151
|
Yao Y, Wang L, Zhou J, Zhang X. HIF-1α inhibitor echinomycin reduces acute graft-versus-host disease and preserves graft-versus-leukemia effect. J Transl Med 2017; 15:28. [PMID: 28183349 PMCID: PMC5301444 DOI: 10.1186/s12967-017-1132-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 02/03/2017] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Acute graft-versus-host disease (aGVHD) remains a major obstacle against favorable clinical outcomes following allogeneic hematopoietic stem cell transplantation (allo-HSCT). T helper cells including Th17 play key roles in aGVHD pathogenesis. Donor regulatory T cell (Tregs) adoptive therapy reduces aGVHD without weakening graft-versus-leukemia effect (GVL) in both mouse and human, although the purification and ex vivo expansion of Tregs in clinical scenarios remain costly and technically demanding. Hypoxia-inducible factor 1 alpha (HIF-1α) is a key molecule switch that attenuates Treg but promotes Th17 development. However, whether pharmacological inhibition of HIF-1α reduces aGVHD via increasing Treg development and diminishing Th17 responses remains unexplored. METHODS By using alloantigen-specific mixed lymphocyte culture and murine models of aGVHD and GVL, we evaluated the impacts of HIF-1α inhibition by echinomycin on the alloantigen-specific CD4 T cell responses ex vivo, as well as on aGVHD and GVL effect following allo-HSCT. RESULTS Ex vivo echinomycin treatment resulted in increased number of Tregs in the culture as well as reduced alloantigen-specific Th17 and Th1 responses. In vivo echinomycin treatment reduced GVHD scores and prolonged survival of mice following allo-HSCT, which is associated with increased number of donor Tregs and reduced number of Th17 and Th1 in lymphoid tissues. In murine model of leukemia, echinomycin treatment preserved GVL effect and prolonged leukemia free survival following allo-HSCT. CONCLUSIONS Echinomycin treatment reduces aGVHD and preserves GVL effect via increasing donor Treg development and diminishing alloantigen-specific Th17 and Th1 responses following allo-HSCT, presumably via direct inhibition of HIF-1α that results in preferential Treg differentiation during alloantigen-specific CD4 T cell responses. These findings highlight pharmacological inhibition of HIF-1α as a promising strategy in GVHD prophylaxis.
Collapse
Affiliation(s)
- Yushi Yao
- MDCL-4084, Department of Pathology & Molecular Medicine, McMaster University, 1280 Main Street West, Hamilton, ON, L8S4K1, Canada. .,Department of Hematology, Shenzhen People's Hospital, 1017 Dongmen North Road, Shenzhen, 518020, China.
| | - Lei Wang
- Department of Hematology and Department of Clinical Nutrition, General Hospital of Chinese People's Armed Police Forces, 69 Yong Ding Road, Beijing, 100039, China
| | - Jihao Zhou
- Department of Hematology, Shenzhen People's Hospital, 1017 Dongmen North Road, Shenzhen, 518020, China
| | - Xinyou Zhang
- Department of Hematology, Shenzhen People's Hospital, 1017 Dongmen North Road, Shenzhen, 518020, China.
| |
Collapse
|
152
|
Hartwell MJ, Özbek U, Holler E, Renteria AS, Major-Monfried H, Reddy P, Aziz M, Hogan WJ, Ayuk F, Efebera YA, Hexner EO, Bunworasate U, Qayed M, Ordemann R, Wölfl M, Mielke S, Pawarode A, Chen YB, Devine S, Harris AC, Jagasia M, Kitko CL, Litzow MR, Kröger N, Locatelli F, Morales G, Nakamura R, Reshef R, Rösler W, Weber D, Wudhikarn K, Yanik GA, Levine JE, Ferrara JL. An early-biomarker algorithm predicts lethal graft-versus-host disease and survival. JCI Insight 2017; 2:e89798. [PMID: 28194439 DOI: 10.1172/jci.insight.89798] [Citation(s) in RCA: 170] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND. No laboratory test can predict the risk of nonrelapse mortality (NRM) or severe graft-versus-host disease (GVHD) after hematopoietic cellular transplantation (HCT) prior to the onset of GVHD symptoms. METHODS. Patient blood samples on day 7 after HCT were obtained from a multicenter set of 1,287 patients, and 620 samples were assigned to a training set. We measured the concentrations of 4 GVHD biomarkers (ST2, REG3α, TNFR1, and IL-2Rα) and used them to model 6-month NRM using rigorous cross-validation strategies to identify the best algorithm that defined 2 distinct risk groups. We then applied the final algorithm in an independent test set (n = 309) and validation set (n = 358). RESULTS. A 2-biomarker model using ST2 and REG3α concentrations identified patients with a cumulative incidence of 6-month NRM of 28% in the high-risk group and 7% in the low-risk group (P < 0.001). The algorithm performed equally well in the test set (33% vs. 7%, P < 0.001) and the multicenter validation set (26% vs. 10%, P < 0.001). Sixteen percent, 17%, and 20% of patients were at high risk in the training, test, and validation sets, respectively. GVHD-related mortality was greater in high-risk patients (18% vs. 4%, P < 0.001), as was severe gastrointestinal GVHD (17% vs. 8%, P < 0.001). The same algorithm can be successfully adapted to define 3 distinct risk groups at GVHD onset. CONCLUSION. A biomarker algorithm based on a blood sample taken 7 days after HCT can consistently identify a group of patients at high risk for lethal GVHD and NRM. FUNDING. The National Cancer Institute, American Cancer Society, and the Doris Duke Charitable Foundation.
Collapse
Affiliation(s)
| | - Umut Özbek
- Biostatistics Shared Resource Facility, TischCancer Institute, the Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Ernst Holler
- Blood and Marrow Transplantation Program, University of Regensburg, Regensburg, Germany
| | - Anne S Renteria
- Tisch Cancer Institute, the Icahn School of Medicine at Mount Sinai
| | | | - Pavan Reddy
- Blood and Marrow Transplantation Program, University of Michigan, Ann Arbor, Michigan, USA
| | - Mina Aziz
- Tisch Cancer Institute, the Icahn School of Medicine at Mount Sinai
| | - William J Hogan
- Blood and Marrow Transplantation Program, Mayo Clinic, Rochester, Minnesota, USA
| | - Francis Ayuk
- Department of Stem Cell Transplantation, University Medical Center, Hamburg-Eppendorf, Germany
| | - Yvonne A Efebera
- Blood and Marrow Transplantation Program, Ohio State University, Columbus, Ohio, USA
| | - Elizabeth O Hexner
- Blood and Marrow Transplantation Program, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Udomsak Bunworasate
- Blood and Marrow Transplantation Program, Chulalongkorn University, Bangkok, Thailand
| | - Muna Qayed
- Pediatric Blood and Marrow Transplantation Program, Aflac Cancer and Blood Disorders Center, Emory University and Children's Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Rainer Ordemann
- Blood and Marrow Transplantation Program, University Hospital TU Dresden, Dresden, Germany
| | - Matthias Wölfl
- Pediatric Blood and Marrow Transplantation Program, Children's Hospital
| | - Stephan Mielke
- Blood and Marrow Transplantation Program, University of Würzburg, Würzburg, Germany
| | - Attaphol Pawarode
- Blood and Marrow Transplantation Program, University of Michigan, Ann Arbor, Michigan, USA
| | - Yi-Bin Chen
- Bone Marrow Transplantation Program, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Steven Devine
- Blood and Marrow Transplantation Program, Ohio State University, Columbus, Ohio, USA
| | - Andrew C Harris
- Blood and Marrow Transplantation Program, University of Utah, Salt Lake City, Utah, USA
| | | | - Carrie L Kitko
- Pediatric Blood and Marrow Transplantation Program, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Mark R Litzow
- Blood and Marrow Transplantation Program, Mayo Clinic, Rochester, Minnesota, USA
| | - Nicolaus Kröger
- Department of Stem Cell Transplantation, University Medical Center, Hamburg-Eppendorf, Germany
| | - Franco Locatelli
- Pediatric Blood and Marrow Transplantation Program, Ospedale Pediatrico Bambino Gesu, Rome, Italy
| | - George Morales
- Tisch Cancer Institute, the Icahn School of Medicine at Mount Sinai
| | - Ryotaro Nakamura
- Hematology and Hematopoietic Cell Transplantation, City of Hope Medical Center, Duarte, California, USA
| | - Ran Reshef
- Blood and Marrow Transplantation Program, Columbia University Medical Center, New York, New York, USA
| | - Wolf Rösler
- Department of Internal Medicine 5, Hematology/Oncology, University Hospital Erlangen-Nuremburg, Erlangen, Germany
| | - Daniela Weber
- Blood and Marrow Transplantation Program, University of Regensburg, Regensburg, Germany
| | - Kitsada Wudhikarn
- Blood and Marrow Transplantation Program, Chulalongkorn University, Bangkok, Thailand
| | - Gregory A Yanik
- Blood and Marrow Transplantation Program, University of Michigan, Ann Arbor, Michigan, USA
| | - John E Levine
- Tisch Cancer Institute, the Icahn School of Medicine at Mount Sinai
| | - James Lm Ferrara
- Tisch Cancer Institute, the Icahn School of Medicine at Mount Sinai
| |
Collapse
|
153
|
Hu Y, He GL, Zhao XY, Zhao XS, Wang Y, Xu LP, Zhang XH, Yu XZ, Liu KY, Chang YJ, Huang XJ. Regulatory B cells promote graft-versus-host disease prevention and maintain graft-versus-leukemia activity following allogeneic bone marrow transplantation. Oncoimmunology 2017; 6:e1284721. [PMID: 28405514 DOI: 10.1080/2162402x.2017.1284721] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 01/09/2017] [Accepted: 01/16/2017] [Indexed: 01/15/2023] Open
Abstract
Regulatory B cells (Bregs) are involved in the pathogenesis of graft-versus-host disease (GVHD). However, whether Bregs can alleviate acute GVHD without compromising graft-versus-leukemia (GVL) effects remains unclear. Here, we evaluated the role of Bregs in acute GVHD and GVL activity in both a mouse model and a clinical cohort study. In the acute GVHD mouse model, co-transplantation of Bregs prevents onset through inhibiting Th1 and Th17 differentiation and expanding regulatory T cells. In the GVL mouse model, Bregs contributed to the suppression of acute GVHD but had no adverse effect on GVL activity. In the clinical cohort study, a higher dose of Bregs in allografts was associated with a lower cumulative incidence of acute GVHD but not with increased risk of relapse. Our data demonstrate that Bregs can prevent acute GVHD and maintain GVL effects and suggest that Bregs have potential as a novel strategy for acute GVHD alleviation.
Collapse
Affiliation(s)
- Yue Hu
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University People's Hospital & Peking University Institute of Hematology, Xicheng District, Beijing, China; Peking-Tsinghua Center for Life Sciences, Beijing, China
| | - Gan-Lin He
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University People's Hospital & Peking University Institute of Hematology, Xicheng District, Beijing, China; Department of Hematology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Xiang-Yu Zhao
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University People's Hospital & Peking University Institute of Hematology , Xicheng District, Beijing, China
| | - Xiao-Su Zhao
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University People's Hospital & Peking University Institute of Hematology , Xicheng District, Beijing, China
| | - Yu Wang
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University People's Hospital & Peking University Institute of Hematology , Xicheng District, Beijing, China
| | - Lan-Ping Xu
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University People's Hospital & Peking University Institute of Hematology , Xicheng District, Beijing, China
| | - Xiao-Hui Zhang
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University People's Hospital & Peking University Institute of Hematology , Xicheng District, Beijing, China
| | - Xue-Zhong Yu
- Departments of Microbiology and Immunology and Medicine, Medical University of South Carolina , Charleston, SC, USA
| | - Kai-Yan Liu
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University People's Hospital & Peking University Institute of Hematology , Xicheng District, Beijing, China
| | - Ying-Jun Chang
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University People's Hospital & Peking University Institute of Hematology , Xicheng District, Beijing, China
| | - Xiao-Jun Huang
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University People's Hospital & Peking University Institute of Hematology, Xicheng District, Beijing, China; Peking-Tsinghua Center for Life Sciences, Beijing, China; Collabrative Innovation Center of Hematology, Peking University, Beijing, China
| |
Collapse
|
154
|
Nakasone H, Shigeo F, Yakushijin K, Onizuka M, Shinohara A, Ohashi K, Miyamura K, Uchida N, Takanashi M, Ichinohe T, Atsuta Y, Fukuda T, Ogata M. Impact of total body irradiation on successful neutrophil engraftment in unrelated bone marrow or cord blood transplantation. Am J Hematol 2017; 92:171-178. [PMID: 27880980 DOI: 10.1002/ajh.24613] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 11/16/2016] [Accepted: 11/21/2016] [Indexed: 12/21/2022]
Abstract
Total body irradiation (TBI) has been thought to promote donor cell engraftment in allogeneic hematopoietic cell transplantation (HCT) from alternative donors. However, recent progress in HCT strategies may affect the clinical significance of TBI on neutrophil engraftment. With the use of a Japanese transplant registry database, we analyzed 3933 adult recipients (>15 y.o.) who underwent HCT between 2006 and 2013 from an 8/8 HLA-matched unrelated bone marrow donor (MUD, n = 1367), an HLA-mismatched unrelated bone marrow donor (MMUD, n = 1102), or unrelated cord blood (CBT, n = 1464). Conditioning regimens were divided into five groups: High-TBI-(>8Gy), Low-TBI- (≤8Gy), and no-TBI-myeloablative conditioning (MAC), and Low-TBI- and no-TBI-reduced-intensity conditioning (RIC). In both MUD and MMUD, neutrophil engraftment rate was >90% in each of the five conditioning groups, and TBI was not associated with prompt neutrophil engraftment in multivariate analyses. Conversely, in CBT, TBI regimens had a higher rate of day-30 neutrophil engraftment than no-TBI-regimens: 78% in High-TBI-MAC, 83% in Low-TBI-MAC, and 76% in Low-TBI-RIC versus 65% in No-TBI-MAC, and 68% in No-TBI-RIC (P < .001). Multivariate analyses in CBT demonstrated that TBI-regimens were significantly associated with a higher rate of neutrophil engraftment. Subsequently focusing on CBT patients alone, TBI-regimens were significantly associated with a higher rate of neutrophil engraftment in patients who received CBT with a 4/6 or less HLA allele-match, or who had anti-HLA antibodies. In summary, TBI-regimens had no impact on neutrophil engraftment in the current practice of unrelated bone marrow transplantation. However, in CBT, TBI is still necessary to enhance engraftment.
Collapse
Affiliation(s)
- Hideki Nakasone
- Division of Hematology; Saitama Medical Center, Jichi Medical University; Saitama Japan
| | - Fuji Shigeo
- Department of Hematopoietic Stem Cell Transplantation; National Cancer Center Hospital; Tokyo Japan
| | - Kimikazu Yakushijin
- Department of Medical Oncology and Hematology; Kobe University Hospital; Kobe Japan
| | - Makoto Onizuka
- Department of Hematology and Oncology; Tokai University School of Medicine; Isehara Japan
| | - Akihito Shinohara
- Department of Hematology; Tokyo Women's Medical University; Tokyo Japan
| | - Kazuteru Ohashi
- Hematology Division; Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital; Tokyo Japan
| | - Koichi Miyamura
- Department of Hematology; Japanese Red Cross Nagoya First Hospital; Nagoya Japan
| | - Naoyuki Uchida
- Department of Hematology; Toranomon Hospital; Tokyo Japan
| | - Minoko Takanashi
- Blood Service Headquarters, Japanese Red Cross Society; Tokyo Japan
| | - Tatsuo Ichinohe
- Department of Hematology and Oncology; Research Institute for Radiation Biology and Medicine, Hiroshima University; Hiroshima Japan
| | - Yoshiko Atsuta
- Japanese Data Center for Hematopoietic Cell Transplantation; Nagoya Japan
- Department of Healthcare Administration; Nagoya University Graduate School of Medicine; Nagoya Japan
| | - Takahiro Fukuda
- Department of Hematopoietic Stem Cell Transplantation; National Cancer Center Hospital; Tokyo Japan
| | - Masao Ogata
- Department of Medical Oncology and Hematology; Oita University Faculty of Medicine; Oita Japan
| | | |
Collapse
|
155
|
Acute graft-versus-host disease is regulated by an IL-17-sensitive microbiome. Blood 2017; 129:2172-2185. [PMID: 28137828 DOI: 10.1182/blood-2016-08-732628] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Accepted: 01/20/2017] [Indexed: 12/13/2022] Open
Abstract
Donor T-cell-derived interleukin-17A (IL-17A) can mediate late immunopathology in graft-versus-host disease (GVHD), however protective roles remain unclear. Using multiple cytokine and cytokine receptor subunit knockout mice, we demonstrate that stem cell transplant recipients lacking the ability to generate or signal IL-17 develop intestinal hyper-acute GVHD. This protective effect is restricted to the molecular interaction of IL-17A and/or IL-17F with the IL-17 receptor A/C (IL-17RA/C). The protection from GVHD afforded by IL-17A required secretion from, and signaling in, both hematopoietic and nonhematopoietic host tissue. Given the intestinal-specificity of the disease in these animals, we cohoused wild-type (WT) with IL-17RA and IL-17RC-deficient mice, which dramatically enhanced the susceptibility of WT mice to acute GVHD. Furthermore, the gut microbiome of WT mice shifted toward that of the IL-17RA/C mice during cohousing prior to transplant, confirming that an IL-17-sensitive gut microbiota controls susceptibility to acute GVHD. Finally, induced IL-17A depletion peritransplant also enhanced acute GVHD, consistent with an additional protective role for this cytokine independent of effects on dysbiosis.
Collapse
|
156
|
Chen Y, Huang XJ, Liu KY, Chen H, Chen YH, Zhang XH, Wang Y, Wang FR, Han W, Wang JZ, Yan CH, Xu LP. Association between C-reactive protein levels in the first 1-3 days post-transplant and allogeneic immune reactions. Biomark Med 2017; 11:117-124. [PMID: 28111964 DOI: 10.2217/bmm-2016-0244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
AIM The purpose of this study was to determine whether C-reactive protein (CRP) in the first 1-3 days post-transplant could predict allogeneic immune reactions, including engraftment syndrome or acute graft-versus-host disease (GVHD), in pediatric haploidentical stem cell transplantation. PATIENTS & METHODS The study population comprised 175 consecutive pediatric patients. Receiver operating characteristic analysis was performed to identify the cut-off CRP value. RESULTS The high-CRP group (≥20.1 mg/l) was associated with an increased occurrence of engraftment syndrome (hazard ratio [HR] = 2.046; p = 0.008), II-IV acute GVHD (HR = 2.203; p = 0.001) and severe GVHD (HR = 6.371; p = 0.004). CONCLUSION Our data suggest that higher CRP during the first 1-3 days post-transplant could be a predictor of allogeneic immune reactions.
Collapse
Affiliation(s)
- Yao Chen
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, 11 Xizhimen South Street, Beijing 100044, PR China
| | - Xiao-Jun Huang
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, 11 Xizhimen South Street, Beijing 100044, PR China
| | - Kai-Yan Liu
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, 11 Xizhimen South Street, Beijing 100044, PR China
| | - Huan Chen
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, 11 Xizhimen South Street, Beijing 100044, PR China
| | - Yu-Hong Chen
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, 11 Xizhimen South Street, Beijing 100044, PR China
| | - Xiao-Hui Zhang
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, 11 Xizhimen South Street, Beijing 100044, PR China
| | - Yu Wang
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, 11 Xizhimen South Street, Beijing 100044, PR China
| | - Feng-Rong Wang
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, 11 Xizhimen South Street, Beijing 100044, PR China
| | - Wei Han
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, 11 Xizhimen South Street, Beijing 100044, PR China
| | - Jing-Zhi Wang
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, 11 Xizhimen South Street, Beijing 100044, PR China
| | - Chen-Hua Yan
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, 11 Xizhimen South Street, Beijing 100044, PR China
| | - Lan-Ping Xu
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, 11 Xizhimen South Street, Beijing 100044, PR China
| |
Collapse
|
157
|
Profile of Inflammation-Associated Proteins in Early Post-Transplant Samples of Patients After Allogeneic Hematopoietic Stem Cell Transplantation: a Preliminary Study. Arch Immunol Ther Exp (Warsz) 2017; 64:55-61. [DOI: 10.1007/s00005-016-0446-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 12/01/2016] [Indexed: 01/19/2023]
|
158
|
Zheng P, Wu QL, Li BB, Chen P, Nie DM, Zhang R, Fang J, Xia LH, Hong M. Simvastatin ameliorates graft-vs-host disease by regulating angiopoietin-1 and angiopoietin-2 in a murine model. Leuk Res 2017; 55:49-54. [PMID: 28122283 DOI: 10.1016/j.leukres.2017.01.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 01/09/2017] [Indexed: 12/11/2022]
Abstract
Angiopoietins play an important role in vascular endothelial function. Endothelial damage is an important pathogenesis relating with acute graft-versus-host disease (GVHD) after allogeneic hematopoietic stem cell transplantation (allo-HSCT), protecting endothelial cells (ECs) from damage may be a potent prophylaxis and therapeutic strategy of acute GVHD (aGVHD). In this study, we explored changes in Angiopoietin-1 (Ang-1) and Ang-2 expression in a aGVHD mouse model and determined whether simvastatin prevents GVHD through regulating Ang-1 and Ang-2 expression. In vitro simvastatin administration increased Ang-1 production and release but conversely inhibited Ang-2 release from EA.hy926 ECs. Simvastatin improved the survival of aGVHD mice, attenuated the histopathological GVHD grades and plasma levels of Ang-2, and elevated the plasma levels of Ang-1 as well as the aortic endothelial levels of Ang-1 and Ang-2. In summary, simvastatin represents a novel approach to combat GVHD by increasing Ang-1 production while suppressing Ang-2 release to stabilize endothelial cells.
Collapse
Affiliation(s)
- Peng Zheng
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qiu-Ling Wu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bei-Bei Li
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ping Chen
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Di-Min Nie
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ran Zhang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jun Fang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ling-Hui Xia
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mei Hong
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Collaborative Center of Hematology, Soochow University, Suzhou, China.
| |
Collapse
|
159
|
Le Texier L, Lineburg KE, MacDonald KPA. Harnessing bone marrow resident regulatory T cells to improve allogeneic stem cell transplant outcomes. Int J Hematol 2016; 105:153-161. [PMID: 27943115 DOI: 10.1007/s12185-016-2161-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 11/22/2016] [Accepted: 11/29/2016] [Indexed: 10/20/2022]
Abstract
Regulatory T cells (Treg) are a suppressive T cell population which play a crucial role in the establishment of tolerance after stem cell transplantation (SCT) by controlling the effector T cell responses that drive acute and chronic GVHD. The BM compartment is enriched in a highly suppressive, activated/memory autophagy-dependent Treg population, which contributes to the HSC engraftment and the control of GVHD. G-CSF administration releases Treg from the BM through disruption of the CXCR4/SDF-1 axis and further improves Treg survival following SCT through the induction of autophagy. However, AMD3100 is more efficacious in mobilizing these Treg highlighting the potential for optimized mobilization regimes to produce more tolerogenic grafts. Notably, the disruption of adhesive interaction between integrins and their ligands contributes to HSC mobilization and may be relevant for BM Treg. Importantly, the Tregs in the BM niche contribute to maintenance of the HSC niche and appear required for optimal control of GVHD post-transplant. Although poorly studied, the BM Treg appear phenotypically and functionally unique to Treg in the periphery. Understanding the requirements for maintaining the enrichment, function and survival of BM Treg needs to be further investigated to improve therapeutic strategies and promote tolerance after SCT.
Collapse
Affiliation(s)
- Laetitia Le Texier
- The Antigen Presentation and Immunoregulation Laboratory, QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, Brisbane, QLD, 4006, Australia
| | - Katie E Lineburg
- The Antigen Presentation and Immunoregulation Laboratory, QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, Brisbane, QLD, 4006, Australia
| | - Kelli P A MacDonald
- The Antigen Presentation and Immunoregulation Laboratory, QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, Brisbane, QLD, 4006, Australia.
| |
Collapse
|
160
|
GVHD prevents NK-cell-dependent leukemia and virus-specific innate immunity. Blood 2016; 129:630-642. [PMID: 27927647 DOI: 10.1182/blood-2016-08-734020] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Accepted: 11/22/2016] [Indexed: 01/20/2023] Open
Abstract
Allogeneic bone marrow transplantation (allo-BMT) is a curative therapy for hematological malignancies, but is associated with significant complications, principally graft-versus-host disease (GVHD) and opportunistic infections. Natural killer (NK) cells mediate important innate immunity that provides a temporal bridge until the reconstruction of adaptive immunity. Here, we show that the development of GVHD after allo-BMT prevented NK-cell reconstitution, particularly within the maturing M1 and M2 NK-cell subsets in association with exaggerated activation, apoptosis, and autophagy. Donor T cells were critical in this process by limiting the availability of interleukin 15 (IL-15), and administration of IL-15/IL-15Rα or immune suppression with rapamycin could restore NK-cell reconstitution. Importantly, the NK-cell defect induced by GVHD resulted in the failure of NK-cell-dependent in vivo cytotoxicity and graft-versus-leukemia effects. Control of cytomegalovirus infection after allo-BMT was also impaired during GVHD. Thus, during GVHD, donor T cells compete with NK cells for IL-15 thereby inducing profound defects in NK-cell reconstitution that compromise both leukemia and pathogen-specific immunity.
Collapse
|
161
|
Peled JU, Hanash AM, Jenq RR. Role of the intestinal mucosa in acute gastrointestinal GVHD. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2016; 2016:119-127. [PMID: 27913470 PMCID: PMC5575743 DOI: 10.1182/asheducation-2016.1.119] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Intestinal graft-versus-host disease (GVHD) remains a significant obstacle to the success of allogeneic hematopoietic cell transplantation. The intestinal mucosa comprises the inner lining of the intestinal tract and maintains close proximity with commensal microbes that reside within the intestinal lumen. Recent advances have significantly improved our understanding of the interactions between the intestinal mucosa and the enteric microbiota. Changes in host mucosal tissue and commensals posttransplant have been actively investigated, and provocative insights into mucosal immunity and the enteric microbiota are now being translated into clinical trials of novel approaches for preventing and treating acute GVHD. In this review, we summarize recent findings related to aspects of the intestinal mucosa during acute GVHD.
Collapse
Affiliation(s)
- Jonathan U Peled
- Adult Bone Marrow Transplantation Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY; and
- Weill Cornell Medical College, New York, NY
| | - Alan M Hanash
- Adult Bone Marrow Transplantation Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY; and
| | - Robert R Jenq
- Adult Bone Marrow Transplantation Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY; and
- Weill Cornell Medical College, New York, NY
| |
Collapse
|
162
|
Ishida T, Suzuki S, Lai CY, Yamazaki S, Kakuta S, Iwakura Y, Nojima M, Takeuchi Y, Higashihara M, Nakauchi H, Otsu M. Pre-Transplantation Blockade of TNF-α-Mediated Oxygen Species Accumulation Protects Hematopoietic Stem Cells. Stem Cells 2016; 35:989-1002. [PMID: 27753160 DOI: 10.1002/stem.2524] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 09/07/2016] [Accepted: 10/04/2016] [Indexed: 12/31/2022]
Abstract
Hematopoietic stem cell (HSC) transplantation (HSCT) for malignancy requires toxic pre-conditioning to maximize anti-tumor effects and donor-HSC engraftment. While this induces bone marrow (BM)-localized inflammation, how this BM environmental change affects transplanted HSCs in vivo remains largely unknown. We here report that, depending on interval between irradiation and HSCT, residence within lethally irradiated recipient BM compromises donor-HSC reconstitution ability. Both in vivo and in vitro we demonstrate that, among inflammatory cytokines, TNF-α plays a role in HSC damage: TNF-α stimulation leads to accumulation of reactive oxygen species (ROS) in highly purified hematopoietic stem/progenitor cells (HSCs/HSPCs). Transplantation of flow-cytometry-sorted murine HSCs reveals damaging effects of accumulated ROS on HSCs. Short-term incubation either with an specific inhibitor of tumor necrosis factor receptor 1 signaling or an antioxidant N-acetyl-L-cysteine (NAC) prevents TNF-α-mediated ROS accumulation in HSCs. Importantly, pre-transplantation exposure to NAC successfully demonstrats protective effects in inflammatory BM on graft-HSCs, exhibiting better reconstitution capability than that of nonprotected control grafts. We thus suggest that in vivo protection of graft-HSCs from BM inflammation is a feasible and attractive approach, which may lead to improved hematopoietic reconstitution kinetics in transplantation with myeloablative conditioning that inevitably causes inflammation in recipient BM. Stem Cells 2017;35:989-1002.
Collapse
Affiliation(s)
- Takashi Ishida
- Department of Hematology, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan.,Division of Stem Cell Processing/Stem Cell Bank, Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, University of Tokyo, Tokyo, Japan.,Division of Stem Cell Therapy, Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Sachie Suzuki
- Department of Hematology, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Chen-Yi Lai
- Division of Stem Cell Processing/Stem Cell Bank, Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Satoshi Yamazaki
- Division of Stem Cell Therapy, Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Shigeru Kakuta
- Department of Biomedical Science, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, Japan
| | - Yoichiro Iwakura
- Center for Experimental Animal Models, Institute for Medical Sciences, Tokyo University of Science, Tokyo, Japan
| | - Masanori Nojima
- Division of Advanced Medicine Promotion, Advanced Clinical Research Center, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Yasuo Takeuchi
- Department of Nephrology in Internal Medicine, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Masaaki Higashihara
- Department of Hematology, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Hiromitsu Nakauchi
- Division of Stem Cell Therapy, Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, University of Tokyo, Tokyo, Japan.,Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Makoto Otsu
- Division of Stem Cell Processing/Stem Cell Bank, Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| |
Collapse
|
163
|
Tootoonchian R, Pak F, Ardekani AM, Sehati N, Abedi-Valugerdi M, Kokhaei P. Evaluation of interleukin 12 and CD56+ lymphocyte cells in pediatric hematopoietic stem cell transplantation for early diagnosis of acute graft versus host disease. Transpl Immunol 2016; 39:25-29. [PMID: 27751764 DOI: 10.1016/j.trim.2016.10.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 08/29/2016] [Accepted: 10/14/2016] [Indexed: 11/19/2022]
Abstract
The present study tried to explain CD56+ lymphocyte cells activities and possible prognostic role of these cells in Graft-Versus-Host-Disease (GVHD). The role of IL-12 activation and function is of interest in this study. Peripheral blood samples of 51 Hematopoietic Stem Cell Transplantation (HSCT) recipients collected at before (day -8) and after (days 7 and 14). PBMC were collected by Ficoll separation and analyzed by Flow Cytometry using triple antibody (CD45-PerCP, CD56-FITC, and CD69-PE staining and control antibody. Levels of the cytokine IL-12 in the patient's serum were evaluated by ELISA. Percentage of CD56+ lymphocytes (CD56+bright) cells was significantly increased at day 14 in patients with acute GVHD and percentage of lymphocytes expressing CD69 was significantly increased at days 7 and 14 posts HSCT in patients with acute GVHD in comparison to those in non-GVHD patients. Baseline serum IL-12 levels (pre-HSCT, day -8) were significantly higher in those HSCT recipients who did not develop GVHD. This study showed that post-transplant CD56+ lymphocytes and pre-transplant serum levels of IL-12 play significant roles in the induction of and protection against GVHD, respectively. The increase in the percentage of CD69+ cells indicates the activation of lymphocyte in acute GVHD group.
Collapse
Affiliation(s)
- Raziyeh Tootoonchian
- Cancer Research Center, Dept. of Immunology, Semnan University of Medical Sciences, Semnan, Iran
| | - Fatemeh Pak
- Cancer Research Center, Dept. of Immunology, Semnan University of Medical Sciences, Semnan, Iran
| | - Ali M Ardekani
- Iran National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Nasrin Sehati
- Cancer Research Center, Dept. of Immunology, Semnan University of Medical Sciences, Semnan, Iran
| | - Manuchehr Abedi-Valugerdi
- Experimental Cancer Medicine (ECM), Clinical Research Center (KFC), Novum, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Parviz Kokhaei
- Cancer Research Center, Dept. of Immunology, Semnan University of Medical Sciences, Semnan, Iran; Immunology Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Oncology-Pathology, Immune and Gene Therapy Lab, Cancer Center Karolinska (CCK), Karolinska University Hospital Solna and Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
164
|
Mori Y, Ikeda K, Inomata T, Yoshimoto G, Fujii N, Ago H, Teshima T. Ruxolitinib treatment for GvHD in patients with myelofibrosis. Bone Marrow Transplant 2016; 51:1584-1587. [PMID: 27721370 DOI: 10.1038/bmt.2016.256] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 08/15/2016] [Accepted: 08/18/2016] [Indexed: 11/09/2022]
Abstract
Jak1/2 inhibitor ruxolitinib is a promising agent for treating steroid-refractory GvHD after allogeneic hematopoietic stem cell transplantation (SCT) to produce quick and durable responses. However, optimal dose and tapering schedule of ruxolitinib remain to be determined. Discontinuation of ruxolitinib in myelofibrosis often induces 'withdrawal syndrome' characterized by acute relapse of the disease, but this issue is not well addressed in the treatment of GvHD. Four patients with GvHD (one acute and three chronic) after SCT for myelofibrosis were treated with ruxolitinib. Low-dose ruxolitinib at 5 mg/day was safe and effective, but one of two patients treated at 10 mg/day of ruxolitinib was complicated with severe cytopenia. Withdrawal syndrome developed in one patient, who died of recurrence of GvHD shortly after discontinuation of ruxolitinib. Slow tapering or maintenance with low-dose ruxolitinib inhibited GvHD flare. Our experience calls attention that initiation at low-dose of ruxolitinib may be safe and careful tapering schedule is required to avoid withdrawal syndrome in patients with GvHD after SCT for myelofibrosis.
Collapse
Affiliation(s)
- Y Mori
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - K Ikeda
- Department of Cardiology and Hematology, Fukushima, Japan.,Department of Blood Transfusion and Transplantation Immunology, Fukushima Medical University, Fukushima, Japan
| | - T Inomata
- Department of Hematology and Oncology, Okayama University Hospital, Okayama, Japan
| | - G Yoshimoto
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - N Fujii
- Department of Hematology and Oncology, Okayama University Hospital, Okayama, Japan
| | - H Ago
- Division of Hematology and Oncology, Shimane Prefectural Central Hospital, Izumo, Japan
| | - T Teshima
- Department of Hematology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| |
Collapse
|
165
|
Kavand S, Lehman JS, Hashmi S, Gibson LE, el-Azhary RA. Cutaneous manifestations of graft-versus-host disease: role of the dermatologist. Int J Dermatol 2016; 56:131-140. [DOI: 10.1111/ijd.13381] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 02/28/2016] [Accepted: 05/11/2016] [Indexed: 12/23/2022]
Affiliation(s)
- Sima Kavand
- Department of Medicine; Presence Saint Francis Hospital; University of Illinois; Evanston IL USA
| | - Julia S. Lehman
- Department of Dermatology; Mayo Clinic College of Medicine; Rochester MN USA
| | - Shahrukh Hashmi
- Department of Hematology; Mayo Clinic College of Medicine; Rochester MN USA
| | - Lawrence E. Gibson
- Department of Dermatology; Mayo Clinic College of Medicine; Rochester MN USA
| | - Rokea A. el-Azhary
- Department of Dermatology; Mayo Clinic College of Medicine; Rochester MN USA
| |
Collapse
|
166
|
Le Texier L, Lineburg KE, Cao B, McDonald-Hyman C, Leveque-El Mouttie L, Nicholls J, Melino M, Nalkurthi BC, Alexander KA, Teal B, Blake SJ, Souza-Fonseca-Guimaraes F, Engwerda CR, Kuns RD, Lane SW, Teng M, Teh C, Gray D, Clouston AD, Nilsson SK, Blazar BR, Hill GR, MacDonald KP. Autophagy-dependent regulatory T cells are critical for the control of graft-versus-host disease. JCI Insight 2016; 1:e86850. [PMID: 27699243 DOI: 10.1172/jci.insight.86850] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Regulatory T cells (Tregs) play a crucial role in the maintenance of peripheral tolerance. Quantitative and/or qualitative defects in Tregs result in diseases such as autoimmunity, allergy, malignancy, and graft-versus-host disease (GVHD), a serious complication of allogeneic stem cell transplantation (SCT). We recently reported increased expression of autophagy-related genes (Atg) in association with enhanced survival of Tregs after SCT. Autophagy is a self-degradative process for cytosolic components that promotes cell homeostasis and survival. Here, we demonstrate that the disruption of autophagy within FoxP3+ Tregs (B6.Atg7fl/fl-FoxP3cre+ ) resulted in a profound loss of Tregs, particularly within the bone marrow (BM). This resulted in dysregulated effector T cell activation and expansion, and the development of enterocolitis and scleroderma in aged mice. We show that the BM compartment is highly enriched in TIGIT+ Tregs and that this subset is differentially depleted in the absence of autophagy. Moreover, following allogeneic SCT, recipients of grafts from B6.Atg7fl/fl-FoxP3cre+ donors exhibited reduced Treg reconstitution, exacerbated GVHD, and reduced survival compared with recipients of B6.WT-FoxP3cre+ grafts. Collectively, these data indicate that autophagy-dependent Tregs are critical for the maintenance of tolerance after SCT and that the promotion of autophagy represents an attractive immune-restorative therapeutic strategy after allogeneic SCT.
Collapse
Affiliation(s)
- Laëtitia Le Texier
- Immunology Department, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Katie E Lineburg
- Immunology Department, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Benjamin Cao
- Manufacturing, Commonwealth Scientific and Industrial Research Organization (CSIRO), Melbourne, Victoria, Australia.,Australian Regenerative Medicine Institute, Monash University, Melbourne, Victoria, Australia
| | - Cameron McDonald-Hyman
- Pediatric Blood and Marrow Transplantation Program, University of Minnesota, Minneapolis, Minnesota, USA
| | - Lucie Leveque-El Mouttie
- Immunology Department, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Jemma Nicholls
- Immunology Department, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Michelle Melino
- Immunology Department, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Blessy C Nalkurthi
- Immunology Department, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Kylie A Alexander
- Immunology Department, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Bianca Teal
- Immunology Department, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Stephen J Blake
- Immunology Department, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | | | - Christian R Engwerda
- Immunology Department, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Rachel D Kuns
- Immunology Department, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Steven W Lane
- Immunology Department, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia.,Department of Bone Marrow Transplantation, Royal Brisbane Hospital, Brisbane, Queensland, Australia
| | - Michele Teng
- Immunology Department, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Charis Teh
- Molecular Genetics of Cancer Division and Immunology Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
| | - Daniel Gray
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia.,Molecular Genetics of Cancer Division and Immunology Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
| | | | - Susan K Nilsson
- Manufacturing, Commonwealth Scientific and Industrial Research Organization (CSIRO), Melbourne, Victoria, Australia.,Australian Regenerative Medicine Institute, Monash University, Melbourne, Victoria, Australia
| | - Bruce R Blazar
- Pediatric Blood and Marrow Transplantation Program, University of Minnesota, Minneapolis, Minnesota, USA
| | - Geoffrey R Hill
- Immunology Department, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia.,Department of Bone Marrow Transplantation, Royal Brisbane Hospital, Brisbane, Queensland, Australia
| | - Kelli Pa MacDonald
- Immunology Department, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| |
Collapse
|
167
|
Cooke KR, Olkiewicz K, Erickson N, Ferrara JL. The role of endotoxin and the innate immune response in the pathophysiology of acute graft versus host disease. ACTA ACUST UNITED AC 2016. [DOI: 10.1177/09680519020080061301] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Allogeneic stem cell transplantation (SCT) is an important therapy for a number of malignant diseases, and acute graft versus host disease (GVHD) and leukemic relapse remain the two major obstacles to successful outcomes of this treatment strategy. The therapeutic potential of allogeneic SCT relies on the graft versus leukemia (GVL) effect, during which donor T lymphocytes eradicate residual malignant cells via immunological mechanisms. Unfortunately, beneficial GVL effects are closely associated with the toxicity of GVHD. The pathophysiology of GVHD is complex and fundamentally depends upon aspects of adaptive immunity and interactions between donor T cells and foreign host tissue antigens. Recent work has revealed that components of the innate immune response and the secretion of inflammatory cytokine effectors are also important. In this context, experimental studies have demonstrated that loss of gastrointestinal (GI) tract integrity plays a major role in the amplification of systemic GVHD. Specifically, translocation of endotoxin across a damaged GI tract and into the circulation promotes local and systemic cytokine release. This effect perpetuates further gut mucosal injury and endotoxin leak, thus establishing a positive feedback loop for progressive target organ injury and systemic inflammation. Data obtained using murine SCT models have shown that disruption of the cellular activating effects of lipopolysaccharide (LPS) significantly reduces cytokine secretion and GVHD severity without altering T-cell responses to host antigens. These findings support a critical role for LPS in the early inflammatory events responsible for GVHD and suggest that strategies which target the innate immune response and LPS receptor-ligand interactions may help prevent GVHD while preserving donor T-cell responses and GVL activity.
Collapse
Affiliation(s)
- Kenneth R. Cooke
- Department of Pediatrics, University of Michigan Cancer Center, Ann Arbor, Michigan, USA,
| | - Krystyna Olkiewicz
- Department of Pediatrics, University of Michigan Cancer Center, Ann Arbor, Michigan, USA
| | - Nicole Erickson
- Department of Pediatrics, University of Michigan Cancer Center, Ann Arbor, Michigan, USA
| | - James L.M. Ferrara
- Department of Pediatrics, University of Michigan Cancer Center, Ann Arbor, Michigan, USA, Department of Internal Medicine, Division of Hematology/Oncology, Blood and Marrow Transplantation Program, University of Michigan Cancer Center, Ann Arbor, Michigan, USA
| |
Collapse
|
168
|
Immunosuppressive therapy alleviates murine cytomegalovirus recurrence by reducing TNF-α post cell transplantation with lethal GVHD. Antiviral Res 2016; 133:130-9. [DOI: 10.1016/j.antiviral.2016.06.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 03/27/2016] [Accepted: 06/28/2016] [Indexed: 12/16/2022]
|
169
|
Yuan L, Shen J. Hydrogen, a potential safeguard for graft-versus-host disease and graft ischemia-reperfusion injury? Clinics (Sao Paulo) 2016; 71:544-9. [PMID: 27652837 PMCID: PMC5004581 DOI: 10.6061/clinics/2016(09)10] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 05/27/2016] [Accepted: 06/02/2016] [Indexed: 12/26/2022] Open
Abstract
Post-transplant complications such as graft-versus-host disease and graft ischemia-reperfusion injury are crucial challenges in transplantation. Hydrogen can act as a potential antioxidant, playing a preventive role against post-transplant complications in animal models of multiple organ transplantation. Herein, the authors review the current literature regarding the effects of hydrogen on graft ischemia-reperfusion injury and graft-versus-host disease. Existing data on the effects of hydrogen on ischemia-reperfusion injury related to organ transplantation are specifically reviewed and coupled with further suggestions for future work. The reviewed studies showed that hydrogen (inhaled or dissolved in saline) improved the outcomes of organ transplantation by decreasing oxidative stress and inflammation at both the transplanted organ and the systemic levels. In conclusion, a substantial body of experimental evidence suggests that hydrogen can significantly alleviate transplantation-related ischemia-reperfusion injury and have a therapeutic effect on graft-versus-host disease, mainly via inhibition of inflammatory cytokine secretion and reduction of oxidative stress through several underlying mechanisms. Further animal experiments and preliminary human clinical trials will lay the foundation for hydrogen use as a drug in the clinic.
Collapse
Affiliation(s)
- Lijuan Yuan
- Anhui Medical University, Postgraduate School, Hefei, China
| | - Jianliang Shen
- Navy General Hospital, Department of Hematology, Beijing, China
| |
Collapse
|
170
|
Mussetti A, Kernan NA, Prockop SE, Scaradavou A, Lehrman R, Ruggiero JM, Curran K, Kobos R, O’Reilly R, Boulad F. Allogeneic hematopoietic stem cell transplantation for nonmalignant hematologic disorders using chemotherapy-only cytoreductive regimens and T-cell-depleted grafts from human leukocyte antigen-matched or -mismatched donors. Pediatr Hematol Oncol 2016; 33:347-358. [PMID: 27715384 PMCID: PMC5175271 DOI: 10.1080/08880018.2016.1204399] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Nonmalignant hematologic disorders (NMHD) of childhood comprise a variety of disorders, including acquired severe aplastic anemia and inherited marrow failure syndromes. Patients with high-risk NMHD without matched related donors fare poorly with allogeneic hematopoietic alternative donor stem cell transplantation (allo-HSCT) and are at high risk for developing graft-versus-host disease following unmodified grafts. The authors retrospectively analyzed data on 18 patients affected by NMHD, lacking a human leukocyte antigen (HLA)-identical sibling donor, who underwent an alternative donor allo-HSCT at their institution between April 2005 and May 2013. Fifty percent of the patients had received prior immunosuppressive therapy, 72% had a history of infections, and 56% were transfusion dependent at the time of transplant. Cytoreduction included a combination of 3 of 5 agents: fludarabine, melphalan, thiotepa, busulfan, and cyclophosphamide. Grafts were T-cell depleted. All evaluable patients engrafted. Five died of transplant complications. The cumulative incidence of graft-versus-host disease was 6%. No patient had recurrence of disease. Five-year overall survival was 77%. Age at transplant <6 years was strongly associated with better survival. Based on these results, transplant with chemotherapy-only cytoreductive regimens and T-cell-depleted stem cell transplants could be recommended for patients with high-risk NMHD, especially at a younger age.
Collapse
Affiliation(s)
- Alberto Mussetti
- Dipartimento di Ematologia e Onco-Ematologia Pediatrica, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Nancy A Kernan
- Department of Pediatrics, Bone Marrow Transplant Service, Memorial Sloan-Kettering Cancer Center, New York, NY
| | - Susan E Prockop
- Department of Pediatrics, Bone Marrow Transplant Service, Memorial Sloan-Kettering Cancer Center, New York, NY
| | - Andromachi Scaradavou
- Department of Pediatrics, Bone Marrow Transplant Service, Memorial Sloan-Kettering Cancer Center, New York, NY
| | - Rachel Lehrman
- Department of Pediatrics, Bone Marrow Transplant Service, Memorial Sloan-Kettering Cancer Center, New York, NY
| | - Julianne M Ruggiero
- Department of Pediatrics, Bone Marrow Transplant Service, Memorial Sloan-Kettering Cancer Center, New York, NY
| | - Kevin Curran
- Department of Pediatrics, Bone Marrow Transplant Service, Memorial Sloan-Kettering Cancer Center, New York, NY
| | - Rachel Kobos
- Department of Pediatrics, Bone Marrow Transplant Service, Memorial Sloan-Kettering Cancer Center, New York, NY
| | - Richard O’Reilly
- Department of Pediatrics, Bone Marrow Transplant Service, Memorial Sloan-Kettering Cancer Center, New York, NY
| | - Farid Boulad
- Department of Pediatrics, Bone Marrow Transplant Service, Memorial Sloan-Kettering Cancer Center, New York, NY,Division of Pediatric Hematology/Oncology, New York Presbyterian Hospital, Weill Cornell Medical College, New York, NY
| |
Collapse
|
171
|
Altrock PM, Brendel C, Renella R, Orkin SH, Williams DA, Michor F. Mathematical modeling of erythrocyte chimerism informs genetic intervention strategies for sickle cell disease. Am J Hematol 2016; 91:931-7. [PMID: 27299299 PMCID: PMC5093908 DOI: 10.1002/ajh.24449] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 06/11/2016] [Indexed: 01/24/2023]
Abstract
Recent advances in gene therapy and genome-engineering technologies offer the opportunity to correct sickle cell disease (SCD), a heritable disorder caused by a point mutation in the β-globin gene. The developmental switch from fetal γ-globin to adult β-globin is governed in part by the transcription factor (TF) BCL11A. This TF has been proposed as a therapeutic target for reactivation of γ-globin and concomitant reduction of β-sickle globin. In this and other approaches, genetic alteration of a portion of the hematopoietic stem cell (HSC) compartment leads to a mixture of sickling and corrected red blood cells (RBCs) in periphery. To reverse the sickling phenotype, a certain proportion of corrected RBCs is necessary; the degree of HSC alteration required to achieve a desired fraction of corrected RBCs remains unknown. To address this issue, we developed a mathematical model describing aging and survival of sickle-susceptible and normal RBCs; the former can have a selective survival advantage leading to their overrepresentation. We identified the level of bone marrow chimerism required for successful stem cell-based gene therapies in SCD. Our findings were further informed using an experimental mouse model, where we transplanted mixtures of Berkeley SCD and normal murine bone marrow cells to establish chimeric grafts in murine hosts. Our integrative theoretical and experimental approach identifies the target frequency of HSC alterations required for effective treatment of sickling syndromes in humans. Our work replaces episodic observations of such target frequencies with a mathematical modeling framework that covers a large and continuous spectrum of chimerism conditions. Am. J. Hematol. 91:931-937, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Philipp M. Altrock
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, MA 02215
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 02115
- Program for Evolutionary Dynamics, Harvard University, Cambridge, MA 02138
| | - Christian Brendel
- Division of Hematology/Oncology, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115
| | - Raffaele Renella
- Division of Hematology/Oncology, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02215
| | - Stuart H. Orkin
- Division of Hematology/Oncology, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02215
- Howard Hughes Medical Institute, Cambridge, MA 02138
- Harvard Stem Cell Institute, Cambridge, MA 02138
| | - David A. Williams
- Division of Hematology/Oncology, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02215
- Harvard Stem Cell Institute, Cambridge, MA 02138
- Corresponding Authors: David A. Williams, MD, Boston Children’s Hospital, 300 Longwood Ave., Karp 08125.3, Boston, MA 02115, Phone: 617-919-2697, Fax: 617-730-0868, , Franziska Michor, PhD, Dana-Farber Cancer Institute, Dept of Biostatistics and Computational Biology, Mailstop CLS-11007, 450 Brookline Avenue, Boston, MA 02115, Phone: 617-632-5045,
| | - Franziska Michor
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, MA 02215
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 02115
- Corresponding Authors: David A. Williams, MD, Boston Children’s Hospital, 300 Longwood Ave., Karp 08125.3, Boston, MA 02115, Phone: 617-919-2697, Fax: 617-730-0868, , Franziska Michor, PhD, Dana-Farber Cancer Institute, Dept of Biostatistics and Computational Biology, Mailstop CLS-11007, 450 Brookline Avenue, Boston, MA 02115, Phone: 617-632-5045,
| |
Collapse
|
172
|
Zhang J, Ramadan AM, Griesenauer B, Li W, Turner MJ, Liu C, Kapur R, Hanenberg H, Blazar BR, Tawara I, Paczesny S. ST2 blockade reduces sST2-producing T cells while maintaining protective mST2-expressing T cells during graft-versus-host disease. Sci Transl Med 2016; 7:308ra160. [PMID: 26446957 DOI: 10.1126/scitranslmed.aab0166] [Citation(s) in RCA: 127] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Graft-versus-host disease (GVHD) remains a devastating complication after allogeneic hematopoietic cell transplantation (HCT). We previously identified high plasma soluble suppression of tumorigenicity 2 (sST2) as a biomarker of the development of GVHD and death. sST2 sequesters interleukin-33 (IL-33), limiting its availability to T cells expressing membrane-bound ST2 (mST2) [T helper 2 (TH2) cells and ST2(+)FoxP3(+) regulatory T cells]. We report that blockade of sST2 in the peritransplant period with a neutralizing monoclonal antibody (anti-ST2 mAb) reduced GVHD severity and mortality. We identified intestinal stromal cells and T cells as major sources of sST2 during GVHD. ST2 blockade decreased systemic interferon-γ, IL-17, and IL-23 but increased IL-10 and IL-33 plasma levels. ST2 blockade also reduced sST2 production by IL-17-producing T cells while maintaining protective mST2-expressing T cells, increasing the frequency of intestinal myeloid-derived suppressor cells, and decreasing the frequency of intestinal CD103 dendritic cells. Finally, ST2 blockade preserved graft-versus-leukemia activity in a model of green fluorescent protein (GFP)-positive MLL-AF9 acute myeloid leukemia. Our findings suggest that ST2 is a therapeutic target for severe GVHD and that the ST2/IL-33 pathway could be investigated in other T cell-mediated immune disorders with loss of tolerance.
Collapse
Affiliation(s)
- Jilu Zhang
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA. Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA. Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA. Melvin and Bren Simon Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Abdulraouf M Ramadan
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA. Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA. Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA. Melvin and Bren Simon Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Brad Griesenauer
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA. Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA. Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA. Melvin and Bren Simon Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Wei Li
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA. Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA. Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA. Melvin and Bren Simon Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Matthew J Turner
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA. Department of Dermatology, Indiana University School of Medicine, Indianapolis, IN 46202, USA. Richard L. Roudebush Veterans Affairs Medical Center, Indianapolis, IN 46202, USA
| | - Chen Liu
- Department of Pathology and Immunology, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Reuben Kapur
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Helmut Hanenberg
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA. Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA. Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Bruce R Blazar
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55454, USA
| | - Isao Tawara
- Department of Hematology/Oncology, Mie University Hospital, Mie 514-8507, Japan
| | - Sophie Paczesny
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA. Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA. Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA. Melvin and Bren Simon Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| |
Collapse
|
173
|
Boieri M, Shah P, Dressel R, Inngjerdingen M. The Role of Animal Models in the Study of Hematopoietic Stem Cell Transplantation and GvHD: A Historical Overview. Front Immunol 2016; 7:333. [PMID: 27625651 PMCID: PMC5003882 DOI: 10.3389/fimmu.2016.00333] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 08/18/2016] [Indexed: 12/13/2022] Open
Abstract
Bone marrow transplantation (BMT) is the only therapeutic option for many hematological malignancies, but its applicability is limited by life-threatening complications, such as graft-versus-host disease (GvHD). The last decades have seen great advances in the understanding of BMT and its related complications; in particular GvHD. Animal models are beneficial to study complex diseases, as they allow dissecting the contribution of single components in the development of the disease. Most of the current knowledge on the therapeutic mechanisms of BMT derives from studies in animal models. Parallel to BMT, the understanding of the pathophysiology of GvHD, as well as the development of new treatment regimens, has also been supported by studies in animal models. Pre-clinical experimentation is the basis for deep understanding and successful improvements of clinical applications. In this review, we retrace the history of BMT and GvHD by describing how the studies in animal models have paved the way to the many advances in the field. We also describe how animal models contributed to the understanding of GvHD pathophysiology and how they are fundamental for the discovery of new treatments.
Collapse
Affiliation(s)
- Margherita Boieri
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway; Department of Immunology, Oslo University Hospital, Oslo, Norway
| | - Pranali Shah
- Institute of Cellular and Molecular Immunology, University Medical Center Göttingen , Göttingen , Germany
| | - Ralf Dressel
- Institute of Cellular and Molecular Immunology, University Medical Center Göttingen , Göttingen , Germany
| | - Marit Inngjerdingen
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway; Department of Immunology, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
174
|
Hilger N, Glaser J, Müller C, Halbich C, Müller A, Schwertassek U, Lehmann J, Ruschpler P, Lange F, Boldt A, Stahl L, Sack U, Oelkrug C, Emmrich F, Fricke S. Attenuation of graft-versus-host-disease in NOD scid IL-2Rγ(-/-) (NSG) mice by ex vivo modulation of human CD4(+) T cells. Cytometry A 2016; 89:803-15. [PMID: 27560708 DOI: 10.1002/cyto.a.22930] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Revised: 06/17/2016] [Accepted: 07/27/2016] [Indexed: 01/06/2023]
Abstract
NOD.Cg-Prkdc(scid) IL-2rg(tm1Wjl) /SzJ (NSG) mice are a valuable tool for studying Graft-versus-Host-Disease (GvHD) induced by human immune cells. We used a model of acute GvHD by transfer of human peripheral blood mononuclear cells (PBMCs) into NSG mice. The severity of GvHD was reflected by weight loss and was associated with engraftment of human cells and the expansion of leukocytes, particularly granulocytes and monocytes. Pre-treatment of PBMCs with the anti-human CD4 antibody MAX.16H5 IgG1 or IgG4 attenuated GvHD. The transplantation of 2 × 10(7) PBMCs without anti-human CD4 pre-treatment induced a severe GvHD (0% survival). In animals receiving 2 × 10(7) PBMCs pre-incubated with MAX.16H5 IgG1 or IgG4, GvHD development was reduced and survival was increased. Immune reconstitution was measured by flow cytometry and confirmed for human leukocytes (CD45), CD3(+) /CD8(+) cytotoxic T cells and CD3(+) /CD4(+) T helper cells. Human B cells (CD19) and monocytes (CD14) could not be detected. Histopathological analysis (TUNEL assay) of the gut of recipient animals showed significantly less apoptotic crypt cells in animals receiving a MAX.16H5 IgG1 pre-incubated graft. These findings indicate that pre-incubation of an allogeneic graft with an anti-human CD4 antibody may decrease the frequency and severity of GvHD after hematopoietic stem cell transplantation (HSCT) and the need of conventional immunosuppressive drugs. Moreover, this approach most probably provides a safer HSCT that must be confirmed in appropriate clinical trials in the future. © 2016 International Society for Advancement of Cytometry.
Collapse
Affiliation(s)
- Nadja Hilger
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Leipzig, Germany
| | - Jakob Glaser
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Leipzig, Germany.
| | - Claudia Müller
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Leipzig, Germany
| | - Christoph Halbich
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Leipzig, Germany
| | - Anne Müller
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Leipzig, Germany
| | - Ulla Schwertassek
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Leipzig, Germany
| | - Jörg Lehmann
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Leipzig, Germany
| | - Peter Ruschpler
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Leipzig, Germany
| | - Franziska Lange
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Leipzig, Germany
| | - Andreas Boldt
- Institute for Clinical Immunology, Medical Faculty of Leipzig University, Leipzig, Germany
| | - Lilly Stahl
- Institute for Clinical Immunology, Medical Faculty of Leipzig University, Leipzig, Germany
| | - Ulrich Sack
- Institute for Clinical Immunology, Medical Faculty of Leipzig University, Leipzig, Germany
| | - Christopher Oelkrug
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Leipzig, Germany
| | - Frank Emmrich
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Leipzig, Germany
| | - Stephan Fricke
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Leipzig, Germany
| |
Collapse
|
175
|
Zhou V, Agle K, Chen X, Beres A, Komorowski R, Belle L, Taylor C, Zhu F, Haribhai D, Williams CB, Verbsky J, Blumenschein W, Sadekova S, Bowman E, Ballantyne C, Weaver C, Serody DA, Vincent B, Serody J, Cua DJ, Drobyski WR. A colitogenic memory CD4+ T cell population mediates gastrointestinal graft-versus-host disease. J Clin Invest 2016; 126:3541-55. [PMID: 27500496 DOI: 10.1172/jci80874] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 06/09/2016] [Indexed: 12/21/2022] Open
Abstract
Damage to the gastrointestinal tract is a major cause of morbidity and mortality in graft-versus-host disease (GVHD) and is attributable to T cell-mediated inflammation. In this work, we identified a unique CD4+ T cell population that constitutively expresses the β2 integrin CD11c and displays a biased central memory phenotype and memory T cell transcriptional profile, innate-like properties, and increased expression of the gut-homing molecules α4β7 and CCR9. Using several complementary murine GVHD models, we determined that adoptive transfer and early accumulation of β2 integrin-expressing CD4+ T cells in the gastrointestinal tract initiated Th1-mediated proinflammatory cytokine production, augmented pathological damage in the colon, and increased mortality. The pathogenic effect of this CD4+ T cell population critically depended on coexpression of the IL-23 receptor, which was required for maximal inflammatory effects. Non-Foxp3-expressing CD4+ T cells produced IL-10, which regulated colonic inflammation and attenuated lethality in the absence of functional CD4+Foxp3+ T cells. Thus, the coordinate expression of CD11c and the IL-23 receptor defines an IL-10-regulated, colitogenic memory CD4+ T cell subset that is poised to initiate inflammation when there is loss of tolerance and breakdown of mucosal barriers.
Collapse
|
176
|
Li Z, Rubinstein SM, Thota R, Savani M, Brissot E, Shaw BE, Majhail NS, Mohty M, Savani BN. Immune-Mediated Complications after Hematopoietic Stem Cell Transplantation. Biol Blood Marrow Transplant 2016; 22:1368-1375. [PMID: 27095688 DOI: 10.1016/j.bbmt.2016.04.005] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 04/06/2016] [Indexed: 11/27/2022]
Abstract
Hematopoietic stem cell transplantation (HSCT) has an integral role in the treatment of malignant and nonmalignant diseases. Long-term complications after HSCT have been well established and include graft-versus-host disease (GVHD), conditioning regimen-related toxicities, disease relapse, and infections. Immune-mediated phenomena are increasingly described after HSCT with clinically significant sequelae. Diagnosis is challenging because of features that overlap with other commonly reported post-transplantation complications. Patients who experience immune-mediated disease after HSCT tend to have poor outcomes. Early recognition of immune-mediated complications is imperative to reduce preventable morbidity and mortality. This review looks at the currently available literature on pathogenesis, incidence, risk factors, treatment, and outcomes of immune-mediated disease (other than GVHD) after HSCT.
Collapse
Affiliation(s)
- Zhuoyan Li
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Samuel M Rubinstein
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Ramya Thota
- Hematology and Stem Cell Transplantation Section, Division of Hematology/Oncology, Department of Medicine, Vanderbilt University Medical Center and Veterans Affairs Medical Center, Nashville, Tennessee
| | - Malvi Savani
- University of Tennessee Heath Science Center, College of Medicine, Memphis, Tennessee
| | - Eolia Brissot
- Department of Haematology, Saint Antoine Hospital, Paris, France; INSERM UMR 938, Paris, France; Université Pierre et Marie Curie, Paris, France
| | - Bronwen E Shaw
- Center for International Blood and Marrow Transplant Research and Froedtert and the Medical College of Wisconsin, Wisconsin
| | - Navneet S Majhail
- Blood and Marrow Transplant Program, Cleveland Clinic, Cleveland, Ohio
| | - Mohamad Mohty
- Department of Haematology, Saint Antoine Hospital, Paris, France; INSERM UMR 938, Paris, France; Université Pierre et Marie Curie, Paris, France
| | - Bipin N Savani
- Hematology and Stem Cell Transplantation Section, Division of Hematology/Oncology, Department of Medicine, Vanderbilt University Medical Center and Veterans Affairs Medical Center, Nashville, Tennessee.
| |
Collapse
|
177
|
Hill GR, Krenger W, Ferrara JLM. Cytokine Dysregulation in Acute Graft-versus-Host Disease. Hematology 2016; 2:423-34. [DOI: 10.1080/10245332.1997.11746365] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Affiliation(s)
- Geoffrey R. Hill
- Department of Pediatric Oncology, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA 02115
| | - Werner Krenger
- Department of Pediatric Oncology, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA 02115
| | - James L. M. Ferrara
- Department of Pediatric Oncology, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA 02115
| |
Collapse
|
178
|
Rashidi A, DiPersio JF, Westervelt P, Abboud CN, Schroeder MA, Cashen AF, Pusic I, Romee R. Peritransplant Serum Albumin Decline Predicts Subsequent Severe Acute Graft-versus-Host Disease after Mucotoxic Myeloablative Conditioning. Biol Blood Marrow Transplant 2016; 22:1137-1141. [DOI: 10.1016/j.bbmt.2016.03.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 03/07/2016] [Indexed: 01/14/2023]
|
179
|
MyD88 in donor bone marrow cells is critical for protection from acute intestinal graft-vs.-host disease. Mucosal Immunol 2016; 9:730-43. [PMID: 26442657 DOI: 10.1038/mi.2015.96] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2015] [Accepted: 08/06/2015] [Indexed: 02/04/2023]
Abstract
To understand the role of myeloid differentiation factor 88 (MyD88) expressed by donor bone marrow (BM) in the pathophysiology of graft-vs.-host disease (GVHD), we investigated the effects of transplantation of MyD88-deficient T cell-depleted BM (MyD88KO TCD-BM) on the severity of GVHD. Transplantation with MyD88KO TCD-BM aggravated GVHD; serious gut damage was evident, with high infiltration of T cells into the intestines of recipients and markedly reduced expansion of CD11b(+)Gr-1(+) myeloid-derived suppressor cells (MDSCs). MDSCs from MyD88KO mice were defective in inducing donor T-cell apoptosis and inhibiting T-cell proliferation. Supplementation of transplanted mice with MDSCs from wild-type mice, but not MyD88KO mice, attenuated GVHD severity with reduced intestinal T-cell infiltration in MyD88KO TCD-BM recipients. Pretreatment of BM donors with lipopolysaccharide to increase MDSC levels and MyD88 transcription in the TCD-BM transplant alleviated GVHD severity and intestinal T-cell infiltration. The T cell/MDSC ratios were correlated with intestinal GVHD severity in both animal models and human patients. This study indicates that MyD88-dependent MDSC expansion from donor BM is critical for protection against fatal intestinal GVHD.
Collapse
|
180
|
Chang YJ, Xu LP, Wang Y, Zhang XH, Chen H, Chen YH, Wang FR, Han W, Sun YQ, Yan CH, Tang FF, Mo XD, Liu KY, Huang XJ. Controlled, Randomized, Open-Label Trial of Risk-Stratified Corticosteroid Prevention of Acute Graft-Versus-Host Disease After Haploidentical Transplantation. J Clin Oncol 2016; 34:1855-63. [PMID: 27091717 DOI: 10.1200/jco.2015.63.8817] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
PURPOSE This study evaluated whether a prophylaxis strategy directed by the graft-versus-host disease (GVHD) biomarker might reduce the 100-day incidence of acute GVHD grades II to IV. PATIENTS AND METHODS This controlled, open-label, randomized trial included 228 patients who underwent haploidentical transplantation. On the basis of bone marrow allogeneic graft CD4:CD8 ratios, patients were categorized as low risk (n = 83; group A) or high risk (n = 145). Patients at high risk were randomly assigned to either receive (n = 72; group B) or not receive (n = 73; group C) low-dose corticosteroid prophylaxis. RESULTS The incidence in group B was 21% (95% CI, 11% to 31%) compared with 26% (95% CI, 16%to 36%; P = .43) in group A and 48% (95% CI, 32% to 60%; P < .001) in group C. Low-dose corticosteroid prophylaxis was significantly associated with a relatively low risk of acute GVHD grades II to IV (hazard ratio, 0.66; 95% CI, 0.49 to 0.89; P = .007) and rapid platelet recovery (hazard ratio, 0.30; 95% CI, 0.23 to 0.47; P < .001). The incidence of moderate-to-severe chronic GVHD in group B (21%) was lower than that in both group A (50%; P = .025) and group C (36%; P = .066). The 100-day corticosteroid doses were 205 ± 111 mg in group B, 229 ± 149 mg in group A (P = .256), and 286.54 ± 259.67 mg in group C (P = .016). Compared with group C, group B showed significantly lower incidences of femoral head necrosis (P = .034) and hypertension (P = .015). Infection rates were comparable among these groups. CONCLUSION Our results suggest that risk stratification-directed, low-dose corticosteroid prophylaxis significantly decreased the incidence of acute GVHD grades II to IV, accelerated platelet recovery, and reduced adverse events without increasing infections.
Collapse
Affiliation(s)
- Ying-Jun Chang
- Ying-Jun Chang, Lan-Ping Xu, Yu Wang, Xiao-Hui Zhang, Huan Chen, Yu-Hong Chen, Feng-Rong Wang, Wei Han, Yu-Qian Sun, Chen-Hua Yan, Fei-Fei Tang, Xiao-Dong Mo, Kai-Yan Liu, and Xiao-Jun Huang, Peking University People's Hospital and Peking University Institute of Hematology; Xiao-Jun Huang, Peking-Tsinghua Center for Life Sciences; and Ying-Jun Chang and Xiao-Jun Huang, Collaborative Innovation Center of Hematology, Peking University, Beijing, People's Republic of China
| | - Lan-Ping Xu
- Ying-Jun Chang, Lan-Ping Xu, Yu Wang, Xiao-Hui Zhang, Huan Chen, Yu-Hong Chen, Feng-Rong Wang, Wei Han, Yu-Qian Sun, Chen-Hua Yan, Fei-Fei Tang, Xiao-Dong Mo, Kai-Yan Liu, and Xiao-Jun Huang, Peking University People's Hospital and Peking University Institute of Hematology; Xiao-Jun Huang, Peking-Tsinghua Center for Life Sciences; and Ying-Jun Chang and Xiao-Jun Huang, Collaborative Innovation Center of Hematology, Peking University, Beijing, People's Republic of China
| | - Yu Wang
- Ying-Jun Chang, Lan-Ping Xu, Yu Wang, Xiao-Hui Zhang, Huan Chen, Yu-Hong Chen, Feng-Rong Wang, Wei Han, Yu-Qian Sun, Chen-Hua Yan, Fei-Fei Tang, Xiao-Dong Mo, Kai-Yan Liu, and Xiao-Jun Huang, Peking University People's Hospital and Peking University Institute of Hematology; Xiao-Jun Huang, Peking-Tsinghua Center for Life Sciences; and Ying-Jun Chang and Xiao-Jun Huang, Collaborative Innovation Center of Hematology, Peking University, Beijing, People's Republic of China
| | - Xiao-Hui Zhang
- Ying-Jun Chang, Lan-Ping Xu, Yu Wang, Xiao-Hui Zhang, Huan Chen, Yu-Hong Chen, Feng-Rong Wang, Wei Han, Yu-Qian Sun, Chen-Hua Yan, Fei-Fei Tang, Xiao-Dong Mo, Kai-Yan Liu, and Xiao-Jun Huang, Peking University People's Hospital and Peking University Institute of Hematology; Xiao-Jun Huang, Peking-Tsinghua Center for Life Sciences; and Ying-Jun Chang and Xiao-Jun Huang, Collaborative Innovation Center of Hematology, Peking University, Beijing, People's Republic of China
| | - Huan Chen
- Ying-Jun Chang, Lan-Ping Xu, Yu Wang, Xiao-Hui Zhang, Huan Chen, Yu-Hong Chen, Feng-Rong Wang, Wei Han, Yu-Qian Sun, Chen-Hua Yan, Fei-Fei Tang, Xiao-Dong Mo, Kai-Yan Liu, and Xiao-Jun Huang, Peking University People's Hospital and Peking University Institute of Hematology; Xiao-Jun Huang, Peking-Tsinghua Center for Life Sciences; and Ying-Jun Chang and Xiao-Jun Huang, Collaborative Innovation Center of Hematology, Peking University, Beijing, People's Republic of China
| | - Yu-Hong Chen
- Ying-Jun Chang, Lan-Ping Xu, Yu Wang, Xiao-Hui Zhang, Huan Chen, Yu-Hong Chen, Feng-Rong Wang, Wei Han, Yu-Qian Sun, Chen-Hua Yan, Fei-Fei Tang, Xiao-Dong Mo, Kai-Yan Liu, and Xiao-Jun Huang, Peking University People's Hospital and Peking University Institute of Hematology; Xiao-Jun Huang, Peking-Tsinghua Center for Life Sciences; and Ying-Jun Chang and Xiao-Jun Huang, Collaborative Innovation Center of Hematology, Peking University, Beijing, People's Republic of China
| | - Feng-Rong Wang
- Ying-Jun Chang, Lan-Ping Xu, Yu Wang, Xiao-Hui Zhang, Huan Chen, Yu-Hong Chen, Feng-Rong Wang, Wei Han, Yu-Qian Sun, Chen-Hua Yan, Fei-Fei Tang, Xiao-Dong Mo, Kai-Yan Liu, and Xiao-Jun Huang, Peking University People's Hospital and Peking University Institute of Hematology; Xiao-Jun Huang, Peking-Tsinghua Center for Life Sciences; and Ying-Jun Chang and Xiao-Jun Huang, Collaborative Innovation Center of Hematology, Peking University, Beijing, People's Republic of China
| | - Wei Han
- Ying-Jun Chang, Lan-Ping Xu, Yu Wang, Xiao-Hui Zhang, Huan Chen, Yu-Hong Chen, Feng-Rong Wang, Wei Han, Yu-Qian Sun, Chen-Hua Yan, Fei-Fei Tang, Xiao-Dong Mo, Kai-Yan Liu, and Xiao-Jun Huang, Peking University People's Hospital and Peking University Institute of Hematology; Xiao-Jun Huang, Peking-Tsinghua Center for Life Sciences; and Ying-Jun Chang and Xiao-Jun Huang, Collaborative Innovation Center of Hematology, Peking University, Beijing, People's Republic of China
| | - Yu-Qian Sun
- Ying-Jun Chang, Lan-Ping Xu, Yu Wang, Xiao-Hui Zhang, Huan Chen, Yu-Hong Chen, Feng-Rong Wang, Wei Han, Yu-Qian Sun, Chen-Hua Yan, Fei-Fei Tang, Xiao-Dong Mo, Kai-Yan Liu, and Xiao-Jun Huang, Peking University People's Hospital and Peking University Institute of Hematology; Xiao-Jun Huang, Peking-Tsinghua Center for Life Sciences; and Ying-Jun Chang and Xiao-Jun Huang, Collaborative Innovation Center of Hematology, Peking University, Beijing, People's Republic of China
| | - Chen-Hua Yan
- Ying-Jun Chang, Lan-Ping Xu, Yu Wang, Xiao-Hui Zhang, Huan Chen, Yu-Hong Chen, Feng-Rong Wang, Wei Han, Yu-Qian Sun, Chen-Hua Yan, Fei-Fei Tang, Xiao-Dong Mo, Kai-Yan Liu, and Xiao-Jun Huang, Peking University People's Hospital and Peking University Institute of Hematology; Xiao-Jun Huang, Peking-Tsinghua Center for Life Sciences; and Ying-Jun Chang and Xiao-Jun Huang, Collaborative Innovation Center of Hematology, Peking University, Beijing, People's Republic of China
| | - Fei-Fei Tang
- Ying-Jun Chang, Lan-Ping Xu, Yu Wang, Xiao-Hui Zhang, Huan Chen, Yu-Hong Chen, Feng-Rong Wang, Wei Han, Yu-Qian Sun, Chen-Hua Yan, Fei-Fei Tang, Xiao-Dong Mo, Kai-Yan Liu, and Xiao-Jun Huang, Peking University People's Hospital and Peking University Institute of Hematology; Xiao-Jun Huang, Peking-Tsinghua Center for Life Sciences; and Ying-Jun Chang and Xiao-Jun Huang, Collaborative Innovation Center of Hematology, Peking University, Beijing, People's Republic of China
| | - Xiao-Dong Mo
- Ying-Jun Chang, Lan-Ping Xu, Yu Wang, Xiao-Hui Zhang, Huan Chen, Yu-Hong Chen, Feng-Rong Wang, Wei Han, Yu-Qian Sun, Chen-Hua Yan, Fei-Fei Tang, Xiao-Dong Mo, Kai-Yan Liu, and Xiao-Jun Huang, Peking University People's Hospital and Peking University Institute of Hematology; Xiao-Jun Huang, Peking-Tsinghua Center for Life Sciences; and Ying-Jun Chang and Xiao-Jun Huang, Collaborative Innovation Center of Hematology, Peking University, Beijing, People's Republic of China
| | - Kai-Yan Liu
- Ying-Jun Chang, Lan-Ping Xu, Yu Wang, Xiao-Hui Zhang, Huan Chen, Yu-Hong Chen, Feng-Rong Wang, Wei Han, Yu-Qian Sun, Chen-Hua Yan, Fei-Fei Tang, Xiao-Dong Mo, Kai-Yan Liu, and Xiao-Jun Huang, Peking University People's Hospital and Peking University Institute of Hematology; Xiao-Jun Huang, Peking-Tsinghua Center for Life Sciences; and Ying-Jun Chang and Xiao-Jun Huang, Collaborative Innovation Center of Hematology, Peking University, Beijing, People's Republic of China
| | - Xiao-Jun Huang
- Ying-Jun Chang, Lan-Ping Xu, Yu Wang, Xiao-Hui Zhang, Huan Chen, Yu-Hong Chen, Feng-Rong Wang, Wei Han, Yu-Qian Sun, Chen-Hua Yan, Fei-Fei Tang, Xiao-Dong Mo, Kai-Yan Liu, and Xiao-Jun Huang, Peking University People's Hospital and Peking University Institute of Hematology; Xiao-Jun Huang, Peking-Tsinghua Center for Life Sciences; and Ying-Jun Chang and Xiao-Jun Huang, Collaborative Innovation Center of Hematology, Peking University, Beijing, People's Republic of China.
| |
Collapse
|
181
|
Kotsiou E, Gribben JG, Davies JK. Allospecific Tregs Expanded After Anergization Remain Suppressive in Inflammatory Conditions but Lack Expression of Gut-homing Molecules. Mol Ther 2016; 24:1126-1134. [PMID: 27049761 PMCID: PMC4923329 DOI: 10.1038/mt.2016.64] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 03/16/2016] [Indexed: 11/09/2022] Open
Abstract
Cell therapy with antigen-specific regulatory T-cells (Treg) has great potential to selectively control unwanted immune responses after allogeneic stem-cell or solid organ transplantation and in autoimmune diseases. Ex vivo allostimulation with costimulatory blockade (alloanergization) of human T-cells expands populations of alloantigen-specific Treg, providing a cellular strategy to control donor T-cell alloresponses causing graft-versus-host disease after allogeneic hematopoietic stem-cell transplantation. Crucially, it is not known if Treg expanded in this way are stable in proinflammatory conditions encountered after transplantation, or if they possess capacity to migrate to key target organs. Using an in vitro model to functionally characterize human Treg expanded after alloanergization, we now show that these cells remain potently allosuppressive in the presence of relevant exogenous inflammatory signals. Expanded allospecific Treg retained expression of molecules conferring migratory capacity to several organs but small intestine-specific chemotaxis was markedly impaired, in keeping with the preponderance of gut graft-versus-host disease in previous clinical studies using this strategy. Importantly, impaired gut-specific chemotaxis could be partially corrected by pharmacological treatment. These findings will facilitate more effective application of this cellular approach to limit T-cell alloresponses after hematopoietic stem-cell transplantation and the wider application of the strategy to other clinical settings.
Collapse
Affiliation(s)
- Eleni Kotsiou
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University London, London, UK
| | - John G Gribben
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University London, London, UK
| | - Jeff K Davies
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University London, London, UK.
| |
Collapse
|
182
|
Renteria AS, Levine JE, Ferrara JLM. Therapeutic targets and emerging treatment options in gastrointestinal acute graft-versus-host disease. Expert Opin Orphan Drugs 2016; 4:469-484. [PMID: 30057862 DOI: 10.1517/21678707.2016.1166949] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Introduction Graft-versus-host disease (GVHD) continues to be the major lethal complication of allogeneic hematopoietic stem cell transplantation (HCT) but the standard of care, high dose steroids, has not changed in 40 years. Approximately 50% of GVHD patients will develop steroid refractory disease, typically involving the gastrointestinal (GI) tract, which has a very poor prognosis. Newly developed GVHD biomarker-based risk scores provide the first opportunity to treat patients at the onset of symptoms according to risk of steroid failure. Furthermore, improvements in our understanding of the pathobiology of GVHD, its different signaling pathways, involved cytokines, and the role of post-translational and epigenetic modifications, has identified new therapeutic targets for clinical trials. Areas covered This manuscript summarizes the pathophysiology, diagnosis, staging, current and new targeted therapies for GVHD, with an emphasis on GI GVHD. A literature search on PubMed was undertaken and the most relevant references included. Expert Opinion The standard treatment for GVHD, high dose steroids, offers less than optimal outcomes as well as significant toxicities. Better treatments, especially for GI GVHD, are needed to reduce non-relapse mortality after allogeneic HCT. The identification of high risk patients through a biomarker-defined scoring system offers a personalized approach to a disease that still requires significant research attention.
Collapse
Affiliation(s)
- Anne S Renteria
- Blood and Marrow Transplantation Program, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - John E Levine
- Blood and Marrow Transplantation Program, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - James L M Ferrara
- Hematologic Malignancies Translational Research Center, Blood and Marrow Transplantation Program, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
183
|
Soluble heat shock protein 70 members in patients undergoing allogeneic hematopoietic cell transplantation. Transpl Immunol 2016; 36:25-31. [PMID: 27020764 DOI: 10.1016/j.trim.2016.03.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 03/07/2016] [Accepted: 03/23/2016] [Indexed: 12/21/2022]
Abstract
BACKGROUND Heat shock proteins (HSP) are highly conserved immunogenic proteins serving as potent danger signals. They are upregulated under stress conditions like fever and hypoxia. Extracellular HSP are involved in antigen presentation, cytokine release and maturation of antigen presenting cells. METHODS The release of the inducible members of the HSP70 family, Hsp72 and Hsp70B', into the serum of 20 patients undergoing allogeneic hematopoietic cell transplantation and 20 healthy donors was evaluated using enzyme linked immunosorbent assay (ELISA) kits. RESULTS Eight patients (40%) did not receive anti-thymocyte globulin (ATG) for prophylaxis of graft versus host disease (GvHD). These patients had no detectable or low serum levels of Hsp72 (n=3, 0.03 to 1.92ng/ml) which were in line with levels detected in 20 healthy individuals (p=0.07). Measurable HSP was not associated with any medication or transplantation-related procedures. In twelve patients (60%) receiving ATG, detected high levels of HSP reflected cross-reactivity of the rabbit-derived ATG with the anti-rabbit antibody used in the ELISA. CONCLUSIONS Assumed HSP70 expression detected such ELISA has to be regarded carefully after ATG application. Neither radiochemotherapy, nor inflammation or sepsis during aplasia induced HSP70 release into the serum. Thus, soluble HSP70 may not be involved in the pathogenesis of acute GvHD.
Collapse
|
184
|
Villa NY, Rahman MM, McFadden G, Cogle CR. Therapeutics for Graft-versus-Host Disease: From Conventional Therapies to Novel Virotherapeutic Strategies. Viruses 2016; 8:85. [PMID: 27011200 PMCID: PMC4810275 DOI: 10.3390/v8030085] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Revised: 03/09/2016] [Accepted: 03/09/2016] [Indexed: 02/06/2023] Open
Abstract
Allogeneic hematopoietic stem cell transplantation (allo-HSCT) has a curative potential for many hematologic malignancies and blood diseases. However, the success of allo-HSCT is limited by graft-versus-host disease (GVHD), an immunological syndrome that involves inflammation and tissue damage mediated by donor lymphocytes. Despite immune suppression, GVHD is highly incident even after allo-HSCT using human leukocyte antigen (HLA)-matched donors. Therefore, alternative and more effective therapies are needed to prevent or control GVHD while preserving the beneficial graft-versus-cancer (GVC) effects against residual disease. Among novel therapeutics for GVHD, oncolytic viruses such as myxoma virus (MYXV) are receiving increased attention due to their dual role in controlling GVHD while preserving or augmenting GVC. This review focuses on the molecular basis of GVHD, as well as state-of-the-art advances in developing novel therapies to prevent or control GVHD while minimizing impact on GVC. Recent literature regarding conventional and the emerging therapies are summarized, with special emphasis on virotherapy to prevent GVHD. Recent advances using preclinical models with oncolytic viruses such as MYXV to ameliorate the deleterious consequences of GVHD, while maintaining or improving the anti-cancer benefits of GVC will be reviewed.
Collapse
Affiliation(s)
- Nancy Y Villa
- Division of Hematology and Oncology, Department of Medicine, University of Florida, Gainesville, FL 32610, USA.
| | - Masmudur M Rahman
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL 32610, USA.
| | - Grant McFadden
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL 32610, USA.
| | - Christopher R Cogle
- Division of Hematology and Oncology, Department of Medicine, University of Florida, Gainesville, FL 32610, USA.
| |
Collapse
|
185
|
MacDonald KG, Hoeppli RE, Huang Q, Gillies J, Luciani DS, Orban PC, Broady R, Levings MK. Alloantigen-specific regulatory T cells generated with a chimeric antigen receptor. J Clin Invest 2016; 126:1413-24. [PMID: 26999600 DOI: 10.1172/jci82771] [Citation(s) in RCA: 371] [Impact Index Per Article: 41.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 02/04/2016] [Indexed: 12/21/2022] Open
Abstract
Adoptive immunotherapy with regulatory T cells (Tregs) is a promising treatment for allograft rejection and graft-versus-host disease (GVHD). Emerging data indicate that, compared with polyclonal Tregs, disease-relevant antigen-specific Tregs may have numerous advantages, such as a need for fewer cells and reduced risk of nonspecific immune suppression. Current methods to generate alloantigen-specific Tregs rely on expansion with allogeneic antigen-presenting cells, which requires access to donor and recipient cells and multiple MHC mismatches. The successful use of chimeric antigen receptors (CARs) for the generation of antigen-specific effector T cells suggests that a similar approach could be used to generate alloantigen-specific Tregs. Here, we have described the creation of an HLA-A2-specific CAR (A2-CAR) and its application in the generation of alloantigen-specific human Tregs. In vitro, A2-CAR-expressing Tregs maintained their expected phenotype and suppressive function before, during, and after A2-CAR-mediated stimulation. In mouse models, human A2-CAR-expressing Tregs were superior to Tregs expressing an irrelevant CAR at preventing xenogeneic GVHD caused by HLA-A2+ T cells. Together, our results demonstrate that use of CAR technology to generate potent, functional, and stable alloantigen-specific human Tregs markedly enhances their therapeutic potential in transplantation and sets the stage for using this approach for making antigen-specific Tregs for therapy of multiple diseases.
Collapse
|
186
|
Montes de Oca M, Kumar R, de Labastida Rivera F, Amante FH, Sheel M, Faleiro RJ, Bunn PT, Best SE, Beattie L, Ng SS, Edwards CL, Muller W, Cretney E, Nutt SL, Smyth MJ, Haque A, Hill GR, Sundar S, Kallies A, Engwerda CR. Blimp-1-Dependent IL-10 Production by Tr1 Cells Regulates TNF-Mediated Tissue Pathology. PLoS Pathog 2016; 12:e1005398. [PMID: 26765224 PMCID: PMC4713066 DOI: 10.1371/journal.ppat.1005398] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 12/22/2015] [Indexed: 12/14/2022] Open
Abstract
Tumor necrosis factor (TNF) is critical for controlling many intracellular infections, but can also contribute to inflammation. It can promote the destruction of important cell populations and trigger dramatic tissue remodeling following establishment of chronic disease. Therefore, a better understanding of TNF regulation is needed to allow pathogen control without causing or exacerbating disease. IL-10 is an important regulatory cytokine with broad activities, including the suppression of inflammation. IL-10 is produced by different immune cells; however, its regulation and function appears to be cell-specific and context-dependent. Recently, IL-10 produced by Th1 (Tr1) cells was shown to protect host tissues from inflammation induced following infection. Here, we identify a novel pathway of TNF regulation by IL-10 from Tr1 cells during parasitic infection. We report elevated Blimp-1 mRNA levels in CD4+ T cells from visceral leishmaniasis (VL) patients, and demonstrate IL-12 was essential for Blimp-1 expression and Tr1 cell development in experimental VL. Critically, we show Blimp-1-dependent IL-10 production by Tr1 cells prevents tissue damage caused by IFNγ-dependent TNF production. Therefore, we identify Blimp-1-dependent IL-10 produced by Tr1 cells as a key regulator of TNF-mediated pathology and identify Tr1 cells as potential therapeutic tools to control inflammation. Many parasitic diseases are associated with the generation of potent inflammatory responses. These are often needed to control infection, but can also cause tissue damage if not appropriately regulated. IL-10 has emerged as an important immune regulator that protects tissues by dampening inflammation. Recently, some T cells that initially produce inflammatory cytokines have been found to start producing IL-10 as a mechanism of auto-regulation. We identified an important transcriptional regulator called B lymphocyte-induced maturation protein 1 (Blimp-1), which promotes IL-10 production by IFNγ-producing CD4+ T (Tr1) cells during malaria and visceral leishmaniasis, two important diseases caused by protozoan parasites. We found that Tr1 cell-derived IL-10 suppressed anti-parasitic immunity, but played a critical role in preventing tissue damage caused by the potent pro-inflammatory cytokine TNF. Specifically, IL-10 protected macrophages from TNF-mediated destruction, and this enabled lymphocytes to continue to migrate to regions in the spleen where T and B cell responses are generated. These findings allow us to better understand how parasites persist in a host, but also identify new opportunities to control inflammation to prevent disease.
Collapse
Affiliation(s)
- Marcela Montes de Oca
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
- University of Queensland, School of Medicine, Brisbane, Australia
| | - Rajiv Kumar
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
- Netaji Subhas Institute of Technology, New Delhi, India
| | | | - Fiona H Amante
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Meru Sheel
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Rebecca J. Faleiro
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
- Queensland University of Technology, Institute of Health and Biomedical Innovation, Brisbane, Australia
| | - Patrick T. Bunn
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
- Griffith University, Institute of Glycomics, Gold Coast, Australia
| | - Shannon E. Best
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Lynette Beattie
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Susanna S. Ng
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
- Griffith University, School of Natural Sciences, Nathan, Australia
| | - Chelsea L. Edwards
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
- University of Queensland, School of Medicine, Brisbane, Australia
| | - Werner Muller
- University of Manchester, Faculty of Life Sciences, Manchester, United Kingdom
| | - Erika Cretney
- Walter and Eliza Hall Medical Research Institute, Division of Molecular Immunology, Melbourne, Australia
- The University of Melbourne, Department of Medical Biology, Melbourne, Australia
| | - Stephen L. Nutt
- Walter and Eliza Hall Medical Research Institute, Division of Molecular Immunology, Melbourne, Australia
- The University of Melbourne, Department of Medical Biology, Melbourne, Australia
| | - Mark J. Smyth
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Ashraful Haque
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | | | - Shyam Sundar
- Banaras Hindu University, Institute of Medical Sciences, Varanasi, Uttar Pradesh, India
| | - Axel Kallies
- Walter and Eliza Hall Medical Research Institute, Division of Molecular Immunology, Melbourne, Australia
- The University of Melbourne, Department of Medical Biology, Melbourne, Australia
| | | |
Collapse
|
187
|
Hematopoietic Stem Cell Transplantation. PATHOLOGY OF TRANSPLANTATION 2016. [PMCID: PMC7124099 DOI: 10.1007/978-3-319-29683-8_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
188
|
Dijke IE, Hoeppli RE, Ellis T, Pearcey J, Huang Q, McMurchy AN, Boer K, Peeters AMA, Aubert G, Larsen I, Ross DB, Rebeyka I, Campbell A, Baan CC, Levings MK, West LJ. Discarded Human Thymus Is a Novel Source of Stable and Long-Lived Therapeutic Regulatory T Cells. Am J Transplant 2016; 16:58-71. [PMID: 26414799 DOI: 10.1111/ajt.13456] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2015] [Revised: 06/19/2015] [Accepted: 07/14/2015] [Indexed: 01/25/2023]
Abstract
Regulatory T cell (Treg)-based therapy is a promising approach to treat many immune-mediated disorders such as autoimmune diseases, organ transplant rejection, and graft-versus-host disease (GVHD). Challenges to successful clinical implementation of adoptive Treg therapy include difficulties isolating homogeneous cell populations and developing expansion protocols that result in adequate numbers of cells that remain stable, even under inflammatory conditions. We investigated the potential of discarded human thymuses, routinely removed during pediatric cardiac surgery, to be used as a novel source of therapeutic Tregs. Here, we show that large numbers of FOXP3(+) Tregs can be isolated and expanded from a single thymus. Expanded thymic Tregs had stable FOXP3 expression and long telomeres, and suppressed proliferation and cytokine production of activated allogeneic T cells in vitro. Moreover, expanded thymic Tregs delayed development of xenogeneic GVHD in vivo more effectively than expanded Tregs isolated based on CD25 expression from peripheral blood. Importantly, in contrast to expanded blood Tregs, expanded thymic Tregs remained stable under inflammatory conditions. Our results demonstrate that discarded pediatric thymuses are an excellent source of therapeutic Tregs, having the potential to overcome limitations currently hindering the use of Tregs derived from peripheral or cord blood.
Collapse
Affiliation(s)
- I E Dijke
- Department of Pediatrics, University of Alberta, Edmonton, AB, Canada.,Alberta Transplant Institute, University of Alberta, Edmonton, AB, Canada
| | - R E Hoeppli
- Department of Surgery, University of British Columbia, Vancouver, BC, Canada
| | - T Ellis
- Department of Pediatrics, University of Alberta, Edmonton, AB, Canada.,Alberta Transplant Institute, University of Alberta, Edmonton, AB, Canada
| | - J Pearcey
- Department of Pediatrics, University of Alberta, Edmonton, AB, Canada.,Alberta Transplant Institute, University of Alberta, Edmonton, AB, Canada
| | - Q Huang
- Department of Surgery, University of British Columbia, Vancouver, BC, Canada
| | - A N McMurchy
- Department of Surgery, University of British Columbia, Vancouver, BC, Canada
| | - K Boer
- Department of Internal Medicine, Erasmus MC Medical Center, Rotterdam, the Netherlands
| | - A M A Peeters
- Department of Internal Medicine, Erasmus MC Medical Center, Rotterdam, the Netherlands
| | - G Aubert
- Terry Fox Laboratory, British Columbia Cancer Research Centre, Vancouver, BC, Canada
| | - I Larsen
- Department of Pediatrics, University of Alberta, Edmonton, AB, Canada.,Alberta Transplant Institute, University of Alberta, Edmonton, AB, Canada
| | - D B Ross
- Alberta Transplant Institute, University of Alberta, Edmonton, AB, Canada.,Department of Surgery, University of Alberta, Edmonton, AB, Canada
| | - I Rebeyka
- Alberta Transplant Institute, University of Alberta, Edmonton, AB, Canada.,Department of Surgery, University of Alberta, Edmonton, AB, Canada
| | - A Campbell
- Department of Surgery, University of British Columbia, Vancouver, BC, Canada
| | - C C Baan
- Department of Internal Medicine, Erasmus MC Medical Center, Rotterdam, the Netherlands
| | - M K Levings
- Department of Surgery, University of British Columbia, Vancouver, BC, Canada
| | - L J West
- Department of Pediatrics, University of Alberta, Edmonton, AB, Canada.,Alberta Transplant Institute, University of Alberta, Edmonton, AB, Canada.,Department of Surgery, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
189
|
Liu J, Guo YM, Onai N, Ohyagi H, Hirokawa M, Takahashi N, Tagawa H, Ubukawa K, Kobayashi I, Tezuka H, Minamiya Y, Ohteki T, Sawada K. Cytosine-Phosphorothionate-Guanine Oligodeoxynucleotides Exacerbates Hemophagocytosis by Inducing Tumor Necrosis Factor-Alpha Production in Mice after Bone Marrow Transplantation. Biol Blood Marrow Transplant 2015; 22:627-636. [PMID: 26740374 DOI: 10.1016/j.bbmt.2015.12.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2015] [Accepted: 12/21/2015] [Indexed: 10/22/2022]
Abstract
Hemophagocytic syndrome (HPS) is frequently associated with hematopoietic stem cell transplantation and is treated with some benefit derived from TNF-α inhibitors. However, the mechanisms of how HPS occurs and how a TNF-α inhibitor exerts some benefit to HPS management have remained unclear. We evaluated the effect of toll-like receptor (TLR) ligands, especially focusing on cytosine-phosphorothionate-guanine oligodeoxynucleotide (CpG), a TLR9 ligand, on HPS in mice that underwent transplantation with syngeneic or allogeneic bone marrow (BM) cells (Syn-BMT, Allo-BMT), or with allogeneic BM cells plus splenocytes to promote graft-versus-host disease (GVHD mice). Hemophagocytosis was a common feature early after all BMT, but it subsided in Syn-BMT and Allo-BMT mice. In GVHD mice, however, hemophagocytosis persisted and was accompanied by upregulated production of IFN-γ but not TNF-α, and it was suppressed by blockade of IFN-γ but not TNF-α. A single injection of the TLR9 ligand CpG promoted HPS in all BMT mice and was lethal in GVHD mice, accompanied by greatly upregulated production of TNF-α, IL-6, and IFN-γ. Blocking of TNF-α, but not IL-6 or IFN-γ, suppressed CpG-induced HPS in all BMT mice and rescued GVHD mice from CpG-induced mortality. Thus, TLR9 signaling mediates TNF-α-driven HPS in BMT mice and is effectively treated through TNF-α inhibition.
Collapse
Affiliation(s)
- Jiajia Liu
- Department of Hematology, Nephrology, and Rheumatology, Akita University Graduate School of Medicine, Akita, Japan; Department of Chest Surgery, Akita University Graduate School of Medicine, Akita, Japan
| | - Yong-Mei Guo
- Department of Hematology, Nephrology, and Rheumatology, Akita University Graduate School of Medicine, Akita, Japan
| | - Nobuyuki Onai
- Department of Biodefense Research, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan; Japan Science and Technology Agency, Core Research for Evolutional Science and Technology, Tokyo, Japan
| | - Hideaki Ohyagi
- Department of Hematology, Nephrology, and Rheumatology, Akita University Graduate School of Medicine, Akita, Japan
| | - Makoto Hirokawa
- Department of General Internal Medicine and Clinical Laboratory Medicine, Akita University Graduate School of Medicine, Akita, Japan
| | - Naoto Takahashi
- Department of Hematology, Nephrology, and Rheumatology, Akita University Graduate School of Medicine, Akita, Japan
| | - Hiroyuki Tagawa
- Department of Hematology, Nephrology, and Rheumatology, Akita University Graduate School of Medicine, Akita, Japan
| | - Kumi Ubukawa
- Department of Hematology, Nephrology, and Rheumatology, Akita University Graduate School of Medicine, Akita, Japan
| | - Isuzu Kobayashi
- Department of Hematology, Nephrology, and Rheumatology, Akita University Graduate School of Medicine, Akita, Japan
| | - Hiroyuki Tezuka
- Life Science Tokyo Advanced Research Center, Hoshi University, Tokyo, Japan
| | - Yoshihiro Minamiya
- Department of Chest Surgery, Akita University Graduate School of Medicine, Akita, Japan
| | - Toshiaki Ohteki
- Department of Biodefense Research, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan; Japan Science and Technology Agency, Core Research for Evolutional Science and Technology, Tokyo, Japan
| | | |
Collapse
|
190
|
Chen Y, Huang XJ, Liu KY, Chen H, Chen YH, Zhang XH, Wang FR, Han W, Wang JZ, Wang Y, Yan CH, Zhang YY, Sun YQ, Xu LP. Infusion-related febrile reaction after haploidentical stem cell transplantation in children is associated with higher rates of engraftment syndrome and acute graft-versus-host disease. Pediatr Transplant 2015; 19:918-24. [PMID: 26332180 DOI: 10.1111/petr.12586] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/23/2015] [Indexed: 12/23/2022]
Abstract
The clinical significance and prognostic impact of IRFR in pediatric recipients of haploidentical SCT are not clearly understood. Therefore, we attempted to determine how IRFR affects clinical outcomes in children. Clinical data from 100 consecutive pediatric patients (60 boys and 40 girls; median age, 12 yr [range, 2-18 yr] after haploidentical SCT between January 2010 and December 2012 were collected retrospectively. IRFR was described as unexplained fever (>38 °C) within 24 h after the infusion of haploidentical PBSCs. Thirty-eight (38.0%) cases met the criteria for IRFR. ES was found in 24 (63.2%) of the 38 children with IRFR, with the median time of developing ES of +9 (7-16) days, while only 15 (25.4%) of the 59 children without IRFR were found with ES (p < 0.001). Similarly, the cumulative incidence rates of grade II-IV aGVHD were 50.0% in the IRFR group and 29.3% (p = 0.012) in the non-febrile group. Multivariate analysis identified IRFR as the risk factor for ES and aGVHD. In the haploidentical setting, IRFR is associated with the development of ES and aGVHD. We attempted to determine how IRFR affects clinical outcomes in children after haploidentical SCT. Thirty-eight children comprised the IRFR group, and 59 were in the control (non-IRFR) group. High incidence of ES was observed in children with the occurrence of IRFR. Similarly, the incidence of stage I-IV and II-IV aGVHD was significantly higher in the febrile group. Multivariate analysis showed IRFR to be the risk factor for ES and aGVHD.
Collapse
Affiliation(s)
- Yao Chen
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing, China
| | - Xiao-Jun Huang
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing, China
| | - Kai-Yan Liu
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing, China
| | - Huan Chen
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing, China
| | - Yu-Hong Chen
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing, China
| | - Xiao-Hui Zhang
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing, China
| | - Feng-Rong Wang
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing, China
| | - Wei Han
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing, China
| | - Jing-Zhi Wang
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing, China
| | - Yu Wang
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing, China
| | - Chen-Hua Yan
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing, China
| | - Yuan-Yuan Zhang
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing, China
| | - Yu-Qian Sun
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing, China
| | - Lan-Ping Xu
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing, China
| |
Collapse
|
191
|
Döring M, Cabanillas Stanchi KM, Feucht J, Queudeville M, Teltschik HM, Lang P, Feuchtinger T, Handgretinger R, Müller I. Ferritin as an early marker of graft rejection after allogeneic hematopoietic stem cell transplantation in pediatric patients. Ann Hematol 2015; 95:311-23. [PMID: 26611853 DOI: 10.1007/s00277-015-2560-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 11/17/2015] [Indexed: 01/22/2023]
Abstract
Diagnosis of adverse events following hematopoietic stem cell transplantation (HSCT) is mainly assigned to clinical symptoms or biopsies and thus rather unspecific and/or invasive. Studies indicate a distinct role of serum ferritin in HSCT and its correlation with adverse events such as graft-versus-host disease (GvHD), veno-occlusive disease (VOD), or infections. However, published data on the relevance of ferritin as a prognostic marker for post-transplant adverse events is rare, especially in pediatric patients. The present study analyzes ferritin plasma concentrations of 138 pediatric patients after HSCT between 2007 and 2010 including the control group (n = 21). Given the initial results regarding ferritin as a significant predictor for acute graft rejection after allogeneic HSCT in 9 of the 138 pediatric patients, serum ferritin of all pediatric patients (n = 27) who experienced graft rejection between 2007 and 2014 was analyzed. In addition, laboratory parameters including C-reactive protein (CRP), lactate dehydrogenase (LDH), fibrinogen, and D-dimer as possible differentiation markers for graft rejection were determined. In 24 (88.9 %) of the 27 pediatric patients with graft rejection, a significant increase of ferritin levels was observed 1 to 7 days prior to (P < 0.0001) and at the time of graft rejection (P < 0.0001). Moreover, there was an increase of D-dimer, CRP, LDH, and fibrinogen 1-7 days before graft rejection. Ferritin increased significantly at time of VOD (P = 0.0067), at time of intestinal (P < 0.0001) and skin GvHD (P < 0.0001), and at time of sepsis (P = 0.0005) and bacteremia (P = 0.0029). Ferritin might serve as a readily available identification marker for differentiation and identification of adverse events after HSCT in combination with other laboratory markers.
Collapse
Affiliation(s)
- Michaela Döring
- Department I - General Paediatrics, Hematology/Oncology, Children's Hospital, University Hospital Tuebingen, Hoppe-Seyler-Str. 1, 72076, Tuebingen, Germany. .,Dr. von Hauner'sches Kinderspital, Pediatric Hematology, Oncology and Stem Cell Transplantation, Ludwig-Maximilians-University München, Lindwurmstrasse 4, 80337, Munich, Germany.
| | - Karin Melanie Cabanillas Stanchi
- Department I - General Paediatrics, Hematology/Oncology, Children's Hospital, University Hospital Tuebingen, Hoppe-Seyler-Str. 1, 72076, Tuebingen, Germany.
| | - Judith Feucht
- Department I - General Paediatrics, Hematology/Oncology, Children's Hospital, University Hospital Tuebingen, Hoppe-Seyler-Str. 1, 72076, Tuebingen, Germany.
| | - Manon Queudeville
- Department I - General Paediatrics, Hematology/Oncology, Children's Hospital, University Hospital Tuebingen, Hoppe-Seyler-Str. 1, 72076, Tuebingen, Germany.
| | - Heiko-Manuel Teltschik
- Department I - General Paediatrics, Hematology/Oncology, Children's Hospital, University Hospital Tuebingen, Hoppe-Seyler-Str. 1, 72076, Tuebingen, Germany.
| | - Peter Lang
- Department I - General Paediatrics, Hematology/Oncology, Children's Hospital, University Hospital Tuebingen, Hoppe-Seyler-Str. 1, 72076, Tuebingen, Germany.
| | - Tobias Feuchtinger
- Department I - General Paediatrics, Hematology/Oncology, Children's Hospital, University Hospital Tuebingen, Hoppe-Seyler-Str. 1, 72076, Tuebingen, Germany. .,Dr. von Hauner'sches Kinderspital, Pediatric Hematology, Oncology and Stem Cell Transplantation, Ludwig-Maximilians-University München, Lindwurmstrasse 4, 80337, Munich, Germany.
| | - Rupert Handgretinger
- Department I - General Paediatrics, Hematology/Oncology, Children's Hospital, University Hospital Tuebingen, Hoppe-Seyler-Str. 1, 72076, Tuebingen, Germany.
| | - Ingo Müller
- Department of Paediatric Hematology and Oncology, University Hospital Hamburg-Eppendorf, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany.
| |
Collapse
|
192
|
Riesner K, Kalupa M, Shi Y, Elezkurtaj S, Penack O. A preclinical acute GVHD mouse model based on chemotherapy conditioning and MHC-matched transplantation. Bone Marrow Transplant 2015; 51:410-7. [PMID: 26595081 DOI: 10.1038/bmt.2015.279] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 10/12/2015] [Accepted: 10/16/2015] [Indexed: 12/31/2022]
Abstract
Animal disease models have been criticized for lack of resemblance to human illnesses, hampering transfer of knowledge from preclinical research to clinical medicine. In the field of allogeneic hematopoietic stem cell transplantation (allo-HSCT), it is standard practice to study GVHD in lethal TBI-based murine models. Frequently, MHC-mismatched donors are used in GVHD models. In contrast, in clinical allo-HSCT conditioning with chemotherapy (+/-TBI) is common and donors are often MHC-matched. Aiming at a more clinically oriented situation, we established and characterized a murine MHC-matched, minor histocompatibility antigen mismatched GVHD model (LP/J [H2k(b)]-->C57BL/6 [H2k(b)]) using busulfan and cyclophosphamide conditioning. We found typical clinical and histological features of acute GVHD. T-cell infiltration, GVHD-specific damage and systemic inflammation were similar to observations made in patients after allo-HSCT. In survivors of acute GVHD, we found expansion of CD4+ T cells and the development of scleroderma-like chronic GVHD. The use of chemotherapy-based, minor histocompatibility antigen (miHA)-mismatched GVHD animal models may be a good option when studying clinically relevant questions in the field of allo-HSCT.
Collapse
Affiliation(s)
- K Riesner
- Department of Hematology, Oncology and Tumor Immunology, Charité University Medicine, Berlin, Germany
| | - M Kalupa
- Department of Hematology, Oncology and Tumor Immunology, Charité University Medicine, Berlin, Germany
| | - Y Shi
- Department of Hematology, Oncology and Tumor Immunology, Charité University Medicine, Berlin, Germany
| | - S Elezkurtaj
- Institute for Pathology, Charité University Medicine, Berlin, Germany
| | - O Penack
- Department of Hematology, Oncology and Tumor Immunology, Charité University Medicine, Berlin, Germany
| |
Collapse
|
193
|
Zhang XH, Zhou Y, Zhang JM, Zhou SY, Wang M, Feng R, Feng FE, Wang QM, Zhu XL, Zhao XS, Lv M, Kong Y, Chang YJ, Huang XJ. IL-35 inhibits acute graft-versus-host disease in a mouse model. Int Immunopharmacol 2015; 29:383-392. [PMID: 26507167 DOI: 10.1016/j.intimp.2015.10.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Revised: 10/16/2015] [Accepted: 10/19/2015] [Indexed: 12/13/2022]
Abstract
Acute graft-versus-host disease (aGVHD) is a serious complication of allogeneic hematopoietic stem cell transplantation (allo-HSCT). Our previous study found that the novel anti-inflammatory cytokine IL-35 could suppress aGVHD in patients after allo-HSCT. In this study, we used C57BL/6 (B6, H-2b) mice as donors and (B6×DBA/2) F1 (BDF1, H-2b×d) mice as recipients to create a model of aGVHD and explore the relationship between IL-35 and aGVHD. The mice receiving IL-35 survived longer than did the control mice. We observed that treatment with IL-35 and RAPA could reduce the incidence of aGVHD. Additionally, this treatment inhibited intestinal and thymic epithelial cell apoptosis and liver infiltration by the donor T-cells, thereby ameliorating the enteropathy and liver injury caused by aGVHD. We found that IL-35 and RAPA also markedly suppressed TNF-α and IL-17A expression and enhanced IFN-γ expression in the intestine and liver. We measured Tregs in spleen and found that IL-35 and RAPA treatment expanded the number of Tregs in spleen. We found that the phosphorylation of STAT1 and STAT4 were inhibited in mice with aGVHD. In contrast, STAT1 and STAT4 were phosphorylated when the mice were treated with IL-35. IL-35 may have therapeutic potential in the treatment of aGVHD after allo-HSCT.
Collapse
Affiliation(s)
- Xiao-Hui Zhang
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing, China; Collaborative Innovation Center of Hematology, Peking University, China.
| | - Yi Zhou
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing, China
| | - Jia-Min Zhang
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing, China
| | - Shi-Yuan Zhou
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing, China; Collaborative Innovation Center of Hematology, Peking University, China
| | - Min Wang
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing, China
| | - Ru Feng
- Department of Hematology, Beijing Hospital, Ministry of Health, Beijing, China
| | - Fer-Er Feng
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing, China
| | - Qian-Ming Wang
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing, China
| | - Xiao-Lu Zhu
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing, China
| | - Xiao-Su Zhao
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing, China
| | - Meng Lv
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing, China
| | - Yuan Kong
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing, China
| | - Ying-Jun Chang
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing, China
| | - Xiao-Jun Huang
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing, China; Collaborative Innovation Center of Hematology, Peking University, China
| |
Collapse
|
194
|
Cancer immunotherapy utilizing gene-modified T cells: From the bench to the clinic. Mol Immunol 2015; 67:46-57. [DOI: 10.1016/j.molimm.2014.12.009] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 12/12/2014] [Accepted: 12/17/2014] [Indexed: 01/02/2023]
|
195
|
Choi S, Reddy P. Principles of hematopoietic cell transplantation. Transpl Immunol 2015. [DOI: 10.1002/9781119072997.ch9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
196
|
Cytokine serum levels during post-transplant adverse events in 61 pediatric patients after hematopoietic stem cell transplantation. BMC Cancer 2015; 15:607. [PMID: 26315105 PMCID: PMC4552308 DOI: 10.1186/s12885-015-1616-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Accepted: 08/21/2015] [Indexed: 02/07/2023] Open
Abstract
Background Veno-occlusive disease, Graft-versus-Host disease, invasive or localized bacterial, viral and fungal infections are known as adverse events after hematopoietic stem cell transplantation representing the major cause for morbidity and mortality. Detection and differentiation of these adverse events are based on clinical symptoms and routine measurements of laboratory parameters. Methods To identify the role of cytokines as a possible complication-marker for adverse events, 61 consecutive pediatric patients with a median age of 7.0 years who underwent hematopoietic stem cell transplantation were enrolled in this single-center retrospective study. Interleukin-1 beta (IL-1β), soluble interleukin-2 receptor (sIL-2R), interleukin-6 (IL-6), interleukin-8 (IL-8), interleukin-10 (IL-10) and tumor necrosis factor-α serum (TNF-α) levels were regularly assessed after transplantation and during transplantation related adverse events. Results Veno-occlusive disease was accompanied by a significant increase in levels of IL-6, IL-8 and TNF-α.Graft-versus-Host disease was associated with a significant increase of IL-10, sIL-2R, IL-6 and TNF-α, depending on the respective stage or grade. Cytokine IL-6 enabled a significant differentiation between sepsis and fungemia, sepsis and viremia, and sepsis and bacteremia. Moreover, cytokine IL-8 enabled a significant differentiation between sepsis and viremia, sepsis and bacteremia, and bacteremia and viremia whereas IL-10 made a distinction between sepsis and viremia possible. Conclusion The data demonstrate that proinflammatory cytokines might be putative indicators for early detection and differentiation of post-transplant adverse events and may allow prompt and adequate clinical intervention. Prospective clinical trials are needed to evaluate these findings.
Collapse
|
197
|
GVHD-associated, inflammasome-mediated loss of function in adoptively transferred myeloid-derived suppressor cells. Blood 2015; 126:1621-8. [PMID: 26265697 DOI: 10.1182/blood-2015-03-634691] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 07/24/2015] [Indexed: 02/08/2023] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) are a naturally occurring immune regulatory population associated with inhibition of ongoing inflammatory responses. In vitro generation of MDSCs from bone marrow has been shown to enhance survival in an acute model of lethal graft-versus-host disease (GVHD). However, donor MDSC infusion only partially ameliorates GVHD lethality. In order to improve the potential therapeutic benefit and ultimately survival outcomes, we set out to investigate the fate of MDSCs after transfer in the setting of acute GVHD (aGVHD). MDSCs transferred to lethally irradiated recipients of allogeneic donor hematopoietic grafts are exposed to an intense inflammatory environment associated with aGVHD, which we now show directly undermines their suppressive capacity. Under a conditioning regimen and GVHD inflammatory settings, MDSCs rapidly lose suppressor function and their potential to inhibit GVHD lethality, which is associated with their induced conversion toward a mature inflammasome-activated state. We find even brief in vitro exposure to inflammasome-activating mediators negates the suppressive potential of cultured murine and human-derived MDSCs. Consistent with a role for the inflammasome, donor MDSCs deficient in the adaptor ASC (apoptosis-associated speck-like protein containing a CARD), which assembles inflammasome complexes, conferred improved survival of mice developing GVHD compared with wild-type donor MDSCs. These data suggest the use of MDSCs as a therapeutic approach for preventing GVHD and other systemic inflammatory conditions will be more effective when combined with approaches limiting in vivo MDSC inflammasome activation, empowering MDSCs to maintain their suppressive potential.
Collapse
|
198
|
Atorvastatin for the Prophylaxis of Acute Graft-versus-Host Disease in Patients Undergoing HLA-Matched Related Donor Allogeneic Hematopoietic Stem Cell Transplantation (allo-HCT). Biol Blood Marrow Transplant 2015; 22:71-9. [PMID: 26256940 DOI: 10.1016/j.bbmt.2015.07.034] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 07/29/2015] [Indexed: 01/01/2023]
Abstract
Statins possess potent immunomodulatory effects that may play a role in preventing acute graft-versus-host disease (aGVHD) after allogeneic hematopoietic cell transplantation (allo-HCT). We performed a phase II study of atorvastatin for aGVHD prophylaxis when given to allo-HCT recipients and their HLA-matched sibling donors. Atorvastatin (40 mg/day) was administered to sibling donors, beginning 14 days before the anticipated start of stem cell collection. Allo-HCT recipients (n = 40) received atorvastatin (40 mg/day) in addition to standard aGVHD prophylaxis. The primary endpoint was cumulative incidence of grades II to IV aGVHD at day 100. Atorvastatin was well tolerated, with no attributable grades III to IV toxicities in donors or their recipients. Day 100 and 180 cumulative incidences of grades II to IV aGVHD were 30% (95% confidence interval [CI], 17% to 45%) and 40% (95% CI, 25% to 55%), respectively. One-year cumulative incidence of chronic GVHD was 43% (95% CI, 32% to 69%). One-year nonrelapse mortality and relapse incidences were 5.5% (95% CI, .9% to 16.5%) and 38% (95% CI, 18% to 47%), respectively. One-year progression-free and overall survival rates were 54% (95% CI, 38% to 71%) and 82% (95% CI, 69% to 94%). One-year GVHD-free, relapse-free survival was 27% (95% CI, 16% to 47%). These results did not differ from our historical control subjects (n = 96). Although safe and tolerable, the addition of atorvastatin did not appear to provide any benefit to standard GVHD prophylaxis alone.
Collapse
|
199
|
Effect of the order of TBI and cyclophosphamide administration on the outcome of allogeneic hematopoietic stem cell transplantation. Bone Marrow Transplant 2015; 50:1476-9. [PMID: 26191948 DOI: 10.1038/bmt.2015.142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
200
|
Henden AS, Hill GR. Cytokines in Graft-versus-Host Disease. THE JOURNAL OF IMMUNOLOGY 2015; 194:4604-12. [PMID: 25934923 DOI: 10.4049/jimmunol.1500117] [Citation(s) in RCA: 139] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Graft-versus-host disease (GVHD) is a complication of allogeneic bone marrow transplantation whereby transplanted naive and marrow-derived T cells damage recipient tissue through similar mechanisms to those that allow destruction of malignant cells, the therapeutic intent of bone marrow transplantation. The manifestations and severity of GVHD are highly variable and are influenced by the proportions of naive cells maturing along regulatory T cell, Th1, Th2, or Th17 phenotypes. This maturation is largely influenced by local cytokines, which, in turn, activate transcription factors and drive development toward a dominant phenotype. In addition, proinflammatory cytokines exert direct effects on GVHD target tissues. Our knowledge of the role that cytokines play in orchestrating GVHD is expanding rapidly and parallels other infective and inflammatory conditions in which a predominant T cell signature is causative of pathology. Because a broad spectrum of cytokine therapies is now routinely used in clinical practice, they are increasingly relevant to transplant medicine.
Collapse
Affiliation(s)
- Andrea S Henden
- Bone Marrow Transplantation Laboratory, QIMR Berghofer Medical Research Institute, Brisbane 4006, Queensland, Australia; and The Royal Brisbane and Women's Hospital, Brisbane 4029, Queensland, Australia
| | - Geoffrey R Hill
- Bone Marrow Transplantation Laboratory, QIMR Berghofer Medical Research Institute, Brisbane 4006, Queensland, Australia; and The Royal Brisbane and Women's Hospital, Brisbane 4029, Queensland, Australia
| |
Collapse
|