeongtong-gu, Suwon-si 16499, Gyeonggi-do, Republic of Korea
| | - In-Hye Ham
- Department of Surgery, Ajou University School of Medicine, 164 Worldcup-ro, Yeongtong-gu, Suwon-si 16499, Gyeonggi-do, Republic of Korea
| | - Daeyoung Kim
- Department of Mathematics & Statistics, University of Massachusetts, Amherst, Lederle Graduate Research Tower, 710 North Pleasant Street, Amherst, Massachusetts 01003, United States
| | - Hoon Hur
- Department of Surgery, Ajou University School of Medicine, 164 Worldcup-ro, Yeongtong-gu, Suwon-si 16499, Gyeonggi-do, Republic of Korea
| | - Jungwoo Lee
- Department of Chemical Engineering, Institute for Applied Life Sciences, University of Massachusetts, Amherst, 240 Thatcher Road, Amherst, Massachusetts 01003, United States
- Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, 240 Thatcher Road, Amherst, Massachusetts 01003, United States
| |
Collapse
|
173
|
Wang Y, Zhang B, Huang H, Wang T. An improved method to build lung cancer PDX models by surgical resection samples and its association with B7-H3 expression. Transl Cancer Res 2019; 8:2848-2857. [PMID: 35117042 PMCID: PMC8798245 DOI: 10.21037/tcr.2019.10.40] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 10/17/2019] [Indexed: 12/24/2022]
Abstract
Background Patient-derived xenograft (PDX) models are biologically stable and can accurately reflect the primary tumor in histopathology and genetic expression in many cancers. In lung cancer, the models' engraftment rate by endobronchial ultrasound transbronchial needle aspiration (EBUS-TBNA) and computed tomography (CT)-guided biopsy is exceptionally low, and this limits the development of PDX models in lung cancer research. In this study, we aimed to improve the traditional method, and explore the feasibility and convenience of establishing lung cancer PDX models using the samples directly from surgical resection. We also endeavored to explore the correlation between PDX formation and primary tumor B7-H3 protein expression. Methods From September 2017 to July 2018, 24 patients were enrolled in this study. The pathological diagnoses were as follows: 15 adenocarcinomas, 7 squamous cell carcinomas, 1 large cell carcinoma, and 1 small cell carcinoma. The tumor tissues were cut into sizes of 2×2×2 mm3/fragment and inoculated subcutaneously into immunodeficiency mice with a trocar needle. The engrafted tumors were passaged at least 3 generations, and B7-H3 IHC staining was performed on primary tumors. To explore the correlation between PDX formation and B7-H3 protein expression, we also performed H&E staining to evaluate whether the established PDX models could retain the histological features of the primary tumor. Results Xenograft formation success was achieved in 19 out of 24 cases (79.2%). The time between implantation to tumor formation was an average of 81.5 days (27-154 days) in P1, an average of 44.4 days (14-122 days) in P2, and an average of 26.9 days (12-75 days) in P3. The diameter of the tumor was associated with tumor engraftment: the longer the diameter, the easier engraftment formation was (P=0.0342). The data also suggests that lung cancers with B7-H3 expression greatly induced PDX formation (P=0.0375). The histological characters of each passage resembled the primary tumors. Conclusions This study shows that the samples from carefully selected lung cancer by surgical resection can be used for the establishment of PDX models with a high success rate; this improved method is closer to actual clinical work. Compared with the same kind of research, the success rate of the xenograft indicates significant improvement, so this improved method is suitable for promotion and application. The results of H&E staining showed that the histological characters of each passage resembled the primary tumors. Furthermore, the diameter of the tumor was associated with tumor engraftment, and higher B7-H3 expression demonstrated a statistically significant difference compared with the PDX model formation.
Collapse
Affiliation(s)
- Yuxuan Wang
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Biao Zhang
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Haitao Huang
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Tingjing Wang
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| |
Collapse
|
174
|
Patient-derived tumor models for human nasopharyngeal carcinoma. Enzymes 2019. [PMID: 31727278 DOI: 10.1016/bs.enz.2019.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Nasopharyngeal carcinoma (NPC) is one of the most common head and neck tumors in Southern China. At present, the interaction of genetic susceptibility, Epstein-Barr virus (EBV) infection and environmental factors has been considered to be the main cause of NPC. However, the detailed molecular mechanisms of tumorigenesis and tumor metastasis have not been fully understood. The effective therapeutic drugs targeting NPC are still being developed and discovered. NPC cell lines and normal nasopharyngeal epithelial cell lines were frequently used by researchers, but not represent the complex situation in vivo. Establishing an ideal animal model of NPC is one of the keys to solving the above problems. Here, we introduce the development of in vitro and in vivo models of NPC.
Collapse
|
175
|
Abstract
The current chapter highlights the use of chorioallantoic membrane (CAM) of fertilized chicken egg for the characterization of nanoparticles applied in cancer nanomedicine. The CAM assay represents a promising alternative to mouse models in term of costs, ease of use, rapidity and ethical issues in particular for the screening of nanoformulations. Hence, the features of nanoparticles including blood retention, biocompatibility, active targeting or tumor accumulation, angiogenic activity, drug delivery and tumor elimination might be simply evaluated via the CAM model. In particular, in this model, embryo organs and morphology, CAM vasculature and blood cells, transplanted tumors on CAM were typically monitored and used for the evaluation of the nanomaterials. With the above advantages, the CAM assay, as highly valuable in vivo model, could be used regularly in pharmaceutical industries.
Collapse
Affiliation(s)
- Soontaree Grace Intasa-Ard
- School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Rayong, Thailand; Institute for Integrated Cell-Material Sciences-Vidyasirimedhi Institute of Science and Technology Research Center, Institute for Advanced Study, Kyoto University, Kyoto, Japan
| | - Albane Birault
- Institute for Integrated Cell-Material Sciences, Institute for Advanced Study, Kyoto University, Kyoto, Japan.
| |
Collapse
|
176
|
Shi J, Li Y, Jia R, Fan X. The fidelity of cancer cells in PDX models: Characteristics, mechanism and clinical significance. Int J Cancer 2019; 146:2078-2088. [PMID: 31479514 DOI: 10.1002/ijc.32662] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 08/29/2019] [Indexed: 12/14/2022]
Abstract
Patient-derived xenograft (PDX) models are widely used as preclinical cancer models and are considered better than cell culture models in recapitulating the histological features, molecular characteristics and intratumoral heterogeneity (ITH) of human tumors. While the PDX model is commonly accepted for use in drug discovery and other translational studies, a growing body of evidence has suggested its limitations. Recently, the fidelity of cancer cells within a PDX has been questioned, which may impede the future application of these models. In this review, we will focus the variable phenotypes of xenograft tumors and the genomic instability and molecular inconsistency of PDX tumors after serial transplantation. Next, we will discuss the underlying mechanism of ITH and its clinical relevance. Stochastic selection bias in the sampling process and/or deterministic clonal dynamics due to murine selective pressure may have detrimental effects on the results of personalized medicine and drug screening studies. In addition, we aim to identify a possible solution for the issue of fidelity in current PDX models and to discuss emerging next-generation preclinical models.
Collapse
Affiliation(s)
- Jiahao Shi
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, People's Republic of China
| | - Yongyun Li
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, People's Republic of China
| | - Renbing Jia
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Xianqun Fan
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| |
Collapse
|
177
|
Kageyama K, Ozaki S, Sato T. Generation of a Liver Orthotopic Human Uveal Melanoma Xenograft Platform in Immunodeficient Mice. J Vis Exp 2019. [PMID: 31762467 DOI: 10.3791/59941] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
In recent decades, subcutaneously implanted patient-derived xenograft tumors or cultured human cell lines have been increasingly recognized as more representative models to study human cancers in immunodeficient mice than traditional established human cell lines in vitro. Recently, orthotopically implanted patient-derived tumor xenograft (PDX) models in mice have been developed to better replicate features of patient tumors. A liver orthotopic xenograft mouse model is expected to be a useful cancer research platform, providing insights into tumor biology and drug therapy. However, liver orthotopic tumor implantation is generally complicated. Here we describe our protocols for the orthotopic implantation of patient-derived liver-metastatic uveal melanoma tumors. We cultured human liver metastatic uveal melanoma cell lines into immunodeficient mice. The protocols can result in consistently high technical success rates using either a surgical orthotopic implantation technique with chunks of patient-derived uveal melanoma tumor or a needle injection technique with cultured human cell line. We also describe protocols for CT scanning to detect interior liver tumors and for re-implantation techniques using cryopreserved tumors to achieve re-engraftment. Together, these protocols provide a better platform for liver orthotopic tumor mouse models of liver metastatic uveal melanoma in translational research.
Collapse
Affiliation(s)
- Ken Kageyama
- Department of Diagnostic and Interventional Radiology, Osaka City University Graduate School of Medicine; Department of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University
| | - Shinji Ozaki
- Department of Surgery, National Hospital Organization, Kure Medical Cancer Center; Department of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University
| | - Takami Sato
- Department of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University;
| |
Collapse
|
178
|
Fiordelisi MF, Cavaliere C, Auletta L, Basso L, Salvatore M. Magnetic Resonance Imaging for Translational Research in Oncology. J Clin Med 2019; 8:jcm8111883. [PMID: 31698697 PMCID: PMC6912299 DOI: 10.3390/jcm8111883] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 10/28/2019] [Accepted: 10/29/2019] [Indexed: 12/19/2022] Open
Abstract
The translation of results from the preclinical to the clinical setting is often anything other than straightforward. Indeed, ideas and even very intriguing results obtained at all levels of preclinical research, i.e., in vitro, on animal models, or even in clinical trials, often require much effort to validate, and sometimes, even useful data are lost or are demonstrated to be inapplicable in the clinic. In vivo, small-animal, preclinical imaging uses almost the same technologies in terms of hardware and software settings as for human patients, and hence, might result in a more rapid translation. In this perspective, magnetic resonance imaging might be the most translatable technique, since only in rare cases does it require the use of contrast agents, and when not, sequences developed in the lab can be readily applied to patients, thanks to their non-invasiveness. The wide range of sequences can give much useful information on the anatomy and pathophysiology of oncologic lesions in different body districts. This review aims to underline the versatility of this imaging technique and its various approaches, reporting the latest preclinical studies on thyroid, breast, and prostate cancers, both on small laboratory animals and on human patients, according to our previous and ongoing research lines.
Collapse
|
179
|
Machine learning and data mining frameworks for predicting drug response in cancer: An overview and a novel in silico screening process based on association rule mining. Pharmacol Ther 2019; 203:107395. [DOI: 10.1016/j.pharmthera.2019.107395] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 07/11/2019] [Indexed: 12/20/2022]
|
180
|
Sieber S, Grossen P, Bussmann J, Campbell F, Kros A, Witzigmann D, Huwyler J. Zebrafish as a preclinical in vivo screening model for nanomedicines. Adv Drug Deliv Rev 2019; 151-152:152-168. [PMID: 30615917 DOI: 10.1016/j.addr.2019.01.001] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 12/23/2018] [Accepted: 01/02/2019] [Indexed: 12/11/2022]
Abstract
The interactions of nanomedicines with biological environments is heavily influenced by their physicochemical properties. Formulation design and optimization are therefore key steps towards successful nanomedicine development. Unfortunately, detailed assessment of nanomedicine formulations, at a macromolecular level, in rodents is severely limited by the restricted imaging possibilities within these animals. Moreover, rodent in vivo studies are time consuming and expensive, limiting the number of formulations that can be practically assessed in any one study. Consequently, screening and optimisation of nanomedicine formulations is most commonly performed in surrogate biological model systems, such as human-derived cell cultures. However, despite the time and cost advantages of classical in vitro models, these artificial systems fail to reflect and mimic the complex biological situation a nanomedicine will encounter in vivo. This has acutely hampered the selection of potentially successful nanomedicines for subsequent rodent in vivo studies. Recently, zebrafish have emerged as a promising in vivo model, within nanomedicine development pipelines, by offering opportunities to quickly screen nanomedicines under in vivo conditions and in a cost-effective manner so as to bridge the current gap between in vitro and rodent studies. In this review, we outline several advantageous features of the zebrafish model, such as biological conservation, imaging modalities, availability of genetic tools and disease models, as well as their various applications in nanomedicine development. Critical experimental parameters are discussed and the most beneficial applications of the zebrafish model, in the context of nanomedicine development, are highlighted.
Collapse
Affiliation(s)
- Sandro Sieber
- Division of Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Philip Grossen
- Division of Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Jeroen Bussmann
- Department of Supramolecular and Biomaterials Chemistry, Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Frederick Campbell
- Department of Supramolecular and Biomaterials Chemistry, Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Alexander Kros
- Department of Supramolecular and Biomaterials Chemistry, Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Dominik Witzigmann
- Division of Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland; Department of Biochemistry and Molecular Biology, University of British Columbia, Health Sciences Mall, Vancouver, British Columbia, Canada..
| | - Jörg Huwyler
- Division of Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland.
| |
Collapse
|
181
|
Shokoohmand A, Ren J, Baldwin J, Atack A, Shafiee A, Theodoropoulos C, Wille ML, Tran PA, Bray LJ, Smith D, Chetty N, Pollock PM, Hutmacher DW, Clements JA, Williams ED, Bock N. Microenvironment engineering of osteoblastic bone metastases reveals osteomimicry of patient-derived prostate cancer xenografts. Biomaterials 2019; 220:119402. [PMID: 31400612 DOI: 10.1016/j.biomaterials.2019.119402] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 07/16/2019] [Accepted: 07/30/2019] [Indexed: 01/01/2023]
Abstract
Representative in vitro models that mimic the native bone tumor microenvironment are warranted to support the development of more successful treatments for bone metastases. Here, we have developed a primary cell 3D model consisting of a human osteoblast-derived tissue-engineered construct (hOTEC) indirectly co-cultured with patient-derived prostate cancer xenografts (PDXs), in order to study molecular interactions in a patient-derived microenvironment context. The engineered biomimetic microenvironment had high mineralization and embedded osteocytes, and supported a high degree of cancer cell osteomimicry at the gene, protein and mineralization levels when co-cultured with prostate cancer PDXs from a lymph node metastasis (LuCaP35) and bone metastasis (BM18) from patients with primary prostate cancer. This fully patient-derived model is a promising tool for the assessment of new molecular mechanisms and as a personalized pre-clinical platform for therapy testing for patients with prostate cancer bone metastases.
Collapse
Affiliation(s)
- Ali Shokoohmand
- Institute of Health and Biomedical Innovation (IHBI), Queensland University of Technology (QUT), Brisbane, QLD, Australia; School of Chemistry, Physics and Mechanical Engineering, Science and Engineering Faculty (SEF), QUT, Brisbane, QLD, Australia; Australian Prostate Cancer Research Centre, Queensland (APCRC-Q), QUT, Brisbane, QLD, Australia; Translational Research Institute (TRI), QUT, Brisbane, QLD, Australia; Centre in Regenerative Medicine, IHBI, QUT, Kelvin Grove, QLD, Australia
| | - Jiongyu Ren
- Institute of Health and Biomedical Innovation (IHBI), Queensland University of Technology (QUT), Brisbane, QLD, Australia; School of Chemistry, Physics and Mechanical Engineering, Science and Engineering Faculty (SEF), QUT, Brisbane, QLD, Australia; Centre in Regenerative Medicine, IHBI, QUT, Kelvin Grove, QLD, Australia
| | - Jeremy Baldwin
- Institute of Health and Biomedical Innovation (IHBI), Queensland University of Technology (QUT), Brisbane, QLD, Australia; School of Chemistry, Physics and Mechanical Engineering, Science and Engineering Faculty (SEF), QUT, Brisbane, QLD, Australia; Centre in Regenerative Medicine, IHBI, QUT, Kelvin Grove, QLD, Australia
| | - Anthony Atack
- Institute of Health and Biomedical Innovation (IHBI), Queensland University of Technology (QUT), Brisbane, QLD, Australia; Australian Prostate Cancer Research Centre, Queensland (APCRC-Q), QUT, Brisbane, QLD, Australia; Translational Research Institute (TRI), QUT, Brisbane, QLD, Australia; School of Biomedical Sciences, Faculty of Health, QUT, Brisbane, QLD, Australia
| | - Abbas Shafiee
- Institute of Health and Biomedical Innovation (IHBI), Queensland University of Technology (QUT), Brisbane, QLD, Australia; School of Chemistry, Physics and Mechanical Engineering, Science and Engineering Faculty (SEF), QUT, Brisbane, QLD, Australia; Centre in Regenerative Medicine, IHBI, QUT, Kelvin Grove, QLD, Australia
| | - Christina Theodoropoulos
- Institute of Health and Biomedical Innovation (IHBI), Queensland University of Technology (QUT), Brisbane, QLD, Australia; School of Chemistry, Physics and Mechanical Engineering, Science and Engineering Faculty (SEF), QUT, Brisbane, QLD, Australia; Centre in Regenerative Medicine, IHBI, QUT, Kelvin Grove, QLD, Australia
| | - Marie-Luise Wille
- Institute of Health and Biomedical Innovation (IHBI), Queensland University of Technology (QUT), Brisbane, QLD, Australia; School of Chemistry, Physics and Mechanical Engineering, Science and Engineering Faculty (SEF), QUT, Brisbane, QLD, Australia; Centre in Regenerative Medicine, IHBI, QUT, Kelvin Grove, QLD, Australia
| | - Phong A Tran
- Institute of Health and Biomedical Innovation (IHBI), Queensland University of Technology (QUT), Brisbane, QLD, Australia; School of Chemistry, Physics and Mechanical Engineering, Science and Engineering Faculty (SEF), QUT, Brisbane, QLD, Australia; Centre in Regenerative Medicine, IHBI, QUT, Kelvin Grove, QLD, Australia
| | - Laura J Bray
- Institute of Health and Biomedical Innovation (IHBI), Queensland University of Technology (QUT), Brisbane, QLD, Australia; School of Chemistry, Physics and Mechanical Engineering, Science and Engineering Faculty (SEF), QUT, Brisbane, QLD, Australia; Translational Research Institute (TRI), QUT, Brisbane, QLD, Australia; Centre in Regenerative Medicine, IHBI, QUT, Kelvin Grove, QLD, Australia
| | - Deborah Smith
- Cancer Pathology Research Group, Mater Research Institute, The University of Queensland, Translational Research Institute, Woolloongabba, QLD, Australia; Department of Anatomical Pathology, Mater Hospital Brisbane, QLD, Australia
| | - Naven Chetty
- Cancer Pathology Research Group, Mater Research Institute, The University of Queensland, Translational Research Institute, Woolloongabba, QLD, Australia; Department of Anatomical Pathology, Mater Hospital Brisbane, QLD, Australia
| | - Pamela M Pollock
- Institute of Health and Biomedical Innovation (IHBI), Queensland University of Technology (QUT), Brisbane, QLD, Australia; Translational Research Institute (TRI), QUT, Brisbane, QLD, Australia; School of Biomedical Sciences, Faculty of Health, QUT, Brisbane, QLD, Australia
| | - Dietmar W Hutmacher
- Institute of Health and Biomedical Innovation (IHBI), Queensland University of Technology (QUT), Brisbane, QLD, Australia; School of Chemistry, Physics and Mechanical Engineering, Science and Engineering Faculty (SEF), QUT, Brisbane, QLD, Australia; Australian Prostate Cancer Research Centre, Queensland (APCRC-Q), QUT, Brisbane, QLD, Australia; Translational Research Institute (TRI), QUT, Brisbane, QLD, Australia; Centre in Regenerative Medicine, IHBI, QUT, Kelvin Grove, QLD, Australia; Australian Research Council (ARC) Training Centre in Additive Biomanufacturing, QUT, Kelvin Grove, QLD, Australia; School of Biomedical Sciences, Faculty of Health, QUT, Brisbane, QLD, Australia
| | - Judith A Clements
- Institute of Health and Biomedical Innovation (IHBI), Queensland University of Technology (QUT), Brisbane, QLD, Australia; Australian Prostate Cancer Research Centre, Queensland (APCRC-Q), QUT, Brisbane, QLD, Australia; Translational Research Institute (TRI), QUT, Brisbane, QLD, Australia; Australian Research Council (ARC) Training Centre in Additive Biomanufacturing, QUT, Kelvin Grove, QLD, Australia; School of Biomedical Sciences, Faculty of Health, QUT, Brisbane, QLD, Australia
| | - Elizabeth D Williams
- Institute of Health and Biomedical Innovation (IHBI), Queensland University of Technology (QUT), Brisbane, QLD, Australia; Australian Prostate Cancer Research Centre, Queensland (APCRC-Q), QUT, Brisbane, QLD, Australia; Translational Research Institute (TRI), QUT, Brisbane, QLD, Australia; School of Biomedical Sciences, Faculty of Health, QUT, Brisbane, QLD, Australia
| | - Nathalie Bock
- Institute of Health and Biomedical Innovation (IHBI), Queensland University of Technology (QUT), Brisbane, QLD, Australia; Australian Prostate Cancer Research Centre, Queensland (APCRC-Q), QUT, Brisbane, QLD, Australia; Translational Research Institute (TRI), QUT, Brisbane, QLD, Australia; Centre in Regenerative Medicine, IHBI, QUT, Kelvin Grove, QLD, Australia; School of Biomedical Sciences, Faculty of Health, QUT, Brisbane, QLD, Australia.
| |
Collapse
|
182
|
Deng S, Krutilina RI, Wang Q, Lin Z, Parke DN, Playa HC, Chen H, Miller DD, Seagroves TN, Li W. An Orally Available Tubulin Inhibitor, VERU-111, Suppresses Triple-Negative Breast Cancer Tumor Growth and Metastasis and Bypasses Taxane Resistance. Mol Cancer Ther 2019; 19:348-363. [PMID: 31645441 DOI: 10.1158/1535-7163.mct-19-0536] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 08/27/2019] [Accepted: 10/15/2019] [Indexed: 12/23/2022]
Abstract
Triple-negative breast cancer (TNBC) accounts for approximately 15% of breast cancer cases in the United States. TNBC has poorer overall prognosis relative to other molecular subtypes due to rapid onset of drug resistance to conventional chemotherapies and increased risk of visceral metastases. Taxanes like paclitaxel are standard chemotherapies that stabilize microtubules, but their clinical efficacy is often limited by drug resistance and neurotoxicities. We evaluated the preclinical efficacy of a novel, potent, and orally bioavailable tubulin inhibitor, VERU-111, in TNBC models. VERU-111 showed potent cytotoxicity against TNBC cell lines, inducing apoptosis and cell-cycle arrest in a concentration-dependent manner. VERU-111 also efficiently inhibited colony formation, cell migration, and invasion. Orally administered VERU-111 inhibited MDA-MB-231 xenograft growth in a dose-dependent manner, with similar efficacies to paclitaxel, but without acute toxicity. VERU-111 significantly reduced metastases originating from the mammary fat pad into lung, liver, and kidney metastasis in an experimental metastasis model. Moreover, VERU-111, but not paclitaxel, suppressed growth of luciferase-labeled, taxane-resistant, patient-derived metastatic TNBC tumors. In this model, VERU-111 repressed growth of preestablished axillary lymph node metastases and lung, bone, and liver metastases at study endpoint, whereas paclitaxel enhanced liver metastases relative to vehicle controls. Collectively, these studies strongly suggest that VERU-111 is not only a potent inhibitor of aggressive TNBC phenotypes, but it is also efficacious in a taxane-resistant model of metastatic TNBC. Thus, VERU-111 is a promising new generation of tubulin inhibitor for the treatment of TNBC and may be effective in patients who progress on taxanes.Results presented in this study demonstrate the efficacy of VERU-111 in vivo and provide strong rationale for future development of VERU-111 as an effective treatment for metastatic breast cancer.
Collapse
Affiliation(s)
- Shanshan Deng
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Raisa I Krutilina
- Department of Pathology, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Qinghui Wang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Zongtao Lin
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Deanna N Parke
- Department of Pathology, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Hilaire C Playa
- Department of Pathology, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Hao Chen
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Duane D Miller
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Tiffany N Seagroves
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee. .,Department of Pathology, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Wei Li
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee.
| |
Collapse
|
183
|
Lilja-Fischer JK, Ulhøi BP, Alsner J, Stougaard M, Thomsen MS, Busk M, Lassen P, Steiniche T, Nielsen VE, Overgaard J. Characterization and radiosensitivity of HPV-related oropharyngeal squamous cell carcinoma patient-derived xenografts. Acta Oncol 2019; 58:1489-1494. [PMID: 31510843 DOI: 10.1080/0284186x.2019.1660802] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Background: Oropharyngeal squamous cell carcinomas (OPSCC) are rising rapidly in incidence due to Human Papillomavirus (HPV) and/or tobacco smoking. Prognosis is better for patients with HPV-positive disease, but may also be influenced by tobacco smoking and other factors. There is a need to individualize treatment to minimize morbidity and improve prognosis. Patient-derived xenografts (PDX) is an emerging pre-clinical research model that may more accurately reflect the human disease, and is an attractive platform to study disease biology and develop treatments and biomarkers. In this study we describe the establishment of PDX models, compare PDX tumors to the human original, and assess the suitability of this model for radiotherapy research and biomarker development. Material and methods: Tumor biopsies from 34 patients with previously untreated OPSCC were implanted in immunodeficient mice, giving rise to 12 squamous cell carcinoma PDX models (7 HPV+, 5 HPV-). Primary and PDX tumors were characterized extensively, examining histology, immunohistochemistry, cancer gene sequencing and gene expression analysis. Radiosensitivity was assessed in vivo in a growth delay assay. Results: Established PDX models maintained histological and immunohistochemical characteristics as well as HPV-status of the primary tumor. Important cancer driver gene mutations, e.g., in TP53, PIK3CA and others, were preserved. Gene expression related to cancer stem cell markers and gene expression subtype were preserved, while gene expression related to hypoxia and immune response differed. Radiosensitivity studies showed high concordance with clinical observations. Conclusion: PDX from OPSCC preserves important molecular characteristics of the human primary tumor. Radiosensitivity were in accordance with clinically observed treatment response. The PDX model is a clinically relevant surrogate model of head and neck cancer. Perspectives include increased understanding of disease biology, which could lead to development of novel treatments and biomarkers.
Collapse
Affiliation(s)
- Jacob Kinggaard Lilja-Fischer
- Department of Experimental Clinical Oncology, Aarhus University Hospital, Denmark
- Department of Otorhinolaryngology – Head and Neck Surgery, Aarhus University Hospital, Denmark
| | | | - Jan Alsner
- Department of Experimental Clinical Oncology, Aarhus University Hospital, Denmark
| | | | | | - Morten Busk
- Department of Experimental Clinical Oncology, Aarhus University Hospital, Denmark
| | - Pernille Lassen
- Department of Experimental Clinical Oncology, Aarhus University Hospital, Denmark
- Department of Oncology, Aarhus University Hospital, Denmark
| | | | | | - Jens Overgaard
- Department of Experimental Clinical Oncology, Aarhus University Hospital, Denmark
- Department of Oncology, Aarhus University Hospital, Denmark
| |
Collapse
|
184
|
Wu H, Li J, Chen J, Yin Y, Da P, Chen Q, Zhang Z, Wang J, Wang G, Qiu X. Efficacy of radiation exposure in laryngeal squamous cell carcinoma is mediated by the LAMP3/LAMC2/tenascin-C pathway. Exp Biol Med (Maywood) 2019; 244:1070-1080. [PMID: 31390898 PMCID: PMC6775573 DOI: 10.1177/1535370219867643] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Accepted: 07/12/2019] [Indexed: 12/19/2022] Open
Abstract
The present study explored the role of LAMP3 and related molecular mechanisms in the efficacy of radiation exposure in laryngeal squamous cell carcinoma (LSCC). A lentivirus vector containing the LAMP3 gene was transfected into HEp-2 cells to construct siRNA-LAMP3 and complementation (siLAMP3+LAMP3) groups. Treatment with 4 Gy or 8 Gy radiation was administered to evaluate the role of LAMP3 in radiation therapy. Apoptosis was detected by Annexin V/propidium iodide double staining. Cell migration and invasion were measured in vitro using Transwell and Matrigel assays. Downstream genes regulated by LAMP3 were analyzed using RNA sequencing. Furthermore, a patient-derived xenograft (PDX) model of LSCC was established to verify the efficacy of radiation exposure and the associated signaling pathways downstream of LAMP3. The efficacy of radiation showed that cell proliferation was significantly inhibited by siRNA-LAMP3 knockdown. Increased apoptosis was also observed. Notably, the inhibitory effect was attenuated and apoptosis rates were decreased after LAMP3 complementation. In vitro cellular assays showed that migration and invasion were significantly suppressed by siRNA-LAMP3 knockdown and increased after LAMP3 complementation. Analysis of the efficacy of radiation exposure in the PDX model showed that LAMP3-specific knockdown inhibited tumor growth and that tumor growth was further reduced by the combined radiotherapy treatment. According to transcriptome analysis, the extracellular matrix-receptor interaction pathway is regulated by LAMP3, and further analysis revealed significant differences in key-associated molecules, including laminin subunit gamma-2 (LAMC2) and tenascin-C (TNC). Validation of the in vivo PDX model using qPCR and Western blot analyses supported the abovementioned results. The present findings suggest that reduced LAMP3 expression enhances the efficacy of radiation exposure in LSCC by regulating the LAMP3/LAMC2/TNC signaling pathway.
Collapse
Affiliation(s)
- Hao Wu
- Department of Otorhinolaryngology – Head and Neck Surgery,
Nantong University Affiliated Hospital, Nantong, Jiangsu 226001, P.R.
China
| | - Juanjuan Li
- Department of Otorhinolaryngology – Head and Neck Surgery,
Nantong University Affiliated Hospital, Nantong, Jiangsu 226001, P.R.
China
| | - Jianqiu Chen
- Department of Otolaryngology – Head and Neck Surgery, General
Hospital of Jinan Military Region, Jinan, Shandong 250031, P.R. China
| | - Yong Yin
- Department of Otorhinolaryngology – Head and Neck Surgery,
Nantong University Affiliated Hospital, Nantong, Jiangsu 226001, P.R.
China
| | - Peng Da
- Department of Otorhinolaryngology – Head and Neck Surgery,
Nantong University Affiliated Hospital, Nantong, Jiangsu 226001, P.R.
China
| | - Qingwen Chen
- Department of Otorhinolaryngology – Head and Neck Surgery,
Nantong University Affiliated Hospital, Nantong, Jiangsu 226001, P.R.
China
| | - Zhenxin Zhang
- Department of Otorhinolaryngology – Head and Neck Surgery,
Nantong University Affiliated Hospital, Nantong, Jiangsu 226001, P.R.
China
| | - Jinxing Wang
- Department of Physiology and Hypoxic Biomedicine, Institute of
Special Environmental Medicine, Nantong University, Nantong, Jiangsu 226001,
P.R. China
| | - Guohua Wang
- Department of Physiology and Hypoxic Biomedicine, Institute of
Special Environmental Medicine, Nantong University, Nantong, Jiangsu 226001,
P.R. China
| | - Xiaoxia Qiu
- Department of Otorhinolaryngology – Head and Neck Surgery,
Nantong University Affiliated Hospital, Nantong, Jiangsu 226001, P.R.
China
| |
Collapse
|
185
|
Houghton PJ, Kurmasheva RT. Challenges and Opportunities for Childhood Cancer Drug Development. Pharmacol Rev 2019; 71:671-697. [PMID: 31558580 PMCID: PMC6768308 DOI: 10.1124/pr.118.016972] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Cancer in children is rare with approximately 15,700 new cases diagnosed in the United States annually. Through use of multimodality therapy (surgery, radiation therapy, and aggressive chemotherapy), 70% of patients will be "cured" of their disease, and 5-year event-free survival exceeds 80%. However, for patients surviving their malignancy, therapy-related long-term adverse effects are severe, with an estimated 50% having chronic life-threatening toxicities related to therapy in their fourth or fifth decade of life. While overall intensive therapy with cytotoxic agents continues to reduce cancer-related mortality, new understanding of the molecular etiology of many childhood cancers offers an opportunity to redirect efforts to develop effective, less genotoxic therapeutic options, including agents that target oncogenic drivers directly, and the potential for use of agents that target the tumor microenvironment and immune-directed therapies. However, for many high-risk cancers, significant challenges remain.
Collapse
Affiliation(s)
- Peter J Houghton
- Greehey Children's Cancer Research Institute, University of Texas Health, San Antonio, Texas
| | - Raushan T Kurmasheva
- Greehey Children's Cancer Research Institute, University of Texas Health, San Antonio, Texas
| |
Collapse
|
186
|
Springuel L, Lonez C, Alexandre B, Van Cutsem E, Machiels JPH, Van Den Eynde M, Prenen H, Hendlisz A, Shaza L, Carrasco J, Canon JL, Opyrchal M, Odunsi K, Rottey S, Gilham DE, Flament A, Lehmann FF. Chimeric Antigen Receptor-T Cells for Targeting Solid Tumors: Current Challenges and Existing Strategies. BioDrugs 2019; 33:515-537. [PMID: 31363930 PMCID: PMC6790340 DOI: 10.1007/s40259-019-00368-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Chimeric antigen receptor-T cells (CAR-Ts) are an exciting new cancer treatment modality exemplified by the recent regulatory approval of two CD19-targeted CAR-T therapies for certain B cell malignancies. However, this success in the hematological setting has yet to translate to a significant level of objective clinical responses in the solid tumor setting. The reason for this lack of translation undoubtedly lies in the substantial challenges raised by solid tumors to all therapies, including CAR-T, that differ from B cell malignancies. For instance, intravenously infused CAR-Ts are likely to make rapid contact with cancerous B cells since both tend to reside in the same vascular compartments within the body. By contrast, solid cancers tend to form discrete tumor masses with an immune-suppressive tumor microenvironment composed of tumor cells and non-tumor stromal cells served by abnormal vasculature that restricts lymphocyte infiltration and suppresses immune function, expansion, and persistence. Moreover, the paucity of uniquely and homogeneously expressed tumor antigens and inherent plasticity of cancer cells provide major challenges to the specificity, potency, and overall effectiveness of CAR-T therapies. This review focuses on the major preclinical and clinical strategies currently being pursued to tackle these challenges in order to drive the success of CAR-T therapy against solid tumors.
Collapse
Affiliation(s)
| | | | | | | | | | - Marc Van Den Eynde
- Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, Brussels, Belgium
| | - Hans Prenen
- University Hospital Antwerp (UZ Antwerp), Antwerp, Belgium
| | - Alain Hendlisz
- Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | - Leila Shaza
- Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | | | | | | | - Kunle Odunsi
- Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | | | | | | | | |
Collapse
|
187
|
Zhang T, Bai R, Wang Q, Wang K, Li X, Liu K, Ryu J, Wang T, Chang X, Ma W, Bode AM, Xia Q, Song Y, Dong Z. Fluvastatin Inhibits HMG-CoA Reductase and Prevents Non-Small Cell Lung Carcinogenesis. Cancer Prev Res (Phila) 2019; 12:837-848. [PMID: 31554629 DOI: 10.1158/1940-6207.capr-19-0211] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 08/06/2019] [Accepted: 09/18/2019] [Indexed: 11/16/2022]
Abstract
Lung cancer is the leading cause of cancer-related death worldwide. However, promising agents for lung cancer prevention are still very limited. Identification of preventive targets and novel effective preventive agents is urgently needed for clinical applications. In this study, we found that fluvastatin targeted 3-Hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase (HMGCR), which a rate-limiting enzyme in the mevalonate pathway, and inhibited non-small cell lung cancer (NSCLC) tumorigenesis. Initially, we demonstrated that HMGCR is overexpressed in human lung adenocarcinoma tissues compared with normal tissues. Knockdown of HMGCR in NSCLC cells attenuated growth and induced apoptosis in vitro and in vivo Furthermore, we found that fluvastatin, an inhibitor of HMGCR, suppressed NSCLC cell growth and induced apoptosis. Intriguingly, fluvastastin functions by inhibiting the HMGCR-driven Braf/MEK/ERK1/2 and Akt signaling pathways. Notably, fluvastatin attenuated tumor growth in 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK)-induced lung tumorigenesis and in a patient-derived xenograft lung tumor model. Overall, our findings suggest that fluvastatin might be promising chemopreventive or potential therapeutic drug against NSCLC tumorigenesis, providing hope for rapid clinical translation.
Collapse
Affiliation(s)
- Tianshun Zhang
- The Hormel Institute, University of Minnesota, Austin, Minnesota
| | - Ruihua Bai
- The Hormel Institute, University of Minnesota, Austin, Minnesota.,Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Qiushi Wang
- The Hormel Institute, University of Minnesota, Austin, Minnesota
| | - Keke Wang
- The Hormel Institute, University of Minnesota, Austin, Minnesota.,China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, China
| | - Xiang Li
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, China
| | - Kangdong Liu
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, China
| | - Joohyun Ryu
- The Hormel Institute, University of Minnesota, Austin, Minnesota
| | - Ting Wang
- The Hormel Institute, University of Minnesota, Austin, Minnesota.,China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, China
| | - Xiaoyu Chang
- The Hormel Institute, University of Minnesota, Austin, Minnesota
| | - Weiya Ma
- The Hormel Institute, University of Minnesota, Austin, Minnesota
| | - Ann M Bode
- The Hormel Institute, University of Minnesota, Austin, Minnesota
| | - Qingxin Xia
- Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yongping Song
- Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Zigang Dong
- The Hormel Institute, University of Minnesota, Austin, Minnesota. .,China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, China
| |
Collapse
|
188
|
Panoptic View of Prognostic Models for Personalized Breast Cancer Management. Cancers (Basel) 2019; 11:cancers11091325. [PMID: 31500225 PMCID: PMC6770520 DOI: 10.3390/cancers11091325] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 09/03/2019] [Accepted: 09/05/2019] [Indexed: 12/12/2022] Open
Abstract
The efforts to personalize treatment for patients with breast cancer have led to a focus on the deeper characterization of genotypic and phenotypic heterogeneity among breast cancers. Traditional pathology utilizes microscopy to profile the morphologic features and organizational architecture of tumor tissue for predicting the course of disease, and is the first-line set of guiding tools for customizing treatment decision-making. Currently, clinicians use this information, combined with the disease stage, to predict patient prognosis to some extent. However, tumoral heterogeneity stubbornly persists among patient subgroups delineated by these clinicopathologic characteristics, as currently used methodologies in diagnostic pathology lack the capability to discern deeper genotypic and subtler phenotypic differences among individual patients. Recent advancements in molecular pathology, however, are poised to change this by joining forces with multiple-omics technologies (genomics, transcriptomics, epigenomics, proteomics, and metabolomics) that provide a wealth of data about the precise molecular complement of each patient's tumor. In addition, these technologies inform the drivers of disease aggressiveness, the determinants of therapeutic response, and new treatment targets in the individual patient. The tumor architecture information can be integrated with the knowledge of the detailed mutational, transcriptional, and proteomic phenotypes of cancer cells within individual tumors to derive a new level of biologic insight that enables powerful, data-driven patient stratification and customization of treatment for each patient, at each stage of the disease. This review summarizes the prognostic and predictive insights provided by commercially available gene expression-based tests and other multivariate or clinical -omics-based prognostic/predictive models currently under development, and proposes a more inclusive multiplatform approach to tackling the challenging heterogeneity of breast cancer to individualize its management. "The future is already here-it's just not very evenly distributed."-William Ford Gibson.
Collapse
|
189
|
Mottini C, Tomihara H, Carrella D, Lamolinara A, Iezzi M, Huang JK, Amoreo CA, Buglioni S, Manni I, Robinson FS, Minelli R, Kang Y, Fleming JB, Kim MP, Bristow CA, Trisciuoglio D, Iuliano A, Del Bufalo D, Di Bernardo D, Melisi D, Draetta GF, Ciliberto G, Carugo A, Cardone L. Predictive Signatures Inform the Effective Repurposing of Decitabine to Treat KRAS-Dependent Pancreatic Ductal Adenocarcinoma. Cancer Res 2019; 79:5612-5625. [PMID: 31492820 DOI: 10.1158/0008-5472.can-19-0187] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 07/24/2019] [Accepted: 08/29/2019] [Indexed: 11/16/2022]
Abstract
Mutated KRAS protein is a pivotal tumor driver in pancreatic cancer. However, despite comprehensive efforts, effective therapeutics that can target oncogenic KRAS are still under investigation or awaiting clinical approval. Using a specific KRAS-dependent gene signature, we implemented a computer-assisted inspection of a drug-gene network to in silico repurpose drugs that work like inhibitors of oncogenic KRAS. We identified and validated decitabine, an FDA-approved drug, as a potent inhibitor of growth in pancreatic cancer cells and patient-derived xenograft models that showed KRAS dependency. Mechanistically, decitabine efficacy was linked to KRAS-driven dependency on nucleotide metabolism and its ability to specifically impair pyrimidine biosynthesis in KRAS-dependent tumors cells. These findings also showed that gene signatures related to KRAS dependency might be prospectively used to inform on decitabine sensitivity in a selected subset of patients with KRAS-mutated pancreatic cancer. Overall, the repurposing of decitabine emerged as an intriguing option for treating pancreatic tumors that are addicted to mutant KRAS, thus offering opportunities for improving the arsenal of therapeutics for this extremely deadly disease. SIGNIFICANCE: Decitabine is a promising drug for cancer cells dependent on RAS signaling.
Collapse
Affiliation(s)
- Carla Mottini
- Department of Tumor Immunology and Immunotherapy, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Hideo Tomihara
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Diego Carrella
- Telethon Institute of Genetics and Medicine (TIGEM), Napoli, Italy
| | - Alessia Lamolinara
- Department of Medicine and Aging Science, Center for Advanced Studies and Technology (CAST), G. D'Annunzio University, Chieti-Pescara, Italy
| | - Manuela Iezzi
- Department of Medicine and Aging Science, Center for Advanced Studies and Technology (CAST), G. D'Annunzio University, Chieti-Pescara, Italy
| | - Justin K Huang
- Department of Therapeutics Discovery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Carla A Amoreo
- Department of Pathology, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Simonetta Buglioni
- Department of Pathology, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Isabella Manni
- Animal Facility (SAFU), IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Frederick S Robinson
- Department of Therapeutics Discovery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Rosalba Minelli
- Department of Therapeutics Discovery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ya'an Kang
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jason B Fleming
- Department of Gastrointestinal Oncology, Moffitt Cancer Center, Tampa, Florida
| | - Michael P Kim
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Christopher A Bristow
- Department of Therapeutics Discovery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Daniela Trisciuoglio
- Preclinical Models and New Therapeutic Agents Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy.,Institute of Molecular Biology and Pathology, National Research Council, Rome, Italy
| | | | - Donatella Del Bufalo
- Preclinical Models and New Therapeutic Agents Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | | | - Davide Melisi
- Department of Medicine, University of Verona, Verona, Italy
| | - Giulio F Draetta
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas.,Department of Therapeutics Discovery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | - Alessandro Carugo
- Department of Therapeutics Discovery, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| | - Luca Cardone
- Department of Tumor Immunology and Immunotherapy, IRCCS Regina Elena National Cancer Institute, Rome, Italy.
| |
Collapse
|
190
|
Kim M, Mun H, Sung CO, Cho EJ, Jeon HJ, Chun SM, Jung DJ, Shin TH, Jeong GS, Kim DK, Choi EK, Jeong SY, Taylor AM, Jain S, Meyerson M, Jang SJ. Patient-derived lung cancer organoids as in vitro cancer models for therapeutic screening. Nat Commun 2019; 10:3991. [PMID: 31488816 PMCID: PMC6728380 DOI: 10.1038/s41467-019-11867-6] [Citation(s) in RCA: 475] [Impact Index Per Article: 79.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 08/06/2019] [Indexed: 12/16/2022] Open
Abstract
Lung cancer shows substantial genetic and phenotypic heterogeneity across individuals, driving a need for personalised medicine. Here, we report lung cancer organoids and normal bronchial organoids established from patient tissues comprising five histological subtypes of lung cancer and non-neoplastic bronchial mucosa as in vitro models representing individual patient. The lung cancer organoids recapitulate the tissue architecture of the primary lung tumours and maintain the genomic alterations of the original tumours during long-term expansion in vitro. The normal bronchial organoids maintain cellular components of normal bronchial mucosa. Lung cancer organoids respond to drugs based on their genomic alterations: a BRCA2-mutant organoid to olaparib, an EGFR-mutant organoid to erlotinib, and an EGFR-mutant/MET-amplified organoid to crizotinib. Considering the short length of time from organoid establishment to drug testing, our newly developed model may prove useful for predicting patient-specific drug responses through in vitro patient-specific drug trials.
Collapse
Affiliation(s)
- Minsuh Kim
- Asan Center for Cancer Genome Discovery, Asan Institute for Life Sciences, Seoul, South Korea
| | - Hyemin Mun
- Asan Center for Cancer Genome Discovery, Asan Institute for Life Sciences, Seoul, South Korea
| | - Chang Oak Sung
- Asan Center for Cancer Genome Discovery, Asan Institute for Life Sciences, Seoul, South Korea
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Eun Jeong Cho
- Asan Center for Cancer Genome Discovery, Asan Institute for Life Sciences, Seoul, South Korea
| | - Hye-Joon Jeon
- Asan Center for Cancer Genome Discovery, Asan Institute for Life Sciences, Seoul, South Korea
| | - Sung-Min Chun
- Asan Center for Cancer Genome Discovery, Asan Institute for Life Sciences, Seoul, South Korea
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Da Jung Jung
- Biomedical Engineering Research Center, Asan Institute for Life Sciences, Seoul, South Korea
| | - Tae Hoon Shin
- Biomedical Engineering Research Center, Asan Institute for Life Sciences, Seoul, South Korea
| | - Gi Seok Jeong
- Biomedical Engineering Research Center, Asan Institute for Life Sciences, Seoul, South Korea
| | - Dong Kwan Kim
- Department of Thoracic Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Eun Kyung Choi
- Department of Radiation Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Seong-Yun Jeong
- Department of Radiation Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Alison M Taylor
- Department of Medical Oncology and Center for Cancer-Genome Discovery, Dana-Farber Cancer Institute and Department of Pathology, Harvard Medical School, Boston, MA, USA
| | - Sejal Jain
- Department of Medical Oncology and Center for Cancer-Genome Discovery, Dana-Farber Cancer Institute and Department of Pathology, Harvard Medical School, Boston, MA, USA
| | - Matthew Meyerson
- Department of Medical Oncology and Center for Cancer-Genome Discovery, Dana-Farber Cancer Institute and Department of Pathology, Harvard Medical School, Boston, MA, USA
| | - Se Jin Jang
- Asan Center for Cancer Genome Discovery, Asan Institute for Life Sciences, Seoul, South Korea.
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea.
| |
Collapse
|
191
|
The contribution of immune infiltrates and the local microenvironment in the pathogenesis of osteosarcoma. Cell Immunol 2019; 343:103711. [DOI: 10.1016/j.cellimm.2017.10.011] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 10/22/2017] [Accepted: 10/26/2017] [Indexed: 12/21/2022]
|
192
|
Liu TK, Pang Y, Zhou ZZ, Yao R, Sun W. An integrated cell printing system for the construction of heterogeneous tissue models. Acta Biomater 2019; 95:245-257. [PMID: 31128321 DOI: 10.1016/j.actbio.2019.05.052] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 05/08/2019] [Accepted: 05/20/2019] [Indexed: 12/23/2022]
Abstract
A new three-dimensional (3D) cell printing system was developed and investigated to organize multiple cells/biomaterials with a control precision within 100 μm. This system can be used for the in vitro construction of heterogeneous tissue models. The proposed printing system was achieved by the integration of extrusion printing and alternating viscous and inertial force jetting (AVIFJ) techniques using dual-nozzle switching. In this technique, hydrogels containing high cell densities were extruded using extrusion printing, while droplets containing single cells were precisely manipulated using AVIFJ. The droplets that contained single cells were at the scale of pico-liters and could be accurately positioned at the micron scale. Stable hydrogel structures with adjustable diameters were also printed, with cell viabilities exceeding 90% after printing. A heterogeneous tumor model that contained spheroids and human umbilical vein endothelial cells (HUVECs) was then constructed using the established integrated cell printing system in a stepwise or simultaneous fashion. HUVEC-loaded droplets were observed to locate around the preformed tumor spheroids as designed. Cells and spheroids in the model maintained high cell viability and sustained growth throughout the culture period. The ELISA results of albumin production also proved that the spheroids maintained increased cellular function during the culture. These results demonstrated the feasibility of this integrated 3D printing system for the engineering of in vitro heterogeneous tissue models for future biological and pathological studies. STATEMENT OF SIGNIFICANCE: Addressing the challenge of multi-scale printing in the construction of heterogeneous tissue models, a new 3D cell printing system was developed to organize cells/biomaterials of a control precision within 100 μm. AVIFJ was integrated with extrusion printing, thereby achieving the construction of cell interactions between single cells and spheroids, the manipulation of single cells in a 3D microenvironment with high accuracy, and the real-time on-demand printing. The printed heterogeneous tumor model maintained cell viability, sustained cell growth, and increased cell function during 7 days of culture. We believed that this work would benefit the production of functional artificial tissues, enabling the construction of more biomimetic cell arrangements and microenvironment to support cell functions.
Collapse
|
193
|
Nanni P, Landuzzi L, Manara MC, Righi A, Nicoletti G, Cristalli C, Pasello M, Parra A, Carrabotta M, Ferracin M, Palladini A, Ianzano ML, Giusti V, Ruzzi F, Magnani M, Donati DM, Picci P, Lollini PL, Scotlandi K. Bone sarcoma patient-derived xenografts are faithful and stable preclinical models for molecular and therapeutic investigations. Sci Rep 2019; 9:12174. [PMID: 31434953 PMCID: PMC6704066 DOI: 10.1038/s41598-019-48634-y] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Accepted: 08/06/2019] [Indexed: 02/06/2023] Open
Abstract
Standard therapy of osteosarcoma (OS) and Ewing sarcoma (EW) rests on cytotoxic regimes, which are largely unsuccessful in advanced patients. Preclinical models are needed to break this impasse. A panel of patient-derived xenografts (PDX) was established by implantation of fresh, surgically resected osteosarcoma (OS) and Ewing sarcoma (EW) in NSG mice. Engraftment was obtained in 22 of 61 OS (36%) and 7 of 29 EW (24%). The success rate in establishing primary cell cultures from OS was lower than the percentage of PDX engraftment in mice, whereas the reverse was observed for EW; the implementation of both in vivo and in vitro seeding increased the proportion of patients yielding at least one workable model. The establishment of in vitro cultures from PDX was highly efficient in both tumor types, reaching 100% for EW. Morphological and immunohistochemical (SATB2, P-glycoprotein 1, CD99, caveolin 1) studies and gene expression profiling showed a remarkable similarity between patient’s tumor and PDX, which was maintained over several passages in mice, whereas cell cultures displayed a lower correlation with human samples. Genes differentially expressed between OS original tumor and PDX mostly belonged to leuykocyte-specific pathways, as human infiltrate is gradually replaced by murine leukocytes during growth in mice. In EW, which contained scant infiltrates, no gene was differentially expressed between the original tumor and the PDX. A novel therapeutic combination of anti-CD99 diabody C7 and irinotecan was tested against two EW PDX; both drugs inhibited PDX growth, the addition of anti-CD99 was beneficial when chemotherapy alone was less effective. The panel of OS and EW PDX faithfully mirrored morphologic and genetic features of bone sarcomas, representing reliable models to test therapeutic approaches.
Collapse
Affiliation(s)
- Patrizia Nanni
- Laboratory of Immunology and Biology of Metastasis, Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Lorena Landuzzi
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Maria Cristina Manara
- CRS Development of Biomolecular Therapies, Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Alberto Righi
- Service of Pathology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Giordano Nicoletti
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Camilla Cristalli
- CRS Development of Biomolecular Therapies, Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Michela Pasello
- CRS Development of Biomolecular Therapies, Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Alessandro Parra
- CRS Development of Biomolecular Therapies, Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Marianna Carrabotta
- CRS Development of Biomolecular Therapies, Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Manuela Ferracin
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Arianna Palladini
- Laboratory of Immunology and Biology of Metastasis, Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Marianna L Ianzano
- Laboratory of Immunology and Biology of Metastasis, Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Veronica Giusti
- Laboratory of Immunology and Biology of Metastasis, Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Francesca Ruzzi
- Laboratory of Immunology and Biology of Metastasis, Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | | | - Davide Maria Donati
- Third Orthopedic Clinic and Traumatology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Piero Picci
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Pier-Luigi Lollini
- Laboratory of Immunology and Biology of Metastasis, Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy.
| | - Katia Scotlandi
- CRS Development of Biomolecular Therapies, Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy.
| |
Collapse
|
194
|
Jeon J, Cheong JH. Clinical Implementation of Precision Medicine in Gastric Cancer. J Gastric Cancer 2019; 19:235-253. [PMID: 31598369 PMCID: PMC6769368 DOI: 10.5230/jgc.2019.19.e25] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 07/28/2019] [Indexed: 12/24/2022] Open
Abstract
Gastric cancer (GC) is one of the deadliest malignancies in the world. Currently, clinical treatment decisions are mostly made based on the extent of the tumor and its anatomy, such as tumor-node-metastasis staging. Recent advances in genome-wide molecular technology have enabled delineation of the molecular characteristics of GC. Based on this, efforts have been made to classify GC into molecular subtypes with distinct prognosis and therapeutic response. Simplified algorithms based on protein and RNA expressions have been proposed to reproduce the GC classification in the clinical field. Furthermore, a recent study established a single patient classifier (SPC) predicting the prognosis and chemotherapy response of resectable GC patients based on a 4-gene real-time polymerase chain reaction assay. GC patient stratification according to SPC will enable personalized therapeutic strategies in adjuvant settings. At the same time, patient-derived xenografts and patient-derived organoids are now emerging as novel preclinical models for the treatment of GC. These models recapitulate the complex features of the primary tumor, which is expected to facilitate both drug development and clinical therapeutic decision making. An integrated approach applying molecular patient stratification and patient-derived models in the clinical realm is considered a turning point in precision medicine in GC.
Collapse
Affiliation(s)
- Jaewook Jeon
- Yonsei University College of Medicine, Seoul, Korea
| | - Jae-Ho Cheong
- Department of Surgery, Yonsei University College of Medicine, Seoul, Korea.,Yonsei Biomedical Research Institute, Yonsei University College of Medicine, Seoul, Korea.,Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea.,Department of Biochemistry & Molecular Biology, Yonsei University College of Medicine, Seoul, Korea.,Department of Biomedical Systems Informatics, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
195
|
Wu J, Zheng Y, Tian Q, Yao M, Yi X. Establishment of patient-derived xenograft model in ovarian cancer and its influence factors analysis. J Obstet Gynaecol Res 2019; 45:2062-2073. [PMID: 31385376 DOI: 10.1111/jog.14054] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 06/23/2019] [Indexed: 02/06/2023]
Abstract
AIM Patient-derived xenograft (PDX) model has been applied to the study of breast cancer, lung cancer, colon cancer and other cancers. However, its feasibility in ovarian cancer has not been understood. This study aimed to establish ovarian cancer PDX model and reveal its influence factors. METHODS In this study, 27 patients in Obstetrics and Gynecology Hospital affiliated to Fudan University from May 2015 to May 2016 were employed to explore the method of PDX model in ovarian cancer and verify its feasibility. RESULTS Finally, five cases of PDX models were successfully established, and the tumor formation rate (TFR) was 18.52%. In addition, immunohistochemistry and transcriptome sequencing analysis showed that tumor of PDX model have similar gene expression, gene splicing, gene fusion and single nucleotide polymorphisms with primary tumor (R2 = 0.741). Furthermore, it was revealed that compared to epithelial ovarian cancer, the TFR of PDX models with nonepithelial ovarian cancer was higher, while other factors such as the initiation site of tumor, the degree of tumor malignancy, the stage of tumor, the type of tumor and the species of experimental animals were not associated with the TFR. CONCLUSION Ovarian cancer PDX model, as a new scientific research model, can better keep the biological characteristics of primary tumor, which has great research value in ovarian cancer.
Collapse
Affiliation(s)
- Jianfa Wu
- Department of Gynecology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China.,Department of Obstetrics and Gynecology of Shanghai Medical School, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| | - Yunxi Zheng
- Department of Gynecology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China.,Department of Obstetrics and Gynecology of Shanghai Medical School, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| | - Qi Tian
- Department of Gynecology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China.,Department of Obstetrics and Gynecology of Shanghai Medical School, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| | - Ming Yao
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaofang Yi
- Department of Gynecology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China.,Department of Obstetrics and Gynecology of Shanghai Medical School, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| |
Collapse
|
196
|
Meraz IM, Majidi M, Meng F, Shao R, Ha MJ, Neri S, Fang B, Lin SH, Tinkey PT, Shpall EJ, Morris J, Roth JA. An Improved Patient-Derived Xenograft Humanized Mouse Model for Evaluation of Lung Cancer Immune Responses. Cancer Immunol Res 2019; 7:1267-1279. [PMID: 31186248 PMCID: PMC7213862 DOI: 10.1158/2326-6066.cir-18-0874] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 03/08/2019] [Accepted: 05/31/2019] [Indexed: 12/17/2022]
Abstract
Human tumor xenograft models do not replicate the human immune system and tumor microenvironment. We developed an improved humanized mouse model, derived from fresh cord blood CD34+ stem cells (CD34+ HSC), and combined it with lung cancer cell line-derived human xenografts or patient-derived xenografts (Hu-PDX). Fresh CD34+ HSCs could reconstitute detectable mature human leukocytes (hCD45+) in mice at four weeks without the onset of graft-versus-host disease (GVHD). Repopulated human T cells, B cells, natural killer (NK) cells, dendritic cells (DC), and myeloid-derived suppressor cells (MDSC) increased in peripheral blood, spleen, and bone marrow over time. Although cultured CD34+ HSCs labeled with luciferase could be detected in mice, the cultured HSCs did not develop into mature human immune cells by four weeks, unlike fresh CD34+ HSCs. Ex vivo, reconstituted T cells, obtained from the tumor-bearing humanized mice, secreted IFNγ upon treatment with phorbol myristate acetate (PMA) or exposure to human A549 lung tumor cells and mediated antigen-specific CTL responses, indicating functional activity. Growth of engrafted PDXs and tumor xenografts was not dependent on the human leukocyte antigen status of the donor. Treatment with the anti-PD-1 checkpoint inhibitors pembrolizumab or nivolumab inhibited tumor growth in humanized mice significantly, and correlated with an increased number of CTLs and decreased MDSCs, regardless of the donor HLA type. In conclusion, fresh CD34+HSCs are more effective than their expanded counterparts in humanizing mice, and do so in a shorter time. The Hu-PDX model provides an improved platform for evaluation of immunotherapy.
Collapse
Affiliation(s)
- Ismail M Meraz
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| | - Mourad Majidi
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Feng Meng
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - RuPing Shao
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Min Jin Ha
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Shinya Neri
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Bingliang Fang
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Steven H Lin
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Peggy T Tinkey
- Department of Veterinary Medicine and Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Elizabeth J Shpall
- Department of Stem Cell Transplantation, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jeffrey Morris
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jack A Roth
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Department of Thoracic Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
197
|
Liu T, Yao R, Pang Y, Sun W. Review on biofabrication and applications of heterogeneous tumor models. J Tissue Eng Regen Med 2019; 13:2101-2120. [PMID: 31359625 DOI: 10.1002/term.2949] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 07/08/2019] [Accepted: 07/19/2019] [Indexed: 11/12/2022]
Abstract
Resolving the origin and development of tumor heterogeneity has proven to be a crucial challenge in cancer research. In vitro tumor models have been widely used for both scientific and clinical research. Currently, tumor models based on 2D cell culture, animal models, and 3D cell-laden constructs are widely used. Heterogeneous tumor models, which consist of more than one cell type and mimic cell-cell as well as cell-matrix interactions, are attracting increasing attention. Heterogeneous tumor models can serve as pathological models to study the microenvironment and tumor development such as tumorigenesis, invasiveness, and malignancy. They also provide disease models for drug screening and personalized therapy. In this review, the current techniques, models, and oncological applications regarding 3D heterogeneous tumor models are summarized and discussed.
Collapse
Affiliation(s)
- Tiankun Liu
- Tsinghua University, Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing, People's Republic of China.,Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing, People's Republic of China.,Tsinghua University, 111 "Biomanufacturing and Engineering Living Systems" Innovation International Talents Base, Beijing, People's Republic of China.,Key Laboratory of Advanced Forming and Manufacturing, Ministry of Education, Department of Mechanical Engineering, Tsinghua University, Beijing, People's Republic of China
| | - Rui Yao
- Tsinghua University, Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing, People's Republic of China.,Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing, People's Republic of China.,Tsinghua University, 111 "Biomanufacturing and Engineering Living Systems" Innovation International Talents Base, Beijing, People's Republic of China.,Key Laboratory of Advanced Forming and Manufacturing, Ministry of Education, Department of Mechanical Engineering, Tsinghua University, Beijing, People's Republic of China
| | - Yuan Pang
- Tsinghua University, Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing, People's Republic of China.,Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing, People's Republic of China.,Tsinghua University, 111 "Biomanufacturing and Engineering Living Systems" Innovation International Talents Base, Beijing, People's Republic of China.,Key Laboratory of Advanced Forming and Manufacturing, Ministry of Education, Department of Mechanical Engineering, Tsinghua University, Beijing, People's Republic of China
| | - Wei Sun
- Tsinghua University, Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing, People's Republic of China.,Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing, People's Republic of China.,Tsinghua University, 111 "Biomanufacturing and Engineering Living Systems" Innovation International Talents Base, Beijing, People's Republic of China.,Key Laboratory of Advanced Forming and Manufacturing, Ministry of Education, Department of Mechanical Engineering, Tsinghua University, Beijing, People's Republic of China.,Department of Mechanical Engineering, Drexel University, Philadelphia, PA
| |
Collapse
|
198
|
The Detection and Morphological Analysis of Circulating Tumor and Host Cells in Breast Cancer Xenograft Models. Cells 2019; 8:cells8070683. [PMID: 31284534 PMCID: PMC6679018 DOI: 10.3390/cells8070683] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/01/2019] [Accepted: 07/01/2019] [Indexed: 02/06/2023] Open
Abstract
Hematogenous dissemination may occur early in breast cancer (BC). Experimental models could clarify mechanisms, but in their development, the heterogeneity of this neoplasia must be considered. Here, we describe circulating tumor cells (CTCs) and the metastatic behavior of several BC cell lines in xenografts. MDA-MB-231, BT-474, MDA-MB-453 and MDA-MB-468 cells were injected at the orthotopic level in immunocompromised mice. CTCs were isolated using a size-based method and identified by cytomorphological criteria. Metastases were detected by COX IV immunohistochemistry. CTCs were detected in 90% of animals in each model. In MDA-MB-231, CTCs were observed after 5 weeks from the injection and step wisely increased at later time points. In animals injected with less aggressive cell lines, the load of single CTCs (mean ± SD CTCs/mL: 1.8 ± 1.3 in BT-474, 122.2 ± 278.5 in MDA-MB-453, 3.4 ± 2.5 in MDA-MB468) and the frequency of CTC clusters (overall 38%) were lower compared to MDA-MB231 (946.9 ± 2882.1; 73%). All models had lung metastases, MDA-MB-453 and MDA-MB468 had ovarian foci too, whereas lymph nodal involvement was observed in MDA-MB231 and MDA-MB-468 only. Interestingly, CTCs showed morphological heterogeneity and were rarely associated to host cells. Orthotopic xenograft of BC cell lines offers valid models of hematogenous dissemination and a possible experimental setting to study CTC-blood microenvironment interactions.
Collapse
|
199
|
Yang W, Fan WS, Ye MX, Li Z, Gu CL, Zhu YP, Hao YP, Wang ZQ, Wang L, Meng YG. Establishment of the PDTX model of gynecological tumors. Am J Transl Res 2019; 11:3779-3789. [PMID: 31312388 PMCID: PMC6614644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 05/25/2019] [Indexed: 06/10/2023]
Abstract
OBJECTIVE Fresh tumor tissues from patients with gynecological tumors were obtained by surgery or biopsy, and transplanted into NOD-Prkdcem26ll2rgem26Nju (NCG) mice to establish a patient-derived tumor xenograft (PDTX). MATERIALS AND METHODS A total of 15 patients with gynecologic tumors were enrolled into the present study. Among these patients, 12 patients had epithelial fallopian tube/ovarian/peritoneal cancer, one patient had metastatic ovarian cancer, and two patients had cervical cancer. Furthermore, among these patients, three patients were treated with puncture or microscopy biopsy, six patients underwent laparoscopic surgery, and six patients underwent robotic surgery. The tumor formation latency, tumor formation rate, tumor volume, tumor invasion and metastasis of the transplanted tumor were observed, the consistency of the PDTX model tumor tissue and patient's primary tumor tissue was compared by pathological H&E staining, and pharmacodynamics testing was performed. RESULTS Seven of 15 PDTX models were successfully established, with a success rate of 46.7%. The tumor formation time ranged within 21-130 days, with a median tumor formation time of 73 days. The PDTX model maintained the differentiation, morphological and structural characteristics of tumor cells, and the pharmacodynamic test was completed in five patients. CONCLUSION The PDTX model is highly consistent with the pathology of the patient's tumor, and can be used as a substitute for clinical patients to guide the accurate treatment and scientific research of gynecological tumors.
Collapse
Affiliation(s)
- Wen Yang
- Department of Obstetrics and Gynecology, Chinese PLA General Hospital28 Fuxing Road, Haidian District, Beijing 100853, China
| | - Wen-Sheng Fan
- Department of Obstetrics and Gynecology, Chinese PLA General Hospital28 Fuxing Road, Haidian District, Beijing 100853, China
| | - Ming-Xia Ye
- Department of Obstetrics and Gynecology, Chinese PLA General Hospital28 Fuxing Road, Haidian District, Beijing 100853, China
| | - Zhen Li
- Department of Obstetrics and Gynecology, Chinese PLA General Hospital28 Fuxing Road, Haidian District, Beijing 100853, China
| | - Cheng-Lei Gu
- Department of Obstetrics and Gynecology, Chinese PLA General Hospital28 Fuxing Road, Haidian District, Beijing 100853, China
| | - Yan-Ping Zhu
- Nanjing Personal Oncology Biological Technology Co. Ltd.568 Longmian Road, Jiangning District, Nanjing 211100, Jiangsu, China
| | - Yan-Peng Hao
- Nanjing Personal Oncology Biological Technology Co. Ltd.568 Longmian Road, Jiangning District, Nanjing 211100, Jiangsu, China
| | - Zhi-Qiang Wang
- Nanjing Personal Oncology Biological Technology Co. Ltd.568 Longmian Road, Jiangning District, Nanjing 211100, Jiangsu, China
| | - Li Wang
- Nanjing Personal Oncology Biological Technology Co. Ltd.568 Longmian Road, Jiangning District, Nanjing 211100, Jiangsu, China
| | - Yuan-Guang Meng
- Department of Obstetrics and Gynecology, Chinese PLA General Hospital28 Fuxing Road, Haidian District, Beijing 100853, China
| |
Collapse
|
200
|
Establishment of Novel Gastric Cancer Patient-Derived Xenografts and Cell Lines: Pathological Comparison between Primary Tumor, Patient-Derived, and Cell-Line Derived Xenografts. Cells 2019; 8:cells8060585. [PMID: 31207870 PMCID: PMC6627523 DOI: 10.3390/cells8060585] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 05/17/2019] [Accepted: 06/11/2019] [Indexed: 02/07/2023] Open
Abstract
Patient-derived xenograft (PDX) models have been recognized as being more suitable for predicting therapeutic efficacy than cell-culture models. However, there are several limitations in applying PDX models in preclinical studies, including their availability—especially for cancers such as gastric cancer—that are not frequently encountered in Western countries. In addition, the differences in morphology between primary, PDX, and tumor cell line-derived xenograft (CDX) models have not been well established. In this study, we aimed to establish a series of gastric cancer PDXs and cell-lines from a relatively large number of gastric cancer patients. We also investigated the clinicopathological factors associated with the establishment of PDX and CDX models, and compared the histology between the primary tumor, PDX, and CDX that originated from the same patient. We engrafted 232 gastric cancer tissues into immune-deficient mice subcutaneously and successfully established 35 gastric cancer PDX models (15.1% success rate). Differentiated type adenocarcinomas (DAs, 19.4%) were more effectively established than poorly differentiated type adenocarcinomas (PDAs, 10.8%). For establishing CDXs, the success rate was less influenced by histological differentiation grade (DA vs. PDA, 12.1% vs. 9.8%). In addition, concordance of histological differentiation grade between primary tumors and PDXs was significant (p < 0.01), while concordance between primary tumors and CDXs was not. Among clinicopathological factors investigated, pathological nodal metastasis status (pN) was significantly associated with the success rate of PDX establishment. Although establishing cell lines from ascites fluid was more efficient (41.2%, 7/17) than resected tissues, it should be noted that all CDXs from ascites fluid had the PDA phenotype. In conclusion, we established 35 PDX and 32 CDX models from 249 gastric cancer patients; among them, 21 PDX/CDX models were established from the same patients. Our findings may provide helpful insights for establishing PDX and CDX models not only from gastric but from other cancer types, as well as select preclinical models for developing new therapeutics.
Collapse
|