151
|
Renal and vascular mechanisms of thiazolidinedione-induced fluid retention. PPAR Res 2011; 2008:943614. [PMID: 18784848 PMCID: PMC2531205 DOI: 10.1155/2008/943614] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2008] [Accepted: 06/04/2008] [Indexed: 11/18/2022] Open
Abstract
Thiazolidinediones (TZDs) are peroxisome proliferator-activated receptor subtype gamma (PPARgamma) activators that are clinically used as an insulin sensitizer for glycemic control in patients with type 2 diabetes. Additionally, TZDs exhibit novel anti-inflammatory, antioxidant, and antiproliferative properties, indicating therapeutic potential for a wide variety of diseases associated with diabetes and other conditions. The clinical applications of TZDs are limited by the common major side effect of fluid retention. A better understanding of the molecular mechanism of TZD-induced fluid retention is essential for the development of novel therapies with improved safety profiles. An important breakthrough in the field is the finding that the renal collecting duct is a major site for increased fluid reabsorption in response to rosiglitazone or pioglitazone. New evidence also indicates that increased vascular permeability in adipose tissues may contribute to edema formation and body weight gain. Future research should therefore be directed at achieving a better understanding of the detailed mechanisms of TZD-induced increases in renal sodium transport and in vascular permeability.
Collapse
|
152
|
Sertznig P, Reichrath J. Peroxisome proliferator-activated receptors (PPARs) in dermatology: Challenge and promise. DERMATO-ENDOCRINOLOGY 2011; 3:130-5. [PMID: 22110772 DOI: 10.4161/derm.3.3.15025] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Revised: 01/17/2011] [Accepted: 02/01/2011] [Indexed: 02/03/2023]
Abstract
Since their discovery it has become clear that peroxisome proliferator-activated receptors (PPARs) are ligand-activated transcription factors involved in the genetic regulation of the lipid metabolism and energy homoeostasis. Subsequently, accumulating evidence suggests a role of PPARs in genomic pathways including the regulation of cell growth, apoptosis and differentiation. These findings indicate that PPARs and PPAR agonists play an important role in inflammatory responses and tumor promotion. Because of their diverse biologic activities on keratinocytes and other skin cells, PPARs represent a major research target for the understanding and treatment of many skin pathologies, such as hyperproliferative and inflammatory diseases. Overmore recent clinical trials identified PPARs as promising drug targets for the prevention and treatment of various diseases in the field of dermatology. The present review summarizes the current knowledge of PPAR functions in various skin disorders particularly those involving inflammation and epidermal hyperproliferation (i.e., psoriasis, atopic dermatitis, acne, scleroderma, skin malignancies).
Collapse
Affiliation(s)
- Pit Sertznig
- Department of Dermatology; RWTH Aachen University Hospital; Aachen
| | | |
Collapse
|
153
|
Abstract
Our understanding of, and approach to, pulmonary arterial hypertension has undergone a paradigm shift in the past decade. Once a condition thought to be dominated by increased vasoconstrictor tone and thrombosis, pulmonary arterial hypertension is now seen as a vasculopathy in which structural changes driven by excessive vascular cell growth and inflammation, with recruitment and infiltration of circulating cells, play a major role. Perturbations of a number of molecular mechanisms have been described, including pathways involving growth factors, cytokines, metabolic signaling, elastases, and proteases, that may underlie the pathogenesis of the disease. Elucidating their contribution to the pathophysiology of pulmonary arterial hypertension could offer new drug targets. The role of progenitor cells in vascular repair is also under active investigation. The right ventricular response to increased pressure load is recognized as critical to survival and the molecular mechanisms involved are attracting increasing interest. The challenge now is to integrate this new knowledge and explore how it can be used to categorize patients by molecular phenotype and tailor treatment more effectively.
Collapse
Affiliation(s)
- Ralph T. Schermuly
- Max-Planck-Institute for Heart and Lung Research, Parkstrasse 1, Bad Nauheim, 61231 Germany
| | - Hossein A. Ghofrani
- University Hospital Giessen and Marburg, University of Giessen Lung Center, Klinikstrasse 36, Giessen, 35392 Germany
| | - Martin R. Wilkins
- Division of Experimental Medicine, Centre for Pharmacology and Therapeutics, Imperial College London, Hammersmith Hospital, Du Cane Road, London, W12 0NN UK
| | - Friedrich Grimminger
- University Hospital Giessen and Marburg, University of Giessen Lung Center, Klinikstrasse 36, Giessen, 35392 Germany
| |
Collapse
|
154
|
PPARγ in coronary atherosclerosis: in vivo expression pattern and correlations with hyperlipidemic status and statin treatment. Atherosclerosis 2011; 218:479-85. [PMID: 21726861 DOI: 10.1016/j.atherosclerosis.2011.06.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2011] [Revised: 05/19/2011] [Accepted: 06/06/2011] [Indexed: 11/24/2022]
Abstract
OBJECTIVE Peroxisome proliferator-activated receptor-γ (PPARγ) is involved in regulation of macrophage inflammation and in atherosclerosis. Herein we investigate the influence of statin treatment on PPARγ expression in coronary artery disease. METHOD PPARγ expression was investigated in coronary atherosclerotic atherectomies (N=48) and arteries (N=12) from patients with stable or unstable coronary syndromes or undergoing cardiac transplantation for end-stage ischemic cardiomyopathy, respectively, by immunohistochemistry. Plaque components and tissue factor immunoreactivity were also investigated. Atherectomies were obtained from de novo culprit lesions of hypercholesterolemic (16 statin-treated and 16 untreated) and normolipidemic (N=16) patients. Furthermore, PPARγ expression was evaluated in patients peripheral blood monocytes and in monocytic U937 cells after atorvastatin incubation, by Western blot analysis. RESULT PPARγ expression was higher in coronary plaques and peripheral blood monocytes of statin-treated patients, and it significantly increased in monocytes after 24h atorvastatin incubation (p<0.05). Intra-plaque macrophage content, atheroma, neoangiogenesis and hemorrhage, and circulating CRP levels were lower in statin-treated than untreated hypercholesterolemic patients and comparable with normolipidemic subjects. PPARγ immunoreactivity was localized to neointima and media, its distribution pattern being different from that of tissue factor. CONCLUSION PPARγ expression was enhanced in statin-treated patients with different distribution and behavior as compared to atheroma, macrophage content, tissue factor immunoreactivity and serum CRP. In vitro studies showed increased PPARγ expression in monocytes after atorvastatin incubation. These findings provide further evidence as to the protective role of statins in coronary artery disease and their influence on PPARγ expression in coronary plaques and on the inflammatory status of patients.
Collapse
|
155
|
Serghides L. The Case for the Use of PPARγ Agonists as an Adjunctive Therapy for Cerebral Malaria. PPAR Res 2011; 2012:513865. [PMID: 21772838 PMCID: PMC3135089 DOI: 10.1155/2012/513865] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2011] [Accepted: 02/28/2011] [Indexed: 12/24/2022] Open
Abstract
Cerebral malaria is a severe complication of Plasmodium falciparum infection associated with high mortality even when highly effective antiparasitic therapy is used. Adjunctive therapies that modify the pathophysiological processes caused by malaria are a possible way to improve outcome. This review focuses on the utility of PPARγ agonists as an adjunctive therapy for the treatment of cerebral malaria. The current knowledge of PPARγ agonist use in malaria is summarized. Findings from experimental CNS injury and disease models that demonstrate the potential for PPARγ agonists as an adjunctive therapy for cerebral malaria are also discussed.
Collapse
Affiliation(s)
- Lena Serghides
- Sandra A. Rotman Laboratories, McLaughlin-Rotman Centre for Global Health, Toronto General Hospital, University Health Network, 101 College Street, Suite 10-359, Toronto, ON, Canada M5G 1L7
| |
Collapse
|
156
|
Fox ER, Young JH, Li Y, Dreisbach AW, Keating BJ, Musani SK, Liu K, Morrison AC, Ganesh S, Kutlar A, Ramachandran VS, Polak JF, Fabsitz RR, Dries DL, Farlow DN, Redline S, Adeyemo A, Hirschorn JN, Sun YV, Wyatt SB, Penman AD, Palmas W, Rotter JI, Townsend RR, Doumatey AP, Tayo BO, Mosley TH, Lyon HN, Kang SJ, Rotimi CN, Cooper RS, Franceschini N, Curb JD, Martin LW, Eaton CB, Kardia SLR, Taylor HA, Caulfield MJ, Ehret GB, Johnson T, Chakravarti A, Zhu X, Levy D. Association of genetic variation with systolic and diastolic blood pressure among African Americans: the Candidate Gene Association Resource study. Hum Mol Genet 2011; 20:2273-84. [PMID: 21378095 PMCID: PMC3090190 DOI: 10.1093/hmg/ddr092] [Citation(s) in RCA: 146] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2010] [Accepted: 02/28/2011] [Indexed: 01/11/2023] Open
Abstract
The prevalence of hypertension in African Americans (AAs) is higher than in other US groups; yet, few have performed genome-wide association studies (GWASs) in AA. Among people of European descent, GWASs have identified genetic variants at 13 loci that are associated with blood pressure. It is unknown if these variants confer susceptibility in people of African ancestry. Here, we examined genome-wide and candidate gene associations with systolic blood pressure (SBP) and diastolic blood pressure (DBP) using the Candidate Gene Association Resource (CARe) consortium consisting of 8591 AAs. Genotypes included genome-wide single-nucleotide polymorphism (SNP) data utilizing the Affymetrix 6.0 array with imputation to 2.5 million HapMap SNPs and candidate gene SNP data utilizing a 50K cardiovascular gene-centric array (ITMAT-Broad-CARe [IBC] array). For Affymetrix data, the strongest signal for DBP was rs10474346 (P= 3.6 × 10(-8)) located near GPR98 and ARRDC3. For SBP, the strongest signal was rs2258119 in C21orf91 (P= 4.7 × 10(-8)). The top IBC association for SBP was rs2012318 (P= 6.4 × 10(-6)) near SLC25A42 and for DBP was rs2523586 (P= 1.3 × 10(-6)) near HLA-B. None of the top variants replicated in additional AA (n = 11 882) or European-American (n = 69 899) cohorts. We replicated previously reported European-American blood pressure SNPs in our AA samples (SH2B3, P= 0.009; TBX3-TBX5, P= 0.03; and CSK-ULK3, P= 0.0004). These genetic loci represent the best evidence of genetic influences on SBP and DBP in AAs to date. More broadly, this work supports that notion that blood pressure among AAs is a trait with genetic underpinnings but also with significant complexity.
Collapse
Affiliation(s)
- Ervin R Fox
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
157
|
Wu Y, Tang K, Huang RQ, Zhuang Z, Cheng HL, Yin HX, Shi JX. Therapeutic potential of peroxisome proliferator-activated receptor gamma agonist rosiglitazone in cerebral vasospasm after a rat experimental subarachnoid hemorrhage model. J Neurol Sci 2011; 305:85-91. [DOI: 10.1016/j.jns.2011.03.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2010] [Revised: 02/18/2011] [Accepted: 03/01/2011] [Indexed: 10/18/2022]
|
158
|
Werner C, Gensch C, Pöss J, Haendeler J, Böhm M, Laufs U. Pioglitazone activates aortic telomerase and prevents stress-induced endothelial apoptosis. Atherosclerosis 2011; 216:23-34. [DOI: 10.1016/j.atherosclerosis.2011.02.011] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2010] [Revised: 02/09/2011] [Accepted: 02/09/2011] [Indexed: 11/26/2022]
|
159
|
Affiliation(s)
- Patrizia Luppi
- Division of Immunogenetics, Department of Pediatrics, Children's Hospital of Pittsburgh of UPMC, Rangos Research Center, 530 45th Street, Pittsburgh, PA 15201, USA
| | | | | |
Collapse
|
160
|
Vagnerová K, Loukotová J, Ergang P, Musílková J, Mikšík I, Pácha J. Peroxisome proliferator-activated receptor-γ stimulates 11β-hydroxysteroid dehydrogenase type 1 in rat vascular smooth muscle cells. Steroids 2011; 76:577-81. [PMID: 21352843 DOI: 10.1016/j.steroids.2011.02.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2010] [Revised: 02/04/2011] [Accepted: 02/16/2011] [Indexed: 11/30/2022]
Abstract
Glucocorticoids are metabolized in vascular tissue by two types of 11β-hydroxysteroid dehydrogenases (11HSD1, 11HSD2) and thus these enzymes are considered to be important factors that modulate the diverse and complex effects of glucocorticoids on cardiovascular function. The present study evaluated the effect of peroxisome proliferator-activated receptor-γ (PPARγ) agonist pioglitazone on 11HSD1 vascular smooth muscle cells (VSMC) and compared the effect with that of corticosterone. Using primary cultures of VSMC derived from rat aorta, we showed that pioglitazone significantly increases 11HSD1 activity and mRNA expression in a dose-dependent manner with EC(50) 243 nM and that this effect is not blocked by RU 486, an antagonist of the glucocorticoid receptor. In contrast, corticosterone had no effect on 11HSD1. Pioglitazone positively regulated transcription of two CCAAT/enhancer-binding proteins (C/EBPs), specifically C/EBPα a potent activator of 11HSD1 gene transcription in some cells types, and C/EBPζ, whereas C/EBPβ and C/EBPδ were not changed. In contrast, corticosterone stimulated the expression of C/EBPβ and C/EBPδ, but the levels of C/EBPα and C/EBPζ were not changed. In conclusion, activation of PPARγ in VSMC up-regulates vascular 11HSD1 and thus reactivates 11-oxo metabolites to biologically active glucocorticoids through a mechanism that seems to involve C/EBPα and C/EBPζ. Our data provide one of the possible explanations for PPARγ agonists' effects on the cardiovascular system.
Collapse
Affiliation(s)
- Karla Vagnerová
- Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | | | | | | | | | | |
Collapse
|
161
|
Abstract
The peroxisome proliferator-activated receptors (PPARs) and the retinoid X receptors (RXRs) are ligand-activated transcription factors that coordinately regulate gene expression. This PPAR-RXR transcriptional complex plays a critical role in energy balance, including triglyceride metabolism, fatty acid handling and storage, and glucose homeostasis: processes whose dysregulation characterize obesity, diabetes, and atherosclerosis. PPARs and RXRs are also involved directly in inflammatory and vascular responses in endothelial and vascular smooth muscle cells. New insights into fundamental aspects of PPAR and RXR biology, and their actions in the vasculature, continue to appear. Although RXRs are obligate heterodimeric partners for PPAR action, the part that RXRs, and their endogenous retinoid mediators, exert in the vessel wall is less well understood. Biological insights into PPAR-RXRs may help inform interpretation of clinical trials with synthetic PPAR agonists and prospects for future PPAR therapeutics. Importantly, the extensive data establishing a key role for PPARs and RXRs in energy balance, inflammation, and vascular biology stands separately from the clinical experience with any given synthetic PPAR agonist. Both the basic science data and the clinical experience with PPAR agonists identify the need to better understand these important transcriptional regulators.
Collapse
Affiliation(s)
- Jorge Plutzky
- From Cardiovascular Medicine, Brigham and Women's Hospital, Boston, MA
| |
Collapse
|
162
|
d'Emmanuele di Villa Bianca R, Sorrentino R, Coletta C, Mitidieri E, Rossi A, Vellecco V, Pinto A, Cirino G, Sorrentino R. Hydrogen sulfide-induced dual vascular effect involves arachidonic acid cascade in rat mesenteric arterial bed. J Pharmacol Exp Ther 2011; 337:59-64. [PMID: 21228064 DOI: 10.1124/jpet.110.176016] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Hydrogen sulfide (H(2)S), a novel gaseous transmitter, is considered a physiological regulator of vascular homeostasis. Recent evidence suggests H(2)S as an endothelium-hyperpolarizing factor (EDHF) candidate. To address this issue, we evaluated the vascular effect of sodium hydrogen sulfide (NaHS), an H(2)S donor, on the rat mesenteric arterial bed. NaHS concentration-response curve was performed on preconstricted mesenteric arterial bed. To assess the contribution of EDHF, we performed a pharmacologic dissection using indomethacin, N(G)-nitro-l-arginine methyl ester (l-NAME), or apamin and charybdotoxin as cyclooxygenase, nitric-oxide synthase, and calcium-dependent potassium channel inhibitors, respectively. In another set of experiments, we used 4-(4-octadecylphenyl)-4-oxobutenoic acid, baicalein, or proadifen as phospholipase A(2) (PLA(2)), lipoxygenase, and cytochrome P450 inhibitors, respectively. Finally, an immunofluorescence study was performed to support the involvement of PLA(2) in mesenteric artery challenged by NaHS. NaHS promoted a dual vascular effect (i.e., vasoconstriction and vasodilation). l-NAME or baicalein administration affected neither NaHS-mediated vasodilation nor vasoconstriction, whereas apamin and charybdotoxin significantly inhibited NaHS-induced relaxation. Pretreatment with PLA(2) inhibitor abolished both the contracting and the relaxant effect, whereas P450 cytochrome blocker significantly reduced NaHS-mediated relaxation. The immunofluorescence study showed that NaHS caused a migration of cytosolic PLA(2) close to the nucleus, which implicates activation of this enzyme. Our data indicate that H(2)S could activate PLA(2), which in turn releases arachidonic acid leading, initially, to vasoconstriction followed by vasodilation mediated by cytochrome P450-derived metabolites. Because EDHF has been presumed to be a cytochrome P450 derivative of the arachidonic acid, our results suggest that H(2)S acts through EHDF release.
Collapse
|
163
|
Chen Y, Li D, Tsang JYS, Niu N, Peng J, Zhu J, Hui K, Xu A, Lui VCH, Lamb JR, Tam PKH. PPAR-γ signaling and IL-5 inhibition together prevent chronic rejection of MHC Class II-mismatched cardiac grafts. J Heart Lung Transplant 2011; 30:698-706. [PMID: 21435906 DOI: 10.1016/j.healun.2011.01.704] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Revised: 12/13/2010] [Accepted: 01/10/2011] [Indexed: 10/18/2022] Open
Abstract
BACKGROUND Chronic rejection can prevent long-term survival of organ transplants. Although the beneficial effects of peroxisome proliferator-activated receptor-gamma (PPAR-γ) in reducing graft rejection have been reported, the details of the underlying mechanisms remain unclear, especially in the context of modulating cellular infiltration and preventing vasculopathy and interstitial fibrosis. METHODS The therapeutic effects of the PPAR-γ agonist, rosiglitazone, combined with anti-interleukin-5 are explored in a mouse model of MHC Class II-histoincompatible cardiac transplantation. RESULTS Rosiglitazone treatment alone marginally increased long-term survival and reduced CD8 T-cell infiltration and vasculopathy in the grafts. However, there was no reduction in collagen deposition and interleukin (IL)-4, IL-5 and eosinophil infiltration were increased. Anti-IL-5 antibody treatment alone reduced eosinophil infiltration and collagen deposition, but had no effect on CD8 T-cell infiltration or vasculopathy. Combined treatment with anti-IL-5 antibody and rosiglitazone prevented graft rejection. Furthermore, rosiglitazone treatment increased adiponectin receptor II expression in grafts and on dendritic cells and T cells in vitro. Graft survival correlated with increased expression in grafts of the inhibitory molecule PD-L1. CONCLUSIONS The findings obtained increase the knowledge on the mode of action of rosiglitazone in promoting the survival of MHC Class II-mismatched cardiac transplants in which the CD8 T cells and eosinophils play key roles. PPAR-γ signaling combined with IL-5 blockade prevents graft rejection.
Collapse
Affiliation(s)
- Yan Chen
- Division of Pediatric Surgery, Department of Surgery, LKS Faculty of Medicine, University of Hong Kong, Hong Kong, SAR.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
164
|
Rodríguez A, Reviriego J, Karamanos V, del Cañizo FJ, Vlachogiannis N, Drossinos V. Management of cardiovascular risk factors with pioglitazone combination therapies in type 2 diabetes: an observational cohort study. Cardiovasc Diabetol 2011; 10:18. [PMID: 21314919 PMCID: PMC3042924 DOI: 10.1186/1475-2840-10-18] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2011] [Accepted: 02/11/2011] [Indexed: 11/15/2022] Open
Abstract
Background Type 2 diabetes (T2D) is strongly associated with cardiovascular risk and requires medications that improve glycemic control and other cardiovascular risk factors. The authors aimed to assess the relative effectiveness of pioglitazone (Pio), metformin (Met) and any sulfonylurea (SU) combinations in non-insulin-treated T2D patients who were failing previous hypoglycemic therapy. Methods Over a 1-year period, two multicenter, open-labeled, controlled, 1-year, prospective, observational studies evaluated patients with T2D (n = 4585) from routine clinical practice in Spain and Greece with the same protocol. Patients were eligible if they had been prescribed Pio + SU, Pio + Met or SU + Met serving as a control cohort, once they had failed with previous therapy. Anthropometric measurements, lipid and glycemic profiles, blood pressure, and the proportions of patients at microvascular and macrovascular risk were assessed. Results All study treatment combinations rendered progressive 6-month and 12-month lipid, glycemic, and blood pressure improvements. Pio combinations, especially Pio + Met, were associated with increases in HDL-cholesterol and decreases in triglycerides and in the atherogenic index of plasma. The proportion of patients at high risk decreased after 12 months in all study cohorts. Minor weight changes (gain or loss) and no treatment-related fractures occurred during the study. The safety profile was good and proved similar among treatments, except for more hypoglycemic episodes in patients receiving SU and for the occurrence of edema in patients using Pio combinations. Serious cardiovascular events were rarely reported. Conclusions In patients with T2D failing prior hypoglycemic therapies, Pio combinations with SU or Met (especially Pio + Met) improved blood lipid and glycemic profiles, decreasing the proportion of patients with a high microvascular or macrovascular risk. The combination of Pio with SU or Met may therefore be recommended for T2D second-line therapy in the routine clinical practice, particularly in patients with dyslipidemia.
Collapse
|
165
|
Maehira F, Motomura K, Ishimine N, Miyagi I, Eguchi Y, Teruya S. Soluble silica and coral sand suppress high blood pressure and improve the related aortic gene expressions in spontaneously hypertensive rats. Nutr Res 2011; 31:147-56. [DOI: 10.1016/j.nutres.2010.12.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2010] [Revised: 12/02/2010] [Accepted: 12/07/2010] [Indexed: 12/13/2022]
|
166
|
Wu Y, Zhang W, Liu W, Zhuo X, Zhao Z, Yuan Z. The double-faced metabolic and inflammatory effects of standard drug therapy in patients after percutaneous treatment with drug-eluting stent. Atherosclerosis 2010; 215:170-5. [PMID: 21227422 DOI: 10.1016/j.atherosclerosis.2010.12.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2010] [Revised: 12/06/2010] [Accepted: 12/07/2010] [Indexed: 12/01/2022]
Abstract
OBJECTIVE The inflammatory responses after percutaneous coronary intervention (PCI) with drug-eluting stent (DES) remain poorly understood; therefore, this study aims to investigate the changes of metabolic parameters and systematic inflammatory status of circulating mononuclear cells (MNC) in patients after percutaneous treatment with DES implantation. METHODS AND RESULTS Twenty-seven patients with acute coronary syndrome who would undergo PCI with DES implantation were consecutively recruited and treated with standard drug therapy from the start of hospitalization. Metabolic parameters including total cholesterol, triglycerides, high-density lipoprotein, low-density lipoprotein improved significantly after 12 weeks of standard medication, whereas the plasma levels of interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), macrophage migration inhibitory factor (MIF), and matrix metalloproteinase-9 (MMP-9) increased (P=0.012, 0.035, 0.062 and 0.112, respectively, compared to the baseline). The NF-κB DNA binding activity in MNC increased significantly compared to the baseline (P=0.015), whereas IκB-β and PPAR-γ were significantly suppressed (P=0.046 and 0.002, respectively). There were strong correlations among the changes of metabolic parameters and the changes of proinflammatory factors; however, none of them is statistically significant. CONCLUSIONS Standard drug therapy can improve the metabolic parameters but fail to restrain the proinflammatory state after PCI with DES implantation. Longer term endpoint-based studies are still needed for further exploration of the relationship between inflammatory factors and clinical cardiovascular events in the era of DES.
Collapse
Affiliation(s)
- Yue Wu
- Department of Cardiovascular Medicine, First Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | | | | | | | | | | |
Collapse
|
167
|
Yuen CY, Wong WT, Tian XY, Wong SL, Lau CW, Yu J, Tomlinson B, Yao X, Huang Y. Telmisartan inhibits vasoconstriction via PPARγ-dependent expression and activation of endothelial nitric oxide synthase. Cardiovasc Res 2010; 90:122-9. [PMID: 21156825 DOI: 10.1093/cvr/cvq392] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
AIMS Telmisartan activates peroxisome proliferator-activated receptor-γ (PPARγ) in addition to serving as an angiotensin II type 1 receptor (AT(1)R) blocker. The PPARγ activity of telmisartan on resistance arteries has remained largely unknown. The present study investigated the hypothesis that telmisartan inhibited vascular tension in mouse mesenteric resistance arteries, which was attributed to an increased nitric oxide (NO) production through the PPARγ-dependent augmentation of expression and activity of endothelial nitric oxide synthase (eNOS). METHODS AND RESULTS Second-order mesenteric arteries were isolated from male C57BL/6J, eNOS knockout and PPARγ knockout mice and changes in vascular tension were determined by isometric force measurement with a myograph. Expression and activation of relevant proteins were analysed by Western blotting. Real-time NO production was measured by confocal microscopy using the dye DAF. Telmisartan inhibited 9,11-dideoxy-11α,9α-epoxymethanoprostaglandin F(2α) (U46619)- or endothelin-1-induced contractions. An NOS inhibitor, N(G)-nitro-L-arginine methyl ester (l-NAME), or an inhibitor of soluble guanylate cyclase, 1H-[1,2,4]-oxadizolo[4,3-a]quinoxalin-1-one (ODQ), prevented telmisartan-induced inhibition of U46619 contractions. A PPARγ antagonist, GW9662, abolished telmisartan-induced inhibition. Likewise, the PPARγ antagonist rosiglitazone attenuated U46619-induced contractions. The effects of telmisartan and rosiglitazone were prevented by actinomycin-D, a transcription inhibitor. In contrast, losartan, olmesartan, and irbesartan did not inhibit contractions. The inhibition was absent in mesenteric arteries from eNOS knockout or PPARγ knockout mice. Telmisartan augmented eNOS expression, phosphorylation, and NO production, which were reversed by the co-treatment with GW9662. CONCLUSIONS The present results suggest that telmisartan-induced inhibition of vasoconstriction in resistance arteries is mediated through a PPARγ-dependent increase in eNOS expression and activity that is unrelated to AT₁R blockade.
Collapse
Affiliation(s)
- Chi Yung Yuen
- Institute of Vascular Medicine, Li Ka Shing Institute of Health Sciences, School of Biomedical Sciences, Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
| | | | | | | | | | | | | | | | | |
Collapse
|
168
|
Zervou S, Wang YF, Laiho A, Gyenesei A, Kytömäki L, Hermann R, Abouna S, Epstein D, Pelengaris S, Khan M. Short-term hyperglycaemia causes non-reversible changes in arterial gene expression in a fully 'switchable' in vivo mouse model of diabetes. Diabetologia 2010; 53:2676-87. [PMID: 20844862 DOI: 10.1007/s00125-010-1887-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2010] [Accepted: 08/02/2010] [Indexed: 12/13/2022]
Abstract
AIMS/HYPOTHESIS Irreversible arterial damage due to early effects of hypo- or hyperglycaemia could account for the limited success of glucose-lowering treatments in preventing cardiovascular disease (CVD) events. We hypothesised that even brief hypo- or hyperglycaemia could adversely affect arterial gene expression and that these changes, moreover, might not be fully reversible. METHODS By controlled activation of a 'switchable' c-Myc transgene in beta cells, adult pIns-c-MycER(TAM) mice were rendered transiently hypo- and then hyperglycaemic, after which they were allowed to recover for up to 3 months. Immediate and sequential changes in aortic global gene expression from normal glycaemia through hypo- and hyperglycaemia to recovery were assessed. RESULTS Gene expression was compared with that of normoglycaemic transgenic and tamoxifen-treated wild-type controls. Overall, expression of 95 genes was significantly affected by moderate hypoglycaemia (glucose down to 2.5 mmol/l), whereas over 769 genes were affected by hyperglycaemia. Genes and pathways activated included several involved in atherogenic processes, such as inflammation and arterial calcification. Although expression of many genes recovered to initial pre-exposure levels when hyperglycaemia was corrected (74.9%), in one in four genes this did not occur. Quantitative reverse transcriptase PCR and immunohistochemistry verified the gene expression patterns of key molecules, as shown by global gene arrays. CONCLUSIONS/INTERPRETATION Short-term exposure to hyperglycaemia can cause deleterious and persistent changes in arterial gene expression in vivo. Brief hypoglycaemia also adversely affects gene expression, although less substantially. Together, these results suggest that early correction of hyperglycaemia and avoidance of hypoglycaemia may both be necessary to avoid excess CVD risk in diabetes.
Collapse
MESH Headings
- Animals
- Arteries/metabolism
- Arteries/pathology
- Diabetes Mellitus, Experimental/complications
- Diabetes Mellitus, Experimental/genetics
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Experimental/pathology
- Disease Models, Animal
- Female
- Gene Expression/drug effects
- Genes, myc/genetics
- Genes, myc/physiology
- Glucose/pharmacology
- Hyperglycemia/etiology
- Hyperglycemia/genetics
- Hyperglycemia/metabolism
- Hyperglycemia/pathology
- Insulin/genetics
- Mice
- Mice, Inbred C57BL
- Mice, Inbred CBA
- Mice, Transgenic
- Recovery of Function/genetics
- Time Factors
Collapse
Affiliation(s)
- S Zervou
- Department of Cardiovascular Medicine, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
169
|
Peroxisome-proliferator-activated receptor gamma (PPARγ) is required for modulating endothelial inflammatory response through a nongenomic mechanism. Eur J Cell Biol 2010; 89:645-53. [DOI: 10.1016/j.ejcb.2010.04.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2010] [Revised: 03/24/2010] [Accepted: 04/07/2010] [Indexed: 02/03/2023] Open
|
170
|
Wang X, Liu X, Zhan Y, Lavallie ER, Diblasio-Smith L, Collins-Racie L, Mounts WM, Rutkowski JL, Xu X, Goltsman I, Abassi Z, Winaver J, Feuerstein GZ. Pharmacogenomic, physiological, and biochemical investigations on safety and efficacy biomarkers associated with the peroxisome proliferator-activated receptor-gamma activator rosiglitazone in rodents: a translational medicine investigation. J Pharmacol Exp Ther 2010; 334:820-9. [PMID: 20519551 DOI: 10.1124/jpet.110.167635] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2025] Open
Abstract
Peroxisome proliferator-activated receptor (PPAR)-gamma modulators, a class of antidiabetic drugs, have been associated with cardiovascular risks in type 2 diabetes in humans. The objective of this study was to explore possible cardiovascular risk biomarkers associated with PPAR-gamma in rodents that could provide an alert for risk to humans. Normal, myocardial infarction-induced heart failure (HF) or Zucker diabetic fatty (ZDF) rats were used. Rats (n = 5-6) were treated with either vehicle or rosiglitazone (RGZ; 3 or 45 mg/kg/day p.o.) for 4 weeks. Biomarkers for potential cardiovascular risks were assessed, including 1) ultrasound for cardiac structure and function; 2) neuroendocrine and hormonal plasma biomarkers of cardiovascular risk; 3) pharmacogenomic profiling of cardiac and renal tissue by targeted tissue low-density gene array representing ion channels and transporters, and components of the renin-angiotensin-aldosterone system; and 4) immunohistochemistry for cardiac fibrosis, hypertrophy, and inflammation (macrophages and tumor necrosis factor-alpha). HF was confirmed by increase in cardiac brain natriuretic peptide expression (p < 0.01) and echocardiography. Adequate exposure of RGZ was confirmed by pharmacokinetics (plasma drug levels) and the pharmacodynamic biomarker adiponectin. In normal or HF rats, RGZ had no negative effects on any of the biomarkers investigated. Similarly, RGZ had no significant effects on gene expression except for the increase in interleukin-6 mRNA expression in the heart and decrease in epithelial sodium channel beta in the kidney. In contrast, echocardiography showed improved cardiac structure and function after RGZ in ZDF rats. Taken together, this study suggests a limited predictive power of these preclinical models in respect to observed clinical adverse effects associated with RGZ.
Collapse
Affiliation(s)
- Xinkang Wang
- Discovery Translational Medicine, Pfizer, Collegeville, Pennsylvania, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
171
|
Benameur T, Tual-Chalot S, Andriantsitohaina R, Martínez MC. PPARalpha is essential for microparticle-induced differentiation of mouse bone marrow-derived endothelial progenitor cells and angiogenesis. PLoS One 2010; 5:e12392. [PMID: 20811625 PMCID: PMC2928272 DOI: 10.1371/journal.pone.0012392] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2009] [Accepted: 07/28/2010] [Indexed: 12/16/2022] Open
Abstract
Background Bone marrow-derived endothelial progenitor cells (EPCs) are critical for neovascularization. We hypothesized that microparticles (MPs), small fragments generated from the plasma membrane, can activate angiogenic programming of EPCs. Methodology/Principal Findings We studied the effects of MPs obtained from wild type (MPsPPARα+/+) and knock-out (MPsPPARα−/−) mice on EPC differentiation and angiogenesis. Bone marrow-derived cells were isolated from WT or KO mice and were cultured in the presence of MPsPPARα+/+ or MPsPPARα−/− obtained from blood of mice. Only MPsPPARα+/+ harboring PPARα significantly increased EPC, but not monocytic, differentiation. Bone marrow-derived cells treated with MPsPPARα+/+ displayed increased expression of pro-angiogenic genes and increased in vivo angiogenesis. MPsPPARα+/+ increased capillary-like tube formation of endothelial cells that was associated with enhanced expressions of endothelial cell-specific markers. Finally, the effects of MPsPPARα+/+ were mediated by NF-κB-dependent mechanisms. Conclusions/Significance Our results underscore the obligatory role of PPARα carried by MPs for EPC differentiation and angiogenesis. PPARα-NF-κB-Akt pathways may play a pivotal stimulatory role for neovascularization, which may, at least in part, be mediated by bone marrow-derived EPCs. Improvement of EPC differentiation may represent a useful strategy during reparative neovascularization.
Collapse
Affiliation(s)
- Tarek Benameur
- CNRS, UMR 6214, Angers, France
- INSERM, U771, Angers, France
- Faculté de Médecine, Université d'Angers, Angers, France
| | - Simon Tual-Chalot
- CNRS, UMR 6214, Angers, France
- INSERM, U771, Angers, France
- Faculté de Médecine, Université d'Angers, Angers, France
| | - Ramaroson Andriantsitohaina
- CNRS, UMR 6214, Angers, France
- INSERM, U771, Angers, France
- Faculté de Médecine, Université d'Angers, Angers, France
| | - María Carmen Martínez
- CNRS, UMR 6214, Angers, France
- INSERM, U771, Angers, France
- Faculté de Médecine, Université d'Angers, Angers, France
- * E-mail:
| |
Collapse
|
172
|
Abstract
The control of force production in vascular smooth muscle is critical to the normal regulation of blood flow and pressure, and altered regulation is common to diseases such as hypertension, heart failure, and ischemia. A great deal has been learned about imbalances in vasoconstrictor and vasodilator signals, e.g., angiotensin, endothelin, norepinephrine, and nitric oxide, that regulate vascular tone in normal and disease contexts. In contrast there has been limited study of how the phenotypic state of the vascular smooth muscle cell may influence the contractile response to these signaling pathways dependent upon the developmental, tissue-specific (vascular bed) or disease context. Smooth, skeletal, and cardiac muscle lineages are traditionally classified into fast or slow sublineages based on rates of contraction and relaxation, recognizing that this simple dichotomy vastly underrepresents muscle phenotypic diversity. A great deal has been learned about developmental specification of the striated muscle sublineages and their phenotypic interconversions in the mature animal under the control of mechanical load, neural input, and hormones. In contrast there has been relatively limited study of smooth muscle contractile phenotypic diversity. This is surprising given the number of diseases in which smooth muscle contractile dysfunction plays a key role. This review focuses on smooth muscle contractile phenotypic diversity in the vascular system, how it is generated, and how it may determine vascular function in developmental and disease contexts.
Collapse
Affiliation(s)
- Steven A Fisher
- Department of Medicine, and Cardiovascular Research Institute, Case Western Reserve University, Cleveland, Ohio 44106-7290, USA.
| |
Collapse
|
173
|
Chen Z, Hasegawa T, Tanaka A, Okita Y, Okada K. Pioglitazone preserves vein graft integrity in a rat aortic interposition model. J Thorac Cardiovasc Surg 2010; 140:408-416.e1. [DOI: 10.1016/j.jtcvs.2009.11.067] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2009] [Revised: 11/10/2009] [Accepted: 11/27/2009] [Indexed: 02/07/2023]
|
174
|
Lu X, Murphy TC, Nanes MS, Hart CM. PPAR{gamma} regulates hypoxia-induced Nox4 expression in human pulmonary artery smooth muscle cells through NF-{kappa}B. Am J Physiol Lung Cell Mol Physiol 2010; 299:L559-66. [PMID: 20622120 DOI: 10.1152/ajplung.00090.2010] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
NADPH oxidases are a major source of superoxide production in the vasculature. The constitutively active Nox4 subunit, which is selectively upregulated in the lungs of human subjects and experimental animals with pulmonary hypertension, is highly expressed in vascular wall cells. We demonstrated that rosiglitazone, a synthetic agonist of the peroxisome proliferator-activated receptor-γ (PPARγ), attenuated hypoxia-induced pulmonary hypertension, vascular remodeling, Nox4 induction, and reactive oxygen species generation in the mouse lung. The current study examined the molecular mechanisms involved in PPARγ-regulated, hypoxia-induced Nox4 expression in human pulmonary artery smooth muscle cells (HPASMC). Exposing HPASMC to 1% oxygen for 72 h increased Nox4 gene expression and H(2)O(2) production, both of which were reduced by treatment with rosiglitazone during the last 24 h of hypoxia exposure or by treatment with small interfering RNA (siRNA) to Nox4. Hypoxia also increased HPASMC proliferation as well as the activity of a Nox4 promoter luciferase reporter, and these increases were attenuated by rosiglitazone. Chromatin immunoprecipitation assays demonstrated that hypoxia increased binding of the NF-κB subunit, p65, to the Nox4 promoter and that binding was attenuated by rosiglitazone treatment. The role of NF-κB in Nox4 regulation was further supported by demonstrating that overexpression of p65 stimulated Nox4 promoter activity, whereas siRNA to p50 or p65 attenuated hypoxic stimulation of Nox4 promoter activity. These results provide novel evidence for NF-κB-mediated stimulation of Nox4 expression in HPASMC that can be negatively regulated by PPARγ. These data provide new insights into potential mechanisms by which PPARγ activation inhibits Nox4 upregulation and the proliferation of cells in the pulmonary vascular wall to ameliorate pulmonary hypertension and vascular remodeling in response to hypoxia.
Collapse
Affiliation(s)
- Xianghuai Lu
- Department of Medicine, Atlanta Veterans Affairs, Emory University Medical Centers, Georgia, USA
| | | | | | | |
Collapse
|
175
|
Hansmann G, Zamanian RT. PPARgamma activation: a potential treatment for pulmonary hypertension. Sci Transl Med 2010; 1:12ps14. [PMID: 20371457 DOI: 10.1126/scitranslmed.3000267] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The pathobiology of pulmonary arterial hypertension (PAH) involves multiple molecular pathways and environmental modifiers and is characterized by progressive obliteration of pulmonary arterioles, leading to increased pulmonary vascular resistance (PVR), right heart failure, and death in approximately 40 to 60% of patients 5 years after diagnosis. There is emerging evidence that many key genes involved in PAH development are targets of the insulin-sensitizing transcription factor peroxisome proliferator-activated receptor gamma (PPARgamma), and that pharmacological PPARgamma activation would lead to their beneficial induction or repression and subsequent antiproliferative, anti-inflammatory, proapoptotic, and direct vasodilatory effects in the vasculature. PPARgamma acts downstream of bone morphogenetic protein receptor II (BMP-RII), which is the cell surface receptor that is mutated or dysfunctional in many forms of PAH. Because our recent clinical observations indicate that insulin resistance may be an environmental risk factor or disease modifier ("second hit"), we suggest that PPARgamma-activating agents might be beneficial in the future treatment of both insulin-resistant and insulin-sensitive PAH patients with or without BMP-RII mutations.
Collapse
Affiliation(s)
- Georg Hansmann
- Department of Cardiology, Children's Hospital Boston, Harvard Medical School, Boston, MA, USA.
| | | |
Collapse
|
176
|
Blanquicett C, Kang BY, Ritzenthaler JD, Jones DP, Hart CM. Oxidative stress modulates PPAR gamma in vascular endothelial cells. Free Radic Biol Med 2010; 48:1618-25. [PMID: 20302927 PMCID: PMC2868091 DOI: 10.1016/j.freeradbiomed.2010.03.007] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2009] [Revised: 03/05/2010] [Accepted: 03/09/2010] [Indexed: 12/27/2022]
Abstract
The peroxisome proliferator-activated receptor gamma (PPAR gamma) plays an important role in vascular regulation. However, the impact of oxidative stress on PPAR gamma expression and activity has not been clearly defined. Human umbilical vein endothelial cells (HUVECs) were exposed to graded concentrations of H(2)O(2) for 0.5-72h, or bovine aortic endothelial cells (BAECs) were exposed to alterations in extracellular thiol/disulfide redox potential (E(h)) of the cysteine/cystine couple. Within 2h, H(2)O(2) reduced HUVEC PPAR gamma mRNA and activity and reduced the expression of two PPAR gamma-regulated genes without altering PPAR gamma protein levels. After 4h H(2)O(2) exposure, mRNA levels remained reduced, whereas PPAR gamma activity returned to control levels. PPAR gamma mRNA levels remained depressed for up to 72 h after exposure to H(2)O(2), without any change in PPAR gamma activity. Catalase prevented H(2)O(2)-induced reductions in PPAR gamma mRNA and activity. H(2)O(2) (1) reduced luciferase expression in HUVECs transiently transfected with a human PPAR gamma promoter reporter, (2) failed to alter PPAR gamma mRNA half-life, and (3) transiently increased expression and activity of c-Fos and phospho-c-Jun. Treatment with the AP1 inhibitor curcumin prevented H(2)O(2)-mediated reductions in PPAR gamma expression. In addition, medium having an oxidized E(h) reduced BAEC PPAR gamma mRNA and activity. These findings demonstrate that oxidative stress, potentially through activation of inhibitory redox-regulated transcription factors, attenuates PPAR gamma expression and activity in vascular endothelial cells through suppression of PPAR gamma transcription.
Collapse
Affiliation(s)
| | | | | | | | - C. Michael Hart
- Address correspondence to: C. Michael Hart, M.D., Professor of Medicine, Division of Pulmonary and Critical Care Medicine, Atlanta VAMC (151-P), 1670 Clairmont Rd., Decatur, GA 30033, Phone: 404 – 321 – 6111 ext 7278, Fax: 404 – 728 – 7750,
| |
Collapse
|
177
|
Tian J, Wong WT, Tian XY, Zhang P, Huang Y, Wang N. Rosiglitazone attenuates endothelin-1-induced vasoconstriction by upregulating endothelial expression of endothelin B receptor. Hypertension 2010; 56:129-35. [PMID: 20516393 DOI: 10.1161/hypertensionaha.110.150375] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Thiazolidinediones improve insulin resistance and endothelial dysfunction. However, the mechanisms underlying the vasoprotective effects of thiazolidinediones remain to be fully elucidated. The present study aimed to examine the molecular mechanism for the anti-vasoconstrictive effects of rosiglitazone in response to endothelin (ET) 1. Mouse aortas were treated with rosiglitazone for 24 hours, and ET-1-induced vasoconstriction was assessed by wire myography. The results showed that rosiglitazone attenuated ET-1-induced contraction in mouse aortas; this effect was abolished by ET-B receptor (ET(B)R) antagonist, NO synthase inhibitor, and by the removal of endothelium. By using Northern blotting, real-time RT-PCR, Western blotting, and immunohistochemical techniques, we found that rosiglitazone upregulated expression of ET(B)R at both mRNA and protein levels in mouse aortas and human vascular endothelial cells. The induction of ET(B)R was prevented by peroxisome proliferator-activated receptor-gamma antagonism. Luciferase reporter assay showed that rosiglitazone enhanced ET(B)R gene promoter activity. Furthermore, chromatin immunoprecipitation assays demonstrated that peroxisome proliferator-activated receptor-gamma can directly bind to ET(B)R gene promoter. Furthermore, in vivo treatment with rosiglitazone also attenuated the ET-1-induced vasoconstrictions and increased the ET(B)R expression in mouse aortas and mesenteric arteries. In conclusion, these results demonstrate that rosiglitazone attenuated ET-1-induced vasoconstriction through the upregulation of endothelial ET(B)R, which is a peroxisome proliferator-activated receptor-gamma direct target.
Collapse
Affiliation(s)
- Jianwei Tian
- Institute of Cardiovascular Science and Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University, Beijing, China
| | | | | | | | | | | |
Collapse
|
178
|
Dhaunsi GS, Yousif MHM, Akhtar S, Chappell MC, Diz DI, Benter IF. Angiotensin-(1-7) prevents diabetes-induced attenuation in PPAR-gamma and catalase activities. Eur J Pharmacol 2010; 638:108-14. [PMID: 20447391 DOI: 10.1016/j.ejphar.2010.04.030] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2009] [Revised: 04/20/2010] [Accepted: 04/22/2010] [Indexed: 02/07/2023]
Abstract
The mechanisms by which angiotensin-(1-7) [Ang-(1-7)] exerts its beneficial effects on end-organ damage associated with diabetes and hypertension are not well understood. The purpose of this study was A) to compare the effects of apocynin with Ang-(1-7) on renal vascular dysfunction and NADPH oxidase activity in a combined model of diabetes and hypertension and B) to further determine whether chronic treatment with Ang-(1-7) can modulate renal catalase, and peroxisome proliferator activated receptor- gamma (PPAR-gamma) levels in streptozotocin-induced diabetes in both normotensive Wistar Kyoto rats (WKY) and in spontaneously hypertensive rats (SHR). Apocynin or Ang-(1-7) treatment for one month starting at the onset of diabetes similarly attenuated elevation of renal NADPH oxidase activity in the diabetic SHR kidney and reduced the degree of proteinuria and hyperglycemia, but had little or modest effect on reducing mean arterial pressure. Both drugs also attenuated the diabetes-induced increase in renal vascular responsiveness to endothelin-1. Induction of diabetes in WKY and SHR animals resulted in significantly reduced renal catalase activity and in PPAR-gamma mRNA and protein levels. Treatment with Ang-(1-7) significantly prevented diabetes-induced reduction in catalase activity and the reduction in PPAR-gamma mRNA and protein levels in both animal models. Taken together, these data suggest that activation of Ang-(1-7)-mediated signaling could be an effective way to prevent the elevation of NADPH oxidase activity and inhibition of PPAR-gamma and catalase activities in diabetes and/or hypertension.
Collapse
Affiliation(s)
- Gursev S Dhaunsi
- Department of Pediatrics, Faculty of Medicine, Kuwait University, Kuwait
| | | | | | | | | | | |
Collapse
|
179
|
Biyashev D, Veliceasa D, Kwiatek A, Sutanto MM, Cohen RN, Volpert OV. Natural angiogenesis inhibitor signals through Erk5 activation of peroxisome proliferator-activated receptor gamma (PPARgamma). J Biol Chem 2010; 285:13517-24. [PMID: 20185831 PMCID: PMC2859512 DOI: 10.1074/jbc.m110.117374] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2010] [Indexed: 01/30/2023] Open
Abstract
Erk-5, a member of the MAPK superfamily, has a catalytic domain similar to Erk1/2 and a unique C-terminal domain enabling binding with transcription factors. Aberrant vascularization in the Erk5-null mice suggested a link to angiogenesis. Ectopic expression of constitutively active Erk5 blocks endothelial cell morphogenesis and causes HIF1-alpha destabilization/degradation. However the mechanisms by which endogenous Erk5 regulates angiogenesis remain unknown. We show that Erk5 and its activating kinase MEK5 are the upstream mediators of the anti-angiogenic signal by the natural angiogenesis inhibitor, pigment epithelial-derived factor (PEDF). We demonstrate that Erk5 phosphorylation allows activation of PPARgamma transcription factor by displacement of SMRT co-repressor. PPARgamma, in turn is critical for NFkappaB activation, PEDF-dependent apoptosis, and anti-angiogenesis. The dominant negative MEK5 mutant and Erk5 shRNA diminished PEDF-dependent apoptosis, inhibition of the endothelial cell chemotaxis, and angiogenesis. This is the first evidence of Erk5-dependent transduction of signals by endogenous angiogenesis inhibitors.
Collapse
Affiliation(s)
- Dauren Biyashev
- From the Urology Department and RH Lurie Comprehensive Cancer Center and
| | - Dorina Veliceasa
- From the Urology Department and RH Lurie Comprehensive Cancer Center and
| | - Angela Kwiatek
- the Physiology Department, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611 and
| | | | - Ronald N. Cohen
- the Department of Medicine, Section of Endocrinology, Diabetes, and Metabolism, University of Chicago, Chicago, Illinois 60637
| | - Olga V. Volpert
- From the Urology Department and RH Lurie Comprehensive Cancer Center and
| |
Collapse
|
180
|
Cipolla MJ, Bishop N, Vinke RS, Godfrey JA. PPAR{gamma} activation prevents hypertensive remodeling of cerebral arteries and improves vascular function in female rats. Stroke 2010; 41:1266-70. [PMID: 20395611 DOI: 10.1161/strokeaha.109.576942] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND AND PURPOSE Previous studies have shown that peroxisome proliferator-activated receptor gamma (PPARgamma), a ligand-activated transcription factor expressed in vascular cells, is protective of the vasculature. We hypothesized that activation of PPARgamma could prevent hypertensive remodeling of cerebral arteries and improve vascular function. METHODS Ten female Sprague-Dawley rats were treated with the nitric oxide synthase inhibitor N(G)-nitro-l-arginine methyl ester (l-NAME) for 5 weeks, 8 were treated with l-NAME plus the PPARgamma activator rosiglitazone, and 8 received no treatment and served as controls. Blood pressure, myogenic activity, passive diameters and wall thickness of cerebral arteries, and brain capillary density were compared between the groups. RESULTS Treatment with l-NAME caused an increase in arterial blood pressure that was sustained with rosiglitazone treatment. l-NAME also caused inward hypertrophic remodeling and enhanced myogenic reactivity of cerebral arteries that was reversed by rosiglitazone. In addition, l-NAME hypertension caused rarefaction of brain capillaries by approximately 12%, whereas treatment with rosiglitazone increased capillary density by approximately 20%. CONCLUSIONS PPARgamma activation may be an effective and clinically relevant way to prevent hypertensive remodeling of cerebral arteries and capillary rarefaction as well as improving vascular function without affecting blood pressure.
Collapse
Affiliation(s)
- Marilyn J Cipolla
- Department of Neurology, University of Vermont, 89 Beaumont Avenue, Given C454, Burlington, VT 05405, USA.
| | | | | | | |
Collapse
|
181
|
Yamanouchi T. Concomitant therapy with pioglitazone and insulin for the treatment of type 2 diabetes. Vasc Health Risk Manag 2010; 6:189-97. [PMID: 20407626 PMCID: PMC2856574 DOI: 10.2147/vhrm.s5838] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2010] [Indexed: 01/21/2023] Open
Abstract
To prevent hyperinsulinemia, which may cause atherosclerosis, thiazolidinediones (TZDs), also known as insulin sensitizers, are often added to the therapeutic regimen of patients with type 2 diabetes who are receiving insulin. The combination of insulin with pioglitazone, a TZD, reduces glycoated hemoglobin (HbA(1c)) by 0.6%-2.1%. The higher the HbA(1c) baseline the larger the therapeutic reduction of HbA(1c). This combination therapy has been shown to be beneficial even in lean Japanese patients with diabetes. It should be noted that such combination therapy is much more useful when the main clinical aim is lowering not postprandial, but fasting and nocturnal glycemia. The glycemic-lowering effects of pioglitazone alone occur slowly, whereas the addition of insulin to pioglitazone often shows a dramatic glucose-lowering effect. Thus, such combination therapy increases the possibility of frequent hypoglycemia within 1 to 2 months of combining the drugs. Severe hypoglycemia in patients using this therapy is rare. Patients treated with combination therapy who show a predominant reduction of glycemia often have severe edema; in 10%-20% of patients, combination therapy leads to drug-related congestive heart failure (CHF). However, this phenomenon is usually weakened if low doses of pioglitazone which are added to insulin therapy (ie, 15 mg/day or even 7.5 mg/day for women). It is well known that pioglitazone has an anti-atherosclerotic effect, although it is unclear if hyperinsulinemia induces atherogenic changes, either directly or indirectly, by the promotion of obesity. Until now, we have not confirmed whether the anti-atherosclerotic effects of pioglitazone exceed the supposed disadvantageous action of insulin when used in combination therapy. The addition of pioglitazone tends to reduce daily insulin dosages, but study findings have not been consistent. Improvement of lipid profiles has also been weak with this combination therapy. Long-term trials are needed before any conclusions can be reached concerning atherogenic effects of treatment for type 2 diabetes. Combination therapy of even small doses of pioglitazone with insulin should be primarily used for patients who achieve insufficient reduction in glycemia with insulin monotherapy.
Collapse
Affiliation(s)
- Toshikazu Yamanouchi
- Kita-Tokyo-Jueien/Department of Internal Medicine, Teikyo University, Tokyo, Japan.
| |
Collapse
|
182
|
Abstract
BACKGROUND AND AIM Pioglitazone has diverse multiple effects on metabolic and inflammatory processes that have the potential to influence cardiovascular disease pathophysiology at various points in the disease process, including atherogenesis, plaque inflammation, plaque rupture, haemostatic disturbances and microangiopathy. RESULTS Linking the many direct and indirect effects on the vasculature to the reduction in key macrovascular outcomes reported with pioglitazone in patients with type 2 diabetes presents a considerable challenge. However, recent large-scale clinical cardiovascular imaging studies are beginning to provide some mechanistic insights, including a potentially important role for improvements in high-density lipoprotein cholesterol with pioglitazone. In addition to a role in prevention, animal studies also suggest that pioglitazone may minimize damage and improve recovery during and after ischaemic cardio- and cerebrovascular events. DESIGN AND METHODS In this review, we consider potential cardiovascular protective mechanisms of pioglitazone by linking preclinical data and clinical cardiovascular outcomes guided by insights from recent imaging studies. CONCLUSION Pioglitazone may influence CVD pathophysiology at multiple points in the disease process, including atherogenesis, plaque inflammation, plaque rupture and haemostatic disturbances (i.e. thrombus/embolism formation), as well as microangiopathy.
Collapse
Affiliation(s)
- E Erdmann
- Department of Medicine, Heart Center, University of Cologne, Cologne, Germany.
| | | |
Collapse
|
183
|
Potentiation by candesartan of protective effects of pioglitazone against type 2 diabetic cardiovascular and renal complications in obese mice. J Hypertens 2010; 28:340-52. [PMID: 19864959 DOI: 10.1097/hjh.0b013e32833366cd] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
OBJECTIVES The efficacy of renin-angiotensin system (RAS) blockers on type 2 diabetes and its complications remains to be defined. This study was undertaken to test the hypothesis that candesartan may enhance the protective effects of pioglitazone against type 2 diabetes. METHODS We compared the effects of pioglitazone, candesartan, and their combination on cardiorenal and vascular injury, diabetes, and tissue oxidative stress in obese and type 2 diabetic db/db mice, and also examined the effects of tempol, a superoxide dismutase (SOD) mimetic, on db/db mice to define the role of oxidative stress. RESULTS The addition of candesartan to pioglitazone significantly potentiated the suppressive effects of pioglitazone on cardiac macrophage infiltration and interstitial fibrosis, and glomerular macrophage infiltration and sclerosis in db/db mice. These benefits of the combination of pioglitazone and candesartan in db/db mice were attributed to additive attenuation of cardiorenal oxidative stress, through the attenuation of NADPH oxidase or the restoration of Cu/Zn-SOD and EC-SOD. The combination of these drugs reversed vascular endothelial dysfunction in db/db mice more than either monotherapy, by causing more phosphorylation of eNOS. Candesartan slightly augmented the improvement of glucose tolerance by pioglitazone in db/db mice, and this additive effect was mediated by more attenuation of oxidative stress. CONCLUSIONS Our work demonstrated that candesartan significantly potentiated the protective effects of pioglitazone against cardiorenal and vascular injury, and diabetes in obese type 2 diabetic mice. Thus, the combination of pioglitazone with candesartan is potentially a promising therapeutic strategy for type 2 diabetes.
Collapse
|
184
|
Abstract
Thiazolidinediones are ligands that bind to and activate the nuclear peroxisome proliferator-activated receptor gamma. They are widely used as insulin sensitizers for the treatment of type 2 diabetes. Several studies have implicated the peroxisome proliferator-activated receptor gamma agonists rosiglitazone and pioglitazone in inflammatory events. To assess the anti-inflammatory properties of rosiglitazone, we investigated its effects on the molecular and cellular inflammatory response induced by a carotid injury in the rat. Male Wistar rats were randomized into a rosiglitazone-treated group (10 mg kg(-1) day(-1)) and a control group (0.9% w/v NaCl). The drug or vehicle was administered by gavage for 7 days before carotid injury and for up to 21 days after injury. The inflammatory markers p38 mitogen-activated protein kinase, cyclooxygenase 2, nuclear factor-kappaB, and heat shock protein 47 and the influx and activity of cells in response to injury were measured. Rosiglitazone treatment significantly reduced the expression of the inflammatory markers compared with control group. p38 mitogen-activated protein kinase and nuclear factor-kappaB started to decrease a few hours after injury, whereas cyclooxygenase 2 and heat shock protein 47 expression decreased 7 and 14 days, respectively, after injury. Rosiglitazone also reduced neointima formation and inflammatory cell infiltration. In conclusion, rosiglitazone negatively regulated the inflammatory events involved in tissue repair at molecular and cellular levels. These results suggest that rosiglitazone plays a protective role in inflammatory vascular diseases.
Collapse
|
185
|
Simpson-Haidaris PJ, Pollock SJ, Ramon S, Guo N, Woeller CF, Feldon SE, Phipps RP. Anticancer Role of PPARgamma Agonists in Hematological Malignancies Found in the Vasculature, Marrow, and Eyes. PPAR Res 2010; 2010:814609. [PMID: 20204067 PMCID: PMC2829627 DOI: 10.1155/2010/814609] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2009] [Revised: 11/30/2009] [Accepted: 12/16/2009] [Indexed: 12/19/2022] Open
Abstract
The use of targeted cancer therapies in combination with conventional chemotherapeutic agents and/or radiation treatment has increased overall survival of cancer patients. However, longer survival is accompanied by increased incidence of comorbidities due, in part, to drug side effects and toxicities. It is well accepted that inflammation and tumorigenesis are linked. Because peroxisome proliferator-activated receptor (PPAR)-gamma agonists are potent mediators of anti-inflammatory responses, it was a logical extension to examine the role of PPARgamma agonists in the treatment and prevention of cancer. This paper has two objectives: first to highlight the potential uses for PPARgamma agonists in anticancer therapy with special emphasis on their role when used as adjuvant or combined therapy in the treatment of hematological malignancies found in the vasculature, marrow, and eyes, and second, to review the potential role PPARgamma and/or its ligands may have in modulating cancer-associated angiogenesis and tumor-stromal microenvironment crosstalk in bone marrow.
Collapse
Affiliation(s)
- P. J. Simpson-Haidaris
- Department of Medicine/Hem-Onc Division, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, USA
- Department of Microbiology and Immunology, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, USA
- Department of Pathology and Laboratory Medicine, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, USA
| | - S. J. Pollock
- Department of Environmental Medicine, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, USA
| | - S. Ramon
- Department of Microbiology and Immunology, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, USA
| | - N. Guo
- Department of Opthalmology, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, USA
| | - C. F. Woeller
- Department of Environmental Medicine, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, USA
| | - S. E. Feldon
- Department of Opthalmology, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, USA
| | - R. P. Phipps
- Department of Environmental Medicine, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, USA
- Department of Opthalmology, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, USA
- The Lung Biology and Disease Program, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, USA
| |
Collapse
|
186
|
Li M, Li Z, Sun X, Yang L, Fang P, Liu Y, Li W, Xu J, Lu J, Xie M, Zhang D. Heme oxygenase-1/p21WAF1 mediates peroxisome proliferator-activated receptor-gamma signaling inhibition of proliferation of rat pulmonary artery smooth muscle cells. FEBS J 2010; 277:1543-50. [PMID: 20163460 DOI: 10.1111/j.1742-4658.2010.07581.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Activation of peroxisome proliferator-activated receptor (PPAR)-gamma suppresses proliferation of rat pulmonary artery smooth muscle cells (PASMCs), and therefore ameliorates the development of pulmonary hypertension in animal models. However, the molecular mechanisms underlying this effect remain largely unknown. This study addressed this issue. The PPARgamma agonist rosiglitazone dose-dependently stimulated heme oxygenase (HO)-1 expression in PASMCs, 5 microm rosiglitazone inducing a 12.1-fold increase in the HO-1 protein level. Cells pre-exposed to rosiglitazone showed a dose-dependent reduction in proliferation in response to serotonin; this was abolished by pretransfection of cells with sequence-specific small interfering RNA against HO-1. In addition, rosiglitazone stimulated p21(WAF1) expression in PASMCs, a 2.34-fold increase in the p21(WAF1) protein level being achieved with 5 microm rosiglitazone; again, this effect was blocked by knockdown of HO-1. Like loss of HO-1, loss of p21(WAF1) through siRNA transfection also reversed the inhibitory effect of rosiglitazone on PASMC proliferation triggered by serotonin. Taken together, our findings suggest that activation of PPARgamma induces HO-1 expression, and that this in turn stimulates p21(WAF1) expression to suppress PASMC proliferation. Our study also indicates that rosiglitazone, a medicine widely used in the treatment of type 2 diabetes mellitus, has potential benefits for patients with pulmonary hypertension.
Collapse
Affiliation(s)
- Manxiang Li
- Department of Respiratory Medicine, The Second Affiliated Hospital of Medical College, Xi'an Jiaotong University, China.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
187
|
Countervailing vascular effects of rosiglitazone in high cardiovascular risk mice: role of oxidative stress and PRMT-1. Clin Sci (Lond) 2010; 118:583-92. [DOI: 10.1042/cs20090289] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In the present study, we tested the hypothesis that the PPARγ (peroxisome-proliferator-activated receptor γ) activator rosiglitazone improves vascular structure and function in aged hyperhomocysteinaemic MTHFR (methylene tetrahydrofolate reductase) gene heterozygous knockout (mthfr+/−) mice fed a HCD (high-cholesterol diet), a model of high cardiovascular risk. One-year-old mthfr+/− mice were fed or not HCD (6 mg·kg−1 of body weight·day−1) and treated or not with rosiglitazone (20 mg·kg−1 of body weight·day−1) for 90 days and compared with wild-type mice. Endothelium-dependent relaxation of carotid arteries was significantly impaired (−40%) only in rosiglitazone-treated HCD-fed mthfr+/− mice. Carotid M/L (media-to-lumen ratio) and CSA (cross-sectional area) were increased (2-fold) in mthfr+/− mice fed or not HCD compared with wild-type mice (P<0.05). Rosiglitazone reduced M/L and CSA only in mthfr+/− mice fed a normal diet. Superoxide production was increased in mthfr+/− mice fed HCD treated or not with rosiglitazone, whereas plasma nitrite was decreased by rosiglitazone in mice fed or not HCD. PRMT-1 (protein arginine methyltransferase-1), involved in synthesis of the NO (nitric oxide) synthase inhibitor ADMA (asymmetric ω-NG,NG-dimethylarginine), and ADMA were increased only in rosiglitazone-treated HCD-fed mthfr+/− mice. Rosiglitazone had both beneficial and deleterious vascular effects in this animal model of high cardiovascular risk: it prevented carotid remodelling, but impaired endothelial function in part through enhanced oxidative stress and increased ADMA production in mice at high cardiovascular risk.
Collapse
|
188
|
Ketsawatsomkron P, Pelham CJ, Groh S, Keen HL, Faraci FM, Sigmund CD. Does peroxisome proliferator-activated receptor-gamma (PPAR gamma) protect from hypertension directly through effects in the vasculature? J Biol Chem 2010; 285:9311-9316. [PMID: 20129921 DOI: 10.1074/jbc.r109.025031] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Peroxisome proliferator-activated receptor-gamma (PPAR gamma) is a ligand-activated transcription factor of the nuclear hormone receptor superfamily. Increasing evidence suggests that PPAR gamma is involved in the regulation of vascular function and blood pressure in addition to its well recognized role in metabolism. Thiazolidinediones, PPAR gamma agonists, lower blood pressure and have protective vascular effects through largely unknown mechanisms. In contrast, loss-of-function dominant-negative mutations in human PPAR gamma cause insulin resistance and severe early onset hypertension. Recent studies using genetically manipulated mouse models have begun to specifically address the importance of PPAR gamma in the vasculature. In this minireview, evidence for a protective role of PPAR gamma in the endothelium and vascular smooth muscle, derived largely from studies of genetically manipulated mice, will be discussed.
Collapse
Affiliation(s)
- Pimonrat Ketsawatsomkron
- Department of Internal Medicine, Center on Functional Genomics of Hypertension, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242
| | - Christopher J Pelham
- Department of Internal Medicine, Center on Functional Genomics of Hypertension, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242
| | - Séverine Groh
- Department of Internal Medicine, Center on Functional Genomics of Hypertension, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242
| | - Henry L Keen
- Department of Internal Medicine, Center on Functional Genomics of Hypertension, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242
| | - Frank M Faraci
- Department of Internal Medicine, Center on Functional Genomics of Hypertension, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242
| | - Curt D Sigmund
- Department of Internal Medicine, Center on Functional Genomics of Hypertension, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242.
| |
Collapse
|
189
|
Chen IC, Chao TH, Tsai WC, Li YH. Rosiglitazone Reduces Plasma Levels of Inflammatory and Hemostatic Biomarkers and Improves Global Endothelial Function in Habitual Heavy Smokers Without Diabetes Mellitus or Metabolic Syndrome. J Formos Med Assoc 2010; 109:113-9. [DOI: 10.1016/s0929-6646(10)60031-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2009] [Revised: 04/05/2009] [Accepted: 06/24/2009] [Indexed: 10/19/2022] Open
|
190
|
Desch M, Schreiber A, Schweda F, Madsen K, Friis UG, Weatherford ET, Sigmund CD, Sequeira Lopez ML, Gomez RA, Todorov VT. Increased renin production in mice with deletion of peroxisome proliferator-activated receptor-gamma in juxtaglomerular cells. Hypertension 2010; 55:660-6. [PMID: 20065157 DOI: 10.1161/hypertensionaha.109.138800] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
We recently found that endogenous (free fatty acids) and pharmacological (thiazolidinediones) agonists of nuclear receptor Peroxisome proliferator-activated receptor (PPAR)gamma stimulate renin transcription. In addition, the renin gene was identified as a direct target of PPARgamma. The mouse renin gene is regulated by PPARgamma through a distal enhancer direct repeat closely related to consensus PPAR response element (PPRE). In vitro studies demonstrated that PPARgamma knockdown stimulated PPRE-driven transcription. These data predicted that deficiency of PPARgamma would upregulate mouse renin expression. Consistent with these observations knockdown of PPARgamma increased the transcription of a reporter gene driven by the mouse renin PPRE-like motif in vitro. To study the impact of PPARgamma on renin production in vivo, we used a cre/lox system to generate double-transgenic mice with disrupted PPARgamma locus in renin-producing juxtaglomerular (JG) cells of the kidney (RC-PPARgamma(fl/fl) mice). We provide evidence that PPARgamma expression was effectively reduced in JG cells of RC-PPARgamma(fl/fl) mice. Fluorescent immunohistochemistry showed stronger renin signal in RC-PPARgamma(fl/fl) than in littermate control RC-PPARgamma(wt/wt) mice. Renin mRNA levels and plasma renin concentration in RC-PPARgamma(fl/fl) mice were almost 2-fold higher than in littermate controls. Arterial blood pressure and pressure control of renal vascular resistance, which play decisive roles in the regulation of renin production were indistinguishable between RC-PPARgamma(wt/wt) and RC-PPARgamma(fl/fl) mice. These data demonstrate that the JG-specific PPARgamma deficiency results in increased mouse renin expression in vivo thus corroborating earlier in vitro results. PPARgamma appears to be a relevant transcription factor for the control of renin gene in JG cells.
Collapse
Affiliation(s)
- Michael Desch
- Institute of Physiology, University of Regensburg, D-93040 Regensburg, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
191
|
Moran CS, Clancy P, Biros E, Blanco-Martin B, McCaskie P, Palmer LJ, Coomans D, Norman PE, Golledge J. Association of PPARgamma allelic variation, osteoprotegerin and abdominal aortic aneurysm. Clin Endocrinol (Oxf) 2010; 72:128-32. [PMID: 19438902 PMCID: PMC2802661 DOI: 10.1111/j.1365-2265.2009.03615.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
OBJECTIVE We have previously demonstrated high concentrations of the glycoprotein osteoprotegerin (OPG) in biopsies of abdominal aortic aneurysm (AAA), and demonstrated that ligation of the nuclear receptor peroxisome proliferator-activated receptor gamma (PPARgamma) downregulates OPG in vitro and within a mouse model. The aims of this study were to assess the associations between circulating concentrations of OPG, polymorphisms of the gene encoding PPARgamma (PPARG), AAA presence and growth. DESIGN, PATIENTS AND MEASUREMENTS Two genetic polymorphisms in PPARG were assessed in 4227 men, 699 of whom had an AAA. For 631 men, who had AAAs, maximum aortic diameter was monitored by yearly ultrasound for a median of 5 years. Plasma OPG was measured in 838 men, 318 of whom had an AAA. RESULTS Plasma concentrations of OPG were independently associated with AAA (adjusted odds ratio 1.38, 95% CI 1.10-1.72). The PPARG c.1347C > T polymorphism was associated with plasma concentrations of OPG (beta 0.12, P < 0.01). The PPARG c.34G > C polymorphism was weakly associated with AAA (adjusted odds ratio 1.28, 95% CI 1.01-1.61). PPARG c.1347C > T was associated with increased AAA growth (recessive model, P = 0.03). CONCLUSIONS Circulating concentrations of osteoprotegerin are associated with abdominal aortic aneurysm and with one peroxisome proliferator-activated receptor gamma gene polymorphism. Peroxisome proliferator-activated receptor gamma gene polymorphisms are weakly associated with abdominal aortic aneurysm presence and growth. Confirmation of these findings is required in other cohorts.
Collapse
Affiliation(s)
- Corey S. Moran
- Vascular Biology Unit, School of Medicine and Dentistry, James Cook University, Townsville, 4811 Australia
| | - Paula Clancy
- Vascular Biology Unit, School of Medicine and Dentistry, James Cook University, Townsville, 4811 Australia
| | - Erik Biros
- Vascular Biology Unit, School of Medicine and Dentistry, James Cook University, Townsville, 4811 Australia
| | - Bernardo Blanco-Martin
- School of Mathematical and Physical Sciences, James Cook University, Townsville, 4811 Australia
| | - Pamela McCaskie
- The Laboratory for Genetic Epidemiology, Western Australia Institute for Medical Research and UWA Centre for Medical Research, Perth. WA. 6959. Australia
| | - Lyle J. Palmer
- The Laboratory for Genetic Epidemiology, Western Australia Institute for Medical Research and UWA Centre for Medical Research, Perth. WA. 6959. Australia
| | - Danny Coomans
- School of Mathematical and Physical Sciences, James Cook University, Townsville, 4811 Australia
| | - Paul E. Norman
- School of Surgery, University of Western Australia, Fremantle Hospital, Fremantle. WA. 6959. Australia
| | - Jonathan Golledge
- Vascular Biology Unit, School of Medicine and Dentistry, James Cook University, Townsville, 4811 Australia
| |
Collapse
|
192
|
Tian J, Smith A, Nechtman J, Podolsky R, Aggarwal S, Snead C, Kumar S, Elgaish M, Oishi P, Göerlach A, Fratz S, Hess J, Catravas JD, Verin AD, Fineman JR, She JX, Black SM. Effect of PPARgamma inhibition on pulmonary endothelial cell gene expression: gene profiling in pulmonary hypertension. Physiol Genomics 2009; 40:48-60. [PMID: 19825830 PMCID: PMC2807211 DOI: 10.1152/physiolgenomics.00094.2009] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Peroxisome proliferator-activated receptor type gamma (PPARgamma) is a subgroup of the PPAR transcription factor family. Recent studies indicate that loss of PPARgamma is associated with the development of pulmonary hypertension (PH). We hypothesized that the endothelial dysfunction associated with PPARgamma inhibition may play an important role in the disease process by altering cellular gene expression and signaling cascades. We utilized microarray analysis to determine if PPARgamma inhibition induced changes in gene expression in pulmonary arterial endothelial cells (PAEC). We identified 100 genes and expressed sequence tags (ESTs) that were upregulated by >1.5-fold and 21 genes and ESTs that were downregulated by >1.3-fold (P < 0.05) by PPARgamma inhibition. The upregulated genes can be broadly classified into four functional groups: cell cycle, angiogenesis, ubiquitin system, and zinc finger proteins. The genes with the highest fold change in expression: hyaluronan-mediated motility receptor (HMMR), VEGF receptor 2 (Flk-1), endothelial PAS domain protein 1 (EPAS1), basic fibroblast growth factor (FGF-2), and caveolin-1 in PAEC were validated by real time RT-PCR. We further validated the upregulation of HMMR, Flk-1, FGF2, and caveolin-1 by Western blot analysis. In keeping with the microarray results, PPARgamma inhibition led to re-entry of cell cycle at G(1)/S phase and cyclin C upregulation. PPARgamma inhibition also exacerbated VEGF-induced endothelial barrier disruption. Finally we confirmed the downregulation of PPARgamma and the upregulation of HMMR, Flk-1, FGF2, and Cav-1 proteins in the peripheral lung tissues of an ovine model of PH. In conclusion, we have identified an array of endothelial genes modulated by attenuated PPARgamma signaling that may play important roles in the development of PH.
Collapse
Affiliation(s)
- Jing Tian
- Pulmonary Vascular Disease Program, Vascular Biology Center, Medical College of Georgia, Augusta, Georgia 30912, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
193
|
Guerraty MA, Grant GR, Karanian JW, Chiesa OA, Pritchard WF, Davies PF. Hypercholesterolemia induces side-specific phenotypic changes and peroxisome proliferator-activated receptor-gamma pathway activation in swine aortic valve endothelium. Arterioscler Thromb Vasc Biol 2009; 30:225-31. [PMID: 19926833 DOI: 10.1161/atvbaha.109.198549] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
UNLABELLED Background- The endothelium of healthy aortic valves expresses different phenotypes on the aortic and ventricular sides. On the aortic side, which is susceptible to aortic valve sclerosis, there is a balanced coexpression of both propathological and protective pathways. Side-specific global gene expression can address endothelial phenotype balance in early aortic valve sclerosis. METHODS AND RESULTS Adult male swine were fed a hypercholesterolemic or an isocaloric normal diet for 2-week and 6-month periods. Hypercholesterolemia induced localized lipid insudation confined to the aortic side of the leaflet. Transcript profiling of valve endothelial populations showed that the susceptible aortic side was more sensitive to 2-week hypercholesterolemia than the ventricular side (1,325 vs 87 genes were differentially expressed). However, greater sensitivity was not evidence of a dysfunctional phenotype. Instead, pathway analyses identified differential expression of caspase 3-, peroxisome proliferator-activated receptor gamma-, TNF-alpha-, and nuclear factor-kappaB-related pathways that were consistent with a protective endothelial phenotype. This was confirmed at the protein level at 2 weeks and persisted at 6 months. CONCLUSIONS In a large animal model at high spatial resolution, endothelium on the pathosusceptible side of the aortic valve leaflet is responsive to hypercholesterolemia. Transcript profiles indicative of a protective phenotype were induced and persisted on the side prone to aortic valve sclerosis.
Collapse
Affiliation(s)
- Marie A Guerraty
- Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia 19104, USA
| | | | | | | | | | | |
Collapse
|
194
|
Makino N, Maeda T, Oyama JI, Higuchi Y, Mimori K. Improving insulin sensitivity via activation of PPAR-gamma increases telomerase activity in the heart of OLETF rats. Am J Physiol Heart Circ Physiol 2009; 297:H2188-95. [PMID: 19855065 DOI: 10.1152/ajpheart.00421.2009] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
This study was conducted to examine telomere biology in terms of improving insulin sensitivity in a type 2 diabetic animal model: Otsuka Long-Evans Tokushima fatty (OLETF) rats. To improve insulin sensitivity, pioglitazone (PG; 10 mg.kg(-1).day(-1)) was administrated to OLETF rats from 20 to 40 wk of age, and the effects of treatment were compared with those in untreated OLETF or control Long-Evans Tokushima Otsuka fatty rats. At the end of the study, the homeostasis model assessment of insulin resistance significantly increased in OLETF rats but decreased in OLETF rats treated with PG. No shortening of telomere length was observed in the heart tissue of OLETF rats, whereas telomerase activity was decreased in OLETF heart tissue. The mRNA expression of both telomerase reverse transcriptase and telomere repeat binding factor 2 was downregulated in the hearts of OLETF rats. The protein expression of phospho-Akt, insulin-like growth factor, and endothelial nitric oxide synthase was reduced in OLETF rats. On the other hand, myocardial matrix metalloproteinase-9 expression was elevated in OLETF rats. The changes observed in OLETF rats were inhibited by PG treatment. However, protein and mRNA expression of Sirt1, a lifespan modulator, were attenuated in OLETF rat hearts, although they were enhanced in OLETF rats with PG treatment. Myocardial fibrosis was less extensive and diastolic dysfunction more greatly ameliorated in PG-treated OLETF rats than in OLETF rats. These findings suggest that improving insulin sensitivity via the activation of peroxisom proliferator-activated receptor-gamma may exert regulatory effects on cardiac telomere biology and may have desirable morphological and functional effects on the diabetic heart.
Collapse
Affiliation(s)
- Naoki Makino
- Division of Molecular and Clinical Gerontology, Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, 4546 Tsurumihara, Beppu 874-0838, Japan.
| | | | | | | | | |
Collapse
|
195
|
Tian J, Smith A, Nechtman J, Podolsky R, Aggarwal S, Snead C, Kumar S, Elgaish M, Oishi P, Göerlach A, Fratz S, Hess J, Catravas JD, Verin AD, Fineman JR, She JX, Black SM. Effect of PPARgamma inhibition on pulmonary endothelial cell gene expression: gene profiling in pulmonary hypertension. Physiol Genomics 2009. [PMID: 19825830 DOI: 10.1052/physiolgenomocs.00094.2009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Peroxisome proliferator-activated receptor type gamma (PPARgamma) is a subgroup of the PPAR transcription factor family. Recent studies indicate that loss of PPARgamma is associated with the development of pulmonary hypertension (PH). We hypothesized that the endothelial dysfunction associated with PPARgamma inhibition may play an important role in the disease process by altering cellular gene expression and signaling cascades. We utilized microarray analysis to determine if PPARgamma inhibition induced changes in gene expression in pulmonary arterial endothelial cells (PAEC). We identified 100 genes and expressed sequence tags (ESTs) that were upregulated by >1.5-fold and 21 genes and ESTs that were downregulated by >1.3-fold (P < 0.05) by PPARgamma inhibition. The upregulated genes can be broadly classified into four functional groups: cell cycle, angiogenesis, ubiquitin system, and zinc finger proteins. The genes with the highest fold change in expression: hyaluronan-mediated motility receptor (HMMR), VEGF receptor 2 (Flk-1), endothelial PAS domain protein 1 (EPAS1), basic fibroblast growth factor (FGF-2), and caveolin-1 in PAEC were validated by real time RT-PCR. We further validated the upregulation of HMMR, Flk-1, FGF2, and caveolin-1 by Western blot analysis. In keeping with the microarray results, PPARgamma inhibition led to re-entry of cell cycle at G(1)/S phase and cyclin C upregulation. PPARgamma inhibition also exacerbated VEGF-induced endothelial barrier disruption. Finally we confirmed the downregulation of PPARgamma and the upregulation of HMMR, Flk-1, FGF2, and Cav-1 proteins in the peripheral lung tissues of an ovine model of PH. In conclusion, we have identified an array of endothelial genes modulated by attenuated PPARgamma signaling that may play important roles in the development of PH.
Collapse
Affiliation(s)
- Jing Tian
- Pulmonary Vascular Disease Program, Vascular Biology Center, Medical College of Georgia, Augusta, Georgia 30912, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
196
|
Min Q, Bai YT, Jia G, Wu J, Xiang JZ. High glucose enhances angiotensin-II-mediated peroxisome proliferation-activated receptor-gamma inactivation in human coronary artery endothelial cells. Exp Mol Pathol 2009; 88:133-7. [PMID: 19796634 DOI: 10.1016/j.yexmp.2009.09.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2009] [Accepted: 09/21/2009] [Indexed: 01/11/2023]
Abstract
Activation of the renin-angiotensin system plays an important role in the pathogenesis of vascular complications of hyperglycemia. Clinical studies have demonstrated that hypoglycemic effects of peroxisome proliferation-activated receptor-gamma (PPAR-gamma) activation is potentially associated with a significant decrease of cardiovascular disease events in diabetes patients. We assessed the effect of high glucose on the angiotensin II (Ang II), which induced the inactivation of PPAR-gamma and its signal pathways in human coronary artery endothelial cells (HCAECs). The expression of angiotensin II receptor I (AT1R) protein was analyzed by Western blot and knocked down using siRNA. PPAR-gamma activation was examined using a luminometer and a Dual Luciferase Reporter Assay System. Adhesion molecule expressions of HCAECs were measured using ELISA. Both high glucose and Ang II induced a progressive increase in AT1R protein expression on the HCAECs. Troglitazone, a PPAR-gamma activator, significantly increased the transcription activity of PPAR-gamma in HCAECs in vitro. However, activation of PPAR-gamma was significantly inhibited by high glucose and Ang II stimulation. Furthermore, silencing of AT1R expression was able to inhibit the inactivation of PPAR-gamma induced by Ang II and high glucose. Meanwhile, expression of proinflammatory adhesion molecules was increased by high glucose and Ang II in HCAECs, which is blocked by troglitazone and silencing of AT1R expression. These data strongly suggest high glucose enhanced Ang-II-mediated peroxisome proliferation-activated receptor-gamma inactivation and expression of proinflammatory adhesion molecules in human coronary artery endothelial cells.
Collapse
MESH Headings
- Angiotensin II/genetics
- Angiotensin II/metabolism
- Angiotensin II/pharmacology
- Cell Adhesion Molecules/drug effects
- Cell Adhesion Molecules/metabolism
- Cells, Cultured
- Chromans/pharmacology
- Coronary Vessels/drug effects
- Coronary Vessels/metabolism
- Coronary Vessels/pathology
- Dose-Response Relationship, Drug
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/metabolism
- Endothelium, Vascular/pathology
- Gene Silencing
- Glucose/pharmacology
- Humans
- PPAR gamma/drug effects
- PPAR gamma/metabolism
- RNA, Small Interfering/genetics
- Receptor, Angiotensin, Type 1/genetics
- Receptor, Angiotensin, Type 1/metabolism
- Thiazolidinediones/pharmacology
- Troglitazone
- Up-Regulation/drug effects
Collapse
Affiliation(s)
- Qing Min
- Department of Pharmacology, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, China.
| | | | | | | | | |
Collapse
|
197
|
Chan SHH, Wu CA, Wu KLH, Ho YH, Chang AYW, Chan JYH. Transcriptional upregulation of mitochondrial uncoupling protein 2 protects against oxidative stress-associated neurogenic hypertension. Circ Res 2009; 105:886-96. [PMID: 19762685 DOI: 10.1161/circresaha.109.199018] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
RATIONALE Mitochondrial uncoupling proteins (UCPs) belong to a superfamily of mitochondrial anion transporters that uncouple ATP synthesis from oxidative phosphorylation and mitigates mitochondrial reactive oxygen species production. OBJECTIVE We assessed the hypothesis that UCP2 participates in central cardiovascular regulation by maintaining reactive oxygen species homeostasis in the rostral ventrolateral medulla (RVLM), where sympathetic premotor neurons that maintain vasomotor tone located. We also elucidated the molecular mechanisms that underlie transcriptional upregulation of UCP2 in response to oxidative stress in RVLM. METHODS AND RESULTS In Sprague-Dawley rats, transcriptional upregulation of UCP2 in RVLM by rosiglitazone, an activator of its transcription factor peroxisome proliferator-activated receptor (PPAR)gamma, reduced mitochondrial hydrogen peroxide level in RVLM and systemic arterial pressure. Oxidative stress induced by microinjection of angiotensin II into RVLM augmented UCP2 mRNA or protein expression in RVLM, which was antagonized by comicroinjection of NADPH oxidase inhibitor (diphenyleneiodonium chloride), superoxide dismutase mimetic (tempol), or p38 mitogen-activated protein kinase inhibitor (SB203580) but not by extracellular signal-regulated kinase 1/2 inhibitor (U0126). Angiotensin II also induced phosphorylation of the PPARgamma coactivator, PPARgamma coactivator (PGC)-1alpha, and an increase in formation of PGC-1alpha/PPARgamma complexes in a p38 mitogen-activated protein kinase-dependent manner. Intracerebroventricular infusion of angiotensin II promoted an increase in mitochondrial hydrogen peroxide production in RVLM and chronic pressor response, which was potentiated by gene knockdown of UCP2 but blunted by rosiglitazone. CONCLUSIONS These results suggest that transcriptional upregulation of mitochondrial UCP2 in response to an elevation in superoxide plays an active role in feedback regulation of reactive oxygen species production in RVLM and neurogenic hypertension associated with chronic oxidative stress.
Collapse
Affiliation(s)
- Samuel H H Chan
- Center for Translational Research in Biomedical Sciences, Chang Gung Memorial Hospital-Kaohsiung Medical Center, Republic of China
| | | | | | | | | | | |
Collapse
|
198
|
Combination therapy for treatment or prevention of atherosclerosis: focus on the lipid-RAAS interaction. Atherosclerosis 2009; 209:307-13. [PMID: 19800624 DOI: 10.1016/j.atherosclerosis.2009.09.007] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2009] [Revised: 08/27/2009] [Accepted: 09/04/2009] [Indexed: 12/20/2022]
Abstract
Large clinical trials demonstrate that control of blood pressure or hyperlipidemia reduces risk for cardiovascular events by approximately 30%. Factors that may further reduce remaining risk are not definitively established. One potential target is atherosclerosis, a crucial feature in the pathogenesis of cardiovascular diseases whose development is determined by multiple mechanism including complex interactions between endothelial dysfunction and insulin resistance. Reciprocal relationships between endothelial dysfunction and insulin resistance as well as cross-talk between hyperlipidemia and the rennin-angiotensin-aldosterone system may contribute to development of atherosclerosis. Therefore, one appealing strategy for prevention or treatment of atherosclerosis may be to simultaneously address several risk factors with combination therapies that target multiple pathogenic mechanisms. Combination therapy with statins, peroxisome proliferators-activated receptor agonists, and rennin-angiotensin-aldosterone system blockers demonstrate additive beneficial effects on endothelial dysfunction and insulin resistance when compared with monotherapies in patients with cardiovascular risk factors. Additive beneficial effects of combined therapy are mediated by both distinct and interrelated mechanisms, consistent with both pre-clinical and clinical investigations. Thus, combination therapy may be an important concept in developing more effective strategies to treat and prevent atherosclerosis, coronary heart disease, and co-morbid metabolic disorders characterized by endothelial dysfunction and insulin resistance.
Collapse
|
199
|
Qin HD, Huang D, Weng XD, Xu F. Upregulation of peroxisome proliferator-activated receptor-gamma and NADPH oxidases are involved in restenosis after balloon injury. J Cell Physiol 2009; 221:387-93. [PMID: 19562688 DOI: 10.1002/jcp.21865] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Restenosis is a major complication of percutaneous transluminal coronary angioplasty (PTCA) and is characterized by increased superoxide formation and accumulation of smooth muscle cells (SMCs). The mechanisms through which peroxisome proliferator-activated receptor-gamma (PPAR-gamma) modulates the pathological process are incompletely defined. In this study, balloon injury of porcine coronary arteries in vivo and cell scraping model in vitro were used to elucidate the pathway via this molecule. PPAR-gamma and NADPH oxidase expression significantly increased both in neointimal hyperplasia after balloon injury or in the cultured SMCs after scraping injury. In vitro, PPAR-gamma agonist 15-deoxy-Delta(12,14)-prostagladlin J(2) (15d-PGJ2) decreased cell-scraping-induced superoxide generation through suppression of NADPH oxidase activity via down-regulation of p22(phox) and gp91(phox). Furthermore, 15d-PGJ2 could suppress scraping-stimulated proliferation of SMCs. These data demonstrate that upregulation of PPAR-gamma and NADPH oxidases are involved in restenosis and activation of PPAR-gamma can inhibit the NADPH oxidase-dependent superoxide generation in SMCs after injury. These findings will provide a new potential drug target for restenosis after balloon injury.
Collapse
Affiliation(s)
- Hai-Dong Qin
- Department of Emergency, Nanjing Medical University, Affiliated Nanjing First Hospital, Jiangsu, China
| | | | | | | |
Collapse
|
200
|
Kapoor M, McCann M, Liu S, Huh K, Denton CP, Abraham DJ, Leask A. Loss of peroxisome proliferator-activated receptor γ in mouse fibroblasts results in increased susceptibility to bleomycin-induced skin fibrosis. ACTA ACUST UNITED AC 2009; 60:2822-9. [DOI: 10.1002/art.24761] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|