151
|
Kayigire XA, Friedrich SO, van der Merwe L, Donald PR, Diacon AH. Simultaneous staining of sputum smears for acid-fast and lipid-containing Myobacterium tuberculosis can enhance the clinical evaluation of antituberculosis treatments. Tuberculosis (Edinb) 2015; 95:770-779. [DOI: 10.1016/j.tube.2015.08.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 07/24/2015] [Accepted: 08/02/2015] [Indexed: 10/23/2022]
|
152
|
Abstract
Our understanding of the host-pathogen relationship in tuberculosis (TB) can help guide drug discovery in at least two ways. First, the recognition that host immunopathology affects lesional TB drug distribution means that pharmacokinetic evaluation of drug candidates needs to move beyond measurements of drug levels in blood, whole lungs, or alveolar epithelial lining fluid to include measurements in specific types of lesions. Second, by restricting the replication of M. tuberculosis (Mtb) subpopulations in latent TB infection and in active disease, the host immune response puts Mtb into a state associated with phenotypic tolerance to TB drugs selected for their activity against replicating Mtb. This has spurred a major effort to conduct high throughput screens in vitro for compounds that can kill Mtb when it is replicating slowly if at all. Each condition used in vitro to slow Mtb's replication and thereby model the phenotypically drug-tolerant state has advantages and disadvantages. Lead candidates emerging from such in vitro studies face daunting challenges in the design of proof-of-concept studies in animal models. Moreover, some non-replicating subpopulations of Mtb fail to resume replication when plated on agar, although their viability is demonstrable by other means. There is as yet no widely replicated assay in which to screen compounds for their ability to kill this 'viable but non-culturable' subpopulation. Despite these hurdles, drugs that can kill slowly replicating or non-replicating Mtb may offer our best hope for treatment-shortening combination chemotherapy of TB.
Collapse
Affiliation(s)
- Carl Nathan
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY, USA
| | | |
Collapse
|
153
|
Abstract
The world is in need of more effective approaches to controlling tuberculosis. The development of improved control strategies has been hampered by deficiencies in the tools available for detecting Mycobacterium tuberculosis and defining the dynamic consequences of the interaction of M. tuberculosis with its human host. Key needs include a highly sensitive, specific nonsputum diagnostic; biomarkers predictive of responses to therapy; correlates of risk for disease development; and host response-independent markers of M. tuberculosis infection. Tools able to sensitively detect and quantify total body M. tuberculosis burden might well be transformative across many needed use cases. Here, we review the current state of the field, paying particular attention to needed changes in experimental paradigms that would facilitate the discovery, validation, and development of such tools.
Collapse
Affiliation(s)
- Jennifer L Gardiner
- Discovery and Translational Sciences, Global Health, Bill & Melinda Gates Foundation, Seattle, WA 98102
| | - Christopher L Karp
- Discovery and Translational Sciences, Global Health, Bill & Melinda Gates Foundation, Seattle, WA 98102
| |
Collapse
|
154
|
Hammond RJH, Baron VO, Oravcova K, Lipworth S, Gillespie SH. Phenotypic resistance in mycobacteria: is it because I am old or fat that I resist you? J Antimicrob Chemother 2015; 70:2823-7. [DOI: 10.1093/jac/dkv178] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 06/02/2015] [Indexed: 11/13/2022] Open
|
155
|
Kell D, Potgieter M, Pretorius E. Individuality, phenotypic differentiation, dormancy and 'persistence' in culturable bacterial systems: commonalities shared by environmental, laboratory, and clinical microbiology. F1000Res 2015; 4:179. [PMID: 26629334 PMCID: PMC4642849 DOI: 10.12688/f1000research.6709.2] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/04/2015] [Indexed: 01/28/2023] Open
Abstract
For bacteria, replication mainly involves growth by binary fission. However, in a very great many natural environments there are examples of phenotypically dormant, non-growing cells that do not replicate immediately and that are phenotypically 'nonculturable' on media that normally admit their growth. They thereby evade detection by conventional culture-based methods. Such dormant cells may also be observed in laboratory cultures and in clinical microbiology. They are usually more tolerant to stresses such as antibiotics, and in clinical microbiology they are typically referred to as 'persisters'. Bacterial cultures necessarily share a great deal of relatedness, and inclusive fitness theory implies that there are conceptual evolutionary advantages in trading a variation in growth rate against its mean, equivalent to hedging one's bets. There is much evidence that bacteria exploit this strategy widely. We here bring together data that show the commonality of these phenomena across environmental, laboratory and clinical microbiology. Considerable evidence, using methods similar to those common in environmental microbiology, now suggests that many supposedly non-communicable, chronic and inflammatory diseases are exacerbated (if not indeed largely caused) by the presence of dormant or persistent bacteria (the ability of whose components to cause inflammation is well known). This dormancy (and resuscitation therefrom) often reflects the extent of the availability of free iron. Together, these phenomena can provide a ready explanation for the continuing inflammation common to such chronic diseases and its correlation with iron dysregulation. This implies that measures designed to assess and to inhibit or remove such organisms (or their access to iron) might be of much therapeutic benefit.
Collapse
Affiliation(s)
- Douglas Kell
- School of Chemistry and The Manchester Institute of Biotechnology, The University of Manchester, Manchester, Lancashire, M1 7DN, UK
| | - Marnie Potgieter
- Department of Physiology, Faculty of Health Sciences, University of Pretoria, Arcadia, 0007, South Africa
| | - Etheresia Pretorius
- Department of Physiology, Faculty of Health Sciences, University of Pretoria, Arcadia, 0007, South Africa
| |
Collapse
|
156
|
Kell D, Potgieter M, Pretorius E. Individuality, phenotypic differentiation, dormancy and 'persistence' in culturable bacterial systems: commonalities shared by environmental, laboratory, and clinical microbiology. F1000Res 2015; 4:179. [PMID: 26629334 DOI: 10.12688/f1000research.6709.1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/29/2015] [Indexed: 01/28/2023] Open
Abstract
For bacteria, replication mainly involves growth by binary fission. However, in a very great many natural environments there are examples of phenotypically dormant, non-growing cells that do not replicate immediately and that are phenotypically 'nonculturable' on media that normally admit their growth. They thereby evade detection by conventional culture-based methods. Such dormant cells may also be observed in laboratory cultures and in clinical microbiology. They are usually more tolerant to stresses such as antibiotics, and in clinical microbiology they are typically referred to as 'persisters'. Bacterial cultures necessarily share a great deal of relatedness, and inclusive fitness theory implies that there are conceptual evolutionary advantages in trading a variation in growth rate against its mean, equivalent to hedging one's bets. There is much evidence that bacteria exploit this strategy widely. We here bring together data that show the commonality of these phenomena across environmental, laboratory and clinical microbiology. Considerable evidence, using methods similar to those common in environmental microbiology, now suggests that many supposedly non-communicable, chronic and inflammatory diseases are exacerbated (if not indeed largely caused) by the presence of dormant or persistent bacteria (the ability of whose components to cause inflammation is well known). This dormancy (and resuscitation therefrom) often reflects the extent of the availability of free iron. Together, these phenomena can provide a ready explanation for the continuing inflammation common to such chronic diseases and its correlation with iron dysregulation. This implies that measures designed to assess and to inhibit or remove such organisms (or their access to iron) might be of much therapeutic benefit.
Collapse
Affiliation(s)
- Douglas Kell
- School of Chemistry and The Manchester Institute of Biotechnology, The University of Manchester, Manchester, Lancashire, M1 7DN, UK
| | - Marnie Potgieter
- Department of Physiology, Faculty of Health Sciences, University of Pretoria, Arcadia, 0007, South Africa
| | - Etheresia Pretorius
- Department of Physiology, Faculty of Health Sciences, University of Pretoria, Arcadia, 0007, South Africa
| |
Collapse
|
157
|
Hu Y, Liu A, Ortega-Muro F, Alameda-Martin L, Mitchison D, Coates A. High-dose rifampicin kills persisters, shortens treatment duration, and reduces relapse rate in vitro and in vivo. Front Microbiol 2015; 6:641. [PMID: 26157437 PMCID: PMC4477163 DOI: 10.3389/fmicb.2015.00641] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 06/12/2015] [Indexed: 11/21/2022] Open
Abstract
Although high-dose rifampicin holds promise for improving tuberculosis control by potentially shortening treatment duration, these effects attributed to eradication of persistent bacteria are unclear. The presence of persistent Mycobacterium tuberculosis was examined using resuscitation promoting factors (RPFs) in both in vitro hypoxia and in vivo murine tuberculosis models before and after treatment with incremental doses of rifampicin. Pharmacokinetic parameters and dose-dependent profile of rifampicin in the murine model were determined. The Cornell mouse model was used to test efficacy of high-dose rifampicin in combination with isoniazid and pyrazinamide and to measure relapse rate. There were large numbers of RPF-dependent persisters in vitro and in vivo. Stationary phase cultures were tolerant to rifampicin while higher concentrations of rifampicin eradicated plate count positive but not RPF-dependent persistent bacteria. In murine infection model, incremental doses of rifampicin exhibited a dose-dependent eradication of RPF-dependent persisters. Increasing the dose of rifampicin significantly reduced the risk of antibiotic resistance emergence. In Cornell model, mice treated with high-dose rifampicin regimen resulted in faster visceral clearance; organs were M. tuberculosis free 8 weeks post-treatment compared to 14 weeks with standard-dose rifampicin regimen. Organ sterility, plate count and RPF-dependent persister negative, was achieved. There was no disease relapse compared to the standard dose regimen (87.5%). High-dose rifampicin therapy results in eradication of RPF-dependent persisters, allowing shorter treatment duration without disease relapse. Optimizing rifampicin to its maximal efficacy with acceptable side-effect profiles will provide valuable information in human studies and can potentially improve current tuberculosis chemotherapy.
Collapse
Affiliation(s)
- Yanmin Hu
- Institute for Infection and Immunity, St George's, University of London London, UK
| | - Alexander Liu
- Centre for Clinical Magnetic Resonance Research, University of Oxford Oxford, UK
| | - Fatima Ortega-Muro
- GlaxoSmithKline Research and Development, Diseases of Developing World Madrid, Spain
| | - Laura Alameda-Martin
- GlaxoSmithKline Research and Development, Diseases of Developing World Madrid, Spain
| | - Denis Mitchison
- Institute for Infection and Immunity, St George's, University of London London, UK
| | - Anthony Coates
- Institute for Infection and Immunity, St George's, University of London London, UK
| |
Collapse
|
158
|
Nikitushkin VD, Demina GR, Shleeva MO, Guryanova SV, Ruggiero A, Berisio R, Kaprelyants AS. A product of RpfB and RipA joint enzymatic action promotes the resuscitation of dormant mycobacteria. FEBS J 2015; 282:2500-11. [PMID: 25846449 DOI: 10.1111/febs.13292] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Revised: 03/25/2015] [Accepted: 03/30/2015] [Indexed: 11/29/2022]
Abstract
Resuscitation-promoting factor proteins (Rpfs) are known to participate in reactivating the dormant forms of actinobacteria. Structural analysis of the Rpf catalytic domain demonstrates its similarity to lysozyme and to lytic transglycosylases - the groups of enzymes that cleave the β-1,4-glycosidic bond between N-acetylmuramic acid (MurNAc) and GlcNAc, and concomitantly form a 1,6-anhydro ring at the MurNAc residue. Analysis of the products formed from mycobacterial peptidoglycan hydrolysis reactions containing a mixture of RpfB and resuscitation-promoting factor interacting protein (RipA) allowed us to identify the suggested product of their action - N-acetylglucosaminyl-β(1 → 4)-N-glycolyl-1,6-anhydromuramyl-L-alanyl-D-isoglutamate. To identify the role of this resulting product in resuscitation, we used a synthetic 1,6-anhydrodisaccharide-dipeptide, and tested its ability to stimulate resuscitation by using the dormant Mycobacterium smegmatis model. It was found that the disaccharide-dipeptide was the minimal structure capable of resuscitating the dormant mycobacterial cells over the concentration range of 9-100 ng · mL(-1). The current study therefore provides the first insights into the molecular mechanism of resuscitation from dormancy involving a product of RpfB/RipA-mediated peptidoglycan cleavage.
Collapse
Affiliation(s)
- Vadim D Nikitushkin
- A.N. Bach Institute of Biochemistry, Russian Academy of Sciences, Moscow, Russia
| | - Galina R Demina
- A.N. Bach Institute of Biochemistry, Russian Academy of Sciences, Moscow, Russia
| | - Margarita O Shleeva
- A.N. Bach Institute of Biochemistry, Russian Academy of Sciences, Moscow, Russia
| | - Svetlana V Guryanova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Alessia Ruggiero
- Institute of Biostructures and Bioimaging, C.N.R., Napoli, Italy
| | - Rita Berisio
- Institute of Biostructures and Bioimaging, C.N.R., Napoli, Italy
| | - Arseny S Kaprelyants
- A.N. Bach Institute of Biochemistry, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
159
|
Latent tuberculosis infection: myths, models, and molecular mechanisms. Microbiol Mol Biol Rev 2015; 78:343-71. [PMID: 25184558 DOI: 10.1128/mmbr.00010-14] [Citation(s) in RCA: 169] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The aim of this review is to present the current state of knowledge on human latent tuberculosis infection (LTBI) based on clinical studies and observations, as well as experimental in vitro and animal models. Several key terms are defined, including "latency," "persistence," "dormancy," and "antibiotic tolerance." Dogmas prevalent in the field are critically examined based on available clinical and experimental data, including the long-held beliefs that infection is either latent or active, that LTBI represents a small population of nonreplicating, "dormant" bacilli, and that caseous granulomas are the haven for LTBI. The role of host factors, such as CD4(+) and CD8(+) T cells, T regulatory cells, tumor necrosis factor alpha (TNF-α), and gamma interferon (IFN-γ), in controlling TB infection is discussed. We also highlight microbial regulatory and metabolic pathways implicated in bacillary growth restriction and antibiotic tolerance under various physiologically relevant conditions. Finally, we pose several clinically important questions, which remain unanswered and will serve to stimulate future research on LTBI.
Collapse
|
160
|
Evangelopoulos D, McHugh TD. Improving the tuberculosis drug development pipeline. Chem Biol Drug Des 2015; 86:951-60. [PMID: 25772393 DOI: 10.1111/cbdd.12549] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 02/04/2015] [Accepted: 02/24/2015] [Indexed: 11/28/2022]
Abstract
Mycobacterium tuberculosis is considered one of the most successful pathogens and multidrug-resistant tuberculosis, a disease that urgently requires new chemical entities to be developed for treatment. There are currently several new molecules under clinical investigation in the tuberculosis (TB) drug development pipeline. However, the complex lifestyle of M. tuberculosis within the host presents a barrier to the development of new drugs. In this review, we highlight the reasons that make TB drug discovery and development challenging as well as providing solutions, future directions and alternative approaches to new therapeutics for TB.
Collapse
Affiliation(s)
| | - Timothy D McHugh
- Centre for Clinical Microbiology, University College London, London, NW3 2PF, UK
| |
Collapse
|
161
|
Sloan DJ, Mwandumba HC, Garton NJ, Khoo SH, Butterworth AE, Allain TJ, Heyderman RS, Corbett EL, Barer MR, Davies GR. Pharmacodynamic Modeling of Bacillary Elimination Rates and Detection of Bacterial Lipid Bodies in Sputum to Predict and Understand Outcomes in Treatment of Pulmonary Tuberculosis. Clin Infect Dis 2015; 61:1-8. [PMID: 25778753 PMCID: PMC4463005 DOI: 10.1093/cid/civ195] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Accepted: 02/26/2015] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Antibiotic-tolerant bacterial persistence prevents treatment shortening in drug-susceptible tuberculosis, and accumulation of intracellular lipid bodies has been proposed to identify a persister phenotype of Mycobacterium tuberculosis cells. In Malawi, we modeled bacillary elimination rates (BERs) from sputum cultures and calculated the percentage of lipid body-positive acid-fast bacilli (%LB + AFB) on sputum smears. We assessed whether these putative measurements of persistence predict unfavorable outcomes (treatment failure/relapse). METHODS Adults with pulmonary tuberculosis received standard 6-month therapy. Sputum samples were collected during the first 8 weeks for serial sputum colony counting (SSCC) on agar and time-to positivity (TTP) measurement in mycobacterial growth indicator tubes. BERs were extracted from nonlinear and linear mixed-effects models, respectively, fitted to these datasets. The %LB + AFB counts were assessed by fluorescence microscopy. Patients were followed until 1 year posttreatment. Individual BERs and %LB + AFB counts were related to final outcomes. RESULTS One hundred and thirty-three patients (56% HIV coinfected) participated, and 15 unfavorable outcomes were reported. These were inversely associated with faster sterilization phase bacillary elimination from the SSCC model (odds ratio [OR], 0.39; 95% confidence interval [CI], .22-.70) and a faster BER from the TTP model (OR, 0.71; 95% CI, .55-.94). Higher %LB + AFB counts on day 21-28 were recorded in patients who suffered unfavorable final outcomes compared with those who achieved stable cure (P = .008). CONCLUSIONS Modeling BERs predicts final outcome, and high %LB + AFB counts 3-4 weeks into therapy may identify a persister bacterial phenotype. These methods deserve further evaluation as surrogate endpoints for clinical trials.
Collapse
Affiliation(s)
- Derek J Sloan
- Malawi Liverpool Wellcome Trust Clinical Research Programme, College of Medicine, University of Malawi, Blantyre Liverpool Heart and Chest Hospital Liverpool School of Tropical Medicine, United Kingdom Department of Microbiology Department of Medicine, College of Medicine, University of Malawi, Blantyre
| | - Henry C Mwandumba
- Malawi Liverpool Wellcome Trust Clinical Research Programme, College of Medicine, University of Malawi, Blantyre Department of Microbiology Department of Medicine, College of Medicine, University of Malawi, Blantyre
| | - Natalie J Garton
- Department of Infection, Immunity and Inflammation, University of Leicester
| | - Saye H Khoo
- Department of Pharmacology, University of Liverpool
| | | | - Theresa J Allain
- Department of Medicine, College of Medicine, University of Malawi, Blantyre
| | - Robert S Heyderman
- Malawi Liverpool Wellcome Trust Clinical Research Programme, College of Medicine, University of Malawi, Blantyre Department of Medicine, College of Medicine, University of Malawi, Blantyre
| | - Elizabeth L Corbett
- Malawi Liverpool Wellcome Trust Clinical Research Programme, College of Medicine, University of Malawi, Blantyre Department of Microbiology London School of Hygiene and Tropical Medicine
| | - Mike R Barer
- Department of Infection, Immunity and Inflammation, University of Leicester
| | - Geraint R Davies
- Malawi Liverpool Wellcome Trust Clinical Research Programme, College of Medicine, University of Malawi, Blantyre Department of Medicine, College of Medicine, University of Malawi, Blantyre Institute of Infection and Global Health, University of Liverpool, United Kingdom
| |
Collapse
|
162
|
Walter ND, Dolganov GM, Garcia BJ, Worodria W, Andama A, Musisi E, Ayakaka I, Van TT, Voskuil MI, de Jong BC, Davidson RM, Fingerlin TE, Kechris K, Palmer C, Nahid P, Daley CL, Geraci M, Huang L, Cattamanchi A, Strong M, Schoolnik GK, Davis JL. Transcriptional Adaptation of Drug-tolerant Mycobacterium tuberculosis During Treatment of Human Tuberculosis. J Infect Dis 2015; 212:990-8. [PMID: 25762787 DOI: 10.1093/infdis/jiv149] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2014] [Accepted: 03/02/2015] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Treatment initiation rapidly kills most drug-susceptible Mycobacterium tuberculosis, but a bacterial subpopulation tolerates prolonged drug exposure. We evaluated drug-tolerant bacilli in human sputum by comparing messenger RNA (mRNA) expression of drug-tolerant bacilli that survive the early bactericidal phase with treatment-naive bacilli. METHODS M. tuberculosis gene expression was quantified via reverse-transcription polymerase chain reaction in serial sputa from 17 Ugandans treated for drug-susceptible pulmonary tuberculosis. RESULTS Within 4 days, bacterial mRNA abundance declined >98%, indicating rapid killing. Thereafter, the rate of decline slowed >94%, indicating drug tolerance. After 14 days, 16S ribosomal RNA transcripts/genome declined 96%, indicating slow growth. Drug-tolerant bacilli displayed marked downregulation of genes associated with growth, metabolism, and lipid synthesis and upregulation in stress responses and key regulatory categories-including stress-associated sigma factors, transcription factors, and toxin-antitoxin genes. Drug efflux pumps were upregulated. The isoniazid stress signature was induced by initial drug exposure, then disappeared after 4 days. CONCLUSIONS Transcriptional patterns suggest that drug-tolerant bacilli in sputum are in a slow-growing, metabolically and synthetically downregulated state. Absence of the isoniazid stress signature in drug-tolerant bacilli indicates that physiological state influences drug responsiveness in vivo. These results identify novel drug targets that should aid in development of novel shorter tuberculosis treatment regimens.
Collapse
Affiliation(s)
- Nicholas D Walter
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Denver, Aurora Pulmonary Division, Denver Veterans Administration Medical Center, Colorado
| | - Gregory M Dolganov
- Department of Microbiology and Immunology, Stanford University, California
| | - Benjamin J Garcia
- Integrated Center for Genes, Environment, and Health, National Jewish Health, Denver Computational Bioscience Program, University of Colorado Denver, Aurora
| | - William Worodria
- Makerere University-University of California, San Francisco Research Collaboration, Kampala, Uganda
| | - Alfred Andama
- Makerere University-University of California, San Francisco Research Collaboration, Kampala, Uganda
| | - Emmanuel Musisi
- Makerere University-University of California, San Francisco Research Collaboration, Kampala, Uganda
| | - Irene Ayakaka
- Makerere University-University of California, San Francisco Research Collaboration, Kampala, Uganda
| | - Tran T Van
- Department of Microbiology and Immunology, Stanford University, California
| | - Martin I Voskuil
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora
| | | | - Rebecca M Davidson
- Integrated Center for Genes, Environment, and Health, National Jewish Health, Denver
| | - Tasha E Fingerlin
- Department of Epidemiology and Biostatistics Department of Biostatistics and Informatics, Colorado School of Public Health, Aurora
| | - Katerina Kechris
- Department of Biostatistics and Informatics, Colorado School of Public Health, Aurora
| | - Claire Palmer
- Department of Biostatistics and Informatics, Colorado School of Public Health, Aurora
| | - Payam Nahid
- Division of Pulmonary and Critical Care Medicine, University of California San Francisco
| | - Charles L Daley
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Denver, Aurora Division of Mycobacterial and Respiratory Infections, National Jewish Health, Denver, Colorado
| | - Mark Geraci
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Denver, Aurora
| | - Laurence Huang
- Division of Pulmonary and Critical Care Medicine, University of California San Francisco HIV/AIDS Division, University of California San Francisco
| | - Adithya Cattamanchi
- Division of Pulmonary and Critical Care Medicine, University of California San Francisco
| | - Michael Strong
- Integrated Center for Genes, Environment, and Health, National Jewish Health, Denver
| | - Gary K Schoolnik
- Department of Microbiology and Immunology, Stanford University, California
| | - John Lucian Davis
- Division of Pulmonary and Critical Care Medicine, University of California San Francisco
| |
Collapse
|
163
|
Turapov O, Glenn S, Kana B, Makarov V, Andrew PW, Mukamolova GV. The in vivo environment accelerates generation of resuscitation-promoting factor-dependent mycobacteria. Am J Respir Crit Care Med 2015; 190:1455-7. [PMID: 25496107 DOI: 10.1164/rccm.201407-1289le] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
164
|
Chao WC, Huang YW, Yu MC, Yang WT, Lin CJ, Lee JJ, Huang RM, Shieh CC, Chien ST, Chien JY. Outcome correlation of smear-positivity but culture-negativity during standard anti-tuberculosis treatment in Taiwan. BMC Infect Dis 2015; 15:67. [PMID: 25886042 PMCID: PMC4339296 DOI: 10.1186/s12879-015-0795-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 02/02/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The appearance of smear-positivity but culture-negativity (SPCN) for acid-fast bacilli among sputum specimen is frequently found in pulmonary tuberculosis (TB) patients during treatment. This study aimed to investigate clinical risk factors, impacts on treatment course, and relapse pattern associated with sputum SPCN. METHODS We retrospectively enrolled 800 patients with culture-proven pulmonary TB who were receiving standard treatment and follow-up at six TB-referral hospitals in Taiwan between January 2006 and December 2007. Relevant patient characteristics and chemotherapy data were analyzed for associations with incidence of SPCN. Data from patients who relapsed within 3 years after completing treatment were analyzed for associations with SPCN during treatment. RESULTS Of the 800 subjects, 111 (13.8%) had sputum SPCN during treatment. Three factors were found to predict the development of SPCN; namely, high initial acid-fast staining grading (OR, 3.407; 95% CI, 2.090-5.553), cavitation on chest-X ray films (OR, 2.217; 95% CI, 1.359-3.615), and smoking (OR, 1.609; 95% CI, 1.006-2.841). Patients with SPCN had longer treatment duration (rifampicin: 284 ± 91 vs. 235 ± 69 days, P <0.001; isoniazid: 289 ± 90 vs. 234 ± 69 days, P < 0.001) than those without SPCN. Finally, the rate of relapse within 3 years of completing treatment was similar for groups with/without SPCN (2.7%, 3/111 vs. 1.0%, 7/689, respectively; P = 0.15). CONCLUSIONS In conclusion, severity of infection was a major risk factor for SPCN during treatment; however, the relapse rate within 3 years of completing treatment was not affected by the appearance of SPCN.
Collapse
Affiliation(s)
- Wen-Cheng Chao
- Institute of Clinical Medicine, National Cheng Kung University Medical College, Tainan, Taiwan.
- Department of Internal Medicine, Taichung Veteran General Hospital Chiayi Branch, Chiayi, Taiwan.
| | - Yi-Wen Huang
- Chang-Hua Hospital, Ministry of Health and Welfare, Changhua, Taiwan.
| | - Ming-Chih Yu
- Department of Internal Medicine, Taipei Medical University-Wan Fang Hospital, Taipei, Taiwan.
| | - Wen-Ta Yang
- Taichung Hospital, Ministry of Health and Welfare, Taichung, Taiwan.
| | - Chou-Jui Lin
- Tao-Yuan Hospital, Ministry of Health and Welfare, Tao-Yuan, Taiwan.
| | - Jen-Jyh Lee
- Department of Internal Medicine, Buddhist Tzu Chi General Hospital, Tzu Chi University, Hualien, Taiwan.
| | - Ruay-Ming Huang
- Hua-Lien Hospital, Ministry of Health and Welfare, Hualien, Taiwan.
| | - Chi-Chang Shieh
- Institute of Clinical Medicine, National Cheng Kung University Medical College, Tainan, Taiwan.
| | - Shun-Tien Chien
- Chest Hospital, Ministry of Health and Welfare, #864, Zhongshan Rd, Rende District, Tainan, 717, Taiwan.
| | - Jung-Yien Chien
- Chest Hospital, Ministry of Health and Welfare, #864, Zhongshan Rd, Rende District, Tainan, 717, Taiwan.
- Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, Taiwan.
| |
Collapse
|
165
|
Utility of propidium monoazide viability assay as a biomarker for a tuberculosis disease. Tuberculosis (Edinb) 2014; 95:179-85. [PMID: 25534168 DOI: 10.1016/j.tube.2014.11.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 11/22/2014] [Indexed: 11/21/2022]
Abstract
Reliable laboratory diagnosis of tuberculosis (TB), including laboratory biomarkers of cure, remains a challenge. In our study we evaluated the performance of a Propidium Monoazide (PMA) assay for the detection of viable TB bacilli in sputum specimens during anti-TB chemotherapy and its potential use as a TB biomarker. The study was conducted at three centres on 1937 sputum specimens from 310 adult bacteriologically confirmed pulmonary TB patients obtained before commencing anti-TB treatment and at regular intervals afterwards. Performance of the PMA assay was assessed using various readout assays with bacteriology culture results and time to positivity on liquid media used as reference standards. Treatment of sputum with N-acetyl-cysteine was found to be fully compatible with the PMA assay. Good sensitivity and specificity (97.5% and 70.7-80.0%) for detection of live TB bacilli was achieved using the Xpert(®) MTB/RIF test as a readout assay. Tentative Ct and ΔCt thresholds for the Xpert(®) MTB/RIF system were proposed. Good correlation (r = 0.61) between Ct values and time to positivity of TB cultures on liquid media was demonstrated. The PMA method has potential in monitoring bacterial load in sputum specimens and so may have a role as a biomarker of cure in TB treatment.
Collapse
|
166
|
Bowness R, Boeree MJ, Aarnoutse R, Dawson R, Diacon A, Mangu C, Heinrich N, Ntinginya NE, Kohlenberg A, Mtafya B, Phillips PPJ, Rachow A, Plemper van Balen G, Gillespie SH. The relationship between Mycobacterium tuberculosis MGIT time to positivity and cfu in sputum samples demonstrates changing bacterial phenotypes potentially reflecting the impact of chemotherapy on critical sub-populations. J Antimicrob Chemother 2014; 70:448-55. [PMID: 25344806 DOI: 10.1093/jac/dku415] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVES The relationship between cfu and Mycobacterial Growth Indicator Tube (MGIT) time to positivity (TTP) is uncertain. We attempted to understand this relationship and create a mathematical model to relate these two methods of determining mycobacterial load. METHODS Sequential bacteriological load data from clinical trials determined by MGIT and cfu were collected and mathematical models derived. All model fittings were conducted in the R statistical software environment (version 3.0.2), using the lm and nls functions. RESULTS TTP showed a negative correlation with log10 cfu on all 14 days of the study. There was an increasing gradient of the regression line and y-intercept as treatment progressed. There was also a trend towards an increasing gradient with higher doses of rifampicin. CONCLUSIONS These data suggest that there is a population of mycobacterial cells that are more numerous when detected in liquid than on solid medium. Increasing doses of rifampicin differentially kill this group of organisms. These findings support the idea that increased doses of rifampicin are more effective.
Collapse
Affiliation(s)
- Ruth Bowness
- School of Medicine, University of St Andrews, Fife KY16 9AJ, UK
| | - Martin J Boeree
- Radboud University Medical Center, Department of Pulmonary Diseases, Nijmegen, The Netherlands
| | - Rob Aarnoutse
- Radboud University Medical Center, Department of Clinical Pharmacy, Nijmegen, The Netherlands
| | - Rodney Dawson
- Division of Pulmonology, Department of Medicine and University of Cape Town Lung Institute, Cape Town, South Africa
| | - Andreas Diacon
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Chacha Mangu
- NIMR-Mbeya Medical Research Centre, PO Box 2410, Mbeya, Tanzania
| | - Norbert Heinrich
- Department for Infectious Diseases and Tropical Medicine, University of Munich, Munich, Germany DZIF German Centre for Infection Research, Munich, Germany
| | | | - Anke Kohlenberg
- NIMR-Mbeya Medical Research Centre, PO Box 2410, Mbeya, Tanzania Department for Infectious Diseases and Tropical Medicine, University of Munich, Munich, Germany
| | - Bariki Mtafya
- NIMR-Mbeya Medical Research Centre, PO Box 2410, Mbeya, Tanzania
| | | | - Andrea Rachow
- Department for Infectious Diseases and Tropical Medicine, University of Munich, Munich, Germany DZIF German Centre for Infection Research, Munich, Germany
| | | | | |
Collapse
|
167
|
Mgode GF, Cohen-Bacrie S, Bedotto M, Weetjens BJ, Cox C, Jubitana M, Kuipers D, Machang'u RS, Kazwala R, Mfinanga SG, Kaufmann SHE, Drancourt M. Mycobacterium genotypes in pulmonary tuberculosis infections and their detection by trained African giant pouched rats. Curr Microbiol 2014; 70:212-8. [PMID: 25274413 DOI: 10.1007/s00284-014-0705-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 08/19/2014] [Indexed: 11/28/2022]
Abstract
Tuberculosis (TB) diagnosis in low-income countries is mainly done by microscopy. Hence, little is known about the diversity of Mycobacterium spp. in TB infections. Different genotypes or lineages of Mycobacterium tuberculosis vary in virulence and induce different inflammatory and immune responses. Trained Cricetomys rats show a potential for rapid diagnosis of TB. They detect over 28 % of smear-negative, culture-positive TB. However, it is unknown whether these rats can equally detect sputa from patients infected with different genotypes of M. tuberculosis. A 4-month prospective study on diversity of Mycobacterium spp. was conducted in Dar es Salaam, Tanzania. 252 sputa from 161 subjects were cultured on Lowenstein-Jensen medium and thereafter tested by rats. Mycobacterial isolates were subjected to molecular identification and multispacer sequence typing (MST) to determine species and genotypes. A total of 34 Mycobacterium spp. isolates consisting of 32 M. tuberculosis, 1 M. avium subsp. hominissuis and 1 M. intracellulare were obtained. MST analyses of 26 M. tuberculosis isolates yielded 10 distinct MST genotypes, including 3 new genotypes with two clusters of related patterns not grouped by geographic areas. Genotype MST-67, shared by one-third of M. tuberculosis isolates, was associated with the Mwananyamala clinic. This study shows that diverse M. tuberculosis genotypes (n = 10) occur in Dar es Salaam and trained rats detect 80 % of the genotypes. Sputa with two M. tuberculosis genotypes (20 %), M. avium hominissuis and M. intracellulare were not detected. Therefore, rats detect sputa with different M. tuberculosis genotypes and can be used to detect TB in resource-poor countries.
Collapse
Affiliation(s)
- Georgies F Mgode
- Department of Immunology, Max Planck Institute for Infection Biology, Charitéplatz 1, Campus Charité Mitte, 10117, Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
168
|
Salina EG, Waddell SJ, Hoffmann N, Rosenkrands I, Butcher PD, Kaprelyants AS. Potassium availability triggers Mycobacterium tuberculosis transition to, and resuscitation from, non-culturable (dormant) states. Open Biol 2014; 4:140106. [PMID: 25320096 PMCID: PMC4221891 DOI: 10.1098/rsob.140106] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 09/18/2014] [Indexed: 12/24/2022] Open
Abstract
Dormancy in non-sporulating bacteria is an interesting and underexplored phenomenon with significant medical implications. In particular, latent tuberculosis may result from the maintenance of Mycobacterium tuberculosis bacilli in non-replicating states in infected individuals. Uniquely, growth of M. tuberculosis in aerobic conditions in potassium-deficient media resulted in the generation of bacilli that were non-culturable (NC) on solid media but detectable in liquid media. These bacilli were morphologically distinct and tolerant to cell-wall-targeting antimicrobials. Bacterial counts on solid media quickly recovered after washing and incubating bacilli in fresh resuscitation media containing potassium. This resuscitation of growth occurred too quickly to be attributed to M. tuberculosis replication. Transcriptomic and proteomic profiling through adaptation to, and resuscitation from, this NC state revealed a switch to anaerobic respiration and a shift to lipid and amino acid metabolism. High concordance with mRNA signatures derived from M. tuberculosis infection models suggests that analogous NC mycobacterial phenotypes may exist during disease and may represent unrecognized populations in vivo. Resuscitation of NC bacilli in potassium-sufficient media was characterized by time-dependent activation of metabolic pathways in a programmed series of processes that probably transit bacilli through challenging microenvironments during infection.
Collapse
Affiliation(s)
- Elena G Salina
- Institution of the Russian Academy of Sciences A.N. Bach Institute of Biochemistry RAS, Moscow, Russia
| | - Simon J Waddell
- Brighton and Sussex Medical School, University of Sussex, Brighton, UK
| | - Nadine Hoffmann
- Department of Infectious Disease Immunology, Statens Serum Institut, Copenhagen, Denmark
| | - Ida Rosenkrands
- Department of Infectious Disease Immunology, Statens Serum Institut, Copenhagen, Denmark
| | - Philip D Butcher
- Institute for Infection and Immunity, St George's University of London, London, UK
| | - Arseny S Kaprelyants
- Institution of the Russian Academy of Sciences A.N. Bach Institute of Biochemistry RAS, Moscow, Russia
| |
Collapse
|
169
|
Williams CML, Cheah ESG, Malkin J, Patel H, Otu J, Mlaga K, Sutherland JS, Antonio M, Perera N, Woltmann G, Haldar P, Garton NJ, Barer MR. Face mask sampling for the detection of Mycobacterium tuberculosis in expelled aerosols. PLoS One 2014; 9:e104921. [PMID: 25122163 PMCID: PMC4133242 DOI: 10.1371/journal.pone.0104921] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Accepted: 07/13/2014] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND Although tuberculosis is transmitted by the airborne route, direct information on the natural output of bacilli into air by source cases is very limited. We sought to address this through sampling of expelled aerosols in face masks that were subsequently analyzed for mycobacterial contamination. METHODS In series 1, 17 smear microscopy positive patients wore standard surgical face masks once or twice for periods between 10 minutes and 5 hours; mycobacterial contamination was detected using a bacteriophage assay. In series 2, 19 patients with suspected tuberculosis were studied in Leicester UK and 10 patients with at least one positive smear were studied in The Gambia. These subjects wore one FFP30 mask modified to contain a gelatin filter for one hour; this was subsequently analyzed by the Xpert MTB/RIF system. RESULTS In series 1, the bacteriophage assay detected live mycobacteria in 11/17 patients with wearing times between 10 and 120 minutes. Variation was seen in mask positivity and the level of contamination detected in multiple samples from the same patient. Two patients had non-tuberculous mycobacterial infections. In series 2, 13/20 patients with pulmonary tuberculosis produced positive masks and 0/9 patients with extrapulmonary or non-tuberculous diagnoses were mask positive. Overall, 65% of patients with confirmed pulmonary mycobacterial infection gave positive masks and this included 3/6 patients who received diagnostic bronchoalveolar lavages. CONCLUSION Mask sampling provides a simple means of assessing mycobacterial output in non-sputum expectorant. The approach shows potential for application to the study of airborne transmission and to diagnosis.
Collapse
Affiliation(s)
- Caroline M. L. Williams
- Department of Infection, Immunity and Inflammation, University of Leicester, Leicester, United Kingdom
| | - Eddy S. G. Cheah
- Department of Infection, Immunity and Inflammation, University of Leicester, Leicester, United Kingdom
| | - Joanne Malkin
- Department of Infection, Immunity and Inflammation, University of Leicester, Leicester, United Kingdom
- Department of Clinical Microbiology, University Hospitals of Leicester NHS Trust, Leicester, United Kingdom
| | - Hemu Patel
- Department of Clinical Microbiology, University Hospitals of Leicester NHS Trust, Leicester, United Kingdom
| | - Jacob Otu
- Medical Research Council Unit, Banjul, The Gambia
| | | | | | | | - Nelun Perera
- Department of Clinical Microbiology, University Hospitals of Leicester NHS Trust, Leicester, United Kingdom
| | - Gerrit Woltmann
- Department of Respiratory Medicine, Glenfield Hospital, Leicester, United Kingdom
| | - Pranabashis Haldar
- Department of Infection, Immunity and Inflammation, University of Leicester, Leicester, United Kingdom
- Department of Respiratory Medicine, Glenfield Hospital, Leicester, United Kingdom
- National Institute of Health Research Respiratory Biomedical Research Unit, Glenfield Hospital, Leicester, United Kingdom
| | - Natalie J. Garton
- Department of Infection, Immunity and Inflammation, University of Leicester, Leicester, United Kingdom
| | - Michael R. Barer
- Department of Infection, Immunity and Inflammation, University of Leicester, Leicester, United Kingdom
- Department of Clinical Microbiology, University Hospitals of Leicester NHS Trust, Leicester, United Kingdom
| |
Collapse
|
170
|
Geluk A, van Meijgaarden KE, Joosten SA, Commandeur S, Ottenhoff THM. Innovative Strategies to Identify M. tuberculosis Antigens and Epitopes Using Genome-Wide Analyses. Front Immunol 2014; 5:256. [PMID: 25009541 PMCID: PMC4069478 DOI: 10.3389/fimmu.2014.00256] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 05/16/2014] [Indexed: 11/26/2022] Open
Abstract
In view of the fact that only a small part of the Mtb expressome has been explored for identification of antigens capable of activating human T-cell responses, which is critically required for the design of better TB vaccination strategies, more emphasis should be placed on innovative ways to discover new Mtb antigens and explore their function at the several stages of infection. Better protective antigens for TB-vaccines are urgently needed, also in view of the disappointing results of the MVA85 vaccine, which failed to induce additional protection in BCG-vaccinated infants (1). Moreover, immune responses to relevant antigens may be useful to identify TB-specific biomarker signatures. Here, we describe the potency of novel tools and strategies to reveal such Mtb antigens. Using proteins specific for different Mtb infection phases, many new antigens of the latency-associated Mtb DosR-regulon as well as resuscitation promoting factor proteins, associated with resuscitating TB, were discovered that were recognized by CD4+ and CD8+ T-cells. Furthermore, by employing MHC binding algorithms and bioinformatics combined with high-throughput human T-cell screens and tetramers, HLA-class Ia restricted polyfunctional CD8+ T-cells were identified in TB patients. Comparable methods, led to the identification of HLA-E-restricted Mtb epitopes recognized by CD8+ T-cells. A genome-wide unbiased antigen discovery approach was applied to analyze the in vivo Mtb gene expression profiles in the lungs of mice, resulting in the identification of IVE-TB antigens, which are expressed during infection in the lung, the main target organ of Mtb. IVE-TB antigens induce strong T-cell responses in long-term latently Mtb infected individuals, and represent an interesting new group of TB antigens for vaccination. In summary, new tools have helped expand our view on the Mtb antigenome involved in human cellular immunity and provided new candidates for TB vaccination.
Collapse
Affiliation(s)
- Annemieke Geluk
- Department of Infectious Diseases, Leiden University Medical Center , Leiden , Netherlands
| | | | - Simone A Joosten
- Department of Infectious Diseases, Leiden University Medical Center , Leiden , Netherlands
| | - Susanna Commandeur
- Department of Infectious Diseases, Leiden University Medical Center , Leiden , Netherlands
| | - Tom H M Ottenhoff
- Department of Infectious Diseases, Leiden University Medical Center , Leiden , Netherlands
| |
Collapse
|
171
|
Li L, Mendis N, Trigui H, Oliver JD, Faucher SP. The importance of the viable but non-culturable state in human bacterial pathogens. Front Microbiol 2014; 5:258. [PMID: 24917854 PMCID: PMC4040921 DOI: 10.3389/fmicb.2014.00258] [Citation(s) in RCA: 589] [Impact Index Per Article: 53.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 05/12/2014] [Indexed: 12/12/2022] Open
Abstract
Many bacterial species have been found to exist in a viable but non-culturable (VBNC) state since its discovery in 1982. VBNC cells are characterized by a loss of culturability on routine agar, which impairs their detection by conventional plate count techniques. This leads to an underestimation of total viable cells in environmental or clinical samples, and thus poses a risk to public health. In this review, we present recent findings on the VBNC state of human bacterial pathogens. The characteristics of VBNC cells, including the similarities and differences to viable, culturable cells and dead cells, and different detection methods are discussed. Exposure to various stresses can induce the VBNC state, and VBNC cells may be resuscitated back to culturable cells under suitable stimuli. The conditions that trigger the induction of the VBNC state and resuscitation from it are summarized and the mechanisms underlying these two processes are discussed. Last but not least, the significance of VBNC cells and their potential influence on human health are also reviewed.
Collapse
Affiliation(s)
- Laam Li
- Department of Natural Resource Sciences, Faculty of Agricultural and Environmental Sciences, McGill University Ste-Anne-de-Bellevue, QC, Canada
| | - Nilmini Mendis
- Department of Natural Resource Sciences, Faculty of Agricultural and Environmental Sciences, McGill University Ste-Anne-de-Bellevue, QC, Canada
| | - Hana Trigui
- Department of Natural Resource Sciences, Faculty of Agricultural and Environmental Sciences, McGill University Ste-Anne-de-Bellevue, QC, Canada
| | - James D Oliver
- Department of Biology, University of North Carolina at Charlotte Charlotte, NC, USA
| | - Sebastien P Faucher
- Department of Natural Resource Sciences, Faculty of Agricultural and Environmental Sciences, McGill University Ste-Anne-de-Bellevue, QC, Canada
| |
Collapse
|
172
|
The molecular bacterial load assay replaces solid culture for measuring early bactericidal response to antituberculosis treatment. J Clin Microbiol 2014; 52:3064-7. [PMID: 24871215 DOI: 10.1128/jcm.01128-14] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We evaluated the use of the molecular bacterial load (MBL) assay, for measuring viable Mycobacterium tuberculosis in sputum, in comparison with solid agar and liquid culture. The MBL assay provides early information on the rate of decline in bacterial load and has technical advantages over culture in either form.
Collapse
|
173
|
New antituberculosis drugs, regimens, and adjunct therapies: needs, advances, and future prospects. THE LANCET. INFECTIOUS DISEASES 2014; 14:327-40. [DOI: 10.1016/s1473-3099(13)70328-1] [Citation(s) in RCA: 262] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
174
|
Machowski EE, Senzani S, Ealand C, Kana BD. Comparative genomics for mycobacterial peptidoglycan remodelling enzymes reveals extensive genetic multiplicity. BMC Microbiol 2014; 14:75. [PMID: 24661741 PMCID: PMC3987819 DOI: 10.1186/1471-2180-14-75] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Accepted: 03/12/2014] [Indexed: 02/04/2023] Open
Abstract
Background Mycobacteria comprise diverse species including non-pathogenic, environmental organisms, animal disease agents and human pathogens, notably Mycobacterium tuberculosis. Considering that the mycobacterial cell wall constitutes a significant barrier to drug penetration, the aim of this study was to conduct a comparative genomics analysis of the repertoire of enzymes involved in peptidoglycan (PG) remodelling to determine the potential of exploiting this area of bacterial metabolism for the discovery of new drug targets. Results We conducted an in silico analysis of 19 mycobacterial species/clinical strains for the presence of genes encoding resuscitation promoting factors (Rpfs), penicillin binding proteins, endopeptidases, L,D-transpeptidases and N-acetylmuramoyl-L-alanine amidases. Our analysis reveals extensive genetic multiplicity, allowing for classification of mycobacterial species into three main categories, primarily based on their rpf gene complement. These include the M. tuberculosis Complex (MTBC), other pathogenic mycobacteria and environmental species. The complement of these genes within the MTBC and other mycobacterial pathogens is highly conserved. In contrast, environmental strains display significant genetic expansion in most of these gene families. Mycobacterium leprae retains more than one functional gene from each enzyme family, underscoring the importance of genetic multiplicity for PG remodelling. Notably, the highest degree of conservation is observed for N-acetylmuramoyl-L-alanine amidases suggesting that these enzymes are essential for growth and survival. Conclusion PG remodelling enzymes in a range of mycobacterial species are associated with extensive genetic multiplicity, suggesting functional diversification within these families of enzymes to allow organisms to adapt.
Collapse
Affiliation(s)
| | | | | | - Bavesh Davandra Kana
- DST/NRF Centre of Excellence for Biomedical TB Research, Faculty of Health Sciences, University of the Witwatersrand, National Health Laboratory Service, P,O, Box 1038, Johannesburg 2000, South Africa.
| |
Collapse
|
175
|
Antimicrobial treatment improves mycobacterial survival in nonpermissive growth conditions. Antimicrob Agents Chemother 2014; 58:2798-806. [PMID: 24590482 PMCID: PMC3993263 DOI: 10.1128/aac.02774-13] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Antimicrobials targeting cell wall biosynthesis are generally considered inactive against nonreplicating bacteria. Paradoxically, we found that under nonpermissive growth conditions, exposure of Mycobacterium bovis BCG bacilli to such antimicrobials enhanced their survival. We identified a transcriptional regulator, RaaS (for regulator of antimicrobial-assisted survival), encoded by bcg1279 (rv1219c) as being responsible for the observed phenomenon. Induction of this transcriptional regulator resulted in reduced expression of specific ATP-dependent efflux pumps and promoted long-term survival of mycobacteria, while its deletion accelerated bacterial death under nonpermissive growth conditions in vitro and during macrophage or mouse infection. These findings have implications for the design of antimicrobial drug combination therapies for persistent infectious diseases, such as tuberculosis.
Collapse
|
176
|
|
177
|
Shleeva M, Goncharenko A, Kudykina Y, Young D, Young M, Kaprelyants A. Cyclic AMP-dependent resuscitation of dormant Mycobacteria by exogenous free fatty acids. PLoS One 2013; 8:e82914. [PMID: 24376605 PMCID: PMC3871856 DOI: 10.1371/journal.pone.0082914] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Accepted: 10/29/2013] [Indexed: 12/26/2022] Open
Abstract
One third of the world population carries a latent tuberculosis (TB) infection, which may reactivate leading to active disease. Although TB latency has been known for many years it remains poorly understood. In particular, substances of host origin, which may induce the resuscitation of dormant mycobacteria, have not yet been described. In vitro models of dormant ("non-culturable") cells of Mycobacterium smegmatis (mc(2)155) and Mycobacterium tuberculosis H37Rv were used. We found that the resuscitation of dormant M. smegmatis and M. tuberculosis cells in liquid medium was stimulated by adding free unsaturated fatty acids (FA), including arachidonic acid, at concentrations of 1.6-10 µM. FA addition enhanced cAMP levels in reactivating M. smegmatis cells and exogenously added cAMP (3-10 mM) or dibutyryl-cAMP (0.5-1 mM) substituted for FA, causing resuscitation of M. smegmatis and M. tuberculosis dormant cells. A M. smegmatis null-mutant lacking MSMEG_4279, which encodes a FA-activated adenylyl cyclase (AC), could not be resuscitated by FA but it was resuscitated by cAMP. M. smegmatis and M. tuberculosis cells hyper-expressing AC were unable to form non-culturable cells and a specific inhibitor of AC (8-bromo-cAMP) prevented FA-dependent resuscitation. RT-PCR analysis revealed that rpfA (coding for resuscitation promoting factor A) is up-regulated in M. smegmatis in the beginning of exponential growth following the cAMP increase in lag phase caused by FA-induced cell activation. A specific Rpf inhibitor (4-benzoyl-2-nitrophenylthiocyanate) suppressed FA-induced resuscitation. We propose a novel pathway for the resuscitation of dormant mycobacteria involving the activation of adenylyl cyclase MSMEG_4279 by FAs resulted in activation of cellular metabolism followed later by increase of RpfA activity which stimulates cell multiplication in exponential phase. The study reveals a probable role for lipids of host origin in the resuscitation of dormant mycobacteria, which may function during the reactivation of latent TB.
Collapse
Affiliation(s)
- Margarita Shleeva
- Bach Institute of Biochemistry Russian Academy of Sciences, Moscow, Russia
| | - Anna Goncharenko
- Bach Institute of Biochemistry Russian Academy of Sciences, Moscow, Russia
| | - Yuliya Kudykina
- Bach Institute of Biochemistry Russian Academy of Sciences, Moscow, Russia
| | - Danielle Young
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, United Kingdom
| | - Michael Young
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, United Kingdom
| | - Arseny Kaprelyants
- Bach Institute of Biochemistry Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
178
|
Kolwijck E, Friedrich SO, Karinja MN, van Ingen J, Warren RM, Diacon AH. Early stationary phase culture supernatant accelerates growth of sputum cultures collected after initiation of anti-tuberculosis treatment. Clin Microbiol Infect 2013; 20:O418-20. [PMID: 24188165 DOI: 10.1111/1469-0691.12441] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2013] [Revised: 10/21/2013] [Accepted: 10/30/2013] [Indexed: 11/28/2022]
Abstract
We investigated the effect of Mycobacterium tuberculosis culture supernatant added to sputum cultures collected during the first 8 weeks of anti-tuberculosis treatment. With ongoing treatment duration, time to culture positivity decreased significantly in supernatant-enriched cultures, possibly due to stimulation of dormant or slowly metabolizing M. tuberculosis cells.
Collapse
Affiliation(s)
- E Kolwijck
- Department of Medical Microbiology, Radboud University Nijmegen Medical Centre, Nijmegen, the Netherlands; Division of Medical Physiology, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | | | | | | | | | | |
Collapse
|
179
|
The biology of mycobacterium tuberculosis infection. Mediterr J Hematol Infect Dis 2013; 5:e2013070. [PMID: 24363885 PMCID: PMC3867229 DOI: 10.4084/mjhid.2013.070] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Accepted: 11/15/2013] [Indexed: 01/13/2023] Open
Abstract
Tuberculosis (TB) still poses a major threat to mankind and during the last thirty years we have seen a recrudescence of the disease even in countries where TB was thought to be conquered. It is common opinion that more effective control tools such as new diagnostics, a new vaccine and new drugs are urgently needed to control the global pandemic, though the so far insufficient understanding of the Mycobacterium tuberculosis (Mtb) mechanism of pathogenesis is a major obstacle for the development of these control tools. In this review, we will summarize the recent advancement in the understanding of Mtb biology and on the pathogenesis of Mtb infection with emphasis on latent infection, with the change in paradigm of the last few years where the dichotomy between latent and active disease has been reconsidered in favor of a dynamic equilibrium between the host and the bacilli, encompassing a continuous spectrum of conditions that has been named TB spectrum. Implications for the diagnosis and control of disease in certain population will also be discussed.
Collapse
|
180
|
Dhillon J, Fourie PB, Mitchison DA. Persister populations of Mycobacterium tuberculosis in sputum that grow in liquid but not on solid culture media. J Antimicrob Chemother 2013; 69:437-40. [DOI: 10.1093/jac/dkt357] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
181
|
Davies GR. Bridging the gap in the fight against tuberculosis. DRUG DISCOVERY TODAY. TECHNOLOGIES 2013; 10:e359-64. [PMID: 24050132 DOI: 10.1016/j.ddtec.2012.04.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Identifying the most effective new drugs for tuberculosis will depend on developing systems for preclinical testing that better reflect conditions in the diseased host and the characteristics of persistent M tuberculosis. Integrating information from these diverse new technologies using a model-based approach to antituberculosis drug development could facilitate more effective use of this information in transitioning novel compounds successfully to the clinical phase.
Collapse
|
182
|
Contradictory results with high-dosage rifamycin in mice and humans. Antimicrob Agents Chemother 2013; 57:1103. [PMID: 23341429 DOI: 10.1128/aac.01705-12] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
183
|
Pinto D, Santos MA, Chambel L. Thirty years of viable but nonculturable state research: unsolved molecular mechanisms. Crit Rev Microbiol 2013; 41:61-76. [PMID: 23848175 DOI: 10.3109/1040841x.2013.794127] [Citation(s) in RCA: 224] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Viable but nonculturable (VBNC) cells were recognized 30 years ago; and despite decades of research on the topic, most results are disperse and apparently incongruous. Since its description, a huge controversy arose regarding the ecological significance of this state: is it a degradation process without real significance for bacterial life cycles or is it an adaptive strategy of bacteria to cope with stressful conditions? In order to solve the molecular mechanisms of VBNC state induction and resuscitation, researchers in the field must be aware and overcome common issues delaying research progress. In this review, we discuss the intrinsic characteristic features of VBNC cells, the first clues on what is behind the VBNC state's induction, the models proposed for their resuscitation and the current methods to prove not only that cells are in VBNC state but also that they are able to resuscitate.
Collapse
Affiliation(s)
- Daniela Pinto
- Center for Biodiversity, Functional and Integrative Genomics (BioFIG), Faculty of Sciences, University of Lisbon , Lisbon , Portugal
| | | | | |
Collapse
|
184
|
Mariotti S, Pardini M, Gagliardi MC, Teloni R, Giannoni F, Fraziano M, Lozupone F, Meschini S, Nisini R. Dormant Mycobacterium tuberculosis fails to block phagosome maturation and shows unexpected capacity to stimulate specific human T lymphocytes. THE JOURNAL OF IMMUNOLOGY 2013; 191:274-82. [PMID: 23733870 DOI: 10.4049/jimmunol.1202900] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Dormancy is defined as a stable but reversible nonreplicating state of Mycobacterium tuberculosis. It is currently thought that dormant M. tuberculosis (D-Mtb) is responsible for latent tuberculosis (TB) infection. Recently, D-Mtb was also shown in sputa of patients with active TB, but the capacity of D-Mtb to stimulate specific immune responses was not investigated. We observed that purified protein derivative-specific human CD4(+) T lymphocytes recognize mycobacterial Ags more efficiently when macrophages are infected with D-Mtb instead of replicating M. tuberculosis (R-Mtb). The different Ag recognition occurs even when the two forms of mycobacteria equally infect and stimulate macrophages, which secrete the same cytokine pattern and express MHC class I and II molecules at the same levels. However, D-Mtb but not R-Mtb colocalizes with mature phagolysosome marker LAMP-1 and with vacuolar proton ATPase in macrophages. D-Mtb, unlike R-Mtb, is unable to interfere with phagosome pH and does not inhibit the proteolytic efficiency of macrophages. We show that D-Mtb downmodulates the gene Rv3875 encoding for ESAT-6, which is required by R-Mtb to block phagosome maturation together with Rv3310 gene product SapM, previously shown to be downregulated in D-Mtb. Thus, our results indicate that D-Mtb cannot escape MHC class II Ag-processing pathway because it lacks the expression of genes required to block the phagosome maturation. Data suggest that switching to dormancy not only represents a mechanism of survival in latent TB infection, but also a M. tuberculosis strategy to modulate the immune response in different stages of TB.
Collapse
Affiliation(s)
- Sabrina Mariotti
- Dipartimento di Malattie Infettive, Parassitarie e Immunomediate, Istituto Superiore di Sanità, 00161 Rome, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
185
|
Phillips PPJ, Fielding K, Nunn AJ. An evaluation of culture results during treatment for tuberculosis as surrogate endpoints for treatment failure and relapse. PLoS One 2013; 8:e63840. [PMID: 23667677 PMCID: PMC3648512 DOI: 10.1371/journal.pone.0063840] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Accepted: 04/11/2013] [Indexed: 02/01/2023] Open
Abstract
It is widely acknowledged that new regimens are urgently needed for the treatment of tuberculosis. The primary endpoint in the Phase III trials is a composite outcome of failure at the end of treatment or relapse after stopping treatment. Such trials are usually both long and expensive. Valid surrogate endpoints measured during or at the end of treatment could dramatically reduce both the time and cost of assessing the effectiveness of new regimens. The objective of this study was to evaluate sputum culture results on solid media during treatment as surrogate endpoints for poor outcome. Data were obtained from twelve randomised controlled trials conducted by the British Medical Research Council in the 1970s and 80s in East Africa and East Asia, consisting of 6974 participants and 49 different treatment regimens. The month two culture result was shown to be a poor surrogate in East Africa but a good surrogate in Hong Kong. In contrast, the month three culture was a good surrogate in trials conducted in East Africa but not in Hong Kong. As well as differences in location, ethnicity and probable strain of Mycobacteria tuberculosis, Hong Kong trials more often evaluated regimens with rifampicin throughout and intermittent regimens, and patients in East African trials more often presented with extensive cavitation and were slower to convert to culture negative during treatment. An endpoint that is a summary measure of the longitudinal profile of culture results over time or that is able to detect the presence of M. tuberculosis later in treatment is more likely to be a better endpoint for a phase II trial than a culture result at a single time point and may prove to be an acceptable surrogate. More data are needed before any endpoint can be used as a surrogate in a confirmatory phase III trial.
Collapse
|
186
|
Wallis RS, Kim P, Cole S, Hanna D, Andrade BB, Maeurer M, Schito M, Zumla A. Tuberculosis biomarkers discovery: developments, needs, and challenges. THE LANCET. INFECTIOUS DISEASES 2013; 13:362-72. [DOI: 10.1016/s1473-3099(13)70034-3] [Citation(s) in RCA: 182] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
187
|
Kidenya BR, Kabangila R, Peck RN, Mshana SE, Webster LE, Koenig SP, Johnson WD, Fitzgerald DW. Early and efficient detection of Mycobacterium tuberculosis in sputum by microscopic observation of broth cultures. PLoS One 2013; 8:e57527. [PMID: 23469014 PMCID: PMC3585352 DOI: 10.1371/journal.pone.0057527] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Accepted: 01/22/2013] [Indexed: 11/18/2022] Open
Abstract
Early, efficient and inexpensive methods for the detection of pulmonary tuberculosis are urgently needed for effective patient management as well as to interrupt transmission. These methods to detect M. tuberculosis in a timely and affordable way are not yet widely available in resource-limited settings. In a developing-country setting, we prospectively evaluated two methods for culturing and detecting M. tuberculosis in sputum. Sputum samples were cultured in liquid assay (micro broth culture) in microplate wells and growth was detected by microscopic observation, or in Löwenstein-Jensen (LJ) solid media where growth was detected by visual inspection for colonies. Sputum samples were collected from 321 tuberculosis (TB) suspects attending Bugando Medical Centre, in Mwanza, Tanzania, and were cultured in parallel. Pulmonary tuberculosis cases were diagnosed using the American Thoracic Society diagnostic standards. There were a total of 200 (62.3%) pulmonary tuberculosis cases. Liquid assay with microscopic detection detected a significantly higher proportion of cases than LJ solid culture: 89.0% (95% confidence interval [CI], 84.7% to 93.3%) versus 77.0% (95% CI, 71.2% to 82.8%) (p = 0.0007). The median turn around time to diagnose tuberculosis was significantly shorter for micro broth culture than for the LJ solid culture, 9 days (interquartile range [IQR] 7-13), versus 21 days (IQR 14-28) (p<0.0001). The cost for micro broth culture (labor inclusive) in our study was US $4.56 per sample, versus US $11.35 per sample for the LJ solid culture. The liquid assay (micro broth culture) is an early, feasible, and inexpensive method for detection of pulmonary tuberculosis in resource limited settings.
Collapse
Affiliation(s)
- Benson R Kidenya
- Department of Biochemistry and Molecular Biology, School of Medicine, Catholic University of Health and Allied Sciences, Mwanza, Tanzania.
| | | | | | | | | | | | | | | |
Collapse
|
188
|
Manina G, McKinney JD. A single-cell perspective on non-growing but metabolically active (NGMA) bacteria. Curr Top Microbiol Immunol 2013; 374:135-61. [PMID: 23793585 DOI: 10.1007/82_2013_333] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A long-standing and fundamental problem in microbiology is the non-trivial discrimination between live and dead cells. The existence of physically intact and possibly viable bacterial cells that fail to replicate during a more or less protracted period of observation, despite environmental conditions that are ostensibly propitious for growth, has been extensively documented in many different organisms. In clinical settings, non-culturable cells may contribute to non-apparent infections capable of reactivating after months or years of clinical latency, a phenomenon that has been well documented in the specific case of Mycobacterium tuberculosis. The prevalence of these silent but potentially problematic bacterial reservoirs has been highlighted by classical approaches such as limiting culture dilution till extinction of growing cells, followed by resuscitation of apparently "viable but non-culturable" (VBNC) subpopulations. Although these assays are useful to demonstrate the presence of VBNC cells in a population, they are effectively retrospective and are not well suited to the analysis of non-replicating cells per se. Here, we argue that research on a closely related problem, which we shall refer to as the "non-growing but metabolically active" state, is poised to advance rapidly thanks to the recent development of novel technologies and methods for real-time single-cell analysis. In particular, the combination of fluorescent reporter dyes and strains, microfluidic and microelectromechanical systems, and time-lapse fluorescence microscopy offers tremendous and largely untapped potential for future exploration of the physiology of non-replicating cells.
Collapse
Affiliation(s)
- Giulia Manina
- School of Life Sciences, Swiss Federal Institute of Technology in Lausanne (EPFL), 1015, Lausanne, Switzerland,
| | | |
Collapse
|
189
|
Abstract
If discovery of new antibiotics continues to falter while resistance to drugs in clinical use continues to spread, society's medicine chest will soon lack effective treatments for many infections. Heritable antibiotic resistance emerges in bacteria from nonheritable resistance, also called phenotypic tolerance. This widespread phenomenon is closely linked to nonproliferative states in ways that scientists are just beginning to understand. A deeper understanding of the mechanisms of phenotypic tolerance may reveal new drug targets in the infecting organisms. At the same time, researchers must investigate ways to target the host in order to influence host-pathogen relationships. Government must reform the regulatory process for approval of new antibiotics. The private sector, government, and academia must undertake multiple, organized, multidisciplinary, parallel efforts to improve the ways in which antibiotics are discovered, tested, approved, and conserved, or it will be difficult to sustain the modern practice of medicine.
Collapse
Affiliation(s)
- Carl Nathan
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY 10065, USA.
| |
Collapse
|
190
|
Mgode GF, Weetjens BJ, Nawrath T, Lazar D, Cox C, Jubitana M, Mahoney A, Kuipers D, Machang'u RS, Weiner J, Schulz S, Kaufmann SHE. Mycobacterium tuberculosis volatiles for diagnosis of tuberculosis by Cricetomys rats. Tuberculosis (Edinb) 2012; 92:535-42. [PMID: 22883935 DOI: 10.1016/j.tube.2012.07.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Revised: 07/16/2012] [Accepted: 07/18/2012] [Indexed: 10/28/2022]
Abstract
Tuberculosis (TB) diagnosis in regions with limited resources depends on microscopy with insufficient sensitivity. Rapid diagnostic tests of low cost but high sensitivity and specificity are needed for better point-of-care management of TB. Trained African giant pouched rats (Cricetomys sp.) can diagnose pulmonary TB in sputum but the relevant Mycobacterium tuberculosis (Mtb)-specific volatile compounds remain unknown. We investigated the odour volatiles of Mtb detected by rats in reference Mtb, nontuberculous mycobacteria, Nocardia sp., Streptomyces sp., Rhodococcus sp., and other respiratory tract microorganisms spiked into Mtb-negative sputum. Thirteen compounds were specific to Mtb and 13 were shared with other microorganisms. Rats discriminated a blend of Mtb-specific volatiles from individual, and blends of shared, compounds (P = 0.001). The rats' sensitivity for typical TB-positive sputa was 99.15% with 92.23% specificity and 93.14% accuracy. These findings underline the potential of trained Cricetomys rats for rapid TB diagnosis in resource-limited settings, particularly in Africa where Cricetomys rats occur widely and the burden of TB is high.
Collapse
Affiliation(s)
- Georgies F Mgode
- Department of Immunology, Max Planck Institute for Infection Biology, Charitéplatz 1, Campus Charité Mitte, D-10117 Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
191
|
Walter ND, Strong M, Belknap R, Ordway DJ, Daley CL, Chan ED. Translating basic science insight into public health action for multidrug- and extensively drug-resistant tuberculosis. Respirology 2012; 17:772-91. [PMID: 22458269 PMCID: PMC4540333 DOI: 10.1111/j.1440-1843.2012.02176.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Multidrug (MDR)- and extensively drug-resistant (XDR) tuberculosis (TB) impose a heavy toll of human suffering and social costs. Controlling drug-resistant TB is a complex global public health challenge. Basic science advances including elucidation of the genetic basis of resistance have enabled development of new assays that are transforming the diagnosis of MDR-TB. Molecular epidemiological approaches have provided new insights into the natural history of TB with important implications for drug resistance. In the future, progress in understanding Mycobacterium tuberculosis strain-specific human immune responses, integration of systems biology approaches with traditional epidemiology and insight into the biology of mycobacterial persistence have potential to be translated into new tools for diagnosis and treatment of MDR- and XDR-TB. We review recent basic sciences developments that have contributed or may contribute to improved public health response.
Collapse
Affiliation(s)
- Nicholas D Walter
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Denver, Aurora, Colorado, USA.
| | | | | | | | | | | |
Collapse
|
192
|
Abstract
The history of the development of modern chemotherapy for tuberculosis (TB), largely due to the British Medical Research Council, is first described. There is a current need to shorten the duration of treatment and to prevent and cure drug-resistant disease. These aims will only be achieved if the way in which multidrug treatment prevents resistance from emerging and the reasons for the very slow response to chemotherapy are understood. Consideration of mutation rates to resistance and the size of bacterial populations in lesions makes it very unlikely that resistance would emerge spontaneously, leaving irregularity in drug taking and inadequate dosage as the main reasons for its occurrence. Slow response to treatment seems due to the presence of persister populations whose natural history is only partly known. In the future, we need to explore the persister state in patients and in experimental murine TB, and to take it into account in the design of future mouse experiments. The activity of rifamycins and pyrazinamide is being increased by a rise in rifamycin dosage and the inhalation of pyrazinoic acid. New drugs are gradually being brought into use, initially TMC207 and the nitroimadazoles, PA824 and OPC67683. They will need to be tested in new combination regimens for drug-susceptible and multi- and extensively drug-resistant disease.
Collapse
Affiliation(s)
- D Mitchison
- Department of Cellular & Molecular Medicine, St George's Hospital Medical School, London, UK.
| | | |
Collapse
|
193
|
Maiga M, Siddiqui S, Diallo S, Diarra B, Traoré B, Shea YR, Zelazny AM, Dembele BPP, Goita D, Kassambara H, Hammond AS, Polis MA, Tounkara A. Failure to recognize nontuberculous mycobacteria leads to misdiagnosis of chronic pulmonary tuberculosis. PLoS One 2012; 7:e36902. [PMID: 22615839 PMCID: PMC3353983 DOI: 10.1371/journal.pone.0036902] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Accepted: 04/09/2012] [Indexed: 01/15/2023] Open
Abstract
Background Nontuberculous mycobacterial (NTM) infections cause morbidity worldwide. They are difficult to diagnose in resource-limited regions, and most patients receive empiric treatment for tuberculosis (TB). Our objective here is to evaluate the potential impact of NTM diseases among patients treated presumptively for tuberculosis in Mali. Methods We re-evaluated sputum specimens among patients newly diagnosed with TB (naïve) and those previously treated for TB disease (chronic cases). Sputum microscopy, culture and Mycobacterium tuberculosis drug susceptibility testing were performed. Identification of strains was performed using molecular probes or sequencing of secA1 and/or 16S rRNA genes. Results Of 142 patients enrolled, 61 (43%) were clinically classified as chronic cases and 17 (12%) were infected with NTM. Eleven of the 142 (8%) patients had NTM disease alone (8 M. avium, 2 M. simiae and 1 M. palustre). All these 11 were from the chronic TB group, comprising 11/61 (18%) of that group and all were identified as candidates for second line treatment. The remaining 6/17 (35.30%) NTM infected patients had coinfection with M. tuberculosis and all 6 were from the TB treatment naïve group. These 6 were candidates for the standard first line treatment regimen of TB. M. avium was identified in 11 of the 142 (8%) patients, only 3/11 (27.27%) of whom were HIV positive. Conclusions NTM infections should be considered a cause of morbidity in TB endemic environments especially when managing chronic TB cases to limit morbidity and provide appropriate treatment.
Collapse
Affiliation(s)
- Mamoudou Maiga
- Project SEREFO-NIAID/University of Bamako Research Collaboration on HIV/TB, Bamako, Mali
| | - Sophia Siddiqui
- CCRB, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
- * E-mail:
| | - Souleymane Diallo
- Project SEREFO-NIAID/University of Bamako Research Collaboration on HIV/TB, Bamako, Mali
| | - Bassirou Diarra
- Project SEREFO-NIAID/University of Bamako Research Collaboration on HIV/TB, Bamako, Mali
| | - Brehima Traoré
- Project SEREFO-NIAID/University of Bamako Research Collaboration on HIV/TB, Bamako, Mali
| | - Yvonne R. Shea
- Microbiology Service, Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Adrian M. Zelazny
- Microbiology Service, Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Bindongo P. P. Dembele
- Project SEREFO-NIAID/University of Bamako Research Collaboration on HIV/TB, Bamako, Mali
| | - Drissa Goita
- Project SEREFO-NIAID/University of Bamako Research Collaboration on HIV/TB, Bamako, Mali
| | - Hamadoun Kassambara
- Project SEREFO-NIAID/University of Bamako Research Collaboration on HIV/TB, Bamako, Mali
| | - Abdulrahman S. Hammond
- Project SEREFO-NIAID/University of Bamako Research Collaboration on HIV/TB, Bamako, Mali
| | - Michael A. Polis
- CCRB, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
| | - Anatole Tounkara
- Project SEREFO-NIAID/University of Bamako Research Collaboration on HIV/TB, Bamako, Mali
| |
Collapse
|
194
|
Kim PS, Makhene M, Sizemore C, Hafner R. Viewpoint: Challenges and opportunities in tuberculosis research. J Infect Dis 2012; 205 Suppl 2:S347-52. [PMID: 22448021 PMCID: PMC3334508 DOI: 10.1093/infdis/jis190] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Affiliation(s)
- Peter S Kim
- TB Clinical Research Team, Therapeutics Research Program, Division of AIDS, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | | | | | |
Collapse
|
195
|
Gengenbacher M, Kaufmann SHE. Mycobacterium tuberculosis: success through dormancy. FEMS Microbiol Rev 2012; 36:514-32. [PMID: 22320122 PMCID: PMC3319523 DOI: 10.1111/j.1574-6976.2012.00331.x] [Citation(s) in RCA: 503] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Revised: 12/22/2011] [Accepted: 01/31/2012] [Indexed: 01/21/2023] Open
Abstract
Tuberculosis (TB) remains a major health threat, killing nearly 2 million individuals around this globe, annually. The only vaccine, developed almost a century ago, provides limited protection only during childhood. After decades without the introduction of new antibiotics, several candidates are currently undergoing clinical investigation. Curing TB requires prolonged combination of chemotherapy with several drugs. Moreover, monitoring the success of therapy is questionable owing to the lack of reliable biomarkers. To substantially improve the situation, a detailed understanding of the cross-talk between human host and the pathogen Mycobacterium tuberculosis (Mtb) is vital. Principally, the enormous success of Mtb is based on three capacities: first, reprogramming of macrophages after primary infection/phagocytosis to prevent its own destruction; second, initiating the formation of well-organized granulomas, comprising different immune cells to create a confined environment for the host-pathogen standoff; third, the capability to shut down its own central metabolism, terminate replication, and thereby transit into a stage of dormancy rendering itself extremely resistant to host defense and drug treatment. Here, we review the molecular mechanisms underlying these processes, draw conclusions in a working model of mycobacterial dormancy, and highlight gaps in our understanding to be addressed in future research.
Collapse
Affiliation(s)
- Martin Gengenbacher
- Max Planck Institute for Infection Biology, Department of Immunology Charitéplatz 1, 10117 Berlin, Germany
| | - Stefan H. E. Kaufmann
- Max Planck Institute for Infection Biology, Department of Immunology Charitéplatz 1, 10117 Berlin, Germany
| |
Collapse
|
196
|
Current tuberculosis diagnostic tools & role of urease breath test. Indian J Med Res 2012; 135:731-6. [PMID: 22771606 PMCID: PMC3401707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Tuberculosis (TB) remains a significant public health issue worldwide especially in developing countries, where the disease is endemic, and effective TB diagnostic as well as treatment-monitoring tools are serious barriers to defeating the disease. Detection of pathogen-specific metabolic pathways offers a potential alternative to current methods, which focus on bacterial growth, bacterial nucleic acid amplification, or detection of host immune response to the pathogen. Metabolic pathway detection may provide rapid and effective new tools for TB that can improve TB diagnostics for children and HIV infected patients. Metabolic breath tests are attractive because these are safe, and provide an opportunity for rapid point of care diagnostics and tool for drug efficacy evaluation during clinical trials. Our group has developed a rabbit urease breath test model to evaluate the sensitivity and the specificity of urease based detection of Mycobacterium tuberculosis. TB infected rabbits were given stable isotopically labelled urea as the substrate. The urea tracer was metabolized to 13 C-CO 2 and detected in exhaled breaths using portable infrared spectrometers. The signal correlated with bacterial load both for primary diagnostics and treatment monitoring. Clinical trials are currently ongoing to evaluate the value of the test in clinical management settings. Urea breath testing may provide a useful diagnostic and biomarker assay for tuberculosis and treatment response.
Collapse
|
197
|
Nahid P, Kim PS, Evans CA, Alland D, Barer M, Diefenbach J, Ellner J, Hafner R, Hamilton CD, Iademarco MF, Ireton G, Kimerling ME, Lienhardt C, MacKenzie WR, Murray M, Perkins MD, Posey JE, Roberts T, Sizemore C, Stevens WS, Via L, Williams SD, Yew WW, Swindells S. Clinical research and development of tuberculosis diagnostics: moving from silos to synergy. J Infect Dis 2012; 205 Suppl 2:S159-68. [PMID: 22476718 DOI: 10.1093/infdis/jis194] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The development, evaluation, and implementation of new and improved diagnostics have been identified as critical needs by human immunodeficiency virus (HIV) and tuberculosis researchers and clinicians alike. These needs exist in international and domestic settings and in adult and pediatric populations. Experts in tuberculosis and HIV care, researchers, healthcare providers, public health experts, and industry representatives, as well as representatives of pertinent US federal agencies (Centers for Disease Control and Prevention, Food and Drug Administration, National Institutes of Health, United States Agency for International Development) assembled at a workshop proposed by the Diagnostics Working Group of the Federal Tuberculosis Taskforce to review the state of tuberculosis diagnostics development in adult and pediatric populations.
Collapse
Affiliation(s)
- Payam Nahid
- Division of Pulmonary and Critical Care Medicine, Department of Medicine at San Francisco General Hospital and Curry International Tuberculosis Center, University of California, San Francisco, CA 94110, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
198
|
Immunodiagnosis of tuberculosis: a dynamic view of biomarker discovery. Clin Microbiol Rev 2012; 24:792-805. [PMID: 21976609 DOI: 10.1128/cmr.00014-11] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Infection with Mycobacterium tuberculosis causes a variety of clinical conditions ranging from life-long asymptomatic infection to overt disease with increasingly severe tissue damage and a heavy bacillary burden. Immune biomarkers should follow the evolution of infection and disease because the host immune response is at the core of protection against disease and tissue damage in M. tuberculosis infection. Moreover, levels of immune markers are often affected by the antigen load. We review how the clinical spectrum of M. tuberculosis infection correlates with the evolution of granulomatous lesions and how granuloma structural changes are reflected in the peripheral circulation. We also discuss how antigen-specific, peripheral immune responses change during infection and how these changes are associated with the physiology of the tubercle bacillus. We propose that a dynamic approach to immune biomarker research should overcome the challenges of identifying those asymptomatic and symptomatic stages of infection that require antituberculosis treatment. Implementation of such a view requires longitudinal studies and a systems immunology approach leading to multianalyte assays.
Collapse
|
199
|
Abstract
Mycobacterial persisters, the survivors from antibiotic exposure, necessitate the lengthy treatment of tuberculosis (TB) and pose a significant challenge for our control of the disease. We suggest that persisters in TB are heterogeneous in nature and comprise various proportions of the population depending on the circumstances; the mechanisms of their formation are complex and may be related to those required for persistence in chronic infection. Results from recent studies implicate multiple pathways for persister formation, including energy production, the stringent response, global regulators, the trans-translation pathway, proteasomal protein degradation, toxin-antitoxin modules, and transporter or efflux mechanisms. A combination of specifically persister-targeted approaches, such as catching them when active and susceptible either by stimulating them to "wake up" or by intermittent drug dosing, the development of new drugs, the use of appropriate drug combinations, and combined chemotherapy and immunotherapy, may be needed for more effective elimination of persisters and better treatment of TB. Variations in levels of persister formation and in host genetics can play a role in the outcome of clinical treatment, and thus, these may entail personalized treatment regimens.
Collapse
|
200
|
Mitchison DA. Prevention of drug resistance by combined drug treatment of tuberculosis. Handb Exp Pharmacol 2012:87-98. [PMID: 23090597 DOI: 10.1007/978-3-642-28951-4_6] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Treatment with a combination of anti-tuberculosis drugs is thought to work by the first drug killing mutants resistant to the second drug, while the second drug kills those resistant to the first drug. Combined treatment has been remarkably successful in preventing the emergence of resistance during the treatment of tuberculosis. This success has led to the introduction of multi-drug treatment for leprosy, HIV infections and cancer. Its success in tuberculosis depends on a number of conditions such as the chromosomal nature of drug resistance in Mycobacterium tuberculosis and the absence of plasmids carrying resistance factors as well as the manner in which the bacterial population in tuberculosis does not come into contact with other potentially resistant bacteria. For multi-drug treatment to be effective in preventing resistance, the drugs must be sufficiently active so that each can inhibit all the bacteria in lesions. There must also be effective post-antibiotic lags in growth restarting to prevent growth between doses. Special bacterial populations that are drug tolerant or survive drug action unusually successfully are also a potential source of resistance.
Collapse
|