151
|
Dermawan JK, Wensel C, Visconte V, Maciejewski JP, Cook JR, Bosler DS. Clinically Significant CUX1 Mutations Are Frequently Subclonal and Common in Myeloid Disorders With a High Number of Co-mutated Genes and Dysplastic Features. Am J Clin Pathol 2022; 157:586-594. [PMID: 34661647 DOI: 10.1093/ajcp/aqab157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 08/11/2021] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVES CUX1 mutations have been reported in myeloid neoplasms. We aimed to characterize the mutational landscape, clonal architecture, and clinical characteristics of myeloid disorders with CUX1 variants. METHODS We reviewed data from a targeted 62-gene panel with CUX1 variants. Variants were classified as of strong or potential clinical significance (tier I/tier II) or of unknown significance (VUS). RESULTS CUX1 variants were identified in 169 cases. The 49 tier I/tier II variants were found in older patients (mean age, 71 vs 60 years old) and predominantly inactivating alterations, while the 120 VUS cases were missense mutations. Monosomy 7/deletion 7q was more common in tier I/tier II cases. Co-mutations were detected in 96% of tier I/tier II cases (average, 3.7/case) but in only 61% of VUS cases (average, 1.5/case). Tier I/tier II CUX1 variants tend to be subclonal to co-mutations (ASXL1, SF3B1, SRSF2, TET2). Among myeloid disorders, tier I/tier II cases were more frequently diagnosed with myelodysplastic syndromes and had a higher number of bone marrow dysplastic lineages. CONCLUSIONS CUX1 mutations are seen with adverse prognostic features and could be a late clonal evolutional event of myeloid disorders. The differences between CUX1 tier I/tier II and VUS underscore the importance of accurate variant classification in reporting of multigene panels.
Collapse
Affiliation(s)
- Josephine K Dermawan
- Robert J. Tomsich Pathology & Laboratory Medicine Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Christine Wensel
- Robert J. Tomsich Pathology & Laboratory Medicine Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Valeria Visconte
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Jaroslaw P Maciejewski
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - James R Cook
- Robert J. Tomsich Pathology & Laboratory Medicine Institute, Cleveland Clinic, Cleveland, OH, USA
| | - David S Bosler
- Robert J. Tomsich Pathology & Laboratory Medicine Institute, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
152
|
Moraes GR, Pasquier F, Marzac C, Deconinck E, Damanti CC, Leroy G, El-Khoury M, El Nemer W, Kiladjian JJ, Raslova H, Najman A, Vainchenker W, Marty C, Bellanné-Chantelot C, Plo I. An inherited gain-of-function risk allele in EPOR predisposes to familial JAK2 V617F myeloproliferative neoplasms. Br J Haematol 2022; 198:131-136. [PMID: 35355248 DOI: 10.1111/bjh.18165] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 02/17/2022] [Accepted: 03/14/2022] [Indexed: 12/16/2022]
Abstract
Myeloproliferative neoplasms (MPN) are mainly sporadic but inherited variants have been associated with higher risk development. Here, we identified an EPOR variant (EPORP488S ) in a large family diagnosed with JAK2V617F -positive polycythaemia vera (PV) or essential thrombocytosis (ET). We investigated its functional impact on JAK2V617F clonal amplification in patients and found that the variant allele fraction (VAF) was low in PV progenitors but increase strongly in mature cells. Moreover, we observed that EPORP488S alone induced a constitutive phosphorylation of STAT5 in cell lines or primary cells. Overall, this study points for searching inherited-risk alleles affecting the JAK2/STAT pathway in MPN.
Collapse
Affiliation(s)
- Graciela Rabadan Moraes
- INSERM, UMR1287, Villejuif, France.,Gustave Roussy, Villejuif, France.,INSERM UMR1287, Gustave Roussy, Université de Paris, Villejuif, France.,Laboratoire d'Excellence GR-Ex, Université Paris Cité, Paris, France
| | - Florence Pasquier
- INSERM, UMR1287, Villejuif, France.,Gustave Roussy, Villejuif, France.,Laboratoire d'Excellence GR-Ex, Université Paris Cité, Paris, France.,INSERM UMR1287, Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - Christophe Marzac
- INSERM, UMR1287, Villejuif, France.,Gustave Roussy, Villejuif, France.,INSERM UMR1287, Gustave Roussy, Université Paris-Saclay, Villejuif, France.,Département d'Hématologie, Gustave Roussy, Villejuif, France
| | - Eric Deconinck
- Département d'Hématologie, CHU Besançon, Besançon, France
| | - Carlotta Caterina Damanti
- INSERM, UMR1287, Villejuif, France.,Gustave Roussy, Villejuif, France.,INSERM UMR1287, Gustave Roussy, Université de Paris, Villejuif, France.,Laboratoire d'Excellence GR-Ex, Université Paris Cité, Paris, France
| | - Gwendoline Leroy
- Département de Génétique Médicale, AP-HP, Hôpital Pitié Salpêtrière, Sorbonne Université, Paris, France
| | - Mira El-Khoury
- INSERM, UMR1287, Villejuif, France.,Gustave Roussy, Villejuif, France.,INSERM UMR1287, Gustave Roussy, Université de Paris, Villejuif, France.,Laboratoire d'Excellence GR-Ex, Université Paris Cité, Paris, France
| | - Wassim El Nemer
- Laboratoire d'Excellence GR-Ex, Université Paris Cité, Paris, France.,UMR_S1134, BIGR, Inserm, Université de Paris, Paris, France.,Institut National de la Transfusion Sanguine, Paris, France.,Etablissement Français du Sang PACA-Corse, Marseille, France.,EFS, CNRS, ADES, 'Biologie des Groupes Sanguins', Aix Marseille University, Marseille, France
| | | | - Hana Raslova
- INSERM, UMR1287, Villejuif, France.,Gustave Roussy, Villejuif, France.,INSERM UMR1287, Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - Albert Najman
- Service d'Hématologie Clinique et de Thérapie Cellulaire, AP-HP, Hôpital Saint-Antoine, Sorbonne Université, Paris, France
| | - William Vainchenker
- INSERM, UMR1287, Villejuif, France.,Gustave Roussy, Villejuif, France.,Laboratoire d'Excellence GR-Ex, Université Paris Cité, Paris, France.,INSERM UMR1287, Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - Caroline Marty
- INSERM, UMR1287, Villejuif, France.,Gustave Roussy, Villejuif, France.,Laboratoire d'Excellence GR-Ex, Université Paris Cité, Paris, France.,INSERM UMR1287, Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - Christine Bellanné-Chantelot
- INSERM, UMR1287, Villejuif, France.,Gustave Roussy, Villejuif, France.,Département de Génétique Médicale, AP-HP, Hôpital Pitié Salpêtrière, Sorbonne Université, Paris, France
| | - Isabelle Plo
- INSERM, UMR1287, Villejuif, France.,Gustave Roussy, Villejuif, France.,Laboratoire d'Excellence GR-Ex, Université Paris Cité, Paris, France.,INSERM UMR1287, Gustave Roussy, Université Paris-Saclay, Villejuif, France
| |
Collapse
|
153
|
Bhuria V, Baldauf CK, Schraven B, Fischer T. Thromboinflammation in Myeloproliferative Neoplasms (MPN)-A Puzzle Still to Be Solved. Int J Mol Sci 2022; 23:ijms23063206. [PMID: 35328626 PMCID: PMC8954909 DOI: 10.3390/ijms23063206] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/11/2022] [Accepted: 03/15/2022] [Indexed: 02/04/2023] Open
Abstract
Myeloproliferative neoplasms (MPNs), a group of malignant hematological disorders, occur as a consequence of somatic mutations in the hematopoietic stem cell compartment and show excessive accumulation of mature myeloid cells in the blood. A major cause of morbidity and mortality in these patients is the marked prothrombotic state leading to venous and arterial thrombosis, including myocardial infarction (MI), deep vein thrombosis (DVT), and strokes. Additionally, many MPN patients suffer from inflammation-mediated constitutional symptoms, such as fever, night sweats, fatigue, and cachexia. The chronic inflammatory syndrome in MPNs is associated with the up-regulation of various inflammatory cytokines in patients and is involved in the formation of the so-called MPN thromboinflammation. JAK2-V617F, the most prevalent mutation in MPNs, has been shown to activate a number of integrins on mature myeloid cells, including granulocytes and erythrocytes, which increase adhesion and drive venous thrombosis in murine knock-in/out models. This review aims to shed light on the current understanding of thromboinflammation, involvement of neutrophils in the prothrombotic state, plausible molecular mechanisms triggering the process of thrombosis, and potential novel therapeutic targets for developing effective strategies to reduce the MPN disease burden.
Collapse
Affiliation(s)
- Vikas Bhuria
- Institute of Molecular and Clinical Immunology, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany; (V.B.); (C.K.B.); (T.F.)
- Health-Campus Immunology, Infectiology, and Inflammation, Medical Center, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany
- Center for Health and Medical Prevention—ChaMP, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany
| | - Conny K. Baldauf
- Institute of Molecular and Clinical Immunology, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany; (V.B.); (C.K.B.); (T.F.)
- Health-Campus Immunology, Infectiology, and Inflammation, Medical Center, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany
| | - Burkhart Schraven
- Institute of Molecular and Clinical Immunology, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany; (V.B.); (C.K.B.); (T.F.)
- Health-Campus Immunology, Infectiology, and Inflammation, Medical Center, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany
- Center for Health and Medical Prevention—ChaMP, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany
- Correspondence: ; Tel.: +49-391-67-15338; Fax: +49-391-67-15852
| | - Thomas Fischer
- Institute of Molecular and Clinical Immunology, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany; (V.B.); (C.K.B.); (T.F.)
- Health-Campus Immunology, Infectiology, and Inflammation, Medical Center, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany
- Center for Health and Medical Prevention—ChaMP, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany
| |
Collapse
|
154
|
Bhuria V, Baldauf CK, Schraven B, Fischer T. Thromboinflammation in Myeloproliferative Neoplasms (MPN)-A Puzzle Still to Be Solved. Int J Mol Sci 2022. [PMID: 35328626 DOI: 10.3390/ijms23063206.pmid:35328626;pmcid:pmc8954909] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2023] Open
Abstract
Myeloproliferative neoplasms (MPNs), a group of malignant hematological disorders, occur as a consequence of somatic mutations in the hematopoietic stem cell compartment and show excessive accumulation of mature myeloid cells in the blood. A major cause of morbidity and mortality in these patients is the marked prothrombotic state leading to venous and arterial thrombosis, including myocardial infarction (MI), deep vein thrombosis (DVT), and strokes. Additionally, many MPN patients suffer from inflammation-mediated constitutional symptoms, such as fever, night sweats, fatigue, and cachexia. The chronic inflammatory syndrome in MPNs is associated with the up-regulation of various inflammatory cytokines in patients and is involved in the formation of the so-called MPN thromboinflammation. JAK2-V617F, the most prevalent mutation in MPNs, has been shown to activate a number of integrins on mature myeloid cells, including granulocytes and erythrocytes, which increase adhesion and drive venous thrombosis in murine knock-in/out models. This review aims to shed light on the current understanding of thromboinflammation, involvement of neutrophils in the prothrombotic state, plausible molecular mechanisms triggering the process of thrombosis, and potential novel therapeutic targets for developing effective strategies to reduce the MPN disease burden.
Collapse
Affiliation(s)
- Vikas Bhuria
- Institute of Molecular and Clinical Immunology, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany
- Health-Campus Immunology, Infectiology, and Inflammation, Medical Center, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany
- Center for Health and Medical Prevention-ChaMP, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany
| | - Conny K Baldauf
- Institute of Molecular and Clinical Immunology, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany
- Health-Campus Immunology, Infectiology, and Inflammation, Medical Center, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany
| | - Burkhart Schraven
- Institute of Molecular and Clinical Immunology, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany
- Health-Campus Immunology, Infectiology, and Inflammation, Medical Center, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany
- Center for Health and Medical Prevention-ChaMP, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany
| | - Thomas Fischer
- Institute of Molecular and Clinical Immunology, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany
- Health-Campus Immunology, Infectiology, and Inflammation, Medical Center, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany
- Center for Health and Medical Prevention-ChaMP, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany
| |
Collapse
|
155
|
Accurso V, Santoro M, Mancuso S, Vajana G, Tomasello R, Rotolo C, Camarda G, Mattana M, Siragusa S. Familial essential thrombocythemia: 6 cases from a mono-institutional series. Clin Case Rep 2022; 10:e05525. [PMID: 35251652 PMCID: PMC8886651 DOI: 10.1002/ccr3.5525] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 01/27/2022] [Accepted: 02/14/2022] [Indexed: 02/02/2023] Open
Abstract
Rarely essential thrombocythemia (ET) is diagnosed in more than one person within a family. Familial myeloproliferative neoplasms are underdiagnosed. In this report, we describe 6 couples of familial ET, evaluating the heterogeneity of the mutational state and the clinical presentation.
Collapse
Affiliation(s)
- Vincenzo Accurso
- Hematology Division University Hospital Policlinico "Paolo Giaccone"PalermoItaly
| | - Marco Santoro
- Hematology UnitDepartment of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE)University of PalermoPalermoItaly
| | - Salvatrice Mancuso
- Hematology UnitDepartment of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE)University of PalermoPalermoItaly
| | - Giorgia Vajana
- Hematology Division University Hospital Policlinico "Paolo Giaccone"PalermoItaly
| | - Riccardo Tomasello
- Hematology Division University Hospital Policlinico "Paolo Giaccone"PalermoItaly
| | - Cristina Rotolo
- Hematology Division University Hospital Policlinico "Paolo Giaccone"PalermoItaly
| | - Giulia Camarda
- Hematology Division University Hospital Policlinico "Paolo Giaccone"PalermoItaly
| | - Marta Mattana
- Hematology Division University Hospital Policlinico "Paolo Giaccone"PalermoItaly
| | - Sergio Siragusa
- Hematology UnitDepartment of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE)University of PalermoPalermoItaly
| |
Collapse
|
156
|
Dutta A, Nath D, Yang Y, Le BT, Rahman MFU, Faughnan P, Wang Z, Stuver M, He R, Tan W, Hutchison RE, Foulks JM, Warner SL, Zang C, Mohi G. Genetic ablation of Pim1 or pharmacologic inhibition with TP-3654 ameliorates myelofibrosis in murine models. Leukemia 2022; 36:746-759. [PMID: 34741118 PMCID: PMC8891046 DOI: 10.1038/s41375-021-01464-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 10/19/2021] [Accepted: 10/21/2021] [Indexed: 12/14/2022]
Abstract
Myelofibrosis (MF) is the deadliest form of myeloproliferative neoplasm (MPN). The JAK inhibitor Ruxolitinib can reduce constitutional symptoms but it does not substantially improve bone marrow fibrosis. Pim1 expression is significantly elevated in MPN/MF hematopoietic progenitors. Here, we show that genetic ablation of Pim1 blocked the development of myelofibrosis induced by Jak2V617F and MPLW515L. Pharmacologic inhibition of Pim1 with a second-generation Pim kinase inhibitor TP-3654 significantly reduced leukocytosis and splenomegaly, and attenuated bone marrow fibrosis in Jak2V617F and MPLW515L mouse models of MF. Combined treatment of TP-3654 and Ruxolitinib resulted in greater reduction of spleen size, normalization of blood leukocyte counts and abrogation of bone marrow fibrosis in murine models of MF. TP-3654 treatment also preferentially inhibited Jak2V617F mutant hematopoietic progenitors in mice. Mechanistically, we show that TP-3654 treatment significantly inhibits mTORC1, MYC and TGF-β signaling in Jak2V617F mutant hematopoietic cells and diminishes the expression of fibrotic markers in the bone marrow. Collectively, our results suggest that Pim1 plays an important role in the pathogenesis of MF, and inhibition of Pim1 with TP-3654 might be useful for treatment of MF.
Collapse
Affiliation(s)
- Avik Dutta
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Dipmoy Nath
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Yue Yang
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Bao T Le
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Mohammad Ferdous-Ur Rahman
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Patrick Faughnan
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Zhenjia Wang
- Center for Public Health Genomics, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Matthew Stuver
- Department of Pharmacology, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, NY, USA
| | - Rongquan He
- Center for Public Health Genomics, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Wuwei Tan
- Center for Public Health Genomics, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Robert E Hutchison
- Department of Pathology, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, NY, USA
| | - Jason M Foulks
- Sumitomo Dainippon Pharma Oncology, Inc (formerly Tolero Pharmaceuticals, Inc), Lehi, UT, USA
| | - Steven L Warner
- Sumitomo Dainippon Pharma Oncology, Inc (formerly Tolero Pharmaceuticals, Inc), Lehi, UT, USA
| | - Chongzhi Zang
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA, USA
- Center for Public Health Genomics, University of Virginia School of Medicine, Charlottesville, VA, USA
- Department of Public Health Sciences, University of Virginia School of Medicine, Charlottesville, VA, USA
- University of Virginia Cancer Center, Charlottesville, VA, USA
| | - Golam Mohi
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA, USA.
- University of Virginia Cancer Center, Charlottesville, VA, USA.
| |
Collapse
|
157
|
Tefferi A, Gangat N, Pardanani A, Crispino JD. Myelofibrosis: Genetic Characteristics and the Emerging Therapeutic Landscape. Cancer Res 2022; 82:749-763. [PMID: 34911786 PMCID: PMC9306313 DOI: 10.1158/0008-5472.can-21-2930] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/18/2021] [Accepted: 11/30/2021] [Indexed: 01/07/2023]
Abstract
Primary myelofibrosis (PMF) is one of three myeloproliferative neoplasms (MPN) that are morphologically and molecularly inter-related, the other two being polycythemia vera (PV) and essential thrombocythemia (ET). MPNs are characterized by JAK-STAT-activating JAK2, CALR, or MPL mutations that give rise to stem cell-derived clonal myeloproliferation, which is prone to leukemic and, in case of PV and ET, fibrotic transformation. Abnormal megakaryocyte proliferation is accompanied by bone marrow fibrosis and characterizes PMF, while the clinical phenotype is pathogenetically linked to ineffective hematopoiesis and aberrant cytokine expression. Among MPN-associated driver mutations, type 1-like CALR mutation has been associated with favorable prognosis in PMF, while ASXL1, SRSF2, U2AF1-Q157, EZH2, CBL, and K/NRAS mutations have been shown to be prognostically detrimental. Such information has enabled development of exclusively genetic (GIPSS) and clinically integrated (MIPSSv2) prognostic models that facilitate individualized treatment decisions. Allogeneic stem cell transplantation remains the only treatment modality in MF with the potential to prolong survival, whereas drug therapy, including JAK2 inhibitors, is directed mostly at the inflammatory component of the disease and is therefore palliative in nature. Similarly, disease-modifying activity remains elusive for currently available investigational drugs, while their additional value in symptom management awaits controlled confirmation. There is a need for genetic characterization of clinical observations followed by in vitro and in vivo preclinical studies that will hopefully identify therapies that target the malignant clone in MF to improve patient outcomes.
Collapse
Affiliation(s)
- Ayalew Tefferi
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, Minnesota.,Corresponding Author: Ayalew Tefferi, Division of Hematology, Department of Medicine, Mayo Clinic, 200 First St SW, Rochester, MN 55905. Phone: 507-284-2511; Fax: 507-266-4972; E-mail:
| | - Naseema Gangat
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, Minnesota
| | - Animesh Pardanani
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, Minnesota
| | - John D. Crispino
- Division of Experimental Hematology, St. Jude Children's Research Hospital, Memphis, Tennessee
| |
Collapse
|
158
|
Torres DG, Paes J, da Costa AG, Malheiro A, Silva GV, Mourão LPDS, Tarragô AM. JAK2 Variant Signaling: Genetic, Hematologic and Immune Implication in Chronic Myeloproliferative Neoplasms. Biomolecules 2022; 12:291. [PMID: 35204792 PMCID: PMC8961666 DOI: 10.3390/biom12020291] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/04/2022] [Accepted: 02/05/2022] [Indexed: 02/04/2023] Open
Abstract
The JAK2V617F variant constitutes a genetic alteration of higher frequency in BCR/ABL1 negative chronic myeloproliferative neoplasms, which is caused by a substitution of a G ˃ T at position 1849 and results in the substitution of valine with phenylalanine at codon 617 of the polypeptide chain. Clinical, morphological and molecular genetic features define the diagnosis criteria of polycythemia vera, essential thrombocythemia and primary myelofibrosis. Currently, JAK2V617F is associated with clonal hematopoiesis, genomic instability, dysregulations in hemostasis and immune response. JAK2V617F clones induce an inflammatory immune response and lead to a process of immunothrombosis. Recent research has shown great interest in trying to understand the mechanisms associated with JAK2V617F signaling and activation of cellular and molecular responses that progressively contribute to the development of inflammatory and vascular conditions in association with chronic myeloproliferative neoplasms. Thus, the aim of this review is to describe the main genetic, hematological and immunological findings that are linked to JAK2 variant signaling in chronic myeloproliferative neoplasms.
Collapse
Affiliation(s)
- Dania G. Torres
- Programa de Pós-Graduação em Ciências Aplicadas à Hematologia, Universidade do Estado do Amazonas (UEA), Manaus 69850-000, AM, Brazil; (D.G.T.); (J.P.); (A.G.d.C.); (A.M.); (G.V.S.)
| | - Jhemerson Paes
- Programa de Pós-Graduação em Ciências Aplicadas à Hematologia, Universidade do Estado do Amazonas (UEA), Manaus 69850-000, AM, Brazil; (D.G.T.); (J.P.); (A.G.d.C.); (A.M.); (G.V.S.)
| | - Allyson G. da Costa
- Programa de Pós-Graduação em Ciências Aplicadas à Hematologia, Universidade do Estado do Amazonas (UEA), Manaus 69850-000, AM, Brazil; (D.G.T.); (J.P.); (A.G.d.C.); (A.M.); (G.V.S.)
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Universidade Federal do Amazonas (UFAM), Manaus 69067-005, AM, Brazil
| | - Adriana Malheiro
- Programa de Pós-Graduação em Ciências Aplicadas à Hematologia, Universidade do Estado do Amazonas (UEA), Manaus 69850-000, AM, Brazil; (D.G.T.); (J.P.); (A.G.d.C.); (A.M.); (G.V.S.)
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Universidade Federal do Amazonas (UFAM), Manaus 69067-005, AM, Brazil
| | - George V. Silva
- Programa de Pós-Graduação em Ciências Aplicadas à Hematologia, Universidade do Estado do Amazonas (UEA), Manaus 69850-000, AM, Brazil; (D.G.T.); (J.P.); (A.G.d.C.); (A.M.); (G.V.S.)
- Fundação Oswaldo Cruz–Instituto Leônidas e Maria Deane (Fiocruz), Manaus 69027-070, AM, Brazil
- Fundação Centro de Controle de Oncologia do Amazonas (FCECON), Manaus 69040-010, AM, Brazil
| | - Lucivana P. de Souza Mourão
- Programa de Pós-Graduação em Ciências Aplicadas à Hematologia, Universidade do Estado do Amazonas (UEA), Manaus 69850-000, AM, Brazil; (D.G.T.); (J.P.); (A.G.d.C.); (A.M.); (G.V.S.)
| | - Andréa M. Tarragô
- Programa de Pós-Graduação em Ciências Aplicadas à Hematologia, Universidade do Estado do Amazonas (UEA), Manaus 69850-000, AM, Brazil; (D.G.T.); (J.P.); (A.G.d.C.); (A.M.); (G.V.S.)
- Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (FHEMOAM), Manaus 69050-001, AM, Brazil
| |
Collapse
|
159
|
Williams N, Lee J, Mitchell E, Moore L, Baxter EJ, Hewinson J, Dawson KJ, Menzies A, Godfrey AL, Green AR, Campbell PJ, Nangalia J. Life histories of myeloproliferative neoplasms inferred from phylogenies. Nature 2022; 602:162-168. [PMID: 35058638 DOI: 10.1038/s41586-021-04312-6] [Citation(s) in RCA: 176] [Impact Index Per Article: 58.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 12/06/2021] [Indexed: 12/16/2022]
Abstract
Mutations in cancer-associated genes drive tumour outgrowth, but our knowledge of the timing of driver mutations and subsequent clonal dynamics is limited1-3. Here, using whole-genome sequencing of 1,013 clonal haematopoietic colonies from 12 patients with myeloproliferative neoplasms, we identified 580,133 somatic mutations to reconstruct haematopoietic phylogenies and determine clonal histories. Driver mutations were estimated to occur early in life, including the in utero period. JAK2V617F was estimated to have been acquired by 33 weeks of gestation to 10.8 years of age in 5 patients in whom JAK2V617F was the first event. DNMT3A mutations were acquired by 8 weeks of gestation to 7.6 years of age in 4 patients, and a PPM1D mutation was acquired by 5.8 years of age. Additional genomic events occurred before or following JAK2V617F acquisition and as independent clonal expansions. Sequential driver mutation acquisition was separated by decades across life, often outcompeting ancestral clones. The mean latency between JAK2V617F acquisition and diagnosis was 30 years (range 11-54 years). Estimated historical rates of clonal expansion varied substantially (3% to 190% per year), increased with additional driver mutations, and predicted latency to diagnosis. Our study suggests that early driver mutation acquisition and life-long growth and evolution underlie adult myeloproliferative neoplasms, raising opportunities for earlier intervention and a new model for cancer development.
Collapse
Affiliation(s)
| | - Joe Lee
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge, UK
| | - Emily Mitchell
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
- Department of Haematology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Luiza Moore
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - E Joanna Baxter
- Department of Haematology, University of Cambridge, Cambridge, UK
| | - James Hewinson
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Kevin J Dawson
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Andrew Menzies
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Anna L Godfrey
- Department of Haematology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Anthony R Green
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
- Department of Haematology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Peter J Campbell
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
| | - Jyoti Nangalia
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK.
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge, UK.
- Department of Haematology, University of Cambridge, Cambridge, UK.
- Department of Haematology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK.
| |
Collapse
|
160
|
Efficacy of CDK9 inhibition in therapy of post-myeloproliferative neoplasm (MPN) secondary (s) AML cells. Blood Cancer J 2022; 12:23. [PMID: 35102145 PMCID: PMC8803998 DOI: 10.1038/s41408-022-00618-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 01/12/2022] [Accepted: 01/18/2022] [Indexed: 12/20/2022] Open
|
161
|
Bader MS, Meyer SC. JAK2 in Myeloproliferative Neoplasms: Still a Protagonist. Pharmaceuticals (Basel) 2022; 15:ph15020160. [PMID: 35215273 PMCID: PMC8874480 DOI: 10.3390/ph15020160] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/25/2022] [Accepted: 01/26/2022] [Indexed: 02/01/2023] Open
Abstract
The discovery of the activating V617F mutation in Janus kinase 2 (JAK2) has been decisive for the understanding of myeloproliferative neoplasms (MPN). Activated JAK2 signaling by JAK2, CALR, and MPL mutations has become a focus for the development of targeted therapies for patients with MPN. JAK2 inhibitors now represent a standard of clinical care for certain forms of MPN and offer important benefits for MPN patients. However, several key aspects remain unsolved regarding the targeted therapy of MPN with JAK2 inhibitors, such as reducing the MPN clone and how to avoid or overcome a loss of response. Here, we summarize the current knowledge on the structure and signaling of JAK2 as central elements of MPN pathogenesis and feature benefits and limitations of therapeutic JAK2 targeting in MPN.
Collapse
Affiliation(s)
| | - Sara Christina Meyer
- Division of Hematology, University Hospital Basel, CH-4031 Basel, Switzerland;
- Department of Biomedicine, University Hospital Basel and University of Basel, CH-4031 Basel, Switzerland
- Correspondence:
| |
Collapse
|
162
|
Feng Y, Zhang Y, Shi J. Thrombosis and hemorrhage in myeloproliferative neoplasms: The platelet perspective. Platelets 2022; 33:955-963. [PMID: 35081860 DOI: 10.1080/09537104.2021.2019210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Classical myeloproliferative neoplasm (MPN), also known as BCR-ABL-negative MPN, is a clonal disease characterized by abnormal expansion of hematopoietic stem cells. It has been demonstrated that MPN patients are more susceptible to thrombotic events compared to the general population. Therefore, researchers have been exploring the treatment for MPN thrombosis. However, antithrombotic therapies have brought another concern for the clinical management of MPN because they may cause bleeding events. When thrombosis and bleeding, two seemingly contradictory complications, occur in MPN patients at the same time, they will lead to more serious consequences. Therefore, it is a major challenge to achieving the best antithrombotic effect and minimizing bleeding events simultaneously. To date, there has yet been a perfect strategy to meet this challenge and therefore a new treatment method needs to be established. In this article, we describe the mechanism of thrombosis and bleeding events in MPN from the perspective of platelets for the first time. Based on the double-sided role of platelets in MPN, optimal antithrombotic treatment strategies that can simultaneously control thrombosis and bleeding at the same time may be formulated by adjusting the administration time and dosage of antiplatelet drugs. We argue that more attention should be paid to the critical role of platelets in MPN thrombosis and MPN bleeding in the future, so as to better manage adverse vascular events in MPN.
Collapse
Affiliation(s)
- Yiming Feng
- Department of Hematology, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Yue Zhang
- Department of Hematology, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Jialan Shi
- Department of Hematology, The First Affiliated Hospital, Harbin Medical University, Harbin, China.,Departments of Medical Oncology and Research, Dana-Farber Cancer Institute, Va Boston Healthcare System, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
163
|
Pandey G, Kuykendall AT, Reuther GW. JAK2 inhibitor persistence in MPN: uncovering a central role of ERK activation. Blood Cancer J 2022; 12:13. [PMID: 35082276 PMCID: PMC8792018 DOI: 10.1038/s41408-022-00609-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 01/04/2022] [Accepted: 01/06/2022] [Indexed: 11/22/2022] Open
Abstract
The Philadelphia chromosome negative myeloproliferative neoplasms, including polycythemia vera, essential thrombocytosis, and myelofibrosis, are driven by hyper activation of the JAK2 tyrosine kinase, the result of mutations in three MPN driving genes: JAK2, MPL, and CALR. While the anti-inflammatory effects of JAK2 inhibitors can provide improved quality of life for many MPN patients, the upfront and persistent survival of disease-driving cells in MPN patients undergoing JAK2 inhibitor therapy thwarts potential for remission. Early studies indicated JAK2 inhibitor therapy induces heterodimeric complex formation of JAK2 with other JAK family members leading to sustained JAK2-dependent signaling. Recent work has described novel cell intrinsic details as well as cell extrinsic mechanisms that may contribute to why JAK2 inhibition may be ineffective at targeting MPN driving cells. Diverse experimental strategies aimed at uncovering mechanistic details that contribute to JAK2 inhibitor persistence have each highlighted the role of MEK/ERK activation. These approaches include, among others, phosphoproteomic analyses of JAK2 signaling as well as detailed assessment of JAK2 inhibition in mouse models of MPN. In this focused review, we highlight these and other studies that collectively suggest targeting MEK/ERK in combination with JAK2 inhibition has the potential to improve the efficacy of JAK2 inhibitors in MPN patients. As MPN patients patiently wait for improved therapies, such studies should further strengthen optimism that pre-clinical research is continuing to uncover mechanistic insights regarding the ineffectiveness of JAK2 inhibitors, which may lead to development of improved therapeutic strategies.
Collapse
Affiliation(s)
- Garima Pandey
- Department of Molecular Oncology, Moffitt Cancer Center, Tampa, FL, USA
| | | | - Gary W Reuther
- Department of Molecular Oncology, Moffitt Cancer Center, Tampa, FL, USA.
| |
Collapse
|
164
|
Digital-droplet PCR assays for IDH, DNMT3A and driver mutations to monitor after allogeneic stem cell transplantation minimal residual disease of myelofibrosis. Bone Marrow Transplant 2022; 57:510-512. [PMID: 35046544 PMCID: PMC8907061 DOI: 10.1038/s41409-022-01566-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/15/2021] [Accepted: 01/05/2022] [Indexed: 12/23/2022]
|
165
|
Chifotides HT, Bose P, Verstovsek S. Momelotinib: an emerging treatment for myelofibrosis patients with anemia. J Hematol Oncol 2022; 15:7. [PMID: 35045875 PMCID: PMC8772195 DOI: 10.1186/s13045-021-01157-4] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 08/30/2021] [Indexed: 12/11/2022] Open
Abstract
The suite of marked anemia benefits that momelotinib has consistently conferred on myelofibrosis (MF) patients stem from its unique inhibitory activity on the BMP6/ACVR1/SMAD and IL-6/JAK/STAT3 pathways, resulting in decreased hepcidin (master iron regulator) expression, higher serum iron and hemoglobin levels, and restored erythropoiesis. Clinical data on momelotinib from the phase 2 and the two phase 3 SIMPLIFY trials consistently demonstrated high rates of sustained transfusion-independence. In a recent phase 2 translational study, 41% of the patients achieved transfusion independence for ≥ 12 weeks. In the phase 3 trials SIMPLIFY-1 and SIMPLIFY-2, 17% more JAK inhibitor-naïve patients and two-fold more JAK inhibitor-treated patients achieved or maintained transfusion independence with momelotinib versus ruxolitinib and best available therapy (89% ruxolitinib), respectively. Anemia is present in approximately a third of MF patients at diagnosis, eventually developing in nearly all patients. The need for red blood cell transfusions is an independent adverse risk factor for both overall survival and leukemic transformation. Presently, FDA-approved medications to address anemia are lacking. Momelotinib is one of the prime candidates to durably address the critical unmet needs of MF patients with moderate/severe anemia. Importantly, momelotinib may have overall survival benefits in frontline and second-line MF patients. MOMENTUM is an international registration-track phase 3 trial further assessing momelotinib’s unique constellation of anemia and other benefits in second-line MF patients; the results of the MOMENTUM trial are keenly awaited and may lead to regulatory approval of momelotinib.
Collapse
|
166
|
Revealing the Mysteries of Acute Myeloid Leukemia: From Quantitative PCR through Next-Generation Sequencing and Systemic Metabolomic Profiling. J Clin Med 2022; 11:jcm11030483. [PMID: 35159934 PMCID: PMC8836582 DOI: 10.3390/jcm11030483] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 01/10/2022] [Accepted: 01/14/2022] [Indexed: 12/13/2022] Open
Abstract
The efforts made in the last decade regarding the molecular landscape of acute myeloid leukemia (AML) have created the possibility of obtaining patients’ personalized treatment. Indeed, the improvement of accurate diagnosis and precise assessment of minimal residual disease (MRD) increased the number of new markers suitable for novel and targeted therapies. This progress was obtained thanks to the development of molecular techniques starting with real-time quantitative PCR (Rt-qPCR) passing through digital droplet PCR (ddPCR) and next-generation sequencing (NGS) up to the new attractive metabolomic approach. The objective of this surge in technological advances is a better delineation of AML clonal heterogeneity, monitoring patients without disease-specific mutation and designing customized post-remission strategies based on MRD assessment. In this context, metabolomics, which pertains to overall small molecules profiling, emerged as relevant access for risk stratification and targeted therapies improvement. In this review, we performed a detailed overview of the most popular modern methods used in hematological laboratories, pointing out their vital importance for MRD monitoring in order to improve overall survival, early detection of possible relapses and treatment efficacy.
Collapse
|
167
|
Genovese E, Mirabile M, Rontauroli S, Sartini S, Fantini S, Tavernari L, Maccaferri M, Guglielmelli P, Bianchi E, Parenti S, Carretta C, Mallia S, Castellano S, Colasante C, Balliu M, Bartalucci N, Palmieri R, Ottone T, Mora B, Potenza L, Passamonti F, Voso MT, Luppi M, Vannucchi AM, Tagliafico E, Manfredini R. The Response to Oxidative Damage Correlates with Driver Mutations and Clinical Outcome in Patients with Myelofibrosis. Antioxidants (Basel) 2022; 11:antiox11010113. [PMID: 35052617 PMCID: PMC8772737 DOI: 10.3390/antiox11010113] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/29/2021] [Accepted: 01/01/2022] [Indexed: 12/12/2022] Open
Abstract
Myelofibrosis (MF) is the Philadelphia-negative myeloproliferative neoplasm characterized by the worst prognosis and no response to conventional therapy. Driver mutations in JAK2 and CALR impact on JAK-STAT pathway activation but also on the production of reactive oxygen species (ROS). ROS play a pivotal role in inflammation-induced oxidative damage to cellular components including DNA, therefore leading to greater genomic instability and promoting cell transformation. In order to unveil the role of driver mutations in oxidative stress, we assessed ROS levels in CD34+ hematopoietic stem/progenitor cells of MF patients. Our results demonstrated that ROS production in CD34+ cells from CALR-mutated MF patients is far greater compared with patients harboring JAK2 mutation, and this leads to increased oxidative DNA damage. Moreover, CALR-mutant cells show less superoxide dismutase (SOD) antioxidant activity than JAK2-mutated ones. Here, we show that high plasma levels of total antioxidant capacity (TAC) correlate with detrimental clinical features, such as high levels of lactate dehydrogenase (LDH) and circulating CD34+ cells. Moreover, in JAK2-mutated patients, high plasma level of TAC is also associated with a poor overall survival (OS), and multivariate analysis demonstrated that high TAC classification is an independent prognostic factor allowing the identification of patients with inferior OS in both DIPSS lowest and highest categories. Altogether, our data suggest that a different capability to respond to oxidative stress can be one of the mechanisms underlying disease progression of myelofibrosis.
Collapse
Affiliation(s)
- Elena Genovese
- Centre for Regenerative Medicine, Life Sciences Department, University of Modena and Reggio Emilia, 41125 Modena, Italy; (E.G.); (M.M.); (S.R.); (S.S.); (S.F.); (L.T.); (E.B.); (S.P.); (C.C.); (S.M.)
| | - Margherita Mirabile
- Centre for Regenerative Medicine, Life Sciences Department, University of Modena and Reggio Emilia, 41125 Modena, Italy; (E.G.); (M.M.); (S.R.); (S.S.); (S.F.); (L.T.); (E.B.); (S.P.); (C.C.); (S.M.)
| | - Sebastiano Rontauroli
- Centre for Regenerative Medicine, Life Sciences Department, University of Modena and Reggio Emilia, 41125 Modena, Italy; (E.G.); (M.M.); (S.R.); (S.S.); (S.F.); (L.T.); (E.B.); (S.P.); (C.C.); (S.M.)
| | - Stefano Sartini
- Centre for Regenerative Medicine, Life Sciences Department, University of Modena and Reggio Emilia, 41125 Modena, Italy; (E.G.); (M.M.); (S.R.); (S.S.); (S.F.); (L.T.); (E.B.); (S.P.); (C.C.); (S.M.)
| | - Sebastian Fantini
- Centre for Regenerative Medicine, Life Sciences Department, University of Modena and Reggio Emilia, 41125 Modena, Italy; (E.G.); (M.M.); (S.R.); (S.S.); (S.F.); (L.T.); (E.B.); (S.P.); (C.C.); (S.M.)
| | - Lara Tavernari
- Centre for Regenerative Medicine, Life Sciences Department, University of Modena and Reggio Emilia, 41125 Modena, Italy; (E.G.); (M.M.); (S.R.); (S.S.); (S.F.); (L.T.); (E.B.); (S.P.); (C.C.); (S.M.)
| | - Monica Maccaferri
- Department of Laboratory Medicine and Pathology, Diagnostic Hematology and Clinical Genomics, AUSL/AOU Policlinico, 41124 Modena, Italy;
| | - Paola Guglielmelli
- Center of Research and Innovation of Myeloproliferative Neoplasms (CRIMM), Department of Experimental and Clinical Medicine, University of Florence, Careggi University Hospital, 50134 Florence, Italy; (P.G.); (M.B.); (N.B.); (A.M.V.)
| | - Elisa Bianchi
- Centre for Regenerative Medicine, Life Sciences Department, University of Modena and Reggio Emilia, 41125 Modena, Italy; (E.G.); (M.M.); (S.R.); (S.S.); (S.F.); (L.T.); (E.B.); (S.P.); (C.C.); (S.M.)
| | - Sandra Parenti
- Centre for Regenerative Medicine, Life Sciences Department, University of Modena and Reggio Emilia, 41125 Modena, Italy; (E.G.); (M.M.); (S.R.); (S.S.); (S.F.); (L.T.); (E.B.); (S.P.); (C.C.); (S.M.)
| | - Chiara Carretta
- Centre for Regenerative Medicine, Life Sciences Department, University of Modena and Reggio Emilia, 41125 Modena, Italy; (E.G.); (M.M.); (S.R.); (S.S.); (S.F.); (L.T.); (E.B.); (S.P.); (C.C.); (S.M.)
| | - Selene Mallia
- Centre for Regenerative Medicine, Life Sciences Department, University of Modena and Reggio Emilia, 41125 Modena, Italy; (E.G.); (M.M.); (S.R.); (S.S.); (S.F.); (L.T.); (E.B.); (S.P.); (C.C.); (S.M.)
| | - Sara Castellano
- Center for Genome Research, University of Modena and Reggio Emilia, 41125 Modena, Italy; (S.C.); (E.T.)
- Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AUSL/AOU Policlinico, 41124 Modena, Italy; (C.C.); (L.P.); (M.L.)
- PhD Program in Clinical and Experimental Medicine, University of Modena and Reggio Emilia, 41124 Modena, Italy
| | - Corrado Colasante
- Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AUSL/AOU Policlinico, 41124 Modena, Italy; (C.C.); (L.P.); (M.L.)
| | - Manjola Balliu
- Center of Research and Innovation of Myeloproliferative Neoplasms (CRIMM), Department of Experimental and Clinical Medicine, University of Florence, Careggi University Hospital, 50134 Florence, Italy; (P.G.); (M.B.); (N.B.); (A.M.V.)
| | - Niccolò Bartalucci
- Center of Research and Innovation of Myeloproliferative Neoplasms (CRIMM), Department of Experimental and Clinical Medicine, University of Florence, Careggi University Hospital, 50134 Florence, Italy; (P.G.); (M.B.); (N.B.); (A.M.V.)
| | - Raffaele Palmieri
- Department of Biomedicine and Prevention, University of Tor Vergata, 00133 Rome, Italy; (R.P.); (T.O.); (M.T.V.)
| | - Tiziana Ottone
- Department of Biomedicine and Prevention, University of Tor Vergata, 00133 Rome, Italy; (R.P.); (T.O.); (M.T.V.)
- Santa Lucia Foundation, I.R.C.C.S., Neuro-Oncohematology, 00179 Rome, Italy
| | - Barbara Mora
- Division of Hematology, Ospedale ASST Sette Laghi, University of Insubria, 21110 Varese, Italy; (B.M.); (F.P.)
| | - Leonardo Potenza
- Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AUSL/AOU Policlinico, 41124 Modena, Italy; (C.C.); (L.P.); (M.L.)
| | - Francesco Passamonti
- Division of Hematology, Ospedale ASST Sette Laghi, University of Insubria, 21110 Varese, Italy; (B.M.); (F.P.)
| | - Maria Teresa Voso
- Department of Biomedicine and Prevention, University of Tor Vergata, 00133 Rome, Italy; (R.P.); (T.O.); (M.T.V.)
- Santa Lucia Foundation, I.R.C.C.S., Neuro-Oncohematology, 00179 Rome, Italy
| | - Mario Luppi
- Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AUSL/AOU Policlinico, 41124 Modena, Italy; (C.C.); (L.P.); (M.L.)
| | - Alessandro Maria Vannucchi
- Center of Research and Innovation of Myeloproliferative Neoplasms (CRIMM), Department of Experimental and Clinical Medicine, University of Florence, Careggi University Hospital, 50134 Florence, Italy; (P.G.); (M.B.); (N.B.); (A.M.V.)
| | - Enrico Tagliafico
- Center for Genome Research, University of Modena and Reggio Emilia, 41125 Modena, Italy; (S.C.); (E.T.)
- Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AUSL/AOU Policlinico, 41124 Modena, Italy; (C.C.); (L.P.); (M.L.)
| | - Rossella Manfredini
- Centre for Regenerative Medicine, Life Sciences Department, University of Modena and Reggio Emilia, 41125 Modena, Italy; (E.G.); (M.M.); (S.R.); (S.S.); (S.F.); (L.T.); (E.B.); (S.P.); (C.C.); (S.M.)
- Correspondence:
| | | |
Collapse
|
168
|
Bartalucci N, Galluzzi L. Philadelphia-negative myeloproliferative neoplasms: From origins to new perspectives. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2022; 366:ix-xx. [PMID: 35153008 DOI: 10.1016/s1937-6448(22)00019-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Affiliation(s)
- Niccolò Bartalucci
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy; DENOThe Excellence Center, University of Florence, Florence, Italy.
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, United States; Sandra and Edward Meyer Cancer Center, New York, NY, United States; Caryl and Israel Englander Institute for Precision Medicine, New York, NY, United States; Department of Dermatology, Yale School of Medicine, New Haven, CT, United States; Université de Paris, Paris, France.
| |
Collapse
|
169
|
Sun Y, Cai Y, Cen J, Zhu M, Pan J, Wang Q, Wu D, Chen S. Pegylated Interferon Alpha-2b in Patients With Polycythemia Vera and Essential Thrombocythemia in the Real World. Front Oncol 2021; 11:797825. [PMID: 34993148 PMCID: PMC8724125 DOI: 10.3389/fonc.2021.797825] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 12/06/2021] [Indexed: 11/13/2022] Open
Abstract
Several clinical trials have shown promising efficacy of pegylated interferon (Peg-IFN) in the first- and second-line polycythemia vera (PV) and essential thrombocythemia (ET). However, the efficacy and safety of Peg-IFN in the real world have rarely been reported. Hence, we conducted a prospective, single-center, single-arm, open exploratory study, which aimed to explore the hematologic response, molecular response, safety, and tolerability of patients with PV and ET treated with Peg-IFN in the real world. This study included newly diagnosed or previously treated patients with PV and ET, aged 18 years or older, admitted to the Department of Hematology of the First Affiliated Hospital of Soochow University from November 2017 to October 2019. The results revealed that complete hematological response (CHR) was achieved in 66.7% of patients with PV and 76.2% of patients with ET, and the molecular response was obtained in 38.5% of patients with PV and 50% of patients with ET after 48 weeks of Peg-IFN treatment. Peg-IFN is safe, effective and well tolerated in most patients. In the entire cohort, 4 patients (9.1%) discontinued treatment due to drug-related toxicity. In conclusion, Peg-IFN is a promising strategy in myeloproliferative neoplasms (MPNs), and Peg-IFN alone or in combination with other drugs should be further explored to reduce treatment-related toxicity and improve tolerability.
Collapse
Affiliation(s)
- Yingxin Sun
- Department of Hematology, First Affiliated Hospital of Soochow University, Soochow University, Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, Suzhou, China
- Department of Thrombosis and Hemostasis, Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Suzhou, China
| | - Yifeng Cai
- Department of Hematology, The Affiliated Hospital of Nantong University, Nantong University, Nantong, China
| | - Jiannong Cen
- Department of Hematology, First Affiliated Hospital of Soochow University, Soochow University, Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, Suzhou, China
- Department of Thrombosis and Hemostasis, Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Suzhou, China
| | - Mingqing Zhu
- Department of Hematology, First Affiliated Hospital of Soochow University, Soochow University, Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, Suzhou, China
- Department of Thrombosis and Hemostasis, Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Suzhou, China
| | - Jinlan Pan
- Department of Hematology, First Affiliated Hospital of Soochow University, Soochow University, Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, Suzhou, China
- Department of Thrombosis and Hemostasis, Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Suzhou, China
| | - Qian Wang
- Department of Hematology, First Affiliated Hospital of Soochow University, Soochow University, Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, Suzhou, China
- Department of Thrombosis and Hemostasis, Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Suzhou, China
| | - Depei Wu
- Department of Hematology, First Affiliated Hospital of Soochow University, Soochow University, Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, Suzhou, China
- Department of Thrombosis and Hemostasis, Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Suzhou, China
| | - Suning Chen
- Department of Hematology, First Affiliated Hospital of Soochow University, Soochow University, Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, Suzhou, China
- Department of Thrombosis and Hemostasis, Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Suzhou, China
- *Correspondence: Suning Chen,
| |
Collapse
|
170
|
Progression of Myeloproliferative Neoplasms (MPN): Diagnostic and Therapeutic Perspectives. Cells 2021; 10:cells10123551. [PMID: 34944059 PMCID: PMC8700229 DOI: 10.3390/cells10123551] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/10/2021] [Accepted: 12/13/2021] [Indexed: 12/21/2022] Open
Abstract
Classical BCR-ABL-negative myeloproliferative neoplasms (MPN) are a heterogeneous group of hematologic malignancies, including essential thrombocythemia (ET), polycythemia vera (PV), and primary myelofibrosis (PMF), as well as post-PV-MF and post-ET-MF. Progression to more symptomatic disease, such as overt MF or acute leukemia, represents one of the major causes of morbidity and mortality. There are clinically evident but also subclinical types of MPN progression. Clinically evident progression includes evolution from ET to PV, ET to post-ET-MF, PV to post-PV-MF, or pre-PMF to overt PMF, and transformation of any of these subtypes to myelodysplastic neoplasms or acute leukemia. Thrombosis, major hemorrhage, severe infections, or increasing symptom burden (e.g., pruritus, night sweats) may herald progression. Subclinical types of progression may include increases in the extent of bone marrow fibrosis, increases of driver gene mutational allele burden, and clonal evolution. The underlying causes of MPN progression are diverse and can be attributed to genetic alterations and chronic inflammation. Particularly, bystander mutations in genes encoding epigenetic regulators or splicing factors were associated with progression. Finally, comorbidities such as systemic inflammation, cardiovascular diseases, and organ fibrosis may augment the risk of progression. The aim of this review was to discuss types and mechanisms of MPN progression and how their knowledge might improve risk stratification and therapeutic intervention. In view of these aspects, we discuss the potential benefits of early diagnosis using molecular and functional imaging and exploitable therapeutic strategies that may prevent progression, but also highlight current challenges and methodological pitfalls.
Collapse
|
171
|
Barone M, Barone M, Ricci F, Auteri G, Corradi G, Fabbri F, Papa V, Bandini E, Cenacchi G, Tazzari PL, Vianelli N, Turroni S, Cavo M, Palandri F, Candela M, Catani L. An Abnormal Host/Microbiomes Signature of Plasma-Derived Extracellular Vesicles Is Associated to Polycythemia Vera. Front Oncol 2021; 11:715217. [PMID: 34900671 PMCID: PMC8657945 DOI: 10.3389/fonc.2021.715217] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 11/08/2021] [Indexed: 01/04/2023] Open
Abstract
Polycythemia Vera (PV) is a myeloproliferative neoplasm with increased risk of thrombosis and progression to myelofibrosis. Chronic inflammation is commonly observed in myeloproliferative neoplasms including PV. The inflammatory network includes the extracellular vesicles (EVs), which play a role in cell-cell communication. Recent evidence points to circulating microbial components/microbes as potential players in hemopoiesis regulation. To address the role of EVs in PV, here we investigated phenotype and microbial DNA cargo of circulating EVs through multidimensional analysis. Peripheral blood and feces were collected from PV patients (n=38) and healthy donors (n=30). Circulating megakaryocyte (MK)- and platelet (PLT)-derived EVs were analyzed by flow cytometry. After microbial DNA extraction from feces and isolated EVs, the 16S rDNA V3-V4 region was sequenced. We found that the proportion of circulating MK-derived EVs was significantly decreased in PV patients as compared with the healthy donors. By contrast, the proportion of the PLT-derived EVs was increased. Interestingly, PV was also associated with a microbial DNA signature of the isolated EVs with higher diversity and distinct microbial composition than the healthy counterparts. Of note, increased proportion of isolated lipopolysaccharide-associated EVs has been demonstrated in PV patients. Conversely, the gut microbiome profile failed to identify a distinct layout between PV patients and healthy donors. In conclusion, PV is associated with circulating EVs harbouring abnormal phenotype and dysbiosis signature with a potential role in the (inflammatory) pathogenesis of the disease.
Collapse
Affiliation(s)
- Monica Barone
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy.,Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Martina Barone
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia "Seràgnoli", Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale, Università di Bologna, Bologna, Italy
| | - Francesca Ricci
- Servizio di Immunoematologia e Trasfusionale, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Giuseppe Auteri
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia "Seràgnoli", Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale, Università di Bologna, Bologna, Italy
| | - Giulia Corradi
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia "Seràgnoli", Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale, Università di Bologna, Bologna, Italy
| | - Francesco Fabbri
- Biosciences Laboratory, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Valentina Papa
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Erika Bandini
- Biosciences Laboratory, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Giovanna Cenacchi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Pier Luigi Tazzari
- Servizio di Immunoematologia e Trasfusionale, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Nicola Vianelli
- Istituto di Ematologia "Seràgnoli", Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Silvia Turroni
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Michele Cavo
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia "Seràgnoli", Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale, Università di Bologna, Bologna, Italy
| | - Francesca Palandri
- Istituto di Ematologia "Seràgnoli", Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Marco Candela
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Lucia Catani
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia "Seràgnoli", Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale, Università di Bologna, Bologna, Italy
| |
Collapse
|
172
|
Cenariu D, Iluta S, Zimta AA, Petrushev B, Qian L, Dirzu N, Tomuleasa C, Bumbea H, Zaharie F. Extramedullary Hematopoiesis of the Liver and Spleen. J Clin Med 2021; 10:5831. [PMID: 34945127 PMCID: PMC8707658 DOI: 10.3390/jcm10245831] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 11/24/2021] [Accepted: 12/01/2021] [Indexed: 12/11/2022] Open
Abstract
Hematopoiesis is the formation of blood cellular components and, consequently, immune cells. In a more complete definition, this process refers to the formation, growth, maturation, and specialization of blood cells, from the hematopoietic stem cell, through the hematopoietic progenitor cells, to the s pecialized blood cells. This process is tightly regulated by several elements of the bone marrow microenvironment, such as growth factors, transcription factors, and cytokines. During embryonic and fetal development, hematopoiesis takes place in different organs: the yolk sac, the aorta-gonad mesonephros region, the lymph nodes, and not lastly, the fetal liver and the spleen. In the current review, we describe extramedullary hematopoiesis of the spleen and liver, with an emphasis on myeloproliferative conditions.
Collapse
Affiliation(s)
- Diana Cenariu
- Medfuture Research Center for Advanced Medicine, School of Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania; (D.C.); (A.-A.Z.); (B.P.); (N.D.)
| | - Sabina Iluta
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, 400124 Cluj-Napoca, Romania;
- Department of Hematology, Municipal County Hospital, 400111 Oradea, Romania
| | - Alina-Andreea Zimta
- Medfuture Research Center for Advanced Medicine, School of Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania; (D.C.); (A.-A.Z.); (B.P.); (N.D.)
| | - Bobe Petrushev
- Medfuture Research Center for Advanced Medicine, School of Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania; (D.C.); (A.-A.Z.); (B.P.); (N.D.)
- Department of Pathology, Octavian Fodor Regional Institute of Gastroenterology and Hepatology, 400124 Cluj-Napoca, Romania
| | - Liren Qian
- Department of Hematology, 5th Medical Center of the People’s Liberation Army General Hospital, Beijing 100037, China;
| | - Noemi Dirzu
- Medfuture Research Center for Advanced Medicine, School of Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania; (D.C.); (A.-A.Z.); (B.P.); (N.D.)
| | - Ciprian Tomuleasa
- Medfuture Research Center for Advanced Medicine, School of Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania; (D.C.); (A.-A.Z.); (B.P.); (N.D.)
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, 400124 Cluj-Napoca, Romania;
- Department of Hematology, Ion Chiricuta Clinical Cancer Center, 400004 Cluj-Napoca, Romania
| | - Horia Bumbea
- Department of Hematology, Carol Davila University of Medicine and Pharmacy, 400004 Bucharest, Romania
- Department of Hematology, University Emergency Hospital, 400004 Bucharest, Romania
| | - Florin Zaharie
- Department of Surgery, Iuliu Hatieganu University of Medicine and Pharmacy, 400124 Cluj-Napoca, Romania;
| |
Collapse
|
173
|
Ma J, Chen S, Huang Y, Zi J, Ma J, Ge Z. Philadelphia-positive acute lymphoblastic leukemia in a case of MPL p.(W515L) variant essential thrombocythemia: case report and literature review. Platelets 2021; 33:945-950. [PMID: 34895021 DOI: 10.1080/09537104.2021.2007871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Acute lymphoblastic leukemia (ALL) arising in preexisting myeloproliferative neoplasms (MPN) is rare with historical cases unable to differentiate between concomitant malignancies or leukemic transformation. Here, we report a case of patient with Philadelphia positive B lymphoblastic leukemia (Ph+ALL) who developed from MPL-mutated essential thrombocythemia (ET) 13 years after initial presentation. Molecular studies showed the discrepancy between the high percentage of lymphocyte blasts (91%) and the low MPL p.(W515L) variant allele frequency (2.59%) at diagnosis in the bone marrow, indicating that the Ph+ALL clone did not originate from the ET clone carrying the MPL p.(W515L) variant. After the treatment of a new tyrosine kinase inhibitor flumatinib and prednisolone, cytogenetic and molecular remission had been achieved rapidly and followed by the recovery of original ET manifestation. Although relapsed eventually, this is still a very rare case of simultaneous presence of two cytogenetics abnormalities and evolution of MPL p.(W515L) variant ET to Ph+ALL and may provide evidence to illustrate the clonal relationship of MPN and post-MPN ALL.
Collapse
Affiliation(s)
- Jiale Ma
- Department of Hematology, Zhongda Hospital, Medical School of Southeast University, Institute of Hematology Southeast University, Nanjing, China.,Department of Hematology, Xuzhou Central Hospital, Xuzhou, China
| | - Shan Chen
- Department of Hematology, Zhongda Hospital, Medical School of Southeast University, Institute of Hematology Southeast University, Nanjing, China
| | - Yanqing Huang
- Department of Hematology, Zhongda Hospital, Medical School of Southeast University, Institute of Hematology Southeast University, Nanjing, China
| | - Jie Zi
- Department of Hematology, Zhongda Hospital, Medical School of Southeast University, Institute of Hematology Southeast University, Nanjing, China
| | - Jinlong Ma
- Department of Hematology, Zhongda Hospital, Medical School of Southeast University, Institute of Hematology Southeast University, Nanjing, China
| | - Zheng Ge
- Department of Hematology, Zhongda Hospital, Medical School of Southeast University, Institute of Hematology Southeast University, Nanjing, China
| |
Collapse
|
174
|
Thomas JW, Jamy O, Shah MV, Vachhani P, Go RS, Goyal G. Risk of mortality and second malignancies in primary myelofibrosis before and after ruxolitinib approval. Leuk Res 2021; 112:106770. [PMID: 34920340 DOI: 10.1016/j.leukres.2021.106770] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/02/2021] [Accepted: 12/04/2021] [Indexed: 01/14/2023]
Abstract
BACKGROUND Primary myelofibrosis (PMF) is associated with morbidity and mortality. Ruxolitinib gained US FDA approval for treatment of intermediate/high-risk PMF in November 2011. We evaluated differences in survival and second primary malignancy (SPM) incidence among US PMF patients in the years before and after ruxolitinib approval. METHODS We conducted a retrospective study utilizing the National Cancer Institute's Surveillance, Epidemiology, and End Results (SEER)-18 database for PMF patients. We divided patients into five-year cohorts pre- (2007-2011) and post-ruxolitinib (2012-2016) approval and compared relative survival rates (RSRs) to the standard population and standardized incidence rates (SIRs) of SPMs between cohorts. RESULTS We included 2020 patients diagnosed with PMF from 2007-2016 in this study. There was no difference in the four-year RSRs between cohorts (54 % vs. 57 %, p = 0.776). More patients developed SPMs in the post-ruxolitinib cohort (8% vs. 6%, p = 0.041). The majority of SPMs were hematologic with higher incidence of AML transformation in the post-ruxolitinib cohort (SIR 125.29 vs. 70.55). CONCLUSIONS PMF prognosis remains poor in the years following ruxolitinib's approval. SPM incidence including AML transformation is higher in the years after approval. Further studies are needed to determine the true impact of ruxolitnib on population outcomes.
Collapse
Affiliation(s)
- John W Thomas
- Tinsley Harrison Internal Medicine Residency Program, University of Alabama at Birmingham (UAB), Birmingham, AL, USA
| | - Omer Jamy
- Division of Hematology and Oncology, University of Alabama at Birmingham (UAB), Birmingham, AL, USA.
| | | | - Pankit Vachhani
- Division of Hematology and Oncology, University of Alabama at Birmingham (UAB), Birmingham, AL, USA
| | - Ronald S Go
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | - Gaurav Goyal
- Division of Hematology and Oncology, University of Alabama at Birmingham (UAB), Birmingham, AL, USA.
| |
Collapse
|
175
|
Mosca M, Hermange G, Tisserand A, Noble R, Marzac C, Marty C, Le Sueur C, Campario H, Vertenoeil G, El-Khoury M, Catelain C, Rameau P, Gella C, Lenglet J, Casadevall N, Favier R, Solary E, Cassinat B, Kiladjian JJ, Constantinescu SN, Pasquier F, Hochberg ME, Raslova H, Villeval JL, Girodon F, Vainchenker W, Cournède PH, Plo I. Inferring the dynamics of mutated hematopoietic stem and progenitor cells induced by IFNα in myeloproliferative neoplasms. Blood 2021; 138:2231-2243. [PMID: 34407546 PMCID: PMC8641097 DOI: 10.1182/blood.2021010986] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 07/15/2021] [Indexed: 11/20/2022] Open
Abstract
Classical BCR-ABL-negative myeloproliferative neoplasms (MPNs) are clonal disorders of hematopoietic stem cells (HSCs) caused mainly by recurrent mutations in genes encoding JAK2 (JAK2), calreticulin (CALR), or the thrombopoietin receptor (MPL). Interferon α (IFNα) has demonstrated some efficacy in inducing molecular remission in MPNs. To determine factors that influence molecular response rate, we evaluated the long-term molecular efficacy of IFNα in patients with MPN by monitoring the fate of cells carrying driver mutations in a prospective observational and longitudinal study of 48 patients over more than 5 years. We measured the clonal architecture of early and late hematopoietic progenitors (84 845 measurements) and the global variant allele frequency in mature cells (409 measurements) several times per year. Using mathematical modeling and hierarchical Bayesian inference, we further inferred the dynamics of IFNα-targeted mutated HSCs. Our data support the hypothesis that IFNα targets JAK2V617F HSCs by inducing their exit from quiescence and differentiation into progenitors. Our observations indicate that treatment efficacy is higher in homozygous than heterozygous JAK2V617F HSCs and increases with high IFNα dose in heterozygous JAK2V617F HSCs. We also found that the molecular responses of CALRm HSCs to IFNα were heterogeneous, varying between type 1 and type 2 CALRm, and a high dose of IFNα correlates with worse outcomes. Our work indicates that the long-term molecular efficacy of IFNα implies an HSC exhaustion mechanism and depends on both the driver mutation type and IFNα dose.
Collapse
Affiliation(s)
- Matthieu Mosca
- INSERM, Unité Mixte de Recherche (UMR) 1287, Gustave Roussy, Villejuif, France
- Gustave Roussy, Villejuif, France
- Université Paris-Saclay, Gif-sur-Yvette, France
- Laboratoire d'Excellence GR-Ex, Paris, France
| | - Gurvan Hermange
- Université Paris-Saclay, CentraleSupélec, Laboratory MICS (Laboratory of Applied Mathematics and Computer Science), Gif-sur-Yvette, France
| | - Amandine Tisserand
- INSERM, Unité Mixte de Recherche (UMR) 1287, Gustave Roussy, Villejuif, France
- Gustave Roussy, Villejuif, France
- Laboratoire d'Excellence GR-Ex, Paris, France
- Université de Paris, Paris, France
| | - Robert Noble
- Department of Biosciences and Engineering, ETH Zurich, Basel, Switzerland
- Institut des Sciences de l'Evolution, University of Montpellier, Montpellier, France
- Institute of Evolutionary Biology and Environmental Studies (IEU), University of Zurich, Zurich, Switzerland
- University of London, London, United Kingdom
| | - Christophe Marzac
- INSERM, Unité Mixte de Recherche (UMR) 1287, Gustave Roussy, Villejuif, France
- Gustave Roussy, Villejuif, France
- Université Paris-Saclay, Gif-sur-Yvette, France
- Laboratoire d'Immuno-Hématologie, Gustave Roussy, Villejuif, France
| | - Caroline Marty
- INSERM, Unité Mixte de Recherche (UMR) 1287, Gustave Roussy, Villejuif, France
- Gustave Roussy, Villejuif, France
- Université Paris-Saclay, Gif-sur-Yvette, France
- Laboratoire d'Excellence GR-Ex, Paris, France
| | - Cécile Le Sueur
- Department of Biosciences and Engineering, ETH Zurich, Basel, Switzerland
| | | | - Gaëlle Vertenoeil
- Ludwig Institute for Cancer Research and Université Catholique de Louvain, de Duve Institute, Brussels, Belgium
| | - Mira El-Khoury
- INSERM, Unité Mixte de Recherche (UMR) 1287, Gustave Roussy, Villejuif, France
- Gustave Roussy, Villejuif, France
- Laboratoire d'Excellence GR-Ex, Paris, France
| | - Cyril Catelain
- UMS AMMICa-Plateforme Imagerie et Cytométries, Gustave Roussy, Villejuif, France
| | - Philippe Rameau
- UMS AMMICa-Plateforme Imagerie et Cytométries, Gustave Roussy, Villejuif, France
| | - Cyril Gella
- Laboratoire d'Immuno-Hématologie, Gustave Roussy, Villejuif, France
| | | | - Nicole Casadevall
- INSERM, Unité Mixte de Recherche (UMR) 1287, Gustave Roussy, Villejuif, France
- Assistance Publique des Hôpitaux de Paris, Laboratoire d'Hématologie, Hôpital Saint-Antoine, Paris, France
| | - Rémi Favier
- Assistance Publique des Hôpitaux de Paris, Service d'Hématologie Biologique, Hôpital d'Enfants Armand-Trousseau, Paris, France
| | - Eric Solary
- INSERM, Unité Mixte de Recherche (UMR) 1287, Gustave Roussy, Villejuif, France
- Gustave Roussy, Villejuif, France
- Département d'Hématologie, Gustave Roussy, Villejuif, France
- Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Bruno Cassinat
- Université de Paris, INSERM UMR-S 1131, Institut de Recherche Saint-Louis (IRSL), Hôpital Saint-Louis, Paris, France
- Assistance Publique des Hôpitaux de Paris, Laboratoire de Biologie Cellulaire
| | - Jean-Jacques Kiladjian
- Université de Paris, INSERM UMR-S 1131, Institut de Recherche Saint-Louis (IRSL), Hôpital Saint-Louis, Paris, France
- Assistance Publique des Hôpitaux de Paris, Centre d'Investigations Cliniques, Hôpital Saint-Louis, Paris, France
| | - Stefan N Constantinescu
- Ludwig Institute for Cancer Research and Université Catholique de Louvain, de Duve Institute, Brussels, Belgium
| | - Florence Pasquier
- INSERM, Unité Mixte de Recherche (UMR) 1287, Gustave Roussy, Villejuif, France
- Gustave Roussy, Villejuif, France
- Université Paris-Saclay, Gif-sur-Yvette, France
- Département d'Hématologie, Gustave Roussy, Villejuif, France
| | - Michael E Hochberg
- Institut des Sciences de l'Evolution, University of Montpellier, Montpellier, France
- Santa Fe Institute, Santa Fe, NM
| | - Hana Raslova
- INSERM, Unité Mixte de Recherche (UMR) 1287, Gustave Roussy, Villejuif, France
- Gustave Roussy, Villejuif, France
- Université Paris-Saclay, Gif-sur-Yvette, France
| | - Jean-Luc Villeval
- INSERM, Unité Mixte de Recherche (UMR) 1287, Gustave Roussy, Villejuif, France
- Gustave Roussy, Villejuif, France
- Université Paris-Saclay, Gif-sur-Yvette, France
| | - François Girodon
- Laboratoire d'Hématologie, CHU Dijon, Dijon, France
- INSERM, UMR 866, Centre de Recherche, Dijon, France; and
| | - William Vainchenker
- INSERM, Unité Mixte de Recherche (UMR) 1287, Gustave Roussy, Villejuif, France
- Gustave Roussy, Villejuif, France
- Université Paris-Saclay, Gif-sur-Yvette, France
- Laboratoire d'Excellence GR-Ex, Paris, France
- Assistance Publique des Hôpitaux de Paris, Service d'Immunopathologie Clinique, Polyclinique d'Hématologie, Hôpital Saint-Louis, Paris, France
| | - Paul-Henry Cournède
- Université Paris-Saclay, CentraleSupélec, Laboratory MICS (Laboratory of Applied Mathematics and Computer Science), Gif-sur-Yvette, France
| | - Isabelle Plo
- INSERM, Unité Mixte de Recherche (UMR) 1287, Gustave Roussy, Villejuif, France
- Gustave Roussy, Villejuif, France
- Université Paris-Saclay, Gif-sur-Yvette, France
- Laboratoire d'Excellence GR-Ex, Paris, France
| |
Collapse
|
176
|
Tefferi A, Vannucchi AM, Barbui T. Polycythemia vera: historical oversights, diagnostic details, and therapeutic views. Leukemia 2021; 35:3339-3351. [PMID: 34480106 PMCID: PMC8632660 DOI: 10.1038/s41375-021-01401-3] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/17/2021] [Accepted: 08/23/2021] [Indexed: 02/07/2023]
Abstract
Polycythemia vera (PV) is a relatively indolent myeloid neoplasm with median survival that exceeds 35 years in young patients, but its natural history might be interrupted by thrombotic, fibrotic, or leukemic events, with respective 20-year rates of 26%, 16%, and 4%. Current treatment strategies in PV have not been shown to prolong survival or lessen the risk of leukemic or fibrotic progression and instead are directed at preventing thrombotic complications. In the latter regard, two risk categories are considered: high (age >60 years or thrombosis history) and low (absence of both risk factors). All patients require phlebotomy to keep hematocrit below 45% and once-daily low-dose aspirin, in the absence of contraindications. Cytoreductive therapy is recommended for high-risk or symptomatic low-risk disease; our first-line drug of choice in this regard is hydroxyurea but we consider pegylated interferon as an alternative in certain situations, including in young women of reproductive age, in patients manifesting intolerance or resistance to hydroxyurea therapy, and in situations where treatment is indicated for curbing phlebotomy requirement rather than preventing thrombosis. Additional treatment options include busulfan and ruxolitinib; the former is preferred in older patients and the latter in the presence of symptoms reminiscent of post-PV myelofibrosis or protracted pruritus. Our drug choices reflect our appreciation for long-term track record of safety, evidence for reduction of thrombosis risk, and broader suppression of myeloproliferation. Controlled studies are needed to clarify the added value of twice- vs once-daily aspirin dosing and direct oral anticoagulants. In this invited review, we discuss our current approach to diagnosis, prognostication, and treatment of PV in general, as well as during specific situations, including pregnancy and splanchnic vein thrombosis.
Collapse
Affiliation(s)
- Ayalew Tefferi
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN, USA.
| | - Alessandro M Vannucchi
- Department of Experimental and Clinical Medicine, CRIMM, Center Research and Innovation of Myeloproliferative Neoplasms, Azienda Ospedaliera Universitaria Careggi, University of Florence, Florence, Italy
| | - Tiziano Barbui
- Research Foundation, Papa Giovanni XXIII Hospital, Bergamo, Italy
| |
Collapse
|
177
|
Thrombosis in myeloproliferative neoplasms: A clinical and pathophysiological perspective. THROMBOSIS UPDATE 2021. [DOI: 10.1016/j.tru.2021.100081] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
178
|
Zhou J, Guo C, Wu H, Li B, Zhou LL, Liang AB, Fu JF. Dnmt3a is downregulated by Stat5a and mediates G0/G1 arrest by suppressing the miR-17-5p/Cdkn1a axis in Jak2 V617F cells. BMC Cancer 2021; 21:1213. [PMID: 34773997 PMCID: PMC8590245 DOI: 10.1186/s12885-021-08915-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 10/26/2021] [Indexed: 01/02/2023] Open
Abstract
Background Despite of the frequently reported Dnmt3a abormality in classical myeloproliferative neoplasms (cMPNs) patients, few research explores how the Dnmt3a is regulated by Jak2V617F mutation. In this study, we have investigated how the Dnmt3a is regulated by Jak2V617F mutation and its effects on downstream signaling pathways in cMPNs. Methods Specimens of Jak2V617F positive cMPN patients and normal controls were collected. Murine BaF3 cell line was used to construct cell models. Dual-Glo luciferase assays and chromatin immunoprecipitation (ChIP)-qPCR were performed to detect the impact of Stat5a on transcription activity of Dnmt3a. Soft agar colony formation assay and cell counting assay were performed to detect cell proliferation. BrdU staining and flow cytometry were used to investigate cell cycle distribution. Western blotting and quantitative reverse-transcription PCR (qPCR) were performed to detect the expression levels of genes. Results Firstly, the results of western blotting and qPCR revealed that compared with the control samples, Dnmt3a is downregulated in Jak2V617F positive samples. Then we explored the mechanism behind it and found that Dnmt3a is a downstream target of Stat5a, the transcription and translation of Dnmt3a is suppressed by the binding of aberrantly activated Stat5a with Dnmt3a promoter in Jak2V617F positive samples. We further revealed the region approximately 800 bp upstream of the first exon of the Dnmt3a promoter, which includes a gamma-activated sequence (GAS) motif of Stat5a, is the specific site that Stat5a binds to. Soft agar colony formation assay, cell counting assay, and BrdU staining and flow cytometry assay found that Dnmt3a in Jak2V617F-BaF3 cells significantly affected the cell proliferation capacity and cell cycle distribution by suppressing Cdkn1a via miR-17-5p/Cdkn1a axis and mediated G0/G1 arrest. Conclusions Transcription and translation of Dnmt3a is downregulated by the binding of Stat5a with Dnmt3a promoter in Jak2V617F cells. The GAS motif at promoter of Dnmt3a is the exact site where the Stat5a binds to. Dnmt3a conducted G0/G1 arrest through regulating miR-17-5p/Cdkn1a axis. The axis of Stat5a/Dnmt3a/miR-17-5p/Cdkn1a potentially provides a treatment target for cMPNs. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-021-08915-0.
Collapse
Affiliation(s)
- Jie Zhou
- Tongji University School of Medicine, Shanghai, 200092, China.,Department of Gastroenterology, Tongji Hospital of Tongji University, Shanghai, 200065, China
| | - Cheng Guo
- Tongji University School of Medicine, Shanghai, 200092, China.,Department of Gastroenterology, Tongji Hospital of Tongji University, Shanghai, 200065, China
| | - Hao Wu
- Tongji University School of Medicine, Shanghai, 200092, China.,Department of Hematology, Tongji Hospital of Tongji University, Tongji University School of Medicine, No.389 Xincun Road, Putuo District, Shanghai, 200065, China
| | - Bing Li
- Tongji University School of Medicine, Shanghai, 200092, China.,Department of Hematology, Tongji Hospital of Tongji University, Tongji University School of Medicine, No.389 Xincun Road, Putuo District, Shanghai, 200065, China
| | - Li-Li Zhou
- Tongji University School of Medicine, Shanghai, 200092, China.,Department of Hematology, Tongji Hospital of Tongji University, Tongji University School of Medicine, No.389 Xincun Road, Putuo District, Shanghai, 200065, China
| | - Ai-Bin Liang
- Tongji University School of Medicine, Shanghai, 200092, China. .,Department of Hematology, Tongji Hospital of Tongji University, Tongji University School of Medicine, No.389 Xincun Road, Putuo District, Shanghai, 200065, China.
| | - Jian-Fei Fu
- Tongji University School of Medicine, Shanghai, 200092, China. .,Department of Hematology, Tongji Hospital of Tongji University, Tongji University School of Medicine, No.389 Xincun Road, Putuo District, Shanghai, 200065, China.
| |
Collapse
|
179
|
Pizzi M, Croci GA, Ruggeri M, Tabano S, Dei Tos AP, Sabattini E, Gianelli U. The Classification of Myeloproliferative Neoplasms: Rationale, Historical Background and Future Perspectives with Focus on Unclassifiable Cases. Cancers (Basel) 2021; 13:5666. [PMID: 34830822 PMCID: PMC8616346 DOI: 10.3390/cancers13225666] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/04/2021] [Accepted: 11/04/2021] [Indexed: 01/11/2023] Open
Abstract
Myeloproliferative neoplasms (MPNs) are a heterogeneous group of clonal hematopoietic stem cell disorders, characterized by increased proliferation of one or more myeloid lineages in the bone marrow. The classification and diagnostic criteria of MPNs have undergone relevant changes over the years, reflecting the increased awareness on these conditions and a better understanding of their biological and clinical-pathological features. The current World Health Organization (WHO) Classification acknowledges four main sub-groups of MPNs: (i) Chronic Myeloid Leukemia; (ii) classical Philadelphia-negative MPNs (Polycythemia Vera; Essential Thrombocythemia; Primary Myelofibrosis); (iii) non-classical Philadelphia-negative MPNs (Chronic Neutrophilic Leukemia; Chronic Eosinophilic Leukemia); and (iv) MPNs, unclassifiable (MPN-U). The latter are currently defined as MPNs with clinical-pathological findings not fulfilling the diagnostic criteria for any other entity. The MPN-U spectrum traditionally encompasses early phase MPNs, terminal (i.e., advanced fibrotic) MPNs, and cases associated with inflammatory or neoplastic disorders that obscure the clinical-histological picture. Several lines of evidence and clinical practice suggest the existence of additional myeloid neoplasms that may expand the spectrum of MPN-U. To gain insight into such disorders, this review addresses the history of MPN classification, the evolution of their diagnostic criteria and the complex clinical-pathological and biological features of MPN-U.
Collapse
Affiliation(s)
- Marco Pizzi
- Surgical Pathology and Cytopathology Unit, Department of Medicine—DIMED, University of Padua, 35128 Padua, Italy;
| | - Giorgio Alberto Croci
- Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy; (G.A.C.); (U.G.)
- Division of Pathology, Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Marco Ruggeri
- Department of Hematology, San Bortolo Hospital, 36100 Vicenza, Italy;
| | - Silvia Tabano
- Laboratory of Medical Genetics, Foundation IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy;
| | - Angelo Paolo Dei Tos
- Surgical Pathology and Cytopathology Unit, Department of Medicine—DIMED, University of Padua, 35128 Padua, Italy;
| | - Elena Sabattini
- Haematopathology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy;
| | - Umberto Gianelli
- Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy; (G.A.C.); (U.G.)
- Division of Pathology, Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy
| |
Collapse
|
180
|
Bone marrow microenvironment of MPN cells. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2021. [PMID: 34756245 DOI: 10.1016/bs.ircmb.2021.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/10/2023]
Abstract
In this chapter, we will discuss the current knowledge concerning the alterations of the cellular components in the bone marrow niche in Myeloproliferative Neoplasms (MPNs), highlighting the central role of the megakaryocytes in MPN progression, and the extracellular matrix components characterizing the fibrotic bone marrow.
Collapse
|
181
|
Brune MM, Rau A, Overkamp M, Flaadt T, Bonzheim I, Schürch CM, Federmann B, Dirnhofer S, Fend F, Tzankov A. Molecular Progression of Myeloproliferative and Myelodysplastic/Myeloproliferative Neoplasms: A Study on Sequential Bone Marrow Biopsies. Cancers (Basel) 2021; 13:5605. [PMID: 34830756 PMCID: PMC8615857 DOI: 10.3390/cancers13225605] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/26/2021] [Accepted: 11/03/2021] [Indexed: 11/16/2022] Open
Abstract
Myeloproliferative neoplasms (MPN) and myelodysplastic/myeloproliferative neoplasms (MDS/MPN) both harbor the potential to undergo myelodysplastic progression or acceleration and can transform into blast-phase MPN or MDS/MPN, a form of secondary acute myeloid leukemia (AML). Although the initiating transforming events are yet to be determined, current concepts suggest a stepwise acquisition of (additional) somatic mutations-apart from the initial driver mutations-that trigger disease evolution. In this study we molecularly analyzed paired bone marrow samples of MPN and MDS/MPN patients with known progression and compared them to a control cohort of patients with stable disease course. Cases with progression displayed from the very beginning a higher number of mutations compared to stable ones, of which mutations in five (ASXL1, DNMT3A, NRAS, SRSF2 and TP53) strongly correlated with progression and/or transformation, even if only one of these genes was mutated, and this particularly applied to MPN. TET2 mutations were found to have a higher allelic frequency than the putative driver mutation in three progressing cases ("TET2-first"), whereas two stable cases displayed a TET2-positive subclone ("TET2-second"), supporting the hypothesis that not only the sum of mutations but also their order of appearance matters in the course of disease. Our data emphasize the importance of genetic testing in MPN and MDS/MPN patients in terms of risk stratification and identification of imminent disease progression.
Collapse
Affiliation(s)
- Magdalena M. Brune
- Institute of Medical Genetics and Pathology, University Hospital Basel, Schönbeinstrasse 40, CH-4031 Basel, Switzerland; (M.M.B.); (S.D.)
| | - Achim Rau
- Institute of Pathology and Neuropathology, University Hospital Tübingen, 72076 Tübingen, Germany; (A.R.); (M.O.); (T.F.); (I.B.); (C.M.S.); (B.F.)
| | - Mathis Overkamp
- Institute of Pathology and Neuropathology, University Hospital Tübingen, 72076 Tübingen, Germany; (A.R.); (M.O.); (T.F.); (I.B.); (C.M.S.); (B.F.)
| | - Tim Flaadt
- Institute of Pathology and Neuropathology, University Hospital Tübingen, 72076 Tübingen, Germany; (A.R.); (M.O.); (T.F.); (I.B.); (C.M.S.); (B.F.)
| | - Irina Bonzheim
- Institute of Pathology and Neuropathology, University Hospital Tübingen, 72076 Tübingen, Germany; (A.R.); (M.O.); (T.F.); (I.B.); (C.M.S.); (B.F.)
| | - Christian M. Schürch
- Institute of Pathology and Neuropathology, University Hospital Tübingen, 72076 Tübingen, Germany; (A.R.); (M.O.); (T.F.); (I.B.); (C.M.S.); (B.F.)
- Institute of Pathology, University of Bern, Murtenstrasse 8, CH-3008 Bern, Switzerland
| | - Birgit Federmann
- Institute of Pathology and Neuropathology, University Hospital Tübingen, 72076 Tübingen, Germany; (A.R.); (M.O.); (T.F.); (I.B.); (C.M.S.); (B.F.)
| | - Stefan Dirnhofer
- Institute of Medical Genetics and Pathology, University Hospital Basel, Schönbeinstrasse 40, CH-4031 Basel, Switzerland; (M.M.B.); (S.D.)
| | - Falko Fend
- Institute of Pathology and Neuropathology, University Hospital Tübingen, 72076 Tübingen, Germany; (A.R.); (M.O.); (T.F.); (I.B.); (C.M.S.); (B.F.)
| | - Alexandar Tzankov
- Institute of Medical Genetics and Pathology, University Hospital Basel, Schönbeinstrasse 40, CH-4031 Basel, Switzerland; (M.M.B.); (S.D.)
| |
Collapse
|
182
|
Zhou J, Wu H, Guo C, Li B, Zhou LL, Liang AB, Fu JF. A comprehensive genome-wide analysis of long non-coding RNA and mRNA expression profiles of JAK2V617F-positive classical myeloproliferative neoplasms. Bioengineered 2021; 12:10564-10586. [PMID: 34738870 PMCID: PMC8810098 DOI: 10.1080/21655979.2021.2000226] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Aberrant expression of long non-coding RNAs (lncRNAs) is involved in the progression of myeloid neoplasms, but the role of lncRNAs in the JAK2V617F-positive subtype of classical myeloproliferative neoplasms (cMPNs) remains unclear. This study was conducted to clarify the expression and regulation patterns of lncRNAs in JAK2V617F-positive cMPNs, and to explore new potential carcinogenic factors of cMPNs. Bioinformatics analysis of microarray detection and wet testing verification were performed to study the expression and regulation signature of differentially expressed lncRNAs (DELs) and related genes (DEGs) in cMPNs. The expression of lncRNAs and mRNAs were observed to significantly dysregulated in JAK2V617F-positive cMPN patients compared with the normal controls. Co-expression analysis indicated that there were significant differences of the co-expression pattern of lncRNAs and mRNAs in JAK2V617F-positive cMPN patients compared to normal controls. GO and KEGG pathway analysis of DEGs and DELs showed the involvement of several pathways previously reported to regulate the pathogenesis of leukemia and cMPNs. Cis- and trans-regulation analysis of lncRNAs showed that ZNF141, DHX29, NOC2L, MAS1L, AFAP1L1, and CPN2 were significantly cis-regulated by lncRNA ENST00000356347, ENST00000456816, hsa-mir-449c, NR_026874, TCONS_00012136, uc003lqp.2, and ENST00000456816, respectively, and DELs were mostly correlated with transcription factors including CTBP2, SUZ12, REST, STAT2, and GATA4 to jointly regulate multiple target genes. In summary, expression profiles of lncRNAs and mRNAs were significantly altered in JAK2V617F-positive cMPNs, the relative signaling pathway, co-expression, cis- and trans-regulation were regulated by dysregulation of lncRNAs and several important genes, such as ITGB3, which may act as a promising carcinogenic factor, warrant further investigation.
Collapse
Affiliation(s)
- Jie Zhou
- Tongji University School of Medicine, Shanghai, 200092, China.,Department of Gastroenterology, Tongji Hospital of Tongji University, Shanghai, 200065, China
| | - Hao Wu
- Tongji University School of Medicine, Shanghai, 200092, China.,Department of Hematology, Tongji Hospital of Tongji University, Shanghai, 200065, China
| | - Cheng Guo
- Tongji University School of Medicine, Shanghai, 200092, China.,Department of Gastroenterology, Tongji Hospital of Tongji University, Shanghai, 200065, China
| | - Bing Li
- Tongji University School of Medicine, Shanghai, 200092, China.,Department of Hematology, Tongji Hospital of Tongji University, Shanghai, 200065, China
| | - Li-Li Zhou
- Tongji University School of Medicine, Shanghai, 200092, China.,Department of Hematology, Tongji Hospital of Tongji University, Shanghai, 200065, China
| | - Ai-Bin Liang
- Tongji University School of Medicine, Shanghai, 200092, China.,Department of Hematology, Tongji Hospital of Tongji University, Shanghai, 200065, China
| | - Jian-Fei Fu
- Tongji University School of Medicine, Shanghai, 200092, China.,Department of Hematology, Tongji Hospital of Tongji University, Shanghai, 200065, China
| |
Collapse
|
183
|
Thomas S, Krishnan A. Platelet Heterogeneity in Myeloproliferative Neoplasms. Arterioscler Thromb Vasc Biol 2021; 41:2661-2670. [PMID: 34615371 PMCID: PMC8551046 DOI: 10.1161/atvbaha.121.316373] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 09/20/2021] [Indexed: 12/24/2022]
Abstract
Myeloproliferative neoplasms (MPNs) are a group of malignant disorders of the bone marrow where a dysregulated balance between proliferation and differentiation gives rise to abnormal numbers of mature blood cells. MPNs encompass a spectrum of disease entities with progressively more severe clinical features, including complications with thrombosis and hemostasis and an increased propensity for transformation to acute myeloid leukemia. There is an unmet clinical need for markers of disease progression. Our understanding of the precise mechanisms that influence pathogenesis and disease progression has been limited by access to disease-specific cells as biosources. Here, we review the landscape of MPN pathology and present blood platelets as potential candidates for disease-specific understanding. We conclude with our recent work discovering progressive platelet heterogeneity by subtype in a large clinical cohort of patients with MPN.
Collapse
Affiliation(s)
- Sally Thomas
- Department of Oncology and Metabolism, University of Sheffield and Department of Haematology, Royal Hallamshire Hospital, United Kingdom (S.T.)
| | - Anandi Krishnan
- Department of Pathology, Stanford University School of Medicine, CA (A.K.)
| |
Collapse
|
184
|
Penna D. New Horizons in Myeloproliferative Neoplasms Treatment: A Review of Current and Future Therapeutic Options. Medicina (B Aires) 2021; 57:medicina57111181. [PMID: 34833399 PMCID: PMC8619471 DOI: 10.3390/medicina57111181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/18/2021] [Accepted: 10/25/2021] [Indexed: 11/29/2022] Open
Abstract
Philadelphia-negative myeloproliferative neoplasms (MPN) are aggressive diseases characterized by clonal proliferation of myeloid stem cells. The clonal process leads to excessive red cells production, platelets production, and bone marrow fibrosis. According to the phenotype, MPN can be classified as polycythemia vera (PV), essential thrombocythemia (ET), and primary myelofibrosis (PMF). MPN patients have shortened survival due to the increased risk of thrombosis, hemorrhages, and transformation to acute myeloid leukemia (AML). Prognosis is variable, with a shorter life expectancy in myelofibrosis. Currently, drug therapy can reduce symptoms, splenomegaly, and risk of thrombosis. Still, some patients can be resistant or intolerant to the treatment. At the same time, allogeneic stem cell transplant (ASCT) is the only treatment modality with the potential to cure the disease. Nevertheless, the ASCT is reserved for high-risk leukemic progression patients due to the risk of treatment-related death and comorbidity. Therefore, there is a need for new drugs that can eradicate clonal hematopoiesis and prevent progression to more aggressive myeloid neoplasms. Thanks to the better understanding of the disease’s molecular pathogenesis, many new potentially disease-modifying drugs have been developed and are currently in clinical trials. This review explores the most promising new drugs currently in clinical trials.
Collapse
Affiliation(s)
- Domenico Penna
- Hematology Unit, Azienda Unità Sanitaria Locale—IRCCS, 42123 Reggio Emilia, Italy; ; Tel.: +39-522-296-623
- Ph.D. Program in Clinical and Experimental Medicine, University of Modena and Reggio Emilia, 42121 Modena, Italy
| |
Collapse
|
185
|
Easwar A, Siddon AJ. Genetic Landscape of Myeloproliferative Neoplasms with an Emphasis on Molecular Diagnostic Laboratory Testing. Life (Basel) 2021; 11:1158. [PMID: 34833034 PMCID: PMC8625510 DOI: 10.3390/life11111158] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/18/2021] [Accepted: 10/27/2021] [Indexed: 12/27/2022] Open
Abstract
Chronic myeloproliferative neoplasms (MPNs) are hematopoietic stem cell neoplasms with driver events including the BCR-ABL1 translocation leading to a diagnosis of chronic myeloid leukemia (CML), or somatic mutations in JAK2, CALR, or MPL resulting in Philadelphia-chromosome-negative MPNs with constitutive activation of the JAK-STAT signaling pathway. In the Philadelphia-chromosome-negative MPNs, modern sequencing panels have identified a vast molecular landscape including additional mutations in genes involved in splicing, signal transduction, DNA methylation, and chromatin modification such as ASXL1, SF3B1, SRSF2, and U2AF1. These additional mutations often influence prognosis in MPNs and therefore are increasingly important for risk stratification. This review focuses on the molecular alterations within the WHO classification of MPNs and laboratory testing used for diagnosis.
Collapse
Affiliation(s)
- Arti Easwar
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT 06510, USA;
| | - Alexa J. Siddon
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT 06510, USA;
- Department of Pathology, Yale School of Medicine, New Haven, CT 06510, USA
| |
Collapse
|
186
|
Sant'Antonio E, Borsani O, Camerini C, Botta C, Santoro M, Allegra A, Siragusa S. Philadelphia chromosome-negative myeloproliferative neoplasms in younger adults: A critical discussion of unmet medical needs, with a focus on pregnancy. Blood Rev 2021; 52:100903. [PMID: 34742614 DOI: 10.1016/j.blre.2021.100903] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 10/23/2021] [Accepted: 10/27/2021] [Indexed: 11/02/2022]
Abstract
Myeloproliferative neoplasms (MPN) are traditionally regarded as a disease of older adults, though a not negligible fraction of cases occurs at a younger age, including women of childbearing potential. MPN in younger patients, indeed, offer several challenges for the clinical hematologist, that goes from difficulties in reaching a timely and accurate diagnosis to a peculiar thrombotic risk, with a relatively high incidence of thromboses in unusual sites (as the splanchnic veins or the cerebral ones). Moreover, the issue of pregnancy is recently gaining more attention as maternal age is rising and molecular screening are widely implemented, leading to a better recognition of these cases, both before and during pregnancy. In the present work we aim at discussing four clinical topic that we identified as areas of uncertainty or true unmet medical needs in the management of younger patients with MPN, with a particular focus on the topic of pregnancy. For each of these topics, we critically reviewed the available evidence that support treatment decisions, though acknowledging that recommendations in this field are mostly based on expert opinion or derived from guidelines of other clinical conditions that share with MPN a high vascular risk, as antiphospholipid syndrome. Taking into consideration both the lack of evidence-based data and the clinical heterogeneity of MPN, we support an individualized strategy of counseling and management for both young patients and for expectant mother with MPN.
Collapse
Affiliation(s)
| | - Oscar Borsani
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Chiara Camerini
- Division of Hematology, Azienda USL Toscana Nord Ovest, Ospedale San Luca, Lucca, Italy
| | - Cirino Botta
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy
| | - Marco Santoro
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy
| | - Alessandro Allegra
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood "Gaetano Barresi", University of Messina, Messina, Italy
| | - Sergio Siragusa
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy
| |
Collapse
|
187
|
Clonal hematopoiesis with JAK2V617F promotes pulmonary hypertension with ALK1 upregulation in lung neutrophils. Nat Commun 2021; 12:6177. [PMID: 34702814 PMCID: PMC8548396 DOI: 10.1038/s41467-021-26435-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 10/05/2021] [Indexed: 12/17/2022] Open
Abstract
Pulmonary hypertension (PH) is a progressive cardiopulmonary disease characterized by pulmonary arterial remodeling. Clonal somatic mutations including JAK2V617F, the most frequent driver mutation among myeloproliferative neoplasms, have recently been identified in healthy individuals without hematological disorders. Here, we reveal that clonal hematopoiesis with JAK2V617F exacerbates PH and pulmonary arterial remodeling in mice. JAK2V617F-expressing neutrophils specifically accumulate in pulmonary arterial regions, accompanied by increases in neutrophil-derived elastase activity and chemokines in chronic hypoxia-exposed JAK2V617F transgenic (JAK2V617F) mice, as well as recipient mice transplanted with JAK2V617F bone marrow cells. JAK2V617F progressively upregulates Acvrl1 (encoding ALK1) during the differentiation from bone marrow stem/progenitor cells peripherally into mature neutrophils of pulmonary arterial regions. JAK2V617F-mediated STAT3 phosphorylation upregulates ALK1-Smad1/5/8 signaling. ALK1/2 inhibition completely prevents the development of PH in JAK2V617F mice. Finally, our prospective clinical study identified JAK2V617F-positive clonal hematopoiesis is more common in PH patients than in healthy subjects. These findings indicate that clonal hematopoiesis with JAK2V617F causally leads to PH development associated with ALK1 upregulation.
Collapse
|
188
|
Campanelli R, Massa M, Rosti V, Barosi G. New Markers of Disease Progression in Myelofibrosis. Cancers (Basel) 2021; 13:5324. [PMID: 34771488 PMCID: PMC8582535 DOI: 10.3390/cancers13215324] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/19/2021] [Accepted: 10/21/2021] [Indexed: 12/30/2022] Open
Abstract
Primary myelofibrosis (PMF) is a myeloproliferative neoplasm due to the clonal proliferation of a hematopoietic stem cell. The vast majority of patients harbor a somatic gain of function mutation either of JAK2 or MPL or CALR genes in their hematopoietic cells, resulting in the activation of the JAK/STAT pathway. Patients display variable clinical and laboratoristic features, including anemia, thrombocytopenia, splenomegaly, thrombotic complications, systemic symptoms, and curtailed survival due to infections, thrombo-hemorrhagic events, or progression to leukemic transformation. New drugs have been developed in the last decade for the treatment of PMF-associated symptoms; however, the only curative option is currently represented by allogeneic hematopoietic cell transplantation, which can only be offered to a small percentage of patients. Disease prognosis is based at diagnosis on the classical International Prognostic Scoring System (IPSS) and Dynamic-IPSS (during disease course), which comprehend clinical parameters; recently, new prognostic scoring systems, including genetic and molecular parameters, have been proposed as meaningful tools for a better patient stratification. Moreover, new biological markers predicting clinical evolution and patient survival have been associated with the disease. This review summarizes basic concepts of PMF pathogenesis, clinics, and therapy, focusing on classical prognostic scoring systems and new biological markers of the disease.
Collapse
Affiliation(s)
- Rita Campanelli
- Center for the Study of Myelofibrosis, General Medicine 2—Center for Systemic Amyloidosis and High-Complexity Diseases, IRCCS Policlinico San Matteo Foundation, 27100 Pavia, Italy; (V.R.); (G.B.)
| | - Margherita Massa
- General Medicine 2—Center for Systemic Amyloidosis and High-Complexity Diseases, IRCCS Policlinico San Matteo Foundation, 27100 Pavia, Italy;
| | - Vittorio Rosti
- Center for the Study of Myelofibrosis, General Medicine 2—Center for Systemic Amyloidosis and High-Complexity Diseases, IRCCS Policlinico San Matteo Foundation, 27100 Pavia, Italy; (V.R.); (G.B.)
| | - Giovanni Barosi
- Center for the Study of Myelofibrosis, General Medicine 2—Center for Systemic Amyloidosis and High-Complexity Diseases, IRCCS Policlinico San Matteo Foundation, 27100 Pavia, Italy; (V.R.); (G.B.)
| |
Collapse
|
189
|
Schischlik F. Transcriptional configurations of myeloproliferative neoplasms. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2021; 366:25-39. [PMID: 35153005 DOI: 10.1016/bs.ircmb.2021.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Myeloproliferative neoplasms (MPNs) is an umbrella term for several heterogenous diseases, which are characterized by their stem cell origin, clonal hematopoiesis and increase of blood cells of the myeloid lineage. The focus will be on BCR-ABL1 negative MPNs, polycythemia vera (PV), primary myelofibrosis (PMF), essential thrombocythemia (ET). Seminal findings in the field of MPN were driven by genomic analysis, focusing on dissecting genomic changes MPN patients. This led to identification of major MPN driver genes, JAK2, MPL and CALR. Transcriptomic analysis promises to bridge the gap between genetic and phenotypic characterization of each patient's tumor and with the advent of single cell sequencing even for each MPN cancer cell. This review will focus on efforts to mine the bulk transcriptome of MPN patients, including analysis of fusion genes and splicing alterations which can be addressed with RNA-seq technologies. Furthermore, this paper aims to review recent endeavors to elucidate tumor heterogeneity in MPN hematopoietic stem and progenitor cells using single cell technologies. Finally, it will highlight current shortcoming and future applications to advance the field in MPN biology and improve patient diagnostics using RNA-based assays.
Collapse
Affiliation(s)
- Fiorella Schischlik
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, Bethesda, MD, United States.
| |
Collapse
|
190
|
Shen Z, Du W, Perkins C, Fechter L, Natu V, Maecker H, Rowley J, Gotlib J, Zehnder J, Krishnan A. Platelet transcriptome identifies progressive markers and potential therapeutic targets in chronic myeloproliferative neoplasms. Cell Rep Med 2021; 2:100425. [PMID: 34755136 PMCID: PMC8561315 DOI: 10.1016/j.xcrm.2021.100425] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 08/08/2021] [Accepted: 09/23/2021] [Indexed: 12/11/2022]
Abstract
Predicting disease progression remains a particularly challenging endeavor in chronic degenerative disorders and cancer, thus limiting early detection, risk stratification, and preventive interventions. Here, profiling the three chronic subtypes of myeloproliferative neoplasms (MPNs), we identify the blood platelet transcriptome as a proxy strategy for highly sensitive progression biomarkers that also enables prediction of advanced disease via machine-learning algorithms. The MPN platelet transcriptome reveals an incremental molecular reprogramming that is independent of patient driver mutation status or therapy. Subtype-specific markers offer mechanistic and therapeutic insights, and highlight impaired proteostasis and a persistent integrated stress response. Using a LASSO model with validation in two independent cohorts, we identify the advanced subtype MF at high accuracy and offer a robust progression signature toward clinical translation. Our platelet transcriptome snapshot of chronic MPNs demonstrates a proof-of-principle for disease risk stratification and progression beyond genetic data alone, with potential utility in other progressive disorders.
Collapse
MESH Headings
- Adolescent
- Adult
- Aged
- Aged, 80 and over
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Blood Platelets/metabolism
- Blood Platelets/pathology
- Cellular Reprogramming
- Child
- Child, Preschool
- Cohort Studies
- Diagnosis, Differential
- Disease Progression
- Female
- Gene Expression Profiling
- Gene Expression Regulation, Neoplastic
- Humans
- Male
- Middle Aged
- Polycythemia Vera/diagnosis
- Polycythemia Vera/genetics
- Polycythemia Vera/metabolism
- Polycythemia Vera/pathology
- Primary Myelofibrosis/diagnosis
- Primary Myelofibrosis/genetics
- Primary Myelofibrosis/metabolism
- Primary Myelofibrosis/pathology
- Proteostasis/genetics
- Risk Assessment
- Thrombocythemia, Essential/diagnosis
- Thrombocythemia, Essential/genetics
- Thrombocythemia, Essential/metabolism
- Thrombocythemia, Essential/pathology
- Transcriptome
Collapse
Affiliation(s)
- Zhu Shen
- Department of Statistics, Stanford University, Stanford, CA, USA
| | - Wenfei Du
- Department of Statistics, Stanford University, Stanford, CA, USA
| | - Cecelia Perkins
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Lenn Fechter
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Vanita Natu
- Stanford Functional Genomics Facility, Stanford University School of Medicine, Stanford, CA, USA
| | - Holden Maecker
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Jesse Rowley
- Department of Internal Medicine, University of Utah, Salt Lake City, UT, USA
| | - Jason Gotlib
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - James Zehnder
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Anandi Krishnan
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
- Department of Pathology, Stanford University, Stanford, CA, USA
| |
Collapse
|
191
|
Li W, Zhao Y, Wang D, Ding Z, Li C, Wang B, Xue X, Ma J, Deng Y, Liu Q, Zhang G, Zhang Y, Wang K, Yuan B. Transcriptome research identifies four hub genes related to primary myelofibrosis: a holistic research by weighted gene co-expression network analysis. Aging (Albany NY) 2021; 13:23284-23307. [PMID: 34633991 PMCID: PMC8544335 DOI: 10.18632/aging.203619] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 09/29/2021] [Indexed: 01/14/2023]
Abstract
Objectives: This study aimed to identify specific diagnostic as well as predictive targets of primary myelofibrosis (PMF). Methods: The gene expression profiles of GSE26049 were obtained from Gene Expression Omnibus (GEO) dataset, WGCNA was constructed to identify the most related module of PMF. Subsequently, Gene Ontology (GO), Kyoto Encyclopedia Genes and Genomes (KEGG), Gene Set Enrichment Analysis (GSEA) and Protein-Protein interaction (PPI) network were conducted to fully understand the detailed information of the interested green module. Machine learning, Principal component analysis (PCA), and expression pattern analysis including immunohistochemistry and immunofluorescence of genes and proteins were performed to validate the reliability of these hub genes. Results: Green module was strongly correlated with PMF disease after WGCNA analysis. 20 genes in green module were identified as hub genes responsible for the progression of PMF. GO, KEGG revealed that these hub genes were primarily enriched in erythrocyte differentiation, transcription factor binding, hemoglobin complex, transcription factor complex and cell cycle, etc. Among them, EPB42, CALR, SLC4A1 and MPL had the most correlations with PMF. Machine learning, Principal component analysis (PCA), and expression pattern analysis proved the results in this study. Conclusions: EPB42, CALR, SLC4A1 and MPL were significantly highly expressed in PMF samples. These four genes may be considered as candidate prognostic biomarkers and potential therapeutic targets for early stage of PMF. The effects are worth expected whether in the diagnosis at early stage or as therapeutic target.
Collapse
Affiliation(s)
- Weihang Li
- Department of Orthopaedics, Xijing Hospital, The Fourth Military Medical University, Xi'an 710032, People's Republic of China
| | - Yingjing Zhao
- Department of Intensive Care Unit, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, Jiangsu Province, China
| | - Dong Wang
- Department of Orthopaedics, Xijing Hospital, The Fourth Military Medical University, Xi'an 710032, People's Republic of China
| | - Ziyi Ding
- Department of Orthopaedics, Xijing Hospital, The Fourth Military Medical University, Xi'an 710032, People's Republic of China
| | - Chengfei Li
- Department of Aerospace Medical Training, School of Aerospace Medicine, Fourth Military Medical University, Xi'an 710032, Shaanxi, China
| | - Bo Wang
- Department of Spine Surgery, Daxing Hospital, Xi'an 710016, Shaanxi, China
| | - Xiong Xue
- Department of Spine Surgery, Daxing Hospital, Xi'an 710016, Shaanxi, China
| | - Jun Ma
- Department of Spine Surgery, Daxing Hospital, Xi'an 710016, Shaanxi, China
| | - Yajun Deng
- Department of Spine Surgery, Daxing Hospital, Xi'an 710016, Shaanxi, China
| | - Quancheng Liu
- Department of Spine Surgery, Daxing Hospital, Xi'an 710016, Shaanxi, China
| | - Guohua Zhang
- Department of Spine Surgery, Daxing Hospital, Xi'an 710016, Shaanxi, China
| | - Ying Zhang
- Department of Spine Surgery, Daxing Hospital, Xi'an 710016, Shaanxi, China
| | - Kai Wang
- Department of Hematology, Daxing Hospital, Xi'an 710016, Shaanxi, China
| | - Bin Yuan
- Department of Spine Surgery, Daxing Hospital, Xi'an 710016, Shaanxi, China
| |
Collapse
|
192
|
Stivala S, Meyer SC. Recent Advances in Molecular Diagnostics and Targeted Therapy of Myeloproliferative Neoplasms. Cancers (Basel) 2021; 13:cancers13205035. [PMID: 34680185 PMCID: PMC8534234 DOI: 10.3390/cancers13205035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/24/2021] [Accepted: 10/04/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Myeloproliferative neoplasms (MPN) are clonal hematologic malignancies with dysregulated myeloid blood cell production driven by JAK2, calreticulin, and MPL gene mutations. Technological advances have revealed a heterogeneous genomic landscape with additional mutations mainly in epigenetic regulators and splicing factors, which are of diagnostic and prognostic value and may inform treatment decisions. Thus, genetic testing has become an integral part of the state-of-the-art work-up for MPN. The finding that JAK2, CALR, and MPL mutations activate JAK2 signaling has promoted the development of targeted JAK2 inhibitor therapies. However, their disease-modifying potential remains limited and investigations of additional molecular vulnerabilities in MPN are imperative to advance the development of new therapeutic options. Here, we summarize the current insights into the genetic basis of MPN, its use as diagnostic and prognostic tool in clinical settings, and recent advances in targeted therapies for MPN. Abstract Somatic mutations in JAK2, calreticulin, and MPL genes drive myeloproliferative neoplasms (MPN), and recent technological advances have revealed a heterogeneous genomic landscape with additional mutations in MPN. These mainly affect genes involved in epigenetic regulation and splicing and are of diagnostic and prognostic value, predicting the risk of progression and informing decisions on therapeutic management. Thus, genetic testing has become an integral part of the current state-of-the-art laboratory work-up for MPN patients and has been implemented in current guidelines for disease classification, tools for prognostic risk assessment, and recommendations for therapy. The finding that JAK2, CALR, and MPL driver mutations activate JAK2 signaling has provided a rational basis for the development of targeted JAK2 inhibitor therapies and has fueled their translation into clinical practice. However, the disease-modifying potential of JAK2 inhibitors remains limited and is further impeded by loss of therapeutic responses in a substantial proportion of patients over time. Therefore, the investigation of additional molecular vulnerabilities involved in MPN pathogenesis is imperative to advance the development of new therapeutic options. Combination of novel compounds with JAK2 inhibitors are of specific interest to enhance therapeutic efficacy of molecularly targeted treatment approaches. Here, we summarize the current insights into the genetic basis of MPN, its use as a diagnostic and prognostic tool in clinical settings, and the most recent advances in targeted therapies for MPN.
Collapse
Affiliation(s)
- Simona Stivala
- Department of Biomedicine, University Hospital Basel and University of Basel, 4031 Basel, Switzerland;
| | - Sara C. Meyer
- Department of Biomedicine, University Hospital Basel and University of Basel, 4031 Basel, Switzerland;
- Division of Hematology, University Hospital Basel, 4031 Basel, Switzerland
- Correspondence: ; Tel.: +41-61-556-5965; Fax: +41-61-265-4568
| |
Collapse
|
193
|
Bewersdorf JP, Sheth AH, Vetsa S, Grimshaw A, Giri S, Podoltsev NA, Gowda L, Tamari R, Tallman MS, Rampal RK, Zeidan AM, Stahl M. Outcomes of Allogeneic Hematopoietic Cell Transplantation in Patients With Myelofibrosis-A Systematic Review and Meta-Analysis. Transplant Cell Ther 2021; 27:873.e1-873.e13. [PMID: 34052505 PMCID: PMC8478722 DOI: 10.1016/j.jtct.2021.05.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/18/2021] [Accepted: 05/20/2021] [Indexed: 01/14/2023]
Abstract
Allogeneic hematopoietic cell transplant (allo-HCT) remains the only potentially curative therapeutic modality for patients with primary or secondary myelofibrosis (MF). However, many patients are considered ineligible for allo-HCT, and transplant-related mortality can be substantial. Data on the efficacy and safety of allo-HCT are mixed and largely derived from retrospective studies. We aimed to synthesize the available evidence on the safety and efficacy of allo-HCT in MF and to identify patient, disease, and transplant characteristics with prognostic impact on outcomes of patients with MF undergoing allo-HCT. For this systematic review and meta-analysis, Cochrane Library, Google Scholar, Ovid Medline, Ovid Embase, PubMed, Scopus, and Web of Science Core Collection were searched from inception to October 11, 2020, for studies on allo-HCT in MF. Random-effects models were used to pool response rates for the co-primary outcomes of 1-year, 2-year, and 5-year overall survival (OS). Rates of non-relapse mortality and acute and chronic graft-versus-host-disease (GVHD) were studied as secondary endpoints. Subgroup analyses on the effect of conditioning regimen intensity, baseline dynamic international prognostic scoring system (DIPSS) score, and patient age were performed. The study protocol has been registered on PROSPERO (CRD42020188706). Forty-three studies with 8739 patients were identified and included in this meta-analysis. Rates of 1-year, 2-year, and 5-year OS were 66.7% (95% confidence interval [CI], 63.5%-69.8%), 64.4% (95% CI, 57.6%-70.6%), and 55.0% (95% CI, 51.8%-58.3%), respectively. Rates of 1-year, 2-year, and 5-year nonrelapse mortality were 25.9% (95% CI, 23.3%-28.7%), 29.7% (95% CI, 24.5%-35.4%), and 30.5% (95% CI, 25.9%-35.5%), respectively. The combined rate of graft failure was 10.6% (95% CI, 8.9%-12.5%) with primary and secondary graft failure occurring in 7.3% (95% CI, 5.7%-9.4%) and 5.9% (95% CI, 4.3%-8.0%) of patients, respectively. Rates of acute and chronic graft-versus-host disease were 44.0% (95% CI, 39.6%-48.4%; grade III/IV: 15.2%) and 46.5% (95% CI, 42.2%-50.8%; extensive or moderate/severe: 26.1%), respectively. Subgroup analyses did not show any significant difference between conditioning regimen intensity (myeloablative versus reduced-intensity), median patient age, and proportion of DIPSS-intermediate-2/high patients. The quality of the evidence is limited by the absence of randomized clinical trials in the field and the heterogeneity of patient and transplant characteristics across included studies. Given the poor prognosis of patients not receiving transplants and in the absence of curative nontransplantation therapies, our results support consideration of allo-HCT for eligible patients with MF.
Collapse
Affiliation(s)
- Jan Philipp Bewersdorf
- Department of Internal Medicine, Section of Hematology, Yale School of Medicine, New Haven, Connecticut
| | | | - Shaurey Vetsa
- Yale School of Medicine, Department of Neurosurgery, New Haven, Connecticut
| | - Alyssa Grimshaw
- Harvey Cushing/John Hay Whitney Medical Library, Yale University, New Haven, Connecticut
| | - Smith Giri
- Division of Hematology and Oncology, University of Alabama School of Medicine
| | - Nikolai A Podoltsev
- Department of Internal Medicine, Section of Hematology, Yale School of Medicine, New Haven, Connecticut; Cancer Outcomes, Public Policy, and Effectiveness Research (COPPER) Center, Yale University, New Haven, Connecticut
| | - Lohith Gowda
- Department of Internal Medicine, Section of Hematology, Yale School of Medicine, New Haven, Connecticut
| | - Roni Tamari
- Bone Marrow Transplant Service, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Martin S Tallman
- Leukemia Service, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Raajit K Rampal
- Leukemia Service, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Amer M Zeidan
- Department of Internal Medicine, Section of Hematology, Yale School of Medicine, New Haven, Connecticut; Cancer Outcomes, Public Policy, and Effectiveness Research (COPPER) Center, Yale University, New Haven, Connecticut
| | - Maximilian Stahl
- Department of Medical Oncology, Adult Leukemia Program, Dana-Farber Cancer Institute, Boston, Massachusetts.
| |
Collapse
|
194
|
Levy G, Mambet C, Pecquet C, Bailly S, Havelange V, Diaconu CC, Constantinescu SN. Targets in MPNs and potential therapeutics. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2021; 366:41-81. [PMID: 35153006 DOI: 10.1016/bs.ircmb.2021.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Philadelphia-negative classical Myeloproliferative Neoplasms (MPNs), including Polycythemia Vera (PV), Essential Thrombocythemia (ET) and Primary Myelofibrosis (PMF), are clonal hemopathies that emerge in the hematopoietic stem cell (HSC) compartment. MPN driver mutations are restricted to specific exons (14 and 12) of Janus kinase 2 (JAK2), thrombopoietin receptor (MPL/TPOR) and calreticulin (CALR) genes, are involved directly in clonal myeloproliferation and generate the MPN phenotype. As a result, an increased number of fully functional erythrocytes, platelets and leukocytes is observed in the peripheral blood. Nevertheless, the complexity and heterogeneity of MPN clinical phenotypes cannot be solely explained by the type of driver mutation. Other factors, such as additional somatic mutations affecting epigenetic regulators or spliceosomes components, mutant allele burdens and modifiers of signaling by driver mutants, clonal architecture and the order of mutation acquisition, signaling events that occur downstream of a driver mutation, the presence of specific germ-line variants, the interaction of the neoplastic clone with bone marrow microenvironment and chronic inflammation, all can modulate the disease phenotype, influence the MPN clinical course and therefore, might be useful therapeutic targets.
Collapse
Affiliation(s)
- Gabriel Levy
- Ludwig Institute for Cancer Research, Brussels, Belgium; SIGN Unit, de Duve Institute, Université Catholique de Louvain, Brussels, Belgium; Department of Pediatric Hematology and Oncology, Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, Brussels, Belgium
| | - Cristina Mambet
- Department of Cellular and Molecular Pathology, Stefan S. Nicolau Institute of Virology, Bucharest, Romania; Department of Hematology, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Christian Pecquet
- Ludwig Institute for Cancer Research, Brussels, Belgium; SIGN Unit, de Duve Institute, Université Catholique de Louvain, Brussels, Belgium; WELBIO (Walloon Excellence in Life Sciences and Biotechnology), Brussels, Belgium
| | - Sarah Bailly
- Ludwig Institute for Cancer Research, Brussels, Belgium; SIGN Unit, de Duve Institute, Université Catholique de Louvain, Brussels, Belgium; Department of Hematology, Cliniques Universitaires Saint Luc, Université Catholique de Louvain, Brussels, Belgium
| | - Violaine Havelange
- SIGN Unit, de Duve Institute, Université Catholique de Louvain, Brussels, Belgium; Department of Hematology, Cliniques Universitaires Saint Luc, Université Catholique de Louvain, Brussels, Belgium
| | - Carmen C Diaconu
- Department of Cellular and Molecular Pathology, Stefan S. Nicolau Institute of Virology, Bucharest, Romania
| | - Stefan N Constantinescu
- Ludwig Institute for Cancer Research, Brussels, Belgium; SIGN Unit, de Duve Institute, Université Catholique de Louvain, Brussels, Belgium; WELBIO (Walloon Excellence in Life Sciences and Biotechnology), Brussels, Belgium; Ludwig Institute for Cancer Research, Nuffield Department of Medicine, Oxford University, Oxford, United Kingdom.
| |
Collapse
|
195
|
Walpole G, Kelly M, Lewis J, Gleeson A, Cullen AM, Wochal P. Living with an MPN in Ireland: patients' and caregivers' perspectives. BRITISH JOURNAL OF NURSING (MARK ALLEN PUBLISHING) 2021; 30:S24-S30. [PMID: 34605263 DOI: 10.12968/bjon.2021.30.17.s24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Myeloproliferative neoplasms (MPNs) are associated with a high disease burden, reduced quality of life and shortened survival. The aim of this questionnaire was to gain patients' and caregivers' perspectives on the impact of living with an MPN in the Republic of Ireland. An Irish adaptation of the 'Global MPN Landmark survey' was conducted. Fifty-one patients and 44 caregivers completed the questionnaire. Patients reported a wide variety of symptoms at the time of questionnaire completion; fatigue, bone pain and pruritus being most frequently reported. Approximately one-third of respondents from each of the groups (patients and caregivers) reported a negative impact of MPNs on their emotional wellbeing and daily lives. The study findings revealed that, despite treatment, symptom burden remains high, and several unmet needs exist, including educational, emotional and peer group support. Interventions that focus on reducing symptom burden and addressing these unmet needs, may improve the quality of life for patients with MPNs and their caregivers.
Collapse
Affiliation(s)
- Geraldine Walpole
- Advanced Nurse Practitioner, Sligo University Hospital, Sligo, Ireland
| | - Mary Kelly
- Advanced Nurse Practitioner, Midland Regional Hospital, Tullamore, Ireland
| | - Joy Lewis
- Clinical Nurse Specialist, St Vincent's University Hospital, Dublin, Ireland
| | - Avril Gleeson
- Clinical Nurse Specialist, Mercy University Hospital, Cork, Ireland
| | - Ann-Marie Cullen
- Head of Oncology Medical Affairs, Novartis Ireland, Dublin, Ireland
| | | |
Collapse
|
196
|
CAMK2G is identified as a novel therapeutic target for myelofibrosis. Blood Adv 2021; 6:1585-1597. [PMID: 34521112 PMCID: PMC8905705 DOI: 10.1182/bloodadvances.2020003303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 06/22/2021] [Indexed: 11/20/2022] Open
Abstract
Although JAK1/2 inhibition is effective into alleviating symptoms of myelofibrosis (MF), it does not result in the eradication of MF clones, which can lead to inhibitor-resistant clones emerging during the treatment. Here we established iPS cells derived from MF patient samples (MF-iPSCs) harboring JAK2 V617F, CALR type 1, or CALR type 2 mutations. We demonstrated that these cells faithfully recapitulate the drug sensitivity of the disease. These cells were utilized for chemical screening and calcium/calmodulin-dependent protein kinase 2 (CAMK2) was identified as a promising therapeutic target. MF model cells and mice induced by MPL W515L, another type of mutations recurrently detected in MF patients were used to elucidate the therapeutic potential of CAMK2 inhibition. CAMK2 inhibition was effective against JAK2 inhibitor-sensitive and JAK2 inhibitor-resistant cells. Further research revealed CAMK2 gamma subtype was important in MF model cells induced by MPL W515L. We showed that CAMK2G hetero knockout in the primary bone marrow cells expressing MPL W515Ldecreased colony-forming capacity. CAMK2G inhibition with berbamine, a CAMK2G inhibitor, significantly prolonged survival and reduced disease phenotypes such as splenomegaly and leukocytosis in a MF mouse model induced by MPL W515L. We investigated the molecular mechanisms underlying the therapeutic effect of CAMK2G inhibition and found that CAMK2G is activated by MPL signaling in MF model cells and is an effector in the MPL-JAK2 signaling pathway in these cells. These results indicate CAMK2G plays an important role in MF, and CAMK2G inhibition may be a novel therapeutic strategy that overcomes resistance to JAK1/2 inhibition.
Collapse
|
197
|
Dagher T, Maslah N, Edmond V, Cassinat B, Vainchenker W, Giraudier S, Pasquier F, Verger E, Niwa-Kawakita M, Lallemand-Breitenbach V, Plo I, Kiladjian JJ, Villeval JL, de Thé H. JAK2V617F myeloproliferative neoplasm eradication by a novel interferon/arsenic therapy involves PML. J Exp Med 2021; 218:211476. [PMID: 33075130 PMCID: PMC7579737 DOI: 10.1084/jem.20201268] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/31/2020] [Accepted: 09/09/2020] [Indexed: 12/22/2022] Open
Abstract
Interferon α (IFNα) is used to treat JAK2V617F-driven myeloproliferative neoplasms (MPNs) but rarely clears the disease. We investigated the IFNα mechanism of action focusing on PML, an interferon target and key senescence gene whose targeting by arsenic trioxide (ATO) drives eradication of acute promyelocytic leukemia. ATO sharply potentiated IFNα-induced growth suppression of JAK2V617F patient or mouse hematopoietic progenitors, which required PML and was associated with features of senescence. In a mouse MPN model, combining ATO with IFNα enhanced and accelerated responses, eradicating MPN in most mice by targeting disease-initiating cells. These results predict potent clinical efficacy of the IFNα+ATO combination in patients and identify PML as a major effector of therapy, even in malignancies with an intact PML gene.
Collapse
Affiliation(s)
- Tracy Dagher
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1287, Gustave Roussy, Villejuif, France.,Université Paris-Saclay, Gustave Roussy, Villejuif, France.,Gustave Roussy, Villejuif, France.,Laboratoire d'Excellence GR-Ex, Paris, France
| | - Nabih Maslah
- Université de Paris, INSERM UMR-S1131, Institut de Recherche Saint-Louis (IRSL), Hôpital Saint-Louis, Paris, France.,Service de Biologie Cellulaire, Assistance Publique Hôpitaux de Paris (APHP), Hôpital Saint-Louis, Paris, France
| | - Valérie Edmond
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1287, Gustave Roussy, Villejuif, France.,Université Paris-Saclay, Gustave Roussy, Villejuif, France.,Gustave Roussy, Villejuif, France.,Laboratoire d'Excellence GR-Ex, Paris, France
| | - Bruno Cassinat
- Laboratoire d'Excellence GR-Ex, Paris, France.,Université de Paris, INSERM UMR-S1131, Institut de Recherche Saint-Louis (IRSL), Hôpital Saint-Louis, Paris, France.,Service de Biologie Cellulaire, Assistance Publique Hôpitaux de Paris (APHP), Hôpital Saint-Louis, Paris, France
| | - William Vainchenker
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1287, Gustave Roussy, Villejuif, France.,Université Paris-Saclay, Gustave Roussy, Villejuif, France.,Gustave Roussy, Villejuif, France.,Laboratoire d'Excellence GR-Ex, Paris, France
| | - Stéphane Giraudier
- Université de Paris, INSERM UMR-S1131, Institut de Recherche Saint-Louis (IRSL), Hôpital Saint-Louis, Paris, France.,Service de Biologie Cellulaire, Assistance Publique Hôpitaux de Paris (APHP), Hôpital Saint-Louis, Paris, France
| | - Florence Pasquier
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1287, Gustave Roussy, Villejuif, France.,Université Paris-Saclay, Gustave Roussy, Villejuif, France.,Département d'Hématologie, Gustave Roussy, Villejuif, France
| | - Emmanuelle Verger
- Université de Paris, INSERM UMR-S1131, Institut de Recherche Saint-Louis (IRSL), Hôpital Saint-Louis, Paris, France.,Service de Biologie Cellulaire, Assistance Publique Hôpitaux de Paris (APHP), Hôpital Saint-Louis, Paris, France
| | - Michiko Niwa-Kawakita
- INSERM U944, Centre National de la Recherche Scientifique (CNRS) UMR7212, IRSL, Hôpital Saint-Louis, Paris, France.,Collège de France, Paris Sciences et Lettres Research University, INSERM U1050, CNRS UMR7241, Paris, France
| | - Valérie Lallemand-Breitenbach
- INSERM U944, Centre National de la Recherche Scientifique (CNRS) UMR7212, IRSL, Hôpital Saint-Louis, Paris, France.,Collège de France, Paris Sciences et Lettres Research University, INSERM U1050, CNRS UMR7241, Paris, France
| | - Isabelle Plo
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1287, Gustave Roussy, Villejuif, France.,Université Paris-Saclay, Gustave Roussy, Villejuif, France.,Gustave Roussy, Villejuif, France.,Laboratoire d'Excellence GR-Ex, Paris, France
| | - Jean-Jacques Kiladjian
- Laboratoire d'Excellence GR-Ex, Paris, France.,Université de Paris, INSERM UMR-S1131, Institut de Recherche Saint-Louis (IRSL), Hôpital Saint-Louis, Paris, France.,Centre d'Investigations Cliniques, APHP, Hôpital Saint-Louis, Paris, France
| | - Jean-Luc Villeval
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1287, Gustave Roussy, Villejuif, France.,Université Paris-Saclay, Gustave Roussy, Villejuif, France.,Gustave Roussy, Villejuif, France.,Laboratoire d'Excellence GR-Ex, Paris, France
| | - Hugues de Thé
- INSERM U944, Centre National de la Recherche Scientifique (CNRS) UMR7212, IRSL, Hôpital Saint-Louis, Paris, France.,Collège de France, Paris Sciences et Lettres Research University, INSERM U1050, CNRS UMR7241, Paris, France.,Service de Biochimie, APHP, Hôpital Saint-Louis, Paris, France
| |
Collapse
|
198
|
Insufficiency of non-canonical PRC1 synergizes with JAK2V617F in the development of myelofibrosis. Leukemia 2021; 36:452-463. [PMID: 34497325 DOI: 10.1038/s41375-021-01402-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 08/19/2021] [Accepted: 08/26/2021] [Indexed: 12/22/2022]
Abstract
Insufficiency of polycomb repressive complex 2 (PRC2), which trimethylates histone H3 at lysine 27, is frequently found in primary myelofibrosis and promotes the development of JAK2V617F-induced myelofibrosis in mice by enhancing the production of dysplastic megakaryocytes. Polycomb group ring finger protein 1 (Pcgf1) is a component of PRC1.1, a non-canonical PRC1 that monoubiquitylates H2A at lysine 119 (H2AK119ub1). We herein investigated the impact of PRC1.1 insufficiency on myelofibrosis. The deletion of Pcgf1 in JAK2V617F mice strongly promoted the development of lethal myelofibrosis accompanied by a block in erythroid differentiation. Transcriptome and chromatin immunoprecipitation sequence analyses showed the de-repression of PRC1.1 target genes in Pcgf1-deficient JAK2V617F hematopoietic progenitors and revealed Hoxa cluster genes as direct targets. The deletion of Pcgf1 in JAK2V617F hematopoietic stem and progenitor cells (HSPCs), as well as the overexpression of Hoxa9, restored the attenuated proliferation of JAK2V617F progenitors. The overexpression of Hoxa9 also enhanced JAK2V617F-mediated myelofibrosis. The expression of PRC2 target genes identified in PRC2-insufficient JAK2V617F HSPCs was not largely altered in Pcgf1-deleted JAK2V617F HSPCs. The present results revealed a tumor suppressor function for PRC1.1 in myelofibrosis and suggest that PRC1.1 insufficiency has a different impact from that of PRC2 insufficiency on the pathogenesis of myelofibrosis.
Collapse
|
199
|
Cell-autonomous megakaryopoiesis associated with polyclonal hematopoiesis in triple-negative essential thrombocythemia. Sci Rep 2021; 11:17702. [PMID: 34489506 PMCID: PMC8421373 DOI: 10.1038/s41598-021-97106-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 08/20/2021] [Indexed: 01/14/2023] Open
Abstract
A subset of essential thrombocythemia (ET) cases are negative for disease-defining mutations on JAK2, MPL, and CALR and defined as triple negative (TN). The lack of recurrent mutations in TN-ET patients makes its pathogenesis ambiguous. Here, we screened 483 patients with suspected ET in a single institution, centrally reviewed bone marrow specimens, and identified 23 TN-ET patients. Analysis of clinical records revealed that TN-ET patients were mostly young female, without a history of thrombosis or progression to secondary myelofibrosis and leukemia. Sequencing analysis and human androgen receptor assays revealed that the majority of TN-ET patients exhibited polyclonal hematopoiesis, suggesting a possibility of reactive thrombocytosis in TN-ET. However, the serum levels of thrombopoietin (TPO) and interleukin-6 in TN-ET patients were not significantly different from those in ET patients with canonical mutations and healthy individuals. Rather, CD34-positive cells from TN-ET patients showed a capacity to form megakaryocytic colonies, even in the absence of TPO. No signs of thrombocytosis were observed before TN-ET development, denying the possibility of hereditary thrombocytosis in TN-ET. Overall, these findings indicate that TN-ET is a distinctive disease entity associated with polyclonal hematopoiesis and is paradoxically caused by hematopoietic stem cells harboring a capacity for cell-autonomous megakaryopoiesis.
Collapse
|
200
|
Mascarenhas J, Gerds A, Verstovsek S. Paradigm shift: combination BET and JAK inhibition in myelofibrosis. Leukemia 2021; 35:3361-3363. [PMID: 34480105 DOI: 10.1038/s41375-021-01405-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 08/16/2021] [Accepted: 08/26/2021] [Indexed: 02/07/2023]
Affiliation(s)
- John Mascarenhas
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| | - Aaron Gerds
- Cleveland Clinic Taussig Cancer Institute, Cleveland, OH, 44195, USA
| | - Srdan Verstovsek
- University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| |
Collapse
|