151
|
Wang H, Xu L, Zhu X, Wang P, Chi H, Meng Z. Activation of phosphatidylinositol 3-kinase/Akt signaling mediates sorafenib-induced invasion and metastasis in hepatocellular carcinoma. Oncol Rep 2014; 32:1465-72. [PMID: 25070581 DOI: 10.3892/or.2014.3352] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Accepted: 06/24/2014] [Indexed: 11/05/2022] Open
Abstract
Sorafenib, an antiangiogenic agent, can promote tumor invasion and metastasis. The phosphatidylinositol 3-kinase (PI3K)/Akt/Snail-dependent pathway plays an important role in tumor invasion and metastasis. Yet, little is known concerning the role of the PI3K/Akt/Snail-dependent pathway in sorafenib‑induced invasion and metastasis of hepatic carcinoma (HCC). A human HCC orthotopic xenograft model was established, and sorafenib (30 mg/kg/day) was administered orally. Tumor growth and intrahepatic metastasis were assessed, and immunohistochemistry was applied to analyze the activation of the PI3K/Akt/Snail-dependent pathway. HCC cell lines were treated with sorafenib (1, 5 and 10 µM), and proliferation, migration and invasion were assessed. Western blotting and real-time polymerase chain reaction (RT-PCR) were used to examine the related gene expression of epithelial-mesenchymal transition (EMT) markers and the PI3K/Akt/Snail-dependent pathway. Sorafenib inhibited tumor growth and promoted intrahepatic invasion and metastasis of the orthotopic tumors grown from SMMC7721-GFP cells in vivo. Additionally, sorafenib promoted EMT and invasion and metastasis of HCC cells in vitro. Importantly, sorafenib enhanced PI3K and Akt activation and upregulation of the expression of transcription factor Snail, a critical EMT mediator. The upregulation of transcription factor Snail expression by sorafenib may be related to activation of the PI3K/AKT signaling pathway. The PI3K/Akt/Snail-dependent pathway may mediate the pro-invasive and pro-metastatic effects of sorafenib on HCC by inducing EMT.
Collapse
Affiliation(s)
- Haiyong Wang
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China
| | - Litao Xu
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China
| | - Xiaoyan Zhu
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China
| | - Peng Wang
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China
| | - Huiying Chi
- Shanghai Geriatric Institute of Chinese Medicine, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200031, P.R. China
| | - Zhiqiang Meng
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China
| |
Collapse
|
152
|
Kudo-Saito C, Yura M, Yamamoto R, Kawakami Y. Induction of immunoregulatory CD271+ cells by metastatic tumor cells that express human endogenous retrovirus H. Cancer Res 2014; 74:1361-70. [PMID: 24590808 DOI: 10.1158/0008-5472.can-13-1349] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Human endogenous retroviruses (HERV) are associated with many diseases such as autoimmune diseases and cancer. Although the frequent expression of a variety of HERVs in tumor cells has been demonstrated, their functional contributions in cancer are as yet unclear. Intriguingly, HERVs and other retroviruses include an immunosuppressive domain in their transmembrane envelope proteins, but its mechanism of action and cancer relevance are obscure. In this study, we demonstrate that the human endogenous retrovirus HERV-H has a critical role in tumor metastasis and immune escape. We found that expression of herv-h mRNA was elevated in metastatic tumor cells undergoing epithelial-to-mesenchymal transition (EMT) and in primary tumor tissues from advanced colon cancer. The immunosuppressive peptide H17 derived from HERV-H was sufficient to induce EMT in tumor cells that expressed low levels of HERV-H, and it amplified this event within the tumor microenvironment. H17 also stimulated CCL19 expression in tumor cells, which in turn recruited and expanded a population of pluripotent immunoregulatory CD271(+) cells, which included mesenchymal stem cells and myeloid-derived suppressor cells. In tumor tissues from patients with advanced colon cancer, we confirmed that CD271(+) cells were increased in HERV-H(+)CCL19(+) tumor tissues. Notably, RNAi-mediated change of HERV-H or CCL19, or depletion of CD271(+) cells, improved immune responses in vitro and in vivo accompanied by tumor regression. Together, our results argued that HERV-H is a critical determinant of immune escape in cancer, suggesting its candidacy as a promising therapeutic target to treat patients with advanced cancer.
Collapse
Affiliation(s)
- Chie Kudo-Saito
- Authors' Affiliation: Division of Cellular Signalling, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan
| | | | | | | |
Collapse
|
153
|
Wu JB, Shao C, Li X, Li Q, Hu P, Shi C, Li Y, Chen YT, Yin F, Liao CP, Stiles BL, Zhau HE, Shih JC, Chung LWK. Monoamine oxidase A mediates prostate tumorigenesis and cancer metastasis. J Clin Invest 2014; 124:2891-908. [PMID: 24865426 DOI: 10.1172/jci70982] [Citation(s) in RCA: 172] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Accepted: 04/03/2014] [Indexed: 01/13/2023] Open
Abstract
Tumors from patients with high-grade aggressive prostate cancer (PCa) exhibit increased expression of monoamine oxidase A (MAOA), a mitochondrial enzyme that degrades monoamine neurotransmitters and dietary amines. Despite the association between MAOA and aggressive PCa, it is unclear how MAOA promotes PCa progression. Here, we found that MAOA functions to induce epithelial-to-mesenchymal transition (EMT) and stabilize the transcription factor HIF1α, which mediates hypoxia through an elevation of ROS, thus enhancing growth, invasiveness, and metastasis of PCa cells. Knockdown and overexpression of MAOA in human PCa cell lines indicated that MAOA induces EMT through activation of VEGF and its coreceptor neuropilin-1. MAOA-dependent activation of neuropilin-1 promoted AKT/FOXO1/TWIST1 signaling, allowing FOXO1 binding at the TWIST1 promoter. Importantly, the MAOA-dependent HIF1α/VEGF-A/FOXO1/TWIST1 pathway was activated in high-grade PCa specimens, and knockdown of MAOA reduced or even eliminated prostate tumor growth and metastasis in PCa xenograft mouse models. Pharmacological inhibition of MAOA activity also reduced PCa xenograft growth in mice. Moreover, high MAOA expression in PCa tissues correlated with worse clinical outcomes in PCa patients. These findings collectively characterize the contribution of MAOA in PCa pathogenesis and suggest that MAOA has potential as a therapeutic target in PCa.
Collapse
|
154
|
LIU TIELONG, ZHOU WEIWEI, ZHANG FEI, SHI GUODONG, TENG HONGLIN, XIAO JIANRU, WANG YAN. Knockdown of IRX2 inhibits osteosarcoma cell proliferation and invasion by the AKT/MMP9 signaling pathway. Mol Med Rep 2014; 10:169-74. [DOI: 10.3892/mmr.2014.2215] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Accepted: 03/17/2014] [Indexed: 11/06/2022] Open
|
155
|
Hance MW, Nolan KD, Isaacs JS. The double-edged sword: conserved functions of extracellular hsp90 in wound healing and cancer. Cancers (Basel) 2014; 6:1065-97. [PMID: 24805867 PMCID: PMC4074817 DOI: 10.3390/cancers6021065] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 04/16/2014] [Accepted: 04/24/2014] [Indexed: 12/17/2022] Open
Abstract
Heat shock proteins (Hsps) represent a diverse group of chaperones that play a vital role in the protection of cells against numerous environmental stresses. Although our understanding of chaperone biology has deepened over the last decade, the “atypical” extracellular functions of Hsps have remained somewhat enigmatic and comparatively understudied. The heat shock protein 90 (Hsp90) chaperone is a prototypic model for an Hsp family member exhibiting a duality of intracellular and extracellular functions. Intracellular Hsp90 is best known as a master regulator of protein folding. Cancers are particularly adept at exploiting this function of Hsp90, providing the impetus for the robust clinical development of small molecule Hsp90 inhibitors. However, in addition to its maintenance of protein homeostasis, Hsp90 has also been identified as an extracellular protein. Although early reports ascribed immunoregulatory functions to extracellular Hsp90 (eHsp90), recent studies have illuminated expanded functions for eHsp90 in wound healing and cancer. While the intended physiological role of eHsp90 remains enigmatic, its evolutionarily conserved functions in wound healing are easily co-opted during malignancy, a pathology sharing many properties of wounded tissue. This review will highlight the emerging functions of eHsp90 and shed light on its seemingly dichotomous roles as a benevolent facilitator of wound healing and as a sinister effector of tumor progression.
Collapse
Affiliation(s)
- Michael W Hance
- Department of Cell and Molecular Pharmacology, Medical University of South Carolina, Hollings Cancer Center, Charleston, SC 29412, USA.
| | - Krystal D Nolan
- Department of Cell and Molecular Pharmacology, Medical University of South Carolina, Hollings Cancer Center, Charleston, SC 29412, USA.
| | - Jennifer S Isaacs
- Department of Cell and Molecular Pharmacology, Medical University of South Carolina, Hollings Cancer Center, Charleston, SC 29412, USA.
| |
Collapse
|
156
|
Wahane SD, Hellbach N, Prentzell MT, Weise SC, Vezzali R, Kreutz C, Timmer J, Krieglstein K, Thedieck K, Vogel T. PI3K-p110-alpha-subtype signalling mediates survival, proliferation and neurogenesis of cortical progenitor cells via activation of mTORC2. J Neurochem 2014; 130:255-67. [PMID: 24645666 DOI: 10.1111/jnc.12718] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Revised: 03/16/2014] [Accepted: 03/17/2014] [Indexed: 01/31/2023]
Abstract
Development of the cerebral cortex is controlled by growth factors among which transforming growth factor beta (TGFβ) and insulin-like growth factor 1 (IGF1) have a central role. The TGFβ- and IGF1-pathways cross-talk and share signalling molecules, but in the central nervous system putative points of intersection remain unknown. We studied the biological effects and down-stream molecules of TGFβ and IGF1 in cells derived from the mouse cerebral cortex at two developmental time points, E13.5 and E16.5. IGF1 induces PI3K, AKT and the mammalian target of rapamycin complexes (mTORC1/mTORC2) primarily in E13.5-derived cells, resulting in proliferation, survival and neuronal differentiation, but has small impact on E16.5-derived cells. TGFβ has little effect at E13.5. It does not activate the PI3K- and mTOR-signalling network directly, but requires its activity to mediate neuronal differentiation specifically at E16.5. Our data indicate a central role of mTORC2 in survival, proliferation as well as neuronal differentiation of E16.5-derived cortical cells. mTORC2 promotes these cellular processes and is under control of PI3K-p110-alpha signalling. PI3K-p110-beta signalling activates mTORC2 in E16.5-derived cells but it does not influence cell survival, proliferation and differentiation. This finding indicates that different mTORC2 subtypes may be implicated in cortical development and that these subtypes are under control of different PI3K isoforms. Within developing cortical cells TGFβ- and IGF-signalling activities are timely separated. TGFβ dominates in E16.5-derived cells and drives neuronal differentiation. IGF influences survival, proliferation and neuronal differentiation in E13.5-derived cells. mTORC2-signalling in E16.5-derived cells influences survival, proliferation and differentiation, activated through PI3K-p110-alpha. PI3K-p110-beta-signalling activates a different mTORC2. Both PI3K/mTORC2-signalling pathways are required but not directly activated in TGFβ-mediated neuronal differentiation.
Collapse
Affiliation(s)
- Shalaka Dhanraj Wahane
- Department of Molecular Embryology, Institute of Anatomy and Cell Biology, Albert-Ludwigs-University Freiburg, Freiburg, Germany; Faculty of Biology, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
157
|
Merindol N, Riquet A, Szablewski V, Eliaou JF, Puisieux A, Bonnefoy N. The emerging role of Twist proteins in hematopoietic cells and hematological malignancies. Blood Cancer J 2014; 4:e206. [PMID: 24769647 PMCID: PMC4003416 DOI: 10.1038/bcj.2014.22] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Accepted: 03/17/2014] [Indexed: 02/03/2023] Open
Abstract
Twist1 and Twist2 (Twist1–2) are two transcription factors, members of the basic helix-loop-helix family, that have been well established as master transcriptional regulators of embryogenesis and developmental programs of mesenchymal cell lineages. Their role in oncogenesis in epithelium-derived cancer and in epithelial-to-mesenchymal transition has also been thoroughly characterized. Recently, emerging evidence also suggests a key role for Twist1–2 in the function and development of hematopoietic cells, as well as in survival and development of numerous hematological malignancies. In this review, we summarize the latest data that depict the role of Twist1–2 in monocytes, T cells and B lymphocyte activation, and in associated hematological malignancies.
Collapse
Affiliation(s)
- N Merindol
- Université de Lyon and INSERM U1111, Lyon, France
| | - A Riquet
- Université de Lyon and INSERM U1111, Lyon, France
| | - V Szablewski
- 1] IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U896, Université Montpellier 1, Montpellier, France [2] Département de Biopathologie, Centre Hospitalier Régional Universitaire de Montpellier et Faculté de Médecine, Université Montpellier 1, Montpellier, France
| | - J-F Eliaou
- 1] IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U896, Université Montpellier 1, Montpellier, France [2] Département d'Immunologie, Centre Hospitalier Régional Universitaire de Montpellier et Faculté de Médecine, Université Montpellier 1, Montpellier, France
| | - A Puisieux
- Centre de Receherche en Cancérologie de Lyon, INSERM UMR-S1052, Centre Léon Bérard, Lyon, France
| | - N Bonnefoy
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U896, Université Montpellier 1, Montpellier, France
| |
Collapse
|
158
|
Ginnebaugh KR, Ahmad A, Sarkar FH. The therapeutic potential of targeting the epithelial-mesenchymal transition in cancer. Expert Opin Ther Targets 2014; 18:731-45. [PMID: 24758643 DOI: 10.1517/14728222.2014.909807] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION The process of epithelial-to-mesenchymal transition (EMT) has long been advocated as a process during tumor progression and the acquisition of metastatic potential of human cancers. EMT has also been linked with resistance to cancer therapies. AREAS COVERED Basic research has provided evidence connecting EMT to increased invasion, angiogenesis and metastasis of cancer cells. A number of signaling pathways such as notch, wnt, hedgehog and PI3K-AKT, and various other individual factors therein, have been intricately connected to the onset of EMT. Here, we provide latest updates on the evidences that further highlight an association between various signaling pathways and EMT, with a focus on therapeutic targets that may have the potential to reverse EMT. EXPERT OPINION Our understanding of EMT and its underlying causes is rapidly evolving and a number of putative targets have been identified. It is crucial, now than ever before, to design novel translational and clinical studies for the benefit of advanced stage cancer patients with metastatic disease.
Collapse
Affiliation(s)
- Kevin R Ginnebaugh
- Karmanos Cancer Institute, Wayne State University School of Medicine, Department of Pathology , Detroit, MI 48201 , USA
| | | | | |
Collapse
|
159
|
Liu YR, Jiang YZ, Zuo WJ, Yu KD, Shao ZM. PIK3CA mutations define favorable prognostic biomarkers in operable breast cancer: a systematic review and meta-analysis. Onco Targets Ther 2014; 7:543-52. [PMID: 24748804 PMCID: PMC3986298 DOI: 10.2147/ott.s60115] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background Mutations of the p110α catalytic subunit of phosphatidylinositol 3-kinase (PIK3CA) are among the most common genetic aberrations in human breast cancer. At present, controversy exists concerning the prognostic value of the mutations. Methods We performed a systematic review and meta-analysis to clarify the association between PIK3CA mutations and survival outcomes. A comprehensive, computerized literature search of PubMed, Web of Science databases, the Chinese Biomedical Literature Database, and Wangfang Data until August 27, 2013 was carried out. Eligible studies were included according to specific inclusion criteria. Pooled hazard ratio was estimated by using the fixed effects model or random effects model according to heterogeneity between studies. Results Eight eligible studies were included in the analysis, all of which were retrospective cohort studies. The overall meta-analysis demonstrated that the PIK3CA mutations were associated with better clinical outcomes (hazard ratio 0.72; 95% confidence interval: 0.57–0.91; P=0.006). None of the single studies materially altered the original results and no evidence of publication bias was found. Further subgroup analysis of mutations in exons 9 and 20 did not show statistical significance. Conclusion PIK3CA mutations in operable primary breast cancer indicate a good prognosis. Further studies should be conducted to investigate the effect of PIK3CA mutations on clinical outcomes in different histologic types, different molecular subtypes of breast cancer, and different exons of PIK3CA.
Collapse
Affiliation(s)
- Yi-Rong Liu
- Department of Breast Surgery, Cancer Center and Cancer Institute, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Yi-Zhou Jiang
- Department of Breast Surgery, Cancer Center and Cancer Institute, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Wen-Jia Zuo
- Department of Breast Surgery, Cancer Center and Cancer Institute, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Ke-Da Yu
- Department of Breast Surgery, Cancer Center and Cancer Institute, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Zhi-Ming Shao
- Department of Breast Surgery, Cancer Center and Cancer Institute, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| |
Collapse
|
160
|
Matouk IJ, Raveh E, Abu-lail R, Mezan S, Gilon M, Gershtain E, Birman T, Gallula J, Schneider T, Barkali M, Richler C, Fellig Y, Sorin V, Hubert A, Hochberg A, Czerniak A. Oncofetal H19 RNA promotes tumor metastasis. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:1414-26. [PMID: 24703882 DOI: 10.1016/j.bbamcr.2014.03.023] [Citation(s) in RCA: 186] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Revised: 02/15/2014] [Accepted: 03/26/2014] [Indexed: 12/12/2022]
Abstract
The oncofetal H19 gene transcribes a long non-coding RNA(lncRNA) that is essential for tumor growth. Here we found that numerous established inducers of epithelial to mesenchymal transition(EMT) also induced H19/miR-675 expression. Both TGF-β and hypoxia concomitantly induced H19 and miR-675 with the induction of EMT markers. We identified the PI3K/AKT pathway mediating the inductions of Slug, H19 RNA and miR-675 in response to TGF-β treatment, while Slug induction depended on H19 RNA. In the EMT induced multidrug resistance model, H19 level was also induced. In a mouse breast cancer model, H19 expression was tightly correlated with metastatic potential. In patients, we detected high H19 expression in all common metastatic sites tested, regardless of tumor primary origin. H19 RNA suppressed the expression of E-cadherin protein. H19 up-regulated Slug expression concomitant with the suppression of E-cadherin protein through a mechanism that involved miR-675. Slug also up-regulated H19 expression and activated its promoter. Altogether, these results may support the existence of a positive feedback loop between Slug and H19/miR-675, that regulates E-cadherin expression. H19 RNA enhanced the invasive potential of cancer cells in vitro and enhanced tumor metastasis in vivo. Additionally, H19 knockdown attenuated the scattering and tumorigenic effects of HGF/SF. Our results present novel mechanistic insights into a critical role for H19 RNA in tumor progression and indicate a previously unknown link between H19/miR-675, Slug and E-cadherin in the regulation of cancer cell EMT programs.
Collapse
Affiliation(s)
- Imad J Matouk
- Department of Biological Chemistry, Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.
| | - Eli Raveh
- Department of Biological Chemistry, Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Rasha Abu-lail
- Department of Biological Chemistry, Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Shaul Mezan
- Department of Biological Chemistry, Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Michal Gilon
- Department of Biological Chemistry, Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Eitan Gershtain
- Department of Biological Chemistry, Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Tatiana Birman
- Department of Biological Chemistry, Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Jennifer Gallula
- Department of Biological Chemistry, Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Tamar Schneider
- Department of Biological Chemistry, Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Moshe Barkali
- Department of Biological Chemistry, Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Carmelit Richler
- Department of Biological Chemistry, Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Yakov Fellig
- Department of Pathology, Hadassah Hebrew University Medical Center, Jerusalem 91240, Israel
| | - Vladimir Sorin
- Department of Biological Chemistry, Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Ayala Hubert
- Department of Oncology, Hadassah University Hospital, Jerusalem 91000, Israel
| | - Abraham Hochberg
- Department of Biological Chemistry, Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Abraham Czerniak
- Department of HPB Surgery "A", Sheba Medical Center, Tel Hashomer, Tel Aviv 52621, Israel
| |
Collapse
|
161
|
Decreased TIP30 promotes Snail-mediated epithelial-mesenchymal transition and tumor-initiating properties in hepatocellular carcinoma. Oncogene 2014; 34:1420-31. [PMID: 24681951 DOI: 10.1038/onc.2014.73] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Revised: 01/27/2014] [Accepted: 02/19/2014] [Indexed: 12/11/2022]
Abstract
The poor prognosis of hepatocellular carcinoma (HCC) is mainly due to tumor recurrence and metastases. Recently, epithelial-mesenchymal transition (EMT) has been implicated in tumor invasion and metastasis. However, the underlying molecular mechanisms are yet to be elucidated. Here, we show that 30-kDa Tat-interacting protein (TIP30), also called CC3, is significantly downregulated during transforming growth factor-β-induced EMT. In our in vitro and in vivo studies, we show that decreased TIP30 expression leads to EMT, as well as enhanced motility and invasion of HCC cells. Also, increased self-renewal ability and chemotherapeutic resistance are observed with TIP30 depletion. Moreover, Snail is one of the key transcription factors promoting EMT, and overexpression of TIP30 greatly decreased nucleic accumulation in Snail through the regulation of intracellular localization. Small interfering RNAs targeting Snail attenuated EMT and tumor-initiating properties induced by TIP30 deficiency. We further confirmed that TIP30 competitively interrupted the interaction of Snail with importin-β2 to block the nuclear import of Snail. Consistently, TIP30 expression significantly correlates with E-cadherin expression in HCC patients. TIP30 or combination of E-cadherin is a powerful marker in predicting the prognosis of HCC. Taken together, our results suggest a novel and critical role of TIP30 involved in HCC progression and aggressiveness.
Collapse
|
162
|
Zhang J, Guo H, Zhu JS, Yang YC, Chen WX, Chen NW. Inhibition of phosphoinositide 3-kinase/Akt pathway decreases hypoxia inducible factor-1α expression and increases therapeutic efficacy of paclitaxel in human hypoxic gastric cancer cells. Oncol Lett 2014; 7:1401-1408. [PMID: 24765145 PMCID: PMC3997665 DOI: 10.3892/ol.2014.1963] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2013] [Accepted: 02/20/2014] [Indexed: 12/22/2022] Open
Abstract
The phosphatidylinositol-3-kinase (PI3K)/Akt signaling pathway plays an important role in cell proliferation, transformation, apoptosis, tumor growth and angiogenesis. Paclitaxel is commonly used to treat multiple human malignancies; however, the underlying mechanisms of paclitaxel in gastric cancer (GC) have not been fully investigated. In the present study, specimens from 45 GC and 36 chronic gastritis patients were collected, and the correlations of PI3K, phosphorylated-Akt (p-Akt) and hypoxia-inducible factor-1α (HIF-1α) expression with the clinicopathological characteristics of GC were analyzed by immunohistochemistry. The human SGC-7901 GC cells under hypoxic conditions were pretreated with the PI3K inhibitor, LY294002 (40 μM), and paclitaxel (0.1 μM). The expression levels of PI3K, p-Akt and HIF-1α were detected by quantitative polymerase chain reaction and western blotting. Cell proliferative activity and apoptosis were evaluated by the Cell Counting Kit-8 assay and flow cytometry. As a result, the rates of positive expression of PI3K, p-Akt and HIF-1α were significantly higher in GC compared with chronic gastritis patients (each P<0.01), and were positively associated with the tumor-node-metastasis (TNM) staging, lymph node metastases, lymphatic infiltration and vascular infiltration (each P<0.01), but inversely correlated with tumor differentiation (P<0.01) in patients with GC. Under hypoxic conditions, the combined inhibition of the PI3K/Akt pathway with paclitaxel markedly reduced the proliferative activity and induced cell apoptosis in GC cells compared with the single treatment of PI3K inhibitor or paclitaxel (each P<0.01), and was accompanied by a decreased expression of HIF-1α. Overall, our findings indicate that the increased expression of the PI3K/Akt/HIF-1α pathway was closely correlated with tumor differentiation, TNM staging, lymph node metastases and lymphatic and vascular infiltration. The inhibition of the PI3K/Akt pathway enhanced the therapeutic efficacy of paclitaxel in GC cells under hypoxic conditions, suggesting that the PI3K/Akt/HIF-1α pathway may act as an important therapeutic target for paclitaxel treatment of GC.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Gastroenterology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| | - Hua Guo
- Department of Gastroenterology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| | - Jin-Shui Zhu
- Department of Gastroenterology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| | - Yu-Chen Yang
- Department of Gastroenterology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| | - Wei-Xiong Chen
- Department of Gastroenterology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| | - Ni-Wei Chen
- Department of Gastroenterology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| |
Collapse
|
163
|
Ghalali A, Ye ZW, Högberg J, Stenius U. Phosphatase and tensin homolog deleted on chromosome 10 (PTEN) and PH domain and leucine-rich repeat phosphatase cross-talk (PHLPP) in cancer cells and in transforming growth factor β-activated stem cells. J Biol Chem 2014; 289:11601-11616. [PMID: 24599953 PMCID: PMC4002071 DOI: 10.1074/jbc.m113.537241] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Akt kinase controls cell survival, proliferation, and invasive growth and is a critical factor for cancer development. Here we describe a cross-talk between phosphatases that may preserve levels of activated/phosphorylated Akt and confer aggressive growth of cancer cells. In prostatic cancer cells, but not in non-transformed cells or in prostate stem cells, we found that the phosphatase and tensin homolog deleted on chromosome 10 (PTEN) overexpression down-regulated PH domain and leucine-rich repeat phosphatase (PHLPP) and that PHLPP overexpression down-regulated PTEN. We also show that silencing PTEN by siRNA increased the levels of PHLPPs. This cross-talk facilitated invasive migration and was mediated by epigenetic alterations, including activation of miR-190, miR-214, polycomb group of proteins, as well as DNA methylation. A role for the purinergic receptor P2X4, previously associated with wound healing, was indicated. We also show that TGF-β1 induced cross-talk concomitant with epithelial-mesenchymal transition in stem cells. The cross-talk emerged as an integrated part of epithelial-mesenchymal transition. We conclude that cross-talk between PTEN and PHLPPs is silenced in normal prostate cells but activated in TGF-β1 transformed prostate stem and cancer cells and facilitates invasive growth.
Collapse
Affiliation(s)
- Aram Ghalali
- Institute of Environmental Medicine, Karolinska Institutet, S-171 77 Stockholm, Sweden.
| | - Zhi-Wei Ye
- Institute of Environmental Medicine, Karolinska Institutet, S-171 77 Stockholm, Sweden
| | - Johan Högberg
- Institute of Environmental Medicine, Karolinska Institutet, S-171 77 Stockholm, Sweden
| | - Ulla Stenius
- Institute of Environmental Medicine, Karolinska Institutet, S-171 77 Stockholm, Sweden
| |
Collapse
|
164
|
Moustakas A, Heldin P. TGFβ and matrix-regulated epithelial to mesenchymal transition. Biochim Biophys Acta Gen Subj 2014; 1840:2621-34. [PMID: 24561266 DOI: 10.1016/j.bbagen.2014.02.004] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2014] [Accepted: 02/05/2014] [Indexed: 12/14/2022]
Abstract
BACKGROUND The progression of cancer through stages that guide a benign hyperplastic epithelial tissue towards a fully malignant and metastatic carcinoma, is driven by genetic and microenvironmental factors that remodel the tissue architecture. The concept of epithelial-mesenchymal transition (EMT) has evolved to emphasize the importance of plastic changes in tissue architecture, and the cross-communication of tumor cells with various cells in the stroma and with specific molecules in the extracellular matrix (ECM). SCOPE OF THE REVIEW Among the multitude of ECM-embedded cytokines and the regulatory potential of ECM molecules, this article focuses on the cytokine transforming growth factor β (TGFβ) and the glycosaminoglycan hyaluronan, and their roles in cancer biology and EMT. For brevity, we concentrate our effort on breast cancer. MAJOR CONCLUSIONS Both normal and abnormal TGFβ signaling can be detected in carcinoma and stromal cells, and TGFβ-induced EMT requires the expression of hyaluronan synthase 2 (HAS2). Correspondingly, hyaluronan is a major constituent of tumor ECM and aberrant levels of both hyaluronan and TGFβ are thought to promote a wounding reaction to the local tissue homeostasis. The link between EMT and metastasis also involves the mesenchymal-epithelial transition (MET). ECM components, signaling networks, regulatory non-coding RNAs and epigenetic mechanisms form the network of regulation during EMT-MET. GENERAL SIGNIFICANCE Understanding the mechanism that controls epithelial plasticity in the mammary gland promises the development of valuable biomarkers for the prognosis of breast cancer progression and even provides new ideas for a more integrative therapeutic approach against disease. This article is part of a Special Issue entitled Matrix-mediated cell behaviour and properties.
Collapse
Affiliation(s)
- Aristidis Moustakas
- Ludwig Institute for Cancer Research, Science for Life Laboratory, Uppsala University, Box 595, SE-751 24 Uppsala, Sweden; Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Box 582, SE-751 23 Uppsala, Sweden.
| | - Paraskevi Heldin
- Ludwig Institute for Cancer Research, Science for Life Laboratory, Uppsala University, Box 595, SE-751 24 Uppsala, Sweden; Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Box 582, SE-751 23 Uppsala, Sweden.
| |
Collapse
|
165
|
Abstract
Epithelial-to-mesenchymal transition (EMT) is important for many developmental events and has been linked to tumor dissemination and therapeutic resistance. Salt and colleagues identify how EMT affects how proliferation signals flow to phosphoinositide 3-kinase in non-small cell lung cancer.
Collapse
Affiliation(s)
- Matthew J Niederst
- Department of Medicine and Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, Massachusetts
| | | |
Collapse
|
166
|
Di Bernardini E, Campagnolo P, Margariti A, Zampetaki A, Karamariti E, Hu Y, Xu Q. Endothelial lineage differentiation from induced pluripotent stem cells is regulated by microRNA-21 and transforming growth factor β2 (TGF-β2) pathways. J Biol Chem 2013; 289:3383-93. [PMID: 24356956 PMCID: PMC3916541 DOI: 10.1074/jbc.m113.495531] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Finding a suitable cell source for endothelial cells (ECs) for cardiovascular regeneration is a challenging issue for regenerative medicine. In this paper, we describe a novel mechanism regulating induced pluripotent stem cells (iPSC) differentiation into ECs, with a particular focus on miRNAs and their targets. We first established a protocol using collagen IV and VEGF to drive the functional differentiation of iPSCs into ECs and compared the miRNA signature of differentiated and undifferentiated cells. Among the miRNAs overrepresented in differentiated cells, we focused on microRNA-21 (miR-21) and studied its role in iPSC differentiation. Overexpression of miR-21 in predifferentiated iPSCs induced EC marker up-regulation and in vitro and in vivo capillary formation; accordingly, inhibition of miR-21 produced the opposite effects. Importantly, miR-21 overexpression increased TGF-β2 mRNA and secreted protein level, consistent with the strong up-regulation of TGF-β2 during iPSC differentiation. Indeed, treatment of iPSCs with TGFβ-2 induced EC marker expression and in vitro tube formation. Inhibition of SMAD3, a downstream effector of TGFβ-2, strongly decreased VE-cadherin expression. Furthermore, TGFβ-2 neutralization and knockdown inhibited miR-21-induced EC marker expression. Finally, we confirmed the PTEN/Akt pathway as a direct target of miR-21, and we showed that PTEN knockdown is required for miR-21-mediated endothelial differentiation. In conclusion, we elucidated a novel signaling pathway that promotes the differentiation of iPSC into functional ECs suitable for regenerative medicine applications.
Collapse
Affiliation(s)
- Elisabetta Di Bernardini
- From the Cardiovascular Division, King's College London, British Heart Foundation Centre, London SE5 9NU, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
167
|
Chen WC, Lai YA, Lin YC, Ma JW, Huang LF, Yang NS, Ho CT, Kuo SC, Way TD. Curcumin suppresses doxorubicin-induced epithelial-mesenchymal transition via the inhibition of TGF-β and PI3K/AKT signaling pathways in triple-negative breast cancer cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:11817-11824. [PMID: 24236784 DOI: 10.1021/jf404092f] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Triple-negative breast cancer (TNBC) is defined by a lack of expression of the estrogen receptor (ER), progesterone receptor (PR), and epidermal growth factor receptor 2 (HER 2). Therefore, targeted therapy agents may not be used, and therapy is largely limited to chemotherapy. Doxorubicin treatment consequently acquires undesired malignance characteristics [i.e., epithelial-mesenchymal transition (EMT) and multi-drug resistance]. Our results illustrated that doxorubicin triggered EMT and resulted in the acquisition of a mesenchymal phenotype in TNBC cells. Moreover, we found that transforming growth factor-β (TGF-β) and PI3K/AKT signaling pathways were acquired for doxorubicin-induced EMT. Interestingly, we found that curcumin suppressed doxorubicin-induced EMT. Curcumin reversed doxorubicin-induced morphological changes, inhibited doxorubicin-induced downregulation of E-cadherin expressions, and inhibited doxorubicin-induced upregulation of vimentin expression. We also found that curcumin inhibited doxorubicin-induced EMT by inhibiting the TGF-β and PI3K/AKT signaling pathways. Moreover, curcumin enhanced the antiproliferative effects of doxorubicin in TNBC cells. In summary, our results suggest that doxorubicin in combination with curcumin may be a potential therapy for TNBC.
Collapse
Affiliation(s)
- Wei-Chih Chen
- The Ph.D. Program for Cancer Biology and Drug Discovery, College of Medicine, China Medical University , Taichung 40402, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
168
|
Krishnan K, Steptoe AL, Martin HC, Pattabiraman DR, Nones K, Waddell N, Mariasegaram M, Simpson PT, Lakhani SR, Vlassov A, Grimmond SM, Cloonan N. miR-139-5p is a regulator of metastatic pathways in breast cancer. RNA (NEW YORK, N.Y.) 2013; 19:1767-1780. [PMID: 24158791 PMCID: PMC3884652 DOI: 10.1261/rna.042143.113] [Citation(s) in RCA: 125] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Accepted: 09/12/2013] [Indexed: 05/29/2023]
Abstract
Metastasis is a complex, multistep process involved in the progression of cancer from a localized primary tissue to distant sites, often characteristic of the more aggressive forms of this disease. Despite being studied in great detail in recent years, the mechanisms that govern this process remain poorly understood. In this study, we identify a novel role for miR-139-5p in the inhibition of breast cancer progression. We highlight its clinical relevance by reviewing miR-139-5p expression across a wide variety of breast cancer subtypes using in-house generated and online data sets to show that it is most frequently lost in invasive tumors. A biotin pull-down approach was then used to identify the mRNA targets of miR-139-5p in the breast cancer cell line MCF7. Functional enrichment analysis of the pulled-down targets showed significant enrichment of genes in pathways previously implicated in breast cancer metastasis (P < 0.05). Further bioinformatic analysis revealed a predicted disruption to the TGFβ, Wnt, Rho, and MAPK/PI3K signaling cascades, implying a potential role for miR-139-5p in regulating the ability of cells to invade and migrate. To corroborate this finding, using the MDA-MB-231 breast cancer cell line, we show that overexpression of miR-139-5p results in suppression of these cellular phenotypes. Furthermore, we validate the interaction between miR-139-5p and predicted targets involved in these pathways. Collectively, these results suggest a significant functional role for miR-139-5p in breast cancer cell motility and invasion and its potential to be used as a prognostic marker for the aggressive forms of breast cancer.
Collapse
Affiliation(s)
- Keerthana Krishnan
- Queensland Centre for Medical Genomics, Institute for Molecular Bioscience, University of Queensland, St Lucia, QLD, Australia 4072
| | - Anita L. Steptoe
- Queensland Centre for Medical Genomics, Institute for Molecular Bioscience, University of Queensland, St Lucia, QLD, Australia 4072
| | - Hilary C. Martin
- Queensland Centre for Medical Genomics, Institute for Molecular Bioscience, University of Queensland, St Lucia, QLD, Australia 4072
| | | | - Katia Nones
- Queensland Centre for Medical Genomics, Institute for Molecular Bioscience, University of Queensland, St Lucia, QLD, Australia 4072
| | - Nic Waddell
- Queensland Centre for Medical Genomics, Institute for Molecular Bioscience, University of Queensland, St Lucia, QLD, Australia 4072
| | - Mythily Mariasegaram
- The University of Queensland, UQ Centre for Clinical Research (UQCCR), Herston, QLD, Australia 4029
| | - Peter T. Simpson
- The University of Queensland, UQ Centre for Clinical Research (UQCCR), Herston, QLD, Australia 4029
| | - Sunil R. Lakhani
- The University of Queensland, UQ Centre for Clinical Research (UQCCR), Herston, QLD, Australia 4029
- The University of Queensland, School of Medicine, Herston, QLD, Australia 4029
- Pathology Queensland, The Royal Brisbane and Women's Hospital, Herston, QLD, Australia 4029
| | | | - Sean M. Grimmond
- Queensland Centre for Medical Genomics, Institute for Molecular Bioscience, University of Queensland, St Lucia, QLD, Australia 4072
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, G61 1BD, United Kingdom
| | - Nicole Cloonan
- Queensland Centre for Medical Genomics, Institute for Molecular Bioscience, University of Queensland, St Lucia, QLD, Australia 4072
- QIMR Berghofer Medical Research Institute, Genomic Biology Laboratory, Herston, Australia 4006
| |
Collapse
|
169
|
Zhang L, Zhou F, ten Dijke P. Signaling interplay between transforming growth factor-β receptor and PI3K/AKT pathways in cancer. Trends Biochem Sci 2013; 38:612-20. [PMID: 24239264 DOI: 10.1016/j.tibs.2013.10.001] [Citation(s) in RCA: 198] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Revised: 10/08/2013] [Accepted: 10/10/2013] [Indexed: 02/08/2023]
Abstract
The transforming growth factor (TGF)-β and phosphoinositide 3-kinase/protein kinase B (PI3K/AKT) signaling pathways are used in cells to control numerous responses, including proliferation, apoptosis, and migration. TGF-β is known for its cytostatic effects in premalignant states and its pro-oncogenic activity in advanced cancers. The pro-cell survival response exerted by growth-factor-mediated activation of PI3K/AKT has been linked to stimulation of tumor formation. Both TGF-β receptor and PI3K/AKT pathways were initially modeled as linear signaling conduits. Although early studies suggested that these two pathways might counteract each other in balancing cell survival, emerging evidence has uncovered multiple modes of intricate signal integration and obligate collaboration in driving cancer progression. These new insights provide the rationale for exploring their dual targeting in cancer.
Collapse
Affiliation(s)
- Long Zhang
- Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China; Department of Molecular Cell Biology, Cancer Genomics Centre and Centre for Biomedical Genetics, Leiden University Medical Center, Leiden, The Netherlands.
| | | | | |
Collapse
|
170
|
Marques L, Thorsteinsdóttir S. Dynamics of Akt activation during mouse embryo development: distinct subcellular patterns distinguish proliferating versus differentiating cells. Differentiation 2013; 86:48-56. [PMID: 23968884 DOI: 10.1016/j.diff.2013.07.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 06/21/2013] [Accepted: 07/03/2013] [Indexed: 12/19/2022]
Abstract
Akt is a highly conserved serine-threonine protein kinase which has been implicated in a wide variety of cellular functions, from the regulation of growth and metabolism, to activation of pro-survival pathways and cell proliferation, and promotion of differentiation in specific cell types. However, very little is known about the spatial and temporal pattern of Akt activity within cells and whether this pattern changes as cells enter and proceed in their differentiation programs. To address this issue we profiled Akt activation in E8.5-E13.5 mouse embryos and in C2C12 cells. We used a commercial antibody against Akt, phosphorylated on one of its activating residues, Thr-308, and performed high resolution confocal imaging of the immunofluorescence in labeled embryos. We observe strong Akt activity during mitosis in the dermomyotome, the neuroepithelium and some mesenchymal cells. This burst of activity fills the whole cell except for heterochromatin-positive areas in the nucleus. A surge in activity during mitosis is also observed in subconfluent C2C12 cells. Later on in the differentiation programs of skeletal muscle and neural cells, derivatives of the dermomyotome and neuroepithelium, respectively, we find robust, sustained Akt activity in the cytoplasm, but not in the nucleus. Concomitantly with skeletal muscle differentiation, Akt activity becomes concentrated in the sarcomeric Z-disks whereas developing neurons maintain a uniform cytoplasmic pattern of activated Akt. Our findings reveal unprecedented cellular and subcellular details of Akt activity during mouse embryo development, which is spatially and temporally consistent with proposed functions for Akt in mitosis and myogenic and neural differentiation and/or survival. Our results thus demonstrate a subcellular change in the pattern of Akt activation when skeletal muscle and neural progenitor cells cease dividing and progress in their differentiation programs.
Collapse
Affiliation(s)
- Luís Marques
- Centro de Biologia Ambiental/Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal; Instituto Gulbenkian de Ciência, Oeiras, Portugal.
| | | |
Collapse
|
171
|
Jung S, Li C, Jeong D, Lee S, Ohk J, Park M, Han S, Duan J, Kim C, Yang Y, Kim KI, Lim JS, Kang YS, Lee MS. Oncogenic function of p34SEI-1 via NEDD4‑1‑mediated PTEN ubiquitination/degradation and activation of the PI3K/AKT pathway. Int J Oncol 2013; 43:1587-95. [PMID: 23970032 DOI: 10.3892/ijo.2013.2064] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Accepted: 07/26/2013] [Indexed: 11/05/2022] Open
Abstract
A 34-KD protein encoded by the SEI-1 gene (p34(SEI‑1)), is a relatively recently discovered oncoprotein that has multiple important biological functions. Our data show that p34(SEI-1) enhances cancer cell survival and promotes tumorigenesis by downregulating the tumor suppressor PTEN, a negative regulator of the PI3K/AKT signaling pathway, and therefore activating the PI3K/AKT signaling pathway. In this process, p34(SEI-1) positively affects NEDD4-1 gene expression both at the transcriptional and protein levels. Furthermore, the expression levels of p34(SEI-1) and NEDD4-1 were found to be coordinated in tumor tissues obtained from patients with breast cancer. We also show that p34(SEI-1) affects the subcellular localization of PTEN.
Collapse
Affiliation(s)
- Samil Jung
- Department of Biological Science and Research Center for Women's Diseases, Sookmyung Women's University, Seoul 140-742, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
172
|
Mutant PIK3CA accelerates HER2-driven transgenic mammary tumors and induces resistance to combinations of anti-HER2 therapies. Proc Natl Acad Sci U S A 2013; 110:14372-7. [PMID: 23940356 DOI: 10.1073/pnas.1303204110] [Citation(s) in RCA: 152] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Human epidermal growth factor receptor 2 (HER2; ERBB2) amplification and phosphatidylinositol-4,5-bisphosphate 3-kinase, catalytic subunit alpha (PIK3CA) mutations often co-occur in breast cancer. Aberrant activation of the phosphatidylinositol 3-kinase (PI3K) pathway has been shown to correlate with a diminished response to HER2-directed therapies. We generated a mouse model of HER2-overexpressing (HER2(+)), PIK3CA(H1047R)-mutant breast cancer. Mice expressing both human HER2 and mutant PIK3CA in the mammary epithelium developed tumors with shorter latencies compared with mice expressing either oncogene alone. HER2 and mutant PIK3CA also cooperated to promote lung metastases. By microarray analysis, HER2-driven tumors clustered with luminal breast cancers, whereas mutant PIK3CA tumors were associated with claudin-low breast cancers. PIK3CA and HER2(+)/PIK3CA tumors expressed elevated transcripts encoding markers of epithelial-to-mesenchymal transition and stem cells. Cells from HER2(+)/PIK3CA tumors more efficiently formed mammospheres and lung metastases. Finally, HER2(+)/PIK3CA tumors were resistant to trastuzumab alone and in combination with lapatinib or pertuzumab. Both drug resistance and enhanced mammosphere formation were reversed by treatment with a PI3K inhibitor. In sum, PIK3CA(H1047R) accelerates HER2-mediated breast epithelial transformation and metastatic progression, alters the intrinsic phenotype of HER2-overexpressing cancers, and generates resistance to approved combinations of anti-HER2 therapies.
Collapse
|
173
|
Kim MS, Kim GM, Choi YJ, Kim HJ, Kim YJ, Jin W. TrkC promotes survival and growth of leukemia cells through Akt-mTOR-dependent up-regulation of PLK-1 and Twist-1. Mol Cells 2013; 36:177-84. [PMID: 23832765 PMCID: PMC3887946 DOI: 10.1007/s10059-013-0061-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Revised: 05/21/2013] [Accepted: 06/10/2013] [Indexed: 11/30/2022] Open
Abstract
It has been suggested that activation of receptor PTKs is important for leukemogenesis and leukemia cell response to targeted therapy in hematological malignancies including leukemia. PTKs induce activation of the PI3K/Akt/mTOR pathway, which can result in prevention of apoptosis. Here, we describe an important role of the TrkC-associated molecular network in the process of leukemogenesis. TrkC was found to be frequently overexpressed in human leukemia cells and leukemia subtypes. In U937 human leukemia cells, blockade of TrkC using small hairpin RNA (shRNA) specific to TrkC or K562a, a specific inhibitor of TrkC, resulted in a significant decrease in growth and survival of the cells, which was closely associated with reduced mTOR level and Akt activity. In addition, TrkC enhances the survival and proliferation of leukemia, which is correlated with activation of the PI3K/Akt pathway. Moreover, TrkC significantly inhibits apoptosis via induction of the expression of PLK-1 and Twist-1 through activation of AKT/mTor pathway; therefore, it plays a key role in leukemogenesis. These findings reveal an unexpected physiological role for TrkC in the pathogenesis of leukemia and have important implications for understanding various hematological malignancies.
Collapse
Affiliation(s)
- Min Soo Kim
- Department of Molecular Medicine, School of Medicine, Gachon University, Incheon 406-840,
Korea
| | - Gyoung Mi Kim
- Department of Molecular Medicine, School of Medicine, Gachon University, Incheon 406-840,
Korea
| | - Yun-Jeong Choi
- Department of Molecular Medicine, School of Medicine, Gachon University, Incheon 406-840,
Korea
| | - Hye Joung Kim
- Department of Hematology, Catholic Blood and Marrow Transplantation Center, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 137-701,
Korea
| | - Yoo-Jin Kim
- Department of Hematology, Catholic Blood and Marrow Transplantation Center, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 137-701,
Korea
| | - Wook Jin
- Department of Molecular Medicine, School of Medicine, Gachon University, Incheon 406-840,
Korea
- Gachon Medical Research Institute, Gil Medical Center, Incheon 405-760,
Korea
| |
Collapse
|
174
|
Hirsch E, Ciraolo E, Franco I, Ghigo A, Martini M. PI3K in cancer-stroma interactions: bad in seed and ugly in soil. Oncogene 2013; 33:3083-90. [PMID: 23893246 DOI: 10.1038/onc.2013.265] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Revised: 05/21/2013] [Accepted: 05/21/2013] [Indexed: 02/07/2023]
Abstract
Over the past decade the phosphoinositide-3 kinase (PI3K) signaling pathway emerged as an important player for tumor initiation and growth and, currently, PI3K inhibition constitutes a promising therapeutic approach for solid and hematological tumors. Beside its role in tumor cell evolution, PI3K signaling also provides integral functions for noncancerous cells that reside in healthy tissues surrounding the tumor, also referred as tumor microenvironment (TME). This review will address how PI3K signaling participates to the tumorigenic process and discuss the interaction between tumor cells and the surrounding TME, with particular focus on the role of PI3Ks in tumor-associated immune responses, tumor angiogenesis and metastasis formation.
Collapse
Affiliation(s)
- E Hirsch
- Department of Molecular Biotechnology and Health Sciences-Center for Molecular Biotechnology, University of Torino, Torino, Italy
| | - E Ciraolo
- Department of Molecular Biotechnology and Health Sciences-Center for Molecular Biotechnology, University of Torino, Torino, Italy
| | - I Franco
- Department of Molecular Biotechnology and Health Sciences-Center for Molecular Biotechnology, University of Torino, Torino, Italy
| | - A Ghigo
- Department of Molecular Biotechnology and Health Sciences-Center for Molecular Biotechnology, University of Torino, Torino, Italy
| | - M Martini
- Department of Molecular Biotechnology and Health Sciences-Center for Molecular Biotechnology, University of Torino, Torino, Italy
| |
Collapse
|
175
|
Loss of DOK2 induces carboplatin resistance in ovarian cancer via suppression of apoptosis. Gynecol Oncol 2013; 130:369-76. [PMID: 23684582 DOI: 10.1016/j.ygyno.2013.05.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2012] [Revised: 04/22/2013] [Accepted: 05/05/2013] [Indexed: 01/31/2023]
Abstract
OBJECTIVE Ovarian cancers are highly heterogeneous and while chemotherapy is the preferred treatment many patients are intrinsically resistant or quickly develop resistance. Furthermore, all tumors that recur ultimately become resistant. Recent evidence suggests that epigenetic deregulation may be a key factor in the onset and maintenance of chemoresistance. We set out to identify epigenetically silenced genes that affect chemoresistance. METHODS The epigenomes of a total of 45 ovarian samples were analyzed to identify epigenetically altered genes that segregate with platinum response, and further filtered with expression data to identify genes that were suppressed. A tissue culture carboplatin resistance screen was utilized to functionally validate this set of candidate platinum resistance genes. RESULTS Our screen correctly identified 19 genes that when suppressed altered the chemoresistance of the cells in culture. Of the genes identified in the screen we further characterized one gene, docking protein 2 (DOK2), an adapter protein downstream of tyrosine kinase, to determine if we could elucidate the mechanism by which it increased resistance. The loss of DOK2 decreased the level of apoptosis in response to carboplatin. Furthermore, in cells with reduced DOK2, the level of anoikis was decreased. CONCLUSIONS We have developed a screening methodology that analyzes the epigenome and informatically identifies candidate genes followed by in vitro culture screening of the candidate genes. To validate our screening methodology we further characterized one candidate gene, DOK2, and showed that loss of DOK2 induces chemotherapy resistance by decreasing the level of apoptosis in response to treatment.
Collapse
|
176
|
Grzmil M, Hemmings BA. Overcoming resistance to rapalogs in gliomas by combinatory therapies. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1834:1371-80. [PMID: 23395884 DOI: 10.1016/j.bbapap.2013.01.041] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Accepted: 01/30/2013] [Indexed: 12/31/2022]
Abstract
Glioblastoma is the most common and aggressive brain tumor type, with a mean patient survival of approximately 1year. Many previous analyses of the glioma kinome have identified key deregulated pathways that converge and activate mammalian target of rapamycin (mTOR). Following the identification and characterization of mTOR-promoting activity in gliomagenesis, data from preclinical studies suggested the targeting of mTOR by rapamycin or its analogs (rapalogs) as a promising therapeutic approach. However, clinical trials with rapalogs have shown very limited efficacy on glioma due to the development of resistance mechanisms. Analysis of rapalog-insensitive glioma cells has revealed increased activity of growth and survival pathways compensating for mTOR inhibition by rapalogs that are suitable for therapeutic intervention. In addition, recently developed mTOR inhibitors show high anti-glioma activity. In this review, we recapitulate the regulation of mTOR signaling and its involvement in gliomagenesis, discuss mechanisms resulting in resistance to rapalogs, and speculate on strategies to overcome resistance. This article is part of a Special Issue entitled: Inhibitors of Protein Kinases (2012).
Collapse
Affiliation(s)
- Michal Grzmil
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland.
| | | |
Collapse
|
177
|
|
178
|
Folliculin, the product of the Birt-Hogg-Dube tumor suppressor gene, interacts with the adherens junction protein p0071 to regulate cell-cell adhesion. PLoS One 2012; 7:e47842. [PMID: 23139756 PMCID: PMC3490959 DOI: 10.1371/journal.pone.0047842] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Accepted: 09/21/2012] [Indexed: 01/04/2023] Open
Abstract
Birt-Hogg-Dube (BHD) is a tumor suppressor gene syndrome associated with fibrofolliculomas, cystic lung disease, and chromophobe renal cell carcinoma. In seeking to elucidate the pathogenesis of BHD, we discovered a physical interaction between folliculin (FLCN), the protein product of the BHD gene, and p0071, an armadillo repeat containing protein that localizes to the cytoplasm and to adherens junctions. Adherens junctions are one of the three cell-cell junctions that are essential to the establishment and maintenance of the cellular architecture of all epithelial tissues. Surprisingly, we found that downregulation of FLCN leads to increased cell-cell adhesion in functional cell-based assays and disruption of cell polarity in a three-dimensional lumen-forming assay, both of which are phenocopied by downregulation of p0071. These data indicate that the FLCN-p0071 protein complex is a negative regulator of cell-cell adhesion. We also found that FLCN positively regulates RhoA activity and Rho-associated kinase activity, consistent with the only known function of p0071. Finally, to examine the role of Flcn loss on cell-cell adhesion in vivo, we utilized keratin-14 cre-recombinase (K14-cre) to inactivate Flcn in the mouse epidermis. The K14-Cre-Bhd(flox/flox) mice have striking delays in eyelid opening, wavy fur, hair loss, and epidermal hyperplasia with increased levels of mammalian target of rapamycin complex 1 (mTORC1) activity. These data support a model in which dysregulation of the FLCN-p0071 interaction leads to alterations in cell adhesion, cell polarity, and RhoA signaling, with broad implications for the role of cell-cell adhesion molecules in the pathogenesis of human disease, including emphysema and renal cell carcinoma.
Collapse
|