151
|
Sosna B, Aebisher D, Myśliwiec A, Dynarowicz K, Bartusik-Aebisher D, Oleś P, Cieślar G, Kawczyk-Krupka A. Selected Cytokines and Metalloproteinases in Inflammatory Bowel Disease. Int J Mol Sci 2023; 25:202. [PMID: 38203373 PMCID: PMC10779120 DOI: 10.3390/ijms25010202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
Inflammatory bowel disease (IBD) is a collective term for two diseases: ulcerative colitis (UC) and Crohn's disease (CD). There are many factors, e.g., genetic, environmental and immunological, that increase the likelihood of these diseases. Indicators of IBDs include extracellular matrix metalloproteinases (MMPs). The aim of this review is to present data on the role of selected cytokines and metalloproteinases in IBD. In recent years, more and more transcriptomic studies are emerging. These studies are improving the characterization of the cytokine microenvironment inside inflamed tissue. It is observed that the levels of several cytokines are consistently increased in inflamed tissue in IBD, both in UC and CD. This review shows that MMPs play a major role in the pathology of inflammatory processes, cancer, and IBD. IBD-associated inflammation is associated with increased expression of MMPs and reduced ability of tissue inhibitors of metalloproteinases (TIMPs) to inhibit their action. In IBD patients in tissues that are inflamed, MMPs are produced in excess and TIMP activity is not sufficient to block MMPs. This review is based on our personal selection of the literature that was retrieved by a selective search in PubMed using the terms "Inflammatory bowel disease" and "pathogenesis of Inflammatory bowel diseases" that includes systematic reviews, meta-analyses, and clinical trials. The involvement of the immune system in the pathophysiology of IBD is reviewed in terms of the role of the cytokines and metalloproteinases involved.
Collapse
Affiliation(s)
- Barbara Sosna
- Department of Internal Medicine, Angiology and Physical Medicine, Center for Laser Diagnostics and Therapy, Medical University of Silesia in Katowice, Batorego 15 Street, 41-902 Bytom, Poland; (B.S.); (P.O.); (G.C.)
| | - David Aebisher
- Department of Photomedicine and Physical Chemistry, Medical College, University of Rzeszów, 35-959 Rzeszów, Poland;
| | - Angelika Myśliwiec
- Center for Innovative Research in Medical and Natural Sciences, Medical College, University of Rzeszów, 35-310 Rzeszów, Poland; (A.M.); (K.D.)
| | - Klaudia Dynarowicz
- Center for Innovative Research in Medical and Natural Sciences, Medical College, University of Rzeszów, 35-310 Rzeszów, Poland; (A.M.); (K.D.)
| | - Dorota Bartusik-Aebisher
- Department of Biochemistry and General Chemistry, Medical College, University of Rzeszów, 35-959 Rzeszów, Poland;
| | - Piotr Oleś
- Department of Internal Medicine, Angiology and Physical Medicine, Center for Laser Diagnostics and Therapy, Medical University of Silesia in Katowice, Batorego 15 Street, 41-902 Bytom, Poland; (B.S.); (P.O.); (G.C.)
| | - Grzegorz Cieślar
- Department of Internal Medicine, Angiology and Physical Medicine, Center for Laser Diagnostics and Therapy, Medical University of Silesia in Katowice, Batorego 15 Street, 41-902 Bytom, Poland; (B.S.); (P.O.); (G.C.)
| | - Aleksandra Kawczyk-Krupka
- Department of Internal Medicine, Angiology and Physical Medicine, Center for Laser Diagnostics and Therapy, Medical University of Silesia in Katowice, Batorego 15 Street, 41-902 Bytom, Poland; (B.S.); (P.O.); (G.C.)
| |
Collapse
|
152
|
Huang JT, Sung SH, Hsu CP, Chiang CE, Yu WC, Cheng HM, Huang CH. TIMP-1 in the prognosis of patients who underwent coronary artery bypass surgery: a 12-year follow-up study. Front Cardiovasc Med 2023; 10:1226449. [PMID: 38162139 PMCID: PMC10757603 DOI: 10.3389/fcvm.2023.1226449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 11/30/2023] [Indexed: 01/03/2024] Open
Abstract
Introduction Matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs) have been linked to clinical outcomes in patients with coronary artery disease (CAD). However, the prognostic value of TIMP-1 in patients with CAD who underwent coronary artery bypass grafting (CABG) has not been elucidated. We aimed to investigate the correlations of TIMP-1 with high-sensitivity C-reactive protein (hs-CRP) and N-terminal pro-brain natriuretic peptide (NT-proBNP) in the long-term prognosis of consecutive patients who underwent CABG. Methods A total of 234 patients (age: 70.4 ± 10.5 years, 84.6% men) with CAD who underwent CABG were prospectively enrolled. Preoperative levels of MMPs, TIMP-1, hs-CRP, and NT-proBNP were recorded. Major adverse cardiovascular events (MACE) were defined as non-fatal myocardial infarction, non-fatal stroke, and cardiovascular death. Results During a median follow-up of 12.1 years, 120 deaths were recorded. The deceased were older, had more manifest acute coronary syndrome (ACS), a lower left ventricular ejection fraction (LVEF), and an estimated glomerular filtration rate (eGFR), but significantly higher MMP13, TIMP-1, hs-CRP, and NT-proBNP compared with the survivors. After adjusting for age, sex, manifest ACS, eGFR, LVEF, total cholesterol, and triglycerides, TIMP-1 (hazard ratio and 95% confidence intervals per SD: 1.506, 1.183-1.917), hs-CRP (1.349, 1.183-1.561), and NT-ProBNP (1.707, 1.326-2.199) were all independently associated with all-cause mortality. The mediation analysis revealed that the mortality risks of TIMP-1 were partially mediated by NT-proBNP (62.2%) and hs-CRP (25.3%). The associations of TIMP-1 with MACE were partially mediated by NT-proBNP (54.4%) but not hs-CRP. Conclusions TIMP-1 was an independent predictor of long-term outcomes after CABG, with possible roles in subclinical inflammation and postoperative cardiac remodeling.
Collapse
Affiliation(s)
- Jui-Tzu Huang
- Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Shih-Hsien Sung
- Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- Institute of Emergency and Critical Care Medicine, National Yang Ming Chiao Tung University College of Medicine, Taipei, Taiwan
- Cardiovascular Research Center, National Yang Ming Chiao Tung University College of Medicine, Taipei, Taiwan
- Department of Internal Medicine, National Yang Ming Chiao Tung University College of Medicine, Taipei, Taiwan
| | - Chiao-Po Hsu
- Cardiovascular Research Center, National Yang Ming Chiao Tung University College of Medicine, Taipei, Taiwan
- Division of Cardiovascular Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Chern-En Chiang
- Cardiovascular Research Center, National Yang Ming Chiao Tung University College of Medicine, Taipei, Taiwan
- Department of Internal Medicine, National Yang Ming Chiao Tung University College of Medicine, Taipei, Taiwan
- General Clinical Research Center, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Wen-Chung Yu
- Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- Cardiovascular Research Center, National Yang Ming Chiao Tung University College of Medicine, Taipei, Taiwan
- Department of Internal Medicine, National Yang Ming Chiao Tung University College of Medicine, Taipei, Taiwan
| | - Hao-Min Cheng
- Cardiovascular Research Center, National Yang Ming Chiao Tung University College of Medicine, Taipei, Taiwan
- Department of Internal Medicine, National Yang Ming Chiao Tung University College of Medicine, Taipei, Taiwan
- Center for Evidence-Based Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Medical Education, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Cheng-Hsiung Huang
- Cardiovascular Research Center, National Yang Ming Chiao Tung University College of Medicine, Taipei, Taiwan
- Division of Cardiovascular Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan
| |
Collapse
|
153
|
Chaudhary R, Prasad A, Agarwal V, Rehman M, Kumar A, Kaushik AS, Srivastava S, Srivastava S, Mishra V. Chronic stress predisposes to the aggravation of inflammation in autoimmune diseases with focus on rheumatoid arthritis and psoriasis. Int Immunopharmacol 2023; 125:111046. [PMID: 37879231 DOI: 10.1016/j.intimp.2023.111046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/27/2023] [Accepted: 10/08/2023] [Indexed: 10/27/2023]
Abstract
The global incidence of autoimmune diseases is on the rise, and many healthcare professionals believe that chronic stress plays a prominent role in both the aggravation and remission of these conditions. It is believed that prolonged exposure to stress is associated with neuroimmune axis malfunction, which eventually dysregulates multiple immunological factors as well as deregulates autoimmune responses that play a central role in various autoimmune diseases, including rheumatoid arthritis and psoriasis. Herein, we performed validation of an 8-week long rat model of chronic unpredictable stress (CUS) which consisted of exposing groups of rats to random stressors daily for 8 weeks. Additionally, we developed a novel rat model combining 8-week long random stressor-induced CUS with CIA-triggered arthritis and IMQ-triggered psoriasis and have successfully used both these models to assess the role of chronic stress in the aggravation of arthritis and psoriasis, respectively. Notably, the 8-week CUS protocol extensively aggravated and prolonged both arthritis and psoriasis condition in the rat model by upregulating the release of different pro-inflammatory cytokines, dysregulation of immune cell responses and oxidative stress system, which were all related to severe inflammation. Further, CUS aggravated macroscopic features and the increase in destruction of joint tissue and epidermal thickness induced by CIA and IMQ, respectively, in rats. In conclusion, this study suggests that exposure to an 8-week long CUS paradigm aggravates the distinctive characteristics of rheumatoid arthritis and psoriasis in rats via amplifying the inflammatory circuits and immune cell responses linked to these autoimmune diseases.
Collapse
Affiliation(s)
- Rishabh Chaudhary
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, U.P., India
| | - Ajay Prasad
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, U.P., India
| | - Vipul Agarwal
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, U.P., India
| | - Mujeeba Rehman
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, U.P., India
| | - Anand Kumar
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, U.P., India
| | - Arjun Singh Kaushik
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, U.P., India
| | - Siddhi Srivastava
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, U.P., India
| | - Sukriti Srivastava
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, U.P., India
| | - Vikas Mishra
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, U.P., India.
| |
Collapse
|
154
|
Morcos CA, Khattab SN, Haiba NS, Bassily RW, Abu-Serie MM, Teleb M. Battling colorectal cancer via s-triazine-based MMP-10/13 inhibitors armed with electrophilic warheads for concomitant ferroptosis induction; the first-in-class dual-acting agents. Bioorg Chem 2023; 141:106839. [PMID: 37703744 DOI: 10.1016/j.bioorg.2023.106839] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/31/2023] [Accepted: 09/04/2023] [Indexed: 09/15/2023]
Abstract
There is an increasing interest in halting CRC by combining ferroptosis with other forms of tumor cell death. However, ferroptosis induction is seldom studied in tandem with inhibiting MMPs. A combination that is expected to enhance the therapeutic outcome based on mechanistic ferroptosis studies highlighting the interplay with MMPs, especially MMP-13 associated with CRC metastasis and poor prognosis. Herein, we report new hybrid triazines capable of simultaneous MMP-10/13 inhibition and ferroptosis induction bridging the gap between their anticancer potentials. The MMP-10/13 inhibitory component of the scaffold was based on the non-hydroxamate model inhibitors. s-Triazine was rationalized as the core inspired by altretamine, an FDA-approved ferroptosis inducer. The ferroptosis pharmacophores were then installed as Michael acceptors via triazole-based spacers. The electrophilic reactivity was tuned by incorporating cyano and/or substituted phenyl groups influencing their electronic and steric properties and enriching the SAR study. Initial screening revealed the outstanding cytotoxicity profiles of the nitrophenyl-tethered chalcone 5e and the cyanoacrylohydrazides bearing p-fluorophenyl 9b and p-bromophenyl 9d appendages. 9b and 9d surpassed NNGH against MMP-10 and -13, especially 9d (IC50 = 0.16 μM). Ferroptosis studies proved that 9d depleted GSH in HCT-116 cells by a relative fold decrement of 0.81 with modest direct GPX4 inhibition, thus inducing lipid peroxidation, the hallmark of ferroptosis, by 1.32 relative fold increment. Docking presumed that 9d could bind to the MMP-10 S1' pocket and active site His221, extend through the MMP-13 hydrophobic pocket, and interact covalently with the GPX4 catalytic selenocysteine. 9d complexed with ferrous oxide nanoparticles was 7.5 folds more cytotoxic than its free precursor against HCT-116 cells. The complex-induced intracellular iron overload, depleted GSH with a relative fold decrement of 0.12, consequently triggering lipid peroxidation and ferroptosis by a 3.94 relative fold increment. Collectively, 9d could be a lead for tuning MMPs selectivity and ferroptosis induction potential to maximize the benefit of such a combination.
Collapse
Affiliation(s)
- Christine A Morcos
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria 21321, Egypt
| | - Sherine N Khattab
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria 21321, Egypt.
| | - Nesreen S Haiba
- Department of Physics and Chemistry, Faculty of Education, Alexandria University, Egypt
| | - Rafik W Bassily
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria 21321, Egypt
| | - Marwa M Abu-Serie
- Medical Biotechnology Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), Egypt.
| | - Mohamed Teleb
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt; Cancer Nanotechnology Research Laboratory (CNRL), Faculty of Pharmacy, Alexandria University, Alexandria, Egypt.
| |
Collapse
|
155
|
Paul S, Schrobback K, Tran PA, Meinert C, Davern JW, Weekes A, Klein TJ. Photo-Cross-Linkable, Injectable, and Highly Adhesive GelMA-Glycol Chitosan Hydrogels for Cartilage Repair. Adv Healthc Mater 2023; 12:e2302078. [PMID: 37737465 PMCID: PMC11468424 DOI: 10.1002/adhm.202302078] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/27/2023] [Indexed: 09/23/2023]
Abstract
Hydrogels provide a promising platform for cartilage repair and regeneration. Although hydrogels have shown some efficacy, they still have shortcomings including poor mechanical properties and suboptimal integration with surrounding cartilage. Herein, hydrogels that are injectable, cytocompatible, mechanically robust, and highly adhesive to cartilage are developed. This approach uses GelMA-glycol chitosan (GelMA-GC) that is crosslinkable with visible light and photoinitiators (lithium acylphosphinate and tris (2,2'-bipyridyl) dichlororuthenium (II) hexahydrate ([RuII(bpy)3 ]2+ and sodium persulfate (Ru/SPS)). Ru/SPS-cross-linked hydrogels have higher compressive and tensile modulus, and most prominently higher adhesive strength with cartilage, which also depends on inclusion of GC. Tensile and push-out tests of the Ru/SPS-cross-linked GelMA-GC hydrogels demonstrate adhesive strength of ≈100 and 46 kPa, respectively. Hydrogel precursor solutions behave in a Newtonian manner and are injectable. After injection in focal bovine cartilage defects and in situ cross-linking, this hydrogel system remains intact and integrated with cartilage following joint manipulation ex vivo. Cells remain viable (>85%) in the hydrogel system and further show tissue regeneration potential after three weeks of in vitro culture. These preliminary results provide further motivation for future research on bioadhesive hydrogels for cartilage repair and regeneration.
Collapse
Affiliation(s)
- Sattwikesh Paul
- Centre for Biomedical TechnologiesQueensland University of Technology60 Musk Ave.Kelvin GroveQLD4059Australia
- Department of Surgery and RadiologyFaculty of Veterinary Medicine and Animal ScienceBangabandhu Sheikh Mujibur Rahman Agricultural University (BSMRAU)Gazipur1706Bangladesh
- School of MechanicalMedical and Process EngineeringQueensland University of Technology (QUT)2 George StreetBrisbaneQLD4000Australia
| | - Karsten Schrobback
- School of Biomedical SciencesCentre for Genomics and Personalised HealthTranslational Research InstituteQueensland University of Technology (QUT)37 Kent StreetWoolloongabbaQLD4102Australia
| | - Phong Anh Tran
- Centre for Biomedical TechnologiesQueensland University of Technology60 Musk Ave.Kelvin GroveQLD4059Australia
- School of MechanicalMedical and Process EngineeringQueensland University of Technology (QUT)2 George StreetBrisbaneQLD4000Australia
| | - Christoph Meinert
- Centre for Biomedical TechnologiesQueensland University of Technology60 Musk Ave.Kelvin GroveQLD4059Australia
- School of MechanicalMedical and Process EngineeringQueensland University of Technology (QUT)2 George StreetBrisbaneQLD4000Australia
- Chief Executive Officer of Gelomics Pty LtdBrisbaneQueensland4059Australia
| | - Jordan William Davern
- Centre for Biomedical TechnologiesQueensland University of Technology60 Musk Ave.Kelvin GroveQLD4059Australia
- School of MechanicalMedical and Process EngineeringQueensland University of Technology (QUT)2 George StreetBrisbaneQLD4000Australia
- ARC Training Centre for Cell and Tissue Engineering TechnologiesQueensland University of Technology (QUT)BrisbaneQLD4059Australia
| | - Angus Weekes
- Centre for Biomedical TechnologiesQueensland University of Technology60 Musk Ave.Kelvin GroveQLD4059Australia
- School of MechanicalMedical and Process EngineeringQueensland University of Technology (QUT)2 George StreetBrisbaneQLD4000Australia
| | - Travis Jacob Klein
- Centre for Biomedical TechnologiesQueensland University of Technology60 Musk Ave.Kelvin GroveQLD4059Australia
- School of MechanicalMedical and Process EngineeringQueensland University of Technology (QUT)2 George StreetBrisbaneQLD4000Australia
| |
Collapse
|
156
|
Bai M, Sun R, Cao B, Feng J, Wang J. Monocyte-related cytokines/chemokines in cerebral ischemic stroke. CNS Neurosci Ther 2023; 29:3693-3712. [PMID: 37452512 PMCID: PMC10651979 DOI: 10.1111/cns.14368] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/01/2023] [Accepted: 07/04/2023] [Indexed: 07/18/2023] Open
Abstract
AIMS Ischemic stroke is one of the leading causes of death worldwide and the most common cause of disability in Western countries. Multiple mechanisms contribute to the development and progression of ischemic stroke, and inflammation is one of the most important mechanisms. DISCUSSION Ischemia induces the release of adenosine triphosphate/reactive oxygen species, which activates immune cells to produce many proinflammatory cytokines that activate downstream inflammatory cascades to induce fatal immune responses. Research has confirmed that peripheral blood immune cells play a vital role in the immunological cascade after ischemic stroke. The role of monocytes has received much attention among numerous peripheral blood immune cells. Monocytes induce their effects by secreting cytokines or chemokines, including CCL2/CCR2, CCR4, CCR5, CD36, CX3CL1/CX3CR1, CXCL12(SDF-1), LFA-1/ICAM-1, Ly6C, MMP-2/9, NR4A1, P2X4R, P-selectin, CD40L, TLR2/4, and VCAM-1/VLA-4. Those factors play important roles in the process of monocyte recruitment, migration, and differentiation. CONCLUSION This review focuses on the function and mechanism of the cytokines secreted by monocytes in the process of ischemic stroke and provides novel targets for treating cerebral ischemic stroke.
Collapse
Affiliation(s)
- Meiling Bai
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ruize Sun
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Bin Cao
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Juan Feng
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jue Wang
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
157
|
Zhou W, Jiang Z, Yi Z, Ouyang J, Li X, Zhang Q, Wang P. Defect of TIMP4 Is Associated with High Myopia and Participates in Rat Ocular Development in a Dose-Dependent Manner. Int J Mol Sci 2023; 24:16928. [PMID: 38069250 PMCID: PMC10707432 DOI: 10.3390/ijms242316928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/14/2023] [Accepted: 11/20/2023] [Indexed: 12/18/2023] Open
Abstract
Thinning of the sclera happens in myopia eyes owing to extracellular matrix (ECM) remodeling, but the initiators of the ECM remodeling in myopia are mainly unknown. The matrix metalloproteinase (MMPs) and tissue inhibitors of matrix metalloproteinase (TIMPs) regulate the homeostasis of the ECM. However, genetic studies of the MMPs and TIMPs in the occurrence of myopia are poor and limited. This study systematically investigated the association between twenty-nine genes of the TIMPs and MMPs families and early-onset high myopia (eoHM) based on whole exome sequencing data. Two TIMP4 heterozygous loss-of-function (LoF) variants, c.528C>A in six patients and c.234_235insAA in one patient, were statistically enriched in 928 eoHM probands compared to that in 5469 non-high myopia control (p = 3.7 × 10-5) and that in the general population (p = 2.78 × 10-9). Consequently, the Timp4 gene editing rat was further evaluated to explore the possible role of Timp4 on ocular and myopia development. A series of ocular morphology abnormalities in a dose-dependent manner (Timp4-/- < Timp4+/- < Timp4+/+) were observed in a rat model, including the decline in the retinal thickness, the elongation in the axial length, more vulnerable to the form deprivation model, morphology changes in sclera collagen bundles, and the decrease in collagen contents of the sclera and retina. Electroretinogram revealed that the b-wave amplitudes of Timp4 defect rats were significantly reduced, consistent with the shorter length of the bipolar axons detected by HE and IF staining. Heterozygous LoF variants in the TIMP4 are associated with early onset high myopia, and the Timp4 defect disturbs ocular development by influencing the morphology and function of the ocular tissue.
Collapse
Affiliation(s)
| | | | | | | | | | - Qingjiong Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510000, China; (W.Z.); (Z.J.); (Z.Y.); (J.O.); (X.L.)
| | - Panfeng Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510000, China; (W.Z.); (Z.J.); (Z.Y.); (J.O.); (X.L.)
| |
Collapse
|
158
|
Lee SG, Kang H. Protective Effects of a Mixed Medicinal Herb Extract (NUC1) on Collagenase-Induced Osteoarthritis in Rabbits. J Microbiol Biotechnol 2023; 33:1484-1494. [PMID: 37482815 DOI: 10.4014/jmb.2303.03044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 07/05/2023] [Accepted: 07/12/2023] [Indexed: 07/25/2023]
Abstract
NUC1 (Nutraceutical compound 1) is an ethanol extract composed of a formulation based on medicinal herbs traditionally used for the treatment of arthritis in Korea and China. This study investigated the therapeutic effects of NUC1 on osteoarthritis (OA). The protective effect of NUC1 on OA was tested in a rabbit model of collagenase-induced arthritis (CIA) for 4 weeks. Results were compared among four groups (n = 9 per group): the normal group (untreated), the CIA group (vehicle control), the NUC1 group (CIA rabbits treated with 200 mg/kg NUC1), and the JOINS group (positive control, CIA rabbits treated with 200 mg/kg JOINS tablet). NUC1 significantly inhibited NO production (p < 0.05 at 125 μg/ml, p < 0.01 at 250 μg/ml, and p < 0.001 at 500 μg/ml) and iNOS expression in macrophages, in a concentration-dependent manner. NUC1 also inhibited the release and protein expression of MMP-1, 3, and 13, in TNF-α-induced chondrosarcoma cells in a concentration-dependent manner. In vivo, the MMP-1 and MMP-3 levels in synovial fluids were significantly (p < 0.05) lower in NUC1 group (77.50 ± 20.56 and 22.50 ± 7.39 pg/ml, respectively) than in the CIA group (148.33 ± 68.58 and 77.50 ± 20.46 pg/ml, respectively). Also, in histopathological, NUC1 ameliorated articular cartilage damage in OA by increasing the abundance of chondrocytes and proteoglycan in the articular cartilage. Thus, NUC1 showed promise as a potential therapeutic agent, and it can be generalized to a broader study population in different OA animal models.
Collapse
Affiliation(s)
- Sung-Gyu Lee
- Department of Medical Laboratory Science, College of Health Science, Dankook University, Cheonan 31116, Republic of Korea
| | - Hyun Kang
- Department of Medical Laboratory Science, College of Health Science, Dankook University, Cheonan 31116, Republic of Korea
| |
Collapse
|
159
|
Amor M, Bianco V, Buerger M, Lechleitner M, Vujić N, Dobrijević A, Akhmetshina A, Pirchheim A, Schwarz B, Pessentheiner AR, Baumgartner F, Rampitsch K, Schauer S, Klobučar I, Degoricija V, Pregartner G, Kummer D, Svecla M, Sommer G, Kolb D, Holzapfel GA, Hoefler G, Frank S, Norata GD, Kratky D. Genetic deletion of MMP12 ameliorates cardiometabolic disease by improving insulin sensitivity, systemic inflammation, and atherosclerotic features in mice. Cardiovasc Diabetol 2023; 22:327. [PMID: 38017481 PMCID: PMC10685620 DOI: 10.1186/s12933-023-02064-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 11/13/2023] [Indexed: 11/30/2023] Open
Abstract
BACKGROUND Matrix metalloproteinase 12 (MMP12) is a macrophage-secreted protein that is massively upregulated as a pro-inflammatory factor in metabolic and vascular tissues of mice and humans suffering from cardiometabolic diseases (CMDs). However, the molecular mechanisms explaining the contributions of MMP12 to CMDs are still unclear. METHODS We investigated the impact of MMP12 deficiency on CMDs in a mouse model that mimics human disease by simultaneously developing adipose tissue inflammation, insulin resistance, and atherosclerosis. To this end, we generated and characterized low-density lipoprotein receptor (Ldlr)/Mmp12-double knockout (DKO) mice fed a high-fat sucrose- and cholesterol-enriched diet for 16-20 weeks. RESULTS DKO mice showed lower cholesterol and plasma glucose concentrations and improved insulin sensitivity compared with LdlrKO mice. Untargeted proteomic analyses of epididymal white adipose tissue revealed that inflammation- and fibrosis-related pathways were downregulated in DKO mice. In addition, genetic deletion of MMP12 led to alterations in immune cell composition and a reduction in plasma monocyte chemoattractant protein-1 in peripheral blood which indicated decreased low-grade systemic inflammation. Aortic en face analyses and staining of aortic valve sections demonstrated reduced atherosclerotic plaque size and collagen content, which was paralleled by an improved relaxation pattern and endothelial function of the aortic rings and more elastic aortic sections in DKO compared to LdlrKO mice. Shotgun proteomics revealed upregulation of anti-inflammatory and atheroprotective markers in the aortas of DKO mice, further supporting our data. In humans, MMP12 serum concentrations were only weakly associated with clinical and laboratory indicators of CMDs. CONCLUSION We conclude that the genetic deletion of MMP12 ameliorates obesity-induced low-grade inflammation, white adipose tissue dysfunction, biomechanical properties of the aorta, and the development of atherosclerosis. Therefore, therapeutic strategies targeting MMP12 may represent a promising approach to combat CMDs.
Collapse
Affiliation(s)
- Melina Amor
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstrasse 6/4, Graz, 8010, Austria
| | - Valentina Bianco
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstrasse 6/4, Graz, 8010, Austria
| | - Martin Buerger
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstrasse 6/4, Graz, 8010, Austria
| | - Margarete Lechleitner
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstrasse 6/4, Graz, 8010, Austria
| | - Nemanja Vujić
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstrasse 6/4, Graz, 8010, Austria
| | - Anja Dobrijević
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstrasse 6/4, Graz, 8010, Austria
- Institute for Vascular Biology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Alena Akhmetshina
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstrasse 6/4, Graz, 8010, Austria
| | - Anita Pirchheim
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstrasse 6/4, Graz, 8010, Austria
| | - Birgit Schwarz
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstrasse 6/4, Graz, 8010, Austria
| | - Ariane R Pessentheiner
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstrasse 6/4, Graz, 8010, Austria
- Institute for Molecular Biosciences, University of Graz, Graz, Austria
| | | | | | - Silvia Schauer
- Diagnostics and Research Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Iva Klobučar
- Sisters of Charity, University Hospital Centre, Zagreb, Croatia
| | - Vesna Degoricija
- University of Zagreb School of Medicine, Zagreb, Croatia
- Department of Medicine, Sisters of Charity, University Hospital Centre, Zagreb, Croatia
| | - Gudrun Pregartner
- Institute for Medical Informatics, Statistics and Documentation, Medical University of Graz, Graz, Austria
| | - Daniel Kummer
- Gottfried Schatz Research Center, Cell Biology, Histology and Embryology, Medical University of Graz, Graz, Austria
| | - Monika Svecla
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Gerhard Sommer
- Institute of Biomechanics, Graz University of Technology, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| | - Dagmar Kolb
- Gottfried Schatz Research Center, Cell Biology, Histology and Embryology, Medical University of Graz, Graz, Austria
- Core Facility Ultrastructural Analysis, Medical University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| | - Gerhard A Holzapfel
- Institute of Biomechanics, Graz University of Technology, Graz, Austria
- BioTechMed-Graz, Graz, Austria
- Department of Structural Engineering, Norwegian University of Science and Technology, Trondheim, Norway
| | - Gerald Hoefler
- Diagnostics and Research Institute of Pathology, Medical University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| | - Saša Frank
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstrasse 6/4, Graz, 8010, Austria
- BioTechMed-Graz, Graz, Austria
| | - Giuseppe Danilo Norata
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Dagmar Kratky
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstrasse 6/4, Graz, 8010, Austria.
- BioTechMed-Graz, Graz, Austria.
| |
Collapse
|
160
|
Shoari A, Khalili-Tanha G, Coban MA, Radisky ES. Structure and computation-guided yeast surface display for the evolution of TIMP-based matrix metalloproteinase inhibitors. Front Mol Biosci 2023; 10:1321956. [PMID: 38074088 PMCID: PMC10702220 DOI: 10.3389/fmolb.2023.1321956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 11/13/2023] [Indexed: 01/03/2024] Open
Abstract
The study of protein-protein interactions (PPIs) and the engineering of protein-based inhibitors often employ two distinct strategies. One approach leverages the power of combinatorial libraries, displaying large ensembles of mutant proteins, for example, on the yeast cell surface, to select binders. Another approach harnesses computational modeling, sifting through an astronomically large number of protein sequences and attempting to predict the impact of mutations on PPI binding energy. Individually, each approach has inherent limitations, but when combined, they generate superior outcomes across diverse protein engineering endeavors. This synergistic integration of approaches aids in identifying novel binders and inhibitors, fine-tuning specificity and affinity for known binding partners, and detailed mapping of binding epitopes. It can also provide insight into the specificity profiles of varied PPIs. Here, we outline strategies for directing the evolution of tissue inhibitors of metalloproteinases (TIMPs), which act as natural inhibitors of matrix metalloproteinases (MMPs). We highlight examples wherein design of combinatorial TIMP libraries using structural and computational insights and screening these libraries of variants using yeast surface display (YSD), has successfully optimized for MMP binding and selectivity, and conferred insight into the PPIs involved.
Collapse
Affiliation(s)
| | | | | | - Evette S. Radisky
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, United States
| |
Collapse
|
161
|
Mohammed Butt A, Rupareliya V, Hariharan A, Kumar H. Building a pathway to recovery: Targeting ECM remodeling in CNS injuries. Brain Res 2023; 1819:148533. [PMID: 37586675 DOI: 10.1016/j.brainres.2023.148533] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/07/2023] [Accepted: 08/09/2023] [Indexed: 08/18/2023]
Abstract
Extracellular matrix (ECM) is a complex and dynamic network of proteoglycans, proteins, and other macromolecules that surrounds cells in tissues. The ECM provides structural support to cells and plays a critical role in regulating various cellular functions. ECM remodeling is a dynamic process involving the breakdown and reconstruction of the ECM. This process occurs naturally during tissue growth, wound healing, and tissue repair. However, in the context of central nervous system (CNS) injuries, dysregulated ECM remodeling can lead to the formation of fibrotic and glial scars. CNS injuries encompass various traumatic events, including concussions and fractures. Following CNS trauma, the formation of glial and fibrotic scars becomes prominent. Glial scars primarily consist of reactive astrocytes, while fibrotic scars are characterized by an abundance of ECM proteins. ECM remodeling plays a pivotal and tightly regulated role in the development of these scars after spinal cord and brain injuries. Various factors like ECM components, ECM remodeling enzymes, cell surface receptors of ECM molecules, and downstream pathways of ECM molecules are responsible for the remodeling of the ECM. The aim of this review article is to explore the changes in ECM during normal physiological conditions and following CNS injuries. Additionally, we discuss various approaches that target various factors responsible for ECM remodeling, with a focus on promoting axon regeneration and functional recovery after CNS injuries. By targeting ECM remodeling, it may be possible to enhance axonal regeneration and facilitate functional recovery after CNS injuries.
Collapse
Affiliation(s)
- Ayub Mohammed Butt
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat, India
| | - Vimal Rupareliya
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat, India
| | - A Hariharan
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat, India
| | - Hemant Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat, India.
| |
Collapse
|
162
|
Abe-Sato K, Tabuse H, Kanazawa H, Kamitani M, Endo M, Tokura S, Wakabayashi S, Yahara T, Takeda T, Hitaka K, Gunji E, Kojima N, Oka Y. Structure-Based Optimization and Biological Evaluation of Potent and Selective MMP-7 Inhibitors for Kidney Fibrosis. J Med Chem 2023; 66:14653-14668. [PMID: 37861435 DOI: 10.1021/acs.jmedchem.3c01166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
Matrix metalloproteinase-7 (MMP-7) has been shown to play important roles in pathophysiological processes involved in the development/progression of diseases such as cancer and fibrosis. We discovered selective MMP-7 inhibitors composed of arylsulfonamide, carboxylate, and short peptides by a molecular hybridization approach. These compounds interacted with MMP-7 via multiple hydrogen bonds in the cocrystal structures. To obtain compounds for in vivo evaluation, we attempted structural optimization, particularly targeting Tyr167 at the S3 subsite through structure-based drug design, and identified compound 15 as showing improved MMP-7 potency and MMP subtype selectivity. A novel π-π stacking interaction with Tyr167 was achieved when 4-pyridylalanine was introduced as the P3 residue. Compound 15 suppressed the progression of kidney fibrosis in a dose-dependent manner in a mouse model of unilateral ureteral obstruction. Thus, we demonstrated, for the first time, that potent and selective MMP-7 inhibitors could prevent the progression of kidney fibrosis.
Collapse
Affiliation(s)
- Kumi Abe-Sato
- Medicinal Chemistry Laboratories, Taisho Pharmaceutical Co., Ltd., 1-403, Yoshino-Cho, Kita-Ku, Saitama, Saitama 331-9530, Japan
| | - Hideaki Tabuse
- Medicinal Chemistry Laboratories, Taisho Pharmaceutical Co., Ltd., 1-403, Yoshino-Cho, Kita-Ku, Saitama, Saitama 331-9530, Japan
| | - Harumi Kanazawa
- Medicinal Chemistry Laboratories, Taisho Pharmaceutical Co., Ltd., 1-403, Yoshino-Cho, Kita-Ku, Saitama, Saitama 331-9530, Japan
| | - Masafumi Kamitani
- Discovery Technologies Laboratories, Taisho Pharmaceutical Co., Ltd., 1-403, Yoshino-Cho, Kita-Ku, Saitama, Saitama 331-9530, Japan
| | - Mayumi Endo
- Discovery Technologies Laboratories, Taisho Pharmaceutical Co., Ltd., 1-403, Yoshino-Cho, Kita-Ku, Saitama, Saitama 331-9530, Japan
| | - Seiken Tokura
- Discovery Technologies Laboratories, Taisho Pharmaceutical Co., Ltd., 1-403, Yoshino-Cho, Kita-Ku, Saitama, Saitama 331-9530, Japan
| | - Satoshi Wakabayashi
- Drug Metabolism and Pharmacokinetics Laboratories, Taisho Pharmaceutical Co., Ltd., 1-403, Yoshino-Cho, Kita-Ku, Saitama, Saitama 331-9530, Japan
| | - Tohru Yahara
- Drug Metabolism and Pharmacokinetics Laboratories, Taisho Pharmaceutical Co., Ltd., 1-403, Yoshino-Cho, Kita-Ku, Saitama, Saitama 331-9530, Japan
| | - Takuya Takeda
- Pharmacology Laboratories, Taisho Pharmaceutical Co., Ltd., 1-403, Yoshino-Cho, Kita-Ku, Saitama, Saitama 331-9530, Japan
| | - Kosuke Hitaka
- Pharmacology Laboratories, Taisho Pharmaceutical Co., Ltd., 1-403, Yoshino-Cho, Kita-Ku, Saitama, Saitama 331-9530, Japan
| | - Emi Gunji
- Pharmacology Laboratories, Taisho Pharmaceutical Co., Ltd., 1-403, Yoshino-Cho, Kita-Ku, Saitama, Saitama 331-9530, Japan
| | - Naoki Kojima
- Pharmacology Laboratories, Taisho Pharmaceutical Co., Ltd., 1-403, Yoshino-Cho, Kita-Ku, Saitama, Saitama 331-9530, Japan
| | - Yusuke Oka
- Medicinal Chemistry Laboratories, Taisho Pharmaceutical Co., Ltd., 1-403, Yoshino-Cho, Kita-Ku, Saitama, Saitama 331-9530, Japan
| |
Collapse
|
163
|
Lin B, Nair S, Fellner DMJ, Nasef NA, Singh H, Negron L, Goldstone DC, Brimble MA, Gerrard JA, Domigan L, Evans JC, Stephens JM, Merry TL, Loomes KM. The Leptospermum scoparium (Mānuka)-Specific Nectar and Honey Compound 3,6,7-Trimethyllumazine (Lepteridine TM) That Inhibits Matrix Metalloproteinase 9 (MMP-9) Activity. Foods 2023; 12:4072. [PMID: 38002130 PMCID: PMC10670905 DOI: 10.3390/foods12224072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/30/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
3,6,7-trimethyllumazine (Lepteridine™) is a newly discovered natural pteridine derivative unique to Mānuka (Leptospermum scoparium) nectar and honey, with no previously reported biological activity. Pteridine derivative-based medicines, such as methotrexate, are used to treat auto-immune and inflammatory diseases, and Mānuka honey reportedly possesses anti-inflammatory properties and is used topically as a wound dressing. MMP-9 is a potential candidate protein target as it is upregulated in recalcitrant wounds and intestinal inflammation. Using gelatin zymography, 40 μg/mL LepteridineTM inhibited the gelatinase activities of both pro- (22%, p < 0.0001) and activated (59%, p < 0.01) MMP-9 forms. By comparison, LepteridineTM exerted modest (~10%) inhibition against a chromogenic peptide substrate and no effect against a fluorogenic peptide substrate. These findings suggest that LepteridineTM may not interact within the catalytic domain of MMP-9 and exerts a negligible effect on the active site hydrolysis of small soluble peptide substrates. Instead, the findings implicate fibronectin II domain interactions by LepteridineTM which impair gelatinase activity, possibly through perturbed tethering of MMP-9 to the gelatin matrix. Molecular modelling analyses were equivocal over interactions at the S1' pocket versus the fibronectin II domain, while molecular dynamic calculations indicated rapid exchange kinetics. No significant degradation of synthetic or natural LepteridineTM in Mānuka honey occurred during simulated gastrointestinal digestion. MMP-9 regulates skin and gastrointestinal inflammatory responses and extracellular matrix remodelling. These results potentially implicate LepteridineTM bioactivity in Mānuka honey's reported beneficial effects on wound healing via topical application and anti-inflammatory actions in gastrointestinal disorder models via oral consumption.
Collapse
Affiliation(s)
- Bin Lin
- School of Biological Sciences and Institute for Innovation in Biotechnology, The University of Auckland, Auckland 1142, New Zealand; (B.L.); (S.N.); (D.C.G.); (M.A.B.); (J.A.G.)
| | - Smitha Nair
- School of Biological Sciences and Institute for Innovation in Biotechnology, The University of Auckland, Auckland 1142, New Zealand; (B.L.); (S.N.); (D.C.G.); (M.A.B.); (J.A.G.)
| | - Daniel M. J. Fellner
- School of Chemical Sciences, The University of Auckland, Auckland 1142, New Zealand;
| | - Noha Ahmed Nasef
- Riddet Institute, Massey University, Palmerston North 4410, New Zealand; (N.A.N.); (H.S.)
| | - Harjinder Singh
- Riddet Institute, Massey University, Palmerston North 4410, New Zealand; (N.A.N.); (H.S.)
| | - Leonardo Negron
- Callaghan Innovation, Gracefield Innovation Quarter, 69 Gracefield Road, Lower Hutt 5010, New Zealand;
| | - David C. Goldstone
- School of Biological Sciences and Institute for Innovation in Biotechnology, The University of Auckland, Auckland 1142, New Zealand; (B.L.); (S.N.); (D.C.G.); (M.A.B.); (J.A.G.)
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland 1142, New Zealand;
| | - Margaret A. Brimble
- School of Biological Sciences and Institute for Innovation in Biotechnology, The University of Auckland, Auckland 1142, New Zealand; (B.L.); (S.N.); (D.C.G.); (M.A.B.); (J.A.G.)
- School of Chemical Sciences, The University of Auckland, Auckland 1142, New Zealand;
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland 1142, New Zealand;
| | - Juliet A. Gerrard
- School of Biological Sciences and Institute for Innovation in Biotechnology, The University of Auckland, Auckland 1142, New Zealand; (B.L.); (S.N.); (D.C.G.); (M.A.B.); (J.A.G.)
- School of Chemical Sciences, The University of Auckland, Auckland 1142, New Zealand;
| | - Laura Domigan
- Department of Chemical and Materials Engineering, The University of Auckland, Auckland 1142, New Zealand;
| | - Jackie C. Evans
- Comvita NZ Limited, 23 Wilson Road South, Bay of Plenty, Paengaroa 3189, New Zealand; (J.C.E.); (J.M.S.)
| | - Jonathan M. Stephens
- Comvita NZ Limited, 23 Wilson Road South, Bay of Plenty, Paengaroa 3189, New Zealand; (J.C.E.); (J.M.S.)
| | - Troy L. Merry
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland 1142, New Zealand;
- Comvita NZ Limited, 23 Wilson Road South, Bay of Plenty, Paengaroa 3189, New Zealand; (J.C.E.); (J.M.S.)
- Discipline of Nutrition, School of Medical Sciences, The University of Auckland, Auckland 1142, New Zealand
| | - Kerry M. Loomes
- School of Biological Sciences and Institute for Innovation in Biotechnology, The University of Auckland, Auckland 1142, New Zealand; (B.L.); (S.N.); (D.C.G.); (M.A.B.); (J.A.G.)
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland 1142, New Zealand;
| |
Collapse
|
164
|
Buraczynska M, Wrzos S, Zaluska W. MMP9 Gene Polymorphism (rs3918242) Increases the Risk of Cardiovascular Disease in Type 2 Diabetes Patients. J Clin Med 2023; 12:6990. [PMID: 38002605 PMCID: PMC10672737 DOI: 10.3390/jcm12226990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/20/2023] [Accepted: 11/04/2023] [Indexed: 11/26/2023] Open
Abstract
Matrix metalloproteinase 9 (MMP-9) C(-1562)T gene polymorphism has been considered a risk factor for cardiovascular disease (CVD). Our study aimed to evaluate the association between this polymorphism and CVD in diabetes patients. The genotyping was performed in 740 patients with T2DM and 400 healthy subjects. A significant difference in the polymorphism distribution was revealed between patients and controls. The T allele and TT homozygote were associated with increased risk of diabetes (OR 1.88, p < 0.0001 and OR 3.77, p = 0.0002, respectively). The comparison between CVD+ and CVD- subgroups showed a much higher frequency of the T allele in patients with CVD (OR 2.87, 95% CI 2.14-3.85, p < 0.0001). Patients with the TT genotype had a higher prevalence of CVD (OR 3.19, 95% CI 1.55-6.56, p = 0.0015). The carrier genotypes (CT/TT) were correlated with HDL levels in both CVD+ and CVD- subgroups (p < 0.001 for both). In the logistic regression analysis, only C(-1562)T SNP was a significant predictor of CVD in diabetic patients (p < 0.001). In conclusion, our study suggests an association between MMP-9 C(-1562)T polymorphism and an increased risk of CVD in T2DM. If replicated in other studies, it could be considered a genetic marker for predicting risk of T2DM and its cardiovascular comorbidity.
Collapse
Affiliation(s)
- Monika Buraczynska
- Department of Nephrology, Medical University of Lublin, 20-093 Lublin, Poland; (S.W.); (W.Z.)
| | | | | |
Collapse
|
165
|
Sekerci CA, Kutukoglu MU, Basok BI, Fidan M, Cam S, Yucel S, Tarcan T. The association of urinary BDNF, ATP, and MMP-2 with bladder compliance in children with myelodysplasia. Neurourol Urodyn 2023; 42:1686-1693. [PMID: 37605946 DOI: 10.1002/nau.25269] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 08/11/2023] [Accepted: 08/16/2023] [Indexed: 08/23/2023]
Abstract
AIM The purpose of our study was to evaluate the relationship of urinary brain-derived neurotrophic factor (BDNF), adenosine triphosphate (ATP), matrix metallopreteinase-2 (MMP-2) with urodynamic findings and upper urinary tract deterioration (UUTD) in children with myelodysplasia. MATERIALS AND METHODS Children with myelodysplasia evaluated in outpatient clinic between 2022 and 2023 were included. All patients underwent urinary ultrasonography, voiding cystourethrography, urodynamics, and DMSA scintigraphy. Urine samples were collected before urodynamics. Control urine was collected from 10 healthy children. Urinary biomarker values of patients and controls were compared, and subgroup analysis was performed. RESULTS The median age of 40 children (26 girls) included in the study was 108 (8-216) months, and the control group (six girls) was 120 (60-154) (p = 0.981). Urinary BDNF, MMP-2, and ATP were found to be significantly higher in children with myelodysplasia compared to the control (p = 0.007, p = 0.027, p = 0.014, respectively). The three biomarker values were similar in children with bladder compliance below or above 10 cmH2O/mL (p = 0.750, p = 0.844, p = 0.575). No difference was found in terms of UUTD in all three biomarkers (p = 0.387, p = 0.892, p = 0.705). A negative correlation was found between urinary ATP and compliance (p < 0.05). CONCLUSION In this study, all three biomarkers were found to be higher in children with myelodysplasia than in controls. There was a negative correlation between urinary ATP and compliance. Urinary biomarkers may contribute the follow-up of children with neurogenic lower urinary tract deterioration in future with their noninvasive features. However, the lack of standardization and the inability to reliably predict risky groups are important shortcomings of urinary biomarkers.
Collapse
Affiliation(s)
- Cagri Akin Sekerci
- Department of Urology, Division of Pediatric Urology, School of Medicine, Marmara University, Istanbul, Turkey
| | | | - Banu Isbilen Basok
- Department of Biochemistry, Tepecik Training and Research Hospital, University of Health Sciences, Izmir, Turkey
| | - Mesut Fidan
- Department of Biochemistry, Tepecik Training and Research Hospital, University of Health Sciences, Izmir, Turkey
| | - Sebahat Cam
- Department of Pediatric Gastroenterology, School of Medicine, Medeniyet University, Istanbul, Turkey
| | - Selcuk Yucel
- Department of Urology, Division of Pediatric Urology, School of Medicine, Marmara University, Istanbul, Turkey
| | - Tufan Tarcan
- Department of Urology, Division of Pediatric Urology, School of Medicine, Marmara University, Istanbul, Turkey
- Department of Urology, School of Medicine, Koç University, Istanbul, Turkey
| |
Collapse
|
166
|
Olusakin J, Kumar G, Basu M, Calarco CA, Fox ME, Alipio JB, Haga C, Turner MD, Keller A, Ament SA, Lobo MK. Transcriptomic profiling of reward and sensory brain areas in perinatal fentanyl exposed juvenile mice. Neuropsychopharmacology 2023; 48:1724-1734. [PMID: 37400565 PMCID: PMC10579237 DOI: 10.1038/s41386-023-01639-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 06/14/2023] [Accepted: 06/16/2023] [Indexed: 07/05/2023]
Abstract
Use of the synthetic opioid fentanyl increased ~300% in the last decade, including among women of reproductive ages. Adverse neonatal outcomes and long-term behavioral disruptions are associated with perinatal opioid exposure. Our previous work demonstrated that perinatal fentanyl exposed mice displayed enhanced negative affect and somatosensory circuit and behavioral disruptions during adolescence. However, little is known about molecular adaptations across brain regions that underlie these outcomes. We performed RNA sequencing across three reward and two sensory brain areas to study transcriptional programs in perinatal fentanyl exposed juvenile mice. Pregnant dams received 10 μg/ml fentanyl in the drinking water from embryonic day 0 (E0) through gestational periods until weaning at postnatal day 21 (P21). RNA was extracted from nucleus accumbens (NAc), prelimbic cortex (PrL), ventral tegmental area (VTA), somatosensory cortex (S1) and ventrobasal thalamus (VBT) from perinatal fentanyl exposed mice of both sexes at P35. RNA sequencing was performed, followed by analysis of differentially expressed genes (DEGs) and gene co-expression networks. Transcriptome analysis revealed DEGs and gene modules significantly associated with exposure to perinatal fentanyl in a sex-wise manner. The VTA had the most DEGs, while robust gene enrichment occurred in NAc. Genes enriched in mitochondrial respiration were pronounced in NAc and VTA of perinatal fentanyl exposed males, extracellular matrix (ECM) and neuronal migration enrichment were pronounced in NAc and VTA of perinatal fentanyl exposed males, while genes associated with vesicular cycling and synaptic signaling were markedly altered in NAc of perinatal fentanyl exposed female mice. In sensory areas from perinatal fentanyl exposed females, we found alterations in mitochondrial respiration, synaptic and ciliary organization processes. Our findings demonstrate distinct transcriptomes across reward and sensory brain regions, with some showing discordance between sexes. These transcriptome adaptations may underlie structural, functional, and behavioral changes observed in perinatal fentanyl exposed mice.
Collapse
Affiliation(s)
- Jimmy Olusakin
- Department of Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
- Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Gautam Kumar
- Department of Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
- Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Mahashweta Basu
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Cali A Calarco
- Department of Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
- Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Megan E Fox
- Department of Anesthesiology, Penn State College of Medicine, Hershey, PA, USA
| | - Jason B Alipio
- Department of Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
- Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Catherine Haga
- Department of Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
- Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Makeda D Turner
- Department of Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Asaf Keller
- Department of Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
- Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Seth A Ament
- Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD, USA
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Mary Kay Lobo
- Department of Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA.
- Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD, USA.
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
167
|
Pant A, Dakal TC, Moar K, Dhabhai B, Arora TK, Sharma NK, Ranga V, Maurya PK. Assessment of MMP14, CAV2, CLU and SPARCL1 expression profiles in endometriosis. Pathol Res Pract 2023; 251:154892. [PMID: 37898038 DOI: 10.1016/j.prp.2023.154892] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/10/2023] [Accepted: 10/12/2023] [Indexed: 10/30/2023]
Abstract
Endometriotic cells exhibit a notable degree of invasiveness and some characteristics of tissue remodeling underlying lesion formation. In this regard, do matrix metalloproteinases 14 (MMP14) and other related genes such as SPARC-like protein 1 (SPARCL1), caveolin 2 (CAV2), and clusterin (CLU) exert any significant influence in the processes of endometriosis development and pathophysiology is not apparent. We aim to assess whether these genes could serve as potential diagnostic biomarkers in endometriosis. Microarray-based gene expression analysis was performed on total RNA extracted from endometriotic tissue samples treated with and without gonadotropin-releasing hormone agonist (GnRHa). The GnRHa untreated patients were considered the control group. The validation of genes was performed using quantitative real-time polymerase chain reaction (qRT-PCR). qRT-PCR analysis showed significant downregulation in the expression of MMP14 (p = 0.024), CAV2 (p = 0.017), and upregulation of CLU (p = 0.005) in endometriosis patients treated with GnRHa. SPARCL1 did not show any significant (p = 0.30) change in the expression compared to the control group. These data have the potential to contribute to the comprehension of the molecular pathways implicated in the remodeling of the extracellular matrix, which is a vital step for the physiology of the endometrium. Based on the result, it is concluded that changes in the expression of MMP14, CAV2, and CLU post-treatment imply their role in the pathophysiology of endometriosis and may serve as a potential diagnostic biomarker of endometriosis in response to GnRHa treatment in patients with ovarian endometrioma.
Collapse
Affiliation(s)
- Anuja Pant
- Department of Biochemistry, Central University of Haryana, Mahendergarh 123031, India
| | - Tikam Chand Dakal
- Genome and Computational Biology Lab, Department of Biotechnology, Mohanlal Sukhadia University, Udaipur 313001, Rajasthan, India
| | - Kareena Moar
- Department of Biochemistry, Central University of Haryana, Mahendergarh 123031, India
| | - Bhanupriya Dhabhai
- Genome and Computational Biology Lab, Department of Biotechnology, Mohanlal Sukhadia University, Udaipur 313001, Rajasthan, India
| | - Taruna K Arora
- Reproductive Biology and Maternal Child Health Division, Indian Council of Medical Research, New Delhi 110029, India
| | - Narendra Kumar Sharma
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Tonk 304022, Rajasthan, India
| | - Vipin Ranga
- Department of Biotechnology-North East Centre for Agricultural Biotechnology (DBT-NECAB), Assam Agricultural University, Jorhat 785013, Assam, India
| | - Pawan Kumar Maurya
- Department of Biochemistry, Central University of Haryana, Mahendergarh 123031, India.
| |
Collapse
|
168
|
Zhang Y, Han R, Xu S, Chen J, Zhong Y. Matrix Metalloproteinases in Glaucoma: An Updated Overview. Semin Ophthalmol 2023; 38:703-712. [PMID: 37224230 DOI: 10.1080/08820538.2023.2211149] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 04/20/2023] [Accepted: 04/21/2023] [Indexed: 05/26/2023]
Abstract
Matrix metalloproteinases (MMPs) are important regulators of the extracellular matrix (ECM) and are involved in many stages of cellular growth and development. An imbalance of MMP expression is also the basis of many diseases, including eye diseases, such as diabetic retinopathy (DR), glaucoma, dry eye, corneal ulcer, keratoconus. This paper describes the role of MMPs in the glaucoma and their role in the glaucomatous trabecular meshwork (TM), aqueous outflow channel, retina, and optic nerve (ON). This review also summarizes several treatments for glaucoma that target MMPs imbalance and suggests that MMPs may represent a viable therapeutic target for glaucoma.
Collapse
Affiliation(s)
- Yang Zhang
- Department of Ophthalmology, Ruijin Hospital Affiliated Medical School, Shanghai Jiaotong University, Shanghai, China
| | - Ruiqi Han
- Department of Ophthalmology, Ruijin Hospital Affiliated Medical School, Shanghai Jiaotong University, Shanghai, China
| | - Shushu Xu
- Department of Ophthalmology, Ruijin Hospital Affiliated Medical School, Shanghai Jiaotong University, Shanghai, China
| | - Junjue Chen
- Department of Ophthalmology, Ruijin Hospital Affiliated Medical School, Shanghai Jiaotong University, Shanghai, China
| | - Yisheng Zhong
- Department of Ophthalmology, Ruijin Hospital Affiliated Medical School, Shanghai Jiaotong University, Shanghai, China
| |
Collapse
|
169
|
Keleş D, Sipahi M, İnanç-Sürer Ş, Djamgoz MB, Oktay G. Tetracaine downregulates matrix metalloproteinase activity and inhibits invasiveness of strongly metastatic MDA-MB-231 human breast cancer cells. Chem Biol Interact 2023; 385:110730. [PMID: 37806380 DOI: 10.1016/j.cbi.2023.110730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 09/19/2023] [Accepted: 09/25/2023] [Indexed: 10/10/2023]
Abstract
Tetracaine, a long-acting amino ester-type local anesthetic, prevents the initiation and propagation of action potentials by reversibly blocking voltage-gated sodium channels (VGSCs). These channels, which are highly expressed in several carcinomas (e.g. breast, prostate, colon and lung cancers) have been implicated in promoting metastatic behaviours. Recent evidence suggests that local anesthetics can suppress cancer progression. In this paper, we aimed to explore whether tetracaine would reduce the invasive characteristics of breast cancer cells. In a comparative approach, we used two cell lines of contracting metastatic potential: MDA-MB-231 (strongly metastatic) and MCF-7 (weakly metastatic). Tetracaine (50 μM and 75 μM) did not affect the proliferation of both MDA-MB-231 and MCF-7 cells. Importantly, tetracaine suppressed the migratory, invasive, and adhesive capacities of MDA-MB-231 cells; there was no effect on the motility of MCF-7 cells. Tetracaine treatment also significantly decreased the expression and activity levels of MMP-2 and MMP-9, whilst increasing TIMP-2 expression in MDA-MB-231 cells. On the other hand, VGSC α/Nav1.5 and VGSC-β1 mRNA and protein expression levels were not affected. We conclude that tetracaine has anti-invasive effects on breast cancer cells and may be exploited clinically, for example, in surgery and/or in combination therapies.
Collapse
Affiliation(s)
- Didem Keleş
- Izmir University of Economics, Vocational School of Health Services, Medical Laboratory Techniques, 35330, Balcova, Izmir, Turkey; Dokuz Eylül University, School of Medicine, Department of Medical Biochemistry, 35340, Inciralti, Izmir, Turkey
| | - Murat Sipahi
- Dokuz Eylül University, School of Medicine, Department of Medical Biochemistry, 35340, Inciralti, Izmir, Turkey
| | - Şeniz İnanç-Sürer
- Dokuz Eylül University, School of Medicine, Department of Medical Biochemistry, 35340, Inciralti, Izmir, Turkey
| | - Mustafa Ba Djamgoz
- Imperial College London, Department of Life Sciences, South Kensington Campus, SW7 2AZ, London, UK; Biotechnology Research Centre, Cyprus International University, Haspolat, Nicosia, TRNC, Mersin 10, Turkey
| | - Gülgün Oktay
- Dokuz Eylül University, School of Medicine, Department of Medical Biochemistry, 35340, Inciralti, Izmir, Turkey.
| |
Collapse
|
170
|
Miri‐Moghaddam E, Mousavi FS, Salehiniya H, Vafaeie F, Abbaszadeh H. The association between MMP-13 rs478927 gene polymorphism and dental caries susceptibility in children with mixed dentition from Birjand, Iran: A case-control study. Health Sci Rep 2023; 6:e1708. [PMID: 38028692 PMCID: PMC10654377 DOI: 10.1002/hsr2.1708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 08/10/2023] [Accepted: 10/31/2023] [Indexed: 12/01/2023] Open
Abstract
Background and Aims Gene polymorphisms are responsible for at least part of the variation in caries susceptibility despite similar environmental factors. Genes involved in enamel formation like matrix metalloproteinase-13 (MMP-13) may participate in caries process. The aim was to investigate the association between MMP-13 rs478927 polymorphism and caries susceptibility in 6-years-old children from Birjand, Iran. Methods Six-years old children from Birjand, Iran, participated in this study. The total decayed, missing, and filled teeth were calculated and defined as caries index (CI). Based on this CI, two groups of high-caries (case) and low-caries (control) were taken into account. Saliva samples were collected and DNA was extracted. The allele and genotypes of MMP-13 rs478927 polymorphism were determined by tetra-primer amplification refractory mutation system-polymerase chain reaction (T-ARMS-PCR) method. p Value was significant if p < 0.05. Results Three hundred sixty-seven children consisted of 186 low-caries children and 181 high-caries children were included in this study. The mean CI was 6.02 ± 0.81. There was no significant association between high and low-caries groups based on socioeconomic status, eating sweet snacks, parents' susceptibility to dental caries, duration of breastfeeding, and the brushing habit (p > 0.05). There wasn't any significant association between genotype distribution of MMP-13 rs478927 polymorphism and CI groups (p = 0.924). This polymorphism was associated with increased caries susceptibility under all genetic models but this effect was not significant (p > 0.05). Conclusion The MMP-13 rs478927 gene polymorphism was not significantly associated with dental caries susceptibility in Birjandi children with mixed dentition. It is recommended to conduct studies on children of different dentitions to better understand the role of this polymorphism on caries susceptibility in primary and permanent teeth of children.
Collapse
Affiliation(s)
- Ebrahim Miri‐Moghaddam
- Department of Molecular Medicine, Cardiovascular Diseases Research Center, Faculty of MedicineBirjand University of Medical SciencesBirjandIran
| | | | - Hamid Salehiniya
- Social Determinants of Health Research CenterBirjand University of Medical SciencesBirjandIran
| | - Farzaneh Vafaeie
- Department of Medical Genetics, Facultyof MedicineBirjand University of Medical SciencesBirjandIran
| | - Hamid Abbaszadeh
- Department of Oral and Maxillofacial Pathology, Faculty of DentistryBirjand University of Medical SciencesBirjandIran
| |
Collapse
|
171
|
Zheng X, Li W, Xiang Q, Wang Y, Qu T, Fang W, Yang H. Memantine Attenuates Cognitive and Emotional Dysfunction in Mice with Sepsis-Associated Encephalopathy. ACS OMEGA 2023; 8:40934-40943. [PMID: 37929090 PMCID: PMC10620906 DOI: 10.1021/acsomega.3c06250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 09/26/2023] [Indexed: 11/07/2023]
Abstract
Sepsis-associated encephalopathy (SAE) is the most common complication of sepsis, with increased morbidity and mortality. To date, there has still been no established pharmacological therapy. Memantine, as an NMDA (N-methyl-d-aspartate) receptor antagonist, exhibited neuroprotective effects against cognitive and emotional dysfunction in many disorders. We performed cecal ligation and puncture (CLP) inducing sepsis as the ideal animal model of SAE. CLP-induced septic mice were given a memantine treatment through intragastric administration. The novel object recognition test indicated that memantine significantly improved cognitive dysfunction in septic mice. The open field test revealed that the anxiety-like behaviors and locomotion ability of septic mice were relieved by memantine. The pole test further confirmed the protective effects of memantine against immobility. Memantine significantly inhibited the excessive glutamate production and improved impaired neurogenesis on first and seventh day after sepsis, accompanying with reducing proinflammatory cytokines production (tumor necrosis factor alpha (TNF-α), interleukin (IL)-1beta (IL-1β), and IL-10) and microglia activation in the brain of SAE. In addition, memantine treatment also reducing sepsis-induced brain blood barrier disruption via inhibiting the expression of metalloproteinase-9 (MMP-9). In conclusion, memantine exerted neuro-protective effects against cognitive and emotional defects, which might be considered as a promising therapy for SAE.
Collapse
Affiliation(s)
- XiaoYu Zheng
- Department
of Critical-Care Medicine, Shandong Provincial Hospital, Shandong University, Jinan 250021, China
| | - WenYu Li
- Department
of Critical-Care Medicine, Shandong Provincial Hospital Affiliated
to Shandong First Medical University, Shandong
First Medical University, Jinan 250021, China
| | - Qian Xiang
- Department
of Critical-Care Medicine, Shandong Provincial Hospital, Shandong University, Jinan 250021, China
| | - YanXue Wang
- Department
of Critical-Care Medicine, Shandong Provincial Hospital Affiliated
to Shandong First Medical University, Shandong
First Medical University, Jinan 250021, China
| | - TingYu Qu
- The
Psychiatric Institute, Department of Psychiatry, College of Medicine, University of Illinois at Chicago, 1601 West Taylor Street, Chicago, Illinois 60612, United States
| | - Wei Fang
- Department
of Critical-Care Medicine, Shandong Provincial Hospital Affiliated
to Shandong First Medical University, Shandong
First Medical University, Jinan 250021, China
| | - HongNa Yang
- Department
of Critical-Care Medicine, Shandong Provincial Hospital, Shandong University, Jinan 250021, China
- Department
of Critical-Care Medicine, Shandong Provincial Hospital Affiliated
to Shandong First Medical University, Shandong
First Medical University, Jinan 250021, China
| |
Collapse
|
172
|
Cai R, Tressler CM, Cheng M, Sonkar K, Tan Z, Paidi SK, Ayyappan V, Barman I, Glunde K. Primary breast tumor induced extracellular matrix remodeling in premetastatic lungs. Sci Rep 2023; 13:18566. [PMID: 37903851 PMCID: PMC10616170 DOI: 10.1038/s41598-023-45832-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 10/24/2023] [Indexed: 11/01/2023] Open
Abstract
The premetastatic niche hypothesis proposes an active priming of the metastatic site by factors secreted from the primary tumor prior to the arrival of the first cancer cells. We investigated several extracellular matrix (ECM) structural proteins, ECM degrading enzymes, and ECM processing proteins involved in the ECM remodeling of the premetastatic niche. Our in vitro model consisted of lung fibroblasts, which were exposed to factors secreted by nonmalignant breast epithelial cells, nonmetastatic breast cancer cells, or metastatic breast cancer cells. We assessed ECM remodeling in vivo in premetastatic lungs of female mice growing orthotopic primary breast tumor xenografts, as compared to lungs of control mice without tumors. Premetastatic lungs contained significantly upregulated Collagen (Col) Col4A5, matrix metalloproteinases (MMPs) MMP9 and MMP14, and decreased levels of MMP13 and lysyl oxidase (LOX) as compared to control lungs. These in vivo findings were consistent with several of our in vitro cell culture findings, which showed elevated Col14A1, Col4A5, glypican-1 (GPC1) and decreased Col5A1 and Col15A1 for ECM structural proteins, increased MMP2, MMP3, and MMP14 for ECM degrading enzymes, and decreased LOX, LOXL2, and prolyl 4-hydroxylase alpha-1 (P4HA1) for ECM processing proteins in lung fibroblasts conditioned with metastatic breast cancer cell media as compared to control. Taken together, our data show that premetastatic priming of lungs by primary breast tumors resulted in significant ECM remodeling which could facilitate metastasis by increasing interstitial fibrillar collagens and ECM stiffness (Col14A1), disruptions of basement membranes (Col4A5), and formation of leaky blood vessels (MMP2, MMP3, MMP9, and MMP14) to promote metastasis.
Collapse
Affiliation(s)
- Ruoqing Cai
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of Cancer Imaging Research, The Johns Hopkins University School of Medicine, 720 Rutland Avenue, Traylor Building, Room 203, Baltimore, MD, 21205, USA
| | - Caitlin M Tressler
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of Cancer Imaging Research, The Johns Hopkins University School of Medicine, 720 Rutland Avenue, Traylor Building, Room 203, Baltimore, MD, 21205, USA
| | - Menglin Cheng
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of Cancer Imaging Research, The Johns Hopkins University School of Medicine, 720 Rutland Avenue, Traylor Building, Room 203, Baltimore, MD, 21205, USA
| | - Kanchan Sonkar
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of Cancer Imaging Research, The Johns Hopkins University School of Medicine, 720 Rutland Avenue, Traylor Building, Room 203, Baltimore, MD, 21205, USA
| | - Zheqiong Tan
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of Cancer Imaging Research, The Johns Hopkins University School of Medicine, 720 Rutland Avenue, Traylor Building, Room 203, Baltimore, MD, 21205, USA
- Department of Medical Laboratory, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Santosh Kumar Paidi
- The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Vinay Ayyappan
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of Cancer Imaging Research, The Johns Hopkins University School of Medicine, 720 Rutland Avenue, Traylor Building, Room 203, Baltimore, MD, 21205, USA
| | - Ishan Barman
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of Cancer Imaging Research, The Johns Hopkins University School of Medicine, 720 Rutland Avenue, Traylor Building, Room 203, Baltimore, MD, 21205, USA
- The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Kristine Glunde
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of Cancer Imaging Research, The Johns Hopkins University School of Medicine, 720 Rutland Avenue, Traylor Building, Room 203, Baltimore, MD, 21205, USA.
- The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
173
|
Alfano F, Cesari F, Gori AM, Berteotti M, Salvadori E, Giusti B, Bertelli A, Kura A, Barbato C, Formelli B, Pescini F, Fainardi E, Chiti S, Marzi C, Diciotti S, Marcucci R, Poggesi A. The Role of Extracellular Matrix and Inflammation in the Stratification of Bleeding and Thrombotic Risk of Atrial Fibrillation on Oral Anticoagulant Therapy: Insights from Strat-Af Study. J Clin Med 2023; 12:6866. [PMID: 37959331 PMCID: PMC10647302 DOI: 10.3390/jcm12216866] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 10/20/2023] [Accepted: 10/28/2023] [Indexed: 11/15/2023] Open
Abstract
In anticoagulated atrial fibrillation (AF) patients, the validity of models recommended for the stratification of the risk ratio between benefits and hemorrhage risk is limited. We hypothesize that both circulating and neuroimaging-based markers might improve the prediction of bleeding and thrombotic risk in anticoagulated AF patients. The Strat-AF study is an observational, prospective, single-center study enrolling 170 patients with AF; recruited patients are evaluated by means of a comprehensive protocol, with clinical, cerebral magnetic resonance imaging and circulating biomarkers assessment. The main outcome is the evaluation of cerebral microangiopathy related to the levels of circulating biomarkers of inflammation and extracellular matrix (ECM) remodeling. At multivariate logistic regression analysis adjusted for age, sex, CHA2DS2-VASc, HAS-BLED and type of anticoagulant, matrix metalloproteinases (MMP)-2 levels were significantly and positively associated with the presence of cerebral microbleeds (CMBs). A significant association between MMP-2, tissue inhibitor of metalloproteinases (TIMP)-1,-2,-4 levels and white matter hyperintensity was also found. Concerning the small vessel disease (SVD) score, MMP-2 and TIMP-1,-2 levels were associated with the presence of two and three or more signs of SVD, whereas TIMP-4 levels were associated with the presence of three signs of SVD with respect to patients with no instrumental signs of SVD. As regarding the presence of enlarged perivascular spaces (EPVS), a significant association was found for high levels of interleukin (IL)-8 and TIMP 1-2-3. These results demonstrate that patients with AF have evidence of impaired ECM degradation, which is an independent risk factor for thrombotic complications of AF patients on oral anticoagulant therapy. The incorporation of these markers in the prognostic schemes might improve their clinical capability in predicting stroke risk and thrombotic complications.
Collapse
Affiliation(s)
- Francesco Alfano
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy; (F.A.); (F.C.); (A.M.G.); (M.B.); (B.G.); (A.B.); (A.K.)
- Center for Atherothrombotic Diseases, Careggi University Hospital, 50134 Florence, Italy
| | - Francesca Cesari
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy; (F.A.); (F.C.); (A.M.G.); (M.B.); (B.G.); (A.B.); (A.K.)
- Center for Atherothrombotic Diseases, Careggi University Hospital, 50134 Florence, Italy
| | - Anna Maria Gori
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy; (F.A.); (F.C.); (A.M.G.); (M.B.); (B.G.); (A.B.); (A.K.)
- Center for Atherothrombotic Diseases, Careggi University Hospital, 50134 Florence, Italy
| | - Martina Berteotti
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy; (F.A.); (F.C.); (A.M.G.); (M.B.); (B.G.); (A.B.); (A.K.)
- Center for Atherothrombotic Diseases, Careggi University Hospital, 50134 Florence, Italy
| | - Emilia Salvadori
- NEUROFARBA Department, Neuroscience Section, University of Florence, 50134 Florence, Italy; (E.S.); (C.B.); (B.F.); (A.P.)
- Stroke Unit, Careggi University Hospital, 50134 Florence, Italy;
| | - Betti Giusti
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy; (F.A.); (F.C.); (A.M.G.); (M.B.); (B.G.); (A.B.); (A.K.)
- Center for Atherothrombotic Diseases, Careggi University Hospital, 50134 Florence, Italy
| | - Alessia Bertelli
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy; (F.A.); (F.C.); (A.M.G.); (M.B.); (B.G.); (A.B.); (A.K.)
| | - Ada Kura
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy; (F.A.); (F.C.); (A.M.G.); (M.B.); (B.G.); (A.B.); (A.K.)
- Center for Atherothrombotic Diseases, Careggi University Hospital, 50134 Florence, Italy
| | - Carmen Barbato
- NEUROFARBA Department, Neuroscience Section, University of Florence, 50134 Florence, Italy; (E.S.); (C.B.); (B.F.); (A.P.)
| | - Benedetta Formelli
- NEUROFARBA Department, Neuroscience Section, University of Florence, 50134 Florence, Italy; (E.S.); (C.B.); (B.F.); (A.P.)
| | | | - Enrico Fainardi
- Neuroradiology Unit, Careggi University Hospital, Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50134 Florence, Italy;
| | - Stefano Chiti
- Health Physics Unit, Careggi University Hospital, 50134 Florence, Italy;
| | - Chiara Marzi
- Institute of Applied Physics “Nello Carrara” (IFAC), National Research Council of Italy (CNR), 50019 Sesto Fiorentino, Italy;
| | - Stefano Diciotti
- Department of Electrical, Electronic, and Information Engineering “Guglielmo Marconi”, University of Bologna, 40126 Bologna, Italy;
| | - Rossella Marcucci
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy; (F.A.); (F.C.); (A.M.G.); (M.B.); (B.G.); (A.B.); (A.K.)
- Center for Atherothrombotic Diseases, Careggi University Hospital, 50134 Florence, Italy
| | - Anna Poggesi
- NEUROFARBA Department, Neuroscience Section, University of Florence, 50134 Florence, Italy; (E.S.); (C.B.); (B.F.); (A.P.)
- Stroke Unit, Careggi University Hospital, 50134 Florence, Italy;
| |
Collapse
|
174
|
Oylumlu E, Uzel G, Durmus L, Ciraci C. IgE Immune Complexes Mitigate Eosinophilic Immune Responses through NLRC4 Inflammasome. Mediators Inflamm 2023; 2023:3224708. [PMID: 37885469 PMCID: PMC10599938 DOI: 10.1155/2023/3224708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 09/25/2023] [Accepted: 09/30/2023] [Indexed: 10/28/2023] Open
Abstract
Immune complexes (ICs) skew immune responses toward either a pro- or anti-inflammatory direction based on the type of stimulation. Immunoglobulin E (IgE) is associated with Th2 immune responses and known to activate innate immune cells. However, roles of antigen (Ag)-specific-IgE ICs in regulating human eosinophil responses remain elusive; therefore, this study builts upon the mechanism of which ovalbumin (Ova)-IgE ICs affects eosinophilic responses utilizing human EoL-1 cell line as a model. Eosinophils are granulocytes functioning through pattern recognition receptors (PRRs) and destructive granule contents in allergic inflammation and parasitic infections. One of the PRRs that eosinophils express is NLRC4, a member of the CARD domain containing nucleotide-binding oligomerization (NOD)-like receptor (NLR) family. Upon recognition of its specific ligand flagellin, NLRC4 inflammasome is formed and leads to the release of interleukin-1β (IL-1β). We exhibited that Ova-IgE ICs induced the NLRC4-inflammasome components, including NLRC4, caspase-1, intracellular IL-1β, and secretion of IL-1β, as well as the granule contents MMP9, TIMP1, and TIMP2 proteins via TLR2 signaling; these responses were suppressed, when NLRC4 inflammasome got actived in the presence of ICs. Furthermore, Ova-IgE ICs induced mRNA expressions of MMP9, TIMP2, and ECP and protein expressions of MMP9 and TIMP2 in EoL-1 through FcɛRII. Interestingly, TLR2 ligand and Ova-IgE ICs costimulation elevated the number of CD63+ cells, a degranulation marker, as compared to the native IgE. Collectively, our findings provide a mechanism for the impacts of Ova-IgE ICs on eosinophilic responses via NLRC4-inflammasome and may help understand eosinophil-associated diseases, including chronic eosinophilic pneumonia, eosinophilic esophagitis, eosinophilic granulomatosis, parasitic infections, allergy, and asthma.
Collapse
Affiliation(s)
- Ece Oylumlu
- Molecular Biology and Genetics Department, Istanbul Technical University, Istanbul 34469, Turkey
| | - Goksu Uzel
- Molecular Biology and Genetics Department, Istanbul Technical University, Istanbul 34469, Turkey
| | - Lubeyne Durmus
- Molecular Biology and Genetics Department, Istanbul Technical University, Istanbul 34469, Turkey
| | - Ceren Ciraci
- Molecular Biology and Genetics Department, Istanbul Technical University, Istanbul 34469, Turkey
| |
Collapse
|
175
|
Zhao Y, Xu X, Li L, Zheng K, Wang X, Zhang M, Xu Y. Effect of etchant containing an Urushiol monomer from lacquer sap on dentin biostability and bonding performance. Front Bioeng Biotechnol 2023; 11:1251655. [PMID: 37901840 PMCID: PMC10613032 DOI: 10.3389/fbioe.2023.1251655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 08/10/2023] [Indexed: 10/31/2023] Open
Abstract
Objectives: This study aimed to evaluate the effectiveness of urushiol as an additive to surface acid etchant on dentin structure, by assessing the biostability of dentin, and determine the bonding strengths of dentin and enamel to the composite in the complicated oral microecology. Methods: Etchants with different concentrations of urushiol (0.5, 1, or 3 wt%) were formulated and tested for their bonding performance. Demineralized dentin beams that were etched with experimental etchants were incubated in simulated body fluid solutions by evaluating the weight decrement after 1 month. The effects of urushiol on dentin and matrix metalloproteinases were confirmed by scanning electron microscopy (SEM). Moreover, the antibiotic actions of urushiol on the common cariogenic bacteria Streptococcus mutans, Streptococcus sanguinis, and Streptococcus gordonii as well as the biofilm were evaluated, and its effect on bacterial morphology was observed by scanning electron microscopy. Finally, enamel and dentin specimens were prepared from human molars to determine the depth of demineralization by the etchants and the relationship with the resin bond strengths to enamel and dentin (μTBS) and the morphology of the bonding interface. Results: Urushiol could interact with dentine and inhibit collagenase activity, resulting in biostable dentine. The application of the etchants containing 0.5, 1, or 3 wt% urushiol significantly improved the durability of the dentin bonding interface with its instinctive antibacterial property (p < 0.05). Conclusion: Urushiol not only improves dentin stability by interacting with collagen and inactivating MMP activity but also plays a role in the antibacterial effects in the complicated oral microecology. The effectiveness of urushiol etchant prolongs the longevity of bonded dental restorations without compromising clinical operation time.
Collapse
Affiliation(s)
- Ying Zhao
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
- Department of Prosthodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Xuanwen Xu
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
- Department of Periodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
| | - Lu Li
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
- Department of Periodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
| | - Kai Zheng
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Xiaoqian Wang
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
- Department of Periodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
| | - Ming Zhang
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Yan Xu
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
- Department of Periodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
176
|
Jamal H, Yaghmoor R, Abed H, Young A, Ashley P. Impact of Dentine Pretreatment with Matrix Metalloproteinase Inhibitors on Bond Strength of Coronal Composite Restorations: A Systematic Review and Meta-analysis of In Vitro Studies. Eur J Dent 2023; 17:974-999. [PMID: 36400108 PMCID: PMC10756735 DOI: 10.1055/s-0042-1757582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Matrix metalloproteinase (MMP) enzymes participate in collagen matrix degradation, including in dentine, potentially compromising bond strength. Therefore, MMP inhibitors have been hypothesized to improve restoration bond strength and stability. This systematic review aimed to evaluate the influence of different MMP inhibitors applied as dentine surface pretreatments on the immediate (24 hours) and longer term (months) bond strength of direct coronal composite restorations. This systematic literature review followed the Preferred Reporting Items for Systematic Review and Meta-analyses (PRISMA) statement. A systematic literature search of three databases (Ovid MEDLINE, Ovid Embase, and Google Scholar) was conducted independently by two reviewers from inception to April 2022. An adapted quality assessment tool was independently applied by two reviewers for risk of bias assessment. RevMan v5.4 software was used for meta-analyses. A randomeffectsmodel was used to generatemean differences with 95% confidence intervals for treatment and control comparisons. The Q-test and I2-test were used to test for heterogeneity. The proportion of total variance across studies attributable to heterogeneity rather than chance was calculated. Overall effects were tested using the Z-test, while subgroup differences were tested using Chi-squared tests. Of 934 studies, 64 studies were included in the systematic review and 42 in the meta-analysis. Thirty-one MMP inhibitors were reported, three of which were included in the meta-analysis: 2% chlorhexidine (CHX), 0.3M carbodiimide (EDC), and 0.1% riboflavin (RIBO). Pretreatment with 2% CHX for 30 and 60 seconds did not significantly improve bond strength compared with controls either immediately or after long-termageing. However, pretreatment with 0.3MEDC and 0.1% RIBO (but not CHX) significantly improved bond strength compared with control groups both immediately and over time. Most studies showed a medium risk of bias. These in vitro findings pave the way for rationale clinical trialing of dentine surface pretreatment with MMP inhibitors to improve clinical outcomes.
Collapse
Affiliation(s)
- Hasan Jamal
- Paediatric Dentistry Department, Eastman Dental Institute, University College London, London, United Kingdom
- Department of Biomaterials and Tissue Engineering, Royal Free Hospital, UCL Eastman Dental Institute, London, United Kingdom
| | - Rayan Yaghmoor
- Department of Biomaterials and Tissue Engineering, Royal Free Hospital, UCL Eastman Dental Institute, London, United Kingdom
- Department of Microbial Diseases, UCL Eastman Dental Institute, Royal Free Hospital, London, United Kingdom
- Department of Restorative Dentistry, Faculty of Dentistry, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Hassan Abed
- Department of Basic and Clinical Oral Sciences, Faculty of Dentistry, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Anne Young
- Department of Biomaterials and Tissue Engineering, Royal Free Hospital, UCL Eastman Dental Institute, London, United Kingdom
| | - Paul Ashley
- Paediatric Dentistry Department, Eastman Dental Institute, University College London, London, United Kingdom
| |
Collapse
|
177
|
Wendt TS, Gonzales RJ. Ozanimod differentially preserves human cerebrovascular endothelial barrier proteins and attenuates matrix metalloproteinase-9 activity following in vitro acute ischemic injury. Am J Physiol Cell Physiol 2023; 325:C951-C971. [PMID: 37642239 DOI: 10.1152/ajpcell.00342.2023] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/23/2023] [Accepted: 08/24/2023] [Indexed: 08/31/2023]
Abstract
Endothelial integrity is critical in mitigating a vicious cascade of secondary injuries following acute ischemic stroke (AIS). Matrix metalloproteinase-9 (MMP-9), a contributor to endothelial integrity loss, is elevated during stroke and is associated with worsened stroke outcome. We investigated the FDA-approved selective sphingosine-1-phosphate receptor 1 (S1PR1) ligand, ozanimod, on the regulation/activity of MMP-9 as well as endothelial barrier components [platelet endothelial cell adhesion molecule 1 (PECAM-1), claudin-5, and zonula occludens 1 (ZO-1)] in human brain microvascular endothelial cells (HBMECs) following hypoxia plus glucose deprivation (HGD). We previously reported that S1PR1 activation improves HBMEC integrity; however, mechanisms underlying S1PR1 involvement in endothelial cell barrier integrity have not been clearly elucidated. We hypothesized that ozanimod would attenuate an HGD-induced increase in MMP-9 activity that would concomitantly attenuate the loss of integral barrier components. Male HBMECs were treated with ozanimod or vehicle and exposed to 3 h of normoxia (21% O2) or HGD (1% O2). Immunoblotting, zymography, qRT-PCR, and immunocytochemical labeling techniques assessed processes related to MMP-9 and barrier markers. We observed that HGD acutely increased MMP-9 activity and reduced claudin-5 and PECAM-1 levels, and ozanimod attenuated these responses. In situ analysis, via PROSPER, suggested that attenuation of MMP-9 activity may be a primary factor in maintaining these integral barrier proteins. We also observed that HGD increased intracellular mechanisms associated with augmented MMP-9 activation; however, ozanimod had no effect on these select factors. Thus, we conclude that ozanimod has the potential to attenuate HGD-mediated decreases in HBMEC integrity in part by decreasing MMP-9 activity as well as preserving barrier properties.NEW & NOTEWORTHY We have identified a potential novel mechanism by which ozanimod, a selective sphingosine-1-phosphate receptor 1 (S1PR1) agonist, attenuates hypoxia plus glucose deprivation (HGD)-induced matrix metalloproteinase-9 (MMP-9) activity and disruptions in integral human brain endothelial cell barrier proteins. Our results suggest that ischemic-like injury elicits increased MMP-9 activity and alterations of barrier integrity proteins in human brain microvascular endothelial cells (HBMECs) and that ozanimod via S1PR1 attenuates these HGD-induced responses, adding to its therapeutic potential in cerebrovascular protection during the acute phase of ischemic stroke.
Collapse
Affiliation(s)
- Trevor S Wendt
- Department of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, Arizona, United States
| | - Rayna J Gonzales
- Department of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, Arizona, United States
| |
Collapse
|
178
|
Akter T, Aziz MA, Islam MS, Sarwar MS. Association of MMP1 gene polymorphisms with breast cancer risk: A narrative review. Health Sci Rep 2023; 6:e1607. [PMID: 37841939 PMCID: PMC10570771 DOI: 10.1002/hsr2.1607] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 09/16/2023] [Accepted: 09/19/2023] [Indexed: 10/17/2023] Open
Abstract
Background and Aims Breast cancer is a multifactorial malignancy with different clinicopathological and molecular characteristics. It is the most frequent cancer in women in terms of both incidence and mortality. Matrix metallopeptidase 1 or MMP1 is a zinc-dependent endopeptidase associated with several physiological processes through the modification of the extracellular matrix and tumor microenvironment. However, previous results did not suggest any concluding remarks on the correlation between MMP1 gene polymorphisms and the risk of breast cancer. Methods A comprehensive literature search was performed in PubMed database to retrieve relevant articles and extract data from suitable ones. The literature written only in English was selected for this review. Results A total of 26 articles were included in the present narrative review. From the available studies, it is observed that MMP1 is upregulated in breast cancer tissues and found to be correlated with metastasis and invasion. The expression of MMP1 gene is mediated by numerous factors, including polymorphisms which act as a potential risk factor for the progression of breast cancer. To establish the correlation between genetic polymorphisms in MMP1 and the risk of breast cancer, several case-control studies, as well as genetic analyses, have been carried out in different ethnicities. The association of genetic polymorphisms in MMP1 with the risk and survival of breast cancer in different populations has been reviewed in this study. Moreover, the structural domain of MMP1 and the role of MMP1 in breast cancer metastasis and invasion are also discussed which will help to understand the potential impact of MMP1 as a genetic biomarker. Conclusions This review provides an overview of the MMP1 gene polymorphisms in breast cancer. However, we recommend future studies concentrating on combined analysis of multiple SNPs, gene-gene interactions, and analysis of epigenetics, proteomics, and posttranscriptional modifications that will provide the best outcome.
Collapse
Affiliation(s)
- Tahmina Akter
- Department of Pharmacy, Faculty of ScienceNoakhali Science and Technology UniversityNoakhaliBangladesh
| | - Md. Abdul Aziz
- Department of PharmacyState University of BangladeshDhakaBangladesh
| | - Mohammad Safiqul Islam
- Department of Pharmacy, Faculty of ScienceNoakhali Science and Technology UniversityNoakhaliBangladesh
| | - Md. Shahid Sarwar
- Department of Pharmacy, Faculty of ScienceNoakhali Science and Technology UniversityNoakhaliBangladesh
- Departement of Pharmaceutics, RutgersThe State University of New JerseyPiscatawayNew JerseyUSA
| |
Collapse
|
179
|
Al-Tantawy SM, Eraky SM, Eissa LA. Promising renoprotective effect of gold nanoparticles and dapagliflozin in diabetic nephropathy via targeting miR-192 and miR-21. J Biochem Mol Toxicol 2023; 37:e23430. [PMID: 37352119 DOI: 10.1002/jbt.23430] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 03/04/2023] [Accepted: 06/12/2023] [Indexed: 06/25/2023]
Abstract
Diabetic nephropathy (DN) is a worldwide issue that eventually leads to end-stage renal failure, with limited therapeutic options. Prior research has revealed that gold nanoparticles (AuNPs) have a substantial antidiabetic impact. In addition, sodium-glucose cotransporter2 (SGLT2) inhibitors, including dapagliflozin (DAPA), had renoprotective impact on DN. Therefore, this research attempted to determine the potential AuNPs and DAPA impacts in ameliorating experimentally DN induction and the underlying mechanisms focusing on miR-192 and miR-21, correlating them with autophagy, apoptosis, fibrosis, and oxidative stress. Diabetes induction was through a single intraperitoneal streptozotocin (55 mg/kg) injection, and rats with diabetes received AuNPs (2.5 mg/kg/day) as well as DAPA (2 mg/kg/day) for 7 weeks as a treatment. AuNPs and DAPA treatment for 7 weeks substantially alleviated DN. AuNPs and DAPA significantly increased catalase (CAT) activity as well as serum total antioxidant capacity (TAC), along with a substantial decline in malondialdehyde (MDA). AuNPs and DAPA treatment alleviated renal fibrosis as they decreased transforming growth factorß1(TGF-ß1) as well as matrix metalloproteinase-2 (MMP-2) renal expression, decreased apoptosis through alleviating the proapoptotic gene (caspase-3) renal expression and increased the antiapoptotic gene (Bcl-2) renal expression, and increased autophagy as they increased LC-3 as well as Beclin-1 renal expression. Autophagy activation, inhibition of apoptosis, and renal fibrosis could be due to their inhibitory impact on miR-192 and miR-21 renal expression. AuNPs and DAPA have a protective effect on DN in rats by targeting miR-192 and miR-21 and their downstream pathways, including fibrosis, apoptosis, autophagy, and oxidative stress.
Collapse
Affiliation(s)
- Samar M Al-Tantawy
- Biochemistry Department, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Salma M Eraky
- Biochemistry Department, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Laila A Eissa
- Biochemistry Department, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| |
Collapse
|
180
|
Li YY, Zhang LY, Xiang YH, Li D, Zhang J. Matrix metalloproteinases and tissue inhibitors in multiple myeloma: promote or inhibit? Front Oncol 2023; 13:1127407. [PMID: 37823051 PMCID: PMC10562598 DOI: 10.3389/fonc.2023.1127407] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 09/04/2023] [Indexed: 10/13/2023] Open
Abstract
Matrix metalloproteinases (MMPs) and tissue inhibitor of metalloproteinases (TIMPs) play a vital role in the pathogenesis of multiple myeloma (MM), especially for tumor invasion and osteolytic osteopathy. By breaking down extracellular matrix (ECM) components and releasing the proteins composing the ECM and growth factors, as well as their receptors, MMPs affect tissue integrity and promote cancer cell invasion and metastasis. A vital pathophysiological characteristic of MM is the progress of osteolytic lesions, which are brought on by interactions between myeloma cells and the bone marrow microenvironment. MMPs, certainly, are one of the fundamental causes of myeloma bone disease due to their ability to degrade various types of collagens. TIMPs, as important regulators of MMP hydrolysis or activation, also participate in the occurrence and evolution of MM and the formation of bone disease. This review focuses on the role of MMP-1, MMP-2, MMP-7, MMP-9, MMP-13, MMP-14, and MMP-15 and the four types of TIMPs in the invasion of myeloma cells, angiogenesis, osteolytic osteopathy, to offer some novel perspectives on the clinical diagnostics and therapeutics of MM.
Collapse
Affiliation(s)
- Yan-Ying Li
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Department of Laboratory Medicine, Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Liu-Yun Zhang
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Department of Laboratory Medicine, Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yun-Hui Xiang
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Department of Laboratory Medicine, Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Dan Li
- School of Laboratory Medicine, Chengdu Medical College, Chengdu, Sichuan, China
| | - Juan Zhang
- Department of Laboratory Medicine, Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
181
|
Nowak-Terpiłowska A, Nowak I, Feliczak-Guzik A, Wyganowska M. Analysis of the Impact of Ethanol Extract of Calendula officinalis L. on Human Fibroblast Cell Cultures Using the PANsys 3000 Device for Breeding and Visualization of Cells. Life (Basel) 2023; 13:1949. [PMID: 37895331 PMCID: PMC10608748 DOI: 10.3390/life13101949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/18/2023] [Accepted: 09/20/2023] [Indexed: 10/29/2023] Open
Abstract
Calendula officinalis L. promotes wound healing and might be effective in gingival fibroblast stimulation. The influence of different concentrations of Calendula officinalis L. ethanol extract on human gingival fibroblast was visualized using PANsys 3000-a fully automated cell culture device used for in vitro culture to study cells under conditions similar to in vivo. The human fibroblast cells were isolated from gingival tissue. The 100% brew of Calendula officinalis L., as well as 7% and 20% Calendula officinalis L. ethanol extract, were added to the cultured cells and observed for 72 h. The qualitative and quantitative composition of the volatile compounds of marigold Calendula officinalis L. flowers are presented in this study. The essential oil compounds of the decoction were isolated with solid-phase microextraction (SPME) and analyzed with gas chromatography coupled with tandem mass spectrometry (GC-MS/MS). The presence of terpenoids, flavonoids, and other compounds was demonstrated. The composition was correlated with the fragrance properties. Observation of gingival fibroblast showed that there were no changes in cell morphology and proliferation after 100% Calendula officinalis L. brew stimulation. The growth and cell division were not inhibited. Likewise, the addition of 7% or 20% ethanol in water extract of Calendula officinalis L. stimulation did not inhibit the fibroblast proliferation. Overall, ethanol extracts of Calendula officinalis L. decrease the alcohol cytotoxic influence on gingival fibroblasts.
Collapse
Affiliation(s)
- Agnieszka Nowak-Terpiłowska
- Department of Biochemistry and Biotechnology, Poznan University of Life Sciences, Dojazd 11 St., 60-632 Poznan, Poland
| | - Izabela Nowak
- Department of Applied Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8 St., 61-614 Poznan, Poland; (I.N.); (A.F.-G.)
| | - Agnieszka Feliczak-Guzik
- Department of Applied Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8 St., 61-614 Poznan, Poland; (I.N.); (A.F.-G.)
| | - Marzena Wyganowska
- Department of Dental Surgery, Periodontology and Oral Mucosa Diseases, Poznan University of Medical Sciences, Bukowska 70 St., 60-812 Poznan, Poland;
| |
Collapse
|
182
|
Jadczyk-Sorek K, Garczorz W, Bubała-Stachowicz B, Francuz T, Mrukwa-Kominek E. Matrix Metalloproteinases and the Pathogenesis of Recurrent Corneal Erosions and Epithelial Basement Membrane Dystrophy. BIOLOGY 2023; 12:1263. [PMID: 37759662 PMCID: PMC10525265 DOI: 10.3390/biology12091263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/11/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023]
Abstract
Matrix metalloproteinases (MMPs) are a group of proteolytic enzymes which are members of the zinc endopeptidase family. They have the ability to degrade extracellular matrix elements, allowing for the release of binding molecules and cell migration. Although metalloproteinases regulate numerous physiological processes within the cornea, overexpression of metalloproteinase genes and an imbalance between the levels of metalloproteinases and their inhibitors can contribute to the inhibition of repair processes, the development of inflammation and excessive cellular proliferation. The involvement of MMPs in the pathogenesis of dystrophic corneal diseases needs clarification. Our analyses focus on the involvement of individual metalloproteinases in the pathogenesis of recurrent corneal erosions and highlight their impact on the development of corneal epithelial basement membrane dystrophy (EBMD). We hypothesize that abnormalities observed in patients with EBMD may result from the accumulation and activation of metalloproteinases in the basal layers of the corneal epithelium, leading to basement membrane degradation. A barrier formed from degradation materials inhibits the normal migration of epithelial cells to the superficial layers, which contributes to the development of the aforementioned lesions. This hypothesis seems to be lent support by the elevated concentrations of metalloproteinases in the corneal epithelium of these patients found in our previous studies on the relationships between MMPs and recurrent corneal erosions.
Collapse
Affiliation(s)
- Katarzyna Jadczyk-Sorek
- Department of Ophthalmology, University Clinical Center, Medical University of Silesia, Ceglana 35, 40-514 Katowice, Poland
- Department of Ophthalmology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Ceglana 35, 40-514 Katowice, Poland
| | - Wojciech Garczorz
- Department of Biochemistry, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Medyków 18, 40-027 Katowice, Poland
| | - Beata Bubała-Stachowicz
- Department of Ophthalmology, University Clinical Center, Medical University of Silesia, Ceglana 35, 40-514 Katowice, Poland
| | - Tomasz Francuz
- Department of Biochemistry, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Medyków 18, 40-027 Katowice, Poland
| | - Ewa Mrukwa-Kominek
- Department of Ophthalmology, University Clinical Center, Medical University of Silesia, Ceglana 35, 40-514 Katowice, Poland
- Department of Ophthalmology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Ceglana 35, 40-514 Katowice, Poland
| |
Collapse
|
183
|
Atkinson G, Bianco R, Di Gregoli K, Johnson JL. The contribution of matrix metalloproteinases and their inhibitors to the development, progression, and rupture of abdominal aortic aneurysms. Front Cardiovasc Med 2023; 10:1248561. [PMID: 37799778 PMCID: PMC10549934 DOI: 10.3389/fcvm.2023.1248561] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 09/07/2023] [Indexed: 10/07/2023] Open
Abstract
Abdominal aortic aneurysms (AAAs) account for up to 8% of deaths in men aged 65 years and over and 2.2% of women. Patients with AAAs often have atherosclerosis, and intimal atherosclerosis is generally present in AAAs. Accordingly, AAAs are considered a form of atherosclerosis and are frequently referred to as atherosclerotic aneurysms. Pathological observations advocate inflammatory cell infiltration alongside adverse extracellular matrix degradation as key contributing factors to the formation of human atherosclerotic AAAs. Therefore, macrophage production of proteolytic enzymes is deemed responsible for the damaging loss of ECM proteins, especially elastin and fibrillar collagens, which characterise AAA progression and rupture. Matrix metalloproteinases (MMPs) and their regulation by tissue inhibitors metalloproteinases (TIMPs) can orchestrate not only ECM remodelling, but also moderate the proliferation, migration, and apoptosis of resident aortic cells, alongside the recruitment and subsequent behaviour of inflammatory cells. Accordingly, MMPs are thought to play a central regulatory role in the development, progression, and eventual rupture of abdominal aortic aneurysms (AAAs). Together, clinical and animal studies have shed light on the complex and often diverse effects MMPs and TIMPs impart during the development of AAAs. This dichotomy is underlined from evidence utilising broad-spectrum MMP inhibition in animal models and clinical trials which have failed to provide consistent protection from AAA progression, although more encouraging results have been observed through deployment of selective inhibitors. This review provides a summary of the supporting evidence connecting the contribution of individual MMPs to AAA development, progression, and eventual rupture. Topics discussed include structural, functional, and cell-specific diversity of MMP members; evidence from animal models of AAA and comparisons with findings in humans; the dual role of MMPs and the requirement to selectively target individual MMPs; and the advances in identifying aberrant MMP activity. As evidenced, our developing understanding of the multifaceted roles individual MMPs perform during the progression and rupture of AAAs, should motivate clinical trials assessing the therapeutic potential of selective MMP inhibitors, which could restrict AAA-related morbidity and mortality worldwide.
Collapse
Affiliation(s)
| | | | | | - Jason L. Johnson
- Laboratory of Cardiovascular Pathology, Department of Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
184
|
Peled Y, Stewart CA, Glogauer M, Finer Y. The Role of Bacterial, Dentinal, Salivary, and Neutrophil Degradative Activity in Caries Pathogenesis. Dent J (Basel) 2023; 11:217. [PMID: 37754337 PMCID: PMC10528424 DOI: 10.3390/dj11090217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/28/2023] [Accepted: 09/06/2023] [Indexed: 09/28/2023] Open
Abstract
Until recently, it was widely accepted that bacteria participate in caries pathogenesis mainly through carbohydrate fermentation and acid production, which promote the dissolution of tooth components. Neutrophils, on the other hand, were considered white blood cells with no role in caries pathogenesis. Nevertheless, current literature suggests that both bacteria and neutrophils, among other factors, possess direct degradative activity towards both dentinal collagen type-1 and/or methacrylate resin-based restoratives and adhesives, the most common dental restoratives. Neutrophils are abundant leukocytes in the gingival sulcus, where they can readily reach adjacent tooth roots or gingival and cervical restorations and execute their degradative activity. In this review, we present the latest literature evidence for bacterial, dentinal, salivary, and neutrophil degradative action that may induce primary caries, secondary caries, and restoration failure.
Collapse
Affiliation(s)
- Yuval Peled
- Faculty of Dentistry, University of Toronto, Toronto, ON M5G 1G6, Canada; (Y.P.); (C.A.S.); (M.G.)
| | - Cameron A. Stewart
- Faculty of Dentistry, University of Toronto, Toronto, ON M5G 1G6, Canada; (Y.P.); (C.A.S.); (M.G.)
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3E2, Canada
| | - Michael Glogauer
- Faculty of Dentistry, University of Toronto, Toronto, ON M5G 1G6, Canada; (Y.P.); (C.A.S.); (M.G.)
- Department of Dental Oncology, Maxillofacial and Ocular Prosthetics, Princess Margaret Cancer Centre, Toronto, ON M5G 2M9, Canada
| | - Yoav Finer
- Faculty of Dentistry, University of Toronto, Toronto, ON M5G 1G6, Canada; (Y.P.); (C.A.S.); (M.G.)
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3E2, Canada
| |
Collapse
|
185
|
Wei C. The multifaceted roles of matrix metalloproteinases in lung cancer. Front Oncol 2023; 13:1195426. [PMID: 37766868 PMCID: PMC10520958 DOI: 10.3389/fonc.2023.1195426] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 08/08/2023] [Indexed: 09/29/2023] Open
Abstract
Background Though the matrix metalloproteinases (MMPs) are widely investigated in lung cancer (LC), however, almost no review systematically clarify their multi-faced roles in LC. Methods We investigated the expression of MMPs and their effects on survival of patients with LC, the resistance mechanisms of MMPs in anti-tumor therapy, the regulatory networks of MMPs involved, the function of MMPs inducing CSCLs, MMPs-related tumor immunity, and effects of MMP polymorphisms on risk of LC. Results High expression of MMPs was mainly related to poor survival, high clinical stages and cancer metastasis. Role of MMPs in LC are multi-faced. MMPs are involved in drug resistance, induced CSCLs, participated in tumor immunity. Besides, MMPs polymorphisms may increase risk of LC. Conclusions MMPs might be promising targets to restore the anti-tumor immune response and enhance the killing function of nature immune cells in LC.
Collapse
Affiliation(s)
- Cui Wei
- Department of Emergency, The Third Hospital of Changsha, Changsha, China
| |
Collapse
|
186
|
McDonald B, Barth K, Schmidt MHH. The origin of brain malignancies at the blood-brain barrier. Cell Mol Life Sci 2023; 80:282. [PMID: 37688612 PMCID: PMC10492883 DOI: 10.1007/s00018-023-04934-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/21/2023] [Accepted: 08/22/2023] [Indexed: 09/11/2023]
Abstract
Despite improvements in extracranial therapy, survival rate for patients suffering from brain metastases remains very poor. This is coupled with the incidence of brain metastases continuing to rise. In this review, we focus on core contributions of the blood-brain barrier to the origin of brain metastases. We first provide an overview of the structure and function of the blood-brain barrier under physiological conditions. Next, we discuss the emerging idea of a pre-metastatic niche, namely that secreted factors and extracellular vesicles from a primary tumor site are able to travel through the circulation and prime the neurovasculature for metastatic invasion. We then consider the neurotropic mechanisms that circulating tumor cells possess or develop that facilitate disruption of the blood-brain barrier and survival in the brain's parenchyma. Finally, we compare and contrast brain metastases at the blood-brain barrier to the primary brain tumor, glioma, examining the process of vessel co-option that favors the survival and outgrowth of brain malignancies.
Collapse
Affiliation(s)
- Brennan McDonald
- Institute of Anatomy, Medical Faculty Carl Gustav Carus, Technische Universität Dresden School of Medicine, Dresden, Germany.
| | - Kathrin Barth
- Institute of Anatomy, Medical Faculty Carl Gustav Carus, Technische Universität Dresden School of Medicine, Dresden, Germany
| | - Mirko H H Schmidt
- Institute of Anatomy, Medical Faculty Carl Gustav Carus, Technische Universität Dresden School of Medicine, Dresden, Germany
| |
Collapse
|
187
|
Nisar S, Hass V, Wang R, Walker MP, Wang Y. Effect of Different Crosslinkers on Denatured Dentin Collagen's Biostability, MMP Inhibition and Mechanical Properties. Polymers (Basel) 2023; 15:3683. [PMID: 37765538 PMCID: PMC10537969 DOI: 10.3390/polym15183683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 08/31/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
OBJECTIVE Sound, natural dentin collagen can be stabilized against enzymatic degradation through exogenous crosslinking treatment for durable bonding; however, the effect on denatured dentin (DD) collagen is unknown. Hence, the ability of different crosslinkers to enhance/restore the properties of DD collagen was assessed. METHODS Demineralized natural and DD collagen films (7 mm × 7 mm × 7 µm) and beams (0.8 mm × 0.8 mm × 7 mm) were prepared. DD collagen was experimentally produced by heat or acid exposure, which was then assessed by various techniques. All specimens were then treated with 1 wt% of chemical crosslinker 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide/n-hydroxysuccinimide (EDC/NHS) and two structurally different flavonoids-theaflavins (TF) from black tea and type-A proanthocyanidins from cranberry juice (CR) for either 30 s or 1 h. The controls were untreated. Dentin films were assessed for chemical interaction and cross-linking effect by FTIR, biostability against exogenous collagenase by weight loss (WL) and hydroxyproline release (HYP), and endogenous matrix metalloproteinases (MMPs) activity by confocal laser microscopy. Dentin beams were evaluated for tensile properties. Data were analyzed using ANOVA and Tukey's test (α = 0.05). RESULTS Compared with natural collagen, DD collagen showed pronounced structural changes, altered biostability and decreased mechanical properties, which were then improved to various degrees that were dependent on the crosslinkers used, with EDC/NHS being the least effective. Surprisingly, the well-known MMP inhibitor EDC/NHS showed negligible effect on or even increased MMP activity in DD collagen. As compared with control, cross-linking induced by TF and CR significantly increased collagen biostability (reduced WL and HYP release, p < 0.05), MMP inhibition (p < 0.001) and mechanical properties (p < 0.05), regardless of denaturation. CONCLUSIONS DD collagen cannot or can only minimally be stabilized via EDC/NHS crosslinking; however, the challenging substrate of DD collagen can be enhanced or restored using the promising flavonoids TF and CR.
Collapse
Affiliation(s)
| | | | | | | | - Yong Wang
- School of Dentistry, University of Missouri—Kansas City, 650 E 25th St., Kansas City, MO 64108, USA
| |
Collapse
|
188
|
de la Fuente A, Scoggin C, Bradecamp E, Martin-Pelaez S, van Heule M, Troedsson M, Daels P, Meyers S, Dini P. Transcriptome Signature of Immature and In Vitro-Matured Equine Cumulus-Oocytes Complex. Int J Mol Sci 2023; 24:13718. [PMID: 37762020 PMCID: PMC10531358 DOI: 10.3390/ijms241813718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 08/31/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
Maturation is a critical step in the development of an oocyte, and it is during this time that the oocyte advances to metaphase II (MII) of the meiotic cycle and acquires developmental competence to be fertilized and become an embryo. However, in vitro maturation (IVM) remains one of the limiting steps in the in vitro production of embryos (IVP), with a variable percentage of oocytes reaching the MII stage and unpredictable levels of developmental competence. Understanding the dynamics of oocyte maturation is essential for the optimization of IVM culture conditions and subsequent IVP outcomes. Thus, the aim of this study was to elucidate the transcriptome dynamics of oocyte maturation by comparing transcriptomic changes during in vitro maturation in both oocytes and their surrounding cumulus cells. Cumulus-oocyte complexes were obtained from antral follicles and divided into two groups: immature and in vitro-matured (MII). RNA was extracted separately from oocytes (OC) and cumulus cells (CC), followed by library preparation and RNA sequencing. A total of 13,918 gene transcripts were identified in OC, with 538 differentially expressed genes (DEG) between immature OC and in vitro-matured OC. In CC, 13,104 genes were expressed with 871 DEG. Gene ontology (GO) analysis showed an association between the DEGs and pathways relating to nuclear maturation in OC and GTPase activity, extracellular matrix organization, and collagen trimers in CC. Additionally, the follicle-stimulating hormone receptor gene (FSHR) and luteinizing hormone/choriogonadotropin receptor gene (LHCGR) showed differential expressions between CC-MII and immature CC samples. Overall, these results serve as a foundation to further investigate the biological pathways relevant to oocyte maturation in horses and pave the road to improve the IVP outcomes and the overall clinical management of equine assisted reproductive technologies (ART).
Collapse
Affiliation(s)
- Alejandro de la Fuente
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - Charles Scoggin
- LeBlanc Reproduction Center, Rood and Riddle Equine Hospital, Lexington, KY 40511, USA
| | - Etta Bradecamp
- LeBlanc Reproduction Center, Rood and Riddle Equine Hospital, Lexington, KY 40511, USA
| | - Soledad Martin-Pelaez
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - Machteld van Heule
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
- Department of Morphology, Imaging, Orthopedics, Rehabilitation and Nutrition, Faculty of Veterinary Medicine, University of Ghent, 9820 Merelbeke, Belgium
| | - Mats Troedsson
- Gluck Equine Research Center, University of Kentucky, Lexington, KY 40506, USA
| | - Peter Daels
- Department of Morphology, Imaging, Orthopedics, Rehabilitation and Nutrition, Faculty of Veterinary Medicine, University of Ghent, 9820 Merelbeke, Belgium
| | - Stuart Meyers
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - Pouya Dini
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| |
Collapse
|
189
|
Kim HA, Kim KC, Lee H, Hong YM. Losartan Reduces Remodeling and Apoptosis in an Adriamycin-Induced Cardiomyopathy Rat Model. J Chest Surg 2023; 56:295-303. [PMID: 37574884 PMCID: PMC10480395 DOI: 10.5090/jcs.23.044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/15/2023] [Accepted: 06/27/2023] [Indexed: 08/15/2023] Open
Abstract
Background The use of Adriamycin (ADR), also known as doxorubicin, as a chemotherapy agent is limited by its detrimental adverse effects, especially cardiotoxicity. Recent studies have emphasized the crucial role of angiotensin II (Ang-II) in the development of ADR-induced cardiomyopathy. This study aimed to explore the potential cardioprotective effects of losartan in a rat model of ADR-induced cardiomyopathy. Methods Male Sprague-Dawley rats were randomly divided into 3 groups: a control group (group C), an ADR-treated group (ADR 5 mg/kg/wk for 3 weeks via intraperitoneal injections; group A), and co-treatment of ADR with losartan group (same dose of ADR and losartan; 10 mg/kg/day per oral for 3 weeks; group L). Western blot analysis was conducted to demonstrate changes in brain natriuretic peptide, collagen 1, tumor necrosis factor (TNF)-α, interleukin-6, matrix metalloproteinase (MMP)-2, B-cell leukemia/lymphoma (Bcl)-2, Bcl-2-associated X (Bax), and caspase-3 protein expression levels in left ventricular (LV) tissues from each group. Results Losartan administration reduced LV hypertrophy, collagen content, and the expression of pro-inflammatory factors TNF-α and MMP-2 in LV tissue. In addition, losartan led to a decrease in the expression of the pro-apoptotic proteins Bax and caspase-3 and an increase in the expression of the anti-apoptotic protein Bcl-2. Moreover, losartan treatment induced a reduction in the apoptotic area compared to group A. Conclusion In an ADR-induced cardiomyopathy rat model, co-administration of ADR with losartan presented cardioprotective effects by attenuating LV hypertrophy, pro-inflammatory factors, and apoptosis in LV tissue.
Collapse
Affiliation(s)
- Hyeon A Kim
- Department of Thoracic and Cardiovascular Surgery, Asan Medical Center, Seoul, Korea
| | - Kwan Chang Kim
- Department of Thoracic and Cardiovascular Surgery, Ewha Womans University School of Medicine, Seoul, Korea
| | - Hyeryon Lee
- Department of Pediatrics, Ewha Womans University School of Medicine, Seoul, Korea
| | - Young Mi Hong
- Department of Pediatrics, Ewha Womans University School of Medicine, Seoul, Korea
| |
Collapse
|
190
|
Daneste H, Mohammadzadeh Boukani L, Ramezani N, Asadi F, Zaidan HK, Sadeghzade A, Ehsannia M, Azarashk A, Gholizadeh N. Combination therapy along with mesenchymal stem cells in wound healing; the state of the art. Adv Med Sci 2023; 68:441-449. [PMID: 37924749 DOI: 10.1016/j.advms.2023.10.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 06/23/2023] [Accepted: 10/17/2023] [Indexed: 11/06/2023]
Abstract
Mesenchymal stem cells (MSCs) are being increasingly used in various therapeutic applications including skin tissue repair and wound healing. The positive effects of the MSCs therapy are largely elicited by immunomodulation, increasing angiogenesis, supporting extracellular matrix (ECM) and thus favoring skin structure. However, the therapeutic competences of MSC-based therapies are somewhat hindered by their apparent modest clinical merits, conferring the need for methods that would rise the efficacy of such therapies. A plethora of reports have shown that therapeutic properties of MSCs could be enhanced with other strategies and compounds like biomaterial and platelet-rich plasma (PRP) to target key possessions of MSCs and properties of adjacent tissues concurrently. Manipulation of cellular stress-response mechanisms to improve cell resistance to oxidative stress prior to or during MSC injection could also improve therapeutic efficacy of MSCs. In the current review, we shed light on the recent advances in MSCs combination therapy with other ingredients and procedures to sustain MSCs-mediated effects in wound healing.
Collapse
Affiliation(s)
- Hossein Daneste
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Narges Ramezani
- Department of Biology, Damghan Branch, Islamic Azad University, Damghan, Iran
| | - Fatemeh Asadi
- Department of Genetics, Izeh Branch, Islamic Azad University, Izeh, Iran
| | - Haider Kamil Zaidan
- Department of Medical Laboratories Techniques, Al-Mustaqbal University College, Hillah, Babylon, Iraq
| | - Azita Sadeghzade
- Department of Oral and Maxillofacial Medicine, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maedeh Ehsannia
- Faculty of Basic Sciences, Islamic Azad University, Tehran East Branch, Tehran, Iran
| | - Ali Azarashk
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Nasim Gholizadeh
- Department of Dermatology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
| |
Collapse
|
191
|
Lin PK, Davis GE. Extracellular Matrix Remodeling in Vascular Disease: Defining Its Regulators and Pathological Influence. Arterioscler Thromb Vasc Biol 2023; 43:1599-1616. [PMID: 37409533 PMCID: PMC10527588 DOI: 10.1161/atvbaha.123.318237] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 06/23/2023] [Indexed: 07/07/2023]
Abstract
Because of structural and cellular differences (ie, degrees of matrix abundance and cross-linking, mural cell density, and adventitia), large and medium-sized vessels, in comparison to capillaries, react in a unique manner to stimuli that induce vascular disease. A stereotypical vascular injury response is ECM (extracellular matrix) remodeling that occurs particularly in larger vessels in response to injurious stimuli, such as elevated angiotensin II, hyperlipidemia, hyperglycemia, genetic deficiencies, inflammatory cell infiltration, or exposure to proinflammatory mediators. Even with substantial and prolonged vascular damage, large- and medium-sized arteries, persist, but become modified by (1) changes in vascular wall cellularity; (2) modifications in the differentiation status of endothelial cells, vascular smooth muscle cells, or adventitial stem cells (each can become activated); (3) infiltration of the vascular wall by various leukocyte types; (4) increased exposure to critical growth factors and proinflammatory mediators; and (5) marked changes in the vascular ECM, that remodels from a homeostatic, prodifferentiation ECM environment to matrices that instead promote tissue reparative responses. This latter ECM presents previously hidden matricryptic sites that bind integrins to signal vascular cells and infiltrating leukocytes (in coordination with other mediators) to proliferate, invade, secrete ECM-degrading proteinases, and deposit injury-induced matrices (predisposing to vessel wall fibrosis). In contrast, in response to similar stimuli, capillaries can undergo regression responses (rarefaction). In summary, we have described the molecular events controlling ECM remodeling in major vascular diseases as well as the differential responses of arteries versus capillaries to key mediators inducing vascular injury.
Collapse
Affiliation(s)
- Prisca K. Lin
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida School of Medicine, Tampa, FL 33612
| | - George E. Davis
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida School of Medicine, Tampa, FL 33612
| |
Collapse
|
192
|
Vidal CMP, Carrilho MR. Dentin Degradation: From Tissue Breakdown to Possibilities for Therapeutic Intervention. CURRENT ORAL HEALTH REPORTS 2023; 10:99-110. [PMID: 37928132 PMCID: PMC10624336 DOI: 10.1007/s40496-023-00341-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/09/2023] [Indexed: 11/07/2023]
Abstract
Purpose of the Review Presently, dental materials science is driven by the search for new and improved materials that can trigger specific reactions from the affected tissue to stimulate repair or regeneration while interacting with the oral environment to promote or maintain oral health. In parallel, evidence from the past decades has challenged the exclusive role of bacteria in dentin tissue degradation in caries, questioning our understanding of caries etiopathogenesis. The goal of this review is to recapitulate the current evidence on the host and bacterial contributions to degradation, inflammation, and repair of the dentin-pulp complex in caries. Recent Findings Contrasting findings attribute dentin breakdown to the activity of endogenous enzymes, such as matrix metalloproteinases (MMPs) and cathepsins, while the role of bacteria and their by-products in the destruction of dentin organic matrix and pulp inflammation has been for decades supported as an incontestable paradigm. Aiming to better understand the mechanisms involved in collagen degradation by host enzymes in caries, studies have showed that these proteinases are expressed in the mature dentin (i.e., after dentin formation) and become activated by the low pH in the acidic environment resulted by bacterial metabolism in caries. However, different host sources other than dentin-bound proteinases seem to also contribute to caries progression, such as saliva and pulp. Interestingly, studies evaluating pulp responses to bacteria invasion and inflammation in caries report higher levels of MMPs and cathepsins in inflamed tissue, but also showed MMP potential to resolve inflammation and stimulate wound healing. Notably, as reported for other tissues, MMPs exert dual roles in the dentin-pulp complex in caries, participating or regulating both degradative and reparative mechanisms. Summary The specific roles of host and bacteria and their by-products in caries progression have yet to be clarified. The complex interactions between inflammation and repair in caries pose challenges to a clear understanding of the dentin-pulp complex responses and changes to bacteria invasion. However, it opens new venues for the development of novel therapies and dental biomaterials based on the modulation of specific mechanisms to favor tissue repair and healing.
Collapse
Affiliation(s)
- Cristina M. P. Vidal
- Department of Operative Dentistry, College of Dentistry, The University of Iowa, 801 Newton Road, DSB S245, Iowa City, IA 52242, USA
| | | |
Collapse
|
193
|
Raafs AG, Adriaans BP, Henkens MTHM, Verdonschot JAJ, Abdul Hamid MA, Díez J, Knackstedt C, van Empel VPM, Brunner-La Rocca HP, González A, Wildberger JE, Heymans SRB, Hazebroek MR. Biomarkers of Collagen Metabolism Are Associated with Left Ventricular Function and Prognosis in Dilated Cardiomyopathy: A Multi-Modal Study. J Clin Med 2023; 12:5695. [PMID: 37685762 PMCID: PMC10488673 DOI: 10.3390/jcm12175695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/16/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
BACKGROUND Collagen cross-linking is a fundamental process in dilated cardiomyopathy (DCM) and occurs when collagen deposition exceeds degradation, leading to impaired prognosis. This study investigated the associations of collagen-metabolism biomarkers with left ventricular function and prognosis in DCM. METHODS DCM patients who underwent endomyocardial biopsy, blood sampling, and cardiac MRI were included. The primary endpoint included death, heart failure hospitalization, or life-threatening arrhythmias, with a follow-up of 6 years (5-8). RESULTS In total, 209 DCM patients were included (aged 54 ± 13 years, 65% male). No associations were observed between collagen volume fraction, circulating carboxy-terminal propeptide of procollagen type-I (PICP), or collagen type I carboxy-terminal telopeptide [CITP] and matrix metalloproteinase [MMP]-1 ratio and cardiac function parameters. However, CITP:MMP-1 was significantly correlated with global longitudinal strain (GLS) in the total study sample (R = -0.40, p < 0.0001; lower CITP:MMP-1 ratio was associated with impaired GLS), with even stronger correlations in patients with LVEF > 40% (R = -0.70, p < 0.0001). Forty-seven (22%) patients reached the primary endpoint. Higher MMP-1 levels were associated with a worse outcome, even after adjustment for clinical and imaging predictors (1.026, 95% CI 1.002-1.051, p = 0.037), but CITP and CITP:MMP-1 were not. Combining MMP-1 and PICP improved the goodness-of-fit (LHR36.67, p = 0.004). CONCLUSION The degree of myocardial cross-linking (CITP:MMP-1) is associated with myocardial longitudinal contraction, and MMP-1 is an independent predictor of outcome in DCM patients.
Collapse
Affiliation(s)
- Anne G. Raafs
- Department of Cardiology, Maastricht University Medical Centre, 6229 HX Maastricht, The Netherlands; (B.P.A.); (M.T.H.M.H.); (J.A.J.V.); (C.K.); (V.P.M.v.E.); (H.-P.B.-L.R.); (S.R.B.H.); (M.R.H.)
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6229 HX Maastricht, The Netherlands;
| | - Bouke P. Adriaans
- Department of Cardiology, Maastricht University Medical Centre, 6229 HX Maastricht, The Netherlands; (B.P.A.); (M.T.H.M.H.); (J.A.J.V.); (C.K.); (V.P.M.v.E.); (H.-P.B.-L.R.); (S.R.B.H.); (M.R.H.)
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6229 HX Maastricht, The Netherlands;
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Centre, 6229 HX Maastricht, The Netherlands
| | - Michiel T. H. M. Henkens
- Department of Cardiology, Maastricht University Medical Centre, 6229 HX Maastricht, The Netherlands; (B.P.A.); (M.T.H.M.H.); (J.A.J.V.); (C.K.); (V.P.M.v.E.); (H.-P.B.-L.R.); (S.R.B.H.); (M.R.H.)
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6229 HX Maastricht, The Netherlands;
- Netherlands Heart Institute (NLHI), 3511 EP Utrecht, The Netherlands
- Department of Pathology, Maastricht University Medical Centre, 6229 HX Maastricht, The Netherlands;
| | - Job A. J. Verdonschot
- Department of Cardiology, Maastricht University Medical Centre, 6229 HX Maastricht, The Netherlands; (B.P.A.); (M.T.H.M.H.); (J.A.J.V.); (C.K.); (V.P.M.v.E.); (H.-P.B.-L.R.); (S.R.B.H.); (M.R.H.)
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6229 HX Maastricht, The Netherlands;
- Department of Clinical Genetics, Maastricht University Medical Centre, 6229 HX Maastricht, The Netherlands
| | - Myrurgia A. Abdul Hamid
- Department of Pathology, Maastricht University Medical Centre, 6229 HX Maastricht, The Netherlands;
| | - Javier Díez
- Program of Cardiovascular Diseases, CIMA Universidad de Navarra and IdiSNA, 31008 Pamplona, Spain; (J.D.); (A.G.)
- CIBERCV, Carlos III Institute of Health, 28029 Madrid, Spain
| | - Christian Knackstedt
- Department of Cardiology, Maastricht University Medical Centre, 6229 HX Maastricht, The Netherlands; (B.P.A.); (M.T.H.M.H.); (J.A.J.V.); (C.K.); (V.P.M.v.E.); (H.-P.B.-L.R.); (S.R.B.H.); (M.R.H.)
| | - Vanessa P. M. van Empel
- Department of Cardiology, Maastricht University Medical Centre, 6229 HX Maastricht, The Netherlands; (B.P.A.); (M.T.H.M.H.); (J.A.J.V.); (C.K.); (V.P.M.v.E.); (H.-P.B.-L.R.); (S.R.B.H.); (M.R.H.)
| | - Hans-Peter Brunner-La Rocca
- Department of Cardiology, Maastricht University Medical Centre, 6229 HX Maastricht, The Netherlands; (B.P.A.); (M.T.H.M.H.); (J.A.J.V.); (C.K.); (V.P.M.v.E.); (H.-P.B.-L.R.); (S.R.B.H.); (M.R.H.)
| | - Arantxa González
- Program of Cardiovascular Diseases, CIMA Universidad de Navarra and IdiSNA, 31008 Pamplona, Spain; (J.D.); (A.G.)
- CIBERCV, Carlos III Institute of Health, 28029 Madrid, Spain
| | - Joachim E. Wildberger
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6229 HX Maastricht, The Netherlands;
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Centre, 6229 HX Maastricht, The Netherlands
| | - Stephane R. B. Heymans
- Department of Cardiology, Maastricht University Medical Centre, 6229 HX Maastricht, The Netherlands; (B.P.A.); (M.T.H.M.H.); (J.A.J.V.); (C.K.); (V.P.M.v.E.); (H.-P.B.-L.R.); (S.R.B.H.); (M.R.H.)
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6229 HX Maastricht, The Netherlands;
- Department of Cardiovascular Research, University of Leuven, 3000 Leuven, Belgium
| | - Mark R. Hazebroek
- Department of Cardiology, Maastricht University Medical Centre, 6229 HX Maastricht, The Netherlands; (B.P.A.); (M.T.H.M.H.); (J.A.J.V.); (C.K.); (V.P.M.v.E.); (H.-P.B.-L.R.); (S.R.B.H.); (M.R.H.)
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6229 HX Maastricht, The Netherlands;
| |
Collapse
|
194
|
Varadinkova S, Oralova V, Clarke M, Frampton J, Knopfova L, Lesot H, Bartos P, Matalova E. Expression dynamics of metalloproteinases during mandibular bone formation: association with Myb transcription factor. Front Cell Dev Biol 2023; 11:1168866. [PMID: 37701782 PMCID: PMC10493412 DOI: 10.3389/fcell.2023.1168866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 08/18/2023] [Indexed: 09/14/2023] Open
Abstract
As the dentition forms and becomes functional, the alveolar bone is remodelled. Metalloproteinases are known to contribute to this process, but new regulators are emerging and their contextualization is challenging. This applies to Myb, a transcription factor recently reported to be involved in bone development and regeneration. The regulatory effect of Myb on Mmps expression has mostly been investigated in tumorigenesis, where Myb impacted the expression of Mmp1, Mmp2, Mmp7, and Mmp9. The aim of this investigation was to evaluate the regulatory influence of the Myb on Mmps gene expression, impacting osteogenesis and mandibular bone formation. For that purpose, knock-out mouse model was used. Gene expression of bone-related Mmps and the key osteoblastic transcription factors Runx2 and Sp7 was analysed in Myb knock-out mice mandibles at the survival limit. Out of the metalloproteinases under study, Mmp13 was significantly downregulated. The impact of Myb on the expression of Mmp13 was confirmed by the overexpression of Myb in calvarial-derived cells causing upregulation of Mmp13. Expression of Mmp13 in the context of other Mmps during mandibular/alveolar bone development was followed in vivo along with Myb, Sp7 and Runx2. The most significant changes were observed in the expression of Mmp9 and Mmp13. These MMPs and MYB were further localized in situ by immunohistochemistry and were identified in pre/osteoblastic cells as well as in pre/osteocytes. In conclusion, these results provide a comprehensive insight into the expression dynamics of bone related Mmps during mandibular/alveolar bone formation and point to Myb as another potential regulator of Mmp13.
Collapse
Affiliation(s)
- S. Varadinkova
- Laboratory of Odontogenesis and Osteogenesis, Institute of Animal Physiology and Genetics, v.v.i, Academy of Sciences, Brno, Czechia
- Department of Physiology, University of Veterinary Sciences, Brno, Czechia
| | - V. Oralova
- Laboratory of Odontogenesis and Osteogenesis, Institute of Animal Physiology and Genetics, v.v.i, Academy of Sciences, Brno, Czechia
- Department of Physiology, University of Veterinary Sciences, Brno, Czechia
| | - M. Clarke
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, United Kingdom
| | - J. Frampton
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, United Kingdom
| | - L. Knopfova
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czechia
- International Clinical Research Center, St. Anne’s University Hospital, Brno, Czechia
| | - H. Lesot
- Laboratory of Odontogenesis and Osteogenesis, Institute of Animal Physiology and Genetics, v.v.i, Academy of Sciences, Brno, Czechia
| | - P. Bartos
- Laboratory of Odontogenesis and Osteogenesis, Institute of Animal Physiology and Genetics, v.v.i, Academy of Sciences, Brno, Czechia
| | - E. Matalova
- Laboratory of Odontogenesis and Osteogenesis, Institute of Animal Physiology and Genetics, v.v.i, Academy of Sciences, Brno, Czechia
- Department of Physiology, University of Veterinary Sciences, Brno, Czechia
| |
Collapse
|
195
|
Morales-Vázquez MM, Meza-Serrano E, Lara-Pereyra I, Acuña-González RJ, Alonso-Morales R, Hayen-Valles S, Boeta AM, Zarco L, Lozano-Cuenca J, López-Canales JS, Flores-Herrera H. Equine Placentitis in Mares Induces the Secretion of Pro-Inflammatory Cytokine eIL-1β and the Active Extracellular Matrix Metalloproteinase (MMP)-9. Vet Sci 2023; 10:532. [PMID: 37756054 PMCID: PMC10536981 DOI: 10.3390/vetsci10090532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/05/2023] [Accepted: 08/09/2023] [Indexed: 09/28/2023] Open
Abstract
Equine placentitis is characterized by infection and inflammation of the placenta. Different biomarkers associated with this inflammatory response have been evaluated in experimentally induced equine placentitis, but not in pregnant mares with spontaneous placentitis. The aim of the current study was to determine the concentration of eIL-1β and the activity of proMMP-2 and proMMP-9 in the serum of healthy mares and mares with placentitis on days 240 and 320 of gestation to explore whether these biomarkers are associated with equine maternal placentitis and/or with the birth of an infected or inviable foals. Serum samples were collected from sixteen pregnant English Thoroughbred mares, retrospectively classified as follows: (1) healthy mares with full-term gestation; and (2) mares with ultrasonographic signs of placentitis. The health of each foal was examined at birth, and it was decided to classify the cases into four groups: (1) healthy mares delivering a healthy foals (HM-HF, n = 6); (2) mares with USP delivering a healthy foal (USP-HF, n = 3); (3) mares with USP delivering a live septic foal (USP-LSeF, n = 4); and (4) mares with USP delivering a dead foal (USP-DF, n = 3). eIL-1β was quantified by ELISA, and proMMP-2 and proMMP-9 activity by gelatin zymography electrophoresis. In healthy mares, the serum concentrations of eIL-1β underwent a significant 16.5-fold increase from day 240 to day 320 of gestation. Although similar results were found in the mares with ultrasonographic signs of placentitis that delivered a healthy foal, those delivering a live septic or nonviable foal exhibited much higher concentrations of eIL-1β. proMMP-2 and proMMP-9 activity was not associated with maternal placentitis, foal infection, or death. Hence, the presence of placentitis severe enough to affect the health of the foal can be confirmed or discarded by determining the eIL-1β concentration in mares that have shown ultrasonographic signs of placentitis.
Collapse
Affiliation(s)
- María Margarita Morales-Vázquez
- Departamento de Immunobioquímica, Instituto Nacional de Perinatología “Isidro Espinosa de los Reyes” INPerIER, Ciudad de México 11000, CP, Mexico; (M.M.M.-V.); (R.J.A.-G.)
- Departamento de Reproducción, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México 04510, CP, Mexico; (E.M.-S.); (S.H.-V.); (A.M.B.)
| | - Europa Meza-Serrano
- Departamento de Reproducción, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México 04510, CP, Mexico; (E.M.-S.); (S.H.-V.); (A.M.B.)
| | - Irlando Lara-Pereyra
- Departamento de Ginecología, Hospital General de Zona 252, Instituto Mexicano del Seguro Social, Atlacomulco 28984, Mexico
| | - Ricardo Josué Acuña-González
- Departamento de Immunobioquímica, Instituto Nacional de Perinatología “Isidro Espinosa de los Reyes” INPerIER, Ciudad de México 11000, CP, Mexico; (M.M.M.-V.); (R.J.A.-G.)
| | - Rogelio Alonso-Morales
- Genética, Laboratorio de Biotecnologías, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México 04510, CP, Mexico;
| | - Sergio Hayen-Valles
- Departamento de Reproducción, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México 04510, CP, Mexico; (E.M.-S.); (S.H.-V.); (A.M.B.)
| | - Ana Myriam Boeta
- Departamento de Reproducción, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México 04510, CP, Mexico; (E.M.-S.); (S.H.-V.); (A.M.B.)
| | - Luis Zarco
- Centro de Enseñanza, Investigación y Extensión en Producción Ovina, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Tres Marías, Ciudad de México 62515, Mexico;
| | - Jair Lozano-Cuenca
- Departamento de Fisiología y Desarrollo Celular, Instituto Nacional de Perinatología “Isidro Espinosa de los Reyes” INPerIER, Ciudad de México 11000, Mexico; (J.L.-C.); (J.S.L.-C.)
| | - Jorge Skiold López-Canales
- Departamento de Fisiología y Desarrollo Celular, Instituto Nacional de Perinatología “Isidro Espinosa de los Reyes” INPerIER, Ciudad de México 11000, Mexico; (J.L.-C.); (J.S.L.-C.)
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional, Ciudad de México 11340, Mexico
| | - Héctor Flores-Herrera
- Departamento de Immunobioquímica, Instituto Nacional de Perinatología “Isidro Espinosa de los Reyes” INPerIER, Ciudad de México 11000, CP, Mexico; (M.M.M.-V.); (R.J.A.-G.)
| |
Collapse
|
196
|
García-Bañuelos J, Oceguera-Contreras E, Sandoval-Rodríguez A, Bastidas-Ramírez BE, Lucano-Landeros S, Gordillo-Bastidas D, Gómez-Meda BC, Santos A, Cerda-Reyes E, Armendariz-Borunda J. AdhMMP8 Vector Administration in Muscle: An Alternate Strategy to Regress Hepatic Fibrosis. Cells 2023; 12:2127. [PMID: 37681859 PMCID: PMC10486800 DOI: 10.3390/cells12172127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 08/10/2023] [Accepted: 08/18/2023] [Indexed: 09/09/2023] Open
Abstract
The development of several vaccines against the SARS-CoV2 virus and their application in millions of people have shown efficacy and safety in the transfer of genes to muscle turning this tissue into a protein-producing factory. Established advanced liver fibrosis, is characterized by replacement of hepatic parenchyma by tissue scar, mostly collagen type I, with increased profibrogenic and proinflammatory molecules gene expression. Matrix metalloproteinase 8 (MMP-8) is an interstitial collagen-degrading proenzyme acting preferentially on collagen type I when activated. This study was carried out to elucidate the effect of an intramuscularly delivered adenoviral vector containing proMMP-8 gene cDNA (AdhMMP8) in male Wistar rats with experimental advanced liver fibrosis induced by thioacetamide. Therapeutic effects were monitored after 1, 2, or 3 weeks of a single dose (3 × 1011 vp/kg) of AdhMMP8. Circulating and liver concentration of MMP-8 protein remained constant; hepatic fibrosis decreased up to 48%; proinflammatory and profibrogenic genes expression diminished: TNF-α 2.28-fold, IL-1 1.95-fold, Col 1A1 4-fold, TGF-β1 3-fold and CTGF 2-fold; and antifibrogenic genes expression raised, MMP-9 2.8-fold and MMP-1 10-fold. Our data proposes that the administration of AdhMMP8 in muscle is safe and effective in achieving liver fibrosis regression at a comparable extent as when the adenoviral vector is delivered systemically to reach the liver, using a minimally invasive procedure.
Collapse
Affiliation(s)
- Jesús García-Bañuelos
- Institute for Molecular Biology in Medicine and Gene Therapy, Department of Molecular Biology and Genomics, Health Sciences University Center, University of Guadalajara, Guadalajara 44340, Jalisco, Mexico
| | - Edén Oceguera-Contreras
- Laboratorio de Sistemas Biológicos, Centro Universitario de los Valles, Universidad de Guadalajara, Carretera Guadalajara-Ameca km. 45.5, Ameca 46600, Jalisco, Mexico
| | - Ana Sandoval-Rodríguez
- Institute for Molecular Biology in Medicine and Gene Therapy, Department of Molecular Biology and Genomics, Health Sciences University Center, University of Guadalajara, Guadalajara 44340, Jalisco, Mexico
| | - Blanca Estela Bastidas-Ramírez
- Instituto de Investigación en Enfermedades Crónico Degenerativas, Department of Molecular Biology and Genomics, Health Sciences University Center, University of Guadalajara, Guadalajara 44340, Jalisco, Mexico
| | - Silvia Lucano-Landeros
- Institute for Molecular Biology in Medicine and Gene Therapy, Department of Molecular Biology and Genomics, Health Sciences University Center, University of Guadalajara, Guadalajara 44340, Jalisco, Mexico
| | - Daniela Gordillo-Bastidas
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey 64849, Nuevo Leon, Mexico
| | - Belinda C. Gómez-Meda
- Instituto de Genética Humana “Dr. Enrique Corona Rivera”, Department of Molecular Biology and Genomics, Health Sciences University Center, Guadalajara 44340, Jalisco, Mexico
| | - Arturo Santos
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey 64849, Nuevo Leon, Mexico
| | | | - Juan Armendariz-Borunda
- Institute for Molecular Biology in Medicine and Gene Therapy, Department of Molecular Biology and Genomics, Health Sciences University Center, University of Guadalajara, Guadalajara 44340, Jalisco, Mexico
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey 64849, Nuevo Leon, Mexico
| |
Collapse
|
197
|
Abstract
Matrix metalloproteinases (MMPs) are a class of endopeptidases that are dependent on zinc and facilitate the degradation of extracellular matrix (ECM) proteins, thereby playing pivotal parts in human physiology and pathology. MMPs regulate normal tissue and cellular functions, including tissue development, remodeling, angiogenesis, bone formation, and wound healing. Several diseases, including cancer, inflammation, cardiovascular diseases, and nervous system disorders, have been linked to dysregulated expression of specific MMP subtypes, which can promote tumor progression, metastasis, and inflammation. Various MMP-responsive drug delivery and release systems have been developed by harnessing cleavage activities and overexpression of MMPs in affected regions. Herein, we review the structure, substrates, and physiological and pathological functions of various MMPs and highlight the strategies for designing MMP-responsive nanoparticles to improve the targeting efficiency, penetration, and protection of therapeutic payloads.
Collapse
Affiliation(s)
- Chenyun Zhang
- Department of Pharmacology and Chemical Biology, State Key Laboratory of Systems Medicine for Cancer, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China
| | - Gan Jiang
- Department of Pharmacology and Chemical Biology, State Key Laboratory of Systems Medicine for Cancer, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China
| | - Xiaoling Gao
- Department of Pharmacology and Chemical Biology, State Key Laboratory of Systems Medicine for Cancer, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China
| |
Collapse
|
198
|
Park SB, Jung WK, Yu HY, Kim J. The Effects of Sargassum horneri Extract and Fucoidan on Tear Hyposecretion and Ocular Surface Injury in Rats with Dry Eye Diseases. Curr Issues Mol Biol 2023; 45:6583-6592. [PMID: 37623234 PMCID: PMC10453645 DOI: 10.3390/cimb45080415] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/02/2023] [Accepted: 08/04/2023] [Indexed: 08/26/2023] Open
Abstract
Hyperosmotic stress caused by tear hyposection is a leading cause of dry eye disease. We investigated the prevention of dry eye disease in corneal epithelial cells and in rats that were induced to develop dry eye disease via unilateral excision of their exorbital lacrimal gland using Sargassum horneri extract (AB_SH) and its bioactive component fucoidan. Oral administration of AB_SH (250 mg/kg and 500 mg/kg) and fucoidan (100 mg/kg) was conducted for 7 days. In order to measure tear secretion, phenol red thread tear tests were performed along with corneal irregularity measurements. The apoptotic injury in the cornea and the lacrimal gland was evaluated using TUNEL staining. AB_SH and fucoidan were shown to suppress apoptosis and the expression of apoptosis-related proteins in human corneal epithelial cells under hyperosmotic conditions. Oral administration of AB_SH and fucoidan attenuated tear hyposecretion and corneal irregularity in the lacrimal gland-excised rats. In addition, AB_SH and fucoidan also reduced apoptosis in the cornea and lacrimal gland. This study suggests that S. horneri extract and fucoidan can effectively ameliorate dry eye disease by suppressing the apoptosis of ocular tissues.
Collapse
Affiliation(s)
| | | | | | - Junghyun Kim
- Department of Oral Pathology, School of Dentistry, Jeonbuk National University, Jeonju 54896, Republic of Korea; (S.-B.P.); (W.K.J.); (H.Y.Y.)
| |
Collapse
|
199
|
Hao M, Wang D, Duan M, Kan S, Li S, Wu H, Xiang J, Liu W. Functional drug-delivery hydrogels for oral and maxillofacial wound healing. Front Bioeng Biotechnol 2023; 11:1241660. [PMID: 37600316 PMCID: PMC10434880 DOI: 10.3389/fbioe.2023.1241660] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 07/21/2023] [Indexed: 08/22/2023] Open
Abstract
The repair process for oral and maxillofacial injuries involves hemostasis, inflammation, proliferation, and remodeling. Injury repair involves a variety of cells, including platelets, immune cells, fibroblasts, and various cytokines. Rapid and adequate healing of oral and maxillofacial trauma is a major concern to patients. Functional drug-delivery hydrogels play an active role in promoting wound healing and have shown unique advantages in wound dressings. Functional hydrogels promote wound healing through their adhesive, anti-inflammatory, antioxidant, antibacterial, hemostatic, angiogenic, and re-epithelialization-promoting properties, effectively sealing wounds and reducing inflammation. In addition, functional hydrogels can respond to changes in temperature, light, magnetic fields, pH, and reactive oxygen species to release drugs, enabling precise treatment. Furthermore, hydrogels can deliver various cargos that promote healing, including nucleic acids, cytokines, small-molecule drugs, stem cells, exosomes, and nanomaterials. Therefore, functional drug-delivery hydrogels have a positive impact on the healing of oral and maxillofacial injuries. This review describes the oral mucosal structure and healing process and summarizes the currently available responsive hydrogels used to promote wound healing.
Collapse
Affiliation(s)
- Ming Hao
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, China
| | - Dongxu Wang
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Mengna Duan
- Department of Prosthodontics, Hospital of Stomatology, Jilin University, Changchun, China
| | - Shaoning Kan
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, China
| | - Shuangji Li
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, China
| | - Han Wu
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, China
| | - Jingcheng Xiang
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, China
| | - Weiwei Liu
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, China
| |
Collapse
|
200
|
Chen K, Xu M, Lu F, He Y. Development of Matrix Metalloproteinases-Mediated Extracellular Matrix Remodeling in Regenerative Medicine: A Mini Review. Tissue Eng Regen Med 2023; 20:661-670. [PMID: 37160567 PMCID: PMC10352474 DOI: 10.1007/s13770-023-00536-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 02/25/2023] [Accepted: 03/03/2023] [Indexed: 05/11/2023] Open
Abstract
Extracellular matrix (ECM) components confer biomechanical properties, maintain cell phenotype and mediate tissue homeostasis. ECM remodeling is complex and plays a key role in both physiological and pathological processes. Matrix metalloproteinases (MMPs) are a group of enzymes responsible for ECM degradation and have been accepted as a key regulator in ECM remodeling. In this mini-review, we summarize MMPs categories, functions and the targeted substrates. We then discuss current understanding of the role of MMPs-mediated events, including inflammation reaction, angiogenesis, cellular activities, etc., in ECM remodeling in the context of regenerative medicine.
Collapse
Affiliation(s)
- Kaiqi Chen
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, Guangdong, People's Republic of China
| | - Mimi Xu
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, Guangdong, People's Republic of China
| | - Feng Lu
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, Guangdong, People's Republic of China.
| | - Yunfan He
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, Guangdong, People's Republic of China.
| |
Collapse
|