151
|
Rashdan NA, Shrestha B, Pattillo CB. S-glutathionylation, friend or foe in cardiovascular health and disease. Redox Biol 2020; 37:101693. [PMID: 32912836 PMCID: PMC7767732 DOI: 10.1016/j.redox.2020.101693] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 08/12/2020] [Accepted: 08/16/2020] [Indexed: 12/27/2022] Open
Abstract
Glutathione is a low molecular weight thiol that is present at high levels in the cell. The high levels of glutathione in the cell make it one of the most abundant antioxidants contributing to cellular redox homeostasis. As a general rule, throughout cardiovascular disease and progression there is an imbalance in redox homeostasis characterized by reactive oxygen species overproduction and glutathione underproduction. As research into these imbalances continues, glutathione concentrations are increasingly being observed to drive various physiological and pathological signaling responses. Interestingly in addition to acting directly as an antioxidant, glutathione is capable of post translational modifications (S-glutathionylation) of proteins through both chemical interactions and enzyme mediated events. This review will discuss both the chemical and enzyme-based S-glutathionylation of proteins involved in cardiovascular pathologies and angiogenesis.
Collapse
Affiliation(s)
- N A Rashdan
- Department of Cellular and Molecular Physiology, Louisiana State Health Science Center, Shreveport, LA, USA
| | - B Shrestha
- Department of Cellular and Molecular Physiology, Louisiana State Health Science Center, Shreveport, LA, USA
| | - C B Pattillo
- Department of Cellular and Molecular Physiology, Louisiana State Health Science Center, Shreveport, LA, USA.
| |
Collapse
|
152
|
Dalibalta S, Majdalawieh AF, Manjikian H. Health benefits of sesamin on cardiovascular disease and its associated risk factors. Saudi Pharm J 2020; 28:1276-1289. [PMID: 33132721 PMCID: PMC7584802 DOI: 10.1016/j.jsps.2020.08.018] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 08/27/2020] [Indexed: 01/19/2023] Open
Abstract
Sesamin, a major lignin isolated from sesame (Sesamum indicum) seeds and sesame oil, is known to possess antioxidant and anti-inflammatory properties. Several studies have revealed that oxidative stress and inflammation play a major role in a variety of cardiovascular diseases (CVDs). This comprehensive review summarizes the evidence on the effects of sesamin on CVD and its risk factors, principally due to its antioxidant properties. Specifically, this review highlights the mechanisms underlying the anti-hypertensive, anti-atherogenic, anti-thrombotic, anti-diabetic, and anti-obesity, lipolytic effects of sesamin both in vivo and in vitro, and identifies the signaling pathways targeted by sesamin and its metabolites. The data indicates that RAS/MAPK, PI3K/AKT, ERK1/2, p38, p53, IL-6, TNFα, and NF-κB signaling networks are all involved in moderating the various effects of sesamin on CVD and its risk factors. In conclusion, the experimental evidence suggesting that sesamin can reduce CVD risk is convincing. Thus, sesamin can be potentially useful as an adjuvant therapeutic agent to combat CVD and its multitude of risk factors.
Collapse
Affiliation(s)
- Sarah Dalibalta
- Department of Biology, Chemistry, and Environmental Sciences, Faculty of Arts and Sciences, American University of Sharjah, Sharjah, P.O. Box 26666, United Arab Emirates
| | - Amin F. Majdalawieh
- Department of Biology, Chemistry, and Environmental Sciences, Faculty of Arts and Sciences, American University of Sharjah, Sharjah, P.O. Box 26666, United Arab Emirates
| | - Herak Manjikian
- Department of Biology, Chemistry, and Environmental Sciences, Faculty of Arts and Sciences, American University of Sharjah, Sharjah, P.O. Box 26666, United Arab Emirates
| |
Collapse
|
153
|
Bilgir F, Bilgir O, Akan OY, Demir I. Adhesion molecules before and after propylthiouracil in patients with subclinical hyperthyroidism. ACTA ACUST UNITED AC 2020; 66:1057-1061. [PMID: 32935798 DOI: 10.1590/1806-9282.66.8.1057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 02/26/2020] [Indexed: 11/22/2022]
Abstract
OBJECTIVE This study aimed to investigate the effect of propylthiouracil treatment on adhesion molecules in patients with subclinical hyperthyroidism. METHODS In this study, a total of 168 patients diagnosed with subclinical hyperthyroidism were treated with propylthiouracil for one year. The levels of adhesion molecules, consisting of sICAM-1, sVCAM-1, and sE-Selectin, before and after the treatment were measured and compared. These results were compared with the levels of 148 healthy controls who received a placebo. RESULTS sICAM-1 levels were significantly higher in subclinical hyperthyroidism patients than in healthy controls (*pa=0.000). sICAM-1 levels were significantly decreased after the treatment (**pb=0.000). Despite this decrease in patients with subclinical hyperthyroidism, it did not decrease to the level of the control group. sVCAM-1 did not change before and after propylthiouracil treatment. The level of sE-selectin was similar to that of the pretreatment control group, but it did not have statistical significance, although it increased after the treatment (**pb=0.004). CONCLUSION The sICAM level was significantly higher than the pretreatment values and decreased after the propylthiouracil treatment. However, further studies are needed to reduce the risk of atherosclerosis and cancer in patients with subclinical hyperthyroidism.
Collapse
Affiliation(s)
- Ferda Bilgir
- . Katip Celebi University Ataturk Training and Research Hospital, Department of Allergy and Immunology, Izmir, Turkey
| | - Oktay Bilgir
- . Health Sciences University Bozyaka Training and Research Hospital, Department of Internal Medicine, Bozyaka, Izmir, Turkey
| | - Ozden Yildirim Akan
- . Health Sciences University Bozyaka Training and Research Hospital, Department of Internal Medicine, Bozyaka, Izmir, Turkey
| | - Ismail Demir
- . Health Sciences University Bozyaka Training and Research Hospital, Department of Internal Medicine, Bozyaka, Izmir, Turkey
| |
Collapse
|
154
|
Perazza LR, Daniel N, Dubois MJ, Pilon G, Varin TV, Blais M, Martinez Gonzales JL, Bouchard M, Asselin C, Lessard M, Pouliot Y, Roy D, Marette A. Distinct Effects of Milk-Derived and Fermented Dairy Protein on Gut Microbiota and Cardiometabolic Markers in Diet-Induced Obese Mice. J Nutr 2020; 150:2673-2686. [PMID: 32886125 PMCID: PMC7549311 DOI: 10.1093/jn/nxaa217] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 04/17/2020] [Accepted: 07/01/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Recent meta-analyses suggest that the consumption of fermented dairy products reduces type 2 diabetes and cardiovascular disease (CVD) risk, although the underlying mechanisms remain unclear. OBJECTIVE We evaluated whether dairy protein products modulated gut microbiota and cardiometabolic features in mouse models of diet-induced obesity and CVD. METHODS Eight-week-old C57BL/6J wild-type (WT) and LDLr-/-ApoB100/100 (LRKO) male mice were fed for 12 and 24 wk, respectively, with a high-fat/high-sucrose diet [66% kcal lipids, 22% kcal carbohydrates (100% sucrose), 12% kcal proteins]. The protein sources of the 4 diets were 100% nondairy protein (NDP), or 50% of the NDP energy replaced by milk (MP), milk fermented by Lactobacillus helveticus (FMP), or Greek-style yogurt (YP) protein. Fecal 16S rRNA gene-based amplicon sequencing, intestinal gene expression, and glucose tolerance test were conducted. Hepatic inflammation and circulating adhesion molecules were measured by multiplex assays. RESULTS Feeding WT mice for 12 wk led to a 74% increase in body weight, whereas after 24 wk the LRKO mice had a 101.5% increase compared with initial body weight. Compared with NDP and MP, the consumption of FMP and YP modulated the gut microbiota composition in a similar clustering pattern, upregulating the Streptococcus genus in both genotypes. In WT mice, feeding YP compared with NDP increased the expression of genes involved in jejunal (Reg3b, 7.3-fold, P = 0.049) and ileal (Ocln, 1.7-fold, P = 0.047; Il1-β,1.7-fold, P = 0.038; Nos2, 3.8-fold, P = 0.018) immunity and integrity. In LRKO mice, feeding YP compared with MP improved insulin sensitivity by 65% (P = 0.039). In LRKO mice, feeding with FMP versus NDP attenuated hepatic inflammation (monocyte chemoattractant protein 1, 2.1-fold, P ˂ 0.0001; IL1-β, 5.7-fold, P = 0.0003; INF-γ, 1.7-fold, P = 0.002) whereas both FMP [vascular adhesion molecule 1 (VCAM1), 1.3-fold, P = 0.0003] and YP (VCAM1, 1.04-fold, P = 0.013; intracellular adhesion molecule 1, 1.4-fold, P = 0.028) decreased circulating adhesion molecules. CONCLUSION Both fermented dairy protein products reduce cardiometabolic risk factors in diet-induced obese mice, possibly by modulating the gut microbiota.
Collapse
Affiliation(s)
- Laís Rossi Perazza
- Faculty of Medicine, Laval University, Quebec City, Quebec, Canada,Institute of Nutrition and Functional Foods, Laval University, Quebec City, Quebec, Canada
| | - Noëmie Daniel
- Faculty of Medicine, Laval University, Quebec City, Quebec, Canada,Institute of Nutrition and Functional Foods, Laval University, Quebec City, Quebec, Canada
| | - Marie-Julie Dubois
- Faculty of Medicine, Laval University, Quebec City, Quebec, Canada,Institute of Nutrition and Functional Foods, Laval University, Quebec City, Quebec, Canada
| | - Geneviève Pilon
- Faculty of Medicine, Laval University, Quebec City, Quebec, Canada,Institute of Nutrition and Functional Foods, Laval University, Quebec City, Quebec, Canada
| | - Thibault Vincent Varin
- Institute of Nutrition and Functional Foods, Laval University, Quebec City, Quebec, Canada
| | - Mylène Blais
- Sherbrooke R & D Center, Agriculture and Agri-Food Canada, Sherbrooke, Quebec, Canada
| | | | - Michaël Bouchard
- Sherbrooke R & D Center, Agriculture and Agri-Food Canada, Sherbrooke, Quebec, Canada
| | - Claude Asselin
- Faculty of Medicine and Health Sciences, Sherbrooke University, Sherbrooke, Quebec, Canada
| | - Martin Lessard
- Sherbrooke R & D Center, Agriculture and Agri-Food Canada, Sherbrooke, Quebec, Canada
| | - Yves Pouliot
- Institute of Nutrition and Functional Foods, Laval University, Quebec City, Quebec, Canada
| | - Denis Roy
- Institute of Nutrition and Functional Foods, Laval University, Quebec City, Quebec, Canada
| | | |
Collapse
|
155
|
Circulating cell adhesion molecules in metabolically healthy obesity. Int J Obes (Lond) 2020; 45:331-336. [PMID: 32873909 PMCID: PMC7840499 DOI: 10.1038/s41366-020-00667-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 07/30/2020] [Accepted: 08/19/2020] [Indexed: 12/29/2022]
Abstract
BACKGROUND/OBJECTIVES People with metabolically healthy obesity (MHO) may still have an increased risk for cardiovascular mortality compared to metabolically healthy lean (MHL) individuals. However, the mechanisms linking obesity to cardiovascular diseases are not entirely understood. We therefore tested the hypothesis that circulating cell adhesion molecules (CAMs) are higher in MHO compared to MHL individuals. SUBJECTS/METHODS Serum concentrations of soluble intercellular adhesion molecule-1 (sICAM-1), soluble vascular adhesion molecule-1 (sVCAM-1), E-selectin and P-selectin were measured in age- and sex-matched groups of MHL (n = 32), MHO categorized into BMI-matched insulin sensitive (IS, n = 32) or insulin resistant (IR) obesity (n = 32) and people with metabolically unhealthy obesity (MUO, n = 32). RESULTS Indeed, individuals with MHO have significantly higher sICAM-1, E-selectin, and P-selectin serum concentrations compared to MHL people. However, these CAMs are still significantly lower in IS compared to IR MHO. There was no difference between the groups in sVCAM-1 serum concentrations. Compared to all other groups, circulating adhesion molecules were significantly higher in individuals with MUO. CONCLUSIONS These findings suggest that obesity-related increased cardiovascular risk is reflected and may be mediated by significantly higher CAMs. The mechanisms causing elevated adhesion molecules even in the absence of overt cardio-metabolic risk factors and whether circulating CAMs could predict cardiovascular events need to be explored.
Collapse
|
156
|
O'Mahoney LL, Dunseath G, Churm R, Holmes M, Boesch C, Stavropoulos-Kalinoglou A, Ajjan RA, Birch KM, Orsi NM, Mappa G, Price OJ, Campbell MD. Omega-3 polyunsaturated fatty acid supplementation versus placebo on vascular health, glycaemic control, and metabolic parameters in people with type 1 diabetes: a randomised controlled preliminary trial. Cardiovasc Diabetol 2020; 19:127. [PMID: 32787879 PMCID: PMC7425064 DOI: 10.1186/s12933-020-01094-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 07/25/2020] [Indexed: 12/11/2022] Open
Abstract
Background The role of omega-3 polyunsaturated fatty acids (n-3PUFA), and the potential impact of n-3PUFA supplementation, in the treatment and management of type 1 diabetes (T1D) remains unclear and controversial. Therefore, this study aimed to examine the efficacy of daily high-dose-bolus n-3PUFA supplementation on vascular health, glycaemic control, and metabolic parameters in subjects with T1D. Methods Twenty-seven adults with T1D were recruited to a 6-month randomised, double-blind, placebo-controlled trial. Subjects received either 3.3 g/day of encapsulated n-3PUFA or encapsulated 3.0 g/day corn oil placebo (PLA) for 6-months, with follow-up at 9-months after 3-month washout. Erythrocyte fatty acid composition was determined via gas chromatography. Endpoints included inflammation-associated endothelial biomarkers (vascular cell adhesion molecule-1 [VCAM-1], intercellular adhesion molecule-1 [ICAM-1], E-selectin, P-selectin, pentraxin-3, vascular endothelial growth factor [VEGF]), and their mediator tumor necrosis factor alpha [TNFα] analysed via immunoassay, vascular structure (carotid intima-media thickness [CIMT]) and function (brachial artery flow mediated dilation [FMD]) determined via ultrasound technique, blood pressure, glycosylated haemoglobin (HbA1c), fasting plasma glucose (FPG), and postprandial metabolism. Results Twenty subjects completed the trial in full. In the n-3PUFA group, the mean ± SD baseline n-3PUFA index of 4.93 ± 0.94% increased to 7.67 ± 1.86% (P < 0.001) after 3-months, and 8.29 ± 1.45% (P < 0.001) after 6-months. Total exposure to n-3PUFA over the 6-months (area under the curve) was 14.27 ± 3.05% per month under n-3PUFA, and 9.11 ± 2.74% per month under PLA (P < 0.001). VCAM-1, ICAM-1, E-selectin, P-selectin, pentraxin-3, VEGF, TNFα, CIMT, FMD, blood pressure, HbA1c, FPG, and postprandial metabolism did not differ between or within groups after treatment (P > 0.05). Conclusions This study indicates that daily high-dose-bolus of n-3PUFA supplementation for 6-months does not improve vascular health, glucose homeostasis, or metabolic parameters in subjects with T1D. The findings from this preliminary RCT do not support the use of therapeutic n-3PUFA supplementation in the treatment and management of T1D and its associated complications. Trial Registration ISRCTN, ISRCTN40811115. Registered 27 June 2017, http://www.isrctn.com/ISRCTN40811115.
Collapse
Affiliation(s)
| | - Gareth Dunseath
- Diabetes Research Group, Swansea University Medical School, Swansea University, Swansea, UK
| | - Rachel Churm
- Applied Sports, Technology, Exercise and Medicine (A-STEM) Research Centre, Swansea University, Swansea, UK
| | - Mel Holmes
- School of Food Science and Nutrition, Faculty of Environment, University of Leeds, Leeds, LS2 9JT, UK
| | - Christine Boesch
- School of Food Science and Nutrition, Faculty of Environment, University of Leeds, Leeds, LS2 9JT, UK
| | | | - Ramzi A Ajjan
- Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, UK
| | - Karen M Birch
- School of Biomedical Sciences, University of Leeds, Leeds, UK
| | - Nicolas M Orsi
- Leeds Institute of Medical Research at St James's, St James's University Hospital, Leeds, UK
| | - Georgia Mappa
- Leeds Institute of Medical Research at St James's, St James's University Hospital, Leeds, UK
| | - Oliver J Price
- Carnegie School of Sport, Leeds Beckett University, Leeds, UK
| | - Matthew D Campbell
- School of Food Science and Nutrition, Faculty of Environment, University of Leeds, Leeds, LS2 9JT, UK.
| |
Collapse
|
157
|
Insights into pharmacological mechanisms of polydatin in targeting risk factors-mediated atherosclerosis. Life Sci 2020; 254:117756. [DOI: 10.1016/j.lfs.2020.117756] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 04/30/2020] [Accepted: 05/04/2020] [Indexed: 12/20/2022]
|
158
|
Minelli S, Minelli P, Montinari MR. Reflections on Atherosclerosis: Lesson from the Past and Future Research Directions. J Multidiscip Healthc 2020; 13:621-633. [PMID: 32801729 PMCID: PMC7398886 DOI: 10.2147/jmdh.s254016] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Accepted: 06/19/2020] [Indexed: 12/11/2022] Open
Abstract
The clinical manifestations of atherosclerosis are nowadays the main cause of death in industrialized countries, but atherosclerotic disease was found in humans who lived thousands of years ago, before the spread of current risk factors. Atherosclerotic lesions were identified on a 5300-year-old mummy, as well as in Egyptian mummies and other ancient civilizations. For many decades of the twentieth century, atherosclerosis was considered a degenerative disease, mainly determined by a passive lipid storage, while the most recent theory of atherogenesis is based on endothelial dysfunction. The importance of inflammation and immunity in atherosclerosis’s pathophysiology was realized around the turn of the millennium, when in 1999 the famous pathologist Russell Ross published in the New England Journal of Medicine an article entitled “Atherosclerosis – an inflammatory disease”. In the following decades, inflammation has been a topic of intense basic research in atherosclerosis, albeit its importance has ancient scientific roots. In fact, in 1856 Rudolph Virchow was the first proponent of this hypothesis, but evidence of the key role of inflammation in atherogenesis occurred only in 2017. It seemed interesting to retrace the key steps of atherosclerosis in a historical context: from the teachings of the physicians of the Roman Empire to the response-to-injury hypothesis, up to the key role of inflammation and immunity at various stages of disease. Finally, we briefly discussed current knowledge and future trajectories of atherosclerosis research and its therapeutic implications.
Collapse
Affiliation(s)
- Sergio Minelli
- Department of Cardiology, Local Health Unit Lecce, Lecce, Italy
| | - Pierluca Minelli
- Faculty of Medicine and Surgery "A. Gemelli", Catholic University of the Sacred Heart, Rome, Italy
| | - Maria Rosa Montinari
- Department of Biological and Environmental Science and Technology, University of Salento, Lecce, Italy
| |
Collapse
|
159
|
Styles JN, Converse RR, Griffin SM, Wade TJ, Klein E, Nylander-French LA, Stewart JR, Sams E, Hudgens E, Egorov AI. Human Cytomegalovirus Infections Are Associated With Elevated Biomarkers of Vascular Injury. Front Cell Infect Microbiol 2020; 10:334. [PMID: 32733818 PMCID: PMC7363776 DOI: 10.3389/fcimb.2020.00334] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 06/02/2020] [Indexed: 01/16/2023] Open
Abstract
Background: Human cytomegalovirus (HCMV) infects ~50% of adults in the United States. HCMV infections may cause vascular inflammation leading to cardiovascular disease, but the existing evidence is inconsistent. Objective: We investigated demographic predictors of HCMV infection and explored associations between HCMV infection status, the intensity of anti-HCMV Immunoglobulin G (IgG) antibody response, and biomarkers of inflammation and endothelial function which are known predictors of cardiovascular disease. Methods: We conducted a cross-sectional study of 694 adults residing in the Raleigh-Durham-Chapel Hill, NC metropolitan area. Serum samples were tested for IgG antibody response to HCMV, and for biomarkers of vascular injury including soluble intercellular adhesion molecule 1 (sICAM-1), soluble vascular cell adhesion molecule 1 (sVCAM-1), C-reactive protein (CRP), and serum amyloid A (SAA). Associations between HCMV and biomarker levels were analyzed using two approaches with HCMV serostatus modeled as a binary variable and as an ordinal variable with five categories comprised of seronegative individuals and quartiles of anti-HCMV antibody responses in seropositive individuals. Results: HCMV seroprevalence in the study population was 56%. Increased body mass index, increased age, female gender, racial/ethnic minority status, and current smoking were significantly associated with HCMV seropositivity in a multivariate regression analysis. HCMV seropositivity was also associated with 9% (95% confidence interval 4–15%) and 20% (0.3–44%) increases in median levels of sICAM-1 and CRP, respectively, after adjusting for covariates. The association between HCMV seropositivity and median levels of sVCAM-1 and SAA were positive but not statistically significant. Significant positive associations were observed between the intensity of anti-HCMV IgG responses and levels of sICAM-1 and sVCAM-1 (p-values 0.0008 and 0.04 for linear trend, respectively). To our knowledge, this is the first epidemiological study to show a relationship between anti-HCMV IgG responses and vascular injury biomarkers sICAM-1 and sVCAM-1 in the general population. Conclusion: HCMV infections are associated with vascular injury and inflammation biomarkers in adult residents of North Carolina.
Collapse
Affiliation(s)
- Jennifer N Styles
- United States Environmental Protection Agency, Office of Research and Development, Research Triangle Park, NC, United States.,Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina, Chapel Hill, NC, United States
| | - Reagan R Converse
- United States Environmental Protection Agency, Office of Research and Development, Research Triangle Park, NC, United States
| | - Shannon M Griffin
- United States Environmental Protection Agency, Office of Research and Development, Cincinnati, OH, United States
| | - Timothy J Wade
- United States Environmental Protection Agency, Office of Research and Development, Research Triangle Park, NC, United States
| | - Elizabeth Klein
- ORAU Student Services Contractor to US EPA, Chapel Hill, NC, United States
| | - Leena A Nylander-French
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina, Chapel Hill, NC, United States
| | - Jill R Stewart
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina, Chapel Hill, NC, United States
| | - Elizabeth Sams
- United States Environmental Protection Agency, Office of Research and Development, Research Triangle Park, NC, United States
| | - Edward Hudgens
- United States Environmental Protection Agency, Office of Research and Development, Research Triangle Park, NC, United States
| | - Andrey I Egorov
- United States Environmental Protection Agency, Office of Research and Development, Research Triangle Park, NC, United States
| |
Collapse
|
160
|
Haguet H, Bouvy C, Delvigne AS, Modaffari E, Wannez A, Sonveaux P, Dogné JM, Douxfils J. The Risk of Arterial Thrombosis in Patients With Chronic Myeloid Leukemia Treated With Second and Third Generation BCR-ABL Tyrosine Kinase Inhibitors May Be Explained by Their Impact on Endothelial Cells: An In-Vitro Study. Front Pharmacol 2020; 11:1007. [PMID: 32719607 PMCID: PMC7350860 DOI: 10.3389/fphar.2020.01007] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 06/22/2020] [Indexed: 12/13/2022] Open
Abstract
BCR-ABL tyrosine kinase inhibitors (TKIs) revolutionized the treatment of chronic myeloid leukemia, inducing deep molecular responses, largely improving patient survival and rendering treatment-free remission possible. However, three of the five BCR-ABL TKIs, dasatinib, nilotinib, and ponatinib, increase the risk of developing arterial thrombosis. Prior investigations reported that nilotinib and ponatinib affect the endothelium, but the mechanisms by which they exert their toxic effects are still unclear. The impact of dasatinib and bosutinib on endothelial cells has been poorly investigated. Here, we aimed to provide an in vitro homogenous evaluation of the effects of BCR-ABL TKIs on the endothelium, with a special focus on the type of cell death to elucidate the mechanisms responsible for the potential cytotoxic effects of BCR-ABL TKIs nilotinib and ponatinib on endothelial cells. We tested the five BCR-ABL TKIs at three concentrations on human umbilical venous endothelial cells (HUVECs). This study highlights the endothelial toxicity of ponatinib and provides insights about the mechanisms by which it affects endothelial cell viability. Ponatinib induced apoptosis and necrosis of HUVECs after 72 h. Dasatinib affected endothelial cells in vitro by inhibiting their proliferation and decreased wound closure as soon as 24 h of treatment and even at infra-therapeutic dose (0.005 µM). Comparatively, imatinib, nilotinib, and bosutinib had little impact on endothelial cells at therapeutic concentrations. They did not induce apoptosis nor necrosis, even after 72 h of treatment but they inhibited HUVEC proliferation. Overall, this study reports various effects of BCR-ABL TKIs on endothelial cells and suggests that ponatinib and dasatinib induce arterial thrombosis through endothelial dysfunction.
Collapse
Affiliation(s)
- Hélène Haguet
- Department of Pharmacy, Namur Thrombosis and Hemostasis Center (NTHC), Namur Research Institute for Life Sciences (NARILIS), University of Namur, Namur, Belgium
| | | | | | | | - Adeline Wannez
- Department of Pharmacy, Namur Thrombosis and Hemostasis Center (NTHC), Namur Research Institute for Life Sciences (NARILIS), University of Namur, Namur, Belgium
| | - Pierre Sonveaux
- Pole of Pharmacology and Therapeutics, Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Jean-Michel Dogné
- Department of Pharmacy, Namur Thrombosis and Hemostasis Center (NTHC), Namur Research Institute for Life Sciences (NARILIS), University of Namur, Namur, Belgium
| | - Jonathan Douxfils
- Department of Pharmacy, Namur Thrombosis and Hemostasis Center (NTHC), Namur Research Institute for Life Sciences (NARILIS), University of Namur, Namur, Belgium
- QUALIblood s.a., Namur, Belgium
| |
Collapse
|
161
|
Apostolova N, Iannantuoni F, Gruevska A, Muntane J, Rocha M, Victor VM. Mechanisms of action of metformin in type 2 diabetes: Effects on mitochondria and leukocyte-endothelium interactions. Redox Biol 2020; 34:101517. [PMID: 32535544 PMCID: PMC7296337 DOI: 10.1016/j.redox.2020.101517] [Citation(s) in RCA: 113] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 03/13/2020] [Accepted: 03/20/2020] [Indexed: 12/12/2022] Open
Abstract
Type 2 diabetes (T2D) is a very prevalent, multisystemic, chronic metabolic disorder closely related to atherosclerosis and cardiovascular diseases. It is characterised by mitochondrial dysfunction and the presence of oxidative stress. Metformin is one of the safest and most effective anti-hyperglycaemic agents currently employed as first-line oral therapy for T2D. It has demonstrated additional beneficial effects, unrelated to its hypoglycaemic action, on weight loss and several diseases, such as cancer, cardiovascular disorders and metabolic diseases, including thyroid diseases. Despite the vast clinical experience gained over several decades of use, the mechanism of action of metformin is still not fully understood. This review provides an overview of the existing literature concerning the beneficial mitochondrial and vascular effects of metformin, which it exerts by diminishing oxidative stress and reducing leukocyte-endothelium interactions. Specifically, we describe the molecular mechanisms involved in metformin's effect on gluconeogenesis, its capacity to interfere with major metabolic pathways (AMPK and mTORC1), its action on mitochondria and its antioxidant effects. We also discuss potential targets for therapeutic intervention based on these molecular actions.
Collapse
Affiliation(s)
- Nadezda Apostolova
- Department of Pharmacology, University of Valencia - FISABIO (Foundation for the Promotion of Health and Biomedical Research in the Valencian Region), Valencia, Spain; CIBERehd (Biomedical Research Networking Centre on Hepatic and Digestive Diseases), Valencia, Spain.
| | - Francesca Iannantuoni
- Service of Endocrinology and Nutrition. University Hospital Doctor Peset, FISABIO, Valencia, Spain
| | - Aleksandra Gruevska
- Department of Pharmacology, University of Valencia - FISABIO (Foundation for the Promotion of Health and Biomedical Research in the Valencian Region), Valencia, Spain
| | - Jordi Muntane
- Institute of Biomedicine of Seville (IBiS), University Hospital "Virgen del Rocío"/CSIC/University of Seville, Seville, Spain
| | - Milagros Rocha
- CIBERehd (Biomedical Research Networking Centre on Hepatic and Digestive Diseases), Valencia, Spain; Service of Endocrinology and Nutrition. University Hospital Doctor Peset, FISABIO, Valencia, Spain
| | - Victor M Victor
- CIBERehd (Biomedical Research Networking Centre on Hepatic and Digestive Diseases), Valencia, Spain; Service of Endocrinology and Nutrition. University Hospital Doctor Peset, FISABIO, Valencia, Spain; Department of Physiology, University of Valencia, Valencia, Spain.
| |
Collapse
|
162
|
Wang LF, Li Y, Landsittel DP, Reis SE, Levesque MC, Jones DM, Gartland R, Avolio J, Shoushtari A, Qi Z, Dezfulian C, Moreland LW, Liang KP. Identifying Vulnerable Plaque in Rheumatoid Arthritis Using Novel Microbubble Contrast-Enhanced Carotid Ultrasonography and Serum Biomarkers. JOURNAL OF DIAGNOSTIC MEDICAL SONOGRAPHY 2020. [DOI: 10.1177/8756479320922512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Objective: Rheumatoid arthritis (RA) is associated with increased risk of cardiovascular disease. Adventitial vasa vasorum density (aVVD), the vessel density of the vasa vasorum, is a surrogate measure for atherosclerotic plaque vulnerability. The purpose of this study was to compare the adventitial vasa vasorum density (aVVD) in RA and non-RA control participants using novel carotid artery contrast-enhanced ultrasound (CEUS). In addition, we investigate associations of aVVD with traditional cardiovascular (CV) risk factors, vascular and inflammatory biomarkers, and RA disease activity. Methods: The study was a cross-sectional analysis of patients with RA and control participants without RA or other autoimmune disease. CV disease risk, biomarkers, and CEUS images were collected on all patients. Results: aVVD was quantified in 86 patients with RA and 95 non-RA control participants. Nitrite, CD40L, E-selectin, matrix metalloproteinase 9, intercellular adhesion molecule 1, vascular cell adhesion molecule 1, myeloperoxidase (MPO), high-sensitivity C-reactive protein (hsCRP), and erythrocyte sedimentation rate were measured. Median aVVD was higher in patients with RA (0.59 [0.47–0.69] vs 0.64 [0.54–0.62]; P = .02). In patients with RA, MPO was lower (253.5 [153.2–480] vs 470.8 [274.2–830.1] ng/mL; P = .0002) and ESR was higher (15.5 [11–25] vs 13 [9–20] mm/h; P = .02). aVVD was correlated with MPO ( r = −0.33, P = .001) and hsCRP ( r = 0.25, P = .02) in control participants only, associations that remained significant after adjusting for number of CV risk factors and age. No significant correlations were found between aVVD and RA disease activity measures. Conclusions: Using a novel application of CEUS, we found that aVVD, an early measure of plaque vulnerability, was significantly higher in RA than control subjects, even after adjusting for CV risk factors. Differences in correlation of aVVD with vascular biomarkers and CV risk factors suggest RA-related differences in atherosclerotic progression.
Collapse
Affiliation(s)
- Linda F. Wang
- School of Medicine, University of Pittsburgh, Pittsburgh PA, USA
| | - Yaming Li
- Department of Biomedical Informatics, University of Pittsburgh, Pittsburgh PA, USA
| | | | - Steven E. Reis
- Division of Cardiology, University of Pittsburgh, Pittsburgh PA, USA
| | - Marc C. Levesque
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh, Pittsburgh PA, USA
| | - Donald M. Jones
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh, Pittsburgh PA, USA
| | - Rachel Gartland
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh, Pittsburgh PA, USA
| | - Jennifer Avolio
- Clinical and Translational Science Institute, University of Pittsburgh, Pittsburgh PA, USA
| | - Ali Shoushtari
- Clinical and Translational Science Institute, University of Pittsburgh, Pittsburgh PA, USA
| | - Zengbiao Qi
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh, Pittsburgh PA, USA
| | - Cameron Dezfulian
- Vascular Medicine Institute and Critical Care Medicine, University of Pittsburgh, Pittsburgh PA, USA
| | - Larry W. Moreland
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh, Pittsburgh PA, USA
| | - Kimberly P. Liang
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh, Pittsburgh PA, USA
| |
Collapse
|
163
|
Cejkova S, Kubatova H, Thieme F, Janousek L, Fronek J, Poledne R, Kralova Lesna I. The effect of cytokines produced by human adipose tissue on monocyte adhesion to the endothelium. Cell Adh Migr 2020; 13:293-302. [PMID: 31331230 PMCID: PMC6650200 DOI: 10.1080/19336918.2019.1644856] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Visceral adipose tissue (VAT) may play a critical role in atherosclerotic cardiovascular disease. The goal of this study was to determine the effect of human VAT-released pro‑inflammatory cytokines on monocyte adhesion to the endothelium. The cytokine effects on monocyte adhesion to the endothelial cells (ECs) were tested using adipose tissue-conditioned media (ATCM) prepared by culturing human VAT. The cytokines concentrations in ATCM, the cytokines expression and adhesion molecules in stimulated ECs were measured. The concentrations of IL-1β,TNF-α,MCP-1,IL-10,and RANTES measured in ATCM correlated positively with monocyte adhesiveness to ECs. Additionally, ATCM increased the adhesion molecules (ICAM-1, VCAM-1) gene expression. Selective inhibitors highlighted the importance of IL-1β and TNF-α in the process by a significant decrease in monocyte adhesion compared to ATCM preconditioning without inhibitors. Human VAT significantly increased monocyte adhesion to ECs. It was significantly influenced by IL-1β, TNF-α, MCP-1, IL-10, and RANTES, with IL-1β and TNF‑α having the strongest impact.
Collapse
Affiliation(s)
- Sona Cejkova
- a Laboratory for Atherosclerosis Research, Institute for Clinical and Experimental Medicine , Prague , Czech Republic.,b Department of Physiology, Faculty of Science, Charles University , Prague , Czech Republic
| | - Hana Kubatova
- a Laboratory for Atherosclerosis Research, Institute for Clinical and Experimental Medicine , Prague , Czech Republic.,b Department of Physiology, Faculty of Science, Charles University , Prague , Czech Republic
| | - Filip Thieme
- c Center for Experimental Medicine, Department of Transplant Surgery, Institute for Clinical and Experimental Medicine , Czech Republic
| | - Libor Janousek
- c Center for Experimental Medicine, Department of Transplant Surgery, Institute for Clinical and Experimental Medicine , Czech Republic
| | - Jiri Fronek
- c Center for Experimental Medicine, Department of Transplant Surgery, Institute for Clinical and Experimental Medicine , Czech Republic
| | - Rudolf Poledne
- a Laboratory for Atherosclerosis Research, Institute for Clinical and Experimental Medicine , Prague , Czech Republic
| | - Ivana Kralova Lesna
- a Laboratory for Atherosclerosis Research, Institute for Clinical and Experimental Medicine , Prague , Czech Republic.,d Department of Anesthesia and Intensive Medicine, First Medical Faculty, Charles University and University Military Hospital , Czech Republic
| |
Collapse
|
164
|
Understanding Molecules that Mediate Leukocyte Extravasation. CURRENT PATHOBIOLOGY REPORTS 2020. [DOI: 10.1007/s40139-020-00207-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
165
|
Mohammadian Haftcheshmeh S, Karimzadeh MR, Azhdari S, Vahedi P, Abdollahi E, Momtazi-Borojeni AA. Modulatory effects of curcumin on the atherogenic activities of inflammatory monocytes: Evidence from in vitro and animal models of human atherosclerosis. Biofactors 2020; 46:341-355. [PMID: 31875344 DOI: 10.1002/biof.1603] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Accepted: 12/11/2019] [Indexed: 12/14/2022]
Abstract
Atherosclerosis is a complex and long-lasting disorder characterized by chronic inflammation of arteries that leads to the initiation and progression of lipid-rich plaques, in which monocytes/macrophages play the central role in endothelial inflammation and taking up these lipids. Circulating monocytes can adopt a long-term proinflammatory phenotype leading to their atherogenic activities. During atherogenic condition, inflammatory monocytes adhere to the surface of the activated endothelial cells and then transmigrate across the endothelial monolayer into the intima, where they proliferate and differentiate into macrophages and take up the lipoproteins, forming foam cells that derive atherosclerosis progression. Therefore, modulating the atherogenic activities of inflammatory monocytes can provide a valuable therapeutic approach for atherosclerosis prevention and treatment. Curcumin is a naturally occurring polyphenolic compound with numerous pharmacological activities and shows protective effects against atherosclerosis; however, underlying mechanisms are not clearly known yet. In the present review, on the basis of a growing body of evidence, we show that curcumin can exert antiatherosclerotic effect through inhibiting the atherogenic properties of monocytes, including inflammatory cytokine production, adhesion, and transendothelial migration, as well as intracellular cholesterol accumulation.
Collapse
Affiliation(s)
| | - Mohammad R Karimzadeh
- Department of Medical Genetics, School of Medicine, Bam University of Medical Sciences, Bam, Iran
| | - Sara Azhdari
- Department of Anatomy and Embryology, School of Medicine, Bam University of Medical Sciences, Bam, Iran
| | - Parviz Vahedi
- Department of Anatomical Sciences, Maragheh University of Medical Sciences, Maragheh, Iran
| | - Elham Abdollahi
- Department of Medical Immunology and Allergy, Student Research Committee, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir A Momtazi-Borojeni
- Halal Research Center of IRI, FDA, Tehran, Iran
- Nanotechnology Research Center, Bu-Ali Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
166
|
Mohebbati R, Abbasnezhad A. Effects of Nigella sativa on endothelial dysfunction in diabetes mellitus: A review. JOURNAL OF ETHNOPHARMACOLOGY 2020; 252:112585. [PMID: 31972323 DOI: 10.1016/j.jep.2020.112585] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 01/15/2020] [Accepted: 01/16/2020] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Endothelial dysfunction is involved in lesion generation by the promotion of both early and late mechanism(s) of atherosclerosis such as adhesion molecules up-regulation, increased chemokine secretion and leukocyte adherence, increased cell permeability, enhanced low-density lipoprotein oxidation, cytokine elaboration, platelet activation and vascular smooth muscle cell migration, and proliferation. Nigella sativa is from the Ranunculaceae family which is used in some countries for various medicinal purposes. Nigella sativa seed has been widely used in traditional medicine for the treatment of diabetes. AIM OF THE REVIEW This review article summarized the therapeutic effects of Nigella sativa on endothelial dysfunction. METHODS Databases such as PubMed, Web of Science, Google Scholar, Scopus, and Iran Medex were considered. The search terms were " Nigella sativa " or "endothelium" and " Diabetes"," endothelial dysfunction ", " Thymoquinone " and " anti-inflammatory effect ". RESULTS The current review shows that Nigella sativa and Thymoquinone have a protective effect on endothelial dysfunction induced by diabetes. This is done by several mechanisms such as reduction of inflammatory and apoptotic markers, improving hyperglycemia, hyperlipidemia and antioxidant function, inhibiting platelet aggregation, and regulating eNOS, VCAM-1 and LOX-1 genes expression that involve in the endothelial dysfunction. Thymoquinone also reduces expression and secretion of some cytokines such as MCP-1, interleukin-1β, TNF-α, NF-κB, and Cox-2 that result in anti-inflammation effect. CONCLUSION Thymoquinone, the main phenolic terpene found in Nigella sativa, has several important properties such as antidiabetic, anti-inflammatory, and antioxidant activity. Therefore, Nigella sativa can improve endothelial dysfunction.
Collapse
Affiliation(s)
- Reza Mohebbati
- - Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Abbasali Abbasnezhad
- - Department of Physiology, School of Medicine, Gonabad University of Medical Sciences, Gonabad, Iran.
| |
Collapse
|
167
|
Abstract
The potential of CD31 as a therapeutic target in atherosclerosis has been considered ever since its cloning in the 1990s, but the exact role played by this molecule in the biologic events underlying atherosclerosis has remained controversial, resulting in the stalling of any therapeutic perspective. Due to the supposed cell adhesive properties of CD31, specific monoclonal antibodies and recombinant proteins were regarded as blocking agents because their use prevented the arrival of leukocytes at sites of acute inflammation. However, the observed effect of those compounds likely resulted from the engagement of the immunomodulatory function of CD31 signaling. This was acknowledged only later though, upon the discovery of CD31's 2 intracytoplasmic tyrosine residues called immunoreceptor tyrosine inhibitory motifs. A growing body of evidence currently points at a therapeutic potential for CD31 agonists in atherothrombosis. Clinical observations show that CD31 expression is altered at the surface of leukocytes infiltrating unhealed atherothrombotic lesions and that the physiological immunomodulatory functions of CD31 are lost at the surface of blood leukocytes in patients with acute coronary syndromes. On the contrary, translational studies using candidate therapeutic molecules in laboratory animals have provided encouraging results: synthetic peptides administered to atherosclerotic mice as systemic drugs in the acute phases of atherosclerotic complications favor the healing of wounded arteries, whereas the immobilization of CD31 agonist peptides onto coronary stents implanted in farm pigs favors their peaceful integration within the coronary arterial wall.
Collapse
Affiliation(s)
- Giuseppina Caligiuri
- From the Laboratory for Vascular Translational Science, Inserm U1148, Université de Paris, France; and Department of Cardiology, Assistance Publique-Hôpitaux de Paris, Hôpitaux Universitaires Paris Nord Val-de-Seine, Site Bichat, France
| |
Collapse
|
168
|
Jozefczuk E, Guzik TJ, Siedlinski M. Significance of sphingosine-1-phosphate in cardiovascular physiology and pathology. Pharmacol Res 2020; 156:104793. [PMID: 32278039 DOI: 10.1016/j.phrs.2020.104793] [Citation(s) in RCA: 129] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 03/27/2020] [Accepted: 03/27/2020] [Indexed: 02/07/2023]
Abstract
Sphingosine-1-phosphate (S1P) is a signaling lipid, synthetized by sphingosine kinases (SPHK1 and SPHK2), that affects cardiovascular function in various ways. S1P signaling is complex, particularly since its molecular action is reliant on the differential expression of its receptors (S1PR1, S1PR2, S1PR3, S1PR4, S1PR5) within various tissues. Significance of this sphingolipid is manifested early in vertebrate development as certain defects in S1P signaling result in embryonic lethality due to defective vasculo- or cardiogenesis. Similar in the mature organism, S1P orchestrates both physiological and pathological processes occurring in the heart and vasculature of higher eukaryotes. S1P regulates cell fate, vascular tone, endothelial function and integrity as well as lymphocyte trafficking, thus disbalance in its production and signaling has been linked with development of such pathologies as arterial hypertension, atherosclerosis, endothelial dysfunction and aberrant angiogenesis. Number of signaling mechanisms are critical - from endothelial nitric oxide synthase through STAT3, MAPK and Akt pathways to HDL particles involved in redox and inflammatory balance. Moreover, S1P controls both acute cardiac responses (cardiac inotropy and chronotropy), as well as chronic processes (such as apoptosis and hypertrophy), hence numerous studies demonstrate significance of S1P in the pathogenesis of hypertrophic/fibrotic heart disease, myocardial infarction and heart failure. This review presents current knowledge concerning the role of S1P in the cardiovascular system, as well as potential therapeutic approaches to target S1P signaling in cardiovascular diseases.
Collapse
Affiliation(s)
- E Jozefczuk
- Department of Internal and Agricultural Medicine, Faculty of Medicine, Jagiellonian University Medical College, Cracow, Poland
| | - T J Guzik
- Department of Internal and Agricultural Medicine, Faculty of Medicine, Jagiellonian University Medical College, Cracow, Poland; Institute of Cardiovascular and Medical Sciences, BHF Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, UK
| | - M Siedlinski
- Department of Internal and Agricultural Medicine, Faculty of Medicine, Jagiellonian University Medical College, Cracow, Poland; Institute of Cardiovascular and Medical Sciences, BHF Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, UK.
| |
Collapse
|
169
|
Regal-McDonald K, Somarathna M, Lee T, Litovsky SH, Barnes J, Peretik JM, Traylor JG, Orr AW, Patel RP. Assessment of ICAM-1 N-glycoforms in mouse and human models of endothelial dysfunction. PLoS One 2020; 15:e0230358. [PMID: 32208424 PMCID: PMC7092995 DOI: 10.1371/journal.pone.0230358] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 02/27/2020] [Indexed: 12/31/2022] Open
Abstract
Endothelial dysfunction is a critical event in vascular inflammation characterized, in part, by elevated surface expression of adhesion molecules such as intercellular adhesion molecule-1 (ICAM-1). ICAM-1 is heavily N-glycosylated, and like other surface proteins, it is largely presumed that fully processed, complex N-glycoforms are dominant. However, our recent studies suggest that hypoglycosylated or high mannose (HM)-ICAM-1 N-glycoforms are also expressed on the cell surface during endothelial dysfunction, and have higher affinity for monocyte adhesion and regulate outside-in endothelial signaling by different mechanisms. Whether different ICAM-1 N-glycoforms are expressed in vivo during disease is unknown. In this study, using the proximity ligation assay, we assessed the relative formation of high mannose, hybrid and complex α-2,6-sialyated N-glycoforms of ICAM-1 in human and mouse models of atherosclerosis, as well as in arteriovenous fistulas (AVF) of patients on hemodialysis. Our data demonstrates that ICAM-1 harboring HM or hybrid epitopes as well as ICAM-1 bearing α-2,6-sialylated epitopes are present in human and mouse atherosclerotic lesions. Further, HM-ICAM-1 positively associated with increased macrophage burden in lesions as assessed by CD68 staining, whereas α-2,6-sialylated ICAM-1 did not. Finally, both HM and α-2,6-sialylated ICAM-1 N-glycoforms were present in hemodialysis patients who had AVF maturation failure compared to successful AVF maturation. Collectively, these data provide evidence that HM- ICAM-1 N-glycoforms are present in vivo, and at levels similar to complex α-2,6-sialylated ICAM-1 underscoring the need to better understand their roles in modulating vascular inflammation.
Collapse
Affiliation(s)
- Kellie Regal-McDonald
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Maheshika Somarathna
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Timmy Lee
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Silvio H. Litovsky
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Jarrod Barnes
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - J. M. Peretik
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center, Shreveport, Louisiana, United States of America
| | - J. G. Traylor
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center, Shreveport, Louisiana, United States of America
| | - A. Wayne Orr
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center, Shreveport, Louisiana, United States of America
| | - Rakesh P. Patel
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| |
Collapse
|
170
|
Wang Y, Pan W, Wang Y, Yin Y. The GPR55 antagonist CID16020046 protects against ox-LDL-induced inflammation in human aortic endothelial cells (HAECs). Arch Biochem Biophys 2020; 681:108254. [PMID: 31904362 DOI: 10.1016/j.abb.2020.108254] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 12/13/2019] [Accepted: 01/02/2020] [Indexed: 11/28/2022]
Abstract
Atherosclerosis is a commonplace cardiovascular disease which affects most people in old age. While its causes are currently poorly understood, continuous study is being performed in order to elucidate both the pathogenesis and treatment of this insidious disease. Atherosclerosis is presently thought to be linked to several factors such as endothelial dysfunction, monocyte adhesion to the intima of the artery, and increased oxidative stress. Oxidized low-density lipoprotein (ox-LDL), colloquially known as the "bad cholesterol", is known to play a critical role in the previously mentioned atherosclerotic processes. In this study, our goal was to elucidate the role of the lysophospholipid receptor G protein-coupled receptor 55 (GPR55) and its antagonist, the cannabinoid CID16020046, in endothelial dysfunction. While their existence and especially their role in atherosclerosis has only semi-recently been elucidated, a growing body of research has begun to link their interaction to antiatherosclerosis. In our research, we found CID16020046 to have distinct atheroprotective properties such as anti-inflammation, antioxidant, and inhibition of monocyte attachment to endothelial cells. While there was previously a small body of research regarding the potential of cannabinoids to treat or prevent atherosclerosis, studies on the treatment potential of CID16020046 were even fewer. Thus, this study is one of the first to explore the effects of cannabinoids in atherosclerosis. Our findings in the present study provide a strong argument for the use of CID16020046 in the treatment of atherosclerosis as well as a basis for further experimentation using cannabinoids as therapy against atherosclerosis.
Collapse
Affiliation(s)
- Yaowen Wang
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing Cardiac Arrhythmias Therapeutic Service Center, Chongqing, 400010, China
| | - Wei Pan
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing Cardiac Arrhythmias Therapeutic Service Center, Chongqing, 400010, China; Department of Endocrinology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Yan Wang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, 563006, China.
| | - Yuehui Yin
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing Cardiac Arrhythmias Therapeutic Service Center, Chongqing, 400010, China.
| |
Collapse
|
171
|
The Biological Role of Apurinic/Apyrimidinic Endonuclease1/Redox Factor-1 as a Therapeutic Target for Vascular Inflammation and as a Serologic Biomarker. Biomedicines 2020; 8:biomedicines8030057. [PMID: 32164272 PMCID: PMC7148461 DOI: 10.3390/biomedicines8030057] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 02/20/2020] [Accepted: 03/08/2020] [Indexed: 12/11/2022] Open
Abstract
Endothelial dysfunction promotes vascular inflammation by inducing the production of reactive oxygen species and adhesion molecules. Vascular inflammation plays a key role in the pathogenesis of vascular diseases and atherosclerotic disorders. However, whether there is an endogenous system that can participate in circulating immune surveillance or managing a balance in homeostasis is unclear. Apurinic/apyrimidinic endonuclease 1/redox factor-1 (henceforth referred to as APE1/Ref-1) is a multifunctional protein that can be secreted from cells. It functions as an apurinic/apyrimidinic endonuclease in the DNA base repair pathway and modulates redox status and several types of transcriptional factors, in addition to its anti-inflammatory activity. Recently, it was reported that the secretion of APE1/Ref-1 into the extracellular medium of cultured cells or its presence in the plasma can act as a serological biomarker for certain disorders. In this review, we summarize the possible biological functions of APE1/Ref-1 according to its subcellular localization or its extracellular secretions, as therapeutic targets for vascular inflammation and as a serologic biomarker.
Collapse
|
172
|
Changes in circulating endothelial microvesicles in men after myocardial infarction. Adv Med Sci 2020; 65:120-126. [PMID: 31927269 DOI: 10.1016/j.advms.2019.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 09/19/2019] [Accepted: 12/03/2019] [Indexed: 11/22/2022]
Abstract
PURPOSE The objective of the study was to determine the differences in the numbers of endothelial microvesicles (EMV) after myocardial infarction (MI) and their association with oxidative stress. MATERIALS AND METHODS We included 15 post MI patients and 28 healthy controls. Samples were analysed by flow cytometry. We examined four EMV populations: 1) CD144+, CD42a-, CD61-, 2) CD144+, CD42a+, CD61-, 3) CD105+, CD42a-, CD61-and 4) CD31+, CD42a-, CD61-and determined a percentage of CD62e + EMV. Malondialdehyde concentration was determined by ultra-high performance liquid chromatography. RESULTS The median of EMV counts differed between controls and patients in: CD105+ (10.91 microvesicles/μl vs. 33.68 microvesicles/μl, P = 0.006), CD144+, CD42a+ (312.87 microvesicles/μl vs. 73.29 microvesicles/μl, P < 0.001) and CD31+ (2 microvesicles/μl vs. 1.38 microvesicles/μl, P = 0.021). The median of percentage of CD62e expression differed between controls and patients in: CD105+ (1.35% vs. 14.8%, P < 0.001), CD144+, CD42a+ (56.45% vs. 98.99%, P < 0.001) and CD144+, CD42a- (173.03% vs. 215.56%) EMV. In patients, EMV counts correlated with low-density lipoprotein cholesterol (LDL-C), total cholesterol (TC) and high-density lipoprotein cholesterol (HDL-C) concentrations: CD105+: R = -0.69, P = 0.004 (LDL-C), R = -0.64, P = 0.01 (TC); CD144+, CD42a-: R = -0.68, P = 0.005 (LDL-C), R = -0.63, P = 0.011 (TC); CD144+: R = -0.54, P = 0.038 (HDL-C) and CD144+, CD42a-, CD62e+: R = 0.78, P = 0.001 (HDL-C). In controls, HDL-C concentration correlated with CD105+ (R = -0.395, P = 0.038) and CD105+, CD62e+ (R = -0.716, P < 0.001) counts. Malondialdehyde concentration correlated with CD144+, CD42a- (P = 0.01, R = 0.48) and CD105+, CD62e+ (P = 0.012, R = 0.47) counts. CONCLUSIONS Changes in EMV levels after the MI period were observed. Counts of EMV and their CD62e expression correlated with dyslipidaemia and oxidative stress.
Collapse
|
173
|
Lenz T, Nicol P, Castellanos MI, Engel LC, Lahmann AL, Alexiou C, Joner M. Small Dimension-Big Impact! Nanoparticle-Enhanced Non-Invasive and Intravascular Molecular Imaging of Atherosclerosis In Vivo. Molecules 2020; 25:E1029. [PMID: 32106607 PMCID: PMC7179220 DOI: 10.3390/molecules25051029] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 02/14/2020] [Accepted: 02/18/2020] [Indexed: 01/16/2023] Open
Abstract
Extensive translational research has provided considerable progress regarding the understanding of atherosclerosis pathophysiology over the last decades. In contrast, implementation of molecular in vivo imaging remains highly limited. In that context, nanoparticles represent a useful tool. Their variable shape and composition assure biocompatibility and stability within the environment of intended use, while the possibility of conjugating different ligands as well as contrast dyes enable targeting of moieties of interest on a molecular level and visualization throughout various imaging modalities. These characteristics have been exploited by a number of preclinical research approaches aimed at advancing understanding of vascular atherosclerotic disease, in order to improve identification of high-risk lesions prior to oftentimes fatal thromboembolic events. Furthermore, the combination of these targeted nanoparticles with therapeutic agents offers the potential of site-targeted drug delivery with minimized systemic secondary effects. This review gives an overview of different groups of targeted nanoparticles, designed for in vivo molecular imaging of atherosclerosis as well as an outlook on potential combined diagnostic and therapeutic applications.
Collapse
Affiliation(s)
- Tobias Lenz
- German Heart Centre Munich, Technical University of Munich, Lazarettstraße 36, 80636 Munich, Germany; (T.L.); (P.N.); (M.I.C.); (L.-C.E.); (A.L.L.)
| | - Philipp Nicol
- German Heart Centre Munich, Technical University of Munich, Lazarettstraße 36, 80636 Munich, Germany; (T.L.); (P.N.); (M.I.C.); (L.-C.E.); (A.L.L.)
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, 80802 Munich, Germany
| | - Maria Isabel Castellanos
- German Heart Centre Munich, Technical University of Munich, Lazarettstraße 36, 80636 Munich, Germany; (T.L.); (P.N.); (M.I.C.); (L.-C.E.); (A.L.L.)
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, 80802 Munich, Germany
| | - Leif-Christopher Engel
- German Heart Centre Munich, Technical University of Munich, Lazarettstraße 36, 80636 Munich, Germany; (T.L.); (P.N.); (M.I.C.); (L.-C.E.); (A.L.L.)
| | - Anna Lena Lahmann
- German Heart Centre Munich, Technical University of Munich, Lazarettstraße 36, 80636 Munich, Germany; (T.L.); (P.N.); (M.I.C.); (L.-C.E.); (A.L.L.)
| | - Christoph Alexiou
- Department of Oto-rhino-laryngology, head and neck surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung-Professorship, University Hospital Erlangen, 91054 Erlangen, Germany;
| | - Michael Joner
- German Heart Centre Munich, Technical University of Munich, Lazarettstraße 36, 80636 Munich, Germany; (T.L.); (P.N.); (M.I.C.); (L.-C.E.); (A.L.L.)
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, 80802 Munich, Germany
| |
Collapse
|
174
|
The E, Yao Q, Zhang P, Zhai Y, Ao L, Fullerton DA, Meng X. Mechanistic Roles of Matrilin-2 and Klotho in Modulating the Inflammatory Activity of Human Aortic Valve Cells. Cells 2020; 9:cells9020385. [PMID: 32046115 PMCID: PMC7072362 DOI: 10.3390/cells9020385] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 01/30/2020] [Accepted: 02/05/2020] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Calcific aortic valve disease (CAVD) is a chronic inflammatory disease. Soluble extracellular matrix (ECM) proteins can act as damage-associated molecular patterns and may induce valvular inflammation. Matrilin-2 is an ECM protein and has been found to elevate the pro-osteogenic activity in human aortic valve interstitial cells (AVICs). Klotho, an anti-aging protein, appears to have anti-inflammatory properties. The effect of matrilin-2 and Klotho on AVIC inflammatory responses remains unclear. METHODS AND RESULTS Isolated human AVICs were exposed to matrilin-2. Soluble matrilin-2 induced the production of ICAM-1, MCP-1, and IL-6. It also induced protein kinase R (PKR) activation via Toll-like receptor (TLR) 2 and 4. Pretreatment with PKR inhibitors inhibited NF-κB activation and inflammatory mediator production induced by matrilin-2. Further, recombinant Klotho suppressed PKR and NF-κB activation and markedly reduced the production of inflammatory mediators in human AVICs exposed to matrilin-2. CONCLUSIONS This study revealed that soluble matrilin-2 upregulates AVIC inflammatory activity via activation of the TLR-PKR-NF-κB pathway and that Klotho is potent to suppress AVIC inflammatory responses to a soluble ECM protein through inhibiting PKR. These novel findings indicate that soluble matrilin-2 may accelerate the progression of CAVD by inducing valvular inflammation and that Klotho has the potential to suppress valvular inflammation.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xianzhong Meng
- Correspondence: ; Tel.: +1-303-724-6303; Fax: +1-303-724-6330
| |
Collapse
|
175
|
Xu J, Sun Y, Lu J. Knockdown of Long Noncoding RNA (lncRNA) AK094457 Relieved Angiotensin II Induced Vascular Endothelial Cell Injury. Med Sci Monit 2020; 26:e919854. [PMID: 32027625 PMCID: PMC7020760 DOI: 10.12659/msm.919854] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Background Hypertension could induce many serious diseases, including damage to vascular endothelial cells. As a non-coding RNA, long noncoding RNA (lncRNA) has received much attention in scientific research and has a regulating efficacy on many critical life activities in human body. The level of lncRNA AK094457 is thought to be elevated in hypertensive rats. However, there is no research indicating the relationship between the level of lncRNA AK094457 and vascular endothelial injury. Material/Methods In our study, we used lentiviral to knockdown lncRNA AK094457, and the human umbilical vein endothelial cells (HUVECs) were stimulated by the Ang II to imitate the vascular endothelial cell damage caused by hypertension. The Cell Counting Kit-8 assays were used to detect the cells viability. Western blotting was performed to detect the endothelial nitric oxide synthase (eNOS), p-eNOS and endothelin-1 (ET-1). After that the production of the NO was monitored. At last, the reactive oxygen species (ROS) levels and apoptosis rates were detected in this study. Results According to the results, we found that knockdown lncRNA AK094457 could alleviate the decrease of vascular endothelial cell viability induced by angiotensin II (Ang II). The knockdown of lncRNA AK094457 also relieved the downregulation of eNOS and p-eNOS, and the decreasing of NO release. At the same time, the knockdown of lncRNA inhibited the levels of Ang II-induced proinflammatory cytokines (tumor necrosis factor [TNF]-α, interleukin [IL]-1, and IL-6) and cell adhesion molecules (vascular cell adhesion molecule 1 [VCAM-1], intercellular adhesion molecule 1 [ICAM-1], and monocyte chemoattractant protein-1 [MCP-1]). The levels of ROS and apoptosis rates also decreased after the knockdown of lncRNA AK094457. Conclusions All these results indicated that lncRNA AK094457 could promote Ang II-induced vascular endothelial cell injury. On the contrary, knockdown of lncRNA AK094457 could alleviate this damage.
Collapse
Affiliation(s)
- JiaYi Xu
- Department of Gerontology, Minhang Hospital, Fudan University, Shanghai, China (mainland)
| | - Yingjie Sun
- Department of Critical Care Medicine, Minhang Hospital, Fudan University, Shanghai, China (mainland)
| | - Jie Lu
- Department of Gerontology, Minhang Hospital, Fudan University, Shanghai, China (mainland)
| |
Collapse
|
176
|
Sun S, Qin W, Tang X, Meng Y, Hu W, Zhang S, Qian M, Liu Z, Cao X, Pang Q, Zhao B, Wang Z, Zhou Z, Liu B. Vascular endothelium-targeted Sirt7 gene therapy rejuvenates blood vessels and extends life span in a Hutchinson-Gilford progeria model. SCIENCE ADVANCES 2020; 6:eaay5556. [PMID: 32128409 PMCID: PMC7030934 DOI: 10.1126/sciadv.aay5556] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 12/04/2019] [Indexed: 05/02/2023]
Abstract
Vascular dysfunction is a typical characteristic of aging, but its contributing roles to systemic aging and the therapeutic potential are lacking experimental evidence. Here, we generated a knock-in mouse model with the causative Hutchinson-Gilford progeria syndrome (HGPS) LmnaG609G mutation, called progerin. The Lmnaf/f ;TC mice with progerin expression induced by Tie2-Cre exhibit defective microvasculature and neovascularization, accelerated aging, and shortened life span. Single-cell transcriptomic analysis of murine lung endothelial cells revealed a substantial up-regulation of inflammatory response. Molecularly, progerin interacts and destabilizes deacylase Sirt7; ectopic expression of Sirt7 alleviates the inflammatory response caused by progerin in endothelial cells. Vascular endothelium-targeted Sirt7 gene therapy, driven by an ICAM2 promoter, improves neovascularization, ameliorates aging features, and extends life span in Lmnaf/f ;TC mice. These data support endothelial dysfunction as a primary trigger of systemic aging and highlight gene therapy as a potential strategy for the clinical treatment of HGPS and age-related vascular dysfunction.
Collapse
Affiliation(s)
- Shimin Sun
- Anti-aging & Regenerative Medicine Research Institution, School of Life Sciences, Shandong University of Technology, Zibo 255049, China
- National Engineering Research Center for Biotechnology (Shenzhen), Carson International Cancer Center, Medical Research Center, Shenzhen University Health Science Center, Shenzhen, China
- Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, Shenzhen University Health Science Center, Shenzhen, China
| | - Weifeng Qin
- National Engineering Research Center for Biotechnology (Shenzhen), Carson International Cancer Center, Medical Research Center, Shenzhen University Health Science Center, Shenzhen, China
- Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, Shenzhen University Health Science Center, Shenzhen, China
| | - Xiaolong Tang
- National Engineering Research Center for Biotechnology (Shenzhen), Carson International Cancer Center, Medical Research Center, Shenzhen University Health Science Center, Shenzhen, China
- Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, Shenzhen University Health Science Center, Shenzhen, China
| | - Yuan Meng
- National Engineering Research Center for Biotechnology (Shenzhen), Carson International Cancer Center, Medical Research Center, Shenzhen University Health Science Center, Shenzhen, China
- Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, Shenzhen University Health Science Center, Shenzhen, China
| | - Wenjing Hu
- National Engineering Research Center for Biotechnology (Shenzhen), Carson International Cancer Center, Medical Research Center, Shenzhen University Health Science Center, Shenzhen, China
| | - Shuju Zhang
- National Engineering Research Center for Biotechnology (Shenzhen), Carson International Cancer Center, Medical Research Center, Shenzhen University Health Science Center, Shenzhen, China
- Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, Shenzhen University Health Science Center, Shenzhen, China
| | - Minxian Qian
- National Engineering Research Center for Biotechnology (Shenzhen), Carson International Cancer Center, Medical Research Center, Shenzhen University Health Science Center, Shenzhen, China
- Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, Shenzhen University Health Science Center, Shenzhen, China
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shenzhen University Health Science Center, Shenzhen 518055, China
| | - Zuojun Liu
- National Engineering Research Center for Biotechnology (Shenzhen), Carson International Cancer Center, Medical Research Center, Shenzhen University Health Science Center, Shenzhen, China
- Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, Shenzhen University Health Science Center, Shenzhen, China
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shenzhen University Health Science Center, Shenzhen 518055, China
| | - Xinyue Cao
- National Engineering Research Center for Biotechnology (Shenzhen), Carson International Cancer Center, Medical Research Center, Shenzhen University Health Science Center, Shenzhen, China
- Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, Shenzhen University Health Science Center, Shenzhen, China
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shenzhen University Health Science Center, Shenzhen 518055, China
| | - Qiuxiang Pang
- Anti-aging & Regenerative Medicine Research Institution, School of Life Sciences, Shandong University of Technology, Zibo 255049, China
| | - Bosheng Zhao
- Anti-aging & Regenerative Medicine Research Institution, School of Life Sciences, Shandong University of Technology, Zibo 255049, China
| | - Zimei Wang
- Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, Shenzhen University Health Science Center, Shenzhen, China
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shenzhen University Health Science Center, Shenzhen 518055, China
| | - Zhongjun Zhou
- School of Biological Sciences, Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Baohua Liu
- National Engineering Research Center for Biotechnology (Shenzhen), Carson International Cancer Center, Medical Research Center, Shenzhen University Health Science Center, Shenzhen, China
- Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, Shenzhen University Health Science Center, Shenzhen, China
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shenzhen University Health Science Center, Shenzhen 518055, China
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, School of Basic Medical Sciences, Shenzhen University Health Science Center, Shenzhen 518055, China
- Corresponding author.
| |
Collapse
|
177
|
Schleier L, Wiendl M, Heidbreder K, Binder MT, Atreya R, Rath T, Becker E, Schulz-Kuhnt A, Stahl A, Schulze LL, Ullrich K, Merz SF, Bornemann L, Gunzer M, Watson AJM, Neufert C, Atreya I, Neurath MF, Zundler S. Non-classical monocyte homing to the gut via α4β7 integrin mediates macrophage-dependent intestinal wound healing. Gut 2020; 69:252-263. [PMID: 31092589 DOI: 10.1136/gutjnl-2018-316772] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 04/12/2019] [Accepted: 04/17/2019] [Indexed: 12/12/2022]
Abstract
OBJECTIVE To study the role of α4β7 integrin for gut homing of monocytes and to explore the biological consequences of therapeutic α4β7 inhibition with regard to intestinal wound healing. DESIGN We studied the expression of homing markers on monocyte subsets in the peripheral blood and on macrophage subsets in the gut of patients with IBD and controls with flow cytometry and immunohistochemistry. Integrin function was addressed with dynamic adhesion assays and in vivo gut homing assays. In vivo wound healing was studied in mice deficient for or depleted of α4β7 integrin. RESULTS Classical and non-classical monocytes were clearly dichotomous regarding homing marker expression including relevant expression of α4β7 integrin on human and mouse non-classical monocytes but not on classical monocytes. Monocyte-expressed α4β7 integrin was functionally important for dynamic adhesion to mucosal vascular addressin cell adhesion molecule 1 and in vivo gut homing. Impaired α4β7-dependent gut homing was associated with reduced (effect size about 20%) and delayed wound healing and suppressed perilesional presence of wound healing macrophages. Non-classical monocytes in the peripheral blood were increased in patients with IBD under clinical treatment with vedolizumab. CONCLUSION In addition to reported effects on lymphocytes, anti-α4β7 therapy in IBD also targets non-classical monocytes. Impaired gut homing of such monocytes might lead to a reduction of wound healing macrophages and could potentially explain increased rates of postoperative complications in vedolizumab-treated patients, which have been observed in some studies.
Collapse
Affiliation(s)
- Lena Schleier
- Department of Medicine 1, Kussmaul Campus for Medical Research & Translational Research Center, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Maximilian Wiendl
- Department of Medicine 1, Kussmaul Campus for Medical Research & Translational Research Center, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Karin Heidbreder
- Department of Medicine 1, Kussmaul Campus for Medical Research & Translational Research Center, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Marie-Theres Binder
- Department of Medicine 1, Kussmaul Campus for Medical Research & Translational Research Center, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Raja Atreya
- Department of Medicine 1, Kussmaul Campus for Medical Research & Translational Research Center, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Timo Rath
- Department of Medicine 1, Kussmaul Campus for Medical Research & Translational Research Center, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Emily Becker
- Department of Medicine 1, Kussmaul Campus for Medical Research & Translational Research Center, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Anja Schulz-Kuhnt
- Department of Medicine 1, Kussmaul Campus for Medical Research & Translational Research Center, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Annette Stahl
- Department of Medicine 1, Kussmaul Campus for Medical Research & Translational Research Center, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Lisa Lou Schulze
- Department of Medicine 1, Kussmaul Campus for Medical Research & Translational Research Center, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Karen Ullrich
- Department of Medicine 1, Kussmaul Campus for Medical Research & Translational Research Center, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Simon F Merz
- Institute of Experimental Immunology and Imaging, University Duisburg-Essen and University Hospital Essen, Essen, Germany
| | - Lea Bornemann
- Institute of Experimental Immunology and Imaging, University Duisburg-Essen and University Hospital Essen, Essen, Germany
| | - Matthias Gunzer
- Institute of Experimental Immunology and Imaging, University Duisburg-Essen and University Hospital Essen, Essen, Germany
| | - Alastair J M Watson
- Norwich Medical School, Norwich Research Park, University of East Anglia, Norwich, UK
| | - Clemens Neufert
- Department of Medicine 1, Kussmaul Campus for Medical Research & Translational Research Center, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Imke Atreya
- Department of Medicine 1, Kussmaul Campus for Medical Research & Translational Research Center, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Markus F Neurath
- Department of Medicine 1, Kussmaul Campus for Medical Research & Translational Research Center, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Sebastian Zundler
- Department of Medicine 1, Kussmaul Campus for Medical Research & Translational Research Center, University of Erlangen-Nuremberg, Erlangen, Germany
| |
Collapse
|
178
|
Peptide-based nanosystems for vascular cell adhesion molecule-1 targeting: a real opportunity for therapeutic and diagnostic agents in inflammation associated disorders. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2019.101461] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
179
|
Inflammatory Biomarkers for Cardiovascular Risk Stratification in Familial Hypercholesterolemia. Rev Physiol Biochem Pharmacol 2020; 177:25-52. [PMID: 32691159 DOI: 10.1007/112_2020_26] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Familial hypercholesterolemia (FH) is a frequent autosomal genetic disease characterized by elevated concentrations of low-density lipoprotein cholesterol (LDL) from birth with increased risk of premature atherosclerotic complications. Accumulating evidence has shown enhanced inflammation in patients with FH. In vessels, the deposition of modified cholesterol lipoproteins triggers local inflammation. Then, inflammation facilitates fatty streak formation by activating the endothelium to produce chemokines and adhesion molecules. This process eventually results in the uptake of vascular oxidized LDL (OxLDL) by scavenger receptors in monocyte-derived macrophages and formation of foam cells. Further leukocyte recruitment into the sub-endothelial space leads to plaque progression and activation of smooth muscle cells proliferation. Several inflammatory biomarkers have been reported in this setting which can be directly synthetized by activated inflammatory/vascular cells or can be indirectly produced by organs other than vessels, e.g., liver. Of note, inflammation is boosted in FH patients. Inflammatory biomarkers might improve the risk stratification for coronary heart disease and predict atherosclerotic events in FH patients. This review aims at summarizing the current knowledge about the role of inflammation in FH and the potential application of inflammatory biomarkers for cardiovascular risk estimation in these patients.
Collapse
|
180
|
A prospective study in women: açaí (Euterpe oleracea Martius) dietary intake affects serum p-selectin, leptin, and visfatin levels. NUTR HOSP 2020; 38:121-127. [PMID: 33319583 DOI: 10.20960/nh.03342] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Introduction Background: açaí is the fruit of the palm tree Euterpe oleracea Martius, which is native to the Amazon region. This fruit has been extensively studied due to its potential effects on human health. Studies have also evaluated the potential effect of açaí on the inflammatory response, but there are still few studies that have assessed this property in humans. Objective: in this study we aimed to evaluate the effects of 200 g of açaí pulp consumption per day during four weeks on a rich panel of inflammatory biomarkers. Methods: a prospective nutritional intervention study was conducted on forty apparently healthy women who consumed 200 g of açaí pulp per day for four weeks. A panel of serum inflammatory markers were evaluated before and after the nutritional intervention, namely, cell adhesion molecules (ICAM-1, IVAM-1, P-selectin, MCP-1, and fractalkine), interleukins (IL-1β, IL-6, IL-8, IL-10, and IL-17) and adipokines (adiponectin, leptin, visfatin, and adipsin). The data were analyzed using paired Student's t-test to evaluate the effect of the intervention using PASW Statistics, version 17.0, and a p-value of < 0.05 was considered significant. Results: four weeks of açaí pulp consumption decreased p-selectin, leptin, and visfatin concentrations in the serum of the participating women. Conclusion: these results show that consumption of açaí pulp was able to modulate important biomarkers of the inflammatory process in apparently healthy women.
Collapse
|
181
|
Zhuang F, Shi Q, Wang WB, Bao H, Yan J, Gao S, Liu Z, Jiang ZL, Qi YX. Endothelial microvesicles induced by physiological cyclic stretch inhibit ICAM1-Dependent leukocyte adhesion. Exp Cell Res 2020; 386:111710. [PMID: 31693873 DOI: 10.1016/j.yexcr.2019.111710] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 10/22/2019] [Accepted: 10/31/2019] [Indexed: 01/21/2023]
Abstract
Physiological cyclic stretch (CS), caused by artery deformation following blood pressure, plays important roles in the homeostasis of endothelial cells (ECs). Here, we detected the effect of physiological CS on endothelial microvesicles (EMVs) and their roles in leukocyte recruitment to ECs, which is a crucial event in EC inflammation. The results showed compared with the static treatment, pretreatment of 5%-CS-derived EMVs with ECs significantly decreased the adherence level of leukocytes. Comparative proteomic analysis revealed 373 proteins differentially expressed between static-derived and 5%-CS-derived EMVs, in which 314 proteins were uniquely identified in static-derived EMVs, 34 proteins uniquely in 5%-CS-derived EMVs, and 25 proteins showed obvious differences. Based on the proteomic data, Ingenuity Pathways Analysis predicted intercellular adhesion molecule 1 (ICAM1) in EMVs might be the potential molecule involved in EC-leukocyte adhesion. Western blot and flow cytometry analyses confirmed the significant decrease of ICAM1 in 5%-CS-derived EMVs, which subsequently inhibited the phosphorylation of VE-cadherin at Tyr731 in target ECs. Moreover, leukocyte adhesion was obviously decreased after pretreatment with ICAM1 neutralizing antibody. Our present research suggested that physiological stretch changes the components of EMVs, which in turn inhibits leukocyte adhesion. ICAM1 expressed on CS-induced EMVs may play an important role in maintaining EC homeostasis.
Collapse
Affiliation(s)
- Fei Zhuang
- Institute of Mechanobiology & Medical Engineering, School of Life Sciences &Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Qian Shi
- Institute of Mechanobiology & Medical Engineering, School of Life Sciences &Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Wen-Bin Wang
- Institute of Mechanobiology & Medical Engineering, School of Life Sciences &Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Han Bao
- Institute of Mechanobiology & Medical Engineering, School of Life Sciences &Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Jing Yan
- Institute of Mechanobiology & Medical Engineering, School of Life Sciences &Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Shuang Gao
- Institute of Mechanobiology & Medical Engineering, School of Life Sciences &Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Ze Liu
- Institute of Mechanobiology & Medical Engineering, School of Life Sciences &Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Zong-Lai Jiang
- Institute of Mechanobiology & Medical Engineering, School of Life Sciences &Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Ying-Xin Qi
- Institute of Mechanobiology & Medical Engineering, School of Life Sciences &Biotechnology, Shanghai Jiao Tong University, Shanghai, China; Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China; Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 100083, China.
| |
Collapse
|
182
|
Inhibition of Endothelial Dysfunction by Dietary Flavonoids and Preventive Effects Against Cardiovascular Disease. J Cardiovasc Pharmacol 2020; 75:1-9. [DOI: 10.1097/fjc.0000000000000757] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
183
|
Rao C, Liu B, Huang D, Chen R, Huang K, Li F, Dong N. Nucleophosmin contributes to vascular inflammation and endothelial dysfunction in atherosclerosis progression. J Thorac Cardiovasc Surg 2019; 161:e377-e393. [PMID: 32007256 DOI: 10.1016/j.jtcvs.2019.10.152] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 10/15/2019] [Accepted: 10/15/2019] [Indexed: 01/27/2023]
Abstract
OBJECTIVE It is unclear whether nucleophosmin (NPM) participates in cardiovascular disease. The present study aimed to investigate the role and underlying mechanisms of NPM in atherosclerosis. METHODS Levels and location of NPM in human carotid atherosclerotic plaques and healthy controls were detected by real-time polymerase chain reaction, immunoblots, and immunofluorescence. Atherosclerotic prone ApoE-/- mice were fed with a Western diet for 16 weeks as an in vivo model. Human primary umbilical vein endothelial cells (HUVECs) were cultured as an in vitro model. RESULTS Compared with controls, we found that NPM levels in human carotid atherosclerotic plaques were more than twice as high as in normal arteries, which mainly localized in endothelial cells. In vivo, adenovirus-containing NPM small hairpin RNA attenuated atherosclerotic lesion and promoted plaque stabilization in ApoE-/- mice fed a Western diet by reducing vascular inflammation, maintaining endothelial function, and decreasing macrophage infiltration. Furthermore, NPM knockdown decreased nuclear factor-κB (NF-κB) p65 phosphorylation. In cultured HUVECs, palmitic acid increased the protein levels of NPM and induced the expression of inflammatory cytokines and monocyte adhesion, whereas NPM knockdown attenuated this effect. In HUVECs, NPM protein physically interacted with NF-κB p65 subunit and promoted its nuclear transposition. NPM also increased the transcriptional activity of NF-κB p65 promoter and enhance its binding to target genes, including interleukin-1β, interleukin-6, intercellular adhesion molecule-1, and E-selectin. CONCLUSIONS These data provide novel evidence that NPM promotes atherosclerosis by inducing vascular inflammation and endothelial dysfunction through the NF-κB signaling pathway and suggest that NPM may be a promising target for atherosclerosis prevention and treatment.
Collapse
Affiliation(s)
- Caijun Rao
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Clinical Center for Human Genomic Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Baoqing Liu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dandan Huang
- Clinical Center for Human Genomic Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ru Chen
- Clinical Center for Human Genomic Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kai Huang
- Clinical Center for Human Genomic Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Fei Li
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Nianguo Dong
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
184
|
Commentary: Unraveling the mysteries of atherogenesis: An elusive goal. J Thorac Cardiovasc Surg 2019; 161:e396-e397. [PMID: 31859068 DOI: 10.1016/j.jtcvs.2019.10.199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 10/28/2019] [Accepted: 10/30/2019] [Indexed: 11/22/2022]
|
185
|
Wang C, O'Brien KM, Xu Z, Sandler DP, Taylor JA, Weinberg CR. Long-term ambient fine particulate matter and DNA methylation in inflammation pathways: results from the Sister Study. Epigenetics 2019; 15:524-535. [PMID: 31822152 DOI: 10.1080/15592294.2019.1699894] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Although underlying mechanisms of long-term exposure to air pollution and cardiovascular disease remain obscure, effects might partially act through changes in DNA methylation. We examined the associations between long-term ambient fine particulate matter (PM2.5) and methylation, considering both a global measure and methylation at several specific inflammation-related loci, in two random sub-cohorts selected from a nationwide prospective study of US women. In one sub-cohort we measured long interspersed nucleotide element (LINE-1); in the other, we measured methylation at three candidates CpG loci related to inflammatory pathways [tumour necrosis factor-alpha (TNF-α) and toll-like receptor-2 (TLR-2)]. Annual average contemporaneous ambient PM2.5 concentrations were estimated for the current residence. We used both classical least-squares and quantile regression models to estimate the long-term effects. The women in sub-cohorts 1 (n = 491) and 2 (n = 882) had mean ages of 55.8 and 56.7, respectively. Neither modelling approach showed an association between long-term PM2.5 and LINE-1 methylation or between PM2.5 and either of the two CpG sites in TLR-2. Using linear regression, there was an estimated change of -6.5% (95% confidence interval CI: -13.34%, 0.35%) in mean methylation of TNF-α per 5 µg/m3 increase in PM2.5. Quantile regression showed that the downward shift was mainly in the lower half of the distribution of DNA methylation. Long-term residence in regions with higher ambient PM2.5 may be associated with increased TNF-α through a reduction in methylation, particularly in the lower tail. Epigenetic markers and quantile regression might provide insight into mechanisms underlying the relationship between air pollution and cardiovascular disease.
Collapse
Affiliation(s)
- Cuicui Wang
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA.,Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Katie M O'Brien
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA.,Epidemiology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Zongli Xu
- Epidemiology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Dale P Sandler
- Epidemiology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Jack A Taylor
- Epidemiology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Clarice R Weinberg
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| |
Collapse
|
186
|
Li L, Wei J, Mallampalli RK, Zhao Y, Zhao J. TRIM21 Mitigates Human Lung Microvascular Endothelial Cells' Inflammatory Responses to LPS. Am J Respir Cell Mol Biol 2019; 61:776-785. [PMID: 31184939 PMCID: PMC6890403 DOI: 10.1165/rcmb.2018-0366oc] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 04/16/2019] [Indexed: 01/16/2023] Open
Abstract
Endothelial cell (EC) inflammation is regarded as an important pathogenic feature of many inflammatory diseases, including acute lung injury and sepsis. An increase in EC inflammation results in neutrophil infiltration from the blood to the site of inflammation, further promoting EC permeability. The ubiquitin E3 ligase TRIM21 has been implicated in human disorders; however, the roles of TRIM21 in endothelial dysfunction and acute lung injury have not been reported. Here, we reveal an antiinflammatory property of TRIM21 in a mouse model of acute lung injury and human lung microvascular ECs. Overexpression of TRIM21 by lentiviral vector infection effectively dampened LPS-induced neutrophil infiltration, cytokine release, and edema in mice. TRIM21 inhibited human lung microvascular endothelial cell inflammatory responses as evidenced by attenuation of the NF-κB pathway, release of IL-8, expression of intercellular adhesion molecules, and adhesion of monocytes to ECs. Furthermore, we demonstrated that TRIM21 was predominantly degraded by an increase in its monoubiquitination and lysosomal degradation after inflammatory stimuli. Thus, inhibition of vascular endothelial inflammation by TRIM21 provides a novel therapeutic target to lessen pulmonary inflammation.
Collapse
Affiliation(s)
- Lian Li
- Respiratory Department, Tianjin Medical University General Hospital, Tianjin, China
- Department of Physiology and Cell Biology, and
| | - Jianxin Wei
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | | | - Yutong Zhao
- Department of Physiology and Cell Biology, and
| | - Jing Zhao
- Department of Physiology and Cell Biology, and
| |
Collapse
|
187
|
Shatoor AS, Al Humayed S, Alkhateeb MA, Shatoor KA, Aldera H, Alassiri M, Shati AA. Crataegus Aronia protects and reverses vascular inflammation in a high fat diet rat model by an antioxidant mechanism and modulating serum levels of oxidized low-density lipoprotein. PHARMACEUTICAL BIOLOGY 2019; 57:38-48. [PMID: 30702358 PMCID: PMC6366417 DOI: 10.1080/13880209.2018.1564930] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
CONTEXT Crataegus aronia (Willd.) Bosc (Rosaceae) (syn. Azarolus L) is traditionally used to treat cardiovascular disorders. OBJECTIVES To investigate C. aronia protection against a high-fat diet (HFD)-induced vascular inflammation in rats. MATERIALS AND METHODS Wistar Male rats (180-220 g) were divided (n = 10/group) as control fed a standard diet (STD), STD + C. aronia (200 mg/kg, orally), HFD, HFD + C. aronia and HFD post-treated with C. aronia. Simvastatin (20 mg/kg) was co- or post-administered as a positive control drug. HFD was given for 8 weeks, and all other treatments were administered for 4 weeks. RESULTS Most significantly, co-administration of C. aronia to HFD-fed rats reduced the thickness of aorta tunica media (90 ± 5 vs. 160 ± 11.3 µm) and adventitia (54.3 ± 3.8 vs. 93.6 ± 9.4 µm). It also lowered protein levels of TNF-α (0.51 ± 0.15 and 0.15 ± 0.16 vs. 0.1 ± 0.09%) and IL-6 (0.52 ± 0.19 vs. 1.0 ± 0.2%) in their aorta or serum (5.9 ± 0.91 vs. 12.98 ± 1.3 ng/mL and 78.1 ± 6.7 vs. 439 ± 78 pg/mL, respectively). It also lowered all serum lipids and increased aorta levels of GSH levels (70.4 ± 4.0 vs. 40.7 µM) and activity of SOD (5.7 ± 0.7 vs. 2.9 ± 0.6 U/mg) and decreased serum levels of ox-LDL-c (566.7 ± 46 vs. 1817 ± 147 ng/mL). Such effects were more profound than all other treatments. CONCLUSIONS C. aronia inhibits the HFD-induced vascular inflammation and its use in clinical trials is recommended.
Collapse
Affiliation(s)
- Abdullah S. Shatoor
- Department of Medicine, Cardiology Section, College of Medicine, King Khalid University (KKU), Abha, Saudi Arabia
- CONTACT Abdullah S. Shatoor Department of Medicine, Cardiology Section, College of Medicine, King Khalid University, Abha64121, Saudi Arabia
| | - Suliman Al Humayed
- Department of Medicine, Cardiology Section, College of Medicine, King Khalid University (KKU), Abha, Saudi Arabia
| | - Mahmoud A. Alkhateeb
- Department of Basic Medical Sciences, College of Medicine, King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), Riyadh, Saudi Arabia
| | - Khalid A. Shatoor
- An intern, College of Medicine, King Khalid University (KKU), Abha, Saudi Arabia
| | - Hussain Aldera
- Department of Basic Medical Sciences, College of Medicine, King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), Riyadh, Saudi Arabia
- King Abdullah International Medical Research center (KAIMRC), Riyadh, Saudi Arabia
| | - Mohammed Alassiri
- Department of Basic Medical Sciences, College of Medicine, King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), Riyadh, Saudi Arabia
- King Abdullah International Medical Research center (KAIMRC), Riyadh, Saudi Arabia
| | - Ali A. Shati
- Department of Biology College of Science, College of Medicine, King Khalid University (KKU), Abha, Saudi Arabia
| |
Collapse
|
188
|
Wang Y, Sun X, Xia B, Le C, Li Z, Wang J, Huang J, Wang J, Wan C. The role of OX40L and ICAM-1 in the stability of coronary atherosclerotic plaques and their relationship with sudden coronary death. BMC Cardiovasc Disord 2019; 19:272. [PMID: 31783796 PMCID: PMC6883659 DOI: 10.1186/s12872-019-1251-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 11/11/2019] [Indexed: 02/26/2023] Open
Abstract
Background Coronary heart disease is related to sudden death caused by multi-factors and a major threat to human health.This study explores the role of OX40L and ICAM-1 in the stability of coronary plaques and their relationship with sudden coronary death. Methods A total of 118 human coronary arteries with different degrees of atherosclerosis and/or sudden coronary death comprised the experimental group and 28 healthy subjects constituted the control group were isolated from patients. The experimental group was subdivided based on whether the cause of death was sudden coronary death and whether it was accompanied by thrombosis, plaque rupture, plaque outflow and other secondary changes: group I: patients with coronary atherosclerosis but not sudden coronary death, group II: sudden coronary death without any of the secondary changes mentioned above, group III: sudden coronary death with coronary artery atherosclerotic lesions accompanied by either of the above secondary changes. The histological structure of the coronary artery was observed under a light microscope after routine HE staining, and the related indexes of atherosclerotic plaque lesions were assessed by image analysis software. The expressions of OX40L and ICAM-1 were detected by real-time quantitative PCR (RT-PCR), immunohistochemistry (IHC) and Western blotting, and the correlations between the expressions and the stability of coronary atherosclerotic plaque and sudden coronary death were analyzed. Results (1) The expression of OX40L protein in the control group and the three experimental groups showed an increasing trend, and the difference between groups was statistically significant (P < 0.05). (2) The expression of the ICAM-1 protein in the control group and the three experimental groups showed a statistically significant (P < 0.05) increasing trend. (3) The expression of OX40L and ICAM-1 mRNAs increased in the control and the three experimental groups and the difference was statistically significant (P < 0.05). Conclusion The expression of OX40L and ICAM-1 proteins and mRNAs is positively correlated with the stability of coronary atherosclerotic plaque and sudden coronary death.
Collapse
Affiliation(s)
- Yu Wang
- School of Forensic Medicine, Guizhou Medical University, Guiyang, Guizhou Province, 550004, People's Republic of China
| | - Xiaoyu Sun
- School of Forensic Medicine, Guizhou Medical University, Guiyang, Guizhou Province, 550004, People's Republic of China
| | - Bing Xia
- School of Forensic Medicine, Guizhou Medical University, Guiyang, Guizhou Province, 550004, People's Republic of China
| | - Cuiyun Le
- School of Forensic Medicine, Guizhou Medical University, Guiyang, Guizhou Province, 550004, People's Republic of China
| | - Zhu Li
- School of Forensic Medicine, Guizhou Medical University, Guiyang, Guizhou Province, 550004, People's Republic of China
| | - Jie Wang
- School of Forensic Medicine, Guizhou Medical University, Guiyang, Guizhou Province, 550004, People's Republic of China
| | - Jiang Huang
- School of Forensic Medicine, Guizhou Medical University, Guiyang, Guizhou Province, 550004, People's Republic of China
| | - Jiawen Wang
- School of Forensic Medicine, Guizhou Medical University, Guiyang, Guizhou Province, 550004, People's Republic of China.
| | - Changwu Wan
- School of Forensic Medicine, Guizhou Medical University, Guiyang, Guizhou Province, 550004, People's Republic of China.
| |
Collapse
|
189
|
Zeng YM, Hu AK, Su HZ, Ko CY. A review of the association between oral bacterial flora and obstructive sleep apnea-hypopnea syndrome comorbid with cardiovascular disease. Sleep Breath 2019; 24:1261-1266. [PMID: 31758435 DOI: 10.1007/s11325-019-01962-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 09/29/2019] [Accepted: 10/11/2019] [Indexed: 12/30/2022]
Abstract
PURPOSE Obstructive sleep apnea-hypopnea syndrome (OSAHS), a common sleep disorder, has been shown to be an independent risk factor for cardiovascular disease (CVD). Recent studies have focused on the important roles of microorganisms in human health; for example, microorganisms are reportedly associated with obesity, metabolic disorders, and CVD. The number of oral bacteria in patients with OSAHS is considerably higher than that in healthy individuals, and infection with oral bacterial pathogens is associated with the development of CVD. However, whether changes in the oral microbiota mediate the development of OSAHS and CVD remains unknown. METHODS Therefore, we attempted to review the association between changes in oral microbiota in patients with OSAHS and the development of CVD. RESULTS Oral microbiota possibly acts via multiple pathways including direct invasion, platelet aggregation, immune response, inflammatory response, and oxidative stress response, leading to the development of CVD in patients with OSAHS. In particular, the strains Aggregatibacter actinomycetemcomitans, Porphyromonas gingivalis, and Prevotella intermedia have demonstrated profound effects. OSAHS leads to changes in the oral bacterial flora and thus may facilitate the occurrence and development of CVD. CONCLUSION We propose that the underlying mechanism of CVDs resulting from oral microbiota in patients with OSAHS should be elucidated in further studies.
Collapse
Affiliation(s)
- Yi-Ming Zeng
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Fujian Medical University, 34 Zhongshan N Rd, Licheng Qu, Quanzhou Shi, 362000, Fujian Province, China.,Respiratory Medicine Center of Fujian Province, Quanzhou, 362000, China.,The Sleep Medicine Key Laboratory of Fujian Medical Universities, Fujian Province University, Quanzhou, 362000, China
| | - An-Ke Hu
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Fujian Medical University, 34 Zhongshan N Rd, Licheng Qu, Quanzhou Shi, 362000, Fujian Province, China.,Respiratory Medicine Center of Fujian Province, Quanzhou, 362000, China.,The Sleep Medicine Key Laboratory of Fujian Medical Universities, Fujian Province University, Quanzhou, 362000, China
| | - Huan-Zhang Su
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Fujian Medical University, 34 Zhongshan N Rd, Licheng Qu, Quanzhou Shi, 362000, Fujian Province, China.,Respiratory Medicine Center of Fujian Province, Quanzhou, 362000, China.,The Sleep Medicine Key Laboratory of Fujian Medical Universities, Fujian Province University, Quanzhou, 362000, China
| | - Chih-Yuan Ko
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Fujian Medical University, 34 Zhongshan N Rd, Licheng Qu, Quanzhou Shi, 362000, Fujian Province, China. .,Respiratory Medicine Center of Fujian Province, Quanzhou, 362000, China. .,The Sleep Medicine Key Laboratory of Fujian Medical Universities, Fujian Province University, Quanzhou, 362000, China. .,Department of Clinical Nutrition, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, China.
| |
Collapse
|
190
|
The expression of macrophage migration inhibitory factor and intercellular adhesion molecule-1 in rats with periodontitis and atherosclerosis. Arch Oral Biol 2019; 107:104513. [DOI: 10.1016/j.archoralbio.2019.104513] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 07/30/2019] [Accepted: 07/30/2019] [Indexed: 12/11/2022]
|
191
|
Zhang L, Wang X, Zhang L, Virgous C, Si H. Combination of curcumin and luteolin synergistically inhibits TNF-α-induced vascular inflammation in human vascular cells and mice. J Nutr Biochem 2019; 73:108222. [DOI: 10.1016/j.jnutbio.2019.108222] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 07/01/2019] [Accepted: 07/30/2019] [Indexed: 01/24/2023]
|
192
|
Song Y, Ma R, Zhang H. The influence of MRAS gene variants on ischemic stroke and serum lipid levels in Chinese Han population. Medicine (Baltimore) 2019; 98:e18065. [PMID: 31770223 PMCID: PMC6890362 DOI: 10.1097/md.0000000000018065] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Previous studies have indicated that muscle RAS oncogene homolog (MRAS) gene played an important role in cardiovascular diseases. However, the effect of MRAS genetic variations on ischemic stroke (IS) is still not clear. The aim of the current study was to investigate the association between the MRAS polymorphism and IS risk in Han populations.Three SNPs (rs40593, rs751357, rs6782181) at MRAS were selected for genotyping in a sample of 240 IS patients and 430 controls. Logistic regression was performed to evaluate the association of 3 SNPs with IS and IS subgroups.No association of MRAS SNPs with IS risk was observed, while G allele of rs40593 was associated with increased risk of cerebral infarction area. Compared with carriers of the AA genotype, the risk of carriers of the AG+GG genotype increased, with an OR (95%CI) of 2.337 (1.175-4.647), P = .016. In relation to lipid profile, rs40593, rs751357, rs6782181 were associated with increased total cholesterol (TC) levels.Summarily, this study suggested that MRAS rs40593 may contribute to the increased risk of area of cerebral infarction of IS in Han population. rs40593, rs751357, and rs6782181 were associated with higher serum TC levels.
Collapse
Affiliation(s)
| | - Rui Ma
- Department of Hemodialysis, Jieshou City People's Hospital, Fuyang, China
| | | |
Collapse
|
193
|
Anti-Inflammatory and Anti-Apoptotic Effects of Stybenpropol A on Human Umbilical Vein Endothelial Cells. Int J Mol Sci 2019; 20:ijms20215383. [PMID: 31671764 PMCID: PMC6862503 DOI: 10.3390/ijms20215383] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 10/19/2019] [Accepted: 10/24/2019] [Indexed: 12/28/2022] Open
Abstract
Inflammation is a key mediator in the progression of atherosclerosis (AS). Benzoinum, a resin secreted from the bark of Styrax tonkinensis, has been widely used as a form of traditional Chinese medicine in clinical settings to enhance cardiovascular function, but the active components of the resin responsible for those pharmaceutical effects remain unclear. To better clarify these components, a new phenylpropane derivative termed stybenpropol A was isolated from benzoinum and characterized via comprehensive spectra a nalysis. We further assessed how this phenylpropane derivative affected treatment of human umbilical vein endothelial cells (HUVECs) with tumor necrosis factor-α (TNF-α). Our results revealed that stybenpropol A reduced soluble intercellular cell adhesion molecule-1 (sICAM-1), soluble vascular cell adhesion molecule-1 (sVCAM-1), interleukin-8 (IL-8), and interleukin-1β (IL-1β) expression by ELISA, inhibited apoptosis, and accelerated nitric oxide (NO) release in TNF-α-treated HUVECs. We further found that stybenpropol A decreased VCAM-1, ICAM-1, Bax, and caspase-9 protein levels, and increased the protein levels of Bcl-2, IKK-β, and IκB-α. This study identified a new, natural phenylpropane derivative of benzoinum, and is the first to reveal its cytoprotective effects in the context of TNF-α-treated HUVECs via regulation of the NF-κB and caspase-9 signaling pathways.
Collapse
|
194
|
Herrero-Fernandez B, Gomez-Bris R, Somovilla-Crespo B, Gonzalez-Granado JM. Immunobiology of Atherosclerosis: A Complex Net of Interactions. Int J Mol Sci 2019; 20:E5293. [PMID: 31653058 PMCID: PMC6862594 DOI: 10.3390/ijms20215293] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 10/21/2019] [Accepted: 10/22/2019] [Indexed: 02/07/2023] Open
Abstract
Cardiovascular disease is the leading cause of mortality worldwide, and atherosclerosis the principal factor underlying cardiovascular events. Atherosclerosis is a chronic inflammatory disease characterized by endothelial dysfunction, intimal lipid deposition, smooth muscle cell proliferation, cell apoptosis and necrosis, and local and systemic inflammation, involving key contributions to from innate and adaptive immunity. The balance between proatherogenic inflammatory and atheroprotective anti-inflammatory responses is modulated by a complex network of interactions among vascular components and immune cells, including monocytes, macrophages, dendritic cells, and T, B, and foam cells; these interactions modulate the further progression and stability of the atherosclerotic lesion. In this review, we take a global perspective on existing knowledge about the pathogenesis of immune responses in the atherosclerotic microenvironment and the interplay between the major innate and adaptive immune factors in atherosclerosis. Studies such as this are the basis for the development of new therapies against atherosclerosis.
Collapse
Affiliation(s)
- Beatriz Herrero-Fernandez
- LamImSys Lab. Instituto de Investigación Hospital 12 de Octubre (imas12), 28041 Madrid, Spain.
- Departamento de Fisiología. Facultad de Medicina. Universidad Autónoma de Madrid (UAM), 28029 Madrid, Spain.
| | - Raquel Gomez-Bris
- LamImSys Lab. Instituto de Investigación Hospital 12 de Octubre (imas12), 28041 Madrid, Spain.
| | | | - Jose Maria Gonzalez-Granado
- LamImSys Lab. Instituto de Investigación Hospital 12 de Octubre (imas12), 28041 Madrid, Spain.
- Departamento de Fisiología. Facultad de Medicina. Universidad Autónoma de Madrid (UAM), 28029 Madrid, Spain.
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), 28029 Madrid, Spain.
- CIBER de Enfermedades Cardiovasculares, 28029 Madrid, Spain.
| |
Collapse
|
195
|
Taghizadeh E, Taheri F, Renani PG, Reiner Ž, Navashenaq JG, Sahebkar A. Macrophage: A Key Therapeutic Target in Atherosclerosis? Curr Pharm Des 2019; 25:3165-3174. [DOI: 10.2174/1381612825666190830153056] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 08/22/2019] [Indexed: 12/19/2022]
Abstract
Background:
Atherosclerosis is a chronic inflammatory disease and a leading cause of coronary artery
disease, peripheral vascular disease and stroke. Lipid-laden macrophages are derived from circulating monocytes
and form fatty streaks as the first step of atherogenesis.
Methods:
An electronic search in major databases was performed to review new therapeutic opportunities for
influencing the inflammatory component of atherosclerosis based on monocytes/macrophages targeting.
Results:
In the past two decades, macrophages have been recognized as the main players in atherogenesis but also
in its thrombotic complications. There is a growing interest in immunometabolism and recent studies on metabolism
of macrophages have created new therapeutic options to treat atherosclerosis. Targeting recruitment, polarization,
cytokine profile extracellular matrix remodeling, cholesterol metabolism, oxidative stress, inflammatory
activity and non-coding RNAs of monocyte/macrophage have been proposed as potential therapeutic approaches
against atherosclerosis.
Conclusion:
Monocytes/macrophages have a crucial role in progression and pathogenesis of atherosclerosis.
Therefore, targeting monocyte/macrophage therapy in order to achieve anti-inflammatory effects might be a good
option for prevention of atherosclerosis.
Collapse
Affiliation(s)
- Eskandar Taghizadeh
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Forough Taheri
- Sharekord Branch, Islamic Azad University, Sharekord, Iran
| | | | - Željko Reiner
- University Hospital Centre Zagreb, School of Medicine, University of Zagreb, Department of Internal Medicine, Zagreb, Croatia
| | - Jamshid G. Navashenaq
- Immunogenetic and Cell Culture Department, Immunology Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | |
Collapse
|
196
|
Linke B, Meyer Dos Santos S, Picard-Willems B, Keese M, Harder S, Geisslinger G, Scholich K. CXCL16/CXCR6-mediated adhesion of human peripheral blood mononuclear cells to inflamed endothelium. Cytokine 2019. [DOI: 10.1016/j.cyto.2017.06.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
197
|
Gaudino MF, Lorusso R, Ohmes LB, Narula N, McIntire P, Gargiulo A, Bucci MR, Leonard J, Rahouma M, Di Franco A, He GW, Girardi LN, Tranbaugh RF, Di Lorenzo A. Open radial artery harvesting better preserves endothelial function compared to the endoscopic approach. Interact Cardiovasc Thorac Surg 2019; 29:561-567. [PMID: 31157868 PMCID: PMC6760280 DOI: 10.1093/icvts/ivz129] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 04/24/2019] [Accepted: 04/26/2019] [Indexed: 12/23/2022] Open
Abstract
OBJECTIVES Both the open and endovascular techniques are commonly used for harvesting the radial artery (ORAH and ERAH, respectively), and yet, very little is known about the effects of these 2 techniques on endothelial integrity and function of the radial artery (RA). The aim of this study was to assess the endothelial integrity and function of RA harvested using the 2 approaches. METHODS Two independent surgical teams working in the same institution routinely use the RA for coronary artery bypass grafting exclusively employing either ORAH or ERAH. Thirty-nine consecutive patients were enrolled in this comparative study. Endothelial function after ORAH or ERAH was assessed by using the wire myograph system. The integrity of the RA endothelium was evaluated by immunohistochemical staining for erythroblast transformation specific-related gene. RESULTS The vasodilation in response to acetylcholine was significantly higher in RA harvested with ORAH (P ≤ 0.001 versus ERAH). Endothelial integrity was not different between the 2 groups. CONCLUSIONS ORAH is associated with a significantly higher endothelium-dependent vasodilation. Further investigation on the potential implications of these findings in terms of graft spasm and patency as well as clinical outcomes are needed.
Collapse
Affiliation(s)
- Mario F Gaudino
- Department of Cardio-Thoracic Surgery, Weill Cornell Medicine, New York, NY, USA
| | - Roberto Lorusso
- Department of Cardio-Thoracic Surgery, Heart & Vascular Centre, Maastricht University Medical Hospital (MUMC), Cardiovascular Research Institute Maastricht (CARIM), Maastricht, Netherlands
| | - Lucas B Ohmes
- Department of Cardio-Thoracic Surgery, Weill Cornell Medicine, New York, NY, USA
| | - Navneet Narula
- Department of Pathology and Laboratory Medicine, NYU Langone Medical Center, New York, NY, USA
| | - Patrick McIntire
- Department of Pathology and Laboratory Medicine, Loyola University Medical Center, Maywood, IL, USA
| | - Antonella Gargiulo
- Department of Pathology and Laboratory Medicine, Cardiovascular Research Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
- Faculty of Pharmacy, Department of Pharmacy, University of Naples “Federico II”, Naples, Italy
| | - Maria Rosaria Bucci
- Faculty of Pharmacy, Department of Pharmacy, University of Naples “Federico II”, Naples, Italy
| | - Jeremy Leonard
- Department of Cardio-Thoracic Surgery, Weill Cornell Medicine, New York, NY, USA
| | - Mohamed Rahouma
- Department of Cardio-Thoracic Surgery, Weill Cornell Medicine, New York, NY, USA
| | - Antonino Di Franco
- Department of Cardio-Thoracic Surgery, Weill Cornell Medicine, New York, NY, USA
| | - Guo-Wei He
- Department of Cardiac Surgery, TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Tianjin, China
| | - Leonard N Girardi
- Department of Cardio-Thoracic Surgery, Weill Cornell Medicine, New York, NY, USA
| | - Robert F Tranbaugh
- Department of Cardio-Thoracic Surgery, Weill Cornell Medicine, New York, NY, USA
| | - Annarita Di Lorenzo
- Department of Pathology and Laboratory Medicine, Cardiovascular Research Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
198
|
Nagarajan UM, Sikes JD, Burris RL, Jha R, Popovic B, Fraungruber P, Hennings L, Haggerty CL, Nagarajan S. Genital Chlamydia infection in hyperlipidemic mouse models exacerbates atherosclerosis. Atherosclerosis 2019; 290:103-110. [PMID: 31604170 DOI: 10.1016/j.atherosclerosis.2019.09.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 09/11/2019] [Accepted: 09/26/2019] [Indexed: 01/21/2023]
Abstract
BACKGROUND AND AIMS Atherosclerosis is a chronic inflammatory disease, and recent studies have shown that infection at remote sites can contribute to the progression of atherosclerosis in hyperlipidemic mouse models. In this report, we tested the hypothesis that genital Chlamydia infection could accelerate the onset and progression of atherosclerosis. METHODS Apolipoprotein E (Apoe-/-) and LDL receptor knockout (Ldlr-/-) mice on a high-fat diet were infected intra-vaginally with Chlamydia muridarum. Atherosclerotic lesions on the aortic sinuses and in the descending aorta were assessed at 8-weeks post-infection. Systemic, macrophage, and vascular site inflammatory responses were assessed and quantified. RESULTS Compared to the uninfected groups, infected Apoe-/- and Ldlr-/- mice developed significantly more atherosclerotic lesions in the aortic sinus and in the descending aorta. Increased lesions were associated with higher circulating levels of serum amyloid A-1, IL-1β, TNF-α, and increased VCAM-1 expression in the aortic sinus, suggesting an association with inflammatory responses observed during C. muridarum infection. Genital infection courses were similar in Apoe-/-, Ldlr-/-, and wild type mice. Further, Apoe-/- mice developed severe uterine pathology with increased dilatations. Apoe-deficiency also augmented cytokine/chemokine response in C. muridarum infected macrophages, suggesting that the difference in macrophage response could have contributed to the genital pathology in Apoe-/- mice. CONCLUSIONS Overall, these studies demonstrate that genital Chlamydia infection exacerbates atherosclerotic lesions in hyperlipidemic mouse and suggest a novel role for Apoe in full recovery of uterine anatomy after chlamydial infection.
Collapse
Affiliation(s)
- Uma M Nagarajan
- Department of Pediatrics and Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Pediatrics, University of Arkansas for Medical Sciences, Arkansas Children's Hospital Research Institute, Little Rock, AR, USA
| | - James D Sikes
- Department of Pediatrics, University of Arkansas for Medical Sciences, Arkansas Children's Hospital Research Institute, Little Rock, AR, USA
| | - Ramona L Burris
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Arkansas Children's Hospital Research Institute, Little Rock, AR, USA
| | - Rajneesh Jha
- Department of Pediatrics, University of Arkansas for Medical Sciences, Arkansas Children's Hospital Research Institute, Little Rock, AR, USA
| | - Branimir Popovic
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Pamelia Fraungruber
- Department of Pathology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Leah Hennings
- Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Catherine L Haggerty
- Department of Epidemiology, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA, USA
| | - Shanmugam Nagarajan
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Arkansas Children's Hospital Research Institute, Little Rock, AR, USA; Department of Pathology, University of Pittsburgh, Pittsburgh, PA, USA; Department of Pathology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
199
|
Moccetti F, Brown E, Xie A, Packwood W, Qi Y, Ruggeri Z, Shentu W, Chen J, López JA, Lindner JR. Myocardial Infarction Produces Sustained Proinflammatory Endothelial Activation in Remote Arteries. J Am Coll Cardiol 2019; 72:1015-1026. [PMID: 30139430 DOI: 10.1016/j.jacc.2018.06.044] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 06/07/2018] [Accepted: 06/10/2018] [Indexed: 01/13/2023]
Abstract
BACKGROUND In the months after acute myocardial infarction (MI), risk for acute atherothrombotic events in nonculprit arteries increases several fold. OBJECTIVES This study investigated whether sustained proinflammatory and prothrombotic endothelial alterations occur in remote vessels after MI. METHODS Wild-type mice, atherosclerotic mice with double knockout (DKO) of the low-density lipoprotein receptor and Apobec-1, and DKO mice treated with the Nox-inhibitor apocynin were studied at baseline and at 3 and 21 days after closed-chest MI. Ultrasound molecular imaging of P-selectin, vascular cell adhesion molecule (VCAM)-1, von Willebrand factor (VWF) A1-domain, and platelet GPIbα was performed. Intravital microscopy was used to characterize post-MI leukocyte and platelet recruitment in the remote microcirculation after MI. RESULTS Aortic molecular imaging for P-selectin, VCAM-1, VWF-A1, and platelets was increased several-fold (p < 0.01) 3 days post-MI for both wild-type and DKO mice. At 21 days, these changes resolved in wild-type mice but persisted in DKO mice. Signal for platelet adhesion was abolished 1 h after administration of ADAMTS13, which regulates VWF multimerization. In DKO and wild-type mice, apocynin significantly attenuated the post-MI increase for molecular targets, and platelet depletion significantly reduced P-selectin and VCAM-1 signal. On intravital microscopy, MI resulted in remote vessel leukocyte adhesion and platelet string or net complexes. On histology, high-risk inflammatory features in aortic plaque increased in DKO mice 21 days post-MI, which were completely prevented by apocynin. CONCLUSIONS Acute MI stimulates a spectrum of changes in remote vessels, including up-regulation of endothelial inflammatory adhesion molecules and platelet-endothelial adhesion from endothelial-associated VWF multimers. These remote arterial alterations persist longer in the presence of hyperlipidemia, are associated with accelerated plaque growth and inflammation, and are attenuated by Nox inhibition.
Collapse
Affiliation(s)
- Federico Moccetti
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon
| | - Eran Brown
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon
| | - Aris Xie
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon
| | - William Packwood
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon
| | - Yue Qi
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon
| | - Zaverio Ruggeri
- Department of Molecular and Experimental Medicine, Scripps Research Institute, La Jolla, California
| | - Weihui Shentu
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon
| | | | | | - Jonathan R Lindner
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon; Oregon National Primate Research Center, Oregon Health & Science University, Portland, Oregon.
| |
Collapse
|
200
|
Filippini A, D'Amore A, D'Alessio A. Calcium Mobilization in Endothelial Cell Functions. Int J Mol Sci 2019; 20:ijms20184525. [PMID: 31547344 PMCID: PMC6769945 DOI: 10.3390/ijms20184525] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 09/02/2019] [Accepted: 09/06/2019] [Indexed: 02/07/2023] Open
Abstract
Endothelial cells (ECs) constitute the innermost layer that lines all blood vessels from the larger arteries and veins to the smallest capillaries, including the lymphatic vessels. Despite the histological classification of endothelium of a simple epithelium and its homogeneous morphological appearance throughout the vascular system, ECs, instead, are extremely heterogeneous both structurally and functionally. The different arrangement of cell junctions between ECs and the local organization of the basal membrane generate different type of endothelium with different permeability features and functions. Continuous, fenestrated and discontinuous endothelia are distributed based on the specific function carried out by the organs. It is thought that a large number ECs functions and their responses to extracellular cues depend on changes in intracellular concentrations of calcium ion ([Ca2+]i). The extremely complex calcium machinery includes plasma membrane bound channels as well as intracellular receptors distributed in distinct cytosolic compartments that act jointly to maintain a physiological [Ca2+]i, which is crucial for triggering many cellular mechanisms. Here, we first survey the overall notions related to intracellular Ca2+ mobilization and later highlight the involvement of this second messenger in crucial ECs functions with the aim at stimulating further investigation that link Ca2+ mobilization to ECs in health and disease.
Collapse
Affiliation(s)
- Antonio Filippini
- Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Unit of Histology and Medical Embryology, Sapienza University of Rome, 00161 Rome, Italy.
| | - Antonella D'Amore
- Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Unit of Histology and Medical Embryology, Sapienza University of Rome, 00161 Rome, Italy.
| | - Alessio D'Alessio
- Istituto di Istologia ed Embriologia, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario "Agostino Gemelli", IRCCS, 00168 Rome, Italy.
| |
Collapse
|