151
|
The Bone Grinding and Scaffold Grafting Techniques for Guide Bone Regeneration Induce the Stress on the Rat Brain. Lab Anim Res 2010. [DOI: 10.5625/lar.2010.26.3.233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
152
|
Plasticity in Differentiation of Salivary Glands: The Signaling Pathway That Induces Dedifferentiation of Parotid Acinar Cells. J Oral Biosci 2010. [DOI: 10.1016/s1349-0079(10)80034-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
153
|
Abstract
The goal of the current study was to investigate the role of exogenous and endogenous hydrogen sulfide (H(2)S) on neovascularization and wound healing in vitro and in vivo. Incubation of endothelial cells (ECs) with H(2)S enhanced their angiogenic potential, evidenced by accelerated cell growth, migration, and capillary morphogenesis on Matrigel. Treatment of chicken chorioallantoic membranes (CAMS) with H(2)S increased vascular length. Exposure of ECs to H(2)S resulted in increased phosphorylation of Akt, ERK, and p38. The K(ATP) channel blocker glibenclamide or the p38 inhibitor SB203580 abolished H(2)S-induced EC motility. Since glibenclamide inhibited H(2)S-triggered p38 phosphorylation, we propose that K(ATP) channels lay upstream of p38 in this process. When CAMs were treated with H(2)S biosynthesis inhibitors dl-propylargylglycine or beta-cyano-L-alanine, a reduction in vessel length and branching was observed, indicating that H(2)S serves as an endogenous stimulator of the angiogenic response. Stimulation of ECs with vascular endothelial growth factor (VEGF) increased H(2)S release, while pharmacological inhibition of H(2)S production or K(ATP) channels or silencing of cystathionine gamma-lyase (CSE) attenuated VEGF signaling and migration of ECs. These results implicate endothelial H(2)S synthesis in the pro-angiogenic action of VEGF. Aortic rings isolated from CSE knockout mice exhibited markedly reduced microvessel formation in response to VEGF when compared to wild-type littermates. Finally, in vivo, topical administration of H(2)S enhanced wound healing in a rat model, while wound healing was delayed in CSE(-/-) mice. We conclude that endogenous and exogenous H(2)S stimulates EC-related angiogenic properties through a K(ATP) channel/MAPK pathway.
Collapse
|
154
|
Aghajanian A, Wittchen ES, Campbell SL, Burridge K. Direct activation of RhoA by reactive oxygen species requires a redox-sensitive motif. PLoS One 2009; 4:e8045. [PMID: 19956681 PMCID: PMC2778012 DOI: 10.1371/journal.pone.0008045] [Citation(s) in RCA: 167] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2009] [Accepted: 11/03/2009] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Rho family GTPases are critical regulators of the cytoskeleton and affect cell migration, cell-cell adhesion, and cell-matrix adhesion. As with all GTPases, their activity is determined by their guanine nucleotide-bound state. Understanding how Rho proteins are activated and inactivated has largely focused on regulatory proteins such as guanine nucleotide exchange factors (GEFs) and GTPase activating proteins (GAPs). However, recent in vitro studies have indicated that GTPases may also be directly regulated by redox agents. We hypothesized that this redox-based mechanism occurs in cells and affects cytoskeletal dynamics, and in this report we conclude this is indeed a novel mechanism of regulating the GTPase RhoA. METHODOLOGY/PRINCIPAL FINDINGS In this report, we show that RhoA can be directly activated by reactive oxygen species (ROS) in cells, and that this requires two critical cysteine residues located in a unique redox-sensitive motif within the phosphoryl binding loop. First, we show that ROS can reversibly activate RhoA and induce stress fiber formation, a well characterized readout of RhoA activity. To determine the role of cysteine residues in this mechanism of regulation, we generated cysteine to alanine RhoA mutants. Mutation of these cysteines abolishes ROS-mediated activation and stress fiber formation, indicating that these residues are critical for redox-regulation of RhoA. Importantly, these mutants maintain the ability to be activated by GEFs. CONCLUSIONS/SIGNIFICANCE Our findings identify a novel mechanism for the regulation of RhoA in cells by ROS, which is independent of classical regulatory proteins. This mechanism of regulation may be particularly relevant in pathological conditions where ROS are generated and the cellular redox-balance altered, such as in asthma and ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Amir Aghajanian
- Department of Cell and Developmental Biology, University of North Carolina at Chapel Hill, Lineberger Comprehensive Cancer Center, Chapel Hill, North Carolina, United States of America.
| | | | | | | |
Collapse
|
155
|
Kubo E, Hasanova N, Tanaka Y, Fatma N, Takamura Y, Singh DP, Akagi Y. Protein expression profiling of lens epithelial cells from Prdx6-depleted mice and their vulnerability to UV radiation exposure. Am J Physiol Cell Physiol 2009; 298:C342-54. [PMID: 19889963 DOI: 10.1152/ajpcell.00336.2009] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Oxidative stress is one of the causative factors in progression and etiology of age-related cataract. Peroxiredoxin 6 (Prdx6), a savior for cells from internal or external environmental stresses, plays a role in cellular signaling by detoxifying reactive oxygen species (ROS) and thereby controlling gene regulation. Using targeted inactivation of the Prdx6 gene, we show that Prdx6-deficient lens epithelial cells (LECs) are more vulnerable to UV-triggered cell death, a major cause of skin disorders including cataractogenesis, and these cells display abnormal protein profiles. PRDX6-depleted LECs showed phenotypic changes and formed lentoid body, a characteristic of terminal cell differentiation and epithelial-mesenchymal transition. Prdx6(-/-) LECs exposed to UV-B showed higher ROS expression and were prone to apoptosis compared with wild-type LECs, underscoring a protective role for Prdx6. Comparative proteomic analysis using fluorescence-based difference gel electrophoresis along with mass spectrometry and database searching revealed a total of 13 proteins that were differentially expressed in Prdx6(-/-) cells. Six proteins were upregulated, whereas expression of seven proteins was decreased compared with Prdx6(+/+) LECs. Among the cytoskeleton-associated proteins that were highly expressed in Prdx6-deficient LECs was tropomyosin (Tm)2beta. Protein blot and real-time PCR validated dramatic increase of Tm2beta and Tm1alpha expression in these cells. Importantly, Prdx6(+/+) LECs showed a similar pattern of Tm2beta protein expression after transforming growth factor (TGF)-beta or H(2)O(2) treatment. An extrinsic supply of PRDX6 could restore Tm2beta expression, demonstrating that PRDX6 may attenuate adverse signaling in cells and thereby maintain cellular homeostasis. Exploring redox-proteomics (Prdx6(-/-)) and characterization and identification of abnormally expressed proteins and their attenuation by PRDX6 delivery should provide a basis for development of novel therapeutic interventions to postpone ROS-mediated abnormal signaling deleterious to cells or tissues.
Collapse
Affiliation(s)
- Eri Kubo
- Department of Ophthalmology, Faculty of Medical Science, University of Fukui, 23-3 Shimoaiduki, Matsuoka, Eiheiji, Yoshida-gun, Fukui 910-1193, Japan.
| | | | | | | | | | | | | |
Collapse
|
156
|
Kostenko S, Moens U. Heat shock protein 27 phosphorylation: kinases, phosphatases, functions and pathology. Cell Mol Life Sci 2009; 66:3289-307. [PMID: 19593530 PMCID: PMC11115724 DOI: 10.1007/s00018-009-0086-3] [Citation(s) in RCA: 283] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2009] [Revised: 06/22/2009] [Accepted: 06/23/2009] [Indexed: 10/20/2022]
Abstract
The small heat shock protein Hsp27 or its murine homologue Hsp25 acts as an ATP-independent chaperone in protein folding, but is also implicated in architecture of the cytoskeleton, cell migration, metabolism, cell survival, growth/differentiation, mRNA stabilization, and tumor progression. A variety of stimuli induce phosphorylation of serine residues 15, 78, and 82 in Hsp27 and serines 15 and 86 in Hsp25. This post-translational modification affects some of the cellular functions of Hsp25/27. As a consequence of the functional importance of Hsp25/27 phosphorylation, aberrant Hsp27 phosphorylation has been linked to several clinical conditions. This review focuses on the different Hsp25/27 kinases and phosphatases that regulate the phosphorylation pattern of Hsp25/27, and discusses the recent findings of the biological implications of these phosphorylation events in physiological and pathological processes. Novel therapeutic strategies aimed at restoring anomalous Hsp27 phosphorylation in human diseases will be presented.
Collapse
Affiliation(s)
- Sergiy Kostenko
- Department of Microbiology and Virology, Faculty of Medicine, University of Tromsø, 9037 Tromsø, Norway
| | - Ugo Moens
- Department of Microbiology and Virology, Faculty of Medicine, University of Tromsø, 9037 Tromsø, Norway
| |
Collapse
|
157
|
Yang D, Xie P, Guo S, Li H. Induction of MAPK phosphatase-1 by hypothermia inhibits TNF-alpha-induced endothelial barrier dysfunction and apoptosis. Cardiovasc Res 2009; 85:520-9. [PMID: 19793766 DOI: 10.1093/cvr/cvp323] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
AIMS Hypothermia therapy has been shown to confer robust protection against brain injury and cardiac arrest. However, the mechanisms underlying endothelial cell protection of hypothermia have not yet been completely elucidated. Here, we investigated molecular effects of hypothermia on tumour necrosis factor-alpha (TNF-alpha)-induced endothelial barrier dysfunction and apoptosis. METHODS AND RESULTS Human umbilical vein endothelial cells (HUVECs) treated with TNF-alpha were incubated under normothermia (37 degrees C) or hypothermia (33 degrees C). [corrected] Endothelial permeability, actin alterations, and apoptosis were examined. The protein levels were determined by immunoblot analysis. Treatment of HUVECs with TNF-alpha resulted in a significant increase of permeability, actin reorganization, and apoptosis. Hypothermia markedly attenuated TNF-alpha-induced effects. The inhibitory action of hypothermia on stress fibre formation was mediated via inactivation of p38 mitogen-activated protein kinase (MAPK)/heat shock protein 27 (HSP27), and the decrease in TNF-alpha-induced apoptosis by hypothermia was associated with inhibition of p38 MAPK and c-Jun N-terminal kinase (JNK) activity. Hypothermia had no action on p38 MAPK and JNK upstream kinases MAPK kinase 3/6 (MKK3/6) and MAPK kinase 7 (MKK7), but it markedly induced the expression of MAPK phosphatase-1 (MKP-1). Furthermore, siRNA experiments showed that MKP-1 was an important mediator of hypothermia in reducing TNF-alpha-induced inflammatory responses and activation of p38 MAPK and JNK in HUVECs. CONCLUSION These results for the first time demonstrate that hypothermia protects against TNF-alpha-induced endothelial barrier dysfunction and apoptosis through an MKP-1-dependent mechanism.
Collapse
Affiliation(s)
- Dan Yang
- Department of Pathology and National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, #5 Dong Dan San Tiao, Beijing 100005, China
| | | | | | | |
Collapse
|
158
|
Wagner AH, Kautz O, Fricke K, Zerr-Fouineau M, Demicheva E, Güldenzoph B, Bermejo JL, Korff T, Hecker M. Upregulation of glutathione peroxidase offsets stretch-induced proatherogenic gene expression in human endothelial cells. Arterioscler Thromb Vasc Biol 2009; 29:1894-901. [PMID: 19729606 DOI: 10.1161/atvbaha.109.194738] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Localization of atherosclerotic plaques typically correlates with areas of biomechanical strain where shear stress is decreased while stretch, thought to promote atherogenesis through enhanced oxidative stress, is increased. METHODS AND RESULTS In human cultured endothelial cells, nitric oxide synthase expression was exclusively shear stress-dependent whereas expression of glutathione peroxidase-1 (GPx-1), but not that of Cu(2+)/Zn(2+)-superoxide dismutase or Mn(2+)-superoxide dismutase, was upregulated solely in response to cyclic stretch. GPx-1 expression was also enhanced in isolated mouse arteries perfused at high pressure. Combined pharmacological and decoy oligodeoxynucleotide blockade revealed that activation of p38 MAP kinase followed by nuclear translocation of CCAAT/enhancer binding protein plays a pivotal role in stretch-induced GPx-1 expression in human endothelial cells. Antisense oligodeoxynucleotide knockdown of GPx-1 reinforced both their capacity to generate hydrogen peroxide and the transient stretch-induced expression of CD40, monocyte chemoatractant protein-1, and vascular cell adhesion molecule-1. Consequently, THP-1 monocyte adhesion to the GPx-1-depleted cells was augmented. CONCLUSIONS Stretch-induced proatherosclerotic gene expression in human endothelial cells seems to be hydrogen peroxide-mediated. The concomitant rise in GPx-1 expression, but not that of other antioxidant enzymes, may comprise an adaptive mechanism through which the cells maintain their antiatherosclerotic properties in spite of a decreased bioavailability of nitric oxide.
Collapse
Affiliation(s)
- Andreas H Wagner
- Institute of Physiology and Pathophysiology, Division of Cardiovascular Physiology, University Hospital Heidelberg, Heidelberg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
159
|
Park SW, Chen SWC, Kim M, D'Agati VD, Lee HT. Human heat shock protein 27-overexpressing mice are protected against acute kidney injury after hepatic ischemia and reperfusion. Am J Physiol Renal Physiol 2009; 297:F885-94. [PMID: 19656912 DOI: 10.1152/ajprenal.00317.2009] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Liver ischemia-reperfusion injury (IRI) causes acute kidney injury (AKI) in mice characterized by renal endothelial cell apoptosis, renal tubular necrosis, inflammation, and filamentous (F)-actin disruption. Since heat shock protein 27 (HSP27) protects against apoptosis, necrosis, and stabilizes F-actin, we questioned whether overexpression of human HSP27 (huHSP27 OE) in mice would attenuate AKI after liver IRI. Twenty-four hours after hepatic IRI, HSP27 wild-type (WT) mice developed acute liver and kidney injury with elevated plasma alanine aminotransferase and creatinine, a reduced glomerular filtration rate, and histological evidence of renal endothelial cell apoptosis and tubular injury (necrosis, vacuolization, and F-actin disruption). The huHSP27 OE mice, however, were significantly protected against both liver and kidney injury after hepatic IRI. The huHSP27 OE mice also showed less induction of several proinflammatory mRNAs (TNF-alpha, MIP-2, and keratinocyte-derived cytokine), neutrophil infiltration, and reduction in apoptosis (terminal deoxynucleotidyl transferase biotin-dUTP nick end-labeling assay and DNA laddering) in the kidney compared with the HSP27 WT mice. Moreover, the huHSP27 OE mice showed significantly less disruption of F-actin in renal proximal tubules and better preserved vascular endothelial cell integrity compared with the huHSP27 OE mice. Finally, the kidney plays a major role in the hepatoprotective effects of huHSP27 overexpression as the hepatoprotection was reduced or abolished in mice subjected to unilateral or bilateral nephrectomy, respectively. Our results show that overexpression of huHSP27 protects against hepatic injury and AKI associated with liver IRI in vivo. Harnessing the mechanisms of cytoprotection with renal HSP27 may lead to new therapies for the perioperative AKI and liver injury associated with liver IRI.
Collapse
Affiliation(s)
- Sang Won Park
- Dept. of Anesthesiology, Anesthesiology Research Laboratories, Columbia Univ., P&S Box 46 (PH-5 630 W. 168th St., New York, NY 10032-3784, USA
| | | | | | | | | |
Collapse
|
160
|
Thandavarayan RA, Watanabe K, Ma M, Gurusamy N, Veeraveedu PT, Konishi T, Zhang S, Muslin AJ, Kodama M, Aizawa Y. Dominant-negative p38alpha mitogen-activated protein kinase prevents cardiac apoptosis and remodeling after streptozotocin-induced diabetes mellitus. Am J Physiol Heart Circ Physiol 2009; 297:H911-9. [PMID: 19617408 DOI: 10.1152/ajpheart.00124.2009] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The p38 mitogen-activated protein kinase (MAPK) is activated during heart diseases that might be associated with myocardial damage and cardiac remodeling process. Diabetic cardiomyopathy is associated with increased oxidative stress and inflammation. The purpose of this study was to investigate the role of p38alpha MAPK after experimental diabetes by using transgenic (TG) mice with cardiac-specific expression of a dominant-negative mutant form of p38alpha MAPK. The elevation of blood glucose was comparable between the nontransgenic (NTG) and TG mice. The expression of phospho-p38 MAPK and phospho-MAPK-activated protein kinase 2 levels were significantly suppressed in TG mice heart than in NTG mice after diabetes induction. Left ventricular (LV) dimension in systole was smaller, and the percent fractional shortening was higher in diabetic TG mice compared with diabetic NTG mice. In addition, diabetic TG mice had reduced cardiac myocyte diameter, content of cardiac fibrosis, LV tissue expressions of atrial natriuretic peptide, transforming growth factor beta1, and collagen III compared with diabetic NTG mice. Moreover, LV expression of NADPH oxidase subunits, p22(phox), p67(phox), gp91(phox), and Nox4, reactive oxygen species and lipid peroxidation levels were significantly increased in diabetic NTG mice, but not in diabetic TG mice. Furthermore, myocardial apoptosis, the number of caspase-3-positive cells, and the downregulation of antiapoptotic protein Bcl-X(L) were less in diabetic TG mice compared with diabetic NTG mice. In conclusion, our data establish that p38alpha MAPK activity is required for cardiac remodeling after diabetes induction and suggest that p38alpha MAPK may promote cardiomyocyte apoptosis by downregulation of Bcl-X(L).
Collapse
Affiliation(s)
- Rajarajan A Thandavarayan
- Department of Clinical Pharmacology, Niigata University of Pharmacy and Applied Life Sciences, 265-1 Higashijima Akiha-ku, Niigata 956-8603, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
161
|
Enhanced antimyeloma cytotoxicity by the combination of arsenic trioxide and bortezomib is further potentiated by p38 MAPK inhibition. Leuk Res 2009; 34:85-92. [PMID: 19608275 DOI: 10.1016/j.leukres.2009.05.024] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2009] [Revised: 05/05/2009] [Accepted: 05/29/2009] [Indexed: 02/07/2023]
Abstract
The combination of ATO and bortezomib (ATO+bortezomib) has been recently shown to enhance antimyeloma activity; nevertheless, the mechanisms remained unclear in these studies. However, both bortezomib and ATO have been shown to activate the p38 MAPK pathway, which may counteract the enhancement induced by this combination. We studied the cytotoxicity of bortezomib, ATO, and ATO+bortezomib with or without inhibiting p38 MAPK, along with associated molecular changes in myeloma cells. The treatment of myeloma cells with ATO+bortezomib induced higher cytotoxicity than either agent alone. This increased cytotoxicity was further synergistically enhanced by inhibiting p38 MAPK. This effect was preserved in the presence of marrow stromal cells designed to simulate the tumor micro-environment and in the CD138+ neoplastic plasma cells directly isolated from myeloma patients. The enhanced cytotoxicity of ATO+bortezomib was associated with augmented STAT3 inhibition and JNK activation, up-regulation of Bim, p21, p27, p53 as well as down-regulation of Bcl-2. Furthermore, the synergistically potentiated apoptosis by p38 MAPK inhibition was associated with the attenuation of ATO+bortezomib-mediated activation of Hsp27 as well as the enhancement of ATO+bortezomib-mediated JNK activation, p53 up-regulation, and Bcl-2 down-regulation. The results suggest the opportunity for using p38 MAPK inhibition to enhance the efficacy of ATO+bortezomib in myeloma.
Collapse
|
162
|
Abstract
The endothelium is an important component of vascular homeostasis that is a target for injury in the setting of vascular disease. One means of promoting a maladaptive endothelial cell phenotype such as that seen in atherosclerosis is excess oxidative stress. Although this term once was almost exclusively used to describe low-density lipoprotein (LDL) and lipid oxidation in the vasculature, we now understand that the intracellular oxidant milieu is an important modulator of vascular cell function. Indeed, considerable data indicate that reactive oxygen species (ROS) are an important means of cellular signaling, although the precise mechanisms whereby ROS accomplish this are still under investigation. In this review, the data linking ROS to kinase activation and cell signaling in the endothelium is discussed, with a particular emphasis on the roles of protein thiol modification.
Collapse
Affiliation(s)
- Kai Chen
- Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts, USA
| | | |
Collapse
|
163
|
Abstract
Increased oxidative stress impairs endothelial function and is thought to mediate vascular disease. Several pathological conditions increase the production of reactive oxygen species (ROS) in the vascular wall, including hypercholesterolemia, diabetes, and hypertension. These conditions are associated with endothelial dysfunction and cardiovascular disease. Thus, overall vascular function is dependent upon the balance of oxidant and antioxidant mechanisms, which determines endothelial function. Endothelial function is usually defined as nitric oxide (NO) production and/or bioavailability. Because ROS can interact and inactivate NO, vascular oxidative stress can lead to decrease NO bioavailability. This results in endothelial dysfunction and increased risk of cardiovascular diseases. Several pharmacological approaches have been used to improve endothelial function and decrease oxidative stress. These include treatment modalities that augment the antioxidant defense mechanisms, increase NO production, and inhibit ROS-generating enzymes. This review provides an overview of the relationship between endothelial function and oxidative stress.
Collapse
Affiliation(s)
- Hisakazu Ogita
- Vascular Medicine Research, Department of Medicine, Brigham, & Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | | |
Collapse
|
164
|
Davis T, Kipling D. Assessing the role of stress signalling via p38 MAP kinase in the premature senescence of ataxia telangiectasia and Werner syndrome fibroblasts. Biogerontology 2009; 10:253-66. [PMID: 18830681 DOI: 10.1007/s10522-008-9179-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2008] [Accepted: 09/18/2008] [Indexed: 10/21/2022]
Abstract
The premature ageing ataxia telangiectasia (AT) and Werner syndromes (WS) are associated with accelerated cellular ageing. Young WS fibroblasts have an aged appearance and activated p38 MAP kinase, and treatment with the p38 inhibitor SB230580 extends their lifespan to within the normal range. SB203580 also extends the replicative lifespan of normal adult dermal fibroblasts, however, the effect is much reduced when compared to WS cells, suggesting that WS fibroblasts undergo a form of stress-induced premature senescence (SIPS). A small lifespan extension is seen in AT cells, which is not significant compared to normal fibroblasts, and the majority of young AT cells do not have an aged appearance and lack p38 activation, suggesting that the premature ageing does not result from SIPS. The lack of p38 activation is supported by the clinical manifestation, since AT is not associated with inflammatory disease, whereas WS individuals are predisposed to atherosclerosis, type II diabetes and osteoporosis, conditions known to be associated with p38 activation.
Collapse
Affiliation(s)
- Terence Davis
- Department of Pathology, Cardiff University, Heath Park, Cardiff, CF14 4XN, UK.
| | | |
Collapse
|
165
|
Brill A, Chauhan AK, Canault M, Walsh MT, Bergmeier W, Wagner DD. Oxidative stress activates ADAM17/TACE and induces its target receptor shedding in platelets in a p38-dependent fashion. Cardiovasc Res 2009; 84:137-44. [PMID: 19482949 DOI: 10.1093/cvr/cvp176] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
AIMS Oxidative stress accompanies inflammatory and vascular diseases. The objective of this study was to explore whether reactive oxygen species can activate shedding of platelet receptors and thus suppress platelet function. METHODS AND RESULTS Hydrogen peroxide and glucose oxidase were chosen to model oxidative stress in vitro. We demonstrate that oxidative damage activated tumour necrosis factor-alpha-converting enzyme (TACE) and induced shedding of its targets, glycoprotein (GP) Ibalpha and GPV, in murine and human platelets. Also, 12-HpETE, a peroxide synthesized in the platelet lipoxygenase pathway, induced TACE-mediated receptor cleavage. The TACE activation was independent of platelet activation, as alpha-granule secretion, activation of alphaIIbbeta3, or phosphatidylserine expression was not observed. TACE activation induced by hydrogen peroxide was dependent on p38 mitogen-activated protein kinase signalling, whereas protein kinase C, phosphoinositide 3-kinase, and caspases were not involved. Inhibition of p38 cytoplasmic targets, phospholipase A(2) and heat shock protein 27, did not prevent shedding, whereas blocking 12-lipoxygenase or Src kinase slightly inhibited TACE activation. The loss of the GPIbalpha receptor induced by oxidative stress rendered platelets unable to incorporate into a growing thrombus in vivo. CONCLUSION Oxidative stress can render platelets functionally less active by shedding key adhesion receptors via the activation of p38. This suggests that oxidative injury of platelets may attenuate their function.
Collapse
Affiliation(s)
- Alexander Brill
- Immune Disease Institute, 3 Blackfan Circle, 3rd Floor, Boston, MA 02115, USA
| | | | | | | | | | | |
Collapse
|
166
|
Chen SW, Park SW, Kim M, Brown KM, D'Agati VD, Lee HT. Human heat shock protein 27 overexpressing mice are protected against hepatic ischemia and reperfusion injury. Transplantation 2009; 87:1478-87. [PMID: 19461484 PMCID: PMC2726263 DOI: 10.1097/tp.0b013e3181a3c691] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
BACKGROUND Hepatic ischemia reperfusion injury (IRI) is a major clinical problem during the perioperative period and occurs frequently after major hepatic resection or liver transplantation. Our laboratory previously demonstrated that exogenous A1 adenosine receptor activation protects against renal IRI by upregulation and phosphorylation of heat shock protein 27 (HSP27). METHODS This study used mice overexpressing human HSP27 (huHSP27 OE) to determine whether these mice are protected against liver IRI. RESULTS After hepatic IR, the huHSP27 OE mice had significant protection against liver injury (reduced alanine transferase) and necrosis (hematoxylin-eosin staining) compared with the HSP27 WT mice. The huHSP27 OE mice also showed less induction of proinflammatory messenger RNA MIP-2, reduced neutrophil infiltration, and decreased apoptosis (caspase 3 fragmentation and DNA laddering) compared with the HSP27 WT mice. Finally, the huHSP27 OE mice showed significantly less disruption of filamentous actin in hepatocytes and bile canaliculi of the ischemic lobes compared with the HSP27 WT mice. Depletion of Kupffer cells with gadolinium chloride provided significant protection against liver IRI in HSP27 WT mice but not in huHSP27 OE mice suggesting that the overexpression of huHSP27 in the Kupffer cells may be responsible for the hepatic protection observed in huHSP27 OE mice. CONCLUSIONS Our results show that the overexpression of huHSP27 in Kupffer cells of the liver may be responsible for the protection against hepatic IRI in vivo by reducing necrosis and apoptosis and by stabilizing F-actin with subsequent reductions in inflammation and proinflammatory neutrophil infiltration. Harnessing the mechanisms of cytoprotection with HSP27 may lead to new therapies for the management of perioperative hepatic IRI.
Collapse
Affiliation(s)
- Sean W.C Chen
- Department of Anesthesiology, College of Physicians and Surgeons of Columbia University, New York, NY 10032
| | - Sang Won Park
- Department of Anesthesiology, College of Physicians and Surgeons of Columbia University, New York, NY 10032
| | - Mihwa Kim
- Department of Anesthesiology, College of Physicians and Surgeons of Columbia University, New York, NY 10032
| | | | - Vivette D. D'Agati
- Department of Pathology, College of Physicians and Surgeons of Columbia University, New York, NY 10032
| | - H. Thomas Lee
- Department of Anesthesiology, College of Physicians and Surgeons of Columbia University, New York, NY 10032
| |
Collapse
|
167
|
Fitzpatrick PA, Guinan AF, Walsh TG, Murphy RP, Killeen MT, Tobin NP, Pierotti AR, Cummins PM. Down-regulation of neprilysin (EC3.4.24.11) expression in vascular endothelial cells by laminar shear stress involves NADPH oxidase-dependent ROS production. Int J Biochem Cell Biol 2009; 41:2287-94. [PMID: 19464387 DOI: 10.1016/j.biocel.2009.05.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2009] [Revised: 05/14/2009] [Accepted: 05/16/2009] [Indexed: 10/20/2022]
Abstract
Neprilysin (NEP, neutral endopeptidase, EC3.4.24.11), a zinc metallopeptidase expressed on the surface of endothelial cells, influences vascular homeostasis primarily through regulated inactivation of natriuretic peptides and bradykinin. Earlier in vivo studies reporting on the anti-atherosclerotic effects of NEP inhibition and on the atheroprotective effects of flow-associated laminar shear stress (LSS) have lead us to hypothesize that the latter hemodynamic stimulus may serve to down-regulate NEP levels within the vascular endothelium. To address this hypothesis, we have undertaken an investigation of the effects of LSS on NEP expression in vitro in bovine aortic endothelial cells (BAECs), coupled with an examination of the signalling mechanism putatively mediating these effects. BAECs were exposed to physiological levels of LSS (10 dynes/cm(2), 24h) and harvested for analysis of NEP expression using real-time PCR, Western blotting, and immunocytochemistry. Relative to unsheared controls, NEP mRNA and protein were substantially down-regulated by LSS (>or=50%), events which could be prevented by treatment of BAECs with either N-acetylcysteine, superoxide dismutase, or catalase, implicating reactive oxygen species (ROS) involvement. Employing pharmacological and molecular inhibition strategies, the signal transduction pathway mediating shear-dependent NEP suppression was also examined, and roles implicated for G beta gamma, Rac1, and NADPH oxidase activation in these events. Treatment of static BAECs with angiotensin-II, a potent stimulus for NADPH oxidase activation, mimicked the suppressive effects of shear on NEP expression, further supporting a role for NADPH oxidase-dependent ROS production. Interestingly, inhibition of receptor tyrosine kinase signalling had no effect. In conclusion, we confirm for the first time that NEP expression is down-regulated in vascular endothelial cells by physiological laminar shear, possibly via a mechanotransduction mechanism involving NADPH oxidase-induced ROS production.
Collapse
Affiliation(s)
- Paul A Fitzpatrick
- School of Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland
| | | | | | | | | | | | | | | |
Collapse
|
168
|
Eligini S, Arenaz I, Barbieri SS, Faleri ML, Crisci M, Tremoli E, Colli S. Cyclooxygenase-2 mediates hydrogen peroxide-induced wound repair in human endothelial cells. Free Radic Biol Med 2009; 46:1428-36. [PMID: 19269318 DOI: 10.1016/j.freeradbiomed.2009.02.026] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2008] [Revised: 02/09/2009] [Accepted: 02/25/2009] [Indexed: 01/07/2023]
Abstract
Cyclooxygenase-2 (Cox-2) metabolites produced by endothelial cells, particularly prostacyclin and prostaglandin E(2), profoundly affect vascular tone, regional blood flow, and angiogenesis. We have previously shown that reactive oxygen species induce Cox-2 expression in human endothelial cells (HUVEC), either on their own or as components of the signaling pathway triggered by TNFalpha, the prototypical inflammatory cytokine. Here we investigated the role of Cox-2 induced by hydrogen peroxide (H(2)O(2)), either exogenous or endogenously generated by TNFalpha, in the repair of a mechanically wounded HUVEC monolayer and probed the sources of H(2)O(2) that are involved in TNFalpha signaling and the pathways through which H(2)O(2) modulates Cox-2 expression. Results indicate that H(2)O(2)-induced Cox-2 activity participates in the repair of wounded monolayers. Both NADPH oxidase and the mitochondrial electron transport chain are involved in H(2)O(2) generation. Signaling triggered by H(2)O(2) for Cox-2 induction acts by increasing the protein tyrosine kinase phosphorylation that follows inhibition of protein phosphatase activity. The activation of p38 MAPK and its interaction in the inhibition of serine/threonine phosphatase activity are both critical steps in this event. We conclude that Cox-2 induced by H(2)O(2) plays an important role in promoting endothelial wound repair after injury, so that the cardioprotective effect of Cox-2 is due at least in part to its power of healing damaged endothelium.
Collapse
Affiliation(s)
- Sonia Eligini
- E. Grossi Paoletti Center, Department of Pharmacological Sciences, University of Milan, Italy
| | | | | | | | | | | | | |
Collapse
|
169
|
Chen W, Kuizon S, Chiou BL, Bolton DC, Pullarkat RK, Junaid MA. Differential expression of small heat shock protein 27 (Hsp27) in Ataxia telangiectasia brains. Neurochem Res 2009; 34:1658-67. [PMID: 19322656 DOI: 10.1007/s11064-009-9959-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2008] [Accepted: 03/13/2009] [Indexed: 01/28/2023]
Abstract
Ataxia telangiectasia (A-T) is a progressive neurodegenerative disorder caused by disruption of the gene, ataxia telangiectasia mutated (ATM). Present study was aimed at identifying proteins that are present in abnormal levels in A-T brain that may identify alternative targets for therapeutic interventions. Proteomic and Western blot analysis have shown massive expression of the small heat shock protein 27 (Hsp27) in frontal cortices of A-T brains compared to negligible levels in controls. The expression of other stress proteins, Hsp70, alphaB-crystallin, and prohibitin remained unchanged in the A-T and control brains. Significant decreases in reactive oxygen species, protein carbonyl groups and lipid peroxidation products were observed in the A-T brains. There is no evidence of caspase 3 activation or DAXX mediated apoptosis. We propose that neurons in the frontal lobe are protected by the expression of Hsp27, which scavenges the oxidative stress molecules formed consequent to the primary loss of ATM function.
Collapse
Affiliation(s)
- Wenqiang Chen
- Department of Developmental Biochemistry, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY 10314, USA
| | | | | | | | | | | |
Collapse
|
170
|
Damarla M, Hasan E, Boueiz A, Le A, Pae HH, Montouchet C, Kolb T, Simms T, Myers A, Kayyali US, Gaestel M, Peng X, Reddy SP, Damico R, Hassoun PM. Mitogen activated protein kinase activated protein kinase 2 regulates actin polymerization and vascular leak in ventilator associated lung injury. PLoS One 2009; 4:e4600. [PMID: 19240800 PMCID: PMC2643011 DOI: 10.1371/journal.pone.0004600] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2008] [Accepted: 12/19/2008] [Indexed: 01/11/2023] Open
Abstract
Mechanical ventilation, a fundamental therapy for acute lung injury, worsens pulmonary vascular permeability by exacting mechanical stress on various components of the respiratory system causing ventilator associated lung injury. We postulated that MK2 activation via p38 MAP kinase induced HSP25 phosphorylation, in response to mechanical stress, leading to actin stress fiber formation and endothelial barrier dysfunction. We sought to determine the role of p38 MAP kinase and its downstream effector MK2 on HSP25 phosphorylation and actin stress fiber formation in ventilator associated lung injury. Wild type and MK2(-/-) mice received mechanical ventilation with high (20 ml/kg) or low (7 ml/kg) tidal volumes up to 4 hrs, after which lungs were harvested for immunohistochemistry, immunoblotting and lung permeability assays. High tidal volume mechanical ventilation resulted in significant phosphorylation of p38 MAP kinase, MK2, HSP25, actin polymerization, and an increase in pulmonary vascular permeability in wild type mice as compared to spontaneous breathing or low tidal volume mechanical ventilation. However, pretreatment of wild type mice with specific p38 MAP kinase or MK2 inhibitors abrogated HSP25 phosphorylation and actin polymerization, and protected against increased lung permeability. Finally, MK2(-/-) mice were unable to phosphorylate HSP25 or increase actin polymerization from baseline, and were resistant to increases in lung permeability in response to HV(T) MV. Our results suggest that p38 MAP kinase and its downstream effector MK2 mediate lung permeability in ventilator associated lung injury by regulating HSP25 phosphorylation and actin cytoskeletal remodeling.
Collapse
Affiliation(s)
- Mahendra Damarla
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Emile Hasan
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Adel Boueiz
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Anne Le
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Hyun Hae Pae
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Calypso Montouchet
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Todd Kolb
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Tiffany Simms
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Allen Myers
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Usamah S. Kayyali
- Department of Medicine, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Matthias Gaestel
- Department of Biochemistry, Medical School of Hannover, Hannover, Germany
| | - Xinqi Peng
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Sekhar P. Reddy
- Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Rachel Damico
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Paul M. Hassoun
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
171
|
Triamcinolone acetonide prevents oxidative stress-induced tight junction disruption of retinal pigment epithelial cells. Graefes Arch Clin Exp Ophthalmol 2009; 247:641-9. [PMID: 19189116 DOI: 10.1007/s00417-009-1041-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2008] [Revised: 12/23/2008] [Accepted: 01/12/2009] [Indexed: 12/31/2022] Open
Abstract
PURPOSE Oxidative stress is known to disrupt the integrity of retinal pigment epithelium (RPE) tight junctions. The goal of this study is to evaluate the effect of triamcinolone acetonide (TA) on the junctional integrity of RPE under oxidative stress and to identify the underlying mechanisms. METHODS Second passage porcine RPE cells were cultured on 6-well membrane inserts until 4 weeks after reaching confluence. Cells were incubated with TA (10(-5) M) for 30 min. FITC-containing medium was added to the upper chamber (cell's apical side). The cells were then challenged with 1 mM Hydrogen Peroxide (H(2)O(2)). After 5 h, the fluorescence intensity of the medium from lower chamber (cell's basolateral side) was measured using a fluorescence spectrofluorophotometer. This transepithelial flux of FITC-dextran was measured until the 21st day. The immunolocalization of occludin and F-actin was examined with fluorescence microscope. Reduced glutathione (GSH)/oxidized glutathione (GSSG) ratio was determined by a colorimetric assay kit. RESULTS Non-lethal oxidative stress by H(2)O(2) increased transepithelial flux of FITC-dextran significantly. TA inhibited this increase and preserved the lower flux through the whole experimental period. This permeability change by H(2)O(2) was reversible and recovered to the normal level within 3 weeks. In immunohistological study, H(2)O(2) reduced linear occludin staining at the cell border and increased actin stress fibers. TA prevented H(2)O(2)-induced disruption of junctional assembly of occludin and F-actin. Glutathione assay demonstrated that intracellular GSH/GSSG ratio decreased significantly with H(2)O(2), while TA preserved this ratio by up-regulating GSH synthesis. CONCLUSIONS TA has a protective effect against oxidative stress-induced disruption of RPE tight junction by preserving cellular redox state.
Collapse
|
172
|
Kostenko S, Johannessen M, Moens U. PKA-induced F-actin rearrangement requires phosphorylation of Hsp27 by the MAPKAP kinase MK5. Cell Signal 2009; 21:712-8. [PMID: 19166925 DOI: 10.1016/j.cellsig.2009.01.009] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2008] [Accepted: 01/03/2009] [Indexed: 10/21/2022]
Abstract
Mitogen-activated protein kinase (MAPK) pathways can play a role in F-actin dynamics. In particular, the p38 MAPK/MAPK-activated protein kinase 2 (MK2)/heat shock protein 27 (Hsp27) pathway is involved in F-actin alternations. Previously, we showed that MK5 is implicated in F-actin rearrangement induced by the cAMP/cAMP-dependent protein kinase pathway in PC12 cells, while others found Hsp27 to be a good in vitro MK5 substrate. Here we demonstrate that MK5 can specifically interact with Hsp27 in vivo and can induce phosphorylation at serine residues 78 and 82 in cells. siRNA-mediated depletion of Hsp27 protein levels, as well as overexpression of the non-phosphorylatable Hsp27-3A mutant prevented forskolin-induced F-actin reorganization. While ectopic expression of a constitutive active MK5 mutant was sufficient to induce F-actin rearrangement in PC12 cells, co-expression of Hsp27-3A could ablate this process. Our results imply that MK5 is involved in Hsp27-controlled F-actin dynamics in response to activation of the cAMP-dependent protein kinase pathway. These findings render the MK5/Hsp27 connection into a putative therapeutic target for conditions with aberrant Hsp27 phosphorylation such as metastasis, cardiovascular diseases, muscle atrophy, autoimmune skin disease and neuropathology.
Collapse
Affiliation(s)
- Sergiy Kostenko
- University of Tromsø, Faculty of Medicine, Department of Microbiology and Virology, N-9037 Tromsø, Norway
| | | | | |
Collapse
|
173
|
Prasain N, Stevens T. The actin cytoskeleton in endothelial cell phenotypes. Microvasc Res 2009; 77:53-63. [PMID: 19028505 PMCID: PMC2700738 DOI: 10.1016/j.mvr.2008.09.012] [Citation(s) in RCA: 221] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2008] [Accepted: 09/26/2008] [Indexed: 10/21/2022]
Abstract
Endothelium forms a semi-permeable barrier that separates blood from the underlying tissue. Barrier function is largely determined by cell-cell and cell-matrix adhesions that define the limits of cell borders. Yet, such cell-cell and cell-matrix tethering is critically reliant upon the nature of adherence within the cell itself. Indeed, the actin cytoskeleton fulfills this essential function, to provide a strong, dynamic intracellular scaffold that organizes integral membrane proteins with the cell's interior, and responds to environmental cues to orchestrate appropriate cell shape. The actin cytoskeleton is comprised of three distinct, but inter-related structures, including actin cross-linking of spectrin within the membrane skeleton, the cortical actin rim, and actomyosin-based stress fibers. This review addresses each of these actin-based structures, and discusses cellular signals that control the disposition of actin in different endothelial cell phenotypes.
Collapse
Affiliation(s)
- Nutan Prasain
- Department of Molecular and Cellular Pharmacology College of Medicine, University of South Alabama, Mobile, AL 36688, USA
- Center for Lung Biology, College of Medicine, University of South Alabama, Mobile, AL 36688, USA
| | - Troy Stevens
- Department of Molecular and Cellular Pharmacology College of Medicine, University of South Alabama, Mobile, AL 36688, USA
- Center for Lung Biology, College of Medicine, University of South Alabama, Mobile, AL 36688, USA
| |
Collapse
|
174
|
Bogatcheva NV, Verin AD. Reprint of "The role of cytoskeleton in the regulation of vascular endothelial barrier function" [Microvascular Research 76 (2008) 202-207]. Microvasc Res 2009; 77:64-9. [PMID: 19232242 PMCID: PMC9927867 DOI: 10.1016/s0026-2862(09)00021-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2008] [Accepted: 06/18/2008] [Indexed: 02/08/2023]
Abstract
The cytoskeleton is vital to the function of virtually all cell types in the organism as it is required for cell division, cell motility, endo- or exocytosis and the maintenance of cell shape. Endothelial cells, lining the inner surface of the blood vessels, exploit cytoskeletal elements to ensure the integrity of cell monolayer in quiescent endothelium, and to enable the disintegration of the formed barrier in response to various agonists. Vascular permeability is defined by the combination of transcellular and paracellular pathways, with the latter being a major contributor to the inflammation-induced barrier dysfunction. This review will analyze the cytoskeletal elements, which reorganization affects endothelial permeability, and emphasize signaling mechanisms with barrier-protective or barrier-disruptive potential.
Collapse
Affiliation(s)
| | - Alexander D. Verin
- Corresponding author. Vascular Biology Center, CB-3210A, Medical College of Georgia, Augusta, GA 30912-2500, USA. Fax: +1 706 721 9799. (A.D. Verin)
| |
Collapse
|
175
|
Boueiz A, Hassoun PM. Regulation of endothelial barrier function by reactive oxygen and nitrogen species. Microvasc Res 2008; 77:26-34. [PMID: 19041330 DOI: 10.1016/j.mvr.2008.10.005] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2008] [Revised: 10/10/2008] [Accepted: 10/20/2008] [Indexed: 01/14/2023]
Abstract
Excessive generation of reactive oxygen species (ROS) and reactive nitrogen species (RNS), by activated neutrophils and endothelial cells, has been implicated in the pathophysiology of endothelial barrier dysfunction. Disruption of the integrity of this barrier markedly increases permeability to fluids, solutes and inflammatory cells and is the hallmark of many disorders such as acute lung injury (ALI) and sepsis. There has been considerable progress in our understanding of the sequence of molecular and structural events that mediate the response of endothelial cells to oxidants and nitrosants. In addition, substantial experimental evidence demonstrates improvement of endothelial barrier dysfunction with antioxidant strategies. However, no significant benefits have been observed, so far, in clinical trials of antioxidants for the treatment of endothelial barrier dysfunction. This article will review the available evidence implicating ROS and RNS in endothelial barrier dysfunction, explore potential underlying mechanisms, and identify areas of further research.
Collapse
Affiliation(s)
- Adel Boueiz
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University, School of Medicine, 5501 Hopkins Bayview Circle, Baltimore, MD 21224, USA
| | | |
Collapse
|
176
|
Bogatcheva NV, Verin AD. The role of cytoskeleton in the regulation of vascular endothelial barrier function. Microvasc Res 2008; 76:202-7. [PMID: 18657550 PMCID: PMC2586393 DOI: 10.1016/j.mvr.2008.06.003] [Citation(s) in RCA: 146] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2008] [Accepted: 06/18/2008] [Indexed: 10/21/2022]
Abstract
The cytoskeleton is vital to the function of virtually all cell types in the organism as it is required for cell division, cell motility, endo- or exocytosis and the maintenance of cell shape. Endothelial cells, lining the inner surface of the blood vessels, exploit cytoskeletal elements to ensure the integrity of cell monolayer in quiescent endothelium, and to enable the disintegration of the formed barrier in response to various agonists. Vascular permeability is defined by the combination of transcellular and paracellular pathways, with the latter being a major contributor to the inflammation-induced barrier dysfunction. This review will analyze the cytoskeletal elements, which reorganization affects endothelial permeability, and emphasize signaling mechanisms with barrier-protective or barrier-disruptive potential.
Collapse
Affiliation(s)
| | - Alexander D. Verin
- Medical College of Georgia, Vascular Biology Center, Augusta, Georgia, 30912
| |
Collapse
|
177
|
Dai S, Jia Y, Wu SL, Isenberg JS, Ridnour LA, Bandle RW, Wink DA, Roberts DD, Karger BL. Comprehensive characterization of heat shock protein 27 phosphorylation in human endothelial cells stimulated by the microbial dithiole thiolutin. J Proteome Res 2008; 7:4384-95. [PMID: 18720982 PMCID: PMC2658774 DOI: 10.1021/pr800376w] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Thiolutin is a sulfur-based microbial compound with known activity as an angiogenesis inhibitor. Relative to previously studied angiogenesis inhibitors, thiolutin is a remarkably potent inducer of heat shock protein 27 (Hsp27) phosphorylation. This phosphorylation requires p38 kinase but is independent of increased p38 phosphorylation. To elucidate how thiolutin regulates Hsp27 phosphorylation and ultimately angiogenesis, Hsp27 was immunoprecipitated using nonphosphorylated and phospho-Ser78 specific antibodies from lysates of thiolutin treated and untreated human umbilical vein endothelial cells and analyzed by LC-MS. Separate LC-MS analyses of Lys-C, Lys-C plus trypsin, and Lys-C plus Glu-C digests provided 100% sequence coverage, including the identification of a very large 13 kDa Lys-C fragment using a special sample handling procedure (4 M guanidine HCl) prior to the LC-MS analysis to improve the large peptide recovery. The analysis revealed a novel post-translational modification of Hsp27 involving truncation of the N-terminal Met and acetylation of the penultimate Thr. Analysis of a Glu-C fragment containing two phosphorylation sites, Ser78 and Ser82, and a tryptic fragment containing the other phosphorylation site, Ser15, enabled quantitative stoichiometry of Hsp27 phosphorylation by LC-MS. The strategy revealed details of Hsp27 phosphorylation, including significant di-phosphorylation at both Ser78 and Ser82, that would be difficult to obtain by traditional approaches because oligomerization of the hydrophobic N-terminal region of the molecule prevents efficient enzymatic cleavage. The combination of Western blotting, immunoprecipation, and LC-MS provides a quantitative analysis of thiolutin-stimulated Hsp27 phosphorylation and further defines the role of Hsp27 in the antiangiogenic activities of thiolutin and related dithiolethiones.
Collapse
Affiliation(s)
- Shujia Dai
- Barnett Institute, Northeastern University, Boston, Massachusetts 02115
| | - Yifeng Jia
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892
| | - Shiaw-Lin Wu
- Barnett Institute, Northeastern University, Boston, Massachusetts 02115
| | - Jeff S. Isenberg
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892
| | - Lisa A. Ridnour
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892
| | - Russell W. Bandle
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892
| | - David A. Wink
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892
| | - David D. Roberts
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892
| | - Barry L. Karger
- Barnett Institute, Northeastern University, Boston, Massachusetts 02115
| |
Collapse
|
178
|
Triptolide protects podocytes from puromycin aminonucleoside induced injury in vivo and in vitro. Kidney Int 2008; 74:596-612. [DOI: 10.1038/ki.2008.203] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
179
|
Wang C, Li M, Feng Y, Zheng F, Dong Y, Pan X, Cheng G, Dong R, Hu D, Feng X, Ge J, Liu D, Wang J, Cao M, Hu F, Tang J. The involvement of sortase A in high virulence of STSS-causing Streptococcus suis serotype 2. Arch Microbiol 2008; 191:23-33. [DOI: 10.1007/s00203-008-0425-z] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2008] [Revised: 06/16/2008] [Accepted: 07/30/2008] [Indexed: 02/08/2023]
|
180
|
Feaver RE, Hastings NE, Pryor A, Blackman BR. GRP78 upregulation by atheroprone shear stress via p38-, alpha2beta1-dependent mechanism in endothelial cells. Arterioscler Thromb Vasc Biol 2008; 28:1534-41. [PMID: 18556570 PMCID: PMC2723835 DOI: 10.1161/atvbaha.108.167999] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
OBJECTIVE The initiation of atherosclerosis is in part dependent on the hemodynamic shear stress environment promoting a proinflammatory phenotype of the endothelium. Previous studies demonstrated increased expression of ER stress protein and unfolded protein response (UPR) regulator, GRP78, within all vascular cells in atherosclerotic lesions and its regulation in the endothelium by several atherosclerotic stressors; however, regulation of GRP78 by shear stress directly has not been established. METHOD AND RESULTS Using an in vitro model to simulate human arterial shear stress waveforms, atheroprone or atheroprotective flow was applied to human endothelial cells. GRP78 was found to be significantly upregulated (3-fold) in a sustained manner under atheroprone, but not atheroprotective flow up to 24 hours. This response was dependent on both sustained activation of p38, as well integrin alpha2beta1. Increased GRP78 correlated with the activation of the ER stress sensing element (ERSE1) promoter by atheroprone flow as a marker of the UPR. Shear stress regulated GRP78 through increased protein stability when compared to other flow regulated proteins, such as connexin-43 and vascular cell adhesion molecule (VCAM)-1. Increased endothelial expression of GRP78 was also observed in atheroprone versus atheroprotective regions of C57BL6 mice. CONCLUSIONS This study supports a role of the hemodynamic environment in preferentially inducing GRP78 and the UPR in atheroprone regions, before lesion development, and suggests a potential atheroprotective (ie, prosurvival), compensatory effect in response to ER stress within atherosclerotic lesions.
Collapse
Affiliation(s)
- Ryan E Feaver
- Department of Biomedical Engineering, University of Virginia-Health System, PO Box 800759, Charlottesville, VA 22908, USA
| | | | | | | |
Collapse
|
181
|
Combaret V, Boyault S, Iacono I, Brejon S, Rousseau R, Puisieux A. Effect of bortezomib on human neuroblastoma: analysis of molecular mechanisms involved in cytotoxicity. Mol Cancer 2008; 7:50. [PMID: 18534018 PMCID: PMC2442611 DOI: 10.1186/1476-4598-7-50] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2008] [Accepted: 06/05/2008] [Indexed: 11/12/2022] Open
Abstract
Background Bortezomib, a specific and selective inhibitor of the 26S proteasome with antitumor activity against a wide range of malignancies, has been approved for the treatment of relapsed or refractory multiple myeloma and other cancers. Recently, bortezomib has been identified as an effective inhibitor of neuroblastoma cell growth and angiogenesis. Results In the present study, we demonstrate that some neuroblastoma cell lines are actually resistant to bortezomib. We have sought to characterize the main pathway by which proteasome inhibition leads to apoptosis, and to define the mechanism responsible for resistance to bortezomib in neuroblastoma cells. Our results show that SB202190, an inhibitor of mitogen-activated protein kinase (MAPK) p38, enhances the ability of bortezomib to induce apoptosis by preventing the phosphorylation of the heat shock protein (HSP) 27. Conclusion This study opens the way to further clinical investigations and suggests a potential benefit of using a combination of bortezomib with an inhibitor of p38 MAPK for the treatment of neuroblastoma relapse.
Collapse
Affiliation(s)
- Valérie Combaret
- Laboratoire de Recherche Translationnelle, Centre Léon Bérard, Lyon, France.
| | | | | | | | | | | |
Collapse
|
182
|
Yuan J, Rozengurt E. PKD, PKD2, and p38 MAPK mediate Hsp27 serine-82 phosphorylation induced by neurotensin in pancreatic cancer PANC-1 cells. J Cell Biochem 2008; 103:648-62. [PMID: 17570131 DOI: 10.1002/jcb.21439] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
It is widely recognized that Hsp27 is a downstream substrate of the p38 MAPK cascade whereas the role of PKD family members in mediating receptor-stimulated Hsp27 Ser-82 phosphorylation has not been evaluated. Here, we show that neurotensin induced a rapid and striking increase in Hsp27 Ser-82 phosphorylation in PANC-1 cells, which was closely correlated with stimulation of activation loop phosphorylation of PKDs and p38 MAPK Thr180/Tyr182 phosphorylation. Treatment of PANC-1 cells with either the selective PKC inhibitor GF-I or the p38 MAPK inhibitor SB202190 partially reduced neurotensin-induced Hsp27 Ser-82 phosphorylation. However, treatment of the cells with a combination of GF-I and SB202190 virtually abolished neurotensin-induced Hsp27 Ser-82 phosphorylation. Overexpression of PKD in stably transfected PANC-1 cells increased the magnitude and prolonged the duration of Hsp27 Ser-82 phosphorylation in response to neurotensin. Either PKD or PKD2 gene silencing utilizing siRNAs targeting distinct PKD or PKD2 sequences reduced neurotensin-stimulated Hsp27 Ser-82 phosphorylation, but cotransfection of siRNAs targeting both, PKD and PKD2, markedly decreased neurotensin-induced Hsp27 Ser-82 phosphorylation. Knockdown of PKD and PKD2 abolished Hsp27 phosphorylation in cells treated with SB202190. Thus, neurotensin induces Hsp27 Ser-82 phosphorylation through p38 MAPK- and PKC/PKD-dependent pathways in PANC-1 cells. Our results demonstrate, for the first time, that neurotensin induces a striking increase in Hsp27 phosphorylation on Ser-82 in PANC-1 cells through convergent p38 MAPK, PKD, and PKD2 signaling.
Collapse
Affiliation(s)
- Jingzhen Yuan
- Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine; CURE: Digestive Diseases Research Center and Molecular Biology Institute, University of California, Los Angeles, California 90095, USA
| | | |
Collapse
|
183
|
Morissette G, Couture JP, Désormeaux A, Adam A, Marceau F. Lack of direct interaction between enalaprilat and the kinin B1 receptors. Peptides 2008; 29:606-12. [PMID: 18201802 DOI: 10.1016/j.peptides.2007.12.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2007] [Accepted: 12/04/2007] [Indexed: 11/26/2022]
Abstract
It has been recently proposed that the second extracellular loop of the human bradykinin (BK) B1 receptor (B1R) contains a conserved HExxH motif also present in peptidases possessing a Zn2+ prosthetic group, such as angiotensin converting enzyme (ACE), and that ACE inhibitors directly activate B1R signaling in endothelial cells. However, the binding of ACE inhibitors to the B1Rs has never been directly evaluated. Information about binding of a radiolabeled inhibitor to natural or recombinant ACE in intact cells (physiologic ionic composition) was also collected. We used the tritiated form of an ACE inhibitor previously proposed to activate the B1R, enalaprilat, to address these questions using recombinant human B1Rs and naturally expressed or recombinant ACE. [3H]Lys-des-Arg9-BK bound to the human recombinant B1Rs with high affinity (KD 0.35 nM) in HEK 293a cells. [3H]Enalaprilat (0.25-10 nM) did not bind to cells expressing recombinant human B1R, but bound with a subnanomolar affinity to recombinant ACE or to naturally expressed ACE in human umbilical vein endothelial cells. The radioligand was further validated using a binding competition assay that involved unlabeled ACE inhibitors or their prodrug forms in endothelial cells. Membranes of HEK 293a cells that expressed B1Rs did not hydrolyze hippuryl-glycylglycine (an ACE substrate). Enalaprilat did not stimulate calcium signaling in HEK 293a cells that expressed B1Rs. A typical ACE inhibitor did not bind to nor stimulate the human B1Rs; nevertheless, several other indirect mechanisms could connect ACE inhibition to B1R stimulation in vivo.
Collapse
Affiliation(s)
- Guillaume Morissette
- Centre de recherche en Rhumatologie et Immunologie, Centre Hospitalier Universitaire de Québec, Québec, QC, Canada G1V 4G2
| | | | | | | | | |
Collapse
|
184
|
Fujita-Yoshigaki J, Matsuki-Fukushima M, Sugiya H. Inhibition of Src and p38 MAP kinases suppresses the change of claudin expression induced on dedifferentiation of primary cultured parotid acinar cells. Am J Physiol Cell Physiol 2008; 294:C774-85. [DOI: 10.1152/ajpcell.00472.2007] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Sjögren's syndrome and therapeutic radiation for head and neck cancers result in irreversible changes in the parenchyma of salivary glands, loss of acinar cells, prominence of duct cells, and fibrosis. To clarify mechanisms of salivary gland dysfunction, we identified a signaling pathway involved in the dedifferentiation of primary cultures of parotid acinar cells. We reported previously that the expression pattern of claudins changes during culture, is related to the three-dimensional organization of the cells, and reflects their ability to function as acinar cells. In this study, we found that this change of claudin expression is a process of dedifferentiation, because expression of other differentiation markers also changes during culture. The expression levels of claudins-4 and -6, cytokeratin 14, and vimentin are increased, and those of claudin-10, aquaporin 5, and amylase are decreased. Inhibitors of Src and p38 MAP kinases suppress these changes and increase the expression of acinar marker proteins. Differences in extracellular matrix components have no effect. Activation of p38 MAP kinase occurs during cell isolation from the parotid glands and is retained up to 6 h after the isolation. In contrast, activation of Src kinases does not increase during the cell isolation. The Src inhibitor PP1 suppresses the activation of p38 MAP kinase. Therefore, cellular stresses induced during cell isolation cause dedifferentiation and transition to duct-like cells through activation of p38 MAP kinase and constitutively active Src kinases.
Collapse
|
185
|
Contribution of soluble intercellular adhesion molecule-1 to the migration of vascular smooth muscle cells. Eur J Pharmacol 2008; 579:260-8. [PMID: 17991463 DOI: 10.1016/j.ejphar.2007.10.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2007] [Revised: 08/22/2007] [Accepted: 10/03/2007] [Indexed: 01/25/2023]
|
186
|
Lee HM, Lee CK, Lee SH, Roh HY, Bae YM, Lee KY, Lim J, Park PJ, Park TK, Lee YL, Won KJ, Kim B. p38 mitogen-activated protein kinase contributes to angiotensin II-stimulated migration of rat aortic smooth muscle cells. J Pharmacol Sci 2007; 105:74-81. [PMID: 17895590 DOI: 10.1254/jphs.fp0070770] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
In this study, we clarified the intracellular mechanism of angiotensin II (Ang II) in promoting migration in rat aortic smooth muscle cells (RASMCs). RASMC migration was measured with the Boyden chamber assay, and the result was confirmed with an aortic sprout assay. The activities of kinases were investigated by western blot analysis. Ang II enhanced RASMC migration, which was chemotaxis directed, and induced the phosphorylation of p38 mitogen-activated protein kinase (MAPK), extracellular signal-regulated kinase 1/2 (ERK1/2), and heat shock protein 27 (Hsp27). Ang II-enhanced cell migration was inhibited by SB203580 (a p38 MAPK inhibitor) and piceatannol (a spleen tyrosine kinase inhibitor), but only partially by PD98059 (an ERK inhibitor) and PP2 (a Src inhibitor). The Ang II-stimulated phosphorylation of p38 MAPK and Hsp27 in RASMCs was inhibited by piceatannol and SB203580. The phosphorylation of ERK1/2 stimulated by Ang II was suppressed by PD98059, piceatannol, and PP2. Ang II increased the sprout outgrowth from aortic rings and this response was attenuated by pretreatment with SB203580, PD98059, PP2, or piceatannol. These results suggest that p38 MAPK contributes to the regulation of the Ang II-induced chemotactic migration of vascular smooth muscle cells, which is mediated by Hsp27 phosphorylation.
Collapse
Affiliation(s)
- Hwan Myung Lee
- Department of Medicine, College of Medicine, Konkuk University, Danwol-dong 322, Chungju 380-701, Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
187
|
Wen J, Cheng HY, Feng Y, Rice L, Liu S, Mo A, Huang J, Zu Y, Ballon DJ, Chang CC. P38 MAPK inhibition enhancing ATO-induced cytotoxicity against multiple myeloma cells. Br J Haematol 2007; 140:169-80. [DOI: 10.1111/j.1365-2141.2007.06895.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
188
|
Gerits N, Mikalsen T, Kostenko S, Shiryaev A, Johannessen M, Moens U. Modulation of F-actin rearrangement by the cyclic AMP/cAMP-dependent protein kinase (PKA) pathway is mediated by MAPK-activated protein kinase 5 and requires PKA-induced nuclear export of MK5. J Biol Chem 2007; 282:37232-43. [PMID: 17947239 DOI: 10.1074/jbc.m704873200] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The MAPK-activated protein kinases belong to the Ca2+/calmodulin-dependent protein kinases. Within this group, MK2, MK3, and MK5 constitute three structurally related enzymes with distinct functions. Few genuine substrates for MK5 have been identified, and the only known biological role is in ras-induced senescence and in tumor suppression. Here we demonstrate that activation of cAMP-dependent protein kinase (PKA) or ectopic expression of the catalytic subunit Calpha in PC12 cells results in transient nuclear export of MK5, which requires the kinase activity of both Calpha and MK5 and the ability of Calpha to enter the nucleus. Calpha and MK5, but not MK2, interact in vivo, and Calpha increases the kinase activity of MK5. Moreover, Calpha augments MK5 phosphorylation, but not MK2, whereas MK5 does not seem to phosphorylate Calpha. Activation of PKA can induce actin filament accumulation at the plasma membrane and formation of actin-based filopodia. We demonstrate that small interfering RNA-triggered depletion of MK5 interferes with PKA-induced F-actin rearrangement. Moreover, cytoplasmic expression of an activated MK5 variant is sufficient to mimic PKA-provoked F-actin remodeling. Our results describe a novel interaction between the PKA pathway and MAPK signaling cascades and suggest that MK5, but not MK2, is implicated in PKA-induced microfilament rearrangement.
Collapse
Affiliation(s)
- Nancy Gerits
- Department of Microbiology and Virology, Faculty of Medicine, University of Tromsø, N-9037 Tromsø, Norway
| | | | | | | | | | | |
Collapse
|
189
|
Houle F, Poirier A, Dumaresq J, Huot J. DAP kinase mediates the phosphorylation of tropomyosin-1 downstream of the ERK pathway, which regulates the formation of stress fibers in response to oxidative stress. J Cell Sci 2007; 120:3666-77. [PMID: 17895359 DOI: 10.1242/jcs.003251] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Endothelial cells are actively involved in regulating the exchanges between blood and tissues. This function is tightly dependent on actin cytoskeleton dynamics and is challenged by a wide variety of stimuli, including oxidative stress. In endothelial cells, oxidative stress quickly activates the extracellular-signal-regulated kinase (ERK) MAP kinase, which results in the phosphorylation of tropomyosin. Here, we investigated further the mechanisms of tropomyosin phosphorylation and its function in actin remodeling. We identified, for the first time, death-associated protein kinase 1 (DAP kinase 1) as the kinase that phosphorylates tropomyosin-1 in response to ERK activation by hydrogen peroxide (H(2)O(2)). We also report that the phosphorylation of tropomyosin-1 mediated by DAP kinase occurs on Ser283. Moreover, the expression of the pseudophosphorylated tropomyosin mutant Ser283Glu triggers by itself the formation of stress fibers in untreated cells, and the effect is maintained in H(2)O(2)-treated cells in which DAP kinase expression is knocked-down by siRNA. By contrast, the expression of the nonphosphorylatable tropomyosin mutant Ser283Ala is not associated with stress fibers and leads to membrane blebbing in response to H(2)O(2). Our finding that tropomyosin-1 is phosphorylated downstream of ERK and DAP kinase and that it helps regulate the formation of stress fibers will aid understanding the role of this protein in regulating the endothelial functions associated with cytoskeletal remodeling.
Collapse
Affiliation(s)
- François Houle
- Le Centre de recherche en cancérologie de l'Université Laval, 9 rue McMahon, Québec G1R 2J6, Canada
| | | | | | | |
Collapse
|
190
|
Csortos C, Kolosova I, Verin AD. Regulation of vascular endothelial cell barrier function and cytoskeleton structure by protein phosphatases of the PPP family. Am J Physiol Lung Cell Mol Physiol 2007; 293:L843-54. [PMID: 17693486 DOI: 10.1152/ajplung.00120.2007] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Reversible phosphorylation of cytoskeletal and cytoskeleton-associated proteins is a significant element of endothelial barrier function regulation. Therefore, understanding the mechanisms of phosphorylation/dephosphorylation of endothelial cell cytoskeletal proteins is vital to the treatment of severe lung disorders such as high permeability pulmonary edema. In vivo, there is a controlled balance between the activities of protein kinases and phosphatases. Due to various external or internal signals, this balance may be shifted. The actual balances at a given time alter the phosphorylation level of certain proteins with appropriate physiological consequences. The latest information about the structure and regulation of different types of Ser/Thr protein phosphatases participating in the regulation of endothelial cytoskeletal organization and barrier function will be reviewed here.
Collapse
Affiliation(s)
- Csilla Csortos
- Department of Medicine, Division of Biological Sciences, The University of Chicago, Chicago, Illinois, USA
| | | | | |
Collapse
|
191
|
Arrigo AP. The cellular "networking" of mammalian Hsp27 and its functions in the control of protein folding, redox state and apoptosis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2007; 594:14-26. [PMID: 17205671 DOI: 10.1007/978-0-387-39975-1_2] [Citation(s) in RCA: 152] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Cells possess effective mechanisms to cope with chronic or acute disturbance of homeostasis. Key roles in maintaining or restoring homeostasis are played by the various heat shock or stress proteins (Hsps). Among the Hsps, the group of proteins characterized by low molecular masses (between 20 to 30 kDa) and homology to alpha-crystallin are called small stress proteins (denoted sHsps). The present chapter summarizes the actual knowledge of the protective mechanisms generated by the expression of mammalian Hsp27 (also denoted HspB1 in human) against the cytotoxicity induced by heat shock and oxidative stress. It also describes the anti-apoptotic properties of Hsp27 and their putative consequences in different pathological conditions.
Collapse
Affiliation(s)
- André-Patrick Arrigo
- Laboratoire Stress Oxydant, Chaperons et Apoptose, CNRS UMR 5534, Centre de Génétique Moléculaire et Cellulaire, Université Claude Bernard, 16 rue Dubois, 69622 Villeurbanne Cedex, France.
| |
Collapse
|
192
|
Cuenda A, Rousseau S. p38 MAP-kinases pathway regulation, function and role in human diseases. BIOCHIMICA ET BIOPHYSICA ACTA 2007; 1773:1358-75. [PMID: 17481747 DOI: 10.1016/j.bbamcr.2007.03.010] [Citation(s) in RCA: 1037] [Impact Index Per Article: 57.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2006] [Revised: 03/13/2007] [Accepted: 03/19/2007] [Indexed: 11/28/2022]
Abstract
Mammalian p38 mitogen-activated protein kinases (MAPKs) are activated by a wide range of cellular stresses as well as in response to inflammatory cytokines. There are four members of the p38MAPK family (p38alpha, p38beta, p38gamma and p38delta) which are about 60% identical in their amino acid sequence but differ in their expression patterns, substrate specificities and sensitivities to chemical inhibitors such as SB203580. A large body of evidences indicates that p38MAPK activity is critical for normal immune and inflammatory response. The p38MAPK pathway is a key regulator of pro-inflammatory cytokines biosynthesis at the transcriptional and translational levels, which makes different components of this pathway potential targets for the treatment of autoimmune and inflammatory diseases. However, recent studies have shed light on the broad effect of p38MAPK activation in the control of many other aspects of the physiology of the cell, such as control of cell cycle or cytoskeleton remodelling. Here we focus on these emergent roles of p38MAPKs and their implication in different pathologies.
Collapse
Affiliation(s)
- Ana Cuenda
- MRC Protein Phosphorylation Unit, College of life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, UK.
| | | |
Collapse
|
193
|
Kim EH, Lee HJ, Lee DH, Bae S, Soh JW, Jeoung D, Kim J, Cho CK, Lee YJ, Lee YS. Inhibition of heat shock protein 27-mediated resistance to DNA damaging agents by a novel PKC delta-V5 heptapeptide. Cancer Res 2007; 67:6333-41. [PMID: 17616692 DOI: 10.1158/0008-5472.can-06-4344] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Heat shock protein 27 (HSP27), which is highly expressed in human lung and breast cancer tissues, induced resistance to cell death against various stimuli. Treatment of NCI-H1299 cells, which express a high level of HSP27, with small interference RNA specifically targeting HSP27 resulted in inhibition of their resistance to radiation or cisplatin, suggesting that HSP27 contributed to cellular resistance in these lung cancer cells. Furthermore, because HSP27 interacts directly with the COOH terminus of the protein kinase C delta (PKC delta)-V5 region with ensuing inhibition of PKC delta activity and PKC delta-mediated cell death, we wished to determine amino acid residues in the V5 region that mediate its interaction with HSP27. Investigation with various deletion mutants of the region revealed that amino acid residues 668 to 674 of the V5 region mediate its interaction with HSP27. When NCI-H1299 cells were treated with biotin or with FITC-tagged heptapeptide of the residues 668 to 674 (E-F-Q-F-L-D-I), the cells exhibited dramatically increased cisplatin or radiation-induced cell death with the heptapeptide having efficient interaction with HSP27, which in turn restored the PKC delta activity that had been inhibited by HSP27. In vivo nude mice grafting data also suggested that NCI-H1299 cells were sensitized by this heptapeptide. The above data strongly show that the heptapeptide of the PKC delta-V5 region sensitized human cancer cells through its interaction with HSP27, thereby sequestering HSP27. The heptapeptide may provide a novel strategy for selective neutralization of HSP27.
Collapse
Affiliation(s)
- Eun-Ho Kim
- Laboratory of Radiation Effect, Korea Institute of Radiological and Medical Sciences, Seoul, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
194
|
Kim JI, Kim SJ, Jung SW, Cho JY, Chung EJ, Kim M, Shin HM, Kim IK. IDENTIFICATION OF DIFFERENTIALLY EXPRESSED GENES AFTER HEAT SHOCK IN ISOLATED RAT AORTA. Clin Exp Pharmacol Physiol 2007; 34:636-40. [PMID: 17581221 DOI: 10.1111/j.1440-1681.2007.04620.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
1. In a previous study, we demonstrated that heat shock augments vascular contractility through the stress response. 2. The current study was designed to identify differentially expressed genes after heat shock by using a novel annealing control primer (ACP) system, which was developed recently to identify authentic genes. 3. Rat aortic rings were mounted in organ baths, exposed to 42 degrees C for 45 min and harvested 4 h after the end of heat shock. Total RNA were used for amplification by the reverse transcriptase-polymerase chain reaction (RT-PCR) with ACP system. Differentially amplified PCR products were sequenced, searched against the GenBank and confirmed by RT-PCR. 4. Genes for connective tissue growth factor, stress-inducible protein 1 and heat shock protein 25 were upregulated, whereas a gene for interferon regulatory factor 1 was downregulated. Immunohistochemistry revealed upregulation of the phosphorylated form of Hsp25 in aortic rings after heat shock. 5. These results suggest that phosphorylated Hsp25 plays a pivotal role in the augmentation of vascular contraction after heat shock.
Collapse
Affiliation(s)
- Jee In Kim
- Department of Pharmacology, Kyungpook National University School of Medicine, Daegu, Korea.
| | | | | | | | | | | | | | | |
Collapse
|
195
|
Rajashekhar G, Grow M, Willuweit A, Patterson CE, Clauss M. Divergent and convergent effects on gene expression and function in acute versus chronic endothelial activation. Physiol Genomics 2007; 31:104-13. [PMID: 17566077 DOI: 10.1152/physiolgenomics.00157.2006] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Activation of the vascular endothelium with cytokines such as TNF is widely used to study the role of the vasculature in proinflammatory disease. To gain insight into mechanisms of prolonged vascular endothelial activation we compared changes in gene expression induced by continuous activation in stable tmTNF-expressing cells with changes due to acute TNF challenge in vitro. Affymetrix Genechip analysis was performed on RNA from control, acute and continuous TNF-activated endothelial cells. Only 36% of the significant changes in gene expression were convergent between the acute and continuously activated endothelial cells compared with the control. From the divergently regulated genes, for example the cytokine ENA-78 was specifically induced in chronically activated cells, while E-selectin, a cell adhesion molecule, was upregulated only in acutely activated endothelial cells. Antioxidant SOD gene induction was noted in acute activation, while a regulatory NADPH oxidase subunit was selectively upregulated in continuously activated endothelium in accordance with significant reactive oxygen species induction occurred only in these cells. Accordingly, p38 and ERK1/2, two MAP kinases downstream of reactive oxygen species, were activated in stable transmembrane-spanning precursor (tm) TNF-expressing cells and were refractory to activation with soluble TNF or VEGF. In consequence, the increased p38 MAP kinase activity contributed to increased endothelial cell migration in tmTNF-expressing cells. These data suggest that continuous activation of endothelial cells leads to specific expression and functional changes, consistent with alterations observed in dysfunctional endothelium exposed to or involved in chronic inflammation.
Collapse
Affiliation(s)
- Gangaraju Rajashekhar
- Departments of Cellular and Integrative Physiology, Indiana Center of Vascular Biology and Medicine, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA.
| | | | | | | | | |
Collapse
|
196
|
Luo L, Li DQ, Pflugfelder SC. Hyperosmolarity-induced apoptosis in human corneal epithelial cells is mediated by cytochrome c and MAPK pathways. Cornea 2007; 26:452-60. [PMID: 17457195 DOI: 10.1097/ico.0b013e318030d259] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
PURPOSE To study whether hyperosmolarity induces apoptosis in human corneal epithelial cells through cytochrome c-mediated death pathways and by activation of mitogen-activated protein kinases (MAPKs). METHODS Primary human corneal epithelial cells cultured in normal osmolar media (312 mOsM) were switched to hyperosmolar media (450, 500, and 550 mOsM) by adding 70, 90, and 120 mM NaCl, respectively, with or without the c-jun N-terminal kinase (JNK) inhibitor SB202190 or the extracellular-regulated kinase (ERK) inhibitor PD98059. Apoptosis was assessed by the ApopTag In Situ Oligo Ligation (ISOL) assay. Confocal microscopy was used to detect cytochrome c and active caspase-3. Total RNA was extracted and subjected to reverse transcriptase-polymerase chain reaction for apoptosis-associated genes. Western blots were performed on cell extracts for the apoptogenic molecules cytochrome c and Smac/DIABLO, and phospho-JNK and ERK. RESULTS ISOL-positive apoptotic cells significantly increased from 3.3 +/- 1.6% in control medium to 11.4 +/- 5.8%, 18.9 +/- 4.8%, and 43.9 +/- 8.8% in 70, 90, and 120 mM NaCl added media, respectively. The 90 mM NaCl high saline medium notably increased release of cytochrome c and Smac/DIABLO from mitochondria; activated caspase-3, JNK and ERK; stimulated mRNA expression of interleukin-1-converting enzyme and Bax; and reduced Bcl2 expression. SB202190 and PD98059 significantly suppressed hyperosmolarity-induced JNK/ERK activation and ISOL-positive cells. In addition, PD98059 inhibited the release of cytochrome c and Smac/DIABLO from mitochondria. CONCLUSIONS These findings show that hyperosmolarity induces apoptosis of human corneal epithelial cells through a cytochrome c-mediated death pathway, which may be mediated by JNK and ERK MAPK signaling pathways.
Collapse
Affiliation(s)
- Lihui Luo
- Ocular Surface Center, Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | |
Collapse
|
197
|
Huey KA, McCall GE, Zhong H, Roy RR. Modulation of HSP25 and TNF-alpha during the early stages of functional overload of a rat slow and fast muscle. J Appl Physiol (1985) 2007; 102:2307-14. [PMID: 17379754 DOI: 10.1152/japplphysiol.00021.2007] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Early events in response to abrupt increases in activation and loading with muscle functional overload (FO) are associated with increased damage and inflammation. Heat shock protein 25 (HSP25) may protect against these stressors, and its expression can be regulated by muscle loading and activation. The purpose of this study was to investigate the responses of HSP25, phosphorylated HSP25 (pHSP25), and tumor necrosis factor-alpha (TNF-alpha) during FO of the slow soleus and fast plantaris. We compared the HSP25 mRNA, HSP25 protein, pHSP25, and TNF-alpha responses in the soleus and plantaris after 0.5, 1, 2, 3, and 7 days of FO. HSP25 and pHSP25 were quantified in soluble and insoluble fractions. HSP25 mRNA increased immediately in both muscles and decreased with continued FO. However, HSP25 mRNA levels were consistently higher in the muscles of FO than control rats. In the soluble fraction, HSP25 increased in the plantaris after 2-7 days of FO with the greatest response at 3 and 7 days. The pHSP25 response to FO was greater in the plantaris than soleus at all points in the soluble fraction and at 0.5 days in the insoluble fraction. TNF-alpha levels in the plantaris, but not soleus, were higher than control at 0.5-2 days of FO. This may have contributed to the greater FO response in pHSP25 in the plantaris than soleus as TNF-alpha increased pHSP25 in C2C12 myotubes. These results suggest that the initial responses of pHSP25 and TNF-alpha to mechanical stress and inflammation associated with FO are greater in a fast than slow extensor muscle.
Collapse
Affiliation(s)
- Kimberly A Huey
- Department of Kinesiology, University of Illinois, Urbana-Champaign, 120 Freer Hall, 906 S. Goodwin Ave., Urbana, IL 61801, USA.
| | | | | | | |
Collapse
|
198
|
Tanel A, Averill-Bates DA. P38 and ERK mitogen-activated protein kinases mediate acrolein-induced apoptosis in Chinese hamster ovary cells. Cell Signal 2007; 19:968-77. [PMID: 17196791 DOI: 10.1016/j.cellsig.2006.10.014] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2006] [Accepted: 10/24/2006] [Indexed: 10/23/2022]
Abstract
Acrolein, which is a highly reactive alpha,beta-unsaturated aldehyde generated by lipid peroxidation, can affect cells and tissues and cause various disorders. Increased levels of unsaturated aldehydes play an important role in the pathogenesis of a number of human diseases such as Alzheimer's disease, atherosclerosis and diabetes. Acrolein is a highly ubiquitous toxic environmental pollutant. Because of human exposure, there is a need for investigating the mechanisms involved in acrolein toxicity at the cellular and molecular levels. Acrolein can induce cell death by apoptosis, although the mechanisms are not entirely clear. The present study investigates whether mitogen-activated protein kinases (MAPKs) play a role in activation of apoptosis by acrolein. Our findings show that acrolein-mediated apoptosis is in fact MAPK-dependent in Chinese hamster ovary cells. The MAP family kinases, including ERK and p38 kinase, and the transcription factor c-Jun were all activated by phosphorylation after 1 h exposure to acrolein. Phosphorylation of ERK and p38 kinases and their blockade by an ERK inhibitor, U0126, or a p38 inhibitor, SB203580, respectively, suggested that activation of apoptosis by acrolein is ERK- and p38-dependent. Thus, blockade of ERK and p38 inhibited chromatin condensation, caspase-7 and -9 activation as well as ICAD cleavage induced by acrolein. JNK and AKT kinases seem to be implicated in survival pathways against acrolein insult, since their respective inhibitors, SP600125 and LY294002/Wortmannin switched the mode of cell death from apoptosis to total necrosis. Finally, acrolein induced phosphorylation of the pro-apoptotic factor p53 which is responsible for transcription of pro-apoptotic factors such as Bax and Fas ligand. These results provide new information demonstrating the implication of MAPKs and AKT in acrolein-induced apoptosis, and this information may be useful for understanding the pathogenesis of a number of tissue diseases and environmental toxicity in response to acrolein.
Collapse
Affiliation(s)
- André Tanel
- Département des Sciences Biologiques, TOXEN, Université du Québec à Montréal, CP 8888, Succursale Centre Ville, Montréal, Québec, Canada H3C 3P8
| | | |
Collapse
|
199
|
Lee HT, Kim M, Jan M, Penn RB, Emala CW. Renal tubule necrosis and apoptosis modulation by A1 adenosine receptor expression. Kidney Int 2007; 71:1249-61. [PMID: 17429344 DOI: 10.1038/sj.ki.5002227] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We have shown that A1 adenosine receptors (A1ARs) are cytoprotective against renal tubular necrosis and apoptosis both in vivo and in vitro. To study the role of A1AR numbers on renal epithelial cell survival, we stably overexpressed the human A1 receptor in a porcine renal tubule cell line and utilized primary cultures of proximal tubules obtained from A1AR knockout mice. Receptor-overexpressing cells were protected against peroxide-induced necrosis and tumor necrosis factor-alpha/cycloheximide-induced apoptosis. Conversely, cultured proximal tubule cells from receptor knockout mice showed more necrotic and apoptotic cell loss than corresponding cells from wild-type mice. Overexpression of the receptor resulted in a significantly higher baseline expression of both total and phosphorylated heat-shock protein (HSP)27; the latter due to A1 receptor enhancement of p38 and AP2 mitogen-activated protein kinase activities. The resistance to cell death in the porcine cells was reversed by selective A1 receptor antagonism and by a selective inhibitor of HSP synthesis. Receptor activation in wild-type mice in vivo led to increased total and phosphorylated HSP27, whereas receptor knockout mice showed decreased baseline and adenosine-mediated HSP phosphorylation. These studies show that endogenous A1AR activation produces cytoprotective effects in renal proximal tubules by modulating HSP27 signaling pathways.
Collapse
Affiliation(s)
- H T Lee
- Department of Anesthesiology, College of Physicians and Surgeons of Columbia University, New York, New York 10032-3784, USA.
| | | | | | | | | |
Collapse
|
200
|
Davis T, Wyllie FS, Rokicki MJ, Bagley MC, Kipling D. The role of cellular senescence in Werner syndrome: toward therapeutic intervention in human premature aging. Ann N Y Acad Sci 2007; 1100:455-69. [PMID: 17460211 DOI: 10.1196/annals.1395.051] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Werner syndrome (WS) is a premature aging disorder used as a model of normal human aging. WS individuals have several characteristics of normal aging, such as cataracts, hair graying, and skin aging, but manifest these at an early age. Additionally, WS individuals have high levels of inflammatory diseases, such as atherosclerosis and type 2 diabetes. The in vivo aging in WS is associated with accelerated aging of fibroblasts in culture. The cause of the accelerated senescence is not understood, but may be due to the genomic instability that is a hallmark of WS. Genome instability results in activation of stress kinases, such as p38, and the p38-specific inhibitor SB203580, prevents the accelerated senescence seen in WS fibroblasts. However, oxidative damage plays a role, as low oxygen conditions and antioxidant treatment revert some of the accelerated senescence phenotype. The effects of oxidative stress appear to be suppressible by SB203580; however, it does not appear to be transduced by p38. As SB203580 is known to inhibit other kinases in addition to p38, this suggests that more than one kinase pathway is involved. The recent development of p38 inhibitors with different binding properties, specificities, and oral bioavailability, and of new potent and selective inhibitors of JNK and MK2, will make it possible to dissect the roles of various kinase pathways in the accelerated senescence of WS cells. If this accelerated senescence is reflective of WS aging in vivo, these kinase inhibitors may well form the basis of antiaging therapies for individuals with WS.
Collapse
Affiliation(s)
- Terence Davis
- Department of Pathology, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, UK.
| | | | | | | | | |
Collapse
|