151
|
Sommer N, Hüttemann M, Pak O, Scheibe S, Knoepp F, Sinkler C, Malczyk M, Gierhardt M, Esfandiary A, Kraut S, Jonas F, Veith C, Aras S, Sydykov A, Alebrahimdehkordi N, Giehl K, Hecker M, Brandes RP, Seeger W, Grimminger F, Ghofrani HA, Schermuly RT, Grossman LI, Weissmann N. Mitochondrial Complex IV Subunit 4 Isoform 2 Is Essential for Acute Pulmonary Oxygen Sensing. Circ Res 2017; 121:424-438. [PMID: 28620066 DOI: 10.1161/circresaha.116.310482] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 12/14/2016] [Accepted: 06/14/2017] [Indexed: 12/17/2022]
Abstract
RATIONALE Acute pulmonary oxygen sensing is essential to avoid life-threatening hypoxemia via hypoxic pulmonary vasoconstriction (HPV) which matches perfusion to ventilation. Hypoxia-induced mitochondrial superoxide release has been suggested as a critical step in the signaling pathway underlying HPV. However, the identity of the primary oxygen sensor and the mechanism of superoxide release in acute hypoxia, as well as its relevance for chronic pulmonary oxygen sensing, remain unresolved. OBJECTIVES To investigate the role of the pulmonary-specific isoform 2 of subunit 4 of the mitochondrial complex IV (Cox4i2) and the subsequent mediators superoxide and hydrogen peroxide for pulmonary oxygen sensing and signaling. METHODS AND RESULTS Isolated ventilated and perfused lungs from Cox4i2-/- mice lacked acute HPV. In parallel, pulmonary arterial smooth muscle cells (PASMCs) from Cox4i2-/- mice showed no hypoxia-induced increase of intracellular calcium. Hypoxia-induced superoxide release which was detected by electron spin resonance spectroscopy in wild-type PASMCs was absent in Cox4i2-/- PASMCs and was dependent on cysteine residues of Cox4i2. HPV could be inhibited by mitochondrial superoxide inhibitors proving the functional relevance of superoxide release for HPV. Mitochondrial hyperpolarization, which can promote mitochondrial superoxide release, was detected during acute hypoxia in wild-type but not Cox4i2-/- PASMCs. Downstream signaling determined by patch-clamp measurements showed decreased hypoxia-induced cellular membrane depolarization in Cox4i2-/- PASMCs compared with wild-type PASMCs, which could be normalized by the application of hydrogen peroxide. In contrast, chronic hypoxia-induced pulmonary hypertension and pulmonary vascular remodeling were not or only slightly affected by Cox4i2 deficiency, respectively. CONCLUSIONS Cox4i2 is essential for acute but not chronic pulmonary oxygen sensing by triggering mitochondrial hyperpolarization and release of mitochondrial superoxide which, after conversion to hydrogen peroxide, contributes to cellular membrane depolarization and HPV. These findings provide a new model for oxygen-sensing processes in the lung and possibly also in other organs.
Collapse
Affiliation(s)
- Natascha Sommer
- From the Excellence Cluster Cardiopulmonary System, University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig-University, Giessen, Germany (N.S., O.P., S.S., F.K., M.M., M.G., A.E., S.K., F.J., C.V., A.S., N.A., K.G., M.H., W.S., F.G., H.A.G., R.T.S., N.W.); Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI (M.H., C.S., S.A., L.I.G.); Institut für Kardiovaskuläre Physiologie, Goethe-Universität, German Center for Cardiovascular Research (DZHK), Partner Site RheinMain, Frankfurt am Main, Germany (R.P.B.); and Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany (W.S.)
| | - Maik Hüttemann
- From the Excellence Cluster Cardiopulmonary System, University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig-University, Giessen, Germany (N.S., O.P., S.S., F.K., M.M., M.G., A.E., S.K., F.J., C.V., A.S., N.A., K.G., M.H., W.S., F.G., H.A.G., R.T.S., N.W.); Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI (M.H., C.S., S.A., L.I.G.); Institut für Kardiovaskuläre Physiologie, Goethe-Universität, German Center for Cardiovascular Research (DZHK), Partner Site RheinMain, Frankfurt am Main, Germany (R.P.B.); and Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany (W.S.)
| | - Oleg Pak
- From the Excellence Cluster Cardiopulmonary System, University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig-University, Giessen, Germany (N.S., O.P., S.S., F.K., M.M., M.G., A.E., S.K., F.J., C.V., A.S., N.A., K.G., M.H., W.S., F.G., H.A.G., R.T.S., N.W.); Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI (M.H., C.S., S.A., L.I.G.); Institut für Kardiovaskuläre Physiologie, Goethe-Universität, German Center for Cardiovascular Research (DZHK), Partner Site RheinMain, Frankfurt am Main, Germany (R.P.B.); and Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany (W.S.)
| | - Susan Scheibe
- From the Excellence Cluster Cardiopulmonary System, University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig-University, Giessen, Germany (N.S., O.P., S.S., F.K., M.M., M.G., A.E., S.K., F.J., C.V., A.S., N.A., K.G., M.H., W.S., F.G., H.A.G., R.T.S., N.W.); Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI (M.H., C.S., S.A., L.I.G.); Institut für Kardiovaskuläre Physiologie, Goethe-Universität, German Center for Cardiovascular Research (DZHK), Partner Site RheinMain, Frankfurt am Main, Germany (R.P.B.); and Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany (W.S.)
| | - Fenja Knoepp
- From the Excellence Cluster Cardiopulmonary System, University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig-University, Giessen, Germany (N.S., O.P., S.S., F.K., M.M., M.G., A.E., S.K., F.J., C.V., A.S., N.A., K.G., M.H., W.S., F.G., H.A.G., R.T.S., N.W.); Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI (M.H., C.S., S.A., L.I.G.); Institut für Kardiovaskuläre Physiologie, Goethe-Universität, German Center for Cardiovascular Research (DZHK), Partner Site RheinMain, Frankfurt am Main, Germany (R.P.B.); and Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany (W.S.)
| | - Christopher Sinkler
- From the Excellence Cluster Cardiopulmonary System, University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig-University, Giessen, Germany (N.S., O.P., S.S., F.K., M.M., M.G., A.E., S.K., F.J., C.V., A.S., N.A., K.G., M.H., W.S., F.G., H.A.G., R.T.S., N.W.); Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI (M.H., C.S., S.A., L.I.G.); Institut für Kardiovaskuläre Physiologie, Goethe-Universität, German Center for Cardiovascular Research (DZHK), Partner Site RheinMain, Frankfurt am Main, Germany (R.P.B.); and Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany (W.S.)
| | - Monika Malczyk
- From the Excellence Cluster Cardiopulmonary System, University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig-University, Giessen, Germany (N.S., O.P., S.S., F.K., M.M., M.G., A.E., S.K., F.J., C.V., A.S., N.A., K.G., M.H., W.S., F.G., H.A.G., R.T.S., N.W.); Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI (M.H., C.S., S.A., L.I.G.); Institut für Kardiovaskuläre Physiologie, Goethe-Universität, German Center for Cardiovascular Research (DZHK), Partner Site RheinMain, Frankfurt am Main, Germany (R.P.B.); and Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany (W.S.)
| | - Mareike Gierhardt
- From the Excellence Cluster Cardiopulmonary System, University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig-University, Giessen, Germany (N.S., O.P., S.S., F.K., M.M., M.G., A.E., S.K., F.J., C.V., A.S., N.A., K.G., M.H., W.S., F.G., H.A.G., R.T.S., N.W.); Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI (M.H., C.S., S.A., L.I.G.); Institut für Kardiovaskuläre Physiologie, Goethe-Universität, German Center for Cardiovascular Research (DZHK), Partner Site RheinMain, Frankfurt am Main, Germany (R.P.B.); and Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany (W.S.)
| | - Azadeh Esfandiary
- From the Excellence Cluster Cardiopulmonary System, University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig-University, Giessen, Germany (N.S., O.P., S.S., F.K., M.M., M.G., A.E., S.K., F.J., C.V., A.S., N.A., K.G., M.H., W.S., F.G., H.A.G., R.T.S., N.W.); Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI (M.H., C.S., S.A., L.I.G.); Institut für Kardiovaskuläre Physiologie, Goethe-Universität, German Center for Cardiovascular Research (DZHK), Partner Site RheinMain, Frankfurt am Main, Germany (R.P.B.); and Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany (W.S.)
| | - Simone Kraut
- From the Excellence Cluster Cardiopulmonary System, University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig-University, Giessen, Germany (N.S., O.P., S.S., F.K., M.M., M.G., A.E., S.K., F.J., C.V., A.S., N.A., K.G., M.H., W.S., F.G., H.A.G., R.T.S., N.W.); Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI (M.H., C.S., S.A., L.I.G.); Institut für Kardiovaskuläre Physiologie, Goethe-Universität, German Center for Cardiovascular Research (DZHK), Partner Site RheinMain, Frankfurt am Main, Germany (R.P.B.); and Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany (W.S.)
| | - Felix Jonas
- From the Excellence Cluster Cardiopulmonary System, University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig-University, Giessen, Germany (N.S., O.P., S.S., F.K., M.M., M.G., A.E., S.K., F.J., C.V., A.S., N.A., K.G., M.H., W.S., F.G., H.A.G., R.T.S., N.W.); Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI (M.H., C.S., S.A., L.I.G.); Institut für Kardiovaskuläre Physiologie, Goethe-Universität, German Center for Cardiovascular Research (DZHK), Partner Site RheinMain, Frankfurt am Main, Germany (R.P.B.); and Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany (W.S.)
| | - Christine Veith
- From the Excellence Cluster Cardiopulmonary System, University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig-University, Giessen, Germany (N.S., O.P., S.S., F.K., M.M., M.G., A.E., S.K., F.J., C.V., A.S., N.A., K.G., M.H., W.S., F.G., H.A.G., R.T.S., N.W.); Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI (M.H., C.S., S.A., L.I.G.); Institut für Kardiovaskuläre Physiologie, Goethe-Universität, German Center for Cardiovascular Research (DZHK), Partner Site RheinMain, Frankfurt am Main, Germany (R.P.B.); and Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany (W.S.)
| | - Siddhesh Aras
- From the Excellence Cluster Cardiopulmonary System, University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig-University, Giessen, Germany (N.S., O.P., S.S., F.K., M.M., M.G., A.E., S.K., F.J., C.V., A.S., N.A., K.G., M.H., W.S., F.G., H.A.G., R.T.S., N.W.); Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI (M.H., C.S., S.A., L.I.G.); Institut für Kardiovaskuläre Physiologie, Goethe-Universität, German Center for Cardiovascular Research (DZHK), Partner Site RheinMain, Frankfurt am Main, Germany (R.P.B.); and Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany (W.S.)
| | - Akylbek Sydykov
- From the Excellence Cluster Cardiopulmonary System, University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig-University, Giessen, Germany (N.S., O.P., S.S., F.K., M.M., M.G., A.E., S.K., F.J., C.V., A.S., N.A., K.G., M.H., W.S., F.G., H.A.G., R.T.S., N.W.); Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI (M.H., C.S., S.A., L.I.G.); Institut für Kardiovaskuläre Physiologie, Goethe-Universität, German Center for Cardiovascular Research (DZHK), Partner Site RheinMain, Frankfurt am Main, Germany (R.P.B.); and Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany (W.S.)
| | - Nasim Alebrahimdehkordi
- From the Excellence Cluster Cardiopulmonary System, University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig-University, Giessen, Germany (N.S., O.P., S.S., F.K., M.M., M.G., A.E., S.K., F.J., C.V., A.S., N.A., K.G., M.H., W.S., F.G., H.A.G., R.T.S., N.W.); Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI (M.H., C.S., S.A., L.I.G.); Institut für Kardiovaskuläre Physiologie, Goethe-Universität, German Center for Cardiovascular Research (DZHK), Partner Site RheinMain, Frankfurt am Main, Germany (R.P.B.); and Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany (W.S.)
| | - Klaudia Giehl
- From the Excellence Cluster Cardiopulmonary System, University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig-University, Giessen, Germany (N.S., O.P., S.S., F.K., M.M., M.G., A.E., S.K., F.J., C.V., A.S., N.A., K.G., M.H., W.S., F.G., H.A.G., R.T.S., N.W.); Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI (M.H., C.S., S.A., L.I.G.); Institut für Kardiovaskuläre Physiologie, Goethe-Universität, German Center for Cardiovascular Research (DZHK), Partner Site RheinMain, Frankfurt am Main, Germany (R.P.B.); and Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany (W.S.)
| | - Matthias Hecker
- From the Excellence Cluster Cardiopulmonary System, University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig-University, Giessen, Germany (N.S., O.P., S.S., F.K., M.M., M.G., A.E., S.K., F.J., C.V., A.S., N.A., K.G., M.H., W.S., F.G., H.A.G., R.T.S., N.W.); Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI (M.H., C.S., S.A., L.I.G.); Institut für Kardiovaskuläre Physiologie, Goethe-Universität, German Center for Cardiovascular Research (DZHK), Partner Site RheinMain, Frankfurt am Main, Germany (R.P.B.); and Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany (W.S.)
| | - Ralf P Brandes
- From the Excellence Cluster Cardiopulmonary System, University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig-University, Giessen, Germany (N.S., O.P., S.S., F.K., M.M., M.G., A.E., S.K., F.J., C.V., A.S., N.A., K.G., M.H., W.S., F.G., H.A.G., R.T.S., N.W.); Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI (M.H., C.S., S.A., L.I.G.); Institut für Kardiovaskuläre Physiologie, Goethe-Universität, German Center for Cardiovascular Research (DZHK), Partner Site RheinMain, Frankfurt am Main, Germany (R.P.B.); and Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany (W.S.)
| | - Werner Seeger
- From the Excellence Cluster Cardiopulmonary System, University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig-University, Giessen, Germany (N.S., O.P., S.S., F.K., M.M., M.G., A.E., S.K., F.J., C.V., A.S., N.A., K.G., M.H., W.S., F.G., H.A.G., R.T.S., N.W.); Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI (M.H., C.S., S.A., L.I.G.); Institut für Kardiovaskuläre Physiologie, Goethe-Universität, German Center for Cardiovascular Research (DZHK), Partner Site RheinMain, Frankfurt am Main, Germany (R.P.B.); and Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany (W.S.)
| | - Friedrich Grimminger
- From the Excellence Cluster Cardiopulmonary System, University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig-University, Giessen, Germany (N.S., O.P., S.S., F.K., M.M., M.G., A.E., S.K., F.J., C.V., A.S., N.A., K.G., M.H., W.S., F.G., H.A.G., R.T.S., N.W.); Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI (M.H., C.S., S.A., L.I.G.); Institut für Kardiovaskuläre Physiologie, Goethe-Universität, German Center for Cardiovascular Research (DZHK), Partner Site RheinMain, Frankfurt am Main, Germany (R.P.B.); and Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany (W.S.)
| | - Hossein A Ghofrani
- From the Excellence Cluster Cardiopulmonary System, University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig-University, Giessen, Germany (N.S., O.P., S.S., F.K., M.M., M.G., A.E., S.K., F.J., C.V., A.S., N.A., K.G., M.H., W.S., F.G., H.A.G., R.T.S., N.W.); Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI (M.H., C.S., S.A., L.I.G.); Institut für Kardiovaskuläre Physiologie, Goethe-Universität, German Center for Cardiovascular Research (DZHK), Partner Site RheinMain, Frankfurt am Main, Germany (R.P.B.); and Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany (W.S.)
| | - Ralph T Schermuly
- From the Excellence Cluster Cardiopulmonary System, University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig-University, Giessen, Germany (N.S., O.P., S.S., F.K., M.M., M.G., A.E., S.K., F.J., C.V., A.S., N.A., K.G., M.H., W.S., F.G., H.A.G., R.T.S., N.W.); Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI (M.H., C.S., S.A., L.I.G.); Institut für Kardiovaskuläre Physiologie, Goethe-Universität, German Center for Cardiovascular Research (DZHK), Partner Site RheinMain, Frankfurt am Main, Germany (R.P.B.); and Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany (W.S.)
| | - Lawrence I Grossman
- From the Excellence Cluster Cardiopulmonary System, University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig-University, Giessen, Germany (N.S., O.P., S.S., F.K., M.M., M.G., A.E., S.K., F.J., C.V., A.S., N.A., K.G., M.H., W.S., F.G., H.A.G., R.T.S., N.W.); Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI (M.H., C.S., S.A., L.I.G.); Institut für Kardiovaskuläre Physiologie, Goethe-Universität, German Center for Cardiovascular Research (DZHK), Partner Site RheinMain, Frankfurt am Main, Germany (R.P.B.); and Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany (W.S.).
| | - Norbert Weissmann
- From the Excellence Cluster Cardiopulmonary System, University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig-University, Giessen, Germany (N.S., O.P., S.S., F.K., M.M., M.G., A.E., S.K., F.J., C.V., A.S., N.A., K.G., M.H., W.S., F.G., H.A.G., R.T.S., N.W.); Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI (M.H., C.S., S.A., L.I.G.); Institut für Kardiovaskuläre Physiologie, Goethe-Universität, German Center for Cardiovascular Research (DZHK), Partner Site RheinMain, Frankfurt am Main, Germany (R.P.B.); and Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany (W.S.)
| |
Collapse
|
152
|
Smith KA, Waypa GB, Schumacker PT. Redox signaling during hypoxia in mammalian cells. Redox Biol 2017; 13:228-234. [PMID: 28595160 PMCID: PMC5460738 DOI: 10.1016/j.redox.2017.05.020] [Citation(s) in RCA: 146] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 05/08/2017] [Accepted: 05/26/2017] [Indexed: 12/18/2022] Open
Abstract
Hypoxia triggers a wide range of protective responses in mammalian cells, which are mediated through transcriptional and post-translational mechanisms. Redox signaling in cells by reactive oxygen species (ROS) such as hydrogen peroxide (H2O2) occurs through the reversible oxidation of cysteine thiol groups, resulting in structural modifications that can change protein function profoundly. Mitochondria are an important source of ROS generation, and studies reveal that superoxide generation by the electron transport chain increases during hypoxia. Other sources of ROS, such as the NAD(P)H oxidases, may also generate oxidant signals in hypoxia. This review considers the growing body of work indicating that increased ROS signals during hypoxia are responsible for regulating the activation of protective mechanisms in diverse cell types.
Collapse
Affiliation(s)
- Kimberly A Smith
- Department of Pediatrics, Division of Neonatology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Gregory B Waypa
- Department of Pediatrics, Division of Neonatology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Paul T Schumacker
- Department of Pediatrics, Division of Neonatology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
153
|
Chio IIC, Tuveson DA. ROS in Cancer: The Burning Question. Trends Mol Med 2017; 23:411-429. [PMID: 28427863 PMCID: PMC5462452 DOI: 10.1016/j.molmed.2017.03.004] [Citation(s) in RCA: 364] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 03/16/2017] [Accepted: 03/16/2017] [Indexed: 02/07/2023]
Abstract
An unanswered question in human health is whether antioxidation prevents or promotes cancer. Antioxidation has historically been viewed as chemopreventive, but emerging evidence suggests that antioxidants may be supportive of neoplasia. We posit this contention to be rooted in the fact that ROS do not operate as one single biochemical entity, but as diverse secondary messengers in cancer cells. This cautions against therapeutic strategies to increase ROS at a global level. To leverage redox alterations towards the development of effective therapies necessitates the application of biophysical and biochemical approaches to define redox dynamics and to functionally elucidate specific oxidative modifications in cancer versus normal cells. An improved understanding of the sophisticated workings of redox biology is imperative to defeating cancer.
Collapse
Affiliation(s)
- Iok In Christine Chio
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA; Lustgarten Foundation Pancreatic Cancer Research Laboratory, Cold Spring Harbor, NY 11724, USA.
| | - David A Tuveson
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA; Lustgarten Foundation Pancreatic Cancer Research Laboratory, Cold Spring Harbor, NY 11724, USA.
| |
Collapse
|
154
|
Kim YM, Kim SJ, Tatsunami R, Yamamura H, Fukai T, Ushio-Fukai M. ROS-induced ROS release orchestrated by Nox4, Nox2, and mitochondria in VEGF signaling and angiogenesis. Am J Physiol Cell Physiol 2017; 312:C749-C764. [PMID: 28424170 DOI: 10.1152/ajpcell.00346.2016] [Citation(s) in RCA: 163] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 04/10/2017] [Accepted: 04/10/2017] [Indexed: 01/07/2023]
Abstract
Reactive oxygen species (ROS) derived from NADPH oxidase (NOX) and mitochondria play a critical role in growth factor-induced switch from a quiescent to an angiogenic phenotype in endothelial cells (ECs). However, how highly diffusible ROS produced from different sources can coordinate to stimulate VEGF signaling and drive the angiogenic process remains unknown. Using the cytosol- and mitochondria-targeted redox-sensitive RoGFP biosensors with real-time imaging, here we show that VEGF stimulation in human ECs rapidly increases cytosolic RoGFP oxidation within 1 min, followed by mitochondrial RoGFP oxidation within 5 min, which continues at least for 60 min. Silencing of Nox4 or Nox2 or overexpression of mitochondria-targeted catalase significantly inhibits VEGF-induced tyrosine phosphorylation of VEGF receptor type 2 (VEGFR2-pY), EC migration and proliferation at the similar extent. Exogenous hydrogen peroxide (H2O2) or overexpression of Nox4, which produces H2O2, increases mitochondrial ROS (mtROS), which is prevented by Nox2 siRNA, suggesting that Nox2 senses Nox4-derived H2O2 to promote mtROS production. Mechanistically, H2O2 increases S36 phosphorylation of p66Shc, a key mtROS regulator, which is inhibited by siNox2, but not by siNox4. Moreover, Nox2 or Nox4 knockdown or overexpression of S36 phosphorylation-defective mutant p66Shc(S36A) inhibits VEGF-induced mtROS, VEGFR2-pY, EC migration, and proliferation. In summary, Nox4-derived H2O2 in part activates Nox2 to increase mtROS via pSer36-p66Shc, thereby enhancing VEGFR2 signaling and angiogenesis in ECs. This may represent a novel feed-forward mechanism of ROS-induced ROS release orchestrated by the Nox4/Nox2/pSer36-p66Shc/mtROS axis, which drives sustained activation of angiogenesis signaling program.
Collapse
Affiliation(s)
- Young-Mee Kim
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, Georgia.,Departments of Medicine (Cardiology) and Pharmacology, Center for Cardiovascular Research, University of Illinois at Chicago, Chicago, Illinois
| | - Seok-Jo Kim
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois.,Department of Pharmacology, Center for Cardiovascular Research, University of Illinois at Chicago, Chicago, Illinois
| | - Ryosuke Tatsunami
- School of Pharmacy, Hokkaido Pharmaceutical University, Hokkaido, Japan; and.,Department of Pharmacology, Center for Cardiovascular Research, University of Illinois at Chicago, Chicago, Illinois
| | - Hisao Yamamura
- Department of Molecular and Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Tohru Fukai
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, Georgia.,Departments of Medicine (Cardiology) and Pharmacology, Center for Cardiovascular Research, University of Illinois at Chicago, Chicago, Illinois
| | - Masuko Ushio-Fukai
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, Georgia; .,Department of Pharmacology, Center for Cardiovascular Research, University of Illinois at Chicago, Chicago, Illinois
| |
Collapse
|
155
|
Abstract
The balance of oxidants and antioxidants within the cell is crucial for maintaining health, and regulating physiological processes such as signalling. Consequently, imbalances between oxidants and antioxidants are now understood to lead to oxidative stress, a physiological feature that underlies many diseases. These processes have spurred the field of chemical biology to develop a plethora of sensors, both small-molecule and fluorescent protein-based, for the detection of specific oxidizing species and general redox balances within cells. The mitochondrion, in particular, is the site of many vital redox reactions. There is therefore a need to target redox sensors to this particular organelle. It has been well established that targeting mitochondria can be achieved by the use of a lipophilic cation-targeting group, or by utilizing natural peptidic mitochondrial localization sequences. Here, we review how these two approaches have been used by a number of researchers to develop mitochondrially localized fluorescent redox sensors that are already proving useful in providing insights into the roles of reactive oxygen species in the mitochondria.
Collapse
Affiliation(s)
| | | | - Elizabeth J. New
- School of Chemistry, The University of Sydney, New South Wales 2006, Australia
| |
Collapse
|
156
|
Recent Progress in Research on the Pathogenesis of Pulmonary Thromboembolism: An Old Story with New Perspectives. BIOMED RESEARCH INTERNATIONAL 2017; 2017:6516791. [PMID: 28484717 PMCID: PMC5397627 DOI: 10.1155/2017/6516791] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 02/26/2017] [Accepted: 03/27/2017] [Indexed: 12/25/2022]
Abstract
Pulmonary thromboembolism (PTE) is part of a larger clinicopathological entity, venous thromboembolism. It is also a complex, multifactorial disorder divided into four major disease processes including venous thrombosis, thrombus in transit, acute pulmonary embolism, and pulmonary circulation reconstruction. Even when treated, some patients develop chronic thromboembolic pulmonary hypertension. PTE is also a common fatal type of pulmonary vascular disease worldwide, but earlier studies primarily focused on the pathological changes in the blood component of the disease. With contemporary advances in molecular and cellular biology, people are becoming increasingly aware of coagulation pathways, the function of vascular smooth muscle cells, microparticles, and the inflammatory pathways that play key roles in PTE. Combined hypoxia and immune research has revealed that PTE should be regarded as a class of complex diseases caused by multiple factors involving the vascular microenvironment and vascular cell dysfunction.
Collapse
|
157
|
Chen TX, Xu XY, Zhao Z, Zhao FY, Gao YM, Yan XH, Wan Y. Hydrogen peroxide is a critical regulator of the hypoxia-induced alterations of store-operated Ca2+ entry into rat pulmonary arterial smooth muscle cells. Am J Physiol Lung Cell Mol Physiol 2017; 312:L477-L487. [DOI: 10.1152/ajplung.00138.2016] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 01/23/2017] [Accepted: 01/23/2017] [Indexed: 12/28/2022] Open
Abstract
To investigate the association between store-operated Ca2+ entry (SOCE) and reactive oxygen species (ROS) during hypoxia, this study determined the changes of transient receptor potential canonical 1 (TRPC1) and Orai1, two candidate proteins for store-operated Ca2+ (SOC) channels and their gate regulator, stromal interaction molecule 1 (STIM1), in a hypoxic environment and their relationship with ROS in pulmonary arterial smooth muscle cells (PASMCs). Exposure to hypoxia caused a transient Ca2+ spike and subsequent Ca2+ plateau of SOCE to be intensified in PASMCs when TRPC1, STIM1, and Orai1 were upregulated. SOCE in cells transfected with specific short hairpin RNA (shRNA) constructs was almost completely eliminated by the knockdown of TRPC1, STIM1, or Orai1 alone and was no longer affected by hypoxia exposure. Hypoxia-induced SOCE enhancement was further strengthened by PEG-SOD but was attenuated by PEG-catalase, with correlated changes to intracellular hydrogen peroxide (H2O2) levels and protein levels of TRPC1, STIM1, and Orai1. Exogenous H2O2 could mimic alterations of the interactions of STIM1 with TRPC1 and Orai1 in hypoxic cells. These findings suggest that TRPC1, STIM1, and Orai1 are essential for the initiation of SOCE in PASMCs. Hypoxia-induced ROS promoted the expression and interaction of the SOC channel molecules and their gate regulator via their converted product, H2O2.
Collapse
Affiliation(s)
- Tao-Xiang Chen
- Department of Physiology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Xiao-Ya Xu
- Department of Physiology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Zhao Zhao
- Department of Physiology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Fang-Yu Zhao
- Department of Physiology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Yi-Mei Gao
- Department of Physiology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Xiao-Hong Yan
- Department of Physiology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Yu Wan
- Department of Physiology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
158
|
Wang L, Zheng Q, Yuan Y, Li Y, Gong X. Effects of 17β-estradiol and 2-methoxyestradiol on the oxidative stress-hypoxia inducible factor-1 pathway in hypoxic pulmonary hypertensive rats. Exp Ther Med 2017; 13:2537-2543. [PMID: 28565876 DOI: 10.3892/etm.2017.4243] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 11/25/2016] [Indexed: 12/12/2022] Open
Abstract
The present study aimed to investigate the effects of 17β-estradiol (E2) and 2-methoxyestradiol (2ME) on the oxidative stress-hypoxia inducible factor-1 (OS-HIF-1) pathway in hypoxic pulmonary hypertensive rats. Female Sprague-Dawley rats were divided randomly into 4 groups, as follows: i) Control (Group A); ii) ovariectomy (OVX) + hypoxia (Group B); iii) OVX + hypoxia + E2 injection (Group C); and iv) 2ME injection (Group D). The rats were maintained under hypoxic conditions for 8 weeks, and mean pulmonary artery pressure (mPAP) and pulmonary arteriole morphology were measured. The reactive oxygen species, superoxide dismutase (SOD), manganese superoxide dismutase (MnSOD), and copper-zinc superoxide dismutase (Cu/ZnSOD) levels in serum were also measured. MnSOD and HIF-1α expression levels in lung tissue were determined by western blotting and reverse transcription-quantitative polymerase chain reaction. The mPAP and arterial remodeling index were significantly elevated following chronic hypoxia exposure; however, experimental data revealed a reduced response in E2 and 2ME intervention rats. Compared with Group A, Group B had significantly elevated oxidative stress levels, as illustrated by increased serum ROS levels, decreased serum SOD and MnSOD levels and decreased MnSOD mRNA and protein expression levels in lung tissue. Furthermore, HIF-1α mRNA and protein expression in Group B was significantly elevated compared with Group A. E2 and 2ME intervention significantly attenuated the aforementioned parameter changes, suggesting that E2 and 2ME partially ameliorate hypoxic pulmonary hypertension. The underlying mechanism of this may be associated with the increase in MnSOD activity and expression and reduction in ROS level, which reduces the levels of transcription and translation of HIF-1α.
Collapse
Affiliation(s)
- Li Wang
- Department of Respiratory Disease and Critical Care Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Quan Zheng
- Department of Respiratory Disease and Critical Care Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Yadong Yuan
- Department of Respiratory Disease and Critical Care Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Yanpeng Li
- Department of Respiratory Disease and Critical Care Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Xiaowei Gong
- Department of Respiratory Disease and Critical Care Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| |
Collapse
|
159
|
Jernigan NL, Resta TC, Gonzalez Bosc LV. Altered Redox Balance in the Development of Chronic Hypoxia-induced Pulmonary Hypertension. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 967:83-103. [PMID: 29047083 DOI: 10.1007/978-3-319-63245-2_7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Normally, the pulmonary circulation is maintained in a low-pressure, low-resistance state with little resting tone. Pulmonary arteries are thin-walled and rely heavily on pulmonary arterial distension and recruitment for reducing pulmonary vascular resistance when cardiac output is elevated. Under pathophysiological conditions, however, active vasoconstriction and vascular remodeling lead to enhanced pulmonary vascular resistance and subsequent pulmonary hypertension (PH). Chronic hypoxia is a critical pathological factor associated with the development of PH resulting from airway obstruction (COPD, sleep apnea), diffusion impairment (interstitial lung disease), developmental lung abnormalities, or high altitude exposure (World Health Organization [WHO]; Group III). The rise in pulmonary vascular resistance increases right heart afterload causing right ventricular hypertrophy that can ultimately lead to right heart failure in patients with chronic lung disease. PH is typically characterized by diminished paracrine release of vasodilators, antimitogenic factors, and antithrombotic factors (e.g., nitric oxide and protacyclin) and enhanced production of vasoconstrictors and mitogenic factors (e.g., reactive oxygen species and endothelin-1) from the endothelium and lung parenchyma. In addition, phenotypic changes to pulmonary arterial smooth muscle cells (PASMC), including alterations in Ca2+ homeostasis, Ca2+ sensitivity, and activation of transcription factors are thought to play prominent roles in the development of both vasoconstrictor and arterial remodeling components of hypoxia-associated PH. These changes in PASMC function are briefly reviewed in Sect. 1 and the influence of altered reactive oxygen species homeostasis on PASMC function discussed in Sects. 2-4.
Collapse
Affiliation(s)
- Nikki L Jernigan
- Department Cell Biology and Physiology, Vascular Physiology Group, University of New Mexico Health Sciences Center, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Thomas C Resta
- Department Cell Biology and Physiology, Vascular Physiology Group, University of New Mexico Health Sciences Center, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Laura V Gonzalez Bosc
- Department Cell Biology and Physiology, Vascular Physiology Group, University of New Mexico Health Sciences Center, University of New Mexico, Albuquerque, NM, 87131, USA.
| |
Collapse
|
160
|
Xu Y, Qian S. Techniques for Detecting Reactive Oxygen Species in Pulmonary Vasculature Redox Signaling. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 967:361-372. [DOI: 10.1007/978-3-319-63245-2_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
161
|
Control of mitochondrial function and cell growth by the atypical cadherin Fat1. Nature 2016; 539:575-578. [PMID: 27828948 DOI: 10.1038/nature20170] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 10/19/2016] [Indexed: 12/20/2022]
Abstract
Mitochondrial products such as ATP, reactive oxygen species, and aspartate are key regulators of cellular metabolism and growth. Abnormal mitochondrial function compromises integrated growth-related processes such as development and tissue repair, as well as homeostatic mechanisms that counteract ageing and neurodegeneration, cardiovascular disease, and cancer. Physiologic mechanisms that control mitochondrial activity in such settings remain incompletely understood. Here we show that the atypical Fat1 cadherin acts as a molecular 'brake' on mitochondrial respiration that regulates vascular smooth muscle cell (SMC) proliferation after arterial injury. Fragments of Fat1 accumulate in SMC mitochondria, and the Fat1 intracellular domain interacts with multiple mitochondrial proteins, including critical factors associated with the inner mitochondrial membrane. SMCs lacking Fat1 (Fat1KO) grow faster, consume more oxygen for ATP production, and contain more aspartate. Notably, expression in Fat1KO cells of a modified Fat1 intracellular domain that localizes exclusively to mitochondria largely normalizes oxygen consumption, and the growth advantage of these cells can be suppressed by inhibition of mitochondrial respiration, which suggest that a Fat1-mediated growth control mechanism is intrinsic to mitochondria. Consistent with this idea, Fat1 species associate with multiple respiratory complexes, and Fat1 deletion both increases the activity of complexes I and II and promotes the formation of complex-I-containing supercomplexes. In vivo, Fat1 is expressed in injured human and mouse arteries, and inactivation of SMC Fat1 in mice potentiates the response to vascular damage, with markedly increased medial hyperplasia and neointimal growth, and evidence of higher SMC mitochondrial respiration. These studies suggest that Fat1 controls mitochondrial activity to restrain cell growth during the reparative, proliferative state induced by vascular injury. Given recent reports linking Fat1 to cancer, abnormal kidney and muscle development, and neuropsychiatric disease, this Fat1 function may have importance in other settings of altered cell growth and metabolism.
Collapse
|
162
|
Diebold L, Chandel NS. Mitochondrial ROS regulation of proliferating cells. Free Radic Biol Med 2016; 100:86-93. [PMID: 27154978 DOI: 10.1016/j.freeradbiomed.2016.04.198] [Citation(s) in RCA: 294] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Revised: 04/26/2016] [Accepted: 04/29/2016] [Indexed: 12/14/2022]
Abstract
Once thought of exclusively as damaging molecules, reactive oxygen species (ROS) are becoming increasingly appreciated for the role they play in cellular signaling through redox biology. Notably, mitochondria are a major source of ROS within a cell (mROS). Mounting evidence now clearly shows that mROS are critical for intracellular redox signaling by which they contribute to a plethora of cellular processes such as proliferation. mROS are essential for physiological cell proliferation, particularly by the regulation of hypoxia inducible factors (HIFs) under hypoxia. mROS are also vital mediators of growth factor signaling cascades such as angiotensin II (Ang II) and T-cell receptor (TCR) signaling. Pathological proliferative diseases such as cancer utilize mROS to their advantage, aberrantly activating growth factor signaling cascades and perpetuating angiogenesis under hypoxia. This review discusses how mROS positively regulate mitogenic cellular signaling through redox biology, which is critical for both physiological and pathological proliferation.
Collapse
Affiliation(s)
- Lauren Diebold
- Department of Medicine, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Navdeep S Chandel
- Department of Medicine, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA.
| |
Collapse
|
163
|
Yuan S, Kevil CG. Nitric Oxide and Hydrogen Sulfide Regulation of Ischemic Vascular Remodeling. Microcirculation 2016; 23:134-45. [PMID: 26381654 DOI: 10.1111/micc.12248] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Accepted: 09/13/2015] [Indexed: 12/22/2022]
Abstract
Blockage or restriction of blood flow through conduit arteries results in tissue ischemia downstream of the disturbed area. Local tissues can adapt to this challenge by stimulating vascular remodeling through angiogenesis and arteriogenesis thereby restoring blood perfusion and removal of wastes. Multiple molecular mechanisms of vascular remodeling during ischemia have been identified and extensively studied. However, therapeutic benefits from these findings and insights are limited due to the complexity of various signaling networks and a lack of understanding central metabolic regulators governing these responses. The gasotransmitters NO and H2 S have emerged as master regulators that influence multiple molecular targets necessary for ischemic vascular remodeling. In this review, we discuss how NO and H2 S are individually regulated under ischemia, what their roles are in angiogenesis and arteriogenesis, and how their interaction controls ischemic vascular remodeling.
Collapse
Affiliation(s)
- Shuai Yuan
- Departments of Pathology, Molecular and Cellular Physiology, and Cell Biology and Anatomy, LSU Health Shreveport, Shreveport, Louisiana, USA
| | - Christopher G Kevil
- Departments of Pathology, Molecular and Cellular Physiology, and Cell Biology and Anatomy, LSU Health Shreveport, Shreveport, Louisiana, USA
| |
Collapse
|
164
|
K + Efflux-Independent NLRP3 Inflammasome Activation by Small Molecules Targeting Mitochondria. Immunity 2016; 45:761-773. [DOI: 10.1016/j.immuni.2016.08.010] [Citation(s) in RCA: 250] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 05/18/2016] [Accepted: 07/08/2016] [Indexed: 12/30/2022]
|
165
|
Plecitá-Hlavatá L, Ježek P. Integration of superoxide formation and cristae morphology for mitochondrial redox signaling. Int J Biochem Cell Biol 2016; 80:31-50. [PMID: 27640755 DOI: 10.1016/j.biocel.2016.09.010] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 09/09/2016] [Accepted: 09/12/2016] [Indexed: 12/16/2022]
Abstract
The mitochondrial network provides the central cell's energetic and regulatory unit, which besides ATP and metabolite production participates in cellular signaling through regulated reactive oxygen species (ROS) production and various protein/ion fluxes. The inner membrane forms extensive folds, called cristae, i.e. cavities enfolded from and situated perpendicularly to its inner boundary membrane portion, which encompasses an inner cylinder within the outer membrane tubule. Mitochondrial cristae ultramorphology reflects various metabolic, physiological or pathological states. Since the mitochondrion is typically a predominant superoxide source and generated ROS also serve for the creation of information redox signals, we review known relationships between ROS generation within the respiratory chain complexes of cristae and cristae morphology. Notably, it is emphasized that cristae shape is governed by ATP-synthase dimers, MICOS complexes, OPA1 isoforms and the umbrella of their regulation, and also dependent on local protonmotive force (electrical potential component) in cristae. Cristae are also affected by redox-sensitive kinases/phosphatases or p66SHC. ATP-synthase dimers decrease in the inflated intracristal space, diminishing pH and hypothetically having minimal superoxide formation. Matrix-released signaling superoxide/H2O2 is predominantly integrated along mitochondrial tubules, whereas the diffusion of intracristal signaling ROS species is controlled by crista junctions, the widening of which enables specific retrograde redox signaling such as during hypoxic cell adaptation. Other physiological cases of H2O2 release from the mitochondrion include the modulation of insulin release in pancreatic β-cells, enhancement of insulin signaling in peripheral tissues, signaling by T-cell receptors, retrograde signaling during the cell cycle and cell differentiation, specifically that of adipocytes.
Collapse
Affiliation(s)
- Lydie Plecitá-Hlavatá
- Department of Membrane Transport Biophysics, No.75, Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Petr Ježek
- Department of Membrane Transport Biophysics, No.75, Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic.
| |
Collapse
|
166
|
Griendling KK, Touyz RM, Zweier JL, Dikalov S, Chilian W, Chen YR, Harrison DG, Bhatnagar A. Measurement of Reactive Oxygen Species, Reactive Nitrogen Species, and Redox-Dependent Signaling in the Cardiovascular System: A Scientific Statement From the American Heart Association. Circ Res 2016; 119:e39-75. [PMID: 27418630 PMCID: PMC5446086 DOI: 10.1161/res.0000000000000110] [Citation(s) in RCA: 289] [Impact Index Per Article: 32.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Reactive oxygen species and reactive nitrogen species are biological molecules that play important roles in cardiovascular physiology and contribute to disease initiation, progression, and severity. Because of their ephemeral nature and rapid reactivity, these species are difficult to measure directly with high accuracy and precision. In this statement, we review current methods for measuring these species and the secondary products they generate and suggest approaches for measuring redox status, oxidative stress, and the production of individual reactive oxygen and nitrogen species. We discuss the strengths and limitations of different methods and the relative specificity and suitability of these methods for measuring the concentrations of reactive oxygen and reactive nitrogen species in cells, tissues, and biological fluids. We provide specific guidelines, through expert opinion, for choosing reliable and reproducible assays for different experimental and clinical situations. These guidelines are intended to help investigators and clinical researchers avoid experimental error and ensure high-quality measurements of these important biological species.
Collapse
|
167
|
Wagener KC, Kolbrink B, Dietrich K, Kizina KM, Terwitte LS, Kempkes B, Bao G, Müller M. Redox Indicator Mice Stably Expressing Genetically Encoded Neuronal roGFP: Versatile Tools to Decipher Subcellular Redox Dynamics in Neuropathophysiology. Antioxid Redox Signal 2016; 25:41-58. [PMID: 27059697 PMCID: PMC4931743 DOI: 10.1089/ars.2015.6587] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
AIMS Reactive oxygen species (ROS) and downstream redox alterations not only mediate physiological signaling but also neuropathology. For long, ROS/redox imaging was hampered by a lack of reliable probes. Genetically encoded redox sensors overcame this gap and revolutionized (sub)cellular redox imaging. Yet, the successful delivery of sensor-coding DNA, which demands transfection/transduction of cultured preparations or stereotaxic microinjections of each subject, remains challenging. By generating transgenic mice, we aimed to overcome limiting cultured preparations, circumvent surgical interventions, and to extend effectively redox imaging to complex and adult preparations. RESULTS Our redox indicator mice widely express Thy1-driven roGFP1 (reduction-oxidation-sensitive green fluorescent protein 1) in neuronal cytosol or mitochondria. Negative phenotypic effects of roGFP1 were excluded and its proper targeting and functionality confirmed. Redox mapping by ratiometric wide-field imaging reveals most oxidizing conditions in CA3 neurons. Furthermore, mitochondria are more oxidized than cytosol. Cytosolic and mitochondrial roGFP1s reliably report cell endogenous redox dynamics upon metabolic challenge or stimulation. Fluorescence lifetime imaging yields stable, but marginal, response ranges. We therefore developed automated excitation ratiometric 2-photon imaging. It offers superior sensitivity, spatial resolution, and response dynamics. INNOVATION AND CONCLUSION Redox indicator mice enable quantitative analyses of subcellular redox dynamics in a multitude of preparations and at all postnatal stages. This will uncover cell- and compartment-specific cerebral redox signals and their defined alterations during development, maturation, and aging. Cross-breeding with other disease models will reveal molecular details on compartmental redox homeostasis in neuropathology. Combined with ratiometric 2-photon imaging, this will foster our mechanistic understanding of cellular redox signals in their full complexity. Antioxid. Redox Signal. 25, 41-58.
Collapse
Affiliation(s)
- Kerstin C Wagener
- 1 Institut für Neuro- und Sinnesphysiologie, Georg-August-Universität Göttingen , Universitätsmedizin, Göttingen, Germany
| | - Benedikt Kolbrink
- 1 Institut für Neuro- und Sinnesphysiologie, Georg-August-Universität Göttingen , Universitätsmedizin, Göttingen, Germany
| | - Katharina Dietrich
- 1 Institut für Neuro- und Sinnesphysiologie, Georg-August-Universität Göttingen , Universitätsmedizin, Göttingen, Germany
| | - Kathrin M Kizina
- 1 Institut für Neuro- und Sinnesphysiologie, Georg-August-Universität Göttingen , Universitätsmedizin, Göttingen, Germany
| | - Lukas S Terwitte
- 1 Institut für Neuro- und Sinnesphysiologie, Georg-August-Universität Göttingen , Universitätsmedizin, Göttingen, Germany
| | - Belinda Kempkes
- 1 Institut für Neuro- und Sinnesphysiologie, Georg-August-Universität Göttingen , Universitätsmedizin, Göttingen, Germany
| | - Guobin Bao
- 2 Institut für Neurophysiologie und Zelluläre Biophysik, Georg-August-Universität Göttingen , Universitätsmedizin, Göttingen, Germany
| | - Michael Müller
- 1 Institut für Neuro- und Sinnesphysiologie, Georg-August-Universität Göttingen , Universitätsmedizin, Göttingen, Germany
| |
Collapse
|
168
|
Stegen S, Deprez S, Eelen G, Torrekens S, Van Looveren R, Goveia J, Ghesquière B, Carmeliet P, Carmeliet G. Adequate hypoxia inducible factor 1α signaling is indispensable for bone regeneration. Bone 2016; 87:176-86. [PMID: 27058876 DOI: 10.1016/j.bone.2016.03.014] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 03/24/2016] [Accepted: 03/27/2016] [Indexed: 11/23/2022]
Abstract
Engineered cell-based constructs are an appealing strategy to treat large skeletal defects. However, transplanted cells are often confronted with an environment that is deprived of oxygen and nutrients. Upon hypoxia, most cell types activate hypoxia-inducible factor 1α (HIF-1α) signaling, but its importance for implanted osteoprogenitor cells during bone regeneration is not elucidated. To this end, we specifically deleted the HIF--1α isoform in periosteal progenitor cells and show that activation of HIF-1α signaling in these cells is critical for bone repair by modulating angiogenic and metabolic processes. Activation of HIF-1α is not only crucial for blood vessel invasion, by enhancing angiogenic growth factor production, but also for periosteal cell survival early after implantation, when blood vessels have not yet invaded the construct. HIF-1α signaling limits oxygen consumption to avoid accumulation of harmful ROS and preserve redox balance, and additionally induces a switch to glycolysis to prevent energetic distress. Altogether, our results indicate that the proangiogenic capacity of implanted periosteal cells is HIF-1α regulated and that metabolic adaptations mediate post-implantation cell survival.
Collapse
Affiliation(s)
- Steve Stegen
- Laboratory of Clinical and Experimental Endocrinology, Department of Clinical and Experimental Medicine, KU Leuven, 3000 Leuven, Belgium; Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, 3000 Leuven, Belgium
| | - Sanne Deprez
- Laboratory of Clinical and Experimental Endocrinology, Department of Clinical and Experimental Medicine, KU Leuven, 3000 Leuven, Belgium
| | - Guy Eelen
- Laboratory of Angiogenesis and Vascular Metabolism, Vesalius Research Center, VIB, 3000 Leuven, Belgium; Laboratory of Angiogenesis and Vascular Metabolism, Vesalius Research Center, Department of Oncology, KU Leuven, 3000 Leuven, Belgium
| | - Sophie Torrekens
- Laboratory of Clinical and Experimental Endocrinology, Department of Clinical and Experimental Medicine, KU Leuven, 3000 Leuven, Belgium
| | - Riet Van Looveren
- Laboratory of Clinical and Experimental Endocrinology, Department of Clinical and Experimental Medicine, KU Leuven, 3000 Leuven, Belgium
| | - Jermaine Goveia
- Laboratory of Angiogenesis and Vascular Metabolism, Vesalius Research Center, VIB, 3000 Leuven, Belgium; Laboratory of Angiogenesis and Vascular Metabolism, Vesalius Research Center, Department of Oncology, KU Leuven, 3000 Leuven, Belgium
| | - Bart Ghesquière
- Laboratory of Angiogenesis and Vascular Metabolism, Vesalius Research Center, VIB, 3000 Leuven, Belgium; Laboratory of Angiogenesis and Vascular Metabolism, Vesalius Research Center, Department of Oncology, KU Leuven, 3000 Leuven, Belgium
| | - Peter Carmeliet
- Laboratory of Angiogenesis and Vascular Metabolism, Vesalius Research Center, VIB, 3000 Leuven, Belgium; Laboratory of Angiogenesis and Vascular Metabolism, Vesalius Research Center, Department of Oncology, KU Leuven, 3000 Leuven, Belgium
| | - Geert Carmeliet
- Laboratory of Clinical and Experimental Endocrinology, Department of Clinical and Experimental Medicine, KU Leuven, 3000 Leuven, Belgium; Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, 3000 Leuven, Belgium.
| |
Collapse
|
169
|
Wages PA, Cheng WY, Gibbs-Flournoy E, Samet JM. Live-cell imaging approaches for the investigation of xenobiotic-induced oxidant stress. Biochim Biophys Acta Gen Subj 2016; 1860:2802-15. [PMID: 27208426 DOI: 10.1016/j.bbagen.2016.05.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Revised: 05/11/2016] [Accepted: 05/12/2016] [Indexed: 12/26/2022]
Abstract
BACKGROUND Oxidant stress is arguably a universal feature in toxicology. Research studies on the role of oxidant stress induced by xenobiotic exposures have typically relied on the identification of damaged biomolecules using a variety of conventional biochemical and molecular techniques. However, there is increasing evidence that low-level exposure to a variety of toxicants dysregulates cellular physiology by interfering with redox-dependent processes. SCOPE OF REVIEW The study of events involved in redox toxicology requires methodology capable of detecting transient modifications at relatively low signal strength. This article reviews the advantages of live-cell imaging for redox toxicology studies. MAJOR CONCLUSIONS Toxicological studies with xenobiotics of supra-physiological reactivity require careful consideration when using fluorogenic sensors in order to avoid potential artifacts and false negatives. Fortunately, experiments conducted for the purpose of validating the use of these sensors in toxicological applications often yield unexpected insights into the mechanisms through which xenobiotic exposure induces oxidant stress. GENERAL SIGNIFICANCE Live-cell imaging using a new generation of small molecule and genetically encoded fluorophores with excellent sensitivity and specificity affords unprecedented spatiotemporal resolution that is optimal for redox toxicology studies. This article is part of a Special Issue entitled Air Pollution, edited by Wenjun Ding, Andrew J. Ghio and Weidong Wu.
Collapse
Affiliation(s)
- Phillip A Wages
- Curriculum in Toxicology, University of North Carolina at Chapel Hill, NC, USA
| | - Wan-Yun Cheng
- Oak Ridge Institute for Science and Education, Oak Ridge, TN, USA; Integrated Systems Toxicology Division, National Health and Environmental Effects Research Laboratory, Research Triangle Park, NC, USA
| | - Eugene Gibbs-Flournoy
- Oak Ridge Institute for Science and Education, Oak Ridge, TN, USA; Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, Research Triangle Park, NC, USA
| | - James M Samet
- Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, Research Triangle Park, NC, USA.
| |
Collapse
|
170
|
Yogev O, Barker K, Sikka A, Almeida GS, Hallsworth A, Smith LM, Jamin Y, Ruddle R, Koers A, Webber HT, Raynaud FI, Popov S, Jones C, Petrie K, Robinson SP, Keun HC, Chesler L. p53 Loss in MYC-Driven Neuroblastoma Leads to Metabolic Adaptations Supporting Radioresistance. Cancer Res 2016; 76:3025-35. [PMID: 27197232 DOI: 10.1158/0008-5472.can-15-1939] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 02/09/2016] [Indexed: 11/16/2022]
Abstract
Neuroblastoma is the most common childhood extracranial solid tumor. In high-risk cases, many of which are characterized by amplification of MYCN, outcome remains poor. Mutations in the p53 (TP53) tumor suppressor are rare at diagnosis, but evidence suggests that p53 function is often impaired in relapsed, treatment-resistant disease. To address the role of p53 loss of function in the development and pathogenesis of high-risk neuroblastoma, we generated a MYCN-driven genetically engineered mouse model in which the tamoxifen-inducible p53ER(TAM) fusion protein was expressed from a knock-in allele (Th-MYCN/Trp53(KI)). We observed no significant differences in tumor-free survival between Th-MYCN mice heterozygous for Trp53(KI) (n = 188) and Th-MYCN mice with wild-type p53 (n = 101). Conversely, the survival of Th-MYCN/Trp53(KI/KI) mice lacking functional p53 (n = 60) was greatly reduced. We found that Th-MYCN/Trp53(KI/KI) tumors were resistant to ionizing radiation (IR), as expected. However, restoration of functional p53ER(TAM) reinstated sensitivity to IR in only 50% of Th-MYCN/Trp53(KI/KI) tumors, indicating the acquisition of additional resistance mechanisms. Gene expression and metabolic analyses indicated that the principal acquired mechanism of resistance to IR in the absence of functional p53 was metabolic adaptation in response to chronic oxidative stress. Tumors exhibited increased antioxidant metabolites and upregulation of glutathione S-transferase pathway genes, including Gstp1 and Gstz1, which are associated with poor outcome in human neuroblastoma. Accordingly, glutathione depletion by buthionine sulfoximine together with restoration of p53 activity resensitized tumors to IR. Our findings highlight the complex pathways operating in relapsed neuroblastomas and the need for combination therapies that target the diverse resistance mechanisms at play. Cancer Res; 76(10); 3025-35. ©2016 AACR.
Collapse
Affiliation(s)
- Orli Yogev
- Division of Clinical Studies, The Institute of Cancer Research, London, United Kingdom
| | - Karen Barker
- Division of Clinical Studies, The Institute of Cancer Research, London, United Kingdom
| | - Arti Sikka
- Department of Surgery and Cancer, Imperial College, London, United Kingdom
| | - Gilberto S Almeida
- Division of Clinical Studies, The Institute of Cancer Research, London, United Kingdom. Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, United Kingdom
| | - Albert Hallsworth
- Division of Clinical Studies, The Institute of Cancer Research, London, United Kingdom
| | - Laura M Smith
- Division of Clinical Studies, The Institute of Cancer Research, London, United Kingdom
| | - Yann Jamin
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, United Kingdom
| | - Ruth Ruddle
- Division of Cancer Therapeutics, The Institute of Cancer Research, London, United Kingdom
| | - Alexander Koers
- Division of Clinical Studies, The Institute of Cancer Research, London, United Kingdom
| | - Hannah T Webber
- Division of Clinical Studies, The Institute of Cancer Research, London, United Kingdom
| | - Florence I Raynaud
- Division of Cancer Therapeutics, The Institute of Cancer Research, London, United Kingdom
| | - Sergey Popov
- Division of Cancer Therapeutics, The Institute of Cancer Research, London, United Kingdom. Department of Molecular Pathology, The Institute of Cancer Research, London, United Kingdom
| | - Chris Jones
- Division of Cancer Therapeutics, The Institute of Cancer Research, London, United Kingdom. Department of Molecular Pathology, The Institute of Cancer Research, London, United Kingdom
| | - Kevin Petrie
- Division of Clinical Studies, The Institute of Cancer Research, London, United Kingdom
| | - Simon P Robinson
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, United Kingdom
| | - Hector C Keun
- Department of Surgery and Cancer, Imperial College, London, United Kingdom
| | - Louis Chesler
- Division of Clinical Studies, The Institute of Cancer Research, London, United Kingdom.
| |
Collapse
|
171
|
Li L, Hong HH, Chen SP, Ma CQ, Liu HY, Yao YC. Activation of AMPK/MnSOD signaling mediates anti-apoptotic effect of hepatitis B virus in hepatoma cells. World J Gastroenterol 2016; 22:4345-4353. [PMID: 27158203 PMCID: PMC4853692 DOI: 10.3748/wjg.v22.i17.4345] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2015] [Revised: 02/25/2016] [Accepted: 03/14/2016] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the anti-apoptotic capability of the hepatitis B virus (HBV) in the HepG2 hepatoma cell line and the underlying mechanisms.
METHODS: Cell viability and apoptosis were measured by MTT assay and flow cytometry, respectively. Targeted knockdown of manganese superoxide dismutase (MnSOD), AMP-activated protein kinase (AMPK) and hepatitis B virus X protein (HBx) genes as well as AMPK agonist AICAR and antagonist compound C were employed to determine the correlations of expression of these genes.
RESULTS: HBV markedly protected the hepatoma cells from growth suppression and cell death in the condition of serum deprivation. A decrease of superoxide anion production accompanied with an increase of MnSOD expression and activity was found in HepG2.215 cells. Moreover, AMPK activation contributed to the up-regulation of MnSOD. HBx protein was identified to induce the expression of AMPK and MnSOD.
CONCLUSION: Our results suggest that HBV suppresses mitochondrial superoxide level and exerts an anti-apoptotic effect by activating AMPK/MnSOD signaling pathway, which may provide a novel pharmacological strategy to prevent HCC.
Collapse
|
172
|
Schwarzländer M, Dick TP, Meyer AJ, Morgan B. Dissecting Redox Biology Using Fluorescent Protein Sensors. Antioxid Redox Signal 2016; 24:680-712. [PMID: 25867539 DOI: 10.1089/ars.2015.6266] [Citation(s) in RCA: 205] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
SIGNIFICANCE Fluorescent protein sensors have revitalized the field of redox biology by revolutionizing the study of redox processes in living cells and organisms. RECENT ADVANCES Within one decade, a set of fundamental new insights has been gained, driven by the rapid technical development of in vivo redox sensing. Redox-sensitive yellow and green fluorescent protein variants (rxYFP and roGFPs) have been the central players. CRITICAL ISSUES Although widely used as an established standard tool, important questions remain surrounding their meaningful use in vivo. We review the growing range of thiol redox sensor variants and their application in different cells, tissues, and organisms. We highlight five key findings where in vivo sensing has been instrumental in changing our understanding of redox biology, critically assess the interpretation of in vivo redox data, and discuss technical and biological limitations of current redox sensors and sensing approaches. FUTURE DIRECTIONS We explore how novel sensor variants may further add to the current momentum toward a novel mechanistic and integrated understanding of redox biology in vivo. Antioxid. Redox Signal. 24, 680-712.
Collapse
Affiliation(s)
- Markus Schwarzländer
- 1 Plant Energy Biology Lab, Department Chemical Signalling, Institute of Crop Science and Resource Conservation (INRES), University of Bonn , Bonn, Germany
| | - Tobias P Dick
- 2 Division of Redox Regulation, German Cancer Research Center (DKFZ) , DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Andreas J Meyer
- 3 Department Chemical Signalling, Institute of Crop Science and Resource Conservation (INRES), University of Bonn , Bonn, Germany
| | - Bruce Morgan
- 2 Division of Redox Regulation, German Cancer Research Center (DKFZ) , DKFZ-ZMBH Alliance, Heidelberg, Germany .,4 Cellular Biochemistry, Department of Biology, University of Kaiserslautern , Kaiserslautern, Germany
| |
Collapse
|
173
|
Zhou G, Meng S, Li Y, Ghebre YT, Cooke JP. Optimal ROS Signaling Is Critical for Nuclear Reprogramming. Cell Rep 2016; 15:919-925. [PMID: 27117405 DOI: 10.1016/j.celrep.2016.03.084] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 11/03/2015] [Accepted: 03/23/2016] [Indexed: 01/08/2023] Open
Abstract
Efficient nuclear reprogramming of somatic cells to pluripotency requires activation of innate immunity. Because innate immune activation triggers reactive oxygen species (ROS) signaling, we sought to determine whether there was a role of ROS signaling in nuclear reprogramming. We examined ROS production during the reprogramming of doxycycline (dox)-inducible mouse embryonic fibroblasts (MEFs) carrying the Yamanaka factors (Oct4, Sox2, Klf4, and c-Myc [OSKM]) into induced pluripotent stem cells (iPSCs). ROS generation was substantially increased with the onset of reprogramming. Depletion of ROS via antioxidants or Nox inhibitors substantially decreased reprogramming efficiency. Similarly, both knockdown and knockout of p22(phox)-a critical subunit of the Nox (1-4) complex-decreased reprogramming efficiency. However, excessive ROS generation using genetic and pharmacological approaches also impaired reprogramming. Overall, our data indicate that ROS signaling is activated early with nuclear reprogramming, and optimal levels of ROS signaling are essential to induce pluripotency.
Collapse
Affiliation(s)
- Gang Zhou
- Department of Cardiovascular Sciences, Center for Cardiovascular Regeneration, Houston Methodist Research Institute (HMRI), 6670 Bertner Avenue, Houston, TX 77030, USA
| | - Shu Meng
- Department of Cardiovascular Sciences, Center for Cardiovascular Regeneration, Houston Methodist Research Institute (HMRI), 6670 Bertner Avenue, Houston, TX 77030, USA
| | - Yanhui Li
- Department of Cardiovascular Sciences, Center for Cardiovascular Regeneration, Houston Methodist Research Institute (HMRI), 6670 Bertner Avenue, Houston, TX 77030, USA
| | - Yohannes T Ghebre
- Department of Cardiovascular Sciences, Center for Cardiovascular Regeneration, Houston Methodist Research Institute (HMRI), 6670 Bertner Avenue, Houston, TX 77030, USA
| | - John P Cooke
- Department of Cardiovascular Sciences, Center for Cardiovascular Regeneration, Houston Methodist Research Institute (HMRI), 6670 Bertner Avenue, Houston, TX 77030, USA.
| |
Collapse
|
174
|
DeLeon ER, Gao Y, Huang E, Arif M, Arora N, Divietro A, Patel S, Olson KR. A case of mistaken identity: are reactive oxygen species actually reactive sulfide species? Am J Physiol Regul Integr Comp Physiol 2016; 310:R549-60. [PMID: 26764057 PMCID: PMC4867382 DOI: 10.1152/ajpregu.00455.2015] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 12/31/2015] [Indexed: 12/31/2022]
Abstract
Stepwise one-electron reduction of oxygen to water produces reactive oxygen species (ROS) that are chemically and biochemically similar to reactive sulfide species (RSS) derived from one-electron oxidations of hydrogen sulfide to elemental sulfur. Both ROS and RSS are endogenously generated and signal via protein thiols. Given the similarities between ROS and RSS, we wondered whether extant methods for measuring the former would also detect the latter. Here, we compared ROS to RSS sensitivity of five common ROS methods: redox-sensitive green fluorescent protein (roGFP), 2', 7'-dihydrodichlorofluorescein, MitoSox Red, Amplex Red, and amperometric electrodes. All methods detected RSS and were as, or more, sensitive to RSS than to ROS. roGFP, arguably the "gold standard" for ROS measurement, was more than 200-fold more sensitive to the mixed polysulfide H2Sn(n = 1-8) than to H2O2 These findings suggest that RSS may be far more prevalent in intracellular signaling than previously appreciated and that the contribution of ROS may be overestimated. This conclusion is further supported by the observation that estimated daily sulfur metabolism and ROS production are approximately equal and the fact that both RSS and antioxidant mechanisms have been present since the origin of life, nearly 4 billion years ago, long before the rise in environmental oxygen 600 million years ago. Although ROS are assumed to be the most biologically relevant oxidants, our results question this paradigm. We also anticipate our findings will direct attention toward development of novel and clinically relevant anti-(RSS)-oxidants.
Collapse
Affiliation(s)
- Eric R DeLeon
- Indiana University School of Medicine-South Bend Center, South Bend, Indiana; and Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana
| | - Yan Gao
- Indiana University School of Medicine-South Bend Center, South Bend, Indiana; and
| | - Evelyn Huang
- Indiana University School of Medicine-South Bend Center, South Bend, Indiana; and Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana
| | - Maaz Arif
- Indiana University School of Medicine-South Bend Center, South Bend, Indiana; and
| | - Nitin Arora
- Indiana University School of Medicine-South Bend Center, South Bend, Indiana; and
| | - Alexander Divietro
- Indiana University School of Medicine-South Bend Center, South Bend, Indiana; and
| | - Shivali Patel
- Indiana University School of Medicine-South Bend Center, South Bend, Indiana; and
| | - Kenneth R Olson
- Indiana University School of Medicine-South Bend Center, South Bend, Indiana; and
| |
Collapse
|
175
|
Kumar S, Chaudhary AK, Kumar R, O'Malley J, Dubrovska A, Wang X, Yadav N, Goodrich DW, Chandra D. Combination therapy induces unfolded protein response and cytoskeletal rearrangement leading to mitochondrial apoptosis in prostate cancer. Mol Oncol 2016; 10:949-65. [PMID: 27106131 DOI: 10.1016/j.molonc.2016.03.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 03/13/2016] [Accepted: 03/23/2016] [Indexed: 02/07/2023] Open
Abstract
Development of therapeutic resistance is responsible for most prostate cancer (PCa) related mortality. Resistance has been attributed to an acquired or selected cancer stem cell phenotype. Here we report the histone deacetylase inhibitor apicidin (APC) or ER stressor thapsigargin (TG) potentiate paclitaxel (TXL)-induced apoptosis in PCa cells and limit accumulation of cancer stem cells. TXL-induced responses were modulated in the presence of TG with increased accumulation of cells at G1-phase, rearrangement of the cytoskeleton, and changes in cytokine release. Cytoskeletal rearrangement was associated with modulation of the cytoplasmic and mitochondrial unfolded protein response leading to mitochondrial dysfunction and release of proapoptotic proteins from mitochondria. TXL in combination with APC or TG enhanced caspase activation. Importantly, TXL in combination with TG induced caspase activation and apoptosis in X-ray resistant LNCaP cells. Increased release of transforming growth factor-beta (TGF-β) was observed while phosphorylated β-catenin level was suppressed with TXL combination treatments. This was accompanied by a decrease in the CD44(+)CD133(+) cancer stem cell-like population, suggesting treatment affects cancer stem cell properties. Taken together, combination treatment with TXL and either APC or TG induces efficient apoptosis in both proliferating and cancer stem cells, suggesting this therapeutic combination may overcome drug resistance and recurrence in PCa.
Collapse
Affiliation(s)
- Sandeep Kumar
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263, USA
| | - Ajay K Chaudhary
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263, USA
| | - Rahul Kumar
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263, USA
| | - Jordan O'Malley
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263, USA
| | - Anna Dubrovska
- OncoRay-National Center for Radiation Research in Oncology, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden and Helmholtz-Zentrum Dresden-Rossendorf, Fetscherstrasse, Dresden, Germany; German Cancer Consortium (DKTK) Dresden and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Xinjiang Wang
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263, USA
| | - Neelu Yadav
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263, USA
| | - David W Goodrich
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263, USA
| | - Dhyan Chandra
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263, USA.
| |
Collapse
|
176
|
Abstract
The circulation of the lung is unique both in volume and function. For example, it is the only organ with two circulations: the pulmonary circulation, the main function of which is gas exchange, and the bronchial circulation, a systemic vascular supply that provides oxygenated blood to the walls of the conducting airways, pulmonary arteries and veins. The pulmonary circulation accommodates the entire cardiac output, maintaining high blood flow at low intravascular arterial pressure. As compared with the systemic circulation, pulmonary arteries have thinner walls with much less vascular smooth muscle and a relative lack of basal tone. Factors controlling pulmonary blood flow include vascular structure, gravity, mechanical effects of breathing, and the influence of neural and humoral factors. Pulmonary vascular tone is also altered by hypoxia, which causes pulmonary vasoconstriction. If the hypoxic stimulus persists for a prolonged period, contraction is accompanied by remodeling of the vasculature, resulting in pulmonary hypertension. In addition, genetic and environmental factors can also confer susceptibility to development of pulmonary hypertension. Under normal conditions, the endothelium forms a tight barrier, actively regulating interstitial fluid homeostasis. Infection and inflammation compromise normal barrier homeostasis, resulting in increased permeability and edema formation. This article focuses on reviewing the basics of the lung circulation (pulmonary and bronchial), normal development and transition at birth and vasoregulation. Mechanisms contributing to pathological conditions in the pulmonary circulation, in particular when barrier function is disrupted and during development of pulmonary hypertension, will also be discussed.
Collapse
Affiliation(s)
- Karthik Suresh
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Larissa A. Shimoda
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
177
|
Stegen S, van Gastel N, Eelen G, Ghesquière B, D'Anna F, Thienpont B, Goveia J, Torrekens S, Van Looveren R, Luyten FP, Maxwell PH, Wielockx B, Lambrechts D, Fendt SM, Carmeliet P, Carmeliet G. HIF-1α Promotes Glutamine-Mediated Redox Homeostasis and Glycogen-Dependent Bioenergetics to Support Postimplantation Bone Cell Survival. Cell Metab 2016; 23:265-79. [PMID: 26863487 PMCID: PMC7611069 DOI: 10.1016/j.cmet.2016.01.002] [Citation(s) in RCA: 146] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 10/19/2015] [Accepted: 01/02/2016] [Indexed: 12/23/2022]
Abstract
Cell-based therapy is a promising strategy in regenerative medicine, but the poor survival rate of the implanted cells remains a major challenge and limits clinical translation. We preconditioned periosteal cells to the hypoxic and ischemic environment of the bone defect site by deleting prolyl hydroxylase domain-containing protein 2 (PHD2), resulting in hypoxia-inducible factor 1 alpha (HIF-1α) stabilization. This strategy increased postimplantation cell survival and improved bone regeneration. The enhanced cell viability was angiogenesis independent but relied on combined changes in glutamine and glycogen metabolism. HIF-1α stabilization stimulated glutaminase-mediated glutathione synthesis, maintaining redox homeostasis at baseline and during oxidative or nutrient stress. Simultaneously, HIF-1α signaling increased glycogen storage, preventing an energy deficit during nutrient or oxygen deprivation. Pharmacological inhibition of PHD2 recapitulated the adaptations in glutamine and glycogen metabolism and, consequently, the beneficial effects on cell survival. Thus, targeting cellular metabolism is an appealing strategy for bone regeneration and cell-based therapy in general.
Collapse
Affiliation(s)
- Steve Stegen
- Laboratory of Clinical and Experimental Endocrinology, Department of Clinical and Experimental Medicine, KU Leuven, 3000 Leuven, Belgium; Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, 3000 Leuven, Belgium
| | - Nick van Gastel
- Laboratory of Clinical and Experimental Endocrinology, Department of Clinical and Experimental Medicine, KU Leuven, 3000 Leuven, Belgium; Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, 3000 Leuven, Belgium
| | - Guy Eelen
- Laboratory of Angiogenesis & Vascular Metabolism, Vesalius Research Center, Department of Oncology, KU Leuven/VIB, 3000 Leuven, Belgium
| | - Bart Ghesquière
- Laboratory of Angiogenesis & Vascular Metabolism, Vesalius Research Center, Department of Oncology, KU Leuven/VIB, 3000 Leuven, Belgium
| | - Flora D'Anna
- Laboratory of Translational Genetics, Vesalius Research Center, Department of Oncology, KU Leuven/VIB, 3000 Leuven, Belgium
| | - Bernard Thienpont
- Laboratory of Translational Genetics, Vesalius Research Center, Department of Oncology, KU Leuven/VIB, 3000 Leuven, Belgium
| | - Jermaine Goveia
- Laboratory of Angiogenesis & Vascular Metabolism, Vesalius Research Center, Department of Oncology, KU Leuven/VIB, 3000 Leuven, Belgium
| | - Sophie Torrekens
- Laboratory of Clinical and Experimental Endocrinology, Department of Clinical and Experimental Medicine, KU Leuven, 3000 Leuven, Belgium
| | - Riet Van Looveren
- Laboratory of Clinical and Experimental Endocrinology, Department of Clinical and Experimental Medicine, KU Leuven, 3000 Leuven, Belgium
| | - Frank P Luyten
- Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, 3000 Leuven, Belgium; Skeletal Biology and Engineering Research Center, Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium
| | - Patrick H Maxwell
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XU, UK
| | - Ben Wielockx
- Heisenberg Research Group, Department of Clinical Pathobiochemistry, Institute for Clinical Chemistry and Laboratory Medicine, Technische Universität Dresden, 01069 Dresden, Germany
| | - Diether Lambrechts
- Laboratory of Translational Genetics, Vesalius Research Center, Department of Oncology, KU Leuven/VIB, 3000 Leuven, Belgium
| | - Sarah-Maria Fendt
- Laboratory of Cellular Metabolism and Metabolic Regulation, Vesalius Research Center, Department of Oncology, KU Leuven/VIB, 3000 Leuven, Belgium
| | - Peter Carmeliet
- Laboratory of Angiogenesis & Vascular Metabolism, Vesalius Research Center, Department of Oncology, KU Leuven/VIB, 3000 Leuven, Belgium
| | - Geert Carmeliet
- Laboratory of Clinical and Experimental Endocrinology, Department of Clinical and Experimental Medicine, KU Leuven, 3000 Leuven, Belgium; Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, 3000 Leuven, Belgium.
| |
Collapse
|
178
|
Waypa GB, Smith KA, Schumacker PT. O2 sensing, mitochondria and ROS signaling: The fog is lifting. Mol Aspects Med 2016; 47-48:76-89. [PMID: 26776678 DOI: 10.1016/j.mam.2016.01.002] [Citation(s) in RCA: 129] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 01/05/2016] [Accepted: 01/07/2016] [Indexed: 12/14/2022]
Abstract
Mitochondria are responsible for the majority of oxygen consumption in cells, and thus represent a conceptually appealing site for cellular oxygen sensing. Over the past 40 years, a number of mechanisms to explain how mitochondria participate in oxygen sensing have been proposed. However, no consensus has been reached regarding how mitochondria could regulate transcriptional and post-translational responses to hypoxia. Nevertheless, a growing body of data continues to implicate a role for increased reactive oxygen species (ROS) signals from the electron transport chain (ETC) in triggering responses to hypoxia in diverse cell types. The present article reviews our progress in understanding this field and considers recent advances that provide new insight, helping to lift the fog from this complex topic.
Collapse
Affiliation(s)
- Gregory B Waypa
- Department of Pediatrics, Division of Neonatology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - Kimberly A Smith
- Department of Pediatrics, Division of Neonatology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - Paul T Schumacker
- Department of Pediatrics, Division of Neonatology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA.
| |
Collapse
|
179
|
Mechanisms of Superoxide Generation and Signaling in Cytochrome bc Complexes. ADVANCES IN PHOTOSYNTHESIS AND RESPIRATION 2016. [DOI: 10.1007/978-94-017-7481-9_20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
180
|
Bilan DS, Shokhina AG, Lukyanov SA, Belousov VV. [Main Cellular Redox Couples]. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2015; 41:385-402. [PMID: 26615634 DOI: 10.1134/s1068162015040044] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Most of the living cells maintain the continuous flow of electrons, which provides them by energy. Many of the compounds are presented in a cell at the same time in the oxidized and reduced states, forming the active redox couples. Some of the redox couples, such as NAD+/NADH, NADP+/NADPH, oxidized/reduced glutathione (GSSG/GSH), are universal, as they participate in adjusting of many cellular reactions. Ratios of the oxidized and reduced forms of these compounds are important cellular redox parameters. Modern research approaches allow setting the new functions of the main redox couples in the complex organization of cellular processes. The following information is about the main cellular redox couples and their participation in various biological processes.
Collapse
|
181
|
Yang Z, Zhuan B, Yan Y, Jiang S, Wang T. Roles of different mitochondrial electron transport chain complexes in hypoxia-induced pulmonary vasoconstriction. Cell Biol Int 2015; 40:188-95. [PMID: 26454147 DOI: 10.1002/cbin.10550] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 10/09/2015] [Indexed: 11/09/2022]
Abstract
This study was designed to investigate the roles of different mitochondrial electron transport chain (ETC) complexes (I, II, III, and IV) on hypoxia-induced hypoxic pulmonary vasoconstriction (HPV). The third and fourth pulmonary arteries were collected from the normal tissues adjacent to tumors in 16 patients with lung cancer who had undergone lung cancer resections to isolate pulmonary artery smooth muscle cells (PASMCs). PASMCs were divided into seven groups and exposed to one of the following treatments: (1) normoxia (21% O(2), 5% CO(2), and 74% N(2)); (2) hypoxia (1% O(2), 5% CO(2), 94% N(2)); (3) hypoxia plus ETC complex I inhibitor MPP; (4) hypoxia plus ETC complex II inhibitor TTFA; (5) hypoxia plus ETC complex III Q(o) (pre) site inhibitor myxothiazol; (6) hypoxia plus ETC complex III Qi (post) site inhibitor antimycin A; (7) hypoxia plus ETC complex IV inhibitor NaN(3). Intracellular [Ca(2+) ]i and [ROS]i, mitochondrial [ROS]i, and PA rings tension were measured. Intracellular [Ca(2+) ]i and [ROS]i, mitochondrial [ROS]i, and PA ring tension were increased after hypoxia for 10 min. Mitochondrial ETC complex inhibitor MPP, TTFA, and myxothiazol significantly reduced [Ca(2+) ]i [ROS]i and PA tension (P < 0.01), whereas antimycin A and NaN(3) did not effectively reduce them. These results demonstrated it were mitochondrial ETC complex I, II, and III Q(o) site but not III Q(i) site and complex IV contribute to hypoxic pulmonary vasoconstriction and pulmonary hypertension.
Collapse
Affiliation(s)
- Zhao Yang
- Department of Respiratory and Critical Care Medicine, Ningxia People's Hospital, Yinchuan, 750011, China
| | - Bing Zhuan
- Department of Respiratory and Critical Care Medicine, Ningxia People's Hospital, Yinchuan, 750011, China
| | - Ying Yan
- Department of Respiratory and Critical Care Medicine, Ningxia People's Hospital, Yinchuan, 750011, China
| | - Simin Jiang
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Tao Wang
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| |
Collapse
|
182
|
Yin B, Barrionuevo G, Weber SG. Optimized real-time monitoring of glutathione redox status in single pyramidal neurons in organotypic hippocampal slices during oxygen-glucose deprivation and reperfusion. ACS Chem Neurosci 2015; 6:1838-48. [PMID: 26291433 DOI: 10.1021/acschemneuro.5b00186] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
A redox-sensitive Grx1-roGFP2 fusion protein was introduced by transfection into single pyramidal neurons in the CA1 subfield of organotypic hippocampal slice cultures (OHSCs). We assessed changes in the GSH system in neuronal cytoplasm and mitochondria during oxygen-glucose deprivation and reperfusion (OGD/RP), an in vitro model of stroke. Pyramidal cells in a narrow range of depths below the surface of the OHSC were transfected by gene gun or single-cell electroporation with cyto- or mito-Grx1-roGFP2. To mimic the conditions of acute stroke, we developed an optimized superfusion system with the capability of rapid and reproducible exchange of the solution bathing the OHSCs. Measurements of pO2 as a function of tissue depth show that in the region containing the transfected cells, the pO2 is well-controlled. We also found that the pO2 changes on the same time scale as changes in intracranial pressure, cerebral blood flow, and pO2 during acute stroke. Determining the reduction potential, EGSH, from the ratiometric fluorescence signal requires an absolute intensity measurement during calibration of the Grx1-roGFP2. Using the signal from cotransfected tdTomato as an internal standard during calibration improves quantitative measurements of Grx1-roGFP2 redox status and allows EGSH to be determined. EGSH becomes more reducing during OGD and more oxidizing during RP in mitochondria while changes in cytoplasm are not significant compared with controls.
Collapse
Affiliation(s)
- Bocheng Yin
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Germán Barrionuevo
- Department
of Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Stephen G. Weber
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
183
|
Fernández-Agüera MC, Gao L, González-Rodríguez P, Pintado CO, Arias-Mayenco I, García-Flores P, García-Pergañeda A, Pascual A, Ortega-Sáenz P, López-Barneo J. Oxygen Sensing by Arterial Chemoreceptors Depends on Mitochondrial Complex I Signaling. Cell Metab 2015; 22:825-37. [PMID: 26437605 DOI: 10.1016/j.cmet.2015.09.004] [Citation(s) in RCA: 156] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2015] [Revised: 07/17/2015] [Accepted: 09/08/2015] [Indexed: 12/30/2022]
Abstract
O2 sensing is essential for mammalian homeostasis. Peripheral chemoreceptors such as the carotid body (CB) contain cells with O2-sensitive K(+) channels, which are inhibited by hypoxia to trigger fast adaptive cardiorespiratory reflexes. How variations of O2 tension (PO2) are detected and the mechanisms whereby these changes are conveyed to membrane ion channels have remained elusive. We have studied acute O2 sensing in conditional knockout mice lacking mitochondrial complex I (MCI) genes. We inactivated Ndufs2, which encodes a protein that participates in ubiquinone binding. Ndufs2-null mice lose the hyperventilatory response to hypoxia, although they respond to hypercapnia. Ndufs2-deficient CB cells have normal functions and ATP content but are insensitive to changes in PO2. Our data suggest that chemoreceptor cells have a specialized succinate-dependent metabolism that induces an MCI state during hypoxia, characterized by the production of reactive oxygen species and accumulation of reduced pyridine nucleotides, which signal neighboring K(+) channels.
Collapse
Affiliation(s)
- M Carmen Fernández-Agüera
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Campus Hospital Universitario Virgen del Rocío, Avenida Manuel Siurot, s/n, 41013 Seville, Spain; Departamento de Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, Avenida Sánchez Pizjuan, 4, 41009 Seville, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Campus Hospital Universitario Virgen del Rocío, Avenida Manuel Siurot, s/n, 41013 Seville, Spain
| | - Lin Gao
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Campus Hospital Universitario Virgen del Rocío, Avenida Manuel Siurot, s/n, 41013 Seville, Spain; Departamento de Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, Avenida Sánchez Pizjuan, 4, 41009 Seville, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Campus Hospital Universitario Virgen del Rocío, Avenida Manuel Siurot, s/n, 41013 Seville, Spain
| | - Patricia González-Rodríguez
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Campus Hospital Universitario Virgen del Rocío, Avenida Manuel Siurot, s/n, 41013 Seville, Spain; Departamento de Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, Avenida Sánchez Pizjuan, 4, 41009 Seville, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Campus Hospital Universitario Virgen del Rocío, Avenida Manuel Siurot, s/n, 41013 Seville, Spain
| | - C Oscar Pintado
- Centro de Producción y Experimentación Animal, Universidad de Sevilla, Calle San Fernando, 4, 41004 Seville, Spain
| | - Ignacio Arias-Mayenco
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Campus Hospital Universitario Virgen del Rocío, Avenida Manuel Siurot, s/n, 41013 Seville, Spain; Departamento de Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, Avenida Sánchez Pizjuan, 4, 41009 Seville, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Campus Hospital Universitario Virgen del Rocío, Avenida Manuel Siurot, s/n, 41013 Seville, Spain
| | - Paula García-Flores
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Campus Hospital Universitario Virgen del Rocío, Avenida Manuel Siurot, s/n, 41013 Seville, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Campus Hospital Universitario Virgen del Rocío, Avenida Manuel Siurot, s/n, 41013 Seville, Spain
| | - Antonio García-Pergañeda
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Campus Hospital Universitario Virgen del Rocío, Avenida Manuel Siurot, s/n, 41013 Seville, Spain
| | - Alberto Pascual
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Campus Hospital Universitario Virgen del Rocío, Avenida Manuel Siurot, s/n, 41013 Seville, Spain
| | - Patricia Ortega-Sáenz
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Campus Hospital Universitario Virgen del Rocío, Avenida Manuel Siurot, s/n, 41013 Seville, Spain; Departamento de Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, Avenida Sánchez Pizjuan, 4, 41009 Seville, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Campus Hospital Universitario Virgen del Rocío, Avenida Manuel Siurot, s/n, 41013 Seville, Spain
| | - José López-Barneo
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Campus Hospital Universitario Virgen del Rocío, Avenida Manuel Siurot, s/n, 41013 Seville, Spain; Departamento de Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, Avenida Sánchez Pizjuan, 4, 41009 Seville, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Campus Hospital Universitario Virgen del Rocío, Avenida Manuel Siurot, s/n, 41013 Seville, Spain.
| |
Collapse
|
184
|
Sommer N, Strielkov I, Pak O, Weissmann N. Oxygen sensing and signal transduction in hypoxic pulmonary vasoconstriction. Eur Respir J 2015; 47:288-303. [PMID: 26493804 DOI: 10.1183/13993003.00945-2015] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 08/24/2015] [Indexed: 01/17/2023]
Abstract
Hypoxic pulmonary vasoconstriction (HPV), also known as the von Euler-Liljestrand mechanism, is an essential response of the pulmonary vasculature to acute and sustained alveolar hypoxia. During local alveolar hypoxia, HPV matches perfusion to ventilation to maintain optimal arterial oxygenation. In contrast, during global alveolar hypoxia, HPV leads to pulmonary hypertension. The oxygen sensing and signal transduction machinery is located in the pulmonary arterial smooth muscle cells (PASMCs) of the pre-capillary vessels, albeit the physiological response may be modulated in vivo by the endothelium. While factors such as nitric oxide modulate HPV, reactive oxygen species (ROS) have been suggested to act as essential mediators in HPV. ROS may originate from mitochondria and/or NADPH oxidases but the exact oxygen sensing mechanisms, as well as the question of whether increased or decreased ROS cause HPV, are under debate. ROS may induce intracellular calcium increase and subsequent contraction of PASMCs via direct or indirect interactions with protein kinases, phospholipases, sarcoplasmic calcium channels, transient receptor potential channels, voltage-dependent potassium channels and L-type calcium channels, whose relevance may vary under different experimental conditions. Successful identification of factors regulating HPV may allow development of novel therapeutic approaches for conditions of disturbed HPV.
Collapse
Affiliation(s)
- Natascha Sommer
- Excellence Cluster Cardiopulmonary System, University of Giessen Lung Center, German Center for Lung Research (DZL), Justus-Liebig-University, Giessen, Germany
| | - Ievgen Strielkov
- Excellence Cluster Cardiopulmonary System, University of Giessen Lung Center, German Center for Lung Research (DZL), Justus-Liebig-University, Giessen, Germany
| | - Oleg Pak
- Excellence Cluster Cardiopulmonary System, University of Giessen Lung Center, German Center for Lung Research (DZL), Justus-Liebig-University, Giessen, Germany
| | - Norbert Weissmann
- Excellence Cluster Cardiopulmonary System, University of Giessen Lung Center, German Center for Lung Research (DZL), Justus-Liebig-University, Giessen, Germany
| |
Collapse
|
185
|
Prieto-Lloret J, Shaifta Y, Ward JPT, Aaronson PI. Hypoxic pulmonary vasoconstriction in isolated rat pulmonary arteries is not inhibited by antagonists of H2 S-synthesizing pathways. J Physiol 2015; 593:385-401. [PMID: 25630260 PMCID: PMC4303384 DOI: 10.1113/jphysiol.2014.277046] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Accepted: 10/31/2014] [Indexed: 12/17/2022] Open
Abstract
An increase in the H2S (hydrogen sulphide, hereafter sulphide) concentration in pulmonary artery smooth muscle cells (PASMCs) has been proposed to mediate hypoxic pulmonary vasoconstriction (HPV). We evaluated this hypothesis in isolated rat intrapulmonary arteries (IPAs) by examining the effects of the sulphide precursor cysteine and sulphide-synthesis blockers on HPV and also on normoxic pulmonary vasoconstriction (NPV) stimulated by prostaglandin F2α (PGF2α) and by the drug LY83583, which causes contraction in IPAs by increasing cellular reactive oxygen species levels. Experiments with several blockers of cystathionine γ-lyase (CSE), the enzyme responsible for sulphide synthesis in the vasculature, demonstrated that propargylglycine (PAG, 1 mm) had little or no effect on the NPV caused by PGF2α or LY83583. Conversely, other CSE antagonists tested, aminooxyacetic acid (AOAA, 100 μm), β-cyanoalanine (BCA, 500 μm) and hydroxylamine (HA, 100 μm), altered the NPV to PGF2α (BCA increased, HA inhibited) and/or LY83583 (BCA increased, AOAA and HA inhibited). Preincubating IPAs in physiological saline solution (PSS) containing 1 mm cysteine increased the amplitude of the NPV to PGF2α by ∼50%, and had a similar effect on HPV elicited by hypoxic challenge with 0% O2. The enhancement of both responses by cysteine was abolished by pretreatment with 1 mm PAG. Measurements carried out with an amperometric electrode demonstrated that incubation with 1 mm cysteine under anoxic conditions (to minimize sulphide oxidation) greatly potentiated the release of sulphide from pieces of rat liver and that this release was strongly antagonized by PAG, indicating that at this concentration PAG could enter cells intact and antagonize CSE. PAG at 1 mm had no effect on HPV recorded in control PSS, or in PSS supplemented with physiological concentrations of cysteine (10 μm), cystine (50 μm) and glutamate (100 μm) in order to prevent the possible depletion of intracellular cysteine during experiments. Application of a combination of 1 mm cysteine and 1 mm α-ketoglutarate to promote sulphide synthesis via the cysteine aminotransferase/mercaptopyruvate sulphurtransferase (CAT/MST) pathway caused an increase in HPV similar to that observed for cysteine. This was partially blocked by the CAT antagonist aspartate (1 mm) and also by PAG. However, HPV was not increased by 1 mm α-ketoglutarate alone, and HPV in the absence of α-ketoglutarate and cysteine was not attenuated by aspartate. Pretreatment of IPAs with dithiothreitol (DTT, 1 mm), proposed to promote the conversion of mitochondrial thiosulphate to sulphide, did not increase the release of sulphide from pieces of rat liver in either the presence or the absence of 1 mm cysteine, and virtually abolished HPV. The results provide evidence that the sulphide precursor cysteine can promote both NPV and HPV in rat IPA by generating sulphide via a PAG-sensitive pathway, presumably CSE. However, HPV evoked under control conditions was unaffected by the blockade of CSE. Moreover, HPV was not affected by the CAT antagonist aspartate and was blocked rather than enhanced by DTT. The data therefore indicate that sulphide generated by CSE or CAT/MST or from thiosulphate is unlikely to contribute to O2 sensing during HPV in these arteries.
Collapse
Affiliation(s)
- Jesus Prieto-Lloret
- Division of Asthma, Allergy & Lung Biology, School of Medicine, King's College London, London, WC2R 2LS, UK
| | | | | | | |
Collapse
|
186
|
NADPH oxidases—do they play a role in TRPC regulation under hypoxia? Pflugers Arch 2015; 468:23-41. [DOI: 10.1007/s00424-015-1731-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 08/23/2015] [Accepted: 08/25/2015] [Indexed: 12/25/2022]
|
187
|
Adesina SE, Kang BY, Bijli KM, Ma J, Cheng J, Murphy TC, Michael Hart C, Sutliff RL. Targeting mitochondrial reactive oxygen species to modulate hypoxia-induced pulmonary hypertension. Free Radic Biol Med 2015; 87:36-47. [PMID: 26073127 PMCID: PMC4615392 DOI: 10.1016/j.freeradbiomed.2015.05.042] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2014] [Revised: 05/08/2015] [Accepted: 05/28/2015] [Indexed: 12/11/2022]
Abstract
Pulmonary hypertension (PH) is characterized by increased pulmonary vascular remodeling, resistance, and pressures. Reactive oxygen species (ROS) contribute to PH-associated vascular dysfunction. NADPH oxidases (Nox) and mitochondria are major sources of superoxide (O(2)(•-)) and hydrogen peroxide (H(2)O(2)) in pulmonary vascular cells. Hypoxia, a common stimulus of PH, increases Nox expression and mitochondrial ROS (mtROS) production. The interactions between these two sources of ROS generation continue to be defined. We hypothesized that mitochondria-derived O(2)(•-) (mtO(2)(•-)) and H(2)O(2) (mtH(2)O(2)) increase Nox expression to promote PH pathogenesis and that mitochondria-targeted antioxidants can reduce mtROS, Nox expression, and hypoxia-induced PH. Exposure of human pulmonary artery endothelial cells to hypoxia for 72 h increased mtO(2)(•-) and mtH(2)O(2). To assess the contribution of mtO(2)(•-) and mtH(2)O(2) to hypoxia-induced PH, mice that overexpress superoxide dismutase 2 (Tg(hSOD2)) or mitochondria-targeted catalase (MCAT) were exposed to normoxia (21% O(2)) or hypoxia (10% O(2)) for three weeks. Compared with hypoxic control mice, MCAT mice developed smaller hypoxia-induced increases in RVSP, α-SMA staining, extracellular H(2)O(2) (Amplex Red), Nox2 and Nox4 (qRT-PCR and Western blot), or cyclinD1 and PCNA (Western blot). In contrast, Tg(hSOD2) mice experienced exacerbated responses to hypoxia. These studies demonstrate that hypoxia increases mtO(2)(•-) and mtH(2)O(2). Targeting mtH(2)O(2) attenuates PH pathogenesis, whereas targeting mtO(2)(•-) exacerbates PH. These differences in PH pathogenesis were mirrored by RVSP, vessel muscularization, levels of Nox2 and Nox4, proliferation, and H(2)O(2) release. These studies suggest that targeted reductions in mtH(2)O(2) generation may be particularly effective in preventing hypoxia-induced PH.
Collapse
Affiliation(s)
- Sherry E Adesina
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Atlanta Veterans Affairs and Emory University Medical Centers, Atlanta, GA 30033, USA
| | - Bum-Yong Kang
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Atlanta Veterans Affairs and Emory University Medical Centers, Atlanta, GA 30033, USA
| | - Kaiser M Bijli
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Atlanta Veterans Affairs and Emory University Medical Centers, Atlanta, GA 30033, USA
| | - Jing Ma
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Atlanta Veterans Affairs and Emory University Medical Centers, Atlanta, GA 30033, USA
| | - Juan Cheng
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Atlanta Veterans Affairs and Emory University Medical Centers, Atlanta, GA 30033, USA
| | - Tamara C Murphy
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Atlanta Veterans Affairs and Emory University Medical Centers, Atlanta, GA 30033, USA
| | - C Michael Hart
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Atlanta Veterans Affairs and Emory University Medical Centers, Atlanta, GA 30033, USA
| | - Roy L Sutliff
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Atlanta Veterans Affairs and Emory University Medical Centers, Atlanta, GA 30033, USA.
| |
Collapse
|
188
|
Dunham-Snary KJ, Hong ZG, Xiong PY, Del Paggio JC, Herr JE, Johri AM, Archer SL. A mitochondrial redox oxygen sensor in the pulmonary vasculature and ductus arteriosus. Pflugers Arch 2015; 468:43-58. [PMID: 26395471 DOI: 10.1007/s00424-015-1736-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 09/09/2015] [Accepted: 09/15/2015] [Indexed: 12/18/2022]
Abstract
The mammalian homeostatic oxygen sensing system (HOSS) initiates changes in vascular tone, respiration, and neurosecretion that optimize oxygen uptake and tissue oxygen delivery within seconds of detecting altered environmental or arterial PO2. The HOSS includes carotid body type 1 cells, adrenomedullary cells, neuroepithelial bodies, and smooth muscle cells (SMCs) in pulmonary arteries (PAs), ductus arteriosus (DA), and fetoplacental arteries. Hypoxic pulmonary vasoconstriction (HPV) optimizes ventilation-perfusion matching. In utero, HPV diverts placentally oxygenated blood from the non-ventilated lung through the DA. At birth, increased alveolar and arterial oxygen tension dilates the pulmonary vasculature and constricts the DA, respectively, thereby transitioning the newborn to an air-breathing organism. Though modulated by endothelial-derived relaxing and constricting factors, O2 sensing is intrinsic to PASMCs and DASMCs. Within the SMC's dynamic mitochondrial network, changes in PO2 alter the reduction-oxidation state of redox couples (NAD(+)/NADH, NADP(+)/NADPH) and the production of reactive oxygen species, ROS (e.g., H2O2), by complexes I and III of the electron transport chain (ETC). ROS and redox couples regulate ion channels, transporters, and enzymes, changing intracellular calcium [Ca(2+)]i and calcium sensitivity and eliciting homeostatic responses to hypoxia. In PASMCs, hypoxia inhibits ROS production and reduces redox couples, thereby inhibiting O2-sensitive voltage-gated potassium (Kv) channels, depolarizing the plasma membrane, activating voltage-gated calcium channels (CaL), increasing [Ca(2+)]i, and causing vasoconstriction. In DASMCs, elevated PO2 causes mitochondrial fission, increasing ETC complex I activity and ROS production. The DASMC's downstream response to elevated PO2 (Kv channel inhibition, CaL activation, increased [Ca(2+)]i, and rho kinase activation) is similar to the PASMC's hypoxic response. Impaired O2 sensing contributes to human diseases, including pulmonary arterial hypertension and patent DA.
Collapse
Affiliation(s)
- Kimberly J Dunham-Snary
- Department of Medicine, Queen's University, Etherington Hall, Room 3041, 94 Stuart St, Kingston, ON, K7L 3N6, Canada
| | - Zhigang G Hong
- Department of Medicine, Queen's University, Etherington Hall, Room 3041, 94 Stuart St, Kingston, ON, K7L 3N6, Canada
| | - Ping Y Xiong
- Department of Medicine, Queen's University, Etherington Hall, Room 3041, 94 Stuart St, Kingston, ON, K7L 3N6, Canada
| | - Joseph C Del Paggio
- Department of Medicine, Queen's University, Etherington Hall, Room 3041, 94 Stuart St, Kingston, ON, K7L 3N6, Canada
| | - Julia E Herr
- Department of Medicine, Queen's University, Etherington Hall, Room 3041, 94 Stuart St, Kingston, ON, K7L 3N6, Canada
| | - Amer M Johri
- Department of Medicine, Queen's University, Etherington Hall, Room 3041, 94 Stuart St, Kingston, ON, K7L 3N6, Canada
| | - Stephen L Archer
- Department of Medicine, Queen's University, Etherington Hall, Room 3041, 94 Stuart St, Kingston, ON, K7L 3N6, Canada.
| |
Collapse
|
189
|
Wedgwood S, Lakshminrusimha S, Schumacker PT, Steinhorn RH. Cyclic stretch stimulates mitochondrial reactive oxygen species and Nox4 signaling in pulmonary artery smooth muscle cells. Am J Physiol Lung Cell Mol Physiol 2015; 309:L196-203. [PMID: 26024892 DOI: 10.1152/ajplung.00097.2014] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Accepted: 05/26/2015] [Indexed: 02/07/2023] Open
Abstract
This study was designed to determine whether cyclic stretch induces a persistent pulmonary hypertension of the newborn (PPHN) phenotype of increased NADPH oxidase (Nox) 4 signaling in control pulmonary artery smooth muscle cells (PASMC), and to identify the signal transduction molecules involved. To achieve this, PPHN was induced in lambs by antenatal ligation of the ductus arteriosus at 128 days gestation. After 9 days, lungs and PASMC were isolated from control (twin) and PPHN lambs. Control PASMC were exposed to cyclic stretch at 1 Hz and 15% elongation for 24 h. Stretch-induced Nox4 expression was attenuated by inhibition of mitochondrial complex III and NF-κB, and stretch-induced protein thiol oxidation was attenuated by Nox4 small interfering RNA and complex III inhibition. NF-κB activity was increased by stretch in a complex III-dependent fashion, and stretch-induced cyclin D1 expression was attenuated by complex III inhibition and Nox4 small interfering RNA. This is the first study to show that cyclic stretch increases Nox4 expression via mitochondrial complex III-induced activation of NF-κB in fetal PASMC, resulting in ROS signaling and increased cyclin D1 expression. Targeting these signaling molecules may attenuate pulmonary vascular remodeling associated with PPHN.
Collapse
Affiliation(s)
- Stephen Wedgwood
- Department of Pediatrics, University of California Davis Medical Center, Sacramento, California;
| | - Satyan Lakshminrusimha
- Department of Pediatrics, State University of New York at Buffalo, Buffalo, New York; and
| | - Paul T Schumacker
- Department of Pediatrics, Northwestern University, Chicago, Illinois
| | - Robin H Steinhorn
- Department of Pediatrics, University of California Davis Medical Center, Sacramento, California
| |
Collapse
|
190
|
Chen T, Zhou G, Zhou Q, Tang H, Ibe JCF, Cheng H, Gou D, Chen J, Yuan JXJ, Raj JU. Loss of microRNA-17∼92 in smooth muscle cells attenuates experimental pulmonary hypertension via induction of PDZ and LIM domain 5. Am J Respir Crit Care Med 2015; 191:678-92. [PMID: 25647182 DOI: 10.1164/rccm.201405-0941oc] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
RATIONALE Recent studies suggest that microRNAs (miRNAs) play important roles in regulation of pulmonary artery smooth muscle cell (PASMC) phenotype and are implicated in pulmonary arterial hypertension (PAH). However, the underlying molecular mechanisms remain elusive. OBJECTIVES This study aims to understand the mechanisms regulating PASMC proliferation and differentiation by microRNA-17∼92 (miR-17∼92) and to elucidate its implication in PAH. METHODS We generated smooth muscle cell (SMC)-specific miR-17∼92 and PDZ and LIM domain 5 (PDLIM5) knockout mice and overexpressed miR-17∼92 and PDLIM5 by injection of miR-17∼92 mimics or PDLIM5-V5-His plasmids and measured their responses to hypoxia. We used miR-17∼92 mimics, inhibitors, overexpression vectors, small interfering RNAs against PDLIM5, Smad, and transforming growth factor (TGF)-β to determine the role of miR-17∼92 and its downstream targets in PASMC proliferation and differentiation. MEASUREMENTS AND MAIN RESULTS We found that human PASMC (HPASMC) from patients with PAH expressed decreased levels of the miR-17∼92 cluster, TGF-β, and SMC markers. Overexpression of miR-17∼92 increased and restored the expression of TGF-β3, Smad3, and SMC markers in HPASMC of normal subjects and patients with idiopathic PAH, respectively. Knockdown of Smad3 but not Smad2 prevented miR-17∼92-induced expression of SMC markers. SMC-specific knockout of miR-17∼92 attenuated hypoxia-induced pulmonary hypertension (PH) in mice, whereas reconstitution of miR-17∼92 restored hypoxia-induced PH in these mice. We also found that PDLIM5 is a direct target of miR-17/20a, and hypertensive HPASMC and mouse PASMC expressed elevated PDLIM5 levels. Suppression of PDLIM5 increased expression of SMC markers and enhanced TGF-β/Smad2/3 activity in vitro and enhanced hypoxia-induced PH in vivo, whereas overexpression of PDLIM5 attenuated hypoxia-induced PH. CONCLUSIONS We provided the first evidence that miR-17∼92 inhibits PDLIM5 to induce the TGF-β3/SMAD3 pathway, contributing to the pathogenesis of PAH.
Collapse
|
191
|
DeLeon ER, Huang ES, Gao Y, Olson KR. Redox activities of hydrogen sulfide and polysulfides; implications in oxygen sensing. Nitric Oxide 2015. [DOI: 10.1016/j.niox.2015.02.136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
192
|
Lu H, Wang R, Xiong J, Xie H, Kayser B, Jia ZP. In search for better pharmacological prophylaxis for acute mountain sickness: looking in other directions. Acta Physiol (Oxf) 2015; 214:51-62. [PMID: 25778288 DOI: 10.1111/apha.12490] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 02/23/2015] [Accepted: 03/11/2015] [Indexed: 12/15/2022]
Abstract
Despite decades of research, the exact pathogenic mechanisms underlying acute mountain sickness (AMS) are still poorly understood. This fact frustrates the search for novel pharmacological prophylaxis for AMS. The prevailing view is that AMS results from an insufficient physiological response to hypoxia and that prophylaxis should aim at stimulating the response. Starting off from the opposite hypothesis that AMS may be caused by an initial excessive response to hypoxia, we suggest that directly or indirectly blunting-specific parts of the response might provide promising research alternatives. This reasoning is based on the observations that (i) humans, once acclimatized, can climb Mt Everest experiencing arterial partial oxygen pressures (PaO2) as low as 25 mmHg without AMS symptoms; (ii) paradoxically, AMS usually develops at much higher PaO2 levels; and (iii) several biomarkers, suggesting initial activation of specific pathways at such PaO2, are correlated with AMS. Apart from looking for substances that stimulate certain hypoxia triggered effects, such as the ventilatory response to hypoxia, we suggest to also investigate pharmacological means aiming at blunting certain other specific hypoxia-activated pathways, or stimulating their agonists, in the quest for better pharmacological prophylaxis for AMS.
Collapse
Affiliation(s)
- H Lu
- Key Laboratory of the Plateau of Environmental Damage Control, Lanzhou General Hospital of Lanzhou Military Command, Lanzhou, China
| | | | | | | | | | | |
Collapse
|
193
|
Lu H, Wang R, Xiong J, Xie H, Kayser B, Jia ZP. In search for better pharmacological prophylaxis for acute mountain sickness: looking in other directions. Acta Physiol (Oxf) 2015; 214:51-62. [PMID: 25753758 DOI: 10.1111/apha.12486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 02/27/2015] [Accepted: 03/05/2015] [Indexed: 11/29/2022]
Abstract
Despite decades of research, the exact pathogenic mechanisms underlying acute mountain sickness (AMS) are still poorly understood. This fact frustrates the search for novel pharmacological prophylaxis for AMS. The prevailing view is that AMS results from an insufficient physiological response to hypoxia and that prophylaxis should aim at stimulating the response. Starting off from the opposite hypothesis that AMS may be caused by an initial excessive response to hypoxia we suggest that directly or indirectly blunting specific parts of the response might provide promising research alternatives. This reasoning is based on the observations that 1) humans, once acclimatized, can climb Mt Everest experiencing arterial partial oxygen pressures (PaO2 ) as low as 25 mmHg without AMS symptoms, 2) paradoxically AMS usually develops at much higher PaO2 levels, and 3) several biomarkers, suggesting initial activation of specific pathways at such PaO2 , are correlated with AMS. Apart from looking for substances that stimulate certain hypoxia triggered effects, such as the ventilatory response to hypoxia, we suggest to also investigate pharmacological means aiming at blunting certain other specific hypoxia activated pathways, or stimulating their agonists, in the quest for better pharmacological prophylaxis for AMS. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Hui Lu
- Key Laboratory of the plateau of environmental damage control, Lanzhou General Hospital of Lanzhou Military Command, Lanzhou, China
| | | | | | | | | | | |
Collapse
|
194
|
RasGAP Promotes Autophagy and Thereby Suppresses Platelet-Derived Growth Factor Receptor-Mediated Signaling Events, Cellular Responses, and Pathology. Mol Cell Biol 2015; 35:1673-85. [PMID: 25733681 DOI: 10.1128/mcb.01248-14] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 02/24/2015] [Indexed: 11/20/2022] Open
Abstract
Platelet-derived growth factors (PDGFs) and their receptors (PDGFRs) make profound contributions to both physiology and pathology. While it is widely believed that direct (PDGF-mediated) activation is the primary mode of activating PDGFRs, the discovery that they can also be activated indirectly begs the question of the relevance of the indirect mode of activating PDGFRs. In the context of a blinding eye disease, indirect activation of PDGFRα results in persistent signaling, which suppresses the level of p53 and thereby promotes viability of cells that drive pathogenesis. Under the same conditions, PDGFRβ fails to undergo indirect activation. In this paper, we report that RasGAP (GTPase-activating protein of Ras) prevented indirect activation of PDGFRβ. RasGAP, which associates with PDGFRβ but not PDGFRα, reduced the level of mitochondrion-derived reactive oxygen species, which are required for enduring activation of PDGFRs. Furthermore, preventing PDGFRβ from associating with RasGAP allowed it to signal enduringly and drive pathogenesis of a blinding eye disease. These results indicate a previously unappreciated role of RasGAP in antagonizing indirect activation of PDGFRβ, define the underlying mechanism, and raise the possibility that PDGFRβ-mediated diseases involve indirect activation of PDGFRβ.
Collapse
|
195
|
Veit F, Pak O, Brandes RP, Weissmann N. Hypoxia-dependent reactive oxygen species signaling in the pulmonary circulation: focus on ion channels. Antioxid Redox Signal 2015; 22:537-52. [PMID: 25545236 PMCID: PMC4322788 DOI: 10.1089/ars.2014.6234] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
SIGNIFICANCE An acute lack of oxygen in the lung causes hypoxic pulmonary vasoconstriction, which optimizes gas exchange. In contrast, chronic hypoxia triggers a pathological vascular remodeling causing pulmonary hypertension, and ischemia can cause vascular damage culminating in lung edema. RECENT ADVANCES Regulation of ion channel expression and gating by cellular redox state is a widely accepted mechanism; however, it remains a matter of debate whether an increase or a decrease in reactive oxygen species (ROS) occurs under hypoxic conditions. Ion channel redox regulation has been described in detail for some ion channels, such as Kv channels or TRPC6. However, in general, information on ion channel redox regulation remains scant. CRITICAL ISSUES AND FUTURE DIRECTIONS In addition to the debate of increased versus decreased ROS production during hypoxia, we aim here at describing and deciphering why different oxidants, under different conditions, can cause both activation and inhibition of channel activity. While the upstream pathways affecting channel gating are often well described, we need a better understanding of redox protein modifications to be able to determine the complexity of ion channel redox regulation. Against this background, we summarize the current knowledge on hypoxia-induced ROS-mediated ion channel signaling in the pulmonary circulation.
Collapse
Affiliation(s)
- Florian Veit
- 1 Excellence Cluster Cardiopulmonary System (ECCPS), Universities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL) , Giessen, Germany
| | | | | | | |
Collapse
|
196
|
Abstract
SIGNIFICANCE Although oxygen (O2)-sensing cells and tissues have been known for decades, the identity of the O2-sensing mechanism has remained elusive. Evidence is accumulating that O2-dependent metabolism of hydrogen sulfide (H2S) is this enigmatic O2 sensor. RECENT ADVANCES The elucidation of biochemical pathways involved in H2S synthesis and metabolism have shown that reciprocal H2S/O2 interactions have been inexorably linked throughout eukaryotic evolution; there are multiple foci by which O2 controls H2S inactivation, and the effects of H2S on downstream signaling events are consistent with those activated by hypoxia. H2S-mediated O2 sensing has been demonstrated in a variety of O2-sensing tissues in vertebrate cardiovascular and respiratory systems, including smooth muscle in systemic and respiratory blood vessels and airways, carotid body, adrenal medulla, and other peripheral as well as central chemoreceptors. CRITICAL ISSUES Information is now needed on the intracellular location and stoichometry of these signaling processes and how and which downstream effectors are activated by H2S and its metabolites. FUTURE DIRECTIONS Development of specific inhibitors of H2S metabolism and effector activation as well as cellular organelle-targeted compounds that release H2S in a time- or environmentally controlled way will not only enhance our understanding of this signaling process but also provide direction for future therapeutic applications.
Collapse
Affiliation(s)
- Kenneth R Olson
- Department of Physiology, Indiana University School of Medicine-South Bend , South Bend, India na
| |
Collapse
|
197
|
Peroxiredoxin-5 targeted to the mitochondrial intermembrane space attenuates hypoxia-induced reactive oxygen species signalling. Biochem J 2015; 456:337-46. [PMID: 24044889 DOI: 10.1042/bj20130740] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The ability to adapt to acute and chronic hypoxia is critical for cellular survival. Two established functional responses to hypoxia include the regulation of gene transcription by HIF (hypoxia-inducible factor), and the constriction of pulmonary arteries in response to alveolar hypoxia. The mechanism of O2 sensing in these responses is not established, but some studies implicate hypoxia-induced mitochondrial ROS (reactive oxygen species) signalling. To further test this hypothesis, we expressed PRDX5 (peroxiredoxin-5), a H2O2 scavenger, in the IMS (mitochondrial intermembrane space), reasoning that the scavenging of ROS in that compartment should abrogate cellular responses triggered by the release of mitochondrial oxidants to the cytosol. Using adenoviral expression of IMS-PRDX5 (IMS-targeted PRDX5) in PASMCs (pulmonary artery smooth muscle cells) we show that IMS-PRDX5 inhibits hypoxia-induced oxidant signalling in the IMS and cytosol. It also inhibits HIF-1α stabilization and HIF activity in a dose-dependent manner without disrupting cellular oxygen consumption. IMS-PRDX5 expression also attenuates the increase in cytosolic [Ca(2+)] in PASMCs during hypoxia. These results extend previous work by demonstrating the importance of IMS-derived ROS signalling in both the HIF and lung vascular responses to hypoxia.
Collapse
|
198
|
MNRR1 (formerly CHCHD2) is a bi-organellar regulator of mitochondrial metabolism. Mitochondrion 2015; 20:43-51. [DOI: 10.1016/j.mito.2014.10.003] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Revised: 09/12/2014] [Accepted: 10/08/2014] [Indexed: 12/20/2022]
|
199
|
Huertas-Migueláñez M, Mora D, Cano I, Maier D, Gomez-Cabrero D, Lluch-Ariet M, Miralles F. Simulation environment and graphical visualization environment: a COPD use-case. J Transl Med 2014; 12 Suppl 2:S7. [PMID: 25471327 PMCID: PMC4255913 DOI: 10.1186/1479-5876-12-s2-s7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Today, many different tools are developed to execute and visualize physiological models that represent the human physiology. Most of these tools run models written in very specific programming languages which in turn simplify the communication among models. Nevertheless, not all of these tools are able to run models written in different programming languages. In addition, interoperability between such models remains an unresolved issue. RESULTS In this paper we present a simulation environment that allows, first, the execution of models developed in different programming languages and second the communication of parameters to interconnect these models. This simulation environment, developed within the Synergy-COPD project, aims at helping and supporting bio-researchers and medical students understand the internal mechanisms of the human body through the use of physiological models. This tool is composed of a graphical visualization environment, which is a web interface through which the user can interact with the models, and a simulation workflow management system composed of a control module and a data warehouse manager. The control module monitors the correct functioning of the whole system. The data warehouse manager is responsible for managing the stored information and supporting its flow among the different modules. CONCLUSION It has been proved that the simulation environment presented here allows the user to research and study the internal mechanisms of the human physiology by the use of models via a graphical visualization environment. A new tool for bio-researchers is ready for deployment in various use cases scenarios.
Collapse
Affiliation(s)
| | - Daniel Mora
- Barcelona Digital Technology Centre, 08018 Barcelona, Spain
| | - Isaac Cano
- Hospital Clinic, IDIBAPS, Universitat de Barcelona, 08036 Barcelona, Spain
| | - Dieter Maier
- Biomax Informatics, AG, D-82152 Planegg, Germany
| | - David Gomez-Cabrero
- Unit of Computational Medicine, Department of Medicine, Karolinska Institutet, 171 77 Solna, Sweden
| | | | - Felip Miralles
- Barcelona Digital Technology Centre, 08018 Barcelona, Spain
| |
Collapse
|
200
|
Sullivan LB, Chandel NS. Mitochondrial reactive oxygen species and cancer. Cancer Metab 2014; 2:17. [PMID: 25671107 PMCID: PMC4323058 DOI: 10.1186/2049-3002-2-17] [Citation(s) in RCA: 523] [Impact Index Per Article: 47.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Accepted: 08/27/2014] [Indexed: 02/07/2023] Open
Abstract
Mitochondria produce reactive oxygen species (mROS) as a natural by-product of electron transport chain activity. While initial studies focused on the damaging effects of reactive oxygen species, a recent paradigm shift has shown that mROS can act as signaling molecules to activate pro-growth responses. Cancer cells have long been observed to have increased production of ROS relative to normal cells, although the implications of this increase were not always clear. This is especially interesting considering cancer cells often also induce expression of antioxidant proteins. Here, we discuss how cancer-associated mutations and microenvironments can increase production of mROS, which can lead to activation of tumorigenic signaling and metabolic reprogramming. This tumorigenic signaling also increases expression of antioxidant proteins to balance the high production of ROS to maintain redox homeostasis. We also discuss how cancer-specific modifications to ROS and antioxidants may be targeted for therapy.
Collapse
Affiliation(s)
- Lucas B Sullivan
- The Koch Institute for Integrative Cancer Research at Massachusetts Institute of Technology, Cambridge, MA 02139 USA
| | - Navdeep S Chandel
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, The Feinberg School of Medicine, Northwestern University, Chicago, IL 60611 USA
| |
Collapse
|