151
|
Sabino ADV, Chagas MHN, Osório FL. Effects of psychotropic drugs used in the treatment of anxiety disorders on the recognition of facial expressions of emotion: Critical analysis of literature. Neurosci Biobehav Rev 2016; 71:802-809. [PMID: 27810346 DOI: 10.1016/j.neubiorev.2016.10.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 09/16/2016] [Accepted: 10/27/2016] [Indexed: 10/20/2022]
Abstract
Deficits in recognition of facial expressions of emotion (RFEE) play a central role in the manifestation of anxiety disorders (AD). We systematically reviewed the literature to determine effects of drugs used in AD treatment on RFEE, based on outcomes of accuracy rate, reaction time, and intensity. Electronic databases, including Pubmed, PsycINFO, and Scielo, were used without time constraints. Twenty-six clinical/experimental studies on healthy subjects, focusing on 11 drugs, published in English, Portuguese, and Spanish, were selected. We found that increased recognition of happiness was associated with acute use of citalopram, fluoxetine, duloxetine, and reboxetine. Increased and decreased recognition of negative emotions were associated with the use of selective serotonin and/or norepinephrine reuptake inhibitors, respectively. Benzodiazepine favored recognition of negative emotions. Differences in reaction time were rarely observed. Stimuli with distinct emotion intensities produced similar effects. Specific changes occurred in RFEE depending on the drug, its administration route and dose, and emotion valence. Evidences indicate significant effects on emotional processing relevant to clinical practice, particularly in treating patients with emotional disorders.
Collapse
Affiliation(s)
- Alini Daniéli Viana Sabino
- Department of Neurosciences and Behaviour, Medical School of RibeirãoPreto, University of São Paulo, Avenida dos Bandeirantes 3900, CEP 14048-900, Brazil
| | - Marcos Hortes N Chagas
- Centro de Ciências Biológicas e da Saúde, Universidade Federal de São Carlos, Rodovia Washington Luís (SP-310), Km 235, CEP 13565-905, Brazil
| | - Flávia L Osório
- Department of Neurosciences and Behaviour, Medical School of RibeirãoPreto, University of São Paulo, Avenida dos Bandeirantes 3900, CEP 14048-900, Brazil; Technology Institute (INCT, CNPq) for Translational Medicine, Brazil.
| |
Collapse
|
152
|
Nikolaus S, Müller HW, Hautzel H. Different patterns of 5-HT receptor and transporter dysfunction in neuropsychiatric disorders--a comparative analysis of in vivo imaging findings. Rev Neurosci 2016; 27:27-59. [PMID: 26376220 DOI: 10.1515/revneuro-2015-0014] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 08/05/2015] [Indexed: 11/15/2022]
Abstract
Impairment of serotonin receptor and transporter function is increasingly recognized to play a major role in the pathophysiology of neuropsychiatric diseases including anxiety disorder (AD), major depressive disorder (MDD), bipolar disorder (BD) and schizophrenia (SZ). We conducted a PubMed search, which provided a total of 136 in vivo studies with PET and SPECT, in which 5-HT synthesis, 5-HT transporter binding, 5-HT1 receptor binding or 5-HT2 receptor binding in patients with the primary diagnosis of acute AD, MDD, BD or SZ was compared to healthy individuals. A retrospective analysis revealed that AD, MDD, BD and SZ differed as to affected brain region(s), affected synaptic constituent(s) and extent as well as direction of dysfunction in terms of either sensitization or desensitization of transporter and receptor binding sites.
Collapse
|
153
|
Mechanisms of comorbidity, continuity, and discontinuity in anxiety-related disorders. Dev Psychopathol 2016; 28:1053-1069. [DOI: 10.1017/s0954579416000699] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
AbstractWe discuss comorbidity, continuity, and discontinuity of anxiety-related disorders from the perspective of a two-dimensional neuropsychology of fear (threat avoidance) and anxiety (threat approach). Pharmacological dissection of the “neurotic” disorders justifies both a categorical division between fear and anxiety and a subdivision of each mapped to a hierarchy of neural modules that process different immediacies of threat. It is critical that each module can generate normal responses, symptoms of another syndrome, or syndromal responses. We discuss the resultant possibilities for comorbid dysfunction of these modules both with each other and with some disorders not usually classified as anxiety related. The simplest case is symptomatic fear/anxiety comorbidity, where dysfunction in one module results in excess activity in a second, otherwise normal, module to generate symptoms and apparent comorbidity. More complex is syndromal fear/anxiety comorbidity, where more than one module is concurrently dysfunctional. Yet more complex are syndromal comorbidities of anxiety that go beyond the two dimensional fear/anxiety systems: depression, substance use disorder, and attention-deficit/hyperactivity disorder. Our account of attention-deficit/hyperactivity disorder–anxiety comorbidity entails discussion of the neuropsychology of externalizing disorders to account for the lack of anxiety comorbidity in some of these. Finally, we link the neuropsychology of disorder to personality variation, and to the development of a biomarker of variation in the anxiety system among individuals that, if extreme, may provide a means of unambiguously identifying the first of a range of anxiety syndromes.
Collapse
|
154
|
Shuhama R, Rondinoni C, de Araujo DB, de Freitas Caetano G, dos Santos AC, Graeff FG, Del-Ben CM. Behavioral and neuroimaging responses induced by mental imagery of threatening scenarios. Behav Brain Res 2016; 313:358-369. [DOI: 10.1016/j.bbr.2016.06.059] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 06/26/2016] [Accepted: 06/29/2016] [Indexed: 02/07/2023]
|
155
|
Faulkner P, Mancinelli F, Lockwood PL, Matarin M, Dolan RJ, Wood NW, Dayan P, Roiser JP. Peripheral Serotonin 1B Receptor Transcription Predicts the Effect of Acute Tryptophan Depletion on Risky Decision-Making. Int J Neuropsychopharmacol 2016; 20:58-66. [PMID: 27638901 PMCID: PMC5480594 DOI: 10.1093/ijnp/pyw075] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 08/13/2016] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND The effects of acute tryptophan depletion on human decision-making suggest that serotonin modulates the processing of rewards and punishments. However, few studies have assessed which of the many types of serotonin receptors are responsible. METHODS Using a within-subject, double-blind, sham-controlled design in 26 subjects, we examined whether individual differences in serotonin system gene transcription, measured in peripheral blood, predicted the effect of acute tryptophan depletion on decision-making. Participants performed a task in which they chose between successive pairs of fixed, lower-stakes (control) and variable, higher-stakes (experimental) gambles, each involving wins or losses. In 21 participants, mRNA from 9 serotonin system genes was measured in whole blood prior to acute tryptophan depletion: 5-HT1B, 5-HT1F, 5-HT2A, 5-HT2B, 5-HT3A, 5-HT3E, 5-HT7 (serotonin receptors), 5-HTT (the serotonin transporter), and tryptophan hydroxylase 1. RESULTS Acute tryptophan depletion did not significantly influence participants' sensitivity to probability, wins, or losses, although there was a trend for a lower tendency to choose experimental gambles overall following depletion. Significant positive correlations, which survived correction for multiple comparisons, were detected between baseline 5-HT1B mRNA levels and acute tryptophan depletion-induced increases in both the overall tendency to choose the experimental gamble and sensitivity to wins. No significant relationship was observed with any other peripheral serotonin system markers. Computational analyses of decision-making data provided results consistent with these findings. CONCLUSIONS These results suggest that the 5-HT1B receptor may modulate the effects of acute tryptophan depletion on risky decision-making. Peripheral levels of serotonin markers may predict response to treatments that act upon the serotonin system, such as selective serotonin reuptake inhibitors.
Collapse
Affiliation(s)
- Paul Faulkner
- Institute of Cognitive Neuroscience, University College London, London, United Kingdom (Drs Faulkner and Roiser); Psychiatry and Biobehavioral Sciences, Semel Institute, University of California, Los Angeles, California (Dr Faulkner);,Correspondence: Paul Faulkner, PhD, Semel Institute, 760 Westwood Boulevard, University of California, Los Angeles, CA 90025 ()
| | - Federico Mancinelli
- Institute of Cognitive Neuroscience, University College London, London, United Kingdom (Drs Faulkner and Roiser); Psychiatry and Biobehavioral Sciences, Semel Institute, University of California, Los Angeles, California (Dr Faulkner)
| | - Patricia L Lockwood
- Institute of Cognitive Neuroscience, University College London, London, United Kingdom (Drs Faulkner and Roiser); Psychiatry and Biobehavioral Sciences, Semel Institute, University of California, Los Angeles, California (Dr Faulkner)
| | - Mar Matarin
- Institute of Cognitive Neuroscience, University College London, London, United Kingdom (Drs Faulkner and Roiser); Psychiatry and Biobehavioral Sciences, Semel Institute, University of California, Los Angeles, California (Dr Faulkner)
| | - Raymond J Dolan
- Institute of Cognitive Neuroscience, University College London, London, United Kingdom (Drs Faulkner and Roiser); Psychiatry and Biobehavioral Sciences, Semel Institute, University of California, Los Angeles, California (Dr Faulkner)
| | - Nick W Wood
- Institute of Cognitive Neuroscience, University College London, London, United Kingdom (Drs Faulkner and Roiser); Psychiatry and Biobehavioral Sciences, Semel Institute, University of California, Los Angeles, California (Dr Faulkner)
| | - Peter Dayan
- Institute of Cognitive Neuroscience, University College London, London, United Kingdom (Drs Faulkner and Roiser); Psychiatry and Biobehavioral Sciences, Semel Institute, University of California, Los Angeles, California (Dr Faulkner)
| | - Jonathan P Roiser
- Gatsby Computational Neuroscience Unit (Mr Mancinelli and Dr Dayan), and CoMPLEX Centre for Mathematics, Physics and Engineering in the Life Sciences and Experimental Biology (Mr Mancinelli), University College London, London, United Kingdom; Experimental Psychology, University of Oxford, Oxford, United Kingdom (Dr Lockwood); Clinical and Experimental Epilepsy, Institute of Neurology (Dr Matarin), and Wellcome Trust Centre for Neuroimaging (Dr Dolan), University College London, London, United Kingdom; Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London, United Kingdom (Dr Wood)
| |
Collapse
|
156
|
Shao R, Keuper K, Geng X, Lee TMC. Pons to Posterior Cingulate Functional Projections Predict Affective Processing Changes in the Elderly Following Eight Weeks of Meditation Training. EBioMedicine 2016; 10:236-48. [PMID: 27349456 PMCID: PMC5006446 DOI: 10.1016/j.ebiom.2016.06.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 06/13/2016] [Accepted: 06/13/2016] [Indexed: 12/22/2022] Open
Abstract
Evidence indicates meditation facilitates affective regulation and reduces negative affect. It also influences resting-state functional connectivity between affective networks and the posterior cingulate (PCC)/precuneus, regions critically implicated in self-referential processing. However, no longitudinal study employing active control group has examined the effect of meditation training on affective processing, PCC/precuneus connectivity, and their association. Here, we report that eight-week meditation, but not relaxation, training 'neutralized' affective processing of positive and negative stimuli in healthy elderly participants. Additionally, meditation versus relaxation training increased the positive connectivity between the PCC/precuneus and the pons, the direction of which was largely directed from the pons to the PCC/precuneus, as revealed by dynamic causal modeling. Further, changes in connectivity between the PCC/precuneus and pons predicted changes in affective processing after meditation training. These findings indicate meditation promotes self-referential affective regulation based on increased regulatory influence of the pons on PCC/precuneus, which new affective-processing strategy is employed across both resting state and when evaluating affective stimuli. Such insights have clinical implications on interventions on elderly individuals with affective disorders.
Collapse
Affiliation(s)
- Robin Shao
- Laboratory of Neuropsychology, The University of Hong Kong, Hong Kong; Laboratory of Cognitive Affective Neuroscience, The University of Hong Kong, Hong Kong
| | - Kati Keuper
- Laboratory of Neuropsychology, The University of Hong Kong, Hong Kong; Laboratory of Cognitive Affective Neuroscience, The University of Hong Kong, Hong Kong
| | - Xiujuan Geng
- Laboratory of Neuropsychology, The University of Hong Kong, Hong Kong; Laboratory of Cognitive Affective Neuroscience, The University of Hong Kong, Hong Kong; The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong.
| | - Tatia M C Lee
- Laboratory of Neuropsychology, The University of Hong Kong, Hong Kong; Laboratory of Cognitive Affective Neuroscience, The University of Hong Kong, Hong Kong; The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong; Institute of Clinical Neuropsychology, The University of Hong Kong, Hong Kong.
| |
Collapse
|
157
|
Affiliation(s)
- Hailan Hu
- Interdisciplinary Institute of Neuroscience and Technology, Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou 310012, People's Republic of China;
- Center for Neuroscience, School of Medicine, Zhejiang University, Hangzhou 310058, People's Republic of China
| |
Collapse
|
158
|
Trotter PD, McGlone F, McKie S, McFarquhar M, Elliott R, Walker SC, Deakin JFW. Effects of acute tryptophan depletion on central processing of CT-targeted and discriminatory touch in humans. Eur J Neurosci 2016; 44:2072-83. [DOI: 10.1111/ejn.13298] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Revised: 05/18/2016] [Accepted: 06/13/2016] [Indexed: 02/03/2023]
Affiliation(s)
- Paula Diane Trotter
- Research Centre in Brain and Behaviour; School of Natural Sciences & Psychology; Liverpool John Moores University; Byrom Street Liverpool L3 3AF UK
| | - Francis McGlone
- Research Centre in Brain and Behaviour; School of Natural Sciences & Psychology; Liverpool John Moores University; Byrom Street Liverpool L3 3AF UK
- Institute of Psychology, Health and Society; University of Liverpool; Liverpool UK
| | - Shane McKie
- Neuroscience and Psychiatry Unit; The University of Manchester; Manchester UK
| | - Martyn McFarquhar
- Neuroscience and Psychiatry Unit; The University of Manchester; Manchester UK
| | - Rebecca Elliott
- Neuroscience and Psychiatry Unit; The University of Manchester; Manchester UK
| | - Susannah Claire Walker
- Research Centre in Brain and Behaviour; School of Natural Sciences & Psychology; Liverpool John Moores University; Byrom Street Liverpool L3 3AF UK
| | | |
Collapse
|
159
|
Khdour HY, Abushalbaq OM, Mughrabi IT, Imam AF, Gluck MA, Herzallah MM, Moustafa AA. Generalized Anxiety Disorder and Social Anxiety Disorder, but Not Panic Anxiety Disorder, Are Associated with Higher Sensitivity to Learning from Negative Feedback: Behavioral and Computational Investigation. Front Integr Neurosci 2016; 10:20. [PMID: 27445719 PMCID: PMC4925696 DOI: 10.3389/fnint.2016.00020] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 05/26/2016] [Indexed: 11/29/2022] Open
Abstract
Anxiety disorders, including generalized anxiety disorder (GAD), social anxiety disorder (SAD), and panic anxiety disorder (PAD), are a group of common psychiatric conditions. They are characterized by excessive worrying, uneasiness, and fear of future events, such that they affect social and occupational functioning. Anxiety disorders can alter behavior and cognition as well, yet little is known about the particular domains they affect. In this study, we tested the cognitive correlates of medication-free patients with GAD, SAD, and PAD, along with matched healthy participants using a probabilistic category-learning task that allows the dissociation between positive and negative feedback learning. We also fitted all participants' data to a Q-learning model and various actor-critic models that examine learning rate parameters from positive and negative feedback to investigate effects of valence vs. action on performance. SAD and GAD patients were more sensitive to negative feedback than either PAD patients or healthy participants. PAD, SAD, and GAD patients did not differ in positive-feedback learning compared to healthy participants. We found that Q-learning models provide the simplest fit of the data in comparison to other models. However, computational analysis revealed that groups did not differ in terms of learning rate or exploration values. These findings argue that (a) not all anxiety spectrum disorders share similar cognitive correlates, but are rather different in ways that do not link them to the hallmark of anxiety (higher sensitivity to negative feedback); and (b) perception of negative consequences is the core feature of GAD and SAD, but not PAD. Further research is needed to examine the similarities and differences between anxiety spectrum disorders in other cognitive domains and potential implementation of behavioral therapy to remediate cognitive deficits.
Collapse
Affiliation(s)
- Hussain Y Khdour
- Palestinian Neuroscience Initiative, Faculty of Medicine, Al-Quds UniversityJerusalem, State of Palestine; Center for Molecular and Behavioral Neuroscience, Rutgers UniversityNewark, NJ, USA
| | - Oday M Abushalbaq
- Palestinian Neuroscience Initiative, Faculty of Medicine, Al-Quds University Jerusalem, State of Palestine
| | - Ibrahim T Mughrabi
- Palestinian Neuroscience Initiative, Faculty of Medicine, Al-Quds University Jerusalem, State of Palestine
| | - Aya F Imam
- Palestinian Neuroscience Initiative, Faculty of Medicine, Al-Quds University Jerusalem, State of Palestine
| | - Mark A Gluck
- Center for Molecular and Behavioral Neuroscience, Rutgers University Newark, NJ, USA
| | - Mohammad M Herzallah
- Palestinian Neuroscience Initiative, Faculty of Medicine, Al-Quds UniversityJerusalem, State of Palestine; Center for Molecular and Behavioral Neuroscience, Rutgers UniversityNewark, NJ, USA
| | - Ahmed A Moustafa
- Marcs Institute for Brain and Behavior and School of Social Sciences and Psychology, Western Sydney University Sydney, NSW, Australia
| |
Collapse
|
160
|
Concordance and incongruence in preclinical anxiety models: Systematic review and meta-analyses. Neurosci Biobehav Rev 2016; 68:504-529. [PMID: 27328783 DOI: 10.1016/j.neubiorev.2016.04.011] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 03/19/2016] [Accepted: 04/18/2016] [Indexed: 12/14/2022]
Abstract
Rodent defense behavior assays have been widely used as preclinical models of anxiety to study possibly therapeutic anxiety-reducing interventions. However, some proposed anxiety-modulating factors - genes, drugs and stressors - have had discordant effects across different studies. To reconcile the effect sizes of purported anxiety factors, we conducted systematic review and meta-analyses of the literature on ten anxiety-linked interventions, as examined in the elevated plus maze, open field and light-dark box assays. Diazepam, 5-HT1A receptor gene knockout and overexpression, SERT gene knockout and overexpression, pain, restraint, social isolation, corticotropin-releasing hormone and Crhr1 were selected for review. Eight interventions had statistically significant effects on rodent anxiety, while Htr1a overexpression and Crh knockout did not. Evidence for publication bias was found in the diazepam, Htt knockout, and social isolation literatures. The Htr1a and Crhr1 results indicate a disconnect between preclinical science and clinical research. Furthermore, the meta-analytic data confirmed that genetic SERT anxiety effects were paradoxical in the context of the clinical use of SERT inhibitors to reduce anxiety.
Collapse
|
161
|
Waltz JA. The neural underpinnings of cognitive flexibility and their disruption in psychotic illness. Neuroscience 2016; 345:203-217. [PMID: 27282085 DOI: 10.1016/j.neuroscience.2016.06.005] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 05/25/2016] [Accepted: 06/03/2016] [Indexed: 12/27/2022]
Abstract
Schizophrenia (SZ) has long been associated with a variety of cognitive deficits, including reduced cognitive flexibility. More recent findings, however, point to tremendous inter-individual variability among patients on measures of cognitive flexibility/set-shifting. With an eye toward shedding light on potential sources of variability in set-shifting abilities among SZ patients, I examine the neural substrates of underlying probabilistic reversal learning (PRL) - a paradigmatic measure of cognitive flexibility - as well as neuromodulatory influences upon these systems. Finally, I report on behavioral and neuroimaging studies of PRL in SZ patients, discussing the potentially influences of illness profile and antipsychotic medications on cognitive flexibility in SZ.
Collapse
Affiliation(s)
- James A Waltz
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
162
|
Homberg JR, Kyzar EJ, Nguyen M, Norton WH, Pittman J, Poudel MK, Gaikwad S, Nakamura S, Koshiba M, Yamanouchi H, Scattoni ML, Ullman JF, Diamond DM, Kaluyeva AA, Parker MO, Klimenko VM, Apryatin SA, Brown RE, Song C, Gainetdinov RR, Gottesman II, Kalueff AV. Understanding autism and other neurodevelopmental disorders through experimental translational neurobehavioral models. Neurosci Biobehav Rev 2016; 65:292-312. [DOI: 10.1016/j.neubiorev.2016.03.013] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 03/11/2016] [Accepted: 03/21/2016] [Indexed: 12/11/2022]
|
163
|
Lloyd K, Dayan P. Safety out of control: dopamine and defence. BEHAVIORAL AND BRAIN FUNCTIONS : BBF 2016; 12:15. [PMID: 27216176 PMCID: PMC4878001 DOI: 10.1186/s12993-016-0099-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 05/13/2016] [Indexed: 12/21/2022]
Abstract
We enjoy a sophisticated understanding of how animals learn to predict appetitive outcomes and direct their behaviour accordingly. This encompasses well-defined learning algorithms and details of how these might be implemented in the brain. Dopamine has played an important part in this unfolding story, appearing to embody a learning signal for predicting rewards and stamping in useful actions, while also being a modulator of behavioural vigour. By contrast, although choosing correct actions and executing them vigorously in the face of adversity is at least as important, our understanding of learning and behaviour in aversive settings is less well developed. We examine aversive processing through the medium of the role of dopamine and targets such as D2 receptors in the striatum. We consider critical factors such as the degree of control that an animal believes it exerts over key aspects of its environment, the distinction between 'better' and 'good' actual or predicted future states, and the potential requirement for a particular form of opponent to dopamine to ensure proper calibration of state values.
Collapse
Affiliation(s)
- Kevin Lloyd
- Gatsby Computational Neuroscience Unit, 25 Howland Street, London, UK
| | - Peter Dayan
- Gatsby Computational Neuroscience Unit, 25 Howland Street, London, UK
| |
Collapse
|
164
|
Myers B, Scheimann JR, Franco-Villanueva A, Herman JP. Ascending mechanisms of stress integration: Implications for brainstem regulation of neuroendocrine and behavioral stress responses. Neurosci Biobehav Rev 2016; 74:366-375. [PMID: 27208411 DOI: 10.1016/j.neubiorev.2016.05.011] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2016] [Revised: 05/12/2016] [Accepted: 05/17/2016] [Indexed: 12/13/2022]
Abstract
In response to stress, defined as a real or perceived threat to homeostasis or well-being, brain systems initiate divergent physiological and behavioral processes that mobilize energy and promote adaptation. The brainstem contains multiple nuclei that engage in autonomic control and reflexive responses to systemic stressors. However, brainstem nuclei also play an important role in neuroendocrine responses to psychogenic stressors mediated by the hypothalamic-pituitary-adrenocortical axis. Further, these nuclei integrate neuroendocrine responses with stress-related behaviors, significantly impacting mood and anxiety. The current review focuses on the prominent brainstem monosynaptic inputs to the endocrine paraventricular hypothalamic nucleus (PVN), including the periaqueductal gray, raphe nuclei, parabrachial nuclei, locus coeruleus, and nucleus of the solitary tract (NTS). The NTS is a particularly intriguing area, as the region contains multiple cell groups that provide neurochemically-distinct inputs to the PVN. Furthermore, the NTS, under regulatory control by glucocorticoid-mediated feedback, integrates affective processes with physiological status to regulate stress responding. Collectively, these brainstem circuits represent an important avenue for delineating interactions between stress and health.
Collapse
Affiliation(s)
- Brent Myers
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati OH, USA.
| | - Jessie R Scheimann
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati OH, USA
| | - Ana Franco-Villanueva
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati OH, USA
| | - James P Herman
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati OH, USA
| |
Collapse
|
165
|
Serafini G, Pardini M, Pompili M, Girardi P, Amore M. Understanding Suicidal Behavior: The Contribution of Recent Resting-State fMRI Techniques. Front Psychiatry 2016; 7:69. [PMID: 27148097 PMCID: PMC4835442 DOI: 10.3389/fpsyt.2016.00069] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 04/06/2016] [Indexed: 01/17/2023] Open
Affiliation(s)
- Gianluca Serafini
- Section of Psychiatry, Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal and Child Health, University of Genoa, Genoa, Italy
| | - Matteo Pardini
- Section of Neurology, Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal and Child Health, University of Genoa, Genoa, Italy
| | - Maurizio Pompili
- Department of Neurosciences, Suicide Prevention Center, Sant’Andrea Hospital, University of Rome, Rome, Italy
| | - Paolo Girardi
- Department of Neurosciences, Suicide Prevention Center, Sant’Andrea Hospital, University of Rome, Rome, Italy
| | - Mario Amore
- Section of Psychiatry, Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal and Child Health, University of Genoa, Genoa, Italy
| |
Collapse
|
166
|
Rigoli F, Chew B, Dayan P, Dolan RJ. The Dopaminergic Midbrain Mediates an Effect of Average Reward on Pavlovian Vigor. J Cogn Neurosci 2016; 28:1303-17. [PMID: 27082045 DOI: 10.1162/jocn_a_00972] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Dopamine plays a key role in motivation. Phasic dopamine response reflects a reinforcement prediction error (RPE), whereas tonic dopamine activity is postulated to represent an average reward that mediates motivational vigor. However, it has been hard to find evidence concerning the neural encoding of average reward that is uncorrupted by influences of RPEs. We circumvented this difficulty in a novel visual search task where we measured participants' button pressing vigor in a context where information (underlying an RPE) about future average reward was provided well before the average reward itself. Despite no instrumental consequence, participants' pressing force increased for greater current average reward, consistent with a form of Pavlovian effect on motivational vigor. We recorded participants' brain activity during task performance with fMRI. Greater average reward was associated with enhanced activity in dopaminergic midbrain to a degree that correlated with the relationship between average reward and pressing vigor. Interestingly, an opposite pattern was observed in subgenual cingulate cortex, a region implicated in negative mood and motivational inhibition. These findings highlight a crucial role for dopaminergic midbrain in representing aspects of average reward and motivational vigor.
Collapse
|
167
|
Karjalainen T, Tuominen L, Manninen S, Kalliokoski KK, Nuutila P, Jääskeläinen IP, Hari R, Sams M, Nummenmaa L. Behavioural activation system sensitivity is associated with cerebral μ-opioid receptor availability. Soc Cogn Affect Neurosci 2016; 11:1310-6. [PMID: 27053768 DOI: 10.1093/scan/nsw044] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 03/24/2016] [Indexed: 12/18/2022] Open
Abstract
The reinforcement-sensitivity theory proposes that behavioural activation and inhibition systems (BAS and BIS, respectively) guide approach and avoidance behaviour in potentially rewarding and punishing situations. Their baseline activity presumably explains individual differences in behavioural dispositions when a person encounters signals of reward and harm. Yet, neurochemical bases of BAS and BIS have remained poorly understood. Here we used in vivo positron emission tomography with a µ-opioid receptor (MOR) specific ligand [(11)C]carfentanil to test whether individual differences in MOR availability would be associated with BAS or BIS. We scanned 49 healthy subjects and measured their BAS and BIS sensitivities using the BIS/BAS scales. BAS but not BIS sensitivity was positively associated with MOR availability in frontal cortex, amygdala, ventral striatum, brainstem, cingulate cortex and insula. Strongest associations were observed for the BAS subscale 'Fun Seeking'. Our results suggest that endogenous opioid system underlies BAS, and that differences in MOR availability could explain inter-individual differences in reward seeking behaviour.
Collapse
Affiliation(s)
- Tomi Karjalainen
- Turku PET Centre, University of Turku, Turku, Finland Department of Neuroscience and Biomedical Engineering, School of Science, Aalto University, 00076 AALTO, Espoo, Finland
| | - Lauri Tuominen
- Turku PET Centre, University of Turku, Turku, Finland Department of Neuroscience and Biomedical Engineering, School of Science, Aalto University, 00076 AALTO, Espoo, Finland
| | | | | | - Pirjo Nuutila
- Turku PET Centre, University of Turku, Turku, Finland Department of Endocrinology, Turku University Hospital, Turku 20521, Finland
| | - Iiro P Jääskeläinen
- Department of Neuroscience and Biomedical Engineering, School of Science, Aalto University, 00076 AALTO, Espoo, Finland
| | - Riitta Hari
- Department of Neuroscience and Biomedical Engineering, School of Science, Aalto University, 00076 AALTO, Espoo, Finland Department of Art, School of Arts, Design and Architecture, 00076 AALTO, Helsinki, Finland
| | - Mikko Sams
- Department of Neuroscience and Biomedical Engineering, School of Science, Aalto University, 00076 AALTO, Espoo, Finland
| | - Lauri Nummenmaa
- Turku PET Centre, University of Turku, Turku, Finland Department of Neuroscience and Biomedical Engineering, School of Science, Aalto University, 00076 AALTO, Espoo, Finland Department of Psychology, University of Turku, Turku 20014, Finland
| |
Collapse
|
168
|
Furuya-da-Cunha EM, Souza RRD, Canto-de-Souza A. Rat exposure in mice with neuropathic pain induces fear and antinociception that is not reversed by 5-HT2C receptor activation in the dorsal periaqueductal gray. Behav Brain Res 2016; 307:250-7. [PMID: 27059332 DOI: 10.1016/j.bbr.2016.04.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2014] [Revised: 04/01/2016] [Accepted: 04/04/2016] [Indexed: 01/14/2023]
Abstract
Previous studies have demonstrated that serotonin 5-HT2C receptors in the dorsal periaqueductal gray (dPAG) mediate both anxiety and antinociception in mice submitted to the elevated plus maze. The present study examined the effects of intra-dPAG infusion of the serotonin 5-HT2C receptor agonist (MK-212) in the defensive reactions and antinociception in mice with neurophatic pain confronted by a predator. Neuropathic pain was induced by chronic constriction injury (CCI) of the sciatic nerve, and predator confrontation was performed using the rat exposure test (RET). Our results demonstrated that both sham-operated and CCI mice exhibited intense defensive reactions when confronted by rats. However, rat-exposed CCI mice showed reduced pain reactivity in comparison to CCI mice exposed to a toy rat. Intra-dPAG infusion of MK-212 prior to predator exposure did not significantly alter defensive or antinociceptive responses. To our knowledge, our results represent the first evidence of RET-induced antinociception in mice. Moreover, the results of the present study suggest that 5-HT2C receptor activation in the dPAG is not critically involved in the control of predator-evoked fearful or antinociceptive responses.
Collapse
Affiliation(s)
- Elke Mayumi Furuya-da-Cunha
- Psychobiology Group/Department of Psychology/CECH-UFSCar, São Carlos, SP, 13565-905, Brazil; Joint Graduate Program in Physiological Sciences UFSCar/UNESP. Rod. Washington Luís, Km 235, São Carlos, SP, 13565-905, Brazil
| | - Rimenez Rodrigues de Souza
- Psychobiology Group/Department of Psychology/CECH-UFSCar, São Carlos, SP, 13565-905, Brazil; Graduate Program in Psychology UFSCar. Rod. Washington Luís, Km 235, São Carlos, SP, 13565-905, Brazil
| | - Azair Canto-de-Souza
- Psychobiology Group/Department of Psychology/CECH-UFSCar, São Carlos, SP, 13565-905, Brazil; Joint Graduate Program in Physiological Sciences UFSCar/UNESP. Rod. Washington Luís, Km 235, São Carlos, SP, 13565-905, Brazil; Graduate Program in Psychology UFSCar. Rod. Washington Luís, Km 235, São Carlos, SP, 13565-905, Brazil; Neuroscience and Behavioral Institute, Av. do Café, 2.450, 14050-220 Ribeirão Preto, SP, Brazil.
| |
Collapse
|
169
|
Silva K, Carvalho M, Padovan C. Tolerance to repeated stress in rats with lesions of the serotoninergic neurons of the Median Raphe Nucleus and chronically treated with imipramine. Behav Brain Res 2016; 302:220-7. [DOI: 10.1016/j.bbr.2016.01.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 01/07/2016] [Accepted: 01/09/2016] [Indexed: 01/08/2023]
|
170
|
Dorsal raphe nucleus and harm avoidance: A resting-state investigation. COGNITIVE AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2016; 16:561-9. [DOI: 10.3758/s13415-016-0415-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
171
|
Cheng RK, Krishnan S, Jesuthasan S. Activation and inhibition of tph2 serotonergic neurons operate in tandem to influence larval zebrafish preference for light over darkness. Sci Rep 2016; 6:20788. [PMID: 26868164 PMCID: PMC4751628 DOI: 10.1038/srep20788] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2015] [Accepted: 01/12/2016] [Indexed: 12/29/2022] Open
Abstract
Serotonergic neurons have been implicated in a broad range of processes, but the principles underlying their effects remain a puzzle. Here, we ask how these neurons influence the tendency of larval zebrafish to swim in the light and avoid regions of darkness. Pharmacological inhibition of serotonin synthesis reduces dark avoidance, indicating an involvement of this neuromodulator. Calcium imaging of tph2-expressing cells demonstrates that a rostral subset of dorsal raphe serotonergic neurons fire continuously while the animal is in darkness, but are inhibited in the light. Optogenetic manipulation of tph2 neurons by channelrhodopsin or halorhodopsin expression modifies preference, confirming a role for these neurons. In particular, these results suggest that fish prefer swimming in conditions that elicits lower activity in tph2 serotonergic neurons in the rostral raphe.
Collapse
Affiliation(s)
- Ruey-Kuang Cheng
- Neural Circuitry and Behavior Laboratory, Institute of Molecular and Cell Biology, Singapore
| | - Seetha Krishnan
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore
| | - Suresh Jesuthasan
- Neural Circuitry and Behavior Laboratory, Institute of Molecular and Cell Biology, Singapore.,Neuroscience and Behavioral Disorders Program, Duke-NUS Graduate Medical School, Singapore.,Department of Physiology, National University of Singapore, Singapore
| |
Collapse
|
172
|
Commons KG. Ascending serotonin neuron diversity under two umbrellas. Brain Struct Funct 2016; 221:3347-60. [PMID: 26740230 DOI: 10.1007/s00429-015-1176-7] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 12/19/2015] [Indexed: 12/30/2022]
Abstract
Forebrain serotonin relevant for many psychological disorders arises in the hindbrain, primarily within the dorsal and median raphe nuclei (DR and MR). These nuclei are heterogeneous, containing several distinct groups of serotonin neurons. Here, new insight into the afferent and efferent connectivity of these areas is reviewed in correlation with their developmental origin. These data suggest that the caudal third of the DR, the area originally designated B6, may be misidentified as part of the DR as it shares many features of connectivity with the MR. By considering the rostral DR independently and affiliating the B6 to the MR, the diverse subgroups of serotonin neurons can be arranged with more coherence into two umbrella groups, each with distinctive domains of influence. Serotonin neurons within the rostral DR are uniquely interconnected with brain areas associated with emotion and motivation such as the amygdala, accumbens and ventral pallidum. In contrast serotonin neurons in the B6 and MR are characterized by their dominion over the septum and hippocampus. This distinction between the DR and B6/MR parallels their developmental origin and likely impacts their role in both behavior and psychopathology. Implications and further subdivisions within these areas are discussed.
Collapse
Affiliation(s)
- Kathryn G Commons
- Department of Anesthesiology, Perioperative, and Pain Medicine, Boston Children's Hospital, 300 Longwood Ave., Boston, MA, 02115, USA. .,Department of Anaesthesia, Harvard Medical School, Boston, USA.
| |
Collapse
|
173
|
Soares FRC, Silote GP, Almeida-Santos AF, Aguiar DC, Schenberg LC, Beijamini V. Galanin microinjection into the dorsal periaqueductal gray matter produces paradigm-dependent anxiolytic effects. Brain Res Bull 2016; 121:42-7. [PMID: 26751815 DOI: 10.1016/j.brainresbull.2015.12.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 12/09/2015] [Accepted: 12/28/2015] [Indexed: 01/07/2023]
Abstract
Galanin is a peptide that is present in the central nervous system in mammals, including rodents and humans. The actions of galanin are mediated by three types of metabotropic receptors: GAL1, GAL2, and GAL3. GAL1 and GAL3 increase K(+) efflux, and GAL2 increases intracellular Ca(2+) levels. The distribution of galanin and its receptors suggests its involvement in fear and/or anxiety. The periaqueductal gray matter (PAG) is a key mediator of defensive behaviors that is both targeted by galaninergic projections and supplied with GAL1 receptors and, less markedly, GAL2 receptors. We examined the effects of galanin microinjections in the dorsal PAG (dPAG) on the performance of rats in different models of anxiety. Male Wistar rats (n=7-12) were implanted with guide cannulae in the dPAG. They received microinjections of either galanin (0.3, 1.0, and 3.0 nmol) or vehicle and were tested in the Vogel conflict test (VCT), elevated plus maze (EPM), and elevated T-maze (ETM). Rats that were tested in the ETM were further evaluated for exploratory activity in the open field test (OFT). Galanin microinjections had no effects on anxiety-like behavior in the EPM or VCT or exploratory activity in the EPM or OFT. In the ETM, however, microinjections of 3 nmol galanin impaired learned anxiety (i.e., avoidance of the open arms) without changing unconditioned fear (i.e., escape from the open arms). The present data suggest that galanin transmission in the dPAG inhibits the acquisition of anxiety-like responses in the ETM.
Collapse
Affiliation(s)
- F R C Soares
- Biochemistry and Pharmacology Postgraduate Program, Health Science Center, Federal University of Espirito Santo, Vitoria, ES 29043-900, Brazil
| | - G P Silote
- Biochemistry and Pharmacology Postgraduate Program, Health Science Center, Federal University of Espirito Santo, Vitoria, ES 29043-900, Brazil
| | - A F Almeida-Santos
- Department of Pharmacology, Federal University of Minas Gerais, Belo Horizonte, MG 31270-901, Brazil
| | - D C Aguiar
- Department of Pharmacology, Federal University of Minas Gerais, Belo Horizonte, MG 31270-901, Brazil
| | - L C Schenberg
- Biochemistry and Pharmacology Postgraduate Program, Health Science Center, Federal University of Espirito Santo, Vitoria, ES 29043-900, Brazil
| | - V Beijamini
- Biochemistry and Pharmacology Postgraduate Program, Health Science Center, Federal University of Espirito Santo, Vitoria, ES 29043-900, Brazil.
| |
Collapse
|
174
|
Rigoli F, Pezzulo G, Dolan RJ. Prospective and Pavlovian mechanisms in aversive behaviour. Cognition 2016; 146:415-25. [PMID: 26539969 PMCID: PMC4675632 DOI: 10.1016/j.cognition.2015.10.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 09/24/2015] [Accepted: 10/19/2015] [Indexed: 01/23/2023]
Abstract
Studying aversive behaviour is critical for understanding negative emotions and associated psychopathologies. However a comprehensive picture of the mechanisms underlying aversion is lacking, with associative learning theories focusing on Pavlovian reactions and decision-making theoretic approaches on prospective functions. We propose a computational model of aversion that combines goal-directed and Pavlovian forms of control into a unifying framework in which their relative importance is regulated by factors such as threat distance and controllability. Using simulations, we test whether the model can reproduce available empirical findings and discuss its relevance to understanding factors underlying negative emotions such as fear and anxiety. Furthermore, the specific method used to construct the model permits a natural mapping from its components to brain structure and function. Our model provides a basis for a unifying account of aversion that can guide empirical and interventional study contexts.
Collapse
Affiliation(s)
- Francesco Rigoli
- Wellcome Trust Centre for Neuroimaging, University College of London, London, UK.
| | - Giovanni Pezzulo
- Institute of Cognitive Sciences and Technologies, National Research Council, Rome, Italy
| | - Raymond J Dolan
- Wellcome Trust Centre for Neuroimaging, University College of London, London, UK; Max Planck UCL Centre for Computational Psychiatry and Ageing Research, London, UK
| |
Collapse
|
175
|
Roncon CM, Almada RC, Maraschin JC, Audi EA, Zangrossi H, Graeff FG, Coimbra NC. Pharmacological evidence for the mediation of the panicolytic effect of fluoxetine by dorsal periaqueductal gray matter μ-opioid receptors. Neuropharmacology 2015; 99:620-6. [DOI: 10.1016/j.neuropharm.2015.08.037] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 08/20/2015] [Accepted: 08/21/2015] [Indexed: 10/23/2022]
|
176
|
Selvaraj S, Mouchlianitis E, Faulkner P, Turkheimer F, Cowen PJ, Roiser JP, Howes O. Presynaptic Serotoninergic Regulation of Emotional Processing: A Multimodal Brain Imaging Study. Biol Psychiatry 2015; 78:563-571. [PMID: 24882568 PMCID: PMC5322825 DOI: 10.1016/j.biopsych.2014.04.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2013] [Revised: 04/01/2014] [Accepted: 04/01/2014] [Indexed: 11/26/2022]
Abstract
BACKGROUND The amygdala is a central node in the brain network that processes aversive emotions and is extensively innervated by dorsal raphe nucleus (DRN) serotonin (5-hydroxytryptamine [5-HT]) neurons. Alterations in DRN 5-HT1A receptor availability cause phenotypes characterized by fearful behavior in preclinical models. However, it is unknown whether 5-HT1A receptor availability is linked specifically to the processing of aversive emotions in humans or whether it modulates connectivity in brain networks involved in emotion processing. To answer this question, we investigated the relationship between DRN 5-HT1A receptor availability and amygdala reactivity to aversive emotion and functional connectivity within the amygdala-cortical network. METHODS We studied 15 healthy human participants who underwent positron emission tomography scanning with [(11)C]CUMI-101, a 5-HT1A partial agonist radioligand, and functional magnetic resonance imaging of brain responses during an incidental emotion processing task including happy, fearful, and neutral faces. Regional estimates of 5-HT1A receptor binding potential (nondisplaceable) were obtained by calculating total volumes of distribution for presynaptic DRN and amygdala. Connectivity between the amygdala and corticolimbic areas was assessed using psychophysiologic interaction analysis with the amygdala as the seed region. RESULTS Analysis of the fear versus neutral contrast revealed a significant negative correlation between amygdala response and DRN binding potential (nondisplaceable) (r = -.87, p < .001). Availability of DRN 5-HT1A receptors positively correlated with amygdala connectivity with middle frontal gyrus, anterior cingulate cortex, bilateral precuneus, and left supramarginal gyrus for fearful (relative to neutral) faces. CONCLUSIONS Our data show that DRN 5-HT1A receptor availability is linked specifically to the processing of aversive emotions in the amygdala and the modulation of amygdala-cortical connectivity.
Collapse
Affiliation(s)
- Sudhakar Selvaraj
- Medical Research Council Clinical Sciences Centre, Hammersmith Hospital, London, W12 0NN, UK,Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Elias Mouchlianitis
- Medical Research Council Clinical Sciences Centre, Hammersmith Hospital, London, W12 0NN, UK
| | - Paul Faulkner
- Institute of Cognitive Neuroscience, University College London, WC1N 3AR, UK
| | | | | | - Jonathan P Roiser
- Institute of Cognitive Neuroscience, University College London, WC1N 3AR, UK
| | - Oliver Howes
- Medical Research Council Clinical Sciences Centre, Hammersmith Hospital, London, W12 0NN, UK,Institute of Psychiatry, King’s College London, SE5 8AF, UK
| |
Collapse
|
177
|
Corchs F, Nutt DJ, Hince DA, Davies SJC, Bernik M, Hood SD. Evidence for serotonin function as a neurochemical difference between fear and anxiety disorders in humans? J Psychopharmacol 2015; 29:1061-9. [PMID: 26187054 DOI: 10.1177/0269881115590603] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The relationships between serotonin and fear and anxiety disorders have been much studied yet many important questions remain, despite selective serotonin reuptake inhibitors having been the primary treatments for these disorders for some time. In order to explore this issue we performed a pooled analysis of six of our studies in remitted patients with a fear/anxiety disorder who were exposed to syndrome-specific aversive stimulation under acute tryptophan depletion. We based our analysis on the hypothesis that the inconsistencies observed in the studies could be predicted by Deakin and Graeff's theory about the dual role of serotonin in responses to threats, whereby serotonin is critical to prevent fear (panic) but not anxiety. In accordance with this view, our results give support to a dissociation of the disorders traditionally grouped under fear and anxiety-related disorders in terms of different roles of serotonin in modulation of responses to aversive stimulation. Implications for future studies and psychiatric nosology are discussed.
Collapse
Affiliation(s)
- Felipe Corchs
- Institute and Department of Psychiatry, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - David J Nutt
- Neuropsychopharmacology Unit, Division of Experimental Medicine, Imperial College London, London, UK
| | - Dana A Hince
- School of Psychiatry & Clinical Neurosciences (M521), The University of Western Australia, Perth, WA, Australia
| | - Simon J C Davies
- Centre for Addiction and Mental Health, University of Toronto, Toronto, ON, Canada
| | - Marcio Bernik
- Institute and Department of Psychiatry, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Sean D Hood
- School of Psychiatry & Clinical Neurosciences (M521), The University of Western Australia, Perth, WA, Australia
| |
Collapse
|
178
|
Crockett MJ, Cools R. Serotonin and aversive processing in affective and social decision-making. Curr Opin Behav Sci 2015. [DOI: 10.1016/j.cobeha.2015.08.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
179
|
Fukuda K. Integrated theory to unify status among schizophrenia and manic depressive illness. Med Hypotheses 2015; 85:506-11. [PMID: 26141636 DOI: 10.1016/j.mehy.2015.06.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Revised: 05/14/2015] [Accepted: 06/17/2015] [Indexed: 11/30/2022]
Abstract
Tryptophan hydroxylase 1 is primarily expressed in the gastrointestinal tract, and has been associated with both schizophrenia and depression. Although decreased serotonin activity has been reported in both depression and mania, it is important to investigate the interaction between serotonin and other neurotransmitter systems. There are competitive relationships between branched-chain amino acids, and tryptophan and tyrosine that relate to physical activity, and between L-3,4-dihydroxyphenylalanine (L-DOPA) and 5-hydroxytryptophan (5-HTP), both highly dependent on intracellular tetrahydrobiopterin concentrations. Here, I propose a chaos theory for schizophrenia, mania, and depression using the competitive interaction between tryptophan and tyrosine with regard to the blood-brain barrier and coenzyme tetrahydrobiopterin. Mania may be due to the initial conditions of physical hyperactivity and hypofunctional 5-HTP-producing cells inducing increased dopamine. Depression may be due to the initial conditions of physical hypoactivity and hypofunctional 5-HTP-producing cells inducing decreased serotonin. Psychomotor excitation may be due to the initial conditions of physical hyperactivity and hyperfunctional 5-HTP-producing cells inducing increased serotonin and substantially increased dopamine. The hallucinatory-paranoid state may be due to the initial conditions of physical hypoactivity and hyperfunctional 5-HTP-producing cells inducing increased serotonin and dopamine.
Collapse
Affiliation(s)
- K Fukuda
- Soka Clinic of Psychosomatic Medicine, Fujimoto Bld. 4F, 2-18-16 Takasago, Soka, Saitama 340-0015, Japan.
| |
Collapse
|
180
|
Masdrakis VG, Markianos M, Oulis P. Lack of specific association between panicogenic properties of caffeine and HPA-axis activation. A placebo-controlled study of caffeine challenge in patients with panic disorder. Psychiatry Res 2015; 229:75-81. [PMID: 26243374 DOI: 10.1016/j.psychres.2015.07.069] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2014] [Revised: 06/20/2015] [Accepted: 07/26/2015] [Indexed: 12/30/2022]
Abstract
A subgroup of patients with Panic Disorder (PD) exhibits increased sensitivity to caffeine administration. However, the association between caffeine-induced panic attacks and post-caffeine hypothalamic-pituitary-adrenal (HPA)-axis activation in PD patients remains unclear. In a randomized, double-blind, cross-over experiment, 19 PD patients underwent a 400-mg caffeine-challenge and a placebo-challenge, both administered in the form of instant coffee. Plasma levels of adrenocorticotropic hormone (ACTH), cortisol and dehydroepiandrosterone sulfate (DHEAS) were assessed at both baseline and post-challenge. No patient panicked after placebo-challenge, while nine patients (47.3%) panicked after caffeine-challenge. Placebo administration did not result in any significant change in hormones' plasma levels. Overall, sample's patients demonstrated significant increases in ACTH, cortisol, and DHEAS plasma levels after caffeine administration. However, post-caffeine panickers and non-panickers did not differ with respect to the magnitude of the increases. Our results indicate that in PD patients, caffeine-induced panic attacks are not specifically associated with HPA-axis activation, as this is reflected in post-caffeine increases in ACTH, cortisol and DHEAS plasma levels, suggesting that caffeine-induced panic attacks in PD patients are not specifically mediated by the biological processes underlying fear or stress. More generally, our results add to the evidence that HPA-axis activation is not a specific characteristic of panic.
Collapse
Affiliation(s)
- Vasilios G Masdrakis
- 1st Department of Psychiatry, Athens University Medical School, Eginition Hospital, 74 Vas. Sofias Avenue, Athens 11528, Greece.
| | - Manolis Markianos
- 1st Department of Psychiatry, Athens University Medical School, Eginition Hospital, 74 Vas. Sofias Avenue, Athens 11528, Greece
| | - Panagiotis Oulis
- 1st Department of Psychiatry, Athens University Medical School, Eginition Hospital, 74 Vas. Sofias Avenue, Athens 11528, Greece
| |
Collapse
|
181
|
Luo M, Zhou J, Liu Z. Reward processing by the dorsal raphe nucleus: 5-HT and beyond. ACTA ACUST UNITED AC 2015; 22:452-60. [PMID: 26286655 PMCID: PMC4561406 DOI: 10.1101/lm.037317.114] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 07/06/2015] [Indexed: 12/20/2022]
Abstract
The dorsal raphe nucleus (DRN) represents one of the most sensitive reward sites in the brain. However, the exact relationship between DRN neuronal activity and reward signaling has been elusive. In this review, we will summarize anatomical, pharmacological, optogenetics, and electrophysiological studies on the functions and circuit mechanisms of DRN neurons in reward processing. The DRN is commonly associated with serotonin (5-hydroxytryptamine; 5-HT), but this nucleus also contains neurons of the neurotransmitter phenotypes of glutamate, GABA and dopamine. Pharmacological studies indicate that 5-HT might be involved in modulating reward- or punishment-related behaviors. Recent optogenetic stimulations demonstrate that transient activation of DRN neurons produces strong reinforcement signals that are carried out primarily by glutamate. Moreover, activation of DRN 5-HT neurons enhances reward waiting. Electrophysiological recordings reveal that the activity of DRN neurons exhibits diverse behavioral correlates in reward-related tasks. Studies so far thus demonstrate the strong power of DRN neurons in reward signaling and at the same time invite additional efforts to dissect the roles and mechanisms of different DRN neuron types in various processes of reward-related behaviors.
Collapse
Affiliation(s)
- Minmin Luo
- National Institute of Biological Sciences, Beijing 102206, China School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jingfeng Zhou
- National Institute of Biological Sciences, Beijing 102206, China
| | - Zhixiang Liu
- National Institute of Biological Sciences, Beijing 102206, China
| |
Collapse
|
182
|
Gaber TJ, Dingerkus VLS, Crockett MJ, Bubenzer-Busch S, Helmbold K, Sánchez CL, Dahmen B, Herpertz-Dahlmann B, Zepf FD. Studying the effects of dietary body weight-adjusted acute tryptophan depletion on punishment-related behavioral inhibition. Food Nutr Res 2015; 59:28443. [PMID: 26268708 PMCID: PMC4534625 DOI: 10.3402/fnr.v59.28443] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Revised: 06/22/2015] [Accepted: 06/23/2015] [Indexed: 12/15/2022] Open
Abstract
Background Alterations in serotonergic (5-HT) neurotransmission are thought to play a decisive role in affective disorders and impulse control. Objective This study aims to reproduce and extend previous findings on the effects of acute tryptophan depletion (ATD) and subsequently diminished central 5-HT synthesis in a reinforced categorization task using a refined body weight–adjusted depletion protocol. Design Twenty-four young healthy adults (12 females, mean age [SD]=25.3 [2.1] years) were subjected to a double-blind within-subject crossover design. Each subject was administered both an ATD challenge and a balanced amino acid load (BAL) in two separate sessions in randomized order. Punishment-related behavioral inhibition was assessed using a forced choice go/no-go task that incorporated a variable payoff schedule. Results Administration of ATD resulted in significant reductions in TRP measured in peripheral blood samples, indicating reductions of TRP influx across the blood–brain barrier and related brain 5-HT synthesis. Overall accuracy and response time performance were improved after ATD administration. The ability to adjust behavioral responses to aversive outcome magnitudes and behavioral adjustments following error contingent punishment remained intact after decreased brain 5-HT synthesis. A previously observed dissociation effect of ATD on punishment-induced inhibition was not observed. Conclusions Our results suggest that neurodietary challenges with ATD Moja–De have no detrimental effects on task performance and punishment-related inhibition in healthy adults.
Collapse
Affiliation(s)
- Tilman J Gaber
- Clinic for Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, RWTH Aachen University, Aachen, Germany.,JARA Translational Brain Medicine, Aachen & Jülich, Germany
| | - Vita L S Dingerkus
- Clinic for Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, RWTH Aachen University, Aachen, Germany
| | - Molly J Crockett
- Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom
| | - Sarah Bubenzer-Busch
- Clinic for Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, RWTH Aachen University, Aachen, Germany.,JARA Translational Brain Medicine, Aachen & Jülich, Germany
| | - Katrin Helmbold
- Clinic for Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, RWTH Aachen University, Aachen, Germany.,JARA Translational Brain Medicine, Aachen & Jülich, Germany
| | - Cristina L Sánchez
- Clinic for Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, RWTH Aachen University, Aachen, Germany.,JARA Translational Brain Medicine, Aachen & Jülich, Germany
| | - Brigitte Dahmen
- Clinic for Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, RWTH Aachen University, Aachen, Germany.,JARA Translational Brain Medicine, Aachen & Jülich, Germany
| | - Beate Herpertz-Dahlmann
- Clinic for Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, RWTH Aachen University, Aachen, Germany.,JARA Translational Brain Medicine, Aachen & Jülich, Germany
| | - Florian D Zepf
- Clinic for Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, RWTH Aachen University, Aachen, Germany.,JARA Translational Brain Medicine, Aachen & Jülich, Germany.,Institute for Neuroscience and Medicine, Jülich Research Centre, Jülich, Germany.,Department of Child and Adolescent Psychiatry, School of Psychiatry and Clinical Neurosciences & School of Paediatrics and Child Health, Faculty of Medicine, Dentistry and Health Sciences, The University of Western Australia, Perth, Australia.,Specialised Child and Adolescent Mental Health Services (CAMHS), Department of Health in Western Australia, Perth, WA, Australia;
| |
Collapse
|
183
|
Pittalà V, Siracusa MA, Salerno L, Romeo G, Modica MN, Madjid N, Ogren SO. Analysis of mechanisms for memory enhancement using novel and potent 5-HT1A receptor ligands. Eur Neuropsychopharmacol 2015; 25:1314-23. [PMID: 25963581 DOI: 10.1016/j.euroneuro.2015.04.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 04/15/2015] [Accepted: 04/21/2015] [Indexed: 11/28/2022]
Abstract
In light of the involvement of serotonergic 5-HT1A receptors in the mediation of the memory of aversive events, the potent and selective 5-HT1A receptor antagonists, MC18 fumarate and VP08/34 fumarate, were tested in the passive avoidance task (PA), a rodent model of instrumental conditioning. Either alone or in combination with the prototypical agonist 8-OH-DPAT, MC18 fumarate at doses (0.1, 0.3 and 1mg/kg given 15min prior to training) exerted a dose-dependent facilitation of PA memory retention. When administered 15min prior to 8-OH-DPAT (0.3 and 1mg/kg), MC18 fumarate at a dose of 0.3mg/kg, enhanced significantly the impairment of PA retention caused by 8-OH-DPAT (1mg/kg). However, VP08/34 fumarate given at the same doses exerted no statistically effect on PA retention memory. Furthermore, VP08/34 fumarate given 15min prior to 8-OH-DPAT (0.3 and 1mg/kg) only slightly enhanced the PA impairment induced by 8-OH-DPAT. In conclusion, the profile of MC18 fumarate is intriguing since it behaves in a manner which differs from both full receptor antagonists such as NAD-299 or partial receptor agonists. The results also illustrate the importance of subtle receptor interaction and probably ligand efficacy in determining the actions of two almost identical 5-HT1A receptor ligands in cognitive function such as instrumental learning.
Collapse
Affiliation(s)
- Valeria Pittalà
- Department of Drug Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy.
| | - Maria A Siracusa
- Department of Drug Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Loredana Salerno
- Department of Drug Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Giuseppe Romeo
- Department of Drug Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Maria N Modica
- Department of Drug Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Nather Madjid
- Department of Neuroscience, Karolinska Institutet, Retzius väg 8, SE-171 77 Stockholm, Sweden
| | - Sven Ove Ogren
- Department of Neuroscience, Karolinska Institutet, Retzius väg 8, SE-171 77 Stockholm, Sweden.
| |
Collapse
|
184
|
Krypotos AM, Effting M, Kindt M, Beckers T. Avoidance learning: a review of theoretical models and recent developments. Front Behav Neurosci 2015; 9:189. [PMID: 26257618 PMCID: PMC4508580 DOI: 10.3389/fnbeh.2015.00189] [Citation(s) in RCA: 206] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 07/06/2015] [Indexed: 12/21/2022] Open
Abstract
Avoidance is a key characteristic of adaptive and maladaptive fear. Here, we review past and contemporary theories of avoidance learning. Based on the theories, experimental findings and clinical observations reviewed, we distill key principles of how adaptive and maladaptive avoidance behavior is acquired and maintained. We highlight clinical implications of avoidance learning theories and describe intervention strategies that could reduce maladaptive avoidance and prevent its return. We end with a brief overview of recent developments and avenues for further research.
Collapse
Affiliation(s)
- Angelos-Miltiadis Krypotos
- Department of Clinical Psychology, University of AmsterdamAmsterdam, Netherlands
- Amsterdam Brain and Cognition, University of AmsterdamAmsterdam, Netherlands
| | - Marieke Effting
- Department of Clinical Psychology, University of AmsterdamAmsterdam, Netherlands
- Amsterdam Brain and Cognition, University of AmsterdamAmsterdam, Netherlands
| | - Merel Kindt
- Department of Clinical Psychology, University of AmsterdamAmsterdam, Netherlands
- Amsterdam Brain and Cognition, University of AmsterdamAmsterdam, Netherlands
| | - Tom Beckers
- Department of Clinical Psychology, University of AmsterdamAmsterdam, Netherlands
- Amsterdam Brain and Cognition, University of AmsterdamAmsterdam, Netherlands
- Department of Psychology, KU LeuvenLeuven, Belgium
| |
Collapse
|
185
|
Translational approach to studying panic disorder in rats: hits and misses. Neurosci Biobehav Rev 2015; 46 Pt 3:472-96. [PMID: 25316571 DOI: 10.1016/j.neubiorev.2014.10.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 09/26/2014] [Accepted: 10/01/2014] [Indexed: 12/30/2022]
Abstract
Panic disorder (PD) patients are specifically sensitive to 5–7% carbon dioxide. Another startling feature of clinical panic is the counterintuitive lack of increments in ‘stress hormones’. PD is also more frequent in women and highly comorbid with childhood separation anxiety (CSA). On the other hand, increasing evidence suggests that panic is mediated at dorsal periaqueductal grey matter (DPAG). In line with prior studies showing that DPAG-evoked panic-like behaviours are attenuated by clinically-effective treatments with panicolytics, we show here that (i) the DPAG harbors a hypoxia-sensitive alarm system, which is activated by hypoxia and potentiated by hypercapnia, (ii) the DPAG suffocation alarm system is inhibited by clinically-effective treatments with panicolytics, (iii) DPAG stimulations do not increase stress hormones in the absence of physical exertion, (iv) DPAG-evoked panic-like behaviours are facilitated in neonatally-isolated adult rats, a model of CSA, and (v) DPAG-evoked responses are enhanced in the late diestrus of female rats. Data are consistent with the DPAG mediation of both respiratory and non-respiratory types of panic attacks.
Collapse
|
186
|
Mascarenhas DC, Gomes KS, Nunes-de-Souza RL. Role of TRPV1 channels of the dorsal periaqueductal gray in the modulation of nociception and open elevated plus maze-induced antinociception in mice. Behav Brain Res 2015; 292:547-54. [PMID: 26183651 DOI: 10.1016/j.bbr.2015.07.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 07/02/2015] [Accepted: 07/06/2015] [Indexed: 12/19/2022]
Abstract
Recent findings have identified the presence of transient receptor potential vanilloid-1 (TRPV1) channels within the dorsal portion of the periaqueductal gray (dPAG), suggesting their involvement in the control of pain and environmentally-induced antinociception. Environmentally, antinociception may be achieved through the use of an open elevated plus maze (oEPM, an EPM with 4 open arms), a highly aversive environmental situation. Here, we investigated the role of these TRPV1 channels within the dPAG in the modulation of a tonic pain and in the oEPM-induced antinociception. Male Swiss mice, under the nociceptive effect of 2.5% formalin injected into the right hind paw, received intra-dPAG injections of the TRPV1 agonist (capsaicin: 0, 0.01, 0.1 or 1.0 nmol/0.2 μL; Experiment 1) or antagonist (capsazepine: 0, 10 or 30 nmol/0.2 μL; Experiment 2) or combined injections of capsazepine (30 nmol) and capsaicin (1.0 nmol) (Experiment 3) and the time spent licking the formalin-injected paw was recorded. In Experiment 4, mice received intra-dPAG capsazepine (0 or 30 nmol) and were exposed to the oEPM or to a control situation, an enclosed EPM (eEPM; an EPM with 4 enclosed arms). Results showed that while capsaicin (1 nmol) decreased the time spent licking the formalin-injected paw, capsazepine did not change nociceptive response. Capsazepine (30 nmol) blocked pain inhibition induced by capsaicin and mildly attenuated the oEPM-induced antinociception. Our results revealed an important role of TRPV1 channels within the dPAG in the modulation of pain and in the phenomenon known as fear-induced antinociception in mice.
Collapse
Affiliation(s)
- Diego Cardozo Mascarenhas
- Joint Graduate Program in Physiological Sciences, UFSCar/UNESP-São Carlos, SP, 13565-905, Brazil; School of Pharmaceutical Sciences, Universidade Estadual Paulista-UNESP, 14801-902, Araraquara, SP, Brazil
| | - Karina Santos Gomes
- School of Pharmaceutical Sciences, Universidade Estadual Paulista-UNESP, 14801-902, Araraquara, SP, Brazil
| | - Ricardo Luiz Nunes-de-Souza
- Joint Graduate Program in Physiological Sciences, UFSCar/UNESP-São Carlos, SP, 13565-905, Brazil; School of Pharmaceutical Sciences, Universidade Estadual Paulista-UNESP, 14801-902, Araraquara, SP, Brazil.
| |
Collapse
|
187
|
Spiacci A, Pobbe RLH, Matthiesen M, Zangrossi H. 5-HT1A receptors of the rat dorsal raphe lateral wings and dorsomedial subnuclei differentially control anxiety- and panic-related defensive responses. Neuropharmacology 2015; 107:471-479. [PMID: 26145183 DOI: 10.1016/j.neuropharm.2015.06.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 06/24/2015] [Accepted: 06/27/2015] [Indexed: 01/04/2023]
Abstract
The dorsal raphe nucleus (DR), the main source of 5-HT projections to brain areas involved in anxiety regulation, is composed by 5 subnuclei that differ morphologically, functionally and neurochemically. Based on immunohistochemical evidence, it has been proposed that whereas 5-HT cells of the dorsomedial (dmDR) and caudal subnuclei are implicated in the pathophysiology of generalized anxiety disorder (GAD), neurons of the lateral wings (lwDR) are associated with panic disorder (PD). We here tested this hypothesis from a behavioral perspective by investigating the consequences of the non-selective stimulation of neurons within the dmDR and lwDR, or the pharmacological manipulation of 5-HT1A receptors located in these nuclei, of male Wistar rats exposed to the elevated T-maze. This test allows the measurement of both a GAD- (i.e. inhibitory avoidance) and a PD- (i.e. escape) related response in the same animal. Intra-dmDR injection of either the excitatory amino acid kainic acid or the 5-HT1A receptor antagonist WAY-100635 facilitated inhibitory avoidance acquisition, suggesting an anxiogenic effect, and inhibited escape expression, a panicolytic-like effect. Microinjection of the 5-HT1A receptor agonist 8-OH-DPAT caused the opposite effect. Administration of the same drugs into the lwDR only altered escape performance. Whereas kainic acid and 8-OH-DPAT facilitated its expression, WAY-100635 inhibited it. At higher doses, kainic acid administration evoked vigorous escape reactions as measured in an open-field. These findings implicate 5-HT neurons of the dmDR in the regulation of both GAD- and PD-related defensive behaviors. They also support a primary role of the lwDR in the mediation of PD-associated responses.
Collapse
Affiliation(s)
- Ailton Spiacci
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, 14049-900, Ribeirão Preto, São Paulo, Brazil
| | - Roger Luis Henschel Pobbe
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, 14049-900, Ribeirão Preto, São Paulo, Brazil
| | - Melina Matthiesen
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, 14049-900, Ribeirão Preto, São Paulo, Brazil
| | - Helio Zangrossi
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, 14049-900, Ribeirão Preto, São Paulo, Brazil.
| |
Collapse
|
188
|
Johnston BA, Tolomeo S, Gradin V, Christmas D, Matthews K, Steele JD. Failure of hippocampal deactivation during loss events in treatment-resistant depression. Brain 2015; 138:2766-76. [PMID: 26133661 DOI: 10.1093/brain/awv177] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 04/21/2015] [Indexed: 12/18/2022] Open
Abstract
Major depressive disorder is characterized by anhedonia, cognitive biases, ruminations, hopelessness and increased anxiety. Blunted responses to rewards have been reported in a number of recent neuroimaging and behavioural studies of major depressive disorder. In contrast, neural responses to aversive events remain an under-studied area. While selective serotonergic reuptake inhibitors are often effective in treating major depressive disorder, their mechanism of action remains unclear. Following a series of animal model investigations of depressive illness and serotonergic function, Deakin and Graeff predicted that brain activity in patients with major depressive disorder is associated with an overactive dorsal raphe nucleus with overactive projections to the amygdala, periaqueductal grey and striatum, and an underactive median raphe nucleus with underactive projections to the hippocampus. Here we describe an instrumental loss-avoidance and win-gain reinforcement learning functional magnetic resonance imaging study with 40 patients with highly treatment-resistant major depressive disorder and never-depressed controls. The dorsal raphe nucleus/ periaqueductal grey region of the midbrain and hippocampus were found to be overactive in major depressive disorder during unsuccessful loss-avoidance although the median raphe nucleus was not found to be underactive. Hippocampal overactivity was due to a failure to deactivate during loss events in comparison to controls, and hippocampal over-activity correlated with depression severity, self-report 'hopelessness' and anxiety. Deakin and Graeff argued that the median raphe nucleus normally acts to inhibit consolidation of aversive memories via the hippocampus and this system is underactive in major depressive disorder, facilitating the development of ruminations, while the dorsal raphe nucleus system is engaged by distal cues predictive of threats and is overactive in major depressive disorder. During win events the striatum was underactive in major depressive disorder. We tested individual patient consistency of these findings using within-study replication. Abnormal hippocampal activity correctly predicted individual patient diagnostic status in 97% (sensitivity 95%, specificity 100%) of subjects, and abnormal striatal activity predicted diagnostic status in 84% (sensitivity 79%, specificity 89%) of subjects. We conclude that the neuroimaging findings were largely consistent with Deaken and Graeff's predictions, abnormally increased hippocampal activity during loss events was an especially consistent abnormality, and brainstem serotonergic nuclei merit further study in depressive illness.
Collapse
Affiliation(s)
- Blair A Johnston
- 1 Division of Neuroscience, Medical Research Institute, Ninewells Hospital and Medical School, University of Dundee, U.K, DD1 9SY
| | - Serenella Tolomeo
- 1 Division of Neuroscience, Medical Research Institute, Ninewells Hospital and Medical School, University of Dundee, U.K, DD1 9SY
| | - Victoria Gradin
- 2 CIBPsi, Faculty of Psychology, Universidad de al República, Montevideo, Uruguay
| | - David Christmas
- 3 Advanced Interventions Service, Area 7, Level 6, South Block, Ninewells Hospital and Medical School, Dundee, UK
| | - Keith Matthews
- 1 Division of Neuroscience, Medical Research Institute, Ninewells Hospital and Medical School, University of Dundee, U.K, DD1 9SY 3 Advanced Interventions Service, Area 7, Level 6, South Block, Ninewells Hospital and Medical School, Dundee, UK
| | - J Douglas Steele
- 1 Division of Neuroscience, Medical Research Institute, Ninewells Hospital and Medical School, University of Dundee, U.K, DD1 9SY 3 Advanced Interventions Service, Area 7, Level 6, South Block, Ninewells Hospital and Medical School, Dundee, UK
| |
Collapse
|
189
|
Wan X, Cheng K, Tanaka K. Neural encoding of opposing strategy values in anterior and posterior cingulate cortex. Nat Neurosci 2015; 18:752-9. [PMID: 25894290 DOI: 10.1038/nn.3999] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 03/17/2015] [Indexed: 11/09/2022]
Abstract
Humans, and animals, often encounter ambiguous situations that require a decision on whether to take an offense or a defense strategy. Behavioral studies suggest that a strategy decision is frequently made before concrete options are evaluated. It remains enigmatic, however, how a strategy is determined without exploration of options. Here we investigated neural correlates of quick offense-versus-defense strategy decision in a board game, shogi. We found that the rostral anterior cingulate cortex and the posterior cingulate cortex complementally encoded the defense and attack strategy values, respectively. The dorsolateral prefrontal cortex compared the two strategy values. Several brain regions were activated during decision of concrete moves under an instructed strategy, whereas none of them showed correlation with defense or attack strategy values in their activities during strategy decision. These findings suggest that values of alternative strategies represented in different parts of the cingulate cortex have essential roles in intuitive strategy decision-making.
Collapse
Affiliation(s)
- Xiaohong Wan
- 1] Cognitive Brain Mapping Laboratory, RIKEN Brain Science Institute, Wako, Saitama, Japan. [2] State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Kang Cheng
- 1] Cognitive Brain Mapping Laboratory, RIKEN Brain Science Institute, Wako, Saitama, Japan. [2] Support Unit for Functional Magnetic Resonance Imaging, RIKEN Brain Science Institute, Wako, Saitama, Japan
| | - Keiji Tanaka
- Cognitive Brain Mapping Laboratory, RIKEN Brain Science Institute, Wako, Saitama, Japan
| |
Collapse
|
190
|
Liu Y, Kelly MA, Sexton TJ, Neumaier JF. 5-HT1B autoreceptors differentially modulate the expression of conditioned fear in a circuit-specific manner. Neuroscience 2015; 298:436-47. [PMID: 25907441 DOI: 10.1016/j.neuroscience.2015.04.032] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 04/08/2015] [Accepted: 04/13/2015] [Indexed: 12/17/2022]
Abstract
Located in the nerve terminals of serotonergic neurons, 5-HT1B autoreceptors are poised to modulate synaptic 5-HT levels with precise temporal and spatial control, and play an important role in various emotional behaviors. This study characterized two novel, complementary viral vector strategies to investigate the contribution of 5-HT1B autoreceptors to fear expression, displayed as freezing, during contextual fear conditioning. Increased expression of 5-HT1B autoreceptors throughout the brain significantly decreased fear expression in both wild-type (WT) and 5-HT1B knockout (1BKO) mice when receptor levels were increased with a cell-type-specific herpes simplex virus (HSV) vector injected into the dorsal raphe nucleus (DRN). Additional studies used an intersectional viral vector strategy, in which an adeno-associated virus containing a double-floxed inverted sequence for the 5-HT1B receptor (AAV-DIO-1B) was combined with the retrogradely transported canine adenovirus-2 expressing Cre (CAV-Cre) in order to increase 5-HT1B autoreceptor expression only in neurons projecting from the DRN to the amygdala. Surprisingly, selective expression of 5-HT1B autoreceptors in just this circuit led to an increase in fear expression in WT, but not 1BKO, mice. These results suggest that activation of 5-HT1B autoreceptors throughout the brain may have an overall effect of attenuating fear expression, but activation of subsets of 5-HT1B autoreceptors in particular brain regions, reflecting distinct projections of serotonergic neurons from the DRN, may have disparate contributions to the ultimate response.
Collapse
Affiliation(s)
- Y Liu
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, USA.
| | - M A Kelly
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, USA.
| | - T J Sexton
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, USA.
| | - J F Neumaier
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, USA.
| |
Collapse
|
191
|
Abstract
Neurons that produce serotonin respond in a number of different and complex ways in anticipation and receipt of rewards or punishments.
Collapse
Affiliation(s)
- Peter Dayan
- Gatsby Computational Neuroscience Unit, University College London, London, United Kingdom
| | - Quentin Huys
- Translational Neuromodeling Unit, Institute for Biomedical Engineering, University of Zurich & ETH Zurich, Zurich, Switzerland and Department of Psychiatry, Psychotherapy and Psychosomatics, University of Zurich, Zurich, Switzerland
| |
Collapse
|
192
|
Abstract
Neuroscientists are now discovering how hormones and brain chemicals shape social behavior, opening potential avenues for pharmacological manipulation of ethical values. Here, we review recent studies showing how altering brain chemistry can alter moral judgment and behavior, focusing in particular on the neuromodulator serotonin and its role in shaping values related to harm and fairness. We synthesize previous findings and consider the potential mechanisms through which serotonin could increase the aversion to harming others. We present a process model whereby serotonin influences social behavior by shifting social preferences in the positive direction, enhancing the value people place on others’ outcomes. This model may explain previous findings relating serotonin function to prosocial behavior, and makes new predictions regarding how serotonin may influence the neural computation of value in social contexts.
Collapse
Affiliation(s)
- Jenifer Z Siegel
- Wellcome Trust Centre for Neuroimaging, University College London, London, United Kingdom
| | | |
Collapse
|
193
|
Andrews PW, Bharwani A, Lee KR, Fox M, Thomson JA. Is serotonin an upper or a downer? The evolution of the serotonergic system and its role in depression and the antidepressant response. Neurosci Biobehav Rev 2015; 51:164-88. [DOI: 10.1016/j.neubiorev.2015.01.018] [Citation(s) in RCA: 169] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Revised: 01/08/2015] [Accepted: 01/15/2015] [Indexed: 12/17/2022]
|
194
|
Cagatay Kaya B, Karadag H, Oner O, Kart A, Turkcapar MH. Serum S100B Protein Levels in Patients with Panic Disorder: Effect of Treatment with Selective Serotonine Reuptake Inhibitors. Psychiatry Investig 2015; 12:260-2. [PMID: 25866528 PMCID: PMC4390598 DOI: 10.4306/pi.2015.12.2.260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2014] [Revised: 04/08/2014] [Accepted: 04/25/2014] [Indexed: 11/24/2022] Open
Abstract
OBJECTIVE Altered serum S100B protein levels have been shown in several psychiatric disorders. Our aim was to investigate whether plasma S100B is different in patients with panic disorder (PD) when compared with controls. Our second aim was to investigate whether treatment with SSRIs have an effect on S100B levels in patients with PD. METHODS The sample included 32 patients diagnosed with PD (21 women, 11 men) per DSM-IV criteria and 21 healthy controls (11 women, 10 men). S100B levels were measured with BioVendor Human S100B ELISA (Enzyme Linked Immunosorbent Assay) kit. RESULTS 14 patients were not on drug treatment (43.8%) while 18 patients were taking various SSRIs. Median S100B value was 151.7 pg/mL (minimum-maximum: 120.4-164.7 pg/mL) in the control group, 147.4 pg/mL (minimum-maximum: 138.8-154.1 pg/mL) in the drug free group and 153.0 pg/mL (minimum-maximum: 137.9-164.7 pg/mL) in the treatment group. Kruskal-Wallis analysis showed a significant diffrerence among the three groups (z=9.9, df=2, p=0.007). Follow up Mann-Whitney-U tests indicated that while the control and the patients with treatment were not significantly different (z=-0.05, p=0.96), there were significant differences between the control group and untreated patients (z=-2.6, p=0.009) and treated and untreated patients (z=-3.0, p=0.003). CONCLUSION Our results suggested that, serum S100B protein level might be decreased in untreated PD patients and that patients who were treated with SSRIs had similar S100B level to healthy controls.
Collapse
Affiliation(s)
- Berna Cagatay Kaya
- Zonguldak Ataturk Government Hospital, Psychiatry Department, Zonguldak, Turkey
| | - Hasan Karadag
- Yıldırım Beyazit Diskapi Training and Research Hospital, Psychiatry Department, Ankara, Turkey
| | - Ozgur Oner
- Ankara University School of Medicine, Child and Adolescent Psychiatry, Ankara, Turkey
| | - Aysegul Kart
- Nevsehir Government Hospital, Psychiatry Department, Nevsehir, Turkey
| | | |
Collapse
|
195
|
Impact of chronic stressors on the anxiety profile of pregnant rats. Physiol Behav 2015; 142:137-45. [PMID: 25665962 DOI: 10.1016/j.physbeh.2015.02.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 01/19/2015] [Accepted: 02/03/2015] [Indexed: 11/21/2022]
Abstract
The manifestation of anxiety during pregnancy can be caused by multiple factors and may have emotional and physical consequences for both the mother and the fetus. The prevalence of gestational anxiety has grown in recent years, making the development of studies for its comprehension essential. Thus, the aim of this investigation was to evaluate the effects of predictable and unpredictable chronic stressors on the anxiety profile of rats in three distinct stages of pregnancy (1st, 2nd and 3rd weeks). Wistar dams were divided into three groups: control, social separation and unpredictable chronic stress. Behavioral assessments were conducted in the Elevated Plus-Maze at the end of the 1st, 2nd and 3rd weeks of gestation. The results showed that there was increased anxiety in the proximity of parturition in control dams. Chronic stressors differentially affected the behavior of pregnant rats according to the gestational period where they were applied: social separation decreased anxiety at the end of the 3rd week, while unpredictable chronic stress caused increased anxiety, especially at the end of the 2nd gestational week. These results show that there is a critical time during pregnancy for the onset of anxiety in control rats, depending on the gestational stage. The exposure to different types of chronic stressors may result in distinct behaviors related to this disorder.
Collapse
|
196
|
den Ouden HEM, Swart JC, Schmidt K, Fekkes D, Geurts DEM, Cools R. Acute serotonin depletion releases motivated inhibition of response vigour. Psychopharmacology (Berl) 2015; 232:1303-12. [PMID: 25326051 DOI: 10.1007/s00213-014-3762-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Accepted: 10/01/2014] [Indexed: 01/09/2023]
Abstract
RATIONALE The neurotransmitter serotonin has long been implicated in the motivational control of behaviour. Recent theories propose that the role of serotonin can be understood in terms of an interaction between a motivational and a behavioural activation axis. Experimental support for these ideas, however, has been mixed. OBJECTIVES In the current study, we aimed to investigate the role of serotonin (5HT) in behavioural vigour as a function of incentive motivation. METHODS We employed dietary acute tryptophan depletion (ATD) to lower the 5HT precursor tryptophan during the performance of a speeded visual discrimination task. Feedback valence and feedback probability were manipulated independently and cued prior to target onset. On feedback trials, fast correct responses led to either reward or avoidance of punishment, while slow or incorrect responses led to reward omission or punishment. RESULTS We show that behavioural responding is inhibited under high incentive motivation (i.e. high-feedback probability) at baseline 5HT levels and that lowering these leads to behavioural disinhibition, while leaving accuracy unaffected. Surprisingly, there were no differential effects of motivational valence, with 5HT depletion releasing behavioural inhibition under both appetitive and aversive motivation. CONCLUSIONS Our findings extend current theories on the role of 5HT in behavioural inhibition by showing that reductions in serotonin lead to increased behavioural vigour only if there is a motivational drive to inhibit behaviour at baseline.
Collapse
Affiliation(s)
- Hanneke E M den Ouden
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, Netherlands,
| | | | | | | | | | | |
Collapse
|
197
|
Mobbs D, Hagan CC, Dalgleish T, Silston B, Prévost C. The ecology of human fear: survival optimization and the nervous system. Front Neurosci 2015; 9:55. [PMID: 25852451 PMCID: PMC4364301 DOI: 10.3389/fnins.2015.00055] [Citation(s) in RCA: 193] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 02/07/2015] [Indexed: 01/04/2023] Open
Abstract
We propose a Survival Optimization System (SOS) to account for the strategies that humans and other animals use to defend against recurring and novel threats. The SOS attempts to merge ecological models that define a repertoire of contextually relevant threat induced survival behaviors with contemporary approaches to human affective science. We first propose that the goal of the nervous system is to reduce surprise and optimize actions by (i) predicting the sensory landscape by simulating possible encounters with threat and selecting the appropriate pre-encounter action and (ii) prevention strategies in which the organism manufactures safe environments. When a potential threat is encountered the (iii) threat orienting system is engaged to determine whether the organism ignores the stimulus or switches into a process of (iv) threat assessment, where the organism monitors the stimulus, weighs the threat value, predicts the actions of the threat, searches for safety, and guides behavioral actions crucial to directed escape. When under imminent attack, (v) defensive systems evoke fast reflexive indirect escape behaviors (i.e., fight or flight). This cascade of responses to threat of increasing magnitude are underwritten by an interconnected neural architecture that extends from cortical and hippocampal circuits, to attention, action and threat systems including the amygdala, striatum, and hard-wired defensive systems in the midbrain. The SOS also includes a modulatory feature consisting of cognitive appraisal systems that flexibly guide perception, risk and action. Moreover, personal and vicarious threat encounters fine-tune avoidance behaviors via model-based learning, with higher organisms bridging data to reduce face-to-face encounters with predators. Our model attempts to unify the divergent field of human affective science, proposing a highly integrated nervous system that has evolved to increase the organism's chances of survival.
Collapse
Affiliation(s)
- Dean Mobbs
- Department of Psychology, Columbia University New York, NY, USA
| | - Cindy C Hagan
- Department of Psychology, Columbia University New York, NY, USA
| | - Tim Dalgleish
- Medical Research Council-Cognition and Brain Sciences Unit Cambridge, UK
| | - Brian Silston
- Department of Psychology, Columbia University New York, NY, USA
| | | |
Collapse
|
198
|
Dual role of dopamine D(2)-like receptors in the mediation of conditioned and unconditioned fear. FEBS Lett 2015; 589:3433-7. [PMID: 25783771 DOI: 10.1016/j.febslet.2015.02.036] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 02/19/2015] [Accepted: 02/26/2015] [Indexed: 11/20/2022]
Abstract
A reduction of dopamine release or D2 receptor blockade in the terminal fields of the mesolimbic system, particularly the amygdala, clearly reduces conditioned fear. Similar D2 receptor antagonism in the neural substrates of fear in the midbrain tectum attenuates the processing of unconditioned aversive information. However, the implications of the interplay between opposing actions of dopamine in the rostral and caudal segments of the dopaminergic system are still unclear. Previous studies from this laboratory have reported the effects of dopaminergic drugs on behavior in rats in the elevated plus maze, auditory-evoked potentials (AEPs) recorded from the midbrain tectum, fear-potentiated startle, and conditioned freezing. These findings led to an interesting framework on the functional roles of dopamine in both anxiety and fear states. Dopamine D2 receptor inhibition in the terminal fields of the mesolimbic dopamine system generally causes anxiolytic-like effects, whereas the activity of midbrain substrates of unconditioned fear are enhanced by D2 receptor antagonists, suggesting that D2 receptor-mediated mechanisms play opposing roles in fear/anxiety processes, depending on the brain region under study. Dopamine appears to mediate conditioned fear by acting at rostral levels of the brain and regulate unconditioned fear at the midbrain level, likely by reducing the sensorimotor gating of aversive events.
Collapse
|
199
|
Horovitz O, Richter-Levin G. Dorsal periaqueductal gray simultaneously modulates ventral subiculum induced-plasticity in the basolateral amygdala and the nucleus accumbens. Front Behav Neurosci 2015; 9:53. [PMID: 25788880 PMCID: PMC4349162 DOI: 10.3389/fnbeh.2015.00053] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2014] [Accepted: 02/12/2015] [Indexed: 11/25/2022] Open
Abstract
The ventral subiculum of the hippocampus projects both to the basolateral amygdala (BLA), which is typically, associated with a response to aversive stimuli, as well as to the nucleus accumbens (NAcc), which is typically associated with a response to appetitive stimuli. Traditionally, studies of the responses to emotional events focus on either negative or positive affect-related processes, however, emotional experiences often affect both. The ability of high-level processing brain regions (e.g., medial prefrontal cortex) to modulate the balance between negative and positive affect-related regions was examined extensively. In contrast, the ability of low-level processing areas (e.g., periaqueductal gray—PAG) to do so, has not been sufficiently studied. To address whether midbrain structures have the ability to modulate limbic regions, we first examined the ventral subiculum stimulation’s (vSub) ability to induce plasticity in the BLA and NAcc simultaneously in rats. Further, dorsal PAG (dPAG) priming ability to differentially modulate vSub stimulation induced plasticity in the BLA and the NAcc was subsequently examined. vSub stimulation resulted in plasticity in both the BLA and the NAcc simultaneously. Moreover, depending on stimulus intensity, differential dPAG priming effects on LTP in these two regions were observed. The results demonstrate that negative and positive affect-related processes may be simultaneously modulated. Furthermore, under some conditions lower-level processing areas, such as the dPAG, may differentially modulate plasticity in these regions and thus affect the long-term emotional outcome of the experience.
Collapse
Affiliation(s)
- Omer Horovitz
- The Institute for the Study of Affective Neuroscience (ISAN), University of Haifa Haifa, Israel
| | - Gal Richter-Levin
- The Institute for the Study of Affective Neuroscience (ISAN), University of Haifa Haifa, Israel ; Department of Psychology, University of Haifa Haifa, Israel ; Sagol Department of Neurobiology, University of Haifa Haifa, Israel
| |
Collapse
|
200
|
de Souza Armini R, Bernabé CS, Rosa CA, Siller CA, Schimitel FG, Tufik S, Klein DF, Schenberg LC. In a rat model of panic, corticotropin responses to dorsal periaqueductal gray stimulation depend on physical exertion. Psychoneuroendocrinology 2015; 53:136-47. [PMID: 25618592 DOI: 10.1016/j.psyneuen.2014.12.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2014] [Revised: 12/29/2014] [Accepted: 12/29/2014] [Indexed: 01/06/2023]
Abstract
Panic disorder patients are exquisitely and specifically sensitive to hypercapnia. The demonstration that carbon dioxide provokes panic in fear-unresponsive amygdala-calcified Urbach-Wiethe patients emphasizes that panic is not fear nor does it require the activation of the amygdala. This is consonant with increasing evidence suggesting that panic is mediated caudally at midbrain's dorsal periaqueductal gray matter (DPAG). Another startling feature of the apparently spontaneous clinical panic is the counterintuitive lack of increments in corticotropin, cortisol and prolactin, generally considered 'stress hormones'. Here we show that the stress hormones are not changed during DPAG-evoked panic when escape is prevented by stimulating the rat in a small compartment. Neither did the corticotropin increase when physical exertion was statistically adjusted to the same degree as non-stimulated controls, as measured by lactate plasma levels. Conversely, neuroendocrine responses to foot-shocks were independent from muscular effort. Data are consonant with DPAG mediation of panic attacks.
Collapse
Affiliation(s)
- Rubia de Souza Armini
- Deparment of Physiological Sciences, Federal University of Espírito Santo, Vitória, ES, Brazil
| | | | - Caroline Azevedo Rosa
- Deparment of Physiological Sciences, Federal University of Espírito Santo, Vitória, ES, Brazil
| | - Carlos Antônio Siller
- Deparment of Physiological Sciences, Federal University of Espírito Santo, Vitória, ES, Brazil
| | | | - Sérgio Tufik
- Department of Psychobiology, Federal University of São Paulo, São Paulo, SP, Brazil
| | - Donald Franklin Klein
- Phyllis Green and Randolph Cowen Institute for Pediatric Neuroscience, Department of Child and Adolescent Psychiatry, New York University Langone Medical Center, USA; The Nathan S. Kline Institute for Psychiatric Research, USA; Department of Psychiatry, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Luiz Carlos Schenberg
- Deparment of Physiological Sciences, Federal University of Espírito Santo, Vitória, ES, Brazil.
| |
Collapse
|