151
|
Tarkowski B, Kuchcinska K, Blazejczyk M, Jaworski J. Pathological mTOR mutations impact cortical development. Hum Mol Genet 2020; 28:2107-2119. [PMID: 30789219 DOI: 10.1093/hmg/ddz042] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 02/08/2019] [Accepted: 02/11/2019] [Indexed: 02/03/2023] Open
Abstract
Several mosaic mutations of the mammalian/mechanistic target of rapamycin (mTOR) have recently been found in patients with cortical malformations, such as hemimegalencephaly (HME) and focal cortical dysplasia (FCD). Although all of them should activate mTOR signaling, comparisons of the impact of different mTOR mutations on brain development have been lacking. Also it remains unknown if any potential differences these mutations may have on cortical development are directly related to a degree of mTOR signaling increase. The present study assessed levels of mTORC1 pathway activity in cell lines and rat primary neurons overexpressing several mTOR mutants that were previously found in HME, FCD, cancer patients and in vitro mutagenesis screens. Next we introduced the mutants, enhancing mTORC1 signaling most potently, into developing mouse brains and assessed electroporated cell morphology and migratory phenotype using immunofluorescent staining. We observed the differential inhibition of neuronal progenitor cortical migration, which partly corresponded with a degree of mTORC1 signaling enhancement these mutants induced in cultured cells. The most potent quadruple mutant prevented most of the progenitors from entering the cortical plate. Cells that expressed less potent, single-point, mTOR mutants entered the cortical plate but failed to reach its upper layers and had enlarged soma. Our findings suggest a correlation between the potency of mTOR mutation to activate mTORC1 pathway and disruption of cortical migration.
Collapse
Affiliation(s)
- Bartosz Tarkowski
- International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Kinga Kuchcinska
- International Institute of Molecular and Cell Biology, Warsaw, Poland
| | | | - Jacek Jaworski
- International Institute of Molecular and Cell Biology, Warsaw, Poland
| |
Collapse
|
152
|
Brunkard JO, Xu M, Scarpin MR, Chatterjee S, Shemyakina EA, Goodman HM, Zambryski P. TOR dynamically regulates plant cell-cell transport. Proc Natl Acad Sci U S A 2020; 117:5049-5058. [PMID: 32051250 PMCID: PMC7060719 DOI: 10.1073/pnas.1919196117] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The coordinated redistribution of sugars from mature "source" leaves to developing "sink" leaves requires tight regulation of sugar transport between cells via plasmodesmata (PD). Although fundamental to plant physiology, the mechanisms that control PD transport and thereby support development of new leaves have remained elusive. From a forward genetic screen for altered PD transport, we discovered that the conserved eukaryotic glucose-TOR (TARGET OF RAPAMYCIN) metabolic signaling network restricts PD transport in leaves. Genetic approaches and chemical or physiological treatments to either promote or disrupt TOR activity demonstrate that glucose-activated TOR decreases PD transport in leaves. We further found that TOR is significantly more active in mature leaves photosynthesizing excess sugars than in young, growing leaves, and that this increase in TOR activity correlates with decreased rates of PD transport. We conclude that leaf cells regulate PD trafficking in response to changing carbohydrate availability monitored by the TOR pathway.
Collapse
Affiliation(s)
- Jacob O Brunkard
- Department of Plant and Microbial Biology, University of California, Berkeley CA 94720;
- Plant Gene Expression Center, US Department of Agriculture, Agricultural Research Service, Albany, CA 94710
- Innovative Genomics Institute, Berkeley, CA 94720
| | - Min Xu
- Department of Plant and Microbial Biology, University of California, Berkeley CA 94720
- Department of Biology, Northwest University, 710069 Xi'an, China
| | - M Regina Scarpin
- Department of Plant and Microbial Biology, University of California, Berkeley CA 94720
- Plant Gene Expression Center, US Department of Agriculture, Agricultural Research Service, Albany, CA 94710
| | - Snigdha Chatterjee
- Department of Plant and Microbial Biology, University of California, Berkeley CA 94720
- Plant Gene Expression Center, US Department of Agriculture, Agricultural Research Service, Albany, CA 94710
- Innovative Genomics Institute, Berkeley, CA 94720
| | - Elena A Shemyakina
- Department of Plant and Microbial Biology, University of California, Berkeley CA 94720
- Plant Gene Expression Center, US Department of Agriculture, Agricultural Research Service, Albany, CA 94710
| | - Howard M Goodman
- Department of Plant and Microbial Biology, University of California, Berkeley CA 94720
| | - Patricia Zambryski
- Department of Plant and Microbial Biology, University of California, Berkeley CA 94720;
| |
Collapse
|
153
|
Kim SY, Kim HJ, Kim HJ, Kim CH. Non-Thermal Plasma Induces Antileukemic Effect Through mTOR Ubiquitination. Cells 2020; 9:cells9030595. [PMID: 32131492 PMCID: PMC7140413 DOI: 10.3390/cells9030595] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 02/24/2020] [Accepted: 02/28/2020] [Indexed: 12/20/2022] Open
Abstract
Non-thermal plasma (NTP) has been studied as a novel therapeutic tool for cancer that does not damage healthy cells. In this study, we show that NTP-treated solutions (NTS) can induce death in various leukemia cells through mechanistic target of rapamycin (mTOR) ubiquitination. Previously, we manufactured and demonstrated the efficacy of NTS in solid cancers. NTS did not exhibit any deleterious side effects, such as acute death or weight loss in nude mice. In the present study, NTS induced cell death in myeloid leukemia cells, including acute myeloid leukemia (AML) and chronic myeloid leukemia (CML). We found that mTOR was downregulated in NTS-treated cells via the ubiquitin-proteasome system (UPS). We also identified ‘really interesting new gene’ finger protein 126 (RNF126) as a novel binding protein for mTOR through protein arrays and determined the role of E3 ligase in NTS-induced mTOR ubiquitination. NTS-derived reactive oxygen species (ROS) affected RNF126 expression and lysosomal dysfunction. These findings suggest that NTS has potential antileukemic effects through RNF126-mediated mTOR ubiquitination with no deleterious side effects. Thus, NTS may represent a new therapeutic method for chemotherapy-resistant leukemia.
Collapse
Affiliation(s)
- Sun-Yong Kim
- Department of Otolaryngology, Ajou University School of Medicine, Suwon 16499, Korea; (S.-Y.K.); (H.J.K.); (H.J.K.)
- Oncoprotein Modification and Regulation Research Center, Ajou University, Suwon 16499, Korea
| | - Hyo Jeong Kim
- Department of Otolaryngology, Ajou University School of Medicine, Suwon 16499, Korea; (S.-Y.K.); (H.J.K.); (H.J.K.)
- Oncoprotein Modification and Regulation Research Center, Ajou University, Suwon 16499, Korea
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Korea
| | - Haeng Jun Kim
- Department of Otolaryngology, Ajou University School of Medicine, Suwon 16499, Korea; (S.-Y.K.); (H.J.K.); (H.J.K.)
- Oncoprotein Modification and Regulation Research Center, Ajou University, Suwon 16499, Korea
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Korea
| | - Chul-Ho Kim
- Department of Otolaryngology, Ajou University School of Medicine, Suwon 16499, Korea; (S.-Y.K.); (H.J.K.); (H.J.K.)
- Oncoprotein Modification and Regulation Research Center, Ajou University, Suwon 16499, Korea
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Korea
- Correspondence: ; Tel.: +82-31-219-5269
| |
Collapse
|
154
|
Abstract
Therapeutic Inhibition of mTORC2 Rescues the Behavioral and Neurophysiological Abnormalities Associated With PTEN-Deficiency Chen C, Sgritta M, Mays J, et al. Nat Med. 2019;25(11):1684-1690. doi:10.1038/s41591-019-0608-y. Dysregulation of mammalian target of rapamycin (mTOR) signaling, which is mediated by 2 structurally and functionally distinct complexes, mTORC1 and mTORC2, has been implicated in several neurological disorders. Individuals carrying loss-of-function mutations in the phosphatase and tensin homolog (PTEN) gene, a negative regulator of mTOR signaling, are prone to developing macrocephaly, autism spectrum disorder (ASD), seizures, and intellectual disability. It is generally believed that the neurological symptoms associated with loss of PTEN and other mTORopathies (eg, mutations in the tuberous sclerosis genes TSC1 or TSC2) are due to hyperactivation of mTORC1-mediated protein synthesis. Using molecular genetics, we unexpectedly found that genetic deletion of mTORC2 (but not mTORC1) activity prolonged life span, suppressed seizures, rescued ASD-like behaviors and long-term memory, and normalized metabolic changes in the brain of mice lacking Pten. In a more therapeutically oriented approach, we found that administration of an antisense oligonucleotide targeting mTORC2’s defining component Rictor specifically inhibits mTORC2 activity and reverses the behavioral and neurophysiological abnormalities in adolescent Pten-deficient mice. Collectively, our findings indicate that mTORC2 is the major driver underlying the neuropathophysiology associated with Pten-deficiency, and its therapeutic reduction could represent a promising and broadly effective translational therapy for neurological disorders where mTOR signaling is dysregulated.
Collapse
|
155
|
Yao Y, Wang X, Li H, Fan J, Qian X, Li H, Xu Y. Phospholipase D as a key modulator of cancer progression. Biol Rev Camb Philos Soc 2020; 95:911-935. [PMID: 32073216 DOI: 10.1111/brv.12592] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 02/01/2020] [Accepted: 02/06/2020] [Indexed: 12/15/2022]
Abstract
The phospholipase D (PLD) family has a ubiquitous expression in cells. PLD isoforms (PLDs) and their hydrolysate phosphatidic acid (PA) have been demonstrated to engage in multiple stages of cancer progression. Aberrant expression of PLDs, especially PLD1 and PLD2, has been detected in various cancers. Inhibition or elimination of PLDs activity has been shown to reduce tumour growth and metastasis. PLDs and PA also serve as downstream effectors of various cell-surface receptors, to trigger and regulate propagation of intracellular signals in the process of tumourigenesis and metastasis. Here, we discuss recent advances in understanding the functions of PLDs and PA in discrete stages of cancer progression, including cancer cell growth, invasion and migration, and angiogenesis, with special emphasis on the tumour-associated signalling pathways mediated by PLDs and PA and the functional importance of PLDs and PA in cancer therapy.
Collapse
Affiliation(s)
- Yuanfa Yao
- Department of Biomedical Engineering, Key Laboratory of Biomedical Engineering of Ministry of Education, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang University, Hangzhou, China.,Department of Endocrinology, The Affiliated Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xinyi Wang
- Department of Biomedical Engineering, Key Laboratory of Biomedical Engineering of Ministry of Education, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang University, Hangzhou, China.,Department of Clinical Medicine, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Hanbing Li
- Institute of Pharmacology, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Jiannan Fan
- Department of Biomedical Engineering, Key Laboratory of Biomedical Engineering of Ministry of Education, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang University, Hangzhou, China
| | - Xiaohan Qian
- Department of Biomedical Engineering, Key Laboratory of Biomedical Engineering of Ministry of Education, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang University, Hangzhou, China.,Department of Respiratory Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hong Li
- Department of Endocrinology, The Affiliated Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yingke Xu
- Department of Biomedical Engineering, Key Laboratory of Biomedical Engineering of Ministry of Education, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang University, Hangzhou, China.,Department of Endocrinology, The Affiliated Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
156
|
Formisano L, Napolitano F, Rosa R, D'Amato V, Servetto A, Marciano R, De Placido P, Bianco C, Bianco R. Mechanisms of resistance to mTOR inhibitors. Crit Rev Oncol Hematol 2020; 147:102886. [PMID: 32014673 DOI: 10.1016/j.critrevonc.2020.102886] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 01/03/2020] [Accepted: 01/27/2020] [Indexed: 12/13/2022] Open
Abstract
In several tumors the PI3K/AKT/mTOR pathway is frequently disrupted, an event that results in uncontrolled cell proliferation and tumor growth. Through the years, several compounds have been developed to inhibit the pathway at different steps: the mammalian target of rapamycin (mTOR) seemed to be the most qualified target. However, this kinase has such a key role in cell survival that mechanisms of resistance are rapidly developed. Nevertheless, clinical results obtained with mTOR inhibitors in breast cancer, renal cell carcinoma, neuroendocrine tumors and mantle cell lymphoma push oncologists to actively further develop these drugs, maybe by better selecting the population to which they are offered, through the research of predictive factors of responsiveness. In this review, we aim to describe mechanisms of resistance to mTOR inhibitors, from preclinical and clinical perspectives.
Collapse
Affiliation(s)
- Luigi Formisano
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", 80131, Naples, Italy
| | - Fabiana Napolitano
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", 80131, Naples, Italy
| | - Roberta Rosa
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", 80131, Naples, Italy
| | - Valentina D'Amato
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", 80131, Naples, Italy
| | - Alberto Servetto
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", 80131, Naples, Italy
| | - Roberta Marciano
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", 80131, Naples, Italy
| | - Pietro De Placido
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", 80131, Naples, Italy
| | - Cataldo Bianco
- Department of Experimental and Clinical Medicine, University of Catanzaro "Magna Graecia", 88100, Catanzaro, Italy.
| | - Roberto Bianco
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", 80131, Naples, Italy.
| |
Collapse
|
157
|
Zanini S, Renzi S, Giovinazzo F, Bermano G. mTOR Pathway in Gastroenteropancreatic Neuroendocrine Tumor (GEP-NETs). Front Endocrinol (Lausanne) 2020; 11:562505. [PMID: 33304317 PMCID: PMC7701056 DOI: 10.3389/fendo.2020.562505] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 09/07/2020] [Indexed: 12/14/2022] Open
Abstract
Gastroenteropancreatic neuroendocrine neoplasms (GEP-NENs) originate from neuroendocrine cells in the gastrointestinal tract. They are heterogeneous, and though initially considered rare tumors, the incidence of GEP-NENs has increased in the last few decades. Therapeutic approaches for the metastatic disease include surgery, radiological intervention by chemoembolisation, radiofrequency ablation, biological therapy in addition to somatostatin analogs, and PRRT therapy (177Lu-DOTATATE). The PI3K-AKT-mTOR pathway is essential in the regulation of protein translation, cell growth, and metabolism. Evidence suggests that the mTOR pathway is involved in malignant progression and resistance to treatment through over-activation of several mechanisms. PI3K, one of the main downstream of the Akt-mTOR axis, is mainly involved in the neoplastic process. This pathway is frequently deregulated in human tumors, making it a central target in the development of new anti-cancer treatments. Recent molecular studies identify potential targets within the PI3K/Akt/mTOR pathway in GEP-NENs. However, the use of target therapy has been known to lead to resistance due to several mechanisms such as feedback activation of alternative pathways, inactivation of protein kinases, and deregulation of the downstream mTOR components. Therefore, the specific role of targeted drugs for the management of GEP-NENs is yet to be well-defined. The variable clinical presentation of advanced neuroendocrine tumors is a significant challenge for designing studies. This review aims to highlight the role of the PI3K/Akt/mTOR pathway in the development of neuroendocrine tumors and further specify its potential as a therapeutic target in advanced stages.
Collapse
Affiliation(s)
- Sara Zanini
- Centre for Obesity Research and Education (CORE), School of Pharmacy and Life Sciences, Robert Gordon University, Aberdeen, United Kingdom
| | - Serena Renzi
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy
| | - Francesco Giovinazzo
- Fondazione Policlinico Universitario A. Gemelli Istituto di ricovero e cura a carattere scientifico (IRCCS), Department of Surgery -Transplantation Service, Rome, Italy
- *Correspondence: Francesco Giovinazzo
| | - Giovanna Bermano
- Centre for Obesity Research and Education (CORE), School of Pharmacy and Life Sciences, Robert Gordon University, Aberdeen, United Kingdom
- Giovanna Bermano
| |
Collapse
|
158
|
Santos de Oliveira FL, Vieira Carletti J, Azevedo FFN, Freitas de Sousa FJ, Caetano EWS, Freire VN, Zanatta G. mTOR–mLST8 interaction: hot spot identification through quantum biochemistry calculations. NEW J CHEM 2020. [DOI: 10.1039/d0nj04099a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Quantum calculation of mTOR–mLST8 interaction.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Geancarlo Zanatta
- Department of Physics at Federal University of Ceará
- 60455-760 Fortaleza
- Brazil
- Postgraduate Research Program in Biochemistry at Federal University of Ceará
- Fortaleza
| |
Collapse
|
159
|
Niu P, Li J, Chen H, Zhu Y, Zhou J, Shi D. Anti‑proliferative effect of cardamonin on mTOR inhibitor‑resistant cancer cells. Mol Med Rep 2019; 21:1399-1407. [PMID: 31894316 DOI: 10.3892/mmr.2019.10898] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 12/04/2019] [Indexed: 11/06/2022] Open
Abstract
A number of mammalian target of rapamycin (mTOR) inhibitors have been approved for the treatment of certain types of cancer or are currently undergoing clinical trials. However, mTOR targeted therapy exerts selective pressure on tumour cells, which leads to the preferential growth of resistant subpopulations. There are two classes of mTOR inhibitors: i) The rapalogs, such as rapamycin, which bind to the 12‑kDa FK506‑binding protein/rapamycin‑binding domain of mTOR; and ii) the ATP‑competitive inhibitors, such as AZD8055, which block the mTOR kinase domain. Cardamonin inhibits mTOR by decreasing the expression of regulatory‑associated protein of mTOR (Raptor), a mechanism of action which differs from the currently available mTOR inhibitors. The present study investigated the inhibitory effects of cardamonin on mTOR inhibitor‑resistant cancer cells. HeLa cervical cancer cells and MCF‑7 breast cancer cells were exposed to high concentrations of mTOR inhibitors, until resistant clones emerged. Cytotoxicity was measured using the MTT and colony forming assays. The inhibitory effect of cardamonin on mTOR signalling was assessed by western blotting. The resistant cells were less sensitive to mTOR inhibitors compared with the parental cells. Consistent with the anti‑proliferation effect, rapamycin and AZD8055 had no effect on the phosphorylation of rapamycin‑sensitive sites on ribosomal protein S6 kinase B1 (S6K1) and AZD8055‑sensitive sites on protein kinase B and eukaryotic translation initiation factor 4E binding protein 1 (Thr 37/46), respectively, in rapamycin‑ and AZD8055‑resistant cells. Cardamonin inhibited cell proliferation and decreased the phosphorylation of mTOR and S6K1, as well as the protein level of raptor, in the mTOR inhibitor‑resistant cells. Therefore, cardamonin may serve as a therapeutic agent for patients with cervical and breast cancer resistant to mTOR inhibitors.
Collapse
Affiliation(s)
- Peiguang Niu
- Department of Pharmacy, Fujian Provincial Maternity and Children's Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350001, P.R. China
| | - Jinsui Li
- Department of Pharmacy, Fujian Provincial Maternity and Children's Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350001, P.R. China
| | - Huajiao Chen
- Department of Pharmacy, Fujian Provincial Maternity and Children's Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350001, P.R. China
| | - Yanting Zhu
- Department of Pharmacy, Fujian Provincial Maternity and Children's Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350001, P.R. China
| | - Jintuo Zhou
- Department of Pharmacy, Fujian Provincial Maternity and Children's Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350001, P.R. China
| | - Daohua Shi
- Department of Pharmacy, Fujian Provincial Maternity and Children's Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350001, P.R. China
| |
Collapse
|
160
|
Bhaoighill MN, Dunlop EA. Mechanistic target of rapamycin inhibitors: successes and challenges as cancer therapeutics. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2019; 2:1069-1085. [PMID: 35582282 PMCID: PMC9019212 DOI: 10.20517/cdr.2019.87] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 11/18/2019] [Accepted: 11/26/2019] [Indexed: 12/22/2022]
Abstract
Delineating the contributions of specific cell signalling cascades to the development and maintenance of tumours has greatly informed our understanding of tumorigenesis and has advanced the modern era of targeted cancer therapy. It has been revealed that one of the key pathways regulating cell growth, the phosphatidylinositol 3-kinase/mechanistic target of rapamycin (PI3K/mTOR) signalling axis, is commonly dysregulated in cancer. With a specific, well-tolerated inhibitor of mTOR available, the impact of inhibiting this pathway at the level of mTOR has been tested clinically. This review highlights some of the promising results seen with mTOR inhibitors in the clinic and assesses some of the challenges that remain in predicting patient outcome following mTOR-targeted therapy.
Collapse
Affiliation(s)
| | - Elaine A Dunlop
- Division of Cancer and Genetics, Cardiff University, Cardiff, CF14 4XN, UK
| |
Collapse
|
161
|
Magaway C, Kim E, Jacinto E. Targeting mTOR and Metabolism in Cancer: Lessons and Innovations. Cells 2019; 8:cells8121584. [PMID: 31817676 PMCID: PMC6952948 DOI: 10.3390/cells8121584] [Citation(s) in RCA: 149] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 12/02/2019] [Accepted: 12/03/2019] [Indexed: 12/14/2022] Open
Abstract
Cancer cells support their growth and proliferation by reprogramming their metabolism in order to gain access to nutrients. Despite the heterogeneity in genetic mutations that lead to tumorigenesis, a common alteration in tumors occurs in pathways that upregulate nutrient acquisition. A central signaling pathway that controls metabolic processes is the mTOR pathway. The elucidation of the regulation and functions of mTOR can be traced to the discovery of the natural compound, rapamycin. Studies using rapamycin have unraveled the role of mTOR in the control of cell growth and metabolism. By sensing the intracellular nutrient status, mTOR orchestrates metabolic reprogramming by controlling nutrient uptake and flux through various metabolic pathways. The central role of mTOR in metabolic rewiring makes it a promising target for cancer therapy. Numerous clinical trials are ongoing to evaluate the efficacy of mTOR inhibition for cancer treatment. Rapamycin analogs have been approved to treat specific types of cancer. Since rapamycin does not fully inhibit mTOR activity, new compounds have been engineered to inhibit the catalytic activity of mTOR to more potently block its functions. Despite highly promising pre-clinical studies, early clinical trial results of these second generation mTOR inhibitors revealed increased toxicity and modest antitumor activity. The plasticity of metabolic processes and seemingly enormous capacity of malignant cells to salvage nutrients through various mechanisms make cancer therapy extremely challenging. Therefore, identifying metabolic vulnerabilities in different types of tumors would present opportunities for rational therapeutic strategies. Understanding how the different sources of nutrients are metabolized not just by the growing tumor but also by other cells from the microenvironment, in particular, immune cells, will also facilitate the design of more sophisticated and effective therapeutic regimen. In this review, we discuss the functions of mTOR in cancer metabolism that have been illuminated from pre-clinical studies. We then review key findings from clinical trials that target mTOR and the lessons we have learned from both pre-clinical and clinical studies that could provide insights on innovative therapeutic strategies, including immunotherapy to target mTOR signaling and the metabolic network in cancer.
Collapse
|
162
|
Royce GH, Brown-Borg HM, Deepa SS. The potential role of necroptosis in inflammaging and aging. GeroScience 2019; 41:795-811. [PMID: 31721033 PMCID: PMC6925091 DOI: 10.1007/s11357-019-00131-w] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 10/23/2019] [Indexed: 02/06/2023] Open
Abstract
An age-associated increase in chronic, low-grade sterile inflammation termed "inflammaging" is a characteristic feature of mammalian aging that shows a strong association with occurrence of various age-associated diseases. However, the mechanism(s) responsible for inflammaging and its causal role in aging and age-related diseases are not well understood. Age-associated accumulation of damage-associated molecular patterns (DAMPs) is an important trigger in inflammation and has been proposed as a potential driver of inflammaging. DAMPs can initiate an inflammatory response by binding to the cell surface receptors on innate immune cells. Programmed necrosis, termed necroptosis, is one of the pathways that can release DAMPs, and cell death due to necroptosis is known to induce inflammation. Necroptosis-mediated inflammation plays an important role in a variety of age-related diseases such as Alzheimer's disease, Parkinson's disease, and atherosclerosis. Recently, it was reported that markers of necroptosis increase with age in mice and that dietary restriction, which retards aging and increases lifespan, reduces necroptosis and inflammation. Genetic manipulations that increase lifespan (Ames Dwarf mice) and reduce lifespan (Sod1-/- mice) are associated with reduced and increased necroptosis and inflammation, respectively. While necroptosis evolved to protect cells/tissues from invading pathogens, e.g., viruses, we propose that the age-related increase in oxidative stress, mTOR signaling, and cell senescence results in cells/tissues in old animals being more prone to undergo necroptosis thereby releasing DAMPs, which contribute to the chronic inflammation observed with age. Approach to decrease DAMPs release by reducing/blocking necroptosis is a potentially new approach to reduce inflammaging, retard aging, and improve healthspan.
Collapse
Affiliation(s)
| | - Holly M Brown-Borg
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, USA
| | - Sathyaseelan S Deepa
- Stephenson Cancer Center, Oklahoma City, OK, USA.
- Department of Biochemistry and Molecular Biology, Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC-1368A, Oklahoma City, OK, 73104, USA.
| |
Collapse
|
163
|
Wnt/ β-Catenin, Carbohydrate Metabolism, and PI3K-Akt Signaling Pathway-Related Genes as Potential Cancer Predictors. JOURNAL OF HEALTHCARE ENGINEERING 2019; 2019:9724589. [PMID: 31781361 PMCID: PMC6855054 DOI: 10.1155/2019/9724589] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 09/17/2019] [Indexed: 01/07/2023]
Abstract
Predicting the outcome after a cancer diagnosis is critical. Advances in high-throughput sequencing technologies provide physicians with vast amounts of data, yet prognostication remains challenging because the data are greatly dimensional and complex. We evaluated Wnt/β-catenin, carbohydrate metabolism, and PI3K-Akt signaling pathway-related genes as predictive features for classifying tumors and normal samples. Using differentially expressed genes as controls, these pathway-related genes were assessed for accuracy using support-vector machines and three other recommended machine learning models, namely, the random forest, decision tree, and k-nearest neighbor algorithms. The first two outperformed the others. All candidate pathway-related genes yielded areas under the curve exceeding 95.00% for cancer outcomes, and they were most accurate in predicting colorectal cancer. These results suggest that these pathway-related genes are useful and accurate biomarkers for understanding the mechanisms behind cancer development.
Collapse
|
164
|
Nussinov R, Tsai C, Jang H. Autoinhibition can identify rare driver mutations and advise pharmacology. FASEB J 2019; 34:16-29. [DOI: 10.1096/fj.201901341r] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 09/18/2019] [Accepted: 10/09/2019] [Indexed: 12/16/2022]
Affiliation(s)
- Ruth Nussinov
- Computational Structural Biology Section Basic Science Program Frederick National Laboratory for Cancer Research Frederick MD USA
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine Tel Aviv University Tel Aviv Israel
| | - Chung‐Jung Tsai
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine Tel Aviv University Tel Aviv Israel
| | - Hyunbum Jang
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine Tel Aviv University Tel Aviv Israel
| |
Collapse
|
165
|
Hillmann P, Fabbro D. PI3K/mTOR Pathway Inhibition: Opportunities in Oncology and Rare Genetic Diseases. Int J Mol Sci 2019; 20:E5792. [PMID: 31752127 PMCID: PMC6888641 DOI: 10.3390/ijms20225792] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 11/04/2019] [Accepted: 11/12/2019] [Indexed: 12/17/2022] Open
Abstract
The phosphatidylinositol 3-kinase (PI3K)/mammalian target of rapamycin (mTOR) signaling pathway has been implicated as a cancer target. Big pharma players and small companies have been developing small molecule inhibitors of PI3K and/or mTOR since the 1990s. Although four inhibitors have been approved, many open questions regarding tolerability, patient selection, sensitivity markers, development of resistances, and toxicological challenges still need to be addressed. Besides clear oncological indications, PI3K and mTOR inhibitors have been suggested for treating a plethora of different diseases. In particular, genetically induced PI3K/mTOR pathway activation causes rare disorders, known as overgrowth syndromes, like PTEN (phosphatase and tensin homolog) hamartomas, tuberous sclerosis complex (TSC), phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha (PIK3CA)-related overgrowth spectrum (PROS), and activated PI3-Kinase delta syndrome (PI3KCD, APDS). Some of those disorders likeTSC or hemimegalencephaly, which are one of the PROS disorders, also belong to a group of diseases called mTORopathies. This group of syndromes presents with additional neurological manifestations associated with epilepsy and other neuropsychiatric symptoms induced by neuronal mTOR pathway hyperactivation. While PI3K and mTOR inhibitors have been and still are intensively tested in oncology indications, their use in genetically defined syndromes and mTORopathies appear to be promising avenues for a pharmacological intervention.
Collapse
Affiliation(s)
| | - Doriano Fabbro
- PIQUR Therapeutics, Hochbergerstrasse 60C, 4057 Basel, Switzerland
| |
Collapse
|
166
|
Wen X, Klionsky DJ. At a glance: A history of autophagy and cancer. Semin Cancer Biol 2019; 66:3-11. [PMID: 31707087 DOI: 10.1016/j.semcancer.2019.11.005] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 10/10/2019] [Accepted: 11/05/2019] [Indexed: 12/19/2022]
Abstract
Since the first discovery of the lysosome and the definition of autophagy by Christian de Duve more than 60 years ago, research on autophagy, a process targeting cytoplasmic materials for lysosomal degradation and recycling, has expanded dramatically. This research has extended our understanding of the basic mechanism of autophagy as well as its role in pathophysiology. Autophagy deficiency has been reported to be involved in numerous diseases, among which cancer has been extensively studied, in part because autophagy appears to play a dual role, depending on the stage of tumorigenesis. In this review, we will briefly revisit the intriguing history of autophagy and cancer, underscoring the importance of harnessing this pathway for the benefit of human health.
Collapse
Affiliation(s)
- Xin Wen
- Life Sciences Institute and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Daniel J Klionsky
- Life Sciences Institute and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109, USA.
| |
Collapse
|
167
|
Doan H, Parsons A, Devkumar S, Selvarajah J, Miralles F, Carroll VA. HIF-mediated Suppression of DEPTOR Confers Resistance to mTOR Kinase Inhibition in Renal Cancer. iScience 2019; 21:509-520. [PMID: 31710966 PMCID: PMC6849413 DOI: 10.1016/j.isci.2019.10.047] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 07/26/2019] [Accepted: 10/23/2019] [Indexed: 12/13/2022] Open
Abstract
Mechanistic target of rapamycin (mTOR) is a fundamental regulator of cell growth, proliferation, and metabolism. mTOR is activated in renal cancer and accelerates tumor progression. Here, we report that the mTOR inhibitor, DEP domain-containing mTOR-interacting protein (DEPTOR), is strikingly suppressed in clear cell renal cell carcinoma (ccRCC) tumors and cell lines. We demonstrate that DEPTOR is repressed by both hypoxia-inducible factors, HIF-1 and HIF-2, which occurs through activation of the HIF-target gene and transcriptional repressor, BHLHe40/DEC1/Stra13. Restoration of DEPTOR- and CRISPR/Cas9-mediated knockout experiments demonstrate that DEPTOR is growth inhibitory in ccRCC. Furthermore, loss of DEPTOR confers resistance to second-generation mTOR kinase inhibitors through deregulated mTORC1 feedback to IRS-2/PI3K/Akt. This work reveals a hitherto unknown mechanism of resistance to mTOR kinase targeted therapy that is mediated by HIF-dependent reprograming of mTOR/DEPTOR networks and suggests that restoration of DEPTOR in ccRCC will confer sensitivity to mTOR kinase therapeutics.
Collapse
Affiliation(s)
- Hong Doan
- Vascular Biology Research Centre, Molecular and Clinical Sciences Research Institute, St George's, University of London, London SW17 0RE, UK
| | - Alexander Parsons
- Vascular Biology Research Centre, Molecular and Clinical Sciences Research Institute, St George's, University of London, London SW17 0RE, UK
| | - Shruthi Devkumar
- Vascular Biology Research Centre, Molecular and Clinical Sciences Research Institute, St George's, University of London, London SW17 0RE, UK; Centre for Biomedical Education, Institute of Medical and Biomedical Education, St George's, University of London, London SW17 0RE, UK
| | - Jogitha Selvarajah
- Vascular Biology Research Centre, Molecular and Clinical Sciences Research Institute, St George's, University of London, London SW17 0RE, UK; Centre for Biomedical Education, Institute of Medical and Biomedical Education, St George's, University of London, London SW17 0RE, UK
| | - Francesc Miralles
- Vascular Biology Research Centre, Molecular and Clinical Sciences Research Institute, St George's, University of London, London SW17 0RE, UK; Centre for Biomedical Education, Institute of Medical and Biomedical Education, St George's, University of London, London SW17 0RE, UK
| | - Veronica A Carroll
- Vascular Biology Research Centre, Molecular and Clinical Sciences Research Institute, St George's, University of London, London SW17 0RE, UK; Centre for Biomedical Education, Institute of Medical and Biomedical Education, St George's, University of London, London SW17 0RE, UK.
| |
Collapse
|
168
|
Nassar AH, Hamieh L, Gray KP, Thorner AR, Fay AP, Lasseter KD, Abou Alaiwi S, Nuzzo PV, Flippot R, Krajewski KM, Signoretti S, Choueiri TK, Kwiatkowski DJ. Mutations and Response to Rapalogs in Patients with Metastatic Renal Cell Carcinoma. Mol Cancer Ther 2019; 19:690-696. [PMID: 31653662 DOI: 10.1158/1535-7163.mct-19-0642] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 09/08/2019] [Accepted: 10/21/2019] [Indexed: 11/16/2022]
Abstract
We previously showed that alterations in mTOR pathway genes were correlated with response to rapalog therapy in metastatic renal cell carcinoma (mRCC), when the analysis focused on extremes of response. Herein, we expand on the prior cohort and examine genetic correlations with rapalog response in a dataset not selected for extremes of response. Tumors from 58 patients from the phase III trial of temsirolimus and 51 local patients with mRCC treated with rapalogs were studied. Somatic mutations were investigated using a targeted sequencing platform covering 27 genes. Clinical benefit (CB) was defined as patients with complete remission, partial response, or stable disease lasting at least 22 weeks. Mutational analyses focused on 5 mTOR pathway genes (TSC1, TSC2, MTOR, PTEN, PIK3CA) and 6 genes commonly mutated in RCC (BAP1, KDM5C, PBRM1 SETD2, TP53, and VHL). Among the 109 patients, 93 (85%) patients had clear cell histology, and 31 (28%) showed CB. Nine of 30 (30%) patients harboring mTOR pathway mutations in their tumor achieved CB versus 22 of 79 (28%) in the wild-type group. There was no distinct association between any individual or combination of mTOR pathway gene mutations and CB. Three of 7 patients with TSC1 mutations showed CB. In addition, none of the 6 genes commonly mutated in RCC showed a mutation pattern that correlated with CB. Overall, in this large and diverse population of patients with mRCC, there is no suggestion of a correlation between response to rapalog therapy and mutation status for mTOR pathway genes.
Collapse
Affiliation(s)
- Amin H Nassar
- Cancer Genetics Lab, Division of Pulmonary Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts.,Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Lana Hamieh
- Cancer Genetics Lab, Division of Pulmonary Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts.,Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Kathryn P Gray
- Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Aaron R Thorner
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.,Center for Cancer Genome Discovery, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Andre P Fay
- Pontificia Universidade Catolica do Rio Grande do Sul School of Medicine, Porto Alegre, Brazil
| | - Kathryn D Lasseter
- Cancer Genetics Lab, Division of Pulmonary Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Sarah Abou Alaiwi
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Pier Vitale Nuzzo
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Ronan Flippot
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | | | - Sabina Signoretti
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts
| | - Toni K Choueiri
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - David J Kwiatkowski
- Cancer Genetics Lab, Division of Pulmonary Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
169
|
Kobliakov VA. The Mechanisms of Regulation of Aerobic Glycolysis (Warburg Effect) by Oncoproteins in Carcinogenesis. BIOCHEMISTRY (MOSCOW) 2019; 84:1117-1128. [DOI: 10.1134/s0006297919100018] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
170
|
Olivier M, Asmis R, Hawkins GA, Howard TD, Cox LA. The Need for Multi-Omics Biomarker Signatures in Precision Medicine. Int J Mol Sci 2019; 20:ijms20194781. [PMID: 31561483 PMCID: PMC6801754 DOI: 10.3390/ijms20194781] [Citation(s) in RCA: 292] [Impact Index Per Article: 48.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 09/11/2019] [Accepted: 09/25/2019] [Indexed: 12/12/2022] Open
Abstract
Recent advances in omics technologies have led to unprecedented efforts characterizing the molecular changes that underlie the development and progression of a wide array of complex human diseases, including cancer. As a result, multi-omics analyses—which take advantage of these technologies in genomics, transcriptomics, epigenomics, proteomics, metabolomics, and other omics areas—have been proposed and heralded as the key to advancing precision medicine in the clinic. In the field of precision oncology, genomics approaches, and, more recently, other omics analyses have helped reveal several key mechanisms in cancer development, treatment resistance, and recurrence risk, and several of these findings have been implemented in clinical oncology to help guide treatment decisions. However, truly integrated multi-omics analyses have not been applied widely, preventing further advances in precision medicine. Additional efforts are needed to develop the analytical infrastructure necessary to generate, analyze, and annotate multi-omics data effectively to inform precision medicine-based decision-making.
Collapse
Affiliation(s)
- Michael Olivier
- Center for Precision Medicine, Department of Internal Medicine, Wake Forest Baptist Health Comprehensive Cancer Center, Wake Forest University Health Sciences, Winston-Salem, NC 27157, USA.
| | - Reto Asmis
- Center for Precision Medicine, Department of Internal Medicine, Wake Forest Baptist Health Comprehensive Cancer Center, Wake Forest University Health Sciences, Winston-Salem, NC 27157, USA.
| | - Gregory A Hawkins
- Center for Precision Medicine, Department of Biochemistry, Wake Forest Baptist Health Comprehensive Cancer Center, Wake Forest University Health Sciences, Winston-Salem, NC 27157, USA.
| | - Timothy D Howard
- Center for Precision Medicine, Department of Biochemistry, Wake Forest University Health Sciences, Winston-Salem, NC 27157, USA.
| | - Laura A Cox
- Center for Precision Medicine, Department of Internal Medicine, Wake Forest Baptist Health Comprehensive Cancer Center, Wake Forest University Health Sciences, Winston-Salem, NC 27157, USA.
| |
Collapse
|
171
|
Kadoya M, Sasai N. Negative Regulation of mTOR Signaling Restricts Cell Proliferation in the Floor Plate. Front Neurosci 2019; 13:1022. [PMID: 31607856 PMCID: PMC6773814 DOI: 10.3389/fnins.2019.01022] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 09/09/2019] [Indexed: 01/07/2023] Open
Abstract
The neural tube is composed of a number of neural progenitors and postmitotic neurons distributed in a quantitatively and spatially precise manner. The floor plate, located in the ventral-most region of the neural tube, has a lot of unique characteristics, including a low cell proliferation rate. The mechanisms by which this region-specific proliferation rate is regulated remain elusive. Here we show that the activity of the mTOR signaling pathway, which regulates the proliferation of the neural progenitor cells, is significantly lower in the floor plate than in other domains of the embryonic neural tube. We identified the forkhead-type transcription factor FoxA2 as a negative regulator of mTOR signaling in the floor plate, and showed that FoxA2 transcriptionally induces the expression of the E3 ubiquitin ligase RNF152, which together with its substrate RagA, regulates cell proliferation via the mTOR pathway. Silencing of RNF152 led to the aberrant upregulation of the mTOR signal and aberrant cell division in the floor plate. Taken together, the present findings suggest that floor plate cell number is controlled by the negative regulation of mTOR signaling through the activity of FoxA2 and its downstream effector RNF152.
Collapse
Affiliation(s)
- Minori Kadoya
- Developmental Biomedical Science, Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Japan
| | - Noriaki Sasai
- Developmental Biomedical Science, Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Japan
| |
Collapse
|
172
|
Zhang S, Shi W, Ramsay ES, Bliskovsky V, Eiden AM, Connors D, Steinsaltz M, DuBois W, Mock BA. The transcription factor MZF1 differentially regulates murine Mtor promoter variants linked to tumor susceptibility. J Biol Chem 2019; 294:16756-16764. [PMID: 31548308 DOI: 10.1074/jbc.ra119.009779] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 09/18/2019] [Indexed: 01/15/2023] Open
Abstract
Mechanistic target of rapamycin (MTOR) is a highly conserved serine/threonine kinase that critically regulates cell growth, proliferation, differentiation, and survival. Previously, we have implicated Mtor as a plasmacytoma-resistance locus, Pctr2, in mice. Here, we report that administration of the tumor-inducing agent pristane decreases Mtor gene expression to a greater extent in mesenteric lymph nodes of BALB/cAnPt mice than of DBA/2N mice. We identified six allelic variants in the Mtor promoter region in BALB/cAnPt and DBA/2N mice. To determine the effects of these variants on Mtor transcription, we constructed a series of luciferase reporters containing these promoter variants and transfected them into mouse plasmacytoma cells. We could attribute the differences in Mtor promoter activity between the two mouse strains to a C → T change at the -6 position relative to the transcriptional start site Tssr 40273; a T at this position in the BALB promoter creates a consensus binding site for the transcription factor MZF1 (myeloid zinc finger 1). Results from electrophoretic mobility shift assays and DNA pulldown assays with ChIP-PCR confirmed that MZF1 binds to the cis-element TGGGGA located in the -6/-1 Mtor promoter region. Of note, MZF1 significantly and differentially down-regulated Mtor promoter activity, with MZF1 overexpression reducing Mtor expression more strongly in BALB mice than in DBA mice. Moreover, MZF1 overexpression reduced Mtor expression in both fibroblasts and mouse plasmacytoma cells, and Mzf1 knockdown increased Mtor expression in BALB3T3 and NIH3T3 fibroblast cells. Our results provide evidence that MZF1 down-regulates Mtor expression in pristane-induced plasmacytomas in mice.
Collapse
Affiliation(s)
- Shuling Zhang
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Institutes of Health, Bethesda, Maryland 20892
| | - Wei Shi
- Vaccine Research Center, NIAID, National Institutes of Health, Bethesda, Maryland 20892
| | - Edward S Ramsay
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Institutes of Health, Bethesda, Maryland 20892
| | - Valery Bliskovsky
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Institutes of Health, Bethesda, Maryland 20892
| | - Adrian Max Eiden
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Institutes of Health, Bethesda, Maryland 20892
| | - Daniel Connors
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Institutes of Health, Bethesda, Maryland 20892
| | - Matthew Steinsaltz
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Institutes of Health, Bethesda, Maryland 20892
| | - Wendy DuBois
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Institutes of Health, Bethesda, Maryland 20892
| | - Beverly A Mock
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
173
|
Dos Santos W, Sobanski T, de Carvalho AC, Evangelista AF, Matsushita M, Berardinelli GN, de Oliveira MA, Reis RM, Guimarães DP. Mutation profiling of cancer drivers in Brazilian colorectal cancer. Sci Rep 2019; 9:13687. [PMID: 31548566 PMCID: PMC6757044 DOI: 10.1038/s41598-019-49611-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 08/28/2019] [Indexed: 12/24/2022] Open
Abstract
The molecular basis of colorectal cancer (CRC) can guide patient prognosis and therapy. In Brazil, knowledge on the CRC mutation landscape is limited. Here, we investigated the mutation profile of 150 cancer-related genes by next-generation sequencing and associated with microsatellite instability (MSI) and genetic ancestry in a series of 91 Brazilian CRC patients. Driver mutations were found in the APC (71.4%), TP53 (56.0%), KRAS (52.7%), PIK3CA (15.4%) and FBXW7 (10.9%) genes. Overall, genes in the MAPK/ERK, PIK3/AKT, NOTCH and receptor tyrosine kinase signaling pathways were mutated in 68.0%, 23.1%, 16.5%, and 15.3% of patients, respectively. MSI was found in 13.3% of tumors, most of which were proximal (52.4%, P< 0.001) and had a high mutation burden. European genetic ancestry was predominant (median of 83.1%), followed by Native American (4.1%), Asian (3.4%) and African (3.2%). NF1 and BRAF mutations were associated with African ancestry, while TP53 and PIK3CA mutations were inversely correlated with Native American ancestry. Our study suggests that Brazilian CRC patients exhibit a mutation profile similar to other populations and identify the most frequently mutated genes, which could be useful in future target therapies and molecular cancer screening strategies.
Collapse
Affiliation(s)
| | - Thais Sobanski
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, Brazil
| | | | | | | | | | | | - Rui Manuel Reis
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, Brazil.
- Life and Health Sciences Research Institute (ICVS), Medical School, University of Minho, Braga, 4710-057, Portugal.
- 3ICVS/3B's-PT Government Associate Laboratory, Braga, 4710-057, Portugal.
| | - Denise Peixoto Guimarães
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, Brazil.
- Department of Endoscopy, Barretos Cancer Hospital, Barretos, Brazil.
| |
Collapse
|
174
|
Zarei M, Du H, Nassar AH, Yan RE, Giannikou K, Johnson SH, Lam HC, Henske EP, Wang Y, Zhang T, Asara J, Kwiatkowski DJ. Tumors with TSC mutations are sensitive to CDK7 inhibition through NRF2 and glutathione depletion. J Exp Med 2019; 216:2635-2652. [PMID: 31506280 PMCID: PMC6829598 DOI: 10.1084/jem.20190251] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 06/26/2019] [Accepted: 08/09/2019] [Indexed: 12/11/2022] Open
Abstract
Tuberous sclerosis complex (TSC) is characterized by tumor development in the brain, heart, kidney, and lungs. In TSC tumors, loss of the TSC1/TSC2 protein complex leads to activation of mTORC1 with downstream effects on anabolism and cell growth. Because mTORC1 activation enhances mRNA transcription, we hypothesized that aberrant mTORC1 activation might confer TSC-null cell dependence on transcriptional regulation. We demonstrate that TSC1- or TSC2-null cells, in contrast to their wild-type counterparts, are sensitive to pharmacological inhibition of CDK7. Mechanistic studies revealed that CDK7 inhibition markedly reduces glutathione levels and increases reactive oxygen species due to reduced expression of NRF2 and glutathione biosynthesis genes. Treatment of both Tsc2+/ - mice and a TSC1-null bladder cancer xenograft model with a CDK7 inhibitor showed marked reduction in tumor volume and absence of regrowth in the xenograft model. These results suggest that CDK7 inhibition is a promising therapeutic approach for treatment of TSC-associated tumors and cancers with mutations in either TSC1 or TSC2.
Collapse
Affiliation(s)
- Mahsa Zarei
- Cancer Genetics Laboratory, Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA.,Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX
| | - Heng Du
- Cancer Genetics Laboratory, Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| | - Amin H Nassar
- Cancer Genetics Laboratory, Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| | - Rachel E Yan
- Cancer Genetics Laboratory, Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| | - Krinio Giannikou
- Cancer Genetics Laboratory, Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| | - Sneha H Johnson
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX
| | - Hilaire C Lam
- Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| | - Elizabeth P Henske
- Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| | - Yubao Wang
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA
| | - Tinghu Zhang
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA.,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA
| | - John Asara
- Division of Signal Transduction, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - David J Kwiatkowski
- Cancer Genetics Laboratory, Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| |
Collapse
|
175
|
Aydemirli MD, Corver W, Beuk R, Roepman P, Solleveld-Westerink N, van Wezel T, Kapiteijn E, Morreau H. Targeted Treatment Options of Recurrent Radioactive Iodine Refractory Hürthle Cell Cancer. Cancers (Basel) 2019; 11:E1185. [PMID: 31443247 PMCID: PMC6721552 DOI: 10.3390/cancers11081185] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 08/13/2019] [Indexed: 01/29/2023] Open
Abstract
Objective: To evaluate the efficacy and treatment rationale of Hürthle cell carcinoma (HCC) following a patient with progressive and metastatic HCC. HCC was recently shown to harbor a distinct genetic make-up and the mitogen-activated protein kinase (MAPK) and phosphatidylinositol 3-kiase (PI3K)/AKT signaling pathways are potential targets for anti-cancer agents in the management of recurrent HCC. The presence or absence of gene variants can give a rationale for targeted therapies that could be made available in the context of drug repurposing trials. Methods: Treatment included everolimus, sorafenib, nintedanib, lenvatinib, and panitumumab. Whole genome sequencing (WGS) of metastatic tumor material obtained before administration of the last drug, was performed. We subsequently evaluated the rationale and efficacy of panitumumab in thyroid cancer and control cell lines after epidermal growth factor (EGF) stimulation and treatment with panitumumab using immunofluorescent Western blot analysis. EGF receptor (EGFR) quantification was performed using flow cytometry. Results: WGS revealed a near-homozygous genome (NHG) and a somatic homozygous TSC1 variant, that was absent in the primary tumor. In the absence of RAS variants, panitumumab showed no real-life efficacy. This might be explained by high constitutive AKT signaling in the two thyroid cancer cell lines with NHG, with panitumumab only being a potent inhibitor of pEGFR in all cancer cell lines tested. Conclusions: In progressive HCC, several treatment options outside or inside clinical trials are available. WGS of metastatic tumors might direct the timing of therapy. Unlike other cancers, the absence of RAS variants seems to provide insufficient justification of single-agent panitumumab administration in HCC cases harboring a near-homozygous genome.
Collapse
Affiliation(s)
- Mehtap Derya Aydemirli
- Department of Medical Oncolosgy, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Willem Corver
- Department of Pathology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Ruben Beuk
- Department of Pathology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Paul Roepman
- Hartwig Medical Foundation, 1098 XH Amsterdam, The Netherlands
| | | | - Tom van Wezel
- Department of Pathology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Ellen Kapiteijn
- Department of Medical Oncolosgy, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands.
| | - Hans Morreau
- Department of Pathology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands.
| |
Collapse
|
176
|
Murugan AK. mTOR: Role in cancer, metastasis and drug resistance. Semin Cancer Biol 2019; 59:92-111. [PMID: 31408724 DOI: 10.1016/j.semcancer.2019.07.003] [Citation(s) in RCA: 310] [Impact Index Per Article: 51.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 06/14/2019] [Accepted: 07/03/2019] [Indexed: 02/09/2023]
Abstract
Mammalian target of rapamycin (mTOR) is a serine/threonine kinase that gets inputs from the amino acids, nutrients, growth factor, and environmental cues to regulate varieties of fundamental cellular processes which include protein synthesis, growth, metabolism, aging, regeneration, autophagy, etc. The mTOR is frequently deregulated in human cancer and activating somatic mutations of mTOR were recently identified in several types of human cancer and hence mTOR is therapeutically targeted. mTOR inhibitors were commonly used as immunosuppressors and currently, it is approved for the treatment of human malignancies. This review briefly focuses on the structure and biological functions of mTOR. It extensively discusses the genetic deregulation of mTOR including amplifications and somatic mutations, mTOR-mediated cell growth promoting signaling, therapeutic targeting of mTOR and the mechanisms of resistance, the role of mTOR in precision medicine and other recent advances in further understanding the role of mTOR in cancer.
Collapse
Affiliation(s)
- Avaniyapuram Kannan Murugan
- Department of Molecular Oncology, King Faisal Specialist Hospital & Research Centre, PO Box 3354, Research Center (MBC 03), Riyadh, 11211, Saudi Arabia.
| |
Collapse
|
177
|
Roldan-Romero JM, Beuselinck B, Santos M, Rodriguez-Moreno JF, Lanillos J, Calsina B, Gutierrez A, Tang K, Lainez N, Puente J, Castellano D, Esteban E, Climent MA, Arranz JA, Albersen M, Oudard S, Couchy G, Caleiras E, Montero-Conde C, Cascón A, Robledo M, Rodríguez-Antona C, García-Donas J. PTEN expression and mutations in TSC1, TSC2 and MTOR are associated with response to rapalogs in patients with renal cell carcinoma. Int J Cancer 2019; 146:1435-1444. [PMID: 31335987 DOI: 10.1002/ijc.32579] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 05/31/2019] [Accepted: 06/14/2019] [Indexed: 02/01/2023]
Abstract
The mammalian target of rapamycin (mTOR) pathway inhibitors are key drugs for the treatment of many tumor types, however, there are no predictive biomarkers in clinical use. Here, we performed a molecular and immunohistochemical characterization of key mTOR pathway components in a series of 105 renal cell carcinoma patients treated with rapalogs, aimed at identifying markers of treatment response. Mutational analysis in MTOR, TSC1 and TSC2 was performed through targeted next-generation sequencing (NGS), and immunohistochemistry (IHC) was performed for PTEN, pAKT, pS6K1, pS6 and p21. Among patients with NGS data, 11 of 87 (13%) had mTOR pathway mutations (8 in MTOR, 1 in TSC1 and 2 in TSC2). When comparing the molecular data to the response of the patients, we found that partial response was more frequent in cases with mTOR pathway mutations than in those without mutations (odds ratio [OR] = 0.08, 95% confidence interval [CI] = 0.008-0.79, p = 0.030 univariate; p = 0.038 multivariable). Regarding IHC, negative PTEN staining was detected in 58% of the tumors, and it was more frequent in rapalog responder patients (OR = 0.24, 95% CI = 0.065-0.86, p = 0.029 univariate; p = 0.029 multivariable). Mutations and PTEN IHC were not mutually exclusive events and its combination improved response prediction (OR = 0.16, 95% CI = 0.04-0.62, p = 0.008 univariate; p = 0.013 multivariable). The staining of other proteins did not show and association with response and no association with PFS was observed in unselected patients. In conclusion, our findings suggest that mTOR pathway mutations, negative PTEN IHC and their combination are potential markers of rapalog response.
Collapse
Affiliation(s)
- Juan M Roldan-Romero
- Hereditary Endocrine Cancer Group, Human Cancer Genetics Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Benoit Beuselinck
- Laboratory of Experimental Oncology, Department of Oncology, University of Leuven, Leuven, Belgium
| | - María Santos
- Hereditary Endocrine Cancer Group, Human Cancer Genetics Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Juan F Rodriguez-Moreno
- Genitourinary and Gynecological Cancer Unit, HM Hospitales - Centro Integral Oncológico HM Clara Campal, Madrid, Spain
| | - Javier Lanillos
- Hereditary Endocrine Cancer Group, Human Cancer Genetics Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Bruna Calsina
- Hereditary Endocrine Cancer Group, Human Cancer Genetics Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | | | - Karin Tang
- Hospital Universitario de Móstoles, Móstoles, Spain
| | - Nuria Lainez
- Complejo Hospitalario de Navarra, Pamplona, Spain
| | - Javier Puente
- Medical Oncology Department, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), CIBERONC, Madrid, Spain
| | | | | | | | - Jose A Arranz
- Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Maarten Albersen
- Department of Urology, University Hospitals Leuven, Leuven, Belgium
| | - Stephane Oudard
- Department of Medical Oncology, Hôpital Européen Georges-Pompidou, Paris, France
| | | | - Eduardo Caleiras
- Histopathology Core Unit, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Cristina Montero-Conde
- Hereditary Endocrine Cancer Group, Human Cancer Genetics Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Alberto Cascón
- Hereditary Endocrine Cancer Group, Human Cancer Genetics Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Mercedes Robledo
- Hereditary Endocrine Cancer Group, Human Cancer Genetics Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Cristina Rodríguez-Antona
- Hereditary Endocrine Cancer Group, Human Cancer Genetics Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Jesús García-Donas
- Genitourinary and Gynecological Cancer Unit, HM Hospitales - Centro Integral Oncológico HM Clara Campal, Madrid, Spain
| | | |
Collapse
|
178
|
Zhang C, Duan Y, Xia M, Dong Y, Chen Y, Zheng L, Chai S, Zhang Q, Wei Z, Liu N, Wang J, Sun C, Tang Z, Cheng X, Wu J, Wang G, Zheng F, Laurence A, Li B, Yang XP. TFEB Mediates Immune Evasion and Resistance to mTOR Inhibition of Renal Cell Carcinoma via Induction of PD-L1. Clin Cancer Res 2019; 25:6827-6838. [PMID: 31383732 DOI: 10.1158/1078-0432.ccr-19-0733] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 06/11/2019] [Accepted: 08/01/2019] [Indexed: 11/16/2022]
Affiliation(s)
- Cai Zhang
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, China
| | - Yaqi Duan
- Department of Pathology, School of Basic Medicine, Tongji Medical College, HUST, Wuhan, China
- Institute of Pathology, Tongji Hospital, Tongji Medical College, HUST, Wuhan, China
| | - Minghui Xia
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, China
| | - Yuting Dong
- Department of Pathology, School of Basic Medicine, Tongji Medical College, HUST, Wuhan, China
- Institute of Pathology, Tongji Hospital, Tongji Medical College, HUST, Wuhan, China
| | - Yufei Chen
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, China
| | - Lu Zheng
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, HUST, Wuhan, China
| | - Shuaishuai Chai
- Department of Urology, Union Hospital, Tongji Medical College, HUST, Wuhan, China
| | - Qian Zhang
- Department of Pathology, School of Basic Medicine, Tongji Medical College, HUST, Wuhan, China
- Institute of Pathology, Tongji Hospital, Tongji Medical College, HUST, Wuhan, China
| | - Zhengping Wei
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, China
| | - Na Liu
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, China
| | - Jing Wang
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, China
| | - Chaoyang Sun
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, HUST, Wuhan, China
| | - Zhaohui Tang
- Department of Surgery, Tongji Hospital, HUST, Wuhan, China
| | - Xiang Cheng
- Laboratory of Cardiovascular Immunology, Institute of Cardiology, Union Hospital, Tongji Medical College, HUST, Wuhan, China
| | - Jie Wu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, HUST, Wuhan, China
| | - Guoping Wang
- Department of Pathology, School of Basic Medicine, Tongji Medical College, HUST, Wuhan, China
- Institute of Pathology, Tongji Hospital, Tongji Medical College, HUST, Wuhan, China
| | - Fang Zheng
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, China
| | - Arian Laurence
- Department of Haematology, University College Hospital, London, England
| | - Bing Li
- Department of Urology, Union Hospital, Tongji Medical College, HUST, Wuhan, China
| | - Xiang-Ping Yang
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, China.
| |
Collapse
|
179
|
Riedlinger GM, Jalloul N, Poplin E, Mehnert JM, Groisberg R, Khiabanian H, Ganesan S. Detection of Three Distinct Clonal Populations Using Circulating Cell Free DNA: A Cautionary Note on the Use of Liquid Biopsy. JCO Precis Oncol 2019; 3. [PMID: 31588418 DOI: 10.1200/po.19.00193] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
- Gregory M Riedlinger
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ.,Rutgers Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ
| | - Nahed Jalloul
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ.,Rutgers Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ
| | - Elizabeth Poplin
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ.,Rutgers Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ
| | - Janice M Mehnert
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ.,Rutgers Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ
| | - Roman Groisberg
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ.,Rutgers Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ
| | - Hossein Khiabanian
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ.,Rutgers Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ
| | - Shridar Ganesan
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ.,Rutgers Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ
| |
Collapse
|
180
|
Moore SC, Playdon MC, Sampson JN, Hoover RN, Trabert B, Matthews CE, Ziegler RG. A Metabolomics Analysis of Body Mass Index and Postmenopausal Breast Cancer Risk. J Natl Cancer Inst 2019; 110:588-597. [PMID: 29325144 DOI: 10.1093/jnci/djx244] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 10/20/2017] [Indexed: 01/09/2023] Open
Abstract
Background Elevated body mass index (BMI) is associated with increased risk of postmenopausal breast cancer. The underlying mechanisms, however, remain elusive. Methods In a nested case-control study of 621 postmenopausal breast cancer case participants and 621 matched control participants, we measured 617 metabolites in prediagnostic serum. We calculated partial Pearson correlations between metabolites and BMI, and then evaluated BMI-associated metabolites (Bonferroni-corrected α level for 617 statistical tests = P < 8.10 × 10-5) in relation to invasive breast cancer. Odds ratios (ORs) of breast cancer comparing the 90th vs 10th percentile (modeled on a continuous basis) were estimated using conditional logistic regression while controlling for breast cancer risk factors, including BMI. Metabolites with the lowest P values (false discovery rate < 0.2) were mutually adjusted for one another to determine those independently associated with breast cancer risk. Results Of 67 BMI-associated metabolites, two were independently associated with invasive breast cancer risk: 16a-hydroxy-DHEA-3-sulfate (OR = 1.65, 95% confidence interval [CI] = 1.22 to 2.22) and 3-methylglutarylcarnitine (OR = 1.67, 95% CI = 1.21 to 2.30). Four metabolites were independently associated with estrogen receptor-positive (ER+) breast cancer risk: 16a-hydroxy-DHEA-3-sulfate (OR = 1.84, 95% CI = 1.27 to 2.67), 3-methylglutarylcarnitine (OR = 1.91, 95% CI = 1.23 to 2.96), allo-isoleucine (OR = 1.76, 95% CI = 1.23 to 2.51), and 2-methylbutyrylcarnitine (OR = 1.89, 95% CI = 1.22 to 2.91). In a model without metabolites, each 5 kg/m2 increase in BMI was associated with a 14% higher risk of breast cancer (OR = 1.14, 95% CI = 1.01 to 1.28), but adding 16a-hydroxy-DHEA-3-sulfate and 3-methylglutarylcarnitine weakened this association (OR = 1.06, 95% CI = 0.93 to 1.20), with the logOR attenuating by 57.6% (95% CI = 21.8% to 100.0+%). Conclusion These four metabolites may signal metabolic pathways that contribute to breast carcinogenesis and that underlie the association of BMI with increased postmenopausal breast cancer risk. These findings warrant further replication efforts.
Collapse
Affiliation(s)
- Steven C Moore
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD
| | - Mary C Playdon
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD
| | - Joshua N Sampson
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD
| | - Robert N Hoover
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD
| | - Britton Trabert
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD
| | - Charles E Matthews
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD
| | - Regina G Ziegler
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD
| |
Collapse
|
181
|
Visnjic D, Dembitz V, Lalic H. The Role of AMPK/mTOR Modulators in the Therapy of Acute Myeloid Leukemia. Curr Med Chem 2019; 26:2208-2229. [PMID: 29345570 DOI: 10.2174/0929867325666180117105522] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 01/01/2018] [Accepted: 01/11/2018] [Indexed: 12/13/2022]
Abstract
Differentiation therapy of acute promyelocytic leukemia with all-trans retinoic acid represents the most successful pharmacological therapy of acute myeloid leukemia (AML). Numerous studies demonstrate that drugs that inhibit mechanistic target of rapamycin (mTOR) and activate AMP-kinase (AMPK) have beneficial effects in promoting differentiation and blocking proliferation of AML. Most of these drugs are already in use for other purposes; rapalogs as immunosuppressants, biguanides as oral antidiabetics, and 5-amino-4-imidazolecarboxamide ribonucleoside (AICAr, acadesine) as an exercise mimetic. Although most of these pharmacological modulators have been widely used for decades, their mechanism of action is only partially understood. In this review, we summarize the role of AMPK and mTOR in hematological malignancies and discuss the possible role of pharmacological modulators in proliferation and differentiation of leukemia cells.
Collapse
Affiliation(s)
- Dora Visnjic
- Department of Physiology and Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Salata 12, 10 000 Zagreb, Croatia
| | - Vilma Dembitz
- Department of Physiology and Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Salata 12, 10 000 Zagreb, Croatia
| | - Hrvoje Lalic
- Department of Physiology and Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Salata 12, 10 000 Zagreb, Croatia
| |
Collapse
|
182
|
Zeng JD, Wu WKK, Wang HY, Li XX. Serine and one-carbon metabolism, a bridge that links mTOR signaling and DNA methylation in cancer. Pharmacol Res 2019; 149:104352. [PMID: 31323332 DOI: 10.1016/j.phrs.2019.104352] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 07/10/2019] [Accepted: 07/11/2019] [Indexed: 12/24/2022]
Abstract
Mammalian / mechanistic target of rapamycin (mTOR) is a critical sensor of environmental cues that regulates cellular macromolecule synthesis and metabolism in eukaryotes. DNA methylation is the most well-studied epigenetic modification that is capable of regulating gene transcription and affecting genome stability. Both dysregulation of mTOR signaling and DNA methylation patterns have been shown to be closely linked to tumor progression and serve as promising targets for cancer therapy. Although their respective roles in tumorigenesis have been extensively studied, whether molecular interplay exists between them is still largely unknown. In this review, we provide a brief overview of mTOR signaling, DNA methylation as well as related serine and one-carbon metabolism, one of the most critical aspects of metabolic reprogramming in cancer. Based on the latest understanding regarding the regulation of metabolic processes by mTOR signaling as well as interaction between metabolism and epigenetics, we further discuss how serine and one-carbon metabolism may serve as a bridge that links mTOR signaling and DNA methylation to promote tumor growth. Elucidating their relationship may provide novel insight for cancer therapy in the future.
Collapse
Affiliation(s)
- Ju-Deng Zeng
- State Key Laboratory of Oncology in South China, Collaborative Innovation center for Cancer Medicine, Sun Yat-sen University cancer center, Guangzhou, Guangdong, China; Department of Anaesthesia and Intensive Care, The Chinese University of Hong Kong, Hong Kong, China
| | - William K K Wu
- Department of Anaesthesia and Intensive Care, The Chinese University of Hong Kong, Hong Kong, China; State Key Laboratory of Digestive diseases, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Hui-Yun Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation center for Cancer Medicine, Sun Yat-sen University cancer center, Guangzhou, Guangdong, China.
| | - Xiao-Xing Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation center for Cancer Medicine, Sun Yat-sen University cancer center, Guangzhou, Guangdong, China.
| |
Collapse
|
183
|
Hua H, Kong Q, Zhang H, Wang J, Luo T, Jiang Y. Targeting mTOR for cancer therapy. J Hematol Oncol 2019; 12:71. [PMID: 31277692 PMCID: PMC6612215 DOI: 10.1186/s13045-019-0754-1] [Citation(s) in RCA: 601] [Impact Index Per Article: 100.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 06/14/2019] [Indexed: 02/05/2023] Open
Abstract
Mechanistic target of rapamycin (mTOR) is a protein kinase regulating cell growth, survival, metabolism, and immunity. mTOR is usually assembled into several complexes such as mTOR complex 1/2 (mTORC1/2). In cooperation with raptor, rictor, LST8, and mSin1, key components in mTORC1 or mTORC2, mTOR catalyzes the phosphorylation of multiple targets such as ribosomal protein S6 kinase β-1 (S6K1), eukaryotic translation initiation factor 4E binding protein 1 (4E-BP1), Akt, protein kinase C (PKC), and type-I insulin-like growth factor receptor (IGF-IR), thereby regulating protein synthesis, nutrients metabolism, growth factor signaling, cell growth, and migration. Activation of mTOR promotes tumor growth and metastasis. Many mTOR inhibitors have been developed to treat cancer. While some of the mTOR inhibitors have been approved to treat human cancer, more mTOR inhibitors are being evaluated in clinical trials. Here, we update recent advances in exploring mTOR signaling and the development of mTOR inhibitors for cancer therapy. In addition, we discuss the mechanisms underlying the resistance to mTOR inhibitors in cancer cells.
Collapse
Affiliation(s)
- Hui Hua
- State Key Laboratory of Biotherapy, Laboratory of Stem Cell Biology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Qingbin Kong
- Laboratory of Oncogene, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Hongying Zhang
- Laboratory of Oncogene, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Jiao Wang
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ting Luo
- Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yangfu Jiang
- Laboratory of Oncogene, Cancer Center, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
184
|
Abstract
The PI3K/AKT/mTOR pathway is frequently activated in various human cancers and has been considered a promising therapeutic target. Many of the positive regulators of the PI3K/AKT/mTOR axis, including the catalytic (p110α) and regulatory (p85α), of class IA PI3K, AKT, RHEB, mTOR, and eIF4E, possess oncogenic potentials, as demonstrated by transformation assays in vitro and by genetically engineered mouse models in vivo. Genetic evidences also indicate their roles in malignancies induced by activation of the upstream oncoproteins including receptor tyrosine kinases and RAS and those induced by the loss of the negative regulators of the PI3K/AKT/mTOR pathway such as PTEN, TSC1/2, LKB1, and PIPP. Possible mechanisms by which the PI3K/AKT/mTOR axis contributes to oncogenic transformation include stimulation of proliferation, survival, metabolic reprogramming, and invasion/metastasis, as well as suppression of autophagy and senescence. These phenotypic changes are mediated by eIF4E-induced translation of a subset of mRNAs and by other downstream effectors of mTORC1 including S6K, HIF-1α, PGC-1α, SREBP, and ULK1 complex.
Collapse
|
185
|
Georgescu MM, Li Y, Islam MZ, Notarianni C, Sun H, Olar A, Fuller GN. Mutations of the MAPK/TSC/mTOR pathway characterize periventricular glioblastoma with epithelioid SEGA-like morphology-morphological and therapeutic implications. Oncotarget 2019; 10:4038-4052. [PMID: 31258848 PMCID: PMC6592288 DOI: 10.18632/oncotarget.27005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 05/20/2019] [Indexed: 12/15/2022] Open
Abstract
Epithelioid glioblastoma is a recognized glioblastoma variant, recently added to the World Health Organization brain tumor classification, with similar prognosis as the classic variant and B-Raf V600E mutations in 50% of the cases. We identified a new subset of epithelioid glioblastoma with periventricular location and subependymal giant cell astrocytoma (SEGA)-like morphology. Genomic profiling of these tumors revealed driver mutations in NF1, subclonal mutations in TSC1, and a novel driver mutation in MTOR, suggesting upregulation of the MAPK/TSC1/mTOR pathway. Strong mTOR activation was confirmed by immunohistochemistry for the mTOR kinase target 4E-BP1. TSC1 and MTOR mutations have been previously described in low-grade glioma, such as SEGA, and focal cortical dysplasia, respectively, that display large cells with abundant cytoplasm, most likely resulting from the biogenetic signaling of mTOR. Unlike these, the mutations in SEGA-like glioblastoma occurred in the context of other genetic aberrations present in high-grade neoplasms, including in the CDKN2A/B, PIK3R1, PIK3CA and EGFR genes. For one patient with two temporally distinct specimens, the subclonal TSC1 pathogenic mutation was detected only in the specimen showing SEGA-like morphology, indicating requirement for mTOR activation as trigger for specific epithelioid/SEGA-like morphology. As FDA-approved kinase inhibitors are available and target many steps of the MAPK/mTOR pathway, recognition of this new subset of periventricular high-grade gliomas with clear phenotypic-genotypic correlates is essential for prompt biomarker testing and appropriate targeted therapeutic management of these patients.
Collapse
Affiliation(s)
- Maria-Magdalena Georgescu
- Department of Pathology and Pathobiology and Feist-Weiller Cancer Center, Louisiana State University, Shreveport, LA 71103, USA
| | - Yan Li
- Department of Pathology and Pathobiology and Feist-Weiller Cancer Center, Louisiana State University, Shreveport, LA 71103, USA
| | - Mohammad Zahidul Islam
- Department of Pathology and Pathobiology and Feist-Weiller Cancer Center, Louisiana State University, Shreveport, LA 71103, USA
| | - Christina Notarianni
- Department of Neurosurgery, Louisiana State University, Shreveport, LA 71103, USA
| | - Hai Sun
- Department of Neurosurgery, Louisiana State University, Shreveport, LA 71103, USA
| | - Adriana Olar
- Department of Pathology and Laboratory Medicine and Neurosurgery, Medical University of South Carolina and Hollings Cancer Center, Charleston, SC 29425, USA
| | - Gregory N Fuller
- Department of Pathology, The University of Texas MD Anderson Cancer Center, TX 77030, USA
| |
Collapse
|
186
|
Murugan AK, Liu R, Xing M. Identification and characterization of two novel oncogenic mTOR mutations. Oncogene 2019; 38:5211-5226. [PMID: 30918329 PMCID: PMC6597304 DOI: 10.1038/s41388-019-0787-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 02/12/2019] [Accepted: 03/07/2019] [Indexed: 12/29/2022]
Abstract
Mammalian target of rapamycin (mTOR) signaling is often aberrantly activated, particularly when genetically altered, in human cancers. mTOR inhibitors targeting the activated mTOR signaling are highly promising anti-cancer drugs. Knowing the activating genetic change in mTOR can help guide the use of mTOR inhibitors for cancer treatment. This study was conducted to identify and characterize novel oncogenic mTOR mutations that can potentially be therapeutic targets in human cancer. We sequenced 30 exons of the mTOR gene in 12 thyroid cancer cell lines, 3 melanoma cell lines, 20 anaplastic thyroid cancer (ATC) tumors, and 23 melanoma tumors and functionally characterized the identified novel mTOR mutations in vitro and in vivo. We identified a novel point mutation A1256G in ATC cell line and G7076A in melanoma tumor in exon 9 and exon 51 of the mTOR gene, respectively. Over-expression of the corresponding mTOR mutants H419R and G2359E created through induced mutagenesis showed markedly elevated protein kinase activities associated with the activation of mTOR/p70S6K signaling in HEK293T cells. Stable expression of the two mTOR mutants in NIH3T3 cells strongly activated the mTOR/p70S6K signaling pathway and induced morphologic transformation, cell focus formation, anchorage-independent cell growth, and invasion. Inoculation of these mutant-expressing cells in athymic nude mice induced rapid tumor development, showing their driving oncogenicity. We also demonstrated that transfection with the novel mutants conferred cells high sensitivities to the mTOR inhibitor temsirolimus. We speculate that human cancers harboring these mTOR mutations, such as ATC and melanoma, may be effectively treated with inhibitors targeting mTOR.
Collapse
Affiliation(s)
- Avaniyapuram Kannan Murugan
- Laboratory for Cellular and Molecular Thyroid Research, Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Rengyun Liu
- Laboratory for Cellular and Molecular Thyroid Research, Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Mingzhao Xing
- Laboratory for Cellular and Molecular Thyroid Research, Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.
| |
Collapse
|
187
|
Zhang X, Chen W, Gao Q, Yang J, Yan X, Zhao H, Su L, Yang M, Gao C, Yao Y, Inoki K, Li D, Shao R, Wang S, Sahoo N, Kudo F, Eguchi T, Ruan B, Xu H. Rapamycin directly activates lysosomal mucolipin TRP channels independent of mTOR. PLoS Biol 2019; 17:e3000252. [PMID: 31112550 PMCID: PMC6528971 DOI: 10.1371/journal.pbio.3000252] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 04/18/2019] [Indexed: 02/06/2023] Open
Abstract
Rapamycin (Rap) and its derivatives, called rapalogs, are being explored in clinical trials targeting cancer and neurodegeneration. The underlying mechanisms of Rap actions, however, are not well understood. Mechanistic target of rapamycin (mTOR), a lysosome-localized protein kinase that acts as a critical regulator of cellular growth, is believed to mediate most Rap actions. Here, we identified mucolipin 1 (transient receptor potential channel mucolipin 1 [TRPML1], also known as MCOLN1), the principle Ca2+ release channel in the lysosome, as another direct target of Rap. Patch-clamping of isolated lysosomal membranes showed that micromolar concentrations of Rap and some rapalogs activated lysosomal TRPML1 directly and specifically. Pharmacological inhibition or genetic inactivation of mTOR failed to mimic the Rap effect. In vitro binding assays revealed that Rap bound directly to purified TRPML1 proteins with a micromolar affinity. In both healthy and disease human fibroblasts, Rap and rapalogs induced autophagic flux via nuclear translocation of transcription factor EB (TFEB). However, such effects were abolished in TRPML1-deficient cells or by TRPML1 inhibitors. Hence, Rap and rapalogs promote autophagy via a TRPML1-dependent mechanism. Given the demonstrated roles of TRPML1 and TFEB in cellular clearance, we propose that lysosomal TRPML1 may contribute a significant portion to the in vivo neuroprotective and anti-aging effects of Rap via an augmentation of autophagy and lysosomal biogenesis.
Collapse
Affiliation(s)
- Xiaoli Zhang
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Wei Chen
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Qiong Gao
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Junsheng Yang
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Xueni Yan
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Han Zhao
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Lin Su
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Meimei Yang
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Neurology, The Fourth Hospital of Harbin Medical University, Harbin, China
| | - Chenlang Gao
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Yao Yao
- Department of Integrative and Molecular Physiology and Internal Medicine, Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Ken Inoki
- Department of Integrative and Molecular Physiology and Internal Medicine, Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Dan Li
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Rong Shao
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Shiyi Wang
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Nirakar Sahoo
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Fumitaka Kudo
- Department of Chemistry, Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo, Japan
| | - Tadashi Eguchi
- Department of Chemistry, Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo, Japan
| | - Benfang Ruan
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
- * E-mail: (HX); (BR)
| | - Haoxing Xu
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
- * E-mail: (HX); (BR)
| |
Collapse
|
188
|
Structural basis of allosteric regulation of Tel1/ATM kinase. Cell Res 2019; 29:655-665. [PMID: 31097817 PMCID: PMC6796912 DOI: 10.1038/s41422-019-0176-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 04/25/2019] [Indexed: 12/20/2022] Open
Abstract
ATM/Tel1 is an apical kinase that orchestrates the multifaceted DNA damage response. Mutations of ATM/Tel1 are associated with ataxia telangiectasia syndrome. Here, we report cryo-EM structures of symmetric dimer (4.1 Å) and asymmetric dimer (4.3 Å) of Saccharomyces cerevisiae Tel1. In the symmetric state, the side chains in Tel1 C-terminus (residues 1129–2787) are discernible and an atomic model is built. The substrate binding groove is completely embedded in the symmetric dimer by the intramolecular PRD and intermolecular LID domains. Point mutations in these domains sensitize the S. cerevisiae cells to DNA damage agents and hinder Tel1 activation due to reduced binding affinity for its activator Xrs2/Nbs1. In the asymmetric state, one monomer becomes more compact in two ways: the kinase N-lobe moves down and the Spiral of α-solenoid moves upwards, which resemble the conformational changes observed in active mTOR. The accessibility of the activation loop correlates with the synergistic conformational disorders in the TRD1-TRD2 linker, FATC and PRD domains, where critical post-translational modifications and activating mutations are coincidently condensed. This study reveals a tunable allosteric network in ATM/Tel1, which is important for substrate recognition, recruitment and efficient phosphorylation.
Collapse
|
189
|
mTOR Signaling Pathway in Cancer Targets Photodynamic Therapy In Vitro. Cells 2019; 8:cells8050431. [PMID: 31075885 PMCID: PMC6563036 DOI: 10.3390/cells8050431] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 04/22/2019] [Accepted: 04/30/2019] [Indexed: 01/03/2023] Open
Abstract
The Mechanistic or Mammalian Target of Rapamycin (mTOR) is a major signaling pathway in eukaryotic cells belonging to the P13K-related kinase family of the serine/threonine protein kinase. It has been established that mTOR plays a central role in cellular processes and implicated in various cancers, diabetes, and in the aging process with very poor prognosis. Inhibition of the mTOR pathway in the cells may improve the therapeutic index in cancer treatment. Photodynamic therapy (PDT) has been established to selectively eradicate neoplasia at clearly delineated malignant lesions. This review highlights recent advances in understanding the role or regulation of mTOR in cancer therapy. It also discusses how mTOR currently contributes to cancer as well as future perspectives on targeting mTOR therapeutically in cancer in vitro.
Collapse
|
190
|
Jhanwar-Uniyal M, Wainwright JV, Mohan AL, Tobias ME, Murali R, Gandhi CD, Schmidt MH. Diverse signaling mechanisms of mTOR complexes: mTORC1 and mTORC2 in forming a formidable relationship. Adv Biol Regul 2019; 72:51-62. [PMID: 31010692 DOI: 10.1016/j.jbior.2019.03.003] [Citation(s) in RCA: 189] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 03/25/2019] [Accepted: 03/25/2019] [Indexed: 02/07/2023]
Abstract
Activation of Mechanistic target of rapamycin (mTOR) signaling plays a crucial role in tumorigenesis of numerous malignancies including glioblastoma (GB). The Canonical PI3K/Akt/mTOR signaling cascade is commonly upregulated due to loss of the tumor suppressorm PTEN, a phosphatase that acts antagonistically to the kinase (PI3K) in conversion of PIP2 to PIP3. mTOR forms two multiprotein complexes, mTORC1 and mTORC2 which are composed of discrete protein binding partners to regulate cell growth, motility, and metabolism. These complexes are sensitive to distinct stimuli, as mTORC1 is sensitive to nutrients while mTORC2 is regulated via PI3K and growth factor signaling. The main function of mTORC1 is to regulate protein synthesis and cell growth through downstream molecules: 4E-BP1 (also called EIF4E-BP1) and S6K. On the other hand, mTORC2 is responsive to growth factor signaling by phosphorylating the C-terminal hydrophobic motif of some AGC kinases like Akt and SGK and it also plays a crucial role in maintenance of normal and cancer cells through its association with ribosomes, and is involved in cellular metabolic regulation. mTORC1 and mTORC2 regulate each other, as shown by the fact that Akt regulates PRAS40 phosphorylation, which disinhibits mTORC1 activity, while S6K regulates Sin1 to modulate mTORC2 activity. Allosteric inhibitors of mTOR, rapamycin and rapalogs, remained ineffective in clinical trials of Glioblastoma (GB) patients, in part due to their incomplete inhibition of mTORC1 as well as unexpected activation of mTOR via the loss of negative feedback loops. In recent years, novel ATP binding inhibitors of mTORC1 and mTORC2 suppress mTORC1 activity completely by total dephosphorylation of its downstream substrate pS6KSer235/236, while effectively suppressing mTORC2 activity, as demonstrated by complete dephosphorylation of pAKTSer473. Furthermore by these novel combined mTORC1/mTORC2 inhibitors reduced the proliferation and self-renewal of GB cancer stem cells. However, a search of more effective way to target mTOR has generated a third generation inhibitor of mTOR, "Rapalink", that bivalently combines rapamycin with an ATP-binding inhibitor, which effectively abolishes the mTORC1 activity. All in all, the effectiveness of inhibitors of mTOR complexes can be judged by their ability to suppress both mTORC1/mTORC2 and their ability to impede both cell proliferation and migration along with aberrant metabolic pathways.
Collapse
Affiliation(s)
- Meena Jhanwar-Uniyal
- Department of Neurosurgery, Westchester Medical Center / New York Medical College, Valhalla, NY, 10595, USA.
| | - John V Wainwright
- Department of Neurosurgery, Westchester Medical Center / New York Medical College, Valhalla, NY, 10595, USA
| | - Avinash L Mohan
- Department of Neurosurgery, Westchester Medical Center / New York Medical College, Valhalla, NY, 10595, USA
| | - Michael E Tobias
- Department of Neurosurgery, Westchester Medical Center / New York Medical College, Valhalla, NY, 10595, USA
| | - Raj Murali
- Department of Neurosurgery, Westchester Medical Center / New York Medical College, Valhalla, NY, 10595, USA
| | - Chirag D Gandhi
- Department of Neurosurgery, Westchester Medical Center / New York Medical College, Valhalla, NY, 10595, USA
| | - Meic H Schmidt
- Department of Neurosurgery, Westchester Medical Center / New York Medical College, Valhalla, NY, 10595, USA
| |
Collapse
|
191
|
Tan FH, Bai Y, Saintigny P, Darido C. mTOR Signalling in Head and Neck Cancer: Heads Up. Cells 2019; 8:cells8040333. [PMID: 30970654 PMCID: PMC6523933 DOI: 10.3390/cells8040333] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 04/08/2019] [Accepted: 04/09/2019] [Indexed: 02/07/2023] Open
Abstract
The mammalian target of rapamycin (mTOR) signalling pathway is a central regulator of metabolism in all cells. It senses intracellular and extracellular signals and nutrient levels, and coordinates the metabolic requirements for cell growth, survival, and proliferation. Genetic alterations that deregulate mTOR signalling lead to metabolic reprogramming, resulting in the development of several cancers including those of the head and neck. Gain-of-function mutations in EGFR, PIK3CA, and HRAS, or loss-of-function in p53 and PTEN are often associated with mTOR hyperactivation, whereas mutations identified from The Cancer Genome Atlas (TCGA) dataset that potentially lead to aberrant mTOR signalling are found in the EIF4G1, PLD1, RAC1, and SZT2 genes. In this review, we discuss how these mutant genes could affect mTOR signalling and highlight their impact on metabolic processes, as well as suggest potential targets for therapeutic intervention, primarily in head and neck cancer.
Collapse
Affiliation(s)
- Fiona H Tan
- Division of Cancer Research, Peter MacCallum Cancer Centre, Grattan Street, Melbourne, Victoria 3000, Australia.
| | - Yuchen Bai
- Division of Cancer Research, Peter MacCallum Cancer Centre, Grattan Street, Melbourne, Victoria 3000, Australia.
| | - Pierre Saintigny
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de recherche en cancérologie de Lyon, 69008 Lyon, France.
- Department of Medical Oncology, Centre Léon Bérard, 69008 Lyon, France.
| | - Charbel Darido
- Division of Cancer Research, Peter MacCallum Cancer Centre, Grattan Street, Melbourne, Victoria 3000, Australia.
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria 3052, Australia.
| |
Collapse
|
192
|
Nguyen LH, Mahadeo T, Bordey A. mTOR Hyperactivity Levels Influence the Severity of Epilepsy and Associated Neuropathology in an Experimental Model of Tuberous Sclerosis Complex and Focal Cortical Dysplasia. J Neurosci 2019; 39:2762-2773. [PMID: 30700531 PMCID: PMC6445990 DOI: 10.1523/jneurosci.2260-18.2019] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Revised: 01/14/2019] [Accepted: 01/15/2019] [Indexed: 01/28/2023] Open
Abstract
Tuberous sclerosis complex (TSC) and focal cortical dysplasia (FCD) are focal malformations of cortical development (FMCDs) that are highly associated with intractable epilepsy. TSC and FCD are mTORopathies caused by a spectrum of pathogenic variants in the mechanistic target of rapamycin (mTOR) pathway genes leading to differential activation of mTOR signaling. However, whether the degree of mTOR hyperactivity influences disease severity remains unclear. Here, we examined the effects of differential mTOR hyperactivity levels on epilepsy and associated neuropathology in a mouse model of TSC and FCD. Constitutively active Rheb (RhebCA), the canonical activator of mTOR complex 1 (mTORC1), was expressed in mouse embryos of either sex via in utero electroporation at low, intermediate, and high concentrations to induce different mTORC1 activity levels in developing cortical neurons. We found that RhebCA expression induced mTORC1 hyperactivation and increased neuronal soma size and misplacement in a dose-dependent manner. No seizures were detected in the low RhebCA mice, whereas the intermediate and high RhebCA mice displayed spontaneous, recurrent seizures that significantly increased with higher RhebCA concentrations. Seizures were associated with a global increase in microglial activation that was notably higher in the regions containing RhebCA-expressing neurons. These data demonstrate that neuronal mTOR hyperactivity levels influence the severity of epilepsy and associated neuropathology in experimental TSC and FCD. Overall, these findings highlight the importance of evaluating the outcome of individual variants on mTOR activity levels and support personalized medicine strategies based on patient variants and mTOR activity level for TSC, FCD, and potentially other mTORopathies.SIGNIFICANCE STATEMENT Tuberous sclerosis complex (TSC) and focal cortical dysplasia (FCD) are epileptogenic cortical malformations caused by pathogenic variants in mechanistic target of rapamycin (mTOR) pathway genes leading to differential mTOR hyperactivation. Here, we present novel findings that neuronal mTOR hyperactivity levels correlate with the severity of epilepsy and associated neuropathology in a mouse model of TSC and FCD. Our findings suggest the need to evaluate the outcome of individual variants on mTOR activity levels in clinical assessments and support personalized medicine strategies based on patient variants and mTOR activity level. Additionally, we present useful modifications to a previously described mouse model of TSC and FCD that allows for titration of seizure frequency and generation of a mild to severe epilepsy phenotype as applicable for preclinical drug testing and mechanistic studies.
Collapse
Affiliation(s)
| | | | - Angélique Bordey
- Department of Neurosurgery, and
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut 06520
| |
Collapse
|
193
|
Livi GP. Halcyon days of TOR: Reflections on the multiple independent discovery of the yeast and mammalian TOR proteins. Gene 2019; 692:145-155. [DOI: 10.1016/j.gene.2018.12.046] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 12/13/2018] [Accepted: 12/20/2018] [Indexed: 12/24/2022]
|
194
|
Chiarini F, Evangelisti C, Lattanzi G, McCubrey JA, Martelli AM. Advances in understanding the mechanisms of evasive and innate resistance to mTOR inhibition in cancer cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1866:1322-1337. [PMID: 30928610 DOI: 10.1016/j.bbamcr.2019.03.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 03/22/2019] [Accepted: 03/26/2019] [Indexed: 12/12/2022]
Abstract
The development of drug-resistance by neoplastic cells is recognized as a major cause of targeted therapy failure and disease progression. The mechanistic (previously mammalian) target of rapamycin (mTOR) is a highly conserved Ser/Thr kinase that acts as the catalytic subunit of two structurally and functionally distinct large multiprotein complexes, referred to as mTOR complex 1 (mTORC1) and mTORC2. Both mTORC1 and mTORC2 play key roles in a variety of healthy cell types/tissues by regulating physiological anabolic and catabolic processes in response to external cues. However, a body of evidence identified aberrant activation of mTOR signaling as a common event in many human tumors. Therefore, mTOR is an attractive target for therapeutic targeting in cancer and this fact has driven the development of numerous mTOR inhibitors, several of which have progressed to clinical trials. Nevertheless, mTOR inhibitors have met with a very limited success as anticancer therapeutics. Among other reasons, this failure was initially ascribed to the activation of several compensatory signaling pathways that dampen the efficacy of mTOR inhibitors. The discovery of these regulatory feedback mechanisms greatly contributed to a better understanding of cancer cell resistance to mTOR targeting agents. However, over the last few years, other mechanisms of resistance have emerged, including epigenetic alterations, compensatory metabolism rewiring and the occurrence of mTOR mutations. In this article, we provide the reader with an updated overview of the mechanisms that could explain resistance of cancer cells to the various classes of mTOR inhibitors.
Collapse
Affiliation(s)
- Francesca Chiarini
- CNR Institute of Molecular Genetics, 40136 Bologna, BO, Italy; IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, BO, Italy
| | - Camilla Evangelisti
- CNR Institute of Molecular Genetics, 40136 Bologna, BO, Italy; IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, BO, Italy
| | - Giovanna Lattanzi
- CNR Institute of Molecular Genetics, 40136 Bologna, BO, Italy; IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, BO, Italy
| | - James A McCubrey
- Department of Microbiology & Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA.
| | - Alberto M Martelli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, BO, Italy.
| |
Collapse
|
195
|
Yoo YM, Jung EM, Jeung EB. Rapamycin-induced autophagy decreases Myf5 and MyoD proteins in C2C12 myoblast cells. Toxicol In Vitro 2019; 58:132-141. [PMID: 30905858 DOI: 10.1016/j.tiv.2019.03.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 03/20/2019] [Accepted: 03/20/2019] [Indexed: 12/19/2022]
Abstract
Rapamycin is an immunosuppressant that inhibits the mammalian or mechanistic target of rapamycin (mTOR) protein kinase and extends lifespan in organisms including mice. Myf5 and MyoD act as muscle-specific transcriptional factors for skeletal muscle differentiation. In this study, we determined whether rapamycin-induced autophagy causes the decrease of Myf5 and MyoD protein in C2C12 myoblast cells. Rapamycin induced a significant increase in the expression of the microtubule-associated protein 1 light chain 3 (LC3) II protein in a dose-dependent manner for 12 h. Rapamycin treatment also significantly increased p-ERK, p-Akt, and catalase expressions, and decreased Mn-SOD expression in a dose-dependent manner. Bax expression was significantly high compared to Bcl-2 expression in a dose-dependent manner of rapamycin for 12 h. For further study of rapamycin-induced autophagy in C2C12 myoblast cells, we investigated rapamycin treatment for 24, 36, and 48 h. Cell viability did not change with rapamycin treatment for 24, 36, and 48 h. Rapamycin-induced LC3-II, Beclin-1, Bax, and Bcl-2 proteins were significantly increased compared to without rapamycin. p-ERK expression increased with rapamycin treatment for 24 and 36 h compared to that without rapamycin, but decreased for 48 h. p-Akt expression decreased with rapamycin treatment for 36 and 48 h compared to that without rapamycin. In the same conditions, rapamycin-induced autophagy significantly reduced the Myf5 and MyoD proteins. Together, these results suggest that rapamycin-induced autophagy results in the decrease of Myf5 and MyoD proteins in C2C12 myoblast cells.
Collapse
Affiliation(s)
- Yeong-Min Yoo
- Laboratory of Veterinary Biochemistry and Molecular Biology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| | - Eui-Man Jung
- Laboratory of Veterinary Biochemistry and Molecular Biology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| | - Eui-Bae Jeung
- Laboratory of Veterinary Biochemistry and Molecular Biology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea.
| |
Collapse
|
196
|
Formononetin Enhances the Tumoricidal Effect of Everolimus in Breast Cancer MDA-MB-468 Cells by Suppressing the mTOR Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:9610629. [PMID: 31007702 PMCID: PMC6441524 DOI: 10.1155/2019/9610629] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 02/27/2019] [Indexed: 12/25/2022]
Abstract
Background Formononetin, an active ingredient isolated from the traditional Chinese medicinal herb Astragalus membranaceus, has anticancer and chemoresistance-reducing biological activities. We evaluated the efficacy of formononetin in improving the tumoricidal effect of everolimus by suppressing the mTOR pathway in breast cancer cells. Methods Cell survival was assessed using an MTT assay. Apoptosis was detected using flow cytometry. Proteins related to the mTOR pathway were detected and assessed using real-time PCR and Western blot analysis. Results. The results showed that formononetin enhances the efficacy of everolimus in suppressing breast cancer cell growth both in vitro and in vivo. The combination of formononetin and everolimus resulted in a 2-fold decrease in tumor volume and a 21.6% decrease in cell survival. The apoptosis ratio in cells treated with formononetin and everolimus increased by 27.9%. Formononetin and everolimus also inhibited the expression of p-mTOR and p-P70S6K and increased the expression of PTEN and p-4EBP-1. Notably, formononetin alone inhibited p-Akt expression but not everolimus. Conclusions Formononetin enhances the tumoricidal effect of everolimus by inhibiting the activity of Akt.
Collapse
|
197
|
Valvezan AJ, Manning BD. Molecular logic of mTORC1 signalling as a metabolic rheostat. Nat Metab 2019; 1:321-333. [PMID: 32694720 DOI: 10.1038/s42255-019-0038-7] [Citation(s) in RCA: 195] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 01/24/2019] [Indexed: 02/05/2023]
Abstract
The protein kinase complex mechanistic target of rapamycin complex 1 (mTORC1) serves as a key conduit between growth signals and the metabolic processes underlying cell growth. The activation state of mTORC1 is controlled by intracellular nutrients and energy, as well as exogenous hormones and growth factors, thereby integrating local and systemic growth signals. Here we discuss the molecular logic of the mTORC1 signalling network and its importance in coupling growth signals to the control of cellular metabolism. After activation, mTORC1 promotes the conversion of available nutrients and energy into the major macromolecular species contributing to cellular mass, including proteins, nucleic acids and lipids, while suppressing the autophagic recycling of these macromolecules back into their nutrient constituents. Given that uncoupling of mTORC1 from its normal regulatory inputs contributes to many diseases-including cancer, genetic tumour syndromes, metabolic diseases, autoimmune diseases and neurological disorders-understanding the molecular logic of the mTORC1 network and how to modulate it may present therapeutic opportunities for treatment of a broad range of diseases and potentially even for the extension of lifespan.
Collapse
Affiliation(s)
- Alexander J Valvezan
- Department of Genetics and Complex Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Brendan D Manning
- Department of Genetics and Complex Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| |
Collapse
|
198
|
Tian T, Li X, Zhang J. mTOR Signaling in Cancer and mTOR Inhibitors in Solid Tumor Targeting Therapy. Int J Mol Sci 2019; 20:ijms20030755. [PMID: 30754640 PMCID: PMC6387042 DOI: 10.3390/ijms20030755] [Citation(s) in RCA: 403] [Impact Index Per Article: 67.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 01/28/2019] [Accepted: 02/01/2019] [Indexed: 12/12/2022] Open
Abstract
The mammalian or mechanistic target of rapamycin (mTOR) pathway plays a crucial role in regulation of cell survival, metabolism, growth and protein synthesis in response to upstream signals in both normal physiological and pathological conditions, especially in cancer. Aberrant mTOR signaling resulting from genetic alterations from different levels of the signal cascade is commonly observed in various types of cancers. Upon hyperactivation, mTOR signaling promotes cell proliferation and metabolism that contribute to tumor initiation and progression. In addition, mTOR also negatively regulates autophagy via different ways. We discuss mTOR signaling and its key upstream and downstream factors, the specific genetic changes in the mTOR pathway and the inhibitors of mTOR applied as therapeutic strategies in eight solid tumors. Although monotherapy and combination therapy with mTOR inhibitors have been extensively applied in preclinical and clinical trials in various cancer types, innovative therapies with better efficacy and less drug resistance are still in great need, and new biomarkers and deep sequencing technologies will facilitate these mTOR targeting drugs benefit the cancer patients in personalized therapy.
Collapse
Affiliation(s)
- Tian Tian
- College of Life Science and Bioengineering, Beijing Jiaotong University, Beijing 100044, China.
| | - Xiaoyi Li
- College of Life Science and Bioengineering, Beijing Jiaotong University, Beijing 100044, China.
| | - Jinhua Zhang
- College of Life Science and Bioengineering, Beijing Jiaotong University, Beijing 100044, China.
| |
Collapse
|
199
|
Current Coverage of the mTOR Pathway by Next-Generation Sequencing Oncology Panels. Int J Mol Sci 2019; 20:ijms20030690. [PMID: 30764584 PMCID: PMC6387057 DOI: 10.3390/ijms20030690] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 01/28/2019] [Accepted: 01/29/2019] [Indexed: 12/19/2022] Open
Abstract
The mTOR pathway is in the process of establishing itself as a key access-point of novel oncological drugs and targeted therapies. This is also reflected by the growing number of mTOR pathway genes included in commercially available next-generation sequencing (NGS) oncology panels. This review summarizes the portfolio of medium sized diagnostic, as well as research destined NGS panels and their coverage of the mTOR pathway, including 16 DNA-based panels and the current gene list of Foundation One as a major reference entity. In addition, we give an overview of interesting, mTOR-associated somatic mutations that are not yet incorporated. Especially eukaryotic translation initiation factors (eIFs), a group of mTOR downstream proteins, are on the rise as far as diagnostics and drug targeting in precision medicine are concerned. This review aims to raise awareness for the true coverage of NGS panels, which should be valuable in selecting the ideal platform for diagnostics and research.
Collapse
|
200
|
Sun Z, Liu JL. mTOR-S6K1 pathway mediates cytoophidium assembly. J Genet Genomics 2019; 46:65-74. [PMID: 30857853 PMCID: PMC6459811 DOI: 10.1016/j.jgg.2018.11.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Revised: 11/21/2018] [Accepted: 11/30/2018] [Indexed: 01/17/2023]
Abstract
CTP synthase (CTPS), the rate-limiting enzyme in de novo CTP biosynthesis, has been demonstrated to assemble into evolutionarily conserved filamentous structures, termed cytoophidia, in Drosophila, bacteria, yeast and mammalian cells. However, the regulation and function of the cytoophidium remain elusive. Here, we provide evidence that the mechanistic target of rapamycin (mTOR) pathway controls cytoophidium assembly in mammalian and Drosophila cells. In mammalian cells, we find that inhibition of mTOR pathway attenuates cytoophidium formation. Moreover, CTPS cytoophidium assembly appears to be dependent on the mTOR complex 1 (mTORC1) mainly. In addition, knockdown of the mTORC1 downstream target S6K1 can inhibit cytoophidium formation, while overexpression of the constitutively active S6K1 reverses mTOR knockdown-induced cytoophidium disassembly. Finally, reducing mTOR protein expression results in a decrease of the length of cytoophidium in Drosophila follicle cells. Therefore, our study connects CTPS cytoophidium formation with the mTOR signaling pathway.
Collapse
Affiliation(s)
- Zhe Sun
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Ji-Long Liu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China; MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3PT, United Kingdom.
| |
Collapse
|