151
|
Lohfeld L, Kangombe-Ngwenya T, Winters AM, Chisha Z, Hamainza B, Kamuliwo M, Miller JM, Burns M, Bridges DJ. A qualitative review of implementer perceptions of the national community-level malaria surveillance system in Southern Province, Zambia. Malar J 2016; 15:400. [PMID: 27502213 PMCID: PMC4977701 DOI: 10.1186/s12936-016-1455-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 07/28/2016] [Indexed: 11/12/2022] Open
Abstract
Background Parts of Zambia with very low malaria parasite prevalence and high coverage of vector control interventions are targeted for malaria elimination through a series of interventions including reactive case detection (RCD) at community level. When a symptomatic individual presenting to a community health worker (CHW) or government clinic is diagnostically confirmed as an incident malaria case an RCD response is initiated. This consists of a CHW screening the community around the incident case with rapid diagnostic tests (RDT) and treating positive cases with artemether-lumefantrine (AL, Coartem™) in accordance with national policy. Since its inception in 2011, Zambia’s RCD programme has relied on anecdotal feedback from staff to identify issues and possible solutions. In 2014, a systematic qualitative programme review was conducted to determine perceptions around malaria rates, incentives, operational challenges and solutions according to CHWs, their supervisors and district-level managers. Methods A criterion-based sampling framework based on training regime and performance level was used to select nine rural health posts in four districts of Southern Province. Twenty-two staff interviews were completed to produce English or bilingual (CiTonga or Silozi + English) verbatim transcripts, which were then analysed using thematic framework analysis. Results CHWs, their supervisors and district-level managers strongly credited the system with improving access to malaria services and significantly reducing the number of cases in their area. The main implementation barriers included access (e.g., lack of rain gear, broken bicycles), insufficient number of CHWs for programme coverage, communication (e.g. difficulties maintaining cell phones and “talk time” to transmit data by phone), and inconsistent supply chain (e.g., inadequate numbers of RDT kits and anti-malarial drugs to test and treat uncomplicated cases). Conclusions This review highlights the importance of a community surveillance system like RCD in shaping Zambia’s malaria elimination campaign by identifying community-based infections that might otherwise remain undetected. At this stage the system must ensure it can meet growing public demand by providing CHWs the tools and materials they need to consistently carry out their work and expand programme reach to more isolated communities. Results from this review will be used to plan programme scale-up into other parts of Zambia.
Collapse
Affiliation(s)
- Lynne Lohfeld
- Bachelor of Health Sciences (Honours) Program, McMaster University, Hamilton, ON, Canada
| | | | - Anna M Winters
- Akros, Cresta Golfview Grounds, Great East Road, Lusaka, Zambia
| | - Zunda Chisha
- Akros, Cresta Golfview Grounds, Great East Road, Lusaka, Zambia
| | - Busiku Hamainza
- National Malaria Control Centre, Government of Zambia Ministry of Health, Lusaka, Zambia
| | - Mulakwa Kamuliwo
- National Malaria Control Centre, Government of Zambia Ministry of Health, Lusaka, Zambia
| | - John M Miller
- Malaria Control and Evaluation Partnership in Africa (MACEPA/PATH), Lusaka, Zambia
| | - Matthew Burns
- Akros, Cresta Golfview Grounds, Great East Road, Lusaka, Zambia
| | - Daniel J Bridges
- Akros, Cresta Golfview Grounds, Great East Road, Lusaka, Zambia.
| |
Collapse
|
152
|
Hirani K, Payne D, Mutch R, Cherian S. Health of adolescent refugees resettling in high-income countries. Arch Dis Child 2016; 101:670-6. [PMID: 26471111 DOI: 10.1136/archdischild-2014-307221] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 09/23/2015] [Indexed: 12/14/2022]
Abstract
Adolescent refugees are a vulnerable population with complex healthcare needs that are distinct from younger and older age groups. Physical health problems are common in this cohort with communicable diseases being the focus of attention followed by an emphasis on nutritional deficiencies and other chronic disorders. Adolescent refugees have also often experienced multiple traumatic stressors and are at a heightened risk of developing mental health problems. Navigating these problems at the time of pubertal development adds further challenges and can exacerbate or lead to the emergence of health risk behaviours. Educational difficulties and acculturation issues further compound these issues. Adolescents who have had experiences in detention or are unaccompanied by parents are particularly at risk. Despite a constantly growing number of adolescent refugees resettling in high-income countries, knowledge regarding their specific healthcare needs is limited. Research data are largely extrapolated from studies conducted within paediatric and adult cohorts. Holistic management of the medical and psychological issues faced by this group is challenging and requires an awareness of the socioeconomic factors that can have an impact on effective healthcare delivery. Legal and ethical issues can further complicate their management and addressing these in a culturally appropriate manner is essential. Early identification and management of the healthcare issues faced by adolescent refugees resettling in high-income countries are key to improving long-term health outcomes and future healthcare burden. This review article aims to increase knowledge and awareness of these issues among paediatricians and other health professionals.
Collapse
Affiliation(s)
- Kajal Hirani
- Department of Adolescent Medicine and Eating Disorders, Princess Margaret Hospital for Children, Perth, Western Australia, Australia School of Paediatrics and Child Health, University of Western Australia, Perth, Western Australia, Australia
| | - Donald Payne
- Department of Adolescent Medicine and Eating Disorders, Princess Margaret Hospital for Children, Perth, Western Australia, Australia School of Paediatrics and Child Health, University of Western Australia, Perth, Western Australia, Australia
| | - Raewyn Mutch
- Telethon Kids Institute, Western Australia, Australia Refugee Health Service, Department of General Paediatrics, Princess Margaret Hospital for Children, Perth, Western Australia, Australia
| | - Sarah Cherian
- School of Paediatrics and Child Health, University of Western Australia, Perth, Western Australia, Australia Refugee Health Service, Department of General Paediatrics, Princess Margaret Hospital for Children, Perth, Western Australia, Australia
| |
Collapse
|
153
|
Pinchoff J, Chaponda M, Shields TM, Sichivula J, Muleba M, Mulenga M, Kobayashi T, Curriero FC, Moss WJ. Individual and Household Level Risk Factors Associated with Malaria in Nchelenge District, a Region with Perennial Transmission: A Serial Cross-Sectional Study from 2012 to 2015. PLoS One 2016; 11:e0156717. [PMID: 27281028 PMCID: PMC4900528 DOI: 10.1371/journal.pone.0156717] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 05/18/2016] [Indexed: 11/18/2022] Open
Abstract
Background The scale-up of malaria control interventions has resulted in substantial declines in transmission in some but not all regions of sub-Saharan Africa. Understanding factors associated with persistent malaria transmission despite control efforts may guide targeted interventions to high-risk areas and populations. Methods Household malaria surveys were conducted in Nchelenge District, Luapula Province, in northern Zambia. Structures that appeared to be households were enumerated from a high-resolution satellite image and randomly sampled for enrollment. Households were enrolled into cross-sectional (single visit) or longitudinal (visits every other month) cohorts but analyses were restricted to cross-sectional visits and the first visit to longitudinal households. During study visits, a questionnaire was administered to adults and caretakers of children and a blood sample was collected for a malaria rapid diagnostic test (RDT) from all household residents. Characteristics associated with RDT positivity were analyzed using multi-level models. Results A total of 2,486 individuals residing within 742 households were enrolled between April 2012 and July 2015. Over this period, 51% of participants were RDT positive. Forty-three percent of all RDT positive individuals were between the ages of 5 and 17 years although this age group comprised only 30% of study participants. In a multivariable model, the odds being RDT positive were highest in 5–17 year olds and did not vary by season. Children 5–17 years of age had 8.83 higher odds of being RDT positive compared with those >18 years of age (95% CI: 6.13, 12.71); there was an interaction between age and report of symptoms, with an almost 50% increased odds of report of symptoms with decreasing age category (OR = 1.49; 95% CI 1.11, 2.00). Conclusions Children and adolescents between the ages of 5 and 17 were at the highest risk of malaria infection throughout the year. School-based programs may be effective at targeting this high-risk group.
Collapse
Affiliation(s)
- Jessie Pinchoff
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | | | - Timothy M Shields
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | | | | | | | - Tamaki Kobayashi
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Frank C Curriero
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - William J Moss
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | | |
Collapse
|
154
|
Chang HH, Childs LM, Buckee CO. Variation in infection length and superinfection enhance selection efficiency in the human malaria parasite. Sci Rep 2016; 6:26370. [PMID: 27193195 PMCID: PMC4872237 DOI: 10.1038/srep26370] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 04/28/2016] [Indexed: 01/08/2023] Open
Abstract
The capacity for adaptation is central to the evolutionary success of the human malaria parasite Plasmodium falciparum. Malaria epidemiology is characterized by the circulation of multiple, genetically diverse parasite clones, frequent superinfection, and highly variable infection lengths, a large number of which are chronic and asymptomatic. The impact of these characteristics on the evolution of the parasite is largely unknown, however, hampering our understanding of the impact of interventions and the emergence of drug resistance. In particular, standard population genetic frameworks do not accommodate variation in infection length or superinfection. Here, we develop a population genetic model of malaria including these variations, and show that these aspects of malaria infection dynamics enhance both the probability and speed of fixation for beneficial alleles in complex and non-intuitive ways. We find that populations containing a mixture of short- and long-lived infections promote selection efficiency. Interestingly, this increase in selection efficiency occurs even when only a small fraction of the infections are chronic, suggesting that selection can occur efficiently in areas of low transmission intensity, providing a hypothesis for the repeated emergence of drug resistance in the low transmission setting of Southeast Asia.
Collapse
Affiliation(s)
- Hsiao-Han Chang
- Center for Communicable Disease Dynamics, Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Lauren M Childs
- Center for Communicable Disease Dynamics, Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Caroline O Buckee
- Center for Communicable Disease Dynamics, Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| |
Collapse
|
155
|
Arévalo-Herrera M, Lopez-Perez M, Dotsey E, Jain A, Rubiano K, Felgner PL, Davies DH, Herrera S. Antibody Profiling in Naïve and Semi-immune Individuals Experimentally Challenged with Plasmodium vivax Sporozoites. PLoS Negl Trop Dis 2016; 10:e0004563. [PMID: 27014875 PMCID: PMC4807786 DOI: 10.1371/journal.pntd.0004563] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 02/29/2016] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Acquisition of malaria immunity in low transmission areas usually occurs after relatively few exposures to the parasite. A recent Plasmodium vivax experimental challenge trial in malaria naïve and semi-immune volunteers from Colombia showed that all naïve individuals developed malaria symptoms, whereas semi-immune subjects were asymptomatic or displayed attenuated symptoms. Sera from these individuals were analyzed by protein microarray to identify antibodies associated with clinical protection. METHODOLOGY/PRINCIPAL FINDINGS Serum samples from naïve (n = 7) and semi-immune (n = 9) volunteers exposed to P. vivax sporozoite-infected mosquito bites were probed against a custom protein microarray displaying 515 P. vivax antigens. The array revealed higher serological responses in semi-immune individuals before the challenge, although malaria naïve individuals also had pre-existing antibodies, which were higher in Colombians than US adults (control group). In both experimental groups the response to the P. vivax challenge peaked at day 45 and returned to near baseline at day 145. Additional analysis indicated that semi-immune volunteers without fever displayed a lower response to the challenge, but recognized new antigens afterwards. CONCLUSION Clinical protection against experimental challenge in volunteers with previous P. vivax exposure was associated with elevated pre-existing antibodies, an attenuated serological response to the challenge and reactivity to new antigens.
Collapse
Affiliation(s)
- Myriam Arévalo-Herrera
- Malaria Vaccine and Drug Development Center (MVDC), Cali, Colombia
- Faculty of Health, Universidad del Valle, Cali, Colombia
| | - Mary Lopez-Perez
- Malaria Vaccine and Drug Development Center (MVDC), Cali, Colombia
- Caucaseco Scientific Research Center, Cali, Colombia
| | - Emmanuel Dotsey
- Department of Medicine, University of California Irvine, Irvine, California, United States of America
| | - Aarti Jain
- Department of Medicine, University of California Irvine, Irvine, California, United States of America
| | - Kelly Rubiano
- Malaria Vaccine and Drug Development Center (MVDC), Cali, Colombia
| | - Philip L. Felgner
- Department of Medicine, University of California Irvine, Irvine, California, United States of America
| | - D. Huw Davies
- Department of Medicine, University of California Irvine, Irvine, California, United States of America
| | - Sócrates Herrera
- Malaria Vaccine and Drug Development Center (MVDC), Cali, Colombia
- Caucaseco Scientific Research Center, Cali, Colombia
| |
Collapse
|
156
|
Vallejo AF, García J, Amado-Garavito AB, Arévalo-Herrera M, Herrera S. Plasmodium vivax gametocyte infectivity in sub-microscopic infections. Malar J 2016; 15:48. [PMID: 26822406 PMCID: PMC4730736 DOI: 10.1186/s12936-016-1104-1] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 01/14/2016] [Indexed: 01/07/2023] Open
Abstract
Background The use of molecular techniques has put in the spotlight the existence of a large mass of malaria sub-microscopic infections among apparently healthy populations. These sub-microscopic infections are considered an important pool for maintained malaria transmission. Methods In order to assess the appearance of Plasmodium vivax gametocytes in circulation, gametocyte density and the parasite infectivity to Anopheles mosquitoes, a study was designed to compare three groups of volunteers either experimentally infected with P. vivax sporozoites (early infections; n = 16) or naturally infected patients (acute malaria, n = 16 and asymptomatic, n = 14). In order to determine gametocyte stage, a quantitative reverse transcriptase PCR (RT-qPCR) assay targeting two sexual stage-specific molecular markers was used. Parasite infectivity was assessed by membrane feeding assays (MFA). Results In early infections P. vivax gametocytes could be detected starting at day 7 without giving rise to infected mosquitoes during 13 days of follow-up. Asymptomatic carriers, with presumably long-lasting infections, presented the highest proportion of mature gametocytes and were as infective as acute patients. Conclusions This study shows the potential role of P. vivax asymptomatic carriers in malaria transmission should be considered when new policies are envisioned to redirect malaria control strategies towards targeting asymptomatic infections as a tool for malaria elimination. Electronic supplementary material The online version of this article (doi:10.1186/s12936-016-1104-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Andrés F Vallejo
- Malaria Vaccine and Drug Development Centre (MVDC), Cali, Colombia.
| | - Jhon García
- Malaria Vaccine and Drug Development Centre (MVDC), Cali, Colombia.
| | | | - Myriam Arévalo-Herrera
- Caucaseco Scientific Research Centre (CSRC)/Centro Latino Americano de Investigación en Malaria (CLAIM), Cali, Colombia. .,Facultad de Salud, Universidad del Valle, Cali, Colombia.
| | - Sócrates Herrera
- Malaria Vaccine and Drug Development Centre (MVDC), Cali, Colombia. .,Caucaseco Scientific Research Centre (CSRC)/Centro Latino Americano de Investigación en Malaria (CLAIM), Cali, Colombia.
| |
Collapse
|
157
|
Rapid Point-of-Care Diagnosis of Malaria and Dengue Infection. Mol Microbiol 2016. [DOI: 10.1128/9781555819071.ch42] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
158
|
AMIRSHEKARI MB, NATEGHPOUR M, RAEISI A, MOTEVALLI HAGHI A, FARIVAR L, EDRISSIAN G. Determination of Asymptomatic Malaria among Afghani and Pakistani Immigrants and Native Population in South of Kerman Province, Iran. IRANIAN JOURNAL OF PARASITOLOGY 2016; 11:247-252. [PMID: 28096860 PMCID: PMC5236103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND This study was proposed to monitor the situation of asymptomatic malaria among the native population and Afghani and Pakistani immigrants in Kahnooj and Ghale-Ganj districts from Kerman Province, Southeastern Iran. METHODS A number of 180 and 120 individuals from Kahnooj and Ghale-Ganj respectively were registered and considered based on a cross-sectional surveillance method. From 300 registered cases, 200 individuals (66.7%) were selected among Afghani and Pakistani immigrants and the rest (33.3%) were native resident individuals. All samples were processed with employing microscopical examination, Rapid Diagnostic Tests (RDTs) and Semi- nested Multiplex PCR techniques. RESULTS None of the samples collected from native residents showed any malaria parasite, but among Afghani immigrants, one asymptomatic vivax malaria was detected in a 12 yr old girl with 280 parasites per microliter of blood. Moreover, one symptomatic vivax malaria was detected from a Pakistani immigrant with 47560 parasites per microliter of blood. All results obtained via microscopical method, confirmed by RDTs and PCR techniques. CONCLUSION To achieve the malaria elimination program different studies are needed that to be performed. Monitoring the asymptomatic malaria in all over the malaria endemic areas especially among the immigrant individuals is the most crucial necessity.
Collapse
Affiliation(s)
- Mohammad Bagher AMIRSHEKARI
- Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi NATEGHPOUR
- Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran,Center for Research of Endemic Parasites in Iran (CREPI), Tehran University of Medical Sciences, Tehran, Iran,Correspondence
| | - Ahmad RAEISI
- Center for Disease Control and Management, Ministry of Health &Medical Education, Tehran, Iran
| | - Afsaneh MOTEVALLI HAGHI
- Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Leila FARIVAR
- Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Gholamhosein EDRISSIAN
- Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
159
|
Galatas B, Bassat Q, Mayor A. Malaria Parasites in the Asymptomatic: Looking for the Hay in the Haystack. Trends Parasitol 2015; 32:296-308. [PMID: 26708404 DOI: 10.1016/j.pt.2015.11.015] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 11/21/2015] [Accepted: 11/24/2015] [Indexed: 12/11/2022]
Abstract
With malaria elimination back on the international agenda, programs face the challenge of targeting all Plasmodium infections, not only symptomatic cases. As asymptomatic individuals are unlikely to seek treatment, they are missed by passive surveillance while remaining infectious to mosquitoes, thus acting as silent reservoirs of transmission. To estimate the risk of asymptomatic infections in various phases of malaria elimination, we need a deeper understanding of the underlying mechanisms favoring carriage over disease, which may involve both pathogen and host factors. Here we review our current knowledge on the determinants leading to Plasmodium falciparum symptomless infections. Understanding the host-pathogen interactions that are most likely to affect transitions between malaria disease states could guide the development of tools to tackle asymptomatic carriers in elimination settings.
Collapse
Affiliation(s)
- Beatriz Galatas
- ISGlobal, Barcelona Centre for International Health Research (CRESIB), Hospital Clínic - Universitat de Barcelona, Barcelona, Spain; Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Quique Bassat
- ISGlobal, Barcelona Centre for International Health Research (CRESIB), Hospital Clínic - Universitat de Barcelona, Barcelona, Spain; Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Alfredo Mayor
- ISGlobal, Barcelona Centre for International Health Research (CRESIB), Hospital Clínic - Universitat de Barcelona, Barcelona, Spain; Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique.
| |
Collapse
|
160
|
Mendonça VRD, Barral-Netto M. Immunoregulation in human malaria: the challenge of understanding asymptomatic infection. Mem Inst Oswaldo Cruz 2015; 110:945-55. [PMID: 26676319 PMCID: PMC4708013 DOI: 10.1590/0074-02760150241] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 10/23/2015] [Indexed: 12/21/2022] Open
Abstract
Asymptomatic Plasmodium infection carriers represent a major threat
to malaria control worldwide as they are silent natural reservoirs and do not seek
medical care. There are no standard criteria for
asymptomaticPlasmodium infection; therefore, its diagnosis relies
on the presence of the parasite during a specific period of symptomless infection.
The antiparasitic immune response can result in reducedPlasmodium
sp. load with control of disease manifestations, which leads to asymptomatic
infection. Both the innate and adaptive immune responses seem to play major roles in
asymptomatic Plasmodiuminfection; T regulatory cell activity
(through the production of interleukin-10 and transforming growth factor-β) and
B-cells (with a broad antibody response) both play prominent roles. Furthermore,
molecules involved in the haem detoxification pathway (such as haptoglobin and haeme
oxygenase-1) and iron metabolism (ferritin and activated c-Jun N-terminal kinase)
have emerged in recent years as potential biomarkers and thus are helping to unravel
the immune response underlying asymptomatic Plasmodium infection.
The acquisition of large data sets and the use of robust statistical tools, including
network analysis, associated with well-designed malaria studies will likely help
elucidate the immune mechanisms responsible for asymptomatic infection.
Collapse
Affiliation(s)
- Vitor R de Mendonça
- Centro de Pesquisas Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, BA, Brasil
| | - Manoel Barral-Netto
- Centro de Pesquisas Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, BA, Brasil
| |
Collapse
|
161
|
Nzobo BJ, Ngasala BE, Kihamia CM. Prevalence of asymptomatic malaria infection and use of different malaria control measures among primary school children in Morogoro Municipality, Tanzania. Malar J 2015; 14:491. [PMID: 26630884 PMCID: PMC4668698 DOI: 10.1186/s12936-015-1009-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 11/24/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Malaria is a public health problem in Tanzania affecting all age groups. It is known that school children are the age group most commonly infected with malaria parasites. Their infections are usually asymptomatic, go unnoticed and thus never get treated, result in anaemia, reduced ability to concentrate and learn in school and if fallen sick may lead to school absenteeism. Effective malaria control requires frequent evaluation of effectiveness of different malaria interventions. METHODS A cross-sectional study design involving 317 out of 350 school children aged 6-13 years from five primary schools within municipality was conducted. Multistage cluster sampling and simple random sampling methods were used to obtain primary school and study participants, respectively. Finger-prick blood samples were collected for Plasmodium parasite detection by malaria rapid diagnostic test (mRDT) and haemoglobin level assessment by Easy Touch(®) GHb system machine. A questionnaire was administered to assess use of insecticide-treated nets (ITNs) and anti-malarial drugs. RESULTS The prevalence of asymptomatic malaria was 5.4 % (95 % CI 3.3-8.6 %) and anaemia was 10.1 % (95 % CI 7.2-13.9 %). School children aged 6-9 years were more affected by malaria than those aged 10-13 years. The proportion of ITNs used was 90.6 % (95 % CI 86.3-93.9 %) while that of artemisinin combination therapy (ACT) was 71.9 % (95 % CI 66.2-77.1 %). CONCLUSION Findings show existence of asymptomatic malaria and walking anaemia among primary school children in Morogoro municipality. The majority of school children reported use of ITNs and ACT for malaria control. These findings provide a rationale for using schools and school children to assess effectiveness of malaria interventions.
Collapse
Affiliation(s)
- Baraka J Nzobo
- Department of Parasitology and Medical Entomology, Muhimbili University of Health and Allied Sciences, PO Box 65011, Dar es Salaam, Tanzania.
| | - Billy E Ngasala
- Department of Parasitology and Medical Entomology, Muhimbili University of Health and Allied Sciences, PO Box 65011, Dar es Salaam, Tanzania.
| | - Charles M Kihamia
- Department of Parasitology and Medical Entomology, Muhimbili University of Health and Allied Sciences, PO Box 65011, Dar es Salaam, Tanzania.
| |
Collapse
|
162
|
From within host dynamics to the epidemiology of infectious disease: Scientific overview and challenges. Math Biosci 2015; 270:143-55. [PMID: 26474512 DOI: 10.1016/j.mbs.2015.10.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Since their earliest days, humans have been struggling with infectious diseases. Caused by viruses, bacteria, protozoa, or even higher organisms like worms, these diseases depend critically on numerous intricate interactions between parasites and hosts, and while we have learned much about these interactions, many details are still obscure. It is evident that the combined host-parasite dynamics constitutes a complex system that involves components and processes at multiple scales of time, space, and biological organization. At one end of this hierarchy we know of individual molecules that play crucial roles for the survival of a parasite or for the response and survival of its host. At the other end, one realizes that the spread of infectious diseases by far exceeds specific locales and, due to today's easy travel of hosts carrying a multitude of organisms, can quickly reach global proportions. The community of mathematical modelers has been addressing specific aspects of infectious diseases for a long time. Most of these efforts have focused on one or two select scales of a multi-level disease and used quite different computational approaches. This restriction to a molecular, physiological, or epidemiological level was prudent, as it has produced solid pillars of a foundation from which it might eventually be possible to launch comprehensive, multi-scale modeling efforts that make full use of the recent advances in biology and, in particular, the various high-throughput methodologies accompanying the emerging -omics revolution. This special issue contains contributions from biologists and modelers, most of whom presented and discussed their work at the workshop From within Host Dynamics to the Epidemiology of Infectious Disease, which was held at the Mathematical Biosciences Institute at Ohio State University in April 2014. These contributions highlight some of the forays into a deeper understanding of the dynamics between parasites and their hosts, and the consequences of this dynamics for the spread and treatment of infectious diseases.
Collapse
|
163
|
Childs LM, Buckee CO. Dissecting the determinants of malaria chronicity: why within-host models struggle to reproduce infection dynamics. J R Soc Interface 2015; 12:20141379. [PMID: 25673299 PMCID: PMC4345506 DOI: 10.1098/rsif.2014.1379] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The duration of infection is fundamental to the epidemiological behaviour of any infectious disease, but remains one of the most poorly understood aspects of malaria. In endemic areas, the malaria parasite Plasmodium falciparum can cause both acute, severe infections and asymptomatic, chronic infections through its interaction with the host immune system. Frequent superinfection and massive parasite genetic diversity make it extremely difficult to accurately measure the distribution of infection lengths, complicating the estimation of basic epidemiological parameters and the prediction of the impact of interventions. Mathematical models have qualitatively reproduced parasite dynamics early during infection, but reproducing long-lived chronic infections remains much more challenging. Here, we construct a model of infection dynamics to examine the consequences of common biological assumptions for the generation of chronicity and the impact of co-infection. We find that although a combination of host and parasite heterogeneities are capable of generating chronic infections, they do so only under restricted parameter choices. Furthermore, under biologically plausible assumptions, co-infection of parasite genotypes can alter the course of infection of both the resident and co-infecting strain in complex non-intuitive ways. We outline the most important puzzles for within-host models of malaria arising from our analysis, and their implications for malaria epidemiology and control.
Collapse
Affiliation(s)
- Lauren M Childs
- Center for Communicable Disease Dynamics, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA
| | - Caroline O Buckee
- Center for Communicable Disease Dynamics, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA
| |
Collapse
|
164
|
Golassa L, Baliraine FN, Enweji N, Erko B, Swedberg G, Aseffa A. Microscopic and molecular evidence of the presence of asymptomatic Plasmodium falciparum and Plasmodium vivax infections in an area with low, seasonal and unstable malaria transmission in Ethiopia. BMC Infect Dis 2015; 15:310. [PMID: 26242405 PMCID: PMC4526179 DOI: 10.1186/s12879-015-1070-1] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 07/29/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The presence of asymptomatic infections has serious implications for malaria elimination campaigns. Since asymptomatic carriers do not seek treatment for their infection and may become gametocyte carriers, they undoubtedly contribute to the persistence of malaria transmission in a population. The presence of asymptomatic parasitemias was noted in areas with seasonal malaria transmission. In Ethiopia there is a paucity of data regarding the prevalence of asymptomatic malaria carriage. This study was undertaken to assess the presence and prevalence of asymptomatic Plasmodium falciparum and Plasmodium vivax infections in south-central Oromia, Ethiopia. METHODS A total of 1094 apparently healthy individuals ≥ 2 years of age in south-central Oromia, Ethiopia, an area with seasonal and unstable malaria transmission, were screened for the presence of asymptomatic plasmodial infections. Finger-prick blood samples were taken from each participant for blood film preparation for microscopy and the rapid diagnostic test (RDT). Blood samples were also spotted on Whatman 3MM filter paper for parasite DNA extraction. RESULTS The prevalence of asymptomatic Plasmodium carriage (P. falciparum, P. vivax and mixed species) was 5.0 % (55/1,094) as determined by microscopy, while the prevalence as determined using RDT was 8.2 % (90/1,094). PCR was done on 47 of 55 microscopy-confirmed and on 79 of 90 RDT-confirmed samples. PCR detected parasite DNA in 89.4 % (42/47) of the microscopy-positive samples and in 77.2 % (61/79) of the RDT-positive samples. No significant difference was observed in the prevalence of asymptomatic P. falciparum or P. vivax infections in the study area (P > 0.1). However, the prevalence of asymptomatic parasitaemia was significantly associated with gender (OR = 0.47, P = 0.015; being higher in males than females) and age (X(2) = 25, P < 0.001; being higher in younger than in older individuals). Age and parasite densities had an inverse relationship. CONCLUSIONS This study confirms the presence of asymptomatic P. falciparum and P. vivax infections in south-central Oromia, an area with low, seasonal and unstable malaria transmission in Ethiopia. Of 55 microscopically confirmed asymptomatic infections, P. falciparum monoinfection accounted for 45.5 % and of 90 RDT positive asymptomatic infections, 66.7 % were P. falciparum. Although not statistically significant, P. falciparum accounted for a relatively large number of the asymptomatic infections as determined by both tests. The prevalence of asymptomatic parasitaemia was highest in the younger age group. HRP-2-based RDTs specific for P. falciparum showed high false positivity rate compared to Plasmodium lactate dehydrogenase (pLDH) specific to P. vivax. Although microscopy and RDT detected substantial numbers of asymptomatic infections in apparently healthy inhabitants, the use of a highly sensitive molecular diagnostics offers a more accurate assessment of the magnitude of asymptomatic infections.
Collapse
Affiliation(s)
- Lemu Golassa
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia. .,Armauer Hansen Research Institute, Addis Ababa, Ethiopia.
| | | | - Nizar Enweji
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden.
| | - Berhanu Erko
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia.
| | - Göte Swedberg
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden.
| | - Abraham Aseffa
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia.
| |
Collapse
|
165
|
Transcription Profiling of Malaria-Naïve and Semi-immune Colombian Volunteers in a Plasmodium vivax Sporozoite Challenge. PLoS Negl Trop Dis 2015; 9:e0003978. [PMID: 26244760 PMCID: PMC4526565 DOI: 10.1371/journal.pntd.0003978] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 07/13/2015] [Indexed: 02/06/2023] Open
Abstract
Background Continued exposure to malaria-causing parasites in endemic regions of malaria induces significant levels of acquired immunity in adult individuals. A better understanding of the transcriptional basis for this acquired immunological response may provide insight into how the immune system can be boosted during vaccination, and into why infected individuals differ in symptomology. Methodology/Principal Findings Peripheral blood gene expression profiles of 9 semi-immune volunteers from a Plasmodium vivax malaria prevalent region (Buenaventura, Colombia) were compared to those of 7 naïve individuals from a region with no reported transmission of malaria (Cali, Colombia) after a controlled infection mosquito bite challenge with P. vivax. A Fluidigm nanoscale quantitative RT-PCR array was used to survey altered expression of 96 blood informative transcripts at 7 timepoints after controlled infection, and RNASeq was used to contrast pre-infection and early parasitemia timepoints. There was no evidence for transcriptional changes prior to the appearance of blood stage parasites at day 12 or 13, at which time there was a strong interferon response and, unexpectedly, down-regulation of transcripts related to inflammation and innate immunity. This differential expression was confirmed with RNASeq, which also suggested perturbations of aspects of T cell function and erythropoiesis. Despite differences in clinical symptoms between the semi-immune and malaria naïve individuals, only subtle differences in their transcriptomes were observed, although 175 genes showed significantly greater induction or repression in the naïve volunteers from Cali. Conclusion/Significance Gene expression profiling of whole blood reveals the type and duration of the immune response to P. vivax infection, and highlights a subset of genes that may mediate adaptive immunity. Plasmodium vivax malaria is a debilitating, occasionally life-threatening, and economically burdensome disease in Central Latin America, where 70%- 80% of the population lives with the risk of infection. We performed a gene expression profiling experiment taking advantage of a previously described sporozoite challenge experiment in Cali, Colombia that reported more severe malaria symptoms in subjects who have never experienced malaria. We show that no major differences are seen in the transcriptomes of uninfected naïve and semi-immune volunteers prior to infection, but differential expression of both neutrophil and interferon-related genes was evident at onset of malaria. Several hundred genes showed a stronger response in the naïve individuals just as parasites appear in the peripheral blood, and these fall into several pathways of interest. These findings show how information from gene expression profiling of whole blood can reveal the type and duration of the immune response to P. vivax infection, and highlights a subset of genes that may mediate adaptive immunity in chronically exposed individuals.
Collapse
|
166
|
Salaria ON, Salaria SN, Basir R, Khaja M. A Case of Plasmodium Falciparum Malaria Presentation. Medicine (Baltimore) 2015; 94:e1415. [PMID: 26313790 PMCID: PMC4602906 DOI: 10.1097/md.0000000000001415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 07/11/2015] [Accepted: 07/27/2015] [Indexed: 11/26/2022] Open
Abstract
New York City is a multicultural city where people of different ethnicities and backgrounds from all over the world live together. Of the different ethnicities, it is home to a large population of Western African immigrants. This case report is that of an elderly female of Western African descent presenting to Lincoln Hospitals Emergency Department with fevers and fatigue.The patients travel history to Togo, along with her symptoms, resulted in a differential diagnosis which included Ebola as well as Malaria. New York City's Department of Health and Mental Hygiene was contacted for further clarification of presence of Ebola in Togo. The present case report is meant to educate about the presentation, hospital course, and differential diagnoses of a patient traveling from Western Africa with fever and chills.
Collapse
|
167
|
Walldorf JA, Cohee LM, Coalson JE, Bauleni A, Nkanaunena K, Kapito-Tembo A, Seydel KB, Ali D, Mathanga D, Taylor TE, Valim C, Laufer MK. School-Age Children Are a Reservoir of Malaria Infection in Malawi. PLoS One 2015. [PMID: 26207758 PMCID: PMC4514805 DOI: 10.1371/journal.pone.0134061] [Citation(s) in RCA: 167] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Malaria surveillance and interventions in endemic countries often target young children at highest risk of malaria morbidity and mortality. We aimed to determine whether school-age children and adults not captured in surveillance serve as a reservoir for malaria infection and may contribute to malaria transmission. Cross-sectional surveys were conducted in one rainy and one dry season in southern Malawi. Demographic and health information was collected for all household members. Blood samples were obtained for microscopic and PCR identification of Plasmodium falciparum. Among 5796 individuals aged greater than six months, PCR prevalence of malaria infection was 5%, 10%, and 20% in dry, and 9%, 15%, and 32% in rainy seasons in Blantyre, Thyolo, and Chikhwawa, respectively. Over 88% of those infected were asymptomatic. Participants aged 6–15 years were at higher risk of infection (OR=4.8; 95%CI, 4.0–5.8) and asymptomatic infection (OR=4.2; 95%CI, 2.7–6.6) than younger children in all settings. School-age children used bednets less frequently than other age groups. Compared to young children, school-age children were brought less often for treatment and more often to unreliable treatment sources. Conclusion: School-age children represent an underappreciated reservoir of malaria infection and have less exposure to antimalarial interventions. Malaria control and elimination strategies may need to expand to include this age group.
Collapse
Affiliation(s)
- Jenny A. Walldorf
- Center for Malaria Research, Institute for Global Health, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Lauren M. Cohee
- Center for Malaria Research, Institute for Global Health, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Jenna E. Coalson
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, Michigan, United States of America
| | - Andy Bauleni
- Blantyre Malaria Project, University of Malawi College of Medicine, Blantyre, Malawi
| | - Kondwani Nkanaunena
- Blantyre Malaria Project, University of Malawi College of Medicine, Blantyre, Malawi
| | - Atupele Kapito-Tembo
- Blantyre Malaria Project, University of Malawi College of Medicine, Blantyre, Malawi
| | - Karl B. Seydel
- Michigan State University, East Lansing, Michigan, United States of America
| | - Doreen Ali
- National Malaria Control Program, Ministry of Health, Lilongwe, Malawi
| | - Don Mathanga
- Blantyre Malaria Project, University of Malawi College of Medicine, Blantyre, Malawi
| | - Terrie E. Taylor
- Michigan State University, East Lansing, Michigan, United States of America
| | - Clarissa Valim
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts, United States of America
| | - Miriam K. Laufer
- Center for Malaria Research, Institute for Global Health, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
168
|
Subudhi AK, Boopathi PA, Pandey I, Kohli R, Karwa R, Middha S, Acharya J, Kochar SK, Kochar DK, Das A. Plasmodium falciparum complicated malaria: Modulation and connectivity between exportome and variant surface antigen gene families. Mol Biochem Parasitol 2015; 201:31-46. [PMID: 26022315 DOI: 10.1016/j.molbiopara.2015.05.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 05/20/2015] [Accepted: 05/21/2015] [Indexed: 12/27/2022]
Abstract
In temperate and sub-tropical regions of Asia and Latin America, complicated malaria manifested as hepatic dysfunction or renal dysfunction is seen in all age groups. There has been a concerted focus on understanding the patho-physiological and molecular basis of complicated malaria in children, much less is known about it in adults. We report here, the analysis of data from a custom, cross strain microarray (Agilent Platform) using material from adult patient samples, showing hepatic dysfunction or renal failure. These are the most common manifestations seen in adults along with cerebral malaria. The data has been analyzed with reference to variant surface antigens, encoded by the var, rifin and stevor gene families. The differential regulation profiles of key genes (comparison between Plasmodium falciparum complicated and uncomplicated isolates) have been observed. The exportome has been analyzed using similar parameters. Gene ontology term based functional enrichment of differentially regulated genes identified, up-regulated genes statistically enriched (P<0.05) to critical biological processes like generation of precursor metabolite and energy, chromosome organization and electron transport chain. Systems network based functional enrichment of overall differentially regulated genes yielded a similar result. We are reporting here, up-regulation of var group B and C genes whose proteins are predicted to interact with CD36 receptor in the host, the up-regulation of domain cassette 13 (DC13) containing var group A, as also the up-regulation of group A rifins and many of the stevors. This is contrary to most other reports from pediatric patients, with cerebral malaria where the up-regulation of mostly var A group genes have been seen. A protein-protein interaction based network has been created and analysis performed. This co-expression and text mining based network has shown overall connectivity between the variant surface antigens (VSA) and the exportome. The up-regulation of var group B and C genes encoding PfEMP1 with different domain architecture would be important for deciding strategies for disease prevention.
Collapse
Affiliation(s)
- Amit Kumar Subudhi
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS), Pilani, Rajasthan, India.
| | - P A Boopathi
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS), Pilani, Rajasthan, India.
| | - Isha Pandey
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS), Pilani, Rajasthan, India.
| | - Ramandeep Kohli
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS), Pilani, Rajasthan, India.
| | - Rohan Karwa
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS), Pilani, Rajasthan, India.
| | - Sheetal Middha
- Department of Medicine, S.P. Medical College, Bikaner, Rajasthan, India.
| | - Jyoti Acharya
- Department of Medicine, S.P. Medical College, Bikaner, Rajasthan, India.
| | - Sanjay K Kochar
- Department of Medicine, S.P. Medical College, Bikaner, Rajasthan, India.
| | - Dhanpat K Kochar
- Rajasthan University of Health Sciences, Jaipur, Rajasthan, India.
| | - Ashis Das
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS), Pilani, Rajasthan, India.
| |
Collapse
|
169
|
Stone W, Gonçalves BP, Bousema T, Drakeley C. Assessing the infectious reservoir of falciparum malaria: past and future. Trends Parasitol 2015; 31:287-96. [PMID: 25985898 DOI: 10.1016/j.pt.2015.04.004] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Revised: 04/02/2015] [Accepted: 04/07/2015] [Indexed: 10/23/2022]
Abstract
Renewed interest in malaria eradication has placed greater emphasis on the development of tools to interrupt Plasmodium transmission, such as transmission-blocking vaccines. However, effective deployment of such tools is likely to depend on improving our understanding of which individuals transmit infections to mosquitoes. To date, only a handful of studies have directly determined the infectiousness of individuals in endemic populations. Here we review these studies and their relative merits. We also highlight factors influencing transmission potential that are not normally considered: the duration of human infectiousness, frequency of sampling by mosquitoes, and variation in vector competence among different mosquito populations. We argue that more comprehensive xenodiagnostic assessments of infectivity are necessary to accurately quantify the infectious reservoir and better target interventions.
Collapse
Affiliation(s)
- Will Stone
- Radboud University Medical Center, Nijmegen, The Netherlands
| | | | - Teun Bousema
- Radboud University Medical Center, Nijmegen, The Netherlands; London School of Hygiene and Tropical Medicine, London, UK
| | - Chris Drakeley
- London School of Hygiene and Tropical Medicine, London, UK.
| |
Collapse
|
170
|
Gutierrez JB, Galinski MR, Cantrell S, Voit EO. WITHDRAWN: From within host dynamics to the epidemiology of infectious disease: Scientific overview and challenges. Math Biosci 2015:S0025-5564(15)00085-1. [PMID: 25890102 DOI: 10.1016/j.mbs.2015.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
This article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at http://www.elsevier.com/locate/withdrawalpolicy.
Collapse
Affiliation(s)
- Juan B Gutierrez
- Department of Mathematics, Institute of Bioinformatics, University of Georgia, Athens, GA 30602, United States .
| | - Mary R Galinski
- Emory University School of Medicine, Division of Infectious Diseases, Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, 954 Gatewood Road, Atlanta, GA 30329, United States .
| | - Stephen Cantrell
- Department of Mathematics, University of Miami, Coral Gables, FL 33124, United States .
| | - Eberhard O Voit
- Department of Biomedical Engineering, Georgia Institute of Technology, 313 Ferst Drive, Suite 4103, Atlanta, GA 30332-0535, United States .
| |
Collapse
|
171
|
Nega D, Dana D, Tefera T, Eshetu T. Prevalence and predictors of asymptomatic malaria parasitemia among pregnant women in the rural surroundings of Arbaminch Town, South Ethiopia. PLoS One 2015; 10:e0123630. [PMID: 25849587 PMCID: PMC4388389 DOI: 10.1371/journal.pone.0123630] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 03/02/2015] [Indexed: 11/26/2022] Open
Abstract
Background In Sub-Saharan African countries, including Ethiopia, malaria in pregnancy is a major public health threat which results in significant morbidities and mortalities among pregnant women and their fetuses. In malaria endemic areas, Plasmodium infections tend to remain asymptomatic yet causing significant problems like maternal anemia, low birth weight, premature births, and still birth. This study was conducted to determine the prevalence and predictors of asymptomatic Plasmodium infection among pregnant women in the rural surroundings of Arba Minch Town, Southern Ethiopia. Methods A community based cross-sectional study comprising multistage sampling was conducted between April and June, 2013. Socio-demographic data were collected by using a semi-structured questionnaire. Plasmodium infection was diagnosed by using Giemsa-stained blood smear microscopy and a rapid diagnostic test (SD BIOLINE Malaria Ag Pf/Pv POCT, standard diagnostics, inc., Korea). Results Of the total 341 pregnant women participated in this study, 9.1% (31/341) and 9.7% (33/341) were confirmed to be infected with Plasmodium species by microscopy and rapid diagnostic tests (RDTs), respectively. The geometric mean of parasite density was 2392 parasites per microliter (μl); 2275/ μl for P. falciparum and 2032/ μl for P. vivax. Parasitemia was more likely to occur in primigravidae (Adjusted odds ratio (AOR): 9.4, 95% confidence interval (CI): 4.3–60.5), secundigravidae (AOR: 6.3, 95% CI: 2.9–27.3), using insecticide treated bed net (ITN) sometimes (AOR: 3.2, 95% CI: 1.8- 57.9), not using ITN at all (AOR: 4.6, 95% CI: 1.4–14.4) compared to multigravidae and using ITN always, respectively. Conclusion Asymptomatic malaria in this study is low compared to other studies’ findings. Nevertheless, given the high risk of malaria during pregnancy, pregnant women essentially be screened for asymptomatic Plasmodium infection and be treated promptly via the antenatal care (ANC) services.
Collapse
Affiliation(s)
- Desalegn Nega
- Malaria and Other Parasitic and Vector-Borne Diseases Research Team, Directorate Of Parasitic, Bacterial and Zoonotic Diseases Research, Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | - Daniel Dana
- Department of Medical Laboratory Sciences and Pathology, College of Public Health and Medical Sciences, Jimma University, Jimma, Oromia, Ethiopia
| | - Tamirat Tefera
- Department of Medical Laboratory Sciences and Pathology, College of Public Health and Medical Sciences, Jimma University, Jimma, Oromia, Ethiopia
- * E-mail:
| | - Teferi Eshetu
- Department of Medical Laboratory Sciences and Pathology, College of Public Health and Medical Sciences, Jimma University, Jimma, Oromia, Ethiopia
| |
Collapse
|
172
|
Lo E, Zhou G, Oo W, Afrane Y, Githeko A, Yan G. Low parasitemia in submicroscopic infections significantly impacts malaria diagnostic sensitivity in the highlands of Western Kenya. PLoS One 2015; 10:e0121763. [PMID: 25816298 PMCID: PMC4376713 DOI: 10.1371/journal.pone.0121763] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Accepted: 02/11/2015] [Indexed: 11/30/2022] Open
Abstract
Asymptomatic malaria infections represent a major challenge in malaria control and elimination in Africa. They are reservoirs of malaria parasite that can contribute to disease transmission. Therefore, identification and control of asymptomatic infections are important to make malaria elimination feasible. In this study, we investigated the extent and distribution of asymptomatic malaria in Western Kenya and examined how varying parasitemia affects performance of diagnostic methods including microscopy, conventional PCR, and quantitative PCR. In addition, we compared parasite prevalence rates and parasitemia levels with respect to topography and age in order to explore factors that influence malaria infection. Over 11,000 asymptomatic blood samples from children and adolescents up to 18 years old representing broad areas of Western Kenya were included. Quantitative PCR revealed the highest parasite positive rate among all methods and malaria prevalence in western Kenya varied widely from less than 1% to over 50%. A significantly lower parasitemia was detected in highland than in lowland samples and this contrast was also observed primarily among submicroscopic samples. Although we found no correlation between parasitemia level and age, individuals of younger age group (aged <14) showed significantly higher parasite prevalence. In the lowlands, individuals of aged 5–14 showed significantly higher prevalence than those under age 5. Our findings highlight the need for a more sensitive and time-efficient assay for asymptomatic malaria detection particularly in areas of low-transmission. Combining QPCR with microscopy can enhance the capacity of detecting submicroscopic asymptomatic malaria infections.
Collapse
Affiliation(s)
- Eugenia Lo
- Program in Public Health, College of Health Sciences, University of California at Irvine, Irvine, CA, 92697, United States of America
| | - Guofa Zhou
- Program in Public Health, College of Health Sciences, University of California at Irvine, Irvine, CA, 92697, United States of America
| | - Winny Oo
- Program in Public Health, College of Health Sciences, University of California at Irvine, Irvine, CA, 92697, United States of America
| | - Yaw Afrane
- Centre for Vector Biology and Control Research, Kenya Medical Research Institute, Kisumu, 40100, Kenya
| | - Andrew Githeko
- Centre for Vector Biology and Control Research, Kenya Medical Research Institute, Kisumu, 40100, Kenya
| | - Guiyun Yan
- Program in Public Health, College of Health Sciences, University of California at Irvine, Irvine, CA, 92697, United States of America
- * E-mail:
| |
Collapse
|
173
|
Tchuinkam T, Nyih-Kong B, Fopa F, Simard F, Antonio-Nkondjio C, Awono-Ambene HP, Guidone L, Mpoame M. Distribution of Plasmodium falciparum gametocytes and malaria-attributable fraction of fever episodes along an altitudinal transect in Western Cameroon. Malar J 2015; 14:96. [PMID: 25889511 PMCID: PMC4354986 DOI: 10.1186/s12936-015-0594-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Accepted: 01/07/2015] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Highland areas are hypoendemic zones of malaria and are therefore prone to epidemics, due to lack of protective immunity. So far, Cameroon has not succeeded in implementing a convenient and effective method to detect, prevent and forecast malaria epidemic in these peculiar zones. This monitoring and evaluation study aims to assess the operational feasibility of using the human malaria infectious reservoir (HMIR) and the malaria-attributable fraction of fever episodes (MAFE) as indicators, in designing a malaria epidemic early warning system (MEWS). METHODS Longitudinal parasitological surveys were conducted in sentinel health centres installed in three localities, located along an altitudinal transect in Western Cameroon: Santchou (750 m), Dschang (1,400 m) and Djuttitsa (1,965 m). The syndromes of outpatients with malaria-like complaints were recorded and their blood samples examined. The HMIR and the MAFE were estimated and their spatial-temporal variations described. RESULTS The prevalence of asexual Plasmodium infection in outpatients decreased with increasing altitude; meanwhile the HMIR remained fairly constant, indicating that scarcity of malaria disease in highlands is likely due to absence of vectors and not parasites. In lowland, children carried the heaviest malaria burden in the form of febrile episodes, and asexual parasites decreased with age, after an initial peak in the 0-5 year's age group; however, they were similar for all age groups in highland. The HMIR did not show any variation with age in the plain; but some discrepancies were observed in the highland with extreme age groups, and migration of populations between lowland and highland was suspected to be the cause. Plasmodium infection was perennial in the lowland and seasonal uphill, with malaria disease occurring here mostly during the short dry season. The MAFE was high and did not change with altitude. CONCLUSION It is obvious that a malaria outbreak will cause the sudden rise of HMIR and MAFE in highland, prior to the malaria season; the discrepancy with lowland would then help detecting an incipient malaria epidemic. It is recommended that in designing the MEWS, the National Malaria Control Programme should include these parameters and put special emphasis on: altitude, age groups and seasons.
Collapse
Affiliation(s)
- Timoléon Tchuinkam
- Malaria Research Unit of the Laboratory of Applied Biology and Ecology (MRU-LABEA), Department of Animal Biology, Faculty of Sciences of the University of Dschang, P. O. Box 067, Dschang, Cameroon.
- Laboratoire de Recherche sur le Paludisme, Organisation de Coordination pour la lutte contre les Endémies en Afrique Centrale (OCEAC), BP 288, Yaoundé, Cameroun.
| | - Bridget Nyih-Kong
- Malaria Research Unit of the Laboratory of Applied Biology and Ecology (MRU-LABEA), Department of Animal Biology, Faculty of Sciences of the University of Dschang, P. O. Box 067, Dschang, Cameroon.
| | - François Fopa
- Malaria Research Unit of the Laboratory of Applied Biology and Ecology (MRU-LABEA), Department of Animal Biology, Faculty of Sciences of the University of Dschang, P. O. Box 067, Dschang, Cameroon.
- Hôpital Saint Vincent De Paul, Mission Catholique Sacré Cœur, BP 011, Dschang, Cameroon.
| | - Frédéric Simard
- Laboratoire de Recherche sur le Paludisme, Organisation de Coordination pour la lutte contre les Endémies en Afrique Centrale (OCEAC), BP 288, Yaoundé, Cameroun.
- MIVEGEC, UMR IRD224-CNRS5290-UM, Institut de Recherche pour le Développement, 911 Avenue Agropolis, BP 64501, Montpellier, France.
| | - Christophe Antonio-Nkondjio
- Laboratoire de Recherche sur le Paludisme, Organisation de Coordination pour la lutte contre les Endémies en Afrique Centrale (OCEAC), BP 288, Yaoundé, Cameroun.
| | - Herman-Parfait Awono-Ambene
- Laboratoire de Recherche sur le Paludisme, Organisation de Coordination pour la lutte contre les Endémies en Afrique Centrale (OCEAC), BP 288, Yaoundé, Cameroun.
| | - Laura Guidone
- Hôpital Saint Vincent De Paul, Mission Catholique Sacré Cœur, BP 011, Dschang, Cameroon.
| | - Mbida Mpoame
- Malaria Research Unit of the Laboratory of Applied Biology and Ecology (MRU-LABEA), Department of Animal Biology, Faculty of Sciences of the University of Dschang, P. O. Box 067, Dschang, Cameroon.
| |
Collapse
|
174
|
The relationship between Plasmodium infection, anaemia and nutritional status in asymptomatic children aged under five years living in stable transmission zones in Kinshasa, Democratic Republic of Congo. Malar J 2015; 14:83. [PMID: 25880427 PMCID: PMC4336722 DOI: 10.1186/s12936-015-0595-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 01/30/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Malaria is preventable and treatable when recommended interventions are properly implemented. Thus, diagnosis and treatment focus on symptomatic individuals while asymptomatic Plasmodium infection (PI) plays a role in the sustainability of the transmission and may also have an impact on the morbidity of the disease in terms of anaemia, nutritional status and even cognitive development of children. The objective of this study was to assess PI prevalence and its relationship with known morbidity factors in a vulnerable but asymptomatic stratum of the population. METHODS A simple random sample, household survey in asymptomatic children under the age of five was conducted from April to September 2012 in two health areas of the health zone of Mont Ngafula 1, Kinshasa, Democratic Republic of Congo. RESULTS The PI prevalence were 30.9% (95% CI: 26.5-35.9) and 14.3% (95% CI: 10.5-18.1) in Cité Pumbu and Kindele health areas, respectively, (OR: 2.7; p <0.001). All were Plasmodium falciparum infected and 4% were co-infected with Plasmodium malariae. In Cité Pumbu and Kindele, the prevalence of anaemia (haemoglobin <11 g/dL) was 61.6% (95% CI: 56.6-66.5) and 39.3% (95% CI: 34.0-44.6), respectively, (OR: 2.5; p <0.001). The health area of Cité Pumbu had 32% (95% CI: 27.5-37.0) of chronic malnutrition (HAZ score ≤ -2SD) compared to 5.1% (95% CI: 2.8-7.6) in Kindele. PI was predictor factor for anaemia (aOR: 3.5, p =0.01) and within infected children, there was an inverse relationship between parasite density and haemoglobin level (β = -5*10(-5), p <0.001). Age older than 12 months (aOR: 3.8, p = 0.01), presence of anaemia (aOR: 3.4, p =0.001), chronic malnutrition (aOR: 1.8, p = 0.01), having a single parent/guardian (aOR: 1.6, p =0.04), and the non-use of insecticide-treated nets (aOR: 1.7, p = 0.04) were all predictors for PI in the overall population. CONCLUSION PI in asymptomatic children was correlated with anaemia and chronic malnutrition and was thus a harmful condition in the study population. Malaria control initiatives should not only focus on treatment of symptomatic infections but also take into consideration asymptomatic but infected children.
Collapse
|
175
|
Daou M, Kouriba B, Ouédraogo N, Diarra I, Arama C, Keita Y, Sissoko S, Ouologuem B, Arama S, Bousema T, Doumbo OK, Sauerwein RW, Scholzen A. Protection of Malian children from clinical malaria is associated with recognition of multiple antigens. Malar J 2015; 14:56. [PMID: 25653026 PMCID: PMC4332451 DOI: 10.1186/s12936-015-0567-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 01/16/2015] [Indexed: 12/13/2022] Open
Abstract
Background Naturally acquired immunity to clinical malaria is thought to be mainly antibody-mediated, but reports on antigen targets are contradictory. Recognition of multiple antigens may be crucial for protection. In this study, the magnitude of antibody responses and their temporal stability was assessed for a panel of malaria antigens in relation to protection against clinical Plasmodium falciparum malaria. Methods Malian children aged two to 14 years were enrolled in a longitudinal study and followed up by passive and active case detection for seven months. Plasma was collected at enrolment and at the beginning, in the middle and after the end of the transmission season. Antibody titres to the P. falciparum-antigens apical membrane protein (AMA)-1, merozoite surface protein (MSP)-119, MSP-3, glutamine-rich protein (GLURP-R0) and circumsporozoite antigen (CSP) were assessed by enzyme-linked immunosorbent assay (ELISA) for 99 children with plasma available at all time points. Parasite carriage was determined by microscopy and nested PCR. Results Antibody titres to all antigens, except MSP-119, and the number of antigens recognized increased with age. After malaria exposure, antibody titres increased in children that had low titres at baseline, but decreased in those with high baseline responses. No significant differences were found between antibody titers for individual antigens between children remaining symptomatic or asymptomatic after exposure, after adjustment for age. Instead, children remaining asymptomatic following parasite exposure had a broader repertoire of antigen recognition. Conclusions The present study provides immune-epidemiological evidence from a limited cohort of Malian children that strong recognition of multiple antigens, rather than antibody titres for individual antigens, is associated with protection from clinical malaria. Electronic supplementary material The online version of this article (doi:10.1186/s12936-015-0567-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Modibo Daou
- Department of Epidemiology of Parasitic Diseases, Malaria Research and Training Centre, University of Science, Techniques and Technologies of Bamako, Bamako, Mali. .,Department of Medical Microbiology, Radboud university medical center, Route 268, PO Box 9101, 6500, HB Nijmegen, The Netherlands.
| | - Bourèma Kouriba
- Department of Epidemiology of Parasitic Diseases, Malaria Research and Training Centre, University of Science, Techniques and Technologies of Bamako, Bamako, Mali.
| | - Nicolas Ouédraogo
- Centre National de Recherche et de Formation sur le Paludisme (CNRFP), Ouagadougou, Burkina Faso.
| | - Issa Diarra
- Department of Epidemiology of Parasitic Diseases, Malaria Research and Training Centre, University of Science, Techniques and Technologies of Bamako, Bamako, Mali.
| | - Charles Arama
- Department of Epidemiology of Parasitic Diseases, Malaria Research and Training Centre, University of Science, Techniques and Technologies of Bamako, Bamako, Mali.
| | - Yamoussa Keita
- Department of Epidemiology of Parasitic Diseases, Malaria Research and Training Centre, University of Science, Techniques and Technologies of Bamako, Bamako, Mali.
| | - Sibiri Sissoko
- Department of Epidemiology of Parasitic Diseases, Malaria Research and Training Centre, University of Science, Techniques and Technologies of Bamako, Bamako, Mali.
| | - Boucary Ouologuem
- Department of Epidemiology of Parasitic Diseases, Malaria Research and Training Centre, University of Science, Techniques and Technologies of Bamako, Bamako, Mali.
| | - Seydou Arama
- Department of Epidemiology of Parasitic Diseases, Malaria Research and Training Centre, University of Science, Techniques and Technologies of Bamako, Bamako, Mali.
| | - Teun Bousema
- Department of Medical Microbiology, Radboud university medical center, Route 268, PO Box 9101, 6500, HB Nijmegen, The Netherlands. .,Department of Infection and Immunity, London School of Hygiene and Tropical Medicine, London, UK.
| | - Ogobara K Doumbo
- Department of Epidemiology of Parasitic Diseases, Malaria Research and Training Centre, University of Science, Techniques and Technologies of Bamako, Bamako, Mali.
| | - Robert W Sauerwein
- Department of Medical Microbiology, Radboud university medical center, Route 268, PO Box 9101, 6500, HB Nijmegen, The Netherlands.
| | - Anja Scholzen
- Department of Medical Microbiology, Radboud university medical center, Route 268, PO Box 9101, 6500, HB Nijmegen, The Netherlands.
| |
Collapse
|
176
|
Kateera F, Mens PF, Hakizimana E, Ingabire CM, Muragijemariya L, Karinda P, Grobusch MP, Mutesa L, van Vugt M. Malaria parasite carriage and risk determinants in a rural population: a malariometric survey in Rwanda. Malar J 2015; 14:16. [PMID: 25604040 PMCID: PMC4308829 DOI: 10.1186/s12936-014-0534-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2014] [Accepted: 12/27/2014] [Indexed: 01/05/2023] Open
Abstract
Background Based on routine health facility case data, Rwanda has achieved a significant malaria burden reduction in the past ten years. However, community-based malaria parasitaemia burden and reasons for continued residual infections, despite a high coverage of control interventions, have yet to be characterized. Measurement of malaria parasitaemia rates and evaluation of associated risk factors among asymptomatic household members in a rural community in Rwanda were conducted. Methods A malariometric household survey was conducted between June and November 2013, involving 12,965 persons living in 3,989 households located in 35 villages in a sector in eastern Rwanda. Screening for malaria parasite carriage and collection of demographic, socio-economic, house structural features, and prior fever management data, were performed. Logistic regression models with adjustment for within- and between-households clustering were used to assess malaria parasitaemia risk determinants. Results Overall, malaria parasitaemia was found in 652 (5%) individuals, with 518 (13%) of households having at least one parasitaemic member. High malaria parasite carriage risk was associated with being male, child or adolescent (age group 4–15), reported history of fever and living in a household with multiple occupants. A malaria parasite carriage risk-protective effect was associated with living in households of, higher socio-economic status, where the head of household was educated and where the house floor or walls were made of cement/bricks rather than mud/earth/wood materials. Parasitaemia cases were found to significantly cluster in the Gikundamvura area that neighbours marshlands. Conclusion Overall, Ruhuha Sector can be classified as hypo-endemic, albeit with a particular ‘cell of villages’ posing a higher risk for malaria parasitaemia than others. Efforts to further reduce transmission and eventually eliminate malaria locally should focus on investments in programmes that improve house structure features (that limit indoor malaria transmission), making insecticide-treated bed nets and indoor residual spraying implementation more effective.
Collapse
Affiliation(s)
- Fredrick Kateera
- Centre of Tropical Medicine and Travel Medicine, Department of Infectious Diseases, Division of Internal Medicine, Academic Medical Centre, Meibergdreef 9, Amsterdam, 1100 DE, The Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|
177
|
Immunological Testing Reveals Exposure to Malaria in the Hypoendemic Region of Iran. INTERNATIONAL SCHOLARLY RESEARCH NOTICES 2014; 2014:614287. [PMID: 27379331 PMCID: PMC4897229 DOI: 10.1155/2014/614287] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Revised: 07/02/2014] [Accepted: 07/07/2014] [Indexed: 11/25/2022]
Abstract
Background. South eastern parts of Iran remain endemic for malaria infection. There is some concern that malaria infection may spread into Bushehr, which is located in the south western part bordering the Persian Gulf and at the periphery of the declared endemic region Hormozgan province due to frequency of visitors from eastern endemic areas and from neighboring malaria endemic countries. We investigated malaria prevalence in Bushehr. Methods and Results. Attempts were made to identify malaria active infection in blood smears and malaria specific antibody and antigens in serum samples. Traditional blood smears prepared from 1955 blood specimens yielded no definitive malaria positive case by microscopic technique. A total of 270 (13.8%) serum samples were positive for malaria antibodies. Using specific ELISA kits, presence of histidine rich proteins and lactate dehydrogenase antigens were investigated in serum samples. No histidine rich proteins specific for P. falciparum were detected amongst 270 antibody positive samples. However, six samples representing 0.3% of total population, were found to be positive for plasmodium pan specific lactate dehydrogenase antigens. This suggested the possibility of low level exposure to malaria in Bushehr community. Conclusions. Out of a total of 1955 samples tested, 270 (13.8%) were positive for malaria antibodies and six (0.3%) of these were positive for plasmodium-specific lactate dehydrogenase antigen suggesting a low level exposure to malaria in a hypoendemic region based on immunological testing. Since none of the 270 antibody samples were positive for histidine rich protein antigens, there is scope for further testing of blood samples by molecular methods such as polymerase chain reactions to confirm the plasmodium species and provide information valuable for future investigations. Our testing strategy for hypoemdemic malaria can be used as a template for investing malaria in 32 eliminating countries for testing ongoing transmission. This approach may be useful as a method in epidemiological studies.
Collapse
|
178
|
Bosman P, Stassijns J, Nackers F, Canier L, Kim N, Khim S, Alipon SC, Chuor Char M, Chea N, Dysoley L, Van den Bergh R, Etienne W, De Smet M, Ménard D, Kindermans JM. Plasmodium prevalence and artemisinin-resistant falciparum malaria in Preah Vihear Province, Cambodia: a cross-sectional population-based study. Malar J 2014; 13:394. [PMID: 25288380 PMCID: PMC4200124 DOI: 10.1186/1475-2875-13-394] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 09/29/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Intensified efforts are urgently needed to contain and eliminate artemisinin-resistant Plasmodium falciparum in the Greater Mekong subregion. Médecins Sans Frontières plans to support the Ministry of Health in eliminating P. falciparum in an area with artemisinin resistance in the north-east of Cambodia. As a first step, the prevalence of Plasmodium spp. and the presence of mutations associated with artemisinin resistance were evaluated in two districts of Preah Vihear Province. METHODS A cross-sectional population-based study using a two-stage cluster sampling was conducted in the rural districts of Chhaeb and Chey Saen, from September to October 2013. In each district, 30 clusters of 10 households were randomly selected. In total, blood samples were collected for 1,275 participants in Chhaeb and 1,224 in Chey Saen. Prevalence of Plasmodium spp. was assessed by PCR on dried blood spots. Plasmodium falciparum positive samples were screened for mutations in the K13-propeller domain gene (PF3D7_1343700). RESULT The prevalence of Plasmodium spp. was estimated at 1.49% (95% CI 0.71-3.11%) in Chhaeb and 2.61% (95% CI 1.45-4.66%) in Chey Saen. Twenty-seven samples were positive for P. falciparum, giving a prevalence of 0.16% (95% CI 0.04-0.65) in Chhaeb and 2.04% (95% CI 1.04-3.99%) in Chey Saen. Only 4.0% of the participants testing positive presented with fever or history of fever. K13-propeller domain mutant type alleles (C580Y and Y493H) were found, only in Chey Saen district, in seven out of 11 P. falciparum positive samples with enough genetic material to allow testing. CONCLUSION The overall prevalence of P. falciparum was low in both districts but parasites presenting mutations in the K13-propeller domain gene, strongly associated with artemisinin-resistance, are circulating in Chey Saen.The prevalence might be underestimated because of the absentees - mainly forest workers - and the workers of private companies who were not included in the study. These results confirm the need to urgently develop and implement targeted interventions to contain and eliminate P. falciparum malaria in this district before it spreads to other areas.
Collapse
Affiliation(s)
| | - Jorgen Stassijns
- Médecins Sans Frontières, Duprestreet 94, 1090 Brussels, Belgium.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
179
|
Asymptomatic Malaria among Blood Donors in Benin City Nigeria. IRANIAN JOURNAL OF PARASITOLOGY 2014; 9:415-22. [PMID: 25678927 PMCID: PMC4316574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Accepted: 06/14/2014] [Indexed: 11/08/2022]
Abstract
BACKGROUND This study aimed at determining the prevalence and associated risk factors for asymptomatic malaria parasitaemia and anemia among blood donors in a private medical laboratory in Benin City, Nigeria. METHODS Venous blood was collected from a total of 247 blood donors. Malaria status, ABO, Rhesus blood groups and hemoglobin concentration of all participants were determined using standard methods. RESULTS The prevalence of asymptomatic malaria infection was higher among commercial blood donors than volunteer group (commercial vs volunteer donor: 27.5 %vs. 13.8%; OR = 2.373, 95% CI = 0.793, 7.107, P = 0.174). Asymptomatic malaria was not significantly affected by gender (P = 0.733), age (P = 0.581), ABO (P = 0.433) and rhesus blood groups (P = 0.806) of blood donors. Age was observed to significantly (P = 0.015) affect malaria parasite density with donors within the age group of 21-26 years having the highest risk. The prevalence of anemia was significantly higher among commercial donors (commercial vs volunteer donors: 23.4% vs 3.4%: OR = 8.551, 95% CI = 1.135, 64.437, P = 0.013) and donors of blood group O type (P = < 0.0001). CONCLUSIONS Asymptomatic malaria parasitaemia and anemia was higher among commercial donors than voluntary donors. Mandatory screening of blood donors for malaria parasite is advocated to curb transfusion transmitted malaria and associated sequelae.
Collapse
|
180
|
Asymptomatic Malaria and Associated Risk Factors among School Children in Sanja Town, Northwest Ethiopia. INTERNATIONAL SCHOLARLY RESEARCH NOTICES 2014; 2014:303269. [PMID: 27355032 PMCID: PMC4897416 DOI: 10.1155/2014/303269] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 06/30/2014] [Accepted: 07/01/2014] [Indexed: 11/29/2022]
Abstract
Introduction. Asymptomatic malaria is prevalent in highly endemic areas of Africa and is new challenge for malaria prevention and control strategies. Objective. To determine the prevalence of asymptomatic malaria and associated risk factors among school children in Sanja Town, northwest Ethiopia. Methods. A cross-sectional study was conducted from February to March 2013, on 385 school children selected using stratified proportionate systematic sampling technique. Pretested questionnaire was used to collect sociodemographic data and associated risk factors. Giemsa-stained thin and thick blood films were examined for detection, identification, and quantification of malaria parasites. Data were entered and analyzed using SPSS 20.0 statistical software. Multivariate logistic regression was done for assessing associated risk factors and proportions for categorical variables were compared using chi-square test. P values less than 0.05 were taken as statistically significant. Results. The prevalence of asymptomatic malaria was 6.8% (n = 26). The majority of parasitemic study participants had low parasite density 65.5% (17/26). Level of grade, age, bed net usage, and frequent exposure to malaria infection were associated with risk of asymptomatic malaria. Conclusion. Asymptomatic malaria was low in this study area and is associated with level of grade, age, bed net usage, and frequent exposure to malaria infection.
Collapse
|
181
|
Ouattara AF, Dagnogo M, Olliaro PL, Raso G, Tanner M, Utzinger J, Koudou BG. Plasmodium falciparum infection and clinical indicators in relation to net coverage in central Côte d'Ivoire. Parasit Vectors 2014; 7:306. [PMID: 24990595 PMCID: PMC4098695 DOI: 10.1186/1756-3305-7-306] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Accepted: 06/25/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Sleeping under a net, particularly a long-lasting insecticidal net (LLIN), is associated with reduced malaria morbidity and mortality, but requires high coverage and adherence. In this study, parasitologically confirmed Plasmodium falciparum infection and a clinical indicator (i.e. fever) were measured among children in three villages of central Côte d'Ivoire (Bozi, N'Dakonankro and Yoho) and associations with net coverage explored. In Bozi and Yoho, LLINs were provided by the national malaria control programme, prior to the study and an additional catch-up coverage was carried out in Bozi. In N'Dakonankro, no net intervention was conducted. METHODS Three cross-sectional surveys were carried out; two in the dry season (February 2010 and November 2011) and one in the rainy season (May 2012). Among 897 children aged <15 years, P. falciparum infection was determined by microscopy and a rapid diagnostic test (RDT). Fever was defined as an axillary temperature ≥37.5°C. A questionnaire was administered to obtain demographic data and net usage. RESULTS The proportion of children infected with P. falciparum according to microscopy in the third survey was 74%, 81% and 82% in Yoho, N'Dakonankro and Bozi, respectively. Meanwhile, 46% of the children in N'Dakonankro, 44% in Bozi and 33% in Yoho slept under a net. The risk of P. falciparum infection did not differ between net-sleepers and non-net-sleepers. Fewer children had parasitaemia ≥1,000 parasites/μl of blood in Bozi in the third compared to the first survey. Fever was poorly correlated with P. falciparum infection. The risk of P. falciparum infection did not depend on the village of residence, presence of fever or sleeping under LLIN the night before the survey. Conversely, it was higher in the rainy season and among older children. CONCLUSIONS In an area where P. falciparum is highly prevalent, the use of nets was associated with significantly lower levels of parasitaemia. The apparent lack of effect on P. falciparum infection and fever might be explained by the relatively low net coverage in Bozi and Yoho and the relatively short period (<2 years) during which the impact of nets was measured.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Benjamin G Koudou
- Département Environnement et Santé, Centre Suisse de Recherches Scientifiques en Côte d'Ivoire, 01 BP 1303, Abidjan 01, Côte d'Ivoire.
| |
Collapse
|
182
|
Bolivar-Mejia A, Alarcón-Olave C, Rodriguez-Morales AJ. Skin manifestations of arthropod-borne infection in Latin America. Curr Opin Infect Dis 2014; 27:288-94. [DOI: 10.1097/qco.0000000000000060] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
183
|
Davis KM, Gibson LE, Haselton FR, Wright DW. Simple sample processing enhances malaria rapid diagnostic test performance. Analyst 2014; 139:3026-31. [PMID: 24787948 DOI: 10.1039/c4an00338a] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Lateral flow immunochromatographic rapid diagnostic tests (RDTs) are the primary form of medical diagnostic used for malaria in underdeveloped nations. Unfortunately, many of these tests do not detect asymptomatic malaria carriers. In order for eradication of the disease to be achieved, this problem must be solved. In this study, we demonstrate enhancement in the performance of six RDT brands when a simple sample-processing step is added to the front of the diagnostic process. Greater than a 4-fold RDT signal enhancement was observed as a result of the sample processing step. This lowered the limit of detection for RDT brands to submicroscopic parasitemias. For the best performing RDTs the limits of detection were found to be as low as 3 parasites per μL. Finally, through individual donor samples, the correlations between donor source, WHO panel detection scores and RDT signal intensities were explored.
Collapse
Affiliation(s)
- K M Davis
- Department of Chemistry, Vanderbilt University, Station B 351822, Nashville, TN 37235-1822, USA.
| | | | | | | |
Collapse
|
184
|
Tietje K, Hawkins K, Clerk C, Ebels K, McGray S, Crudder C, Okell L, LaBarre P. The essential role of infection-detection technologies for malaria elimination and eradication. Trends Parasitol 2014; 30:259-66. [DOI: 10.1016/j.pt.2014.03.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 03/11/2014] [Accepted: 03/12/2014] [Indexed: 11/26/2022]
|
185
|
Comparison of microscopy, nested-PCR, and Real-Time-PCR assays using high-throughput screening of pooled samples for diagnosis of malaria in asymptomatic carriers from areas of endemicity in Myanmar. J Clin Microbiol 2014; 52:1838-45. [PMID: 24648557 DOI: 10.1128/jcm.03615-13] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Asymptomatic infection is an important obstacle for controlling disease in countries where malaria is endemic. Because asymptomatic carriers do not seek treatment for their infections, they can have high levels of gametocytes and constitute a reservoir available for new infection. We employed a sample pooling/PCR-based molecular detection strategy for screening malaria infection in residents from areas of Myanmar where malaria is endemic. Blood samples (n = 1,552) were collected from residents in three areas of malaria endemicity (Kayin State, Bago, and Tanintharyi regions) of Myanmar. Two nested PCR and real-time PCR assays showed that asymptomatic infection was detected in about 1.0% to 9.4% of residents from the surveyed areas. The sensitivities of the two nested PCR and real-time PCR techniques were higher than that of microscopy examination (sensitivity, 100% versus 26.4%; kappa values, 0.2 to 0.5). Among the three regions, parasite-positive samples were highly detected in subjects from the Bago and Tanintharyi regions. Active surveillance of residents from regions of intense malaria transmission would reduce the risk of morbidity and mitigate transmission to the population in these areas of endemicity. Our data demonstrate that PCR-based molecular techniques are more efficient than microscopy for nationwide surveillance of malaria in countries where malaria is endemic.
Collapse
|
186
|
Lin JT, Saunders DL, Meshnick SR. The role of submicroscopic parasitemia in malaria transmission: what is the evidence? Trends Parasitol 2014; 30:183-90. [PMID: 24642035 DOI: 10.1016/j.pt.2014.02.004] [Citation(s) in RCA: 195] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 02/10/2014] [Accepted: 02/13/2014] [Indexed: 12/18/2022]
Abstract
Achieving malaria elimination requires targeting the human reservoir of infection, including those with asymptomatic infection. Smear-positive asymptomatic infections detectable by microscopy are an important reservoir because they often persist for months and harbor gametocytes, the parasite stage infectious to mosquitoes. However, many asymptomatic infections are submicroscopic and can only be detected by molecular methods. Although there is some evidence that individuals with submicroscopic malaria can infect mosquitoes, transmission is much less likely to occur at submicroscopic gametocyte levels. As malaria elimination programs pursue mass screening and treatment of asymptomatic individuals, further research should strive to define the degree to which submicroscopic malaria contributes to the infectious reservoir and, in turn, what diagnostic detection threshold is needed to effectively interrupt transmission.
Collapse
Affiliation(s)
- Jessica T Lin
- Division of Infectious Diseases, University of North Carolina School of Medicine, Chapel Hill, NC, USA.
| | - David L Saunders
- Department of Immunology and Medicine, USAMC Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Steven R Meshnick
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
187
|
Loop-mediated isothermal amplification assay for rapid diagnosis of malaria infections in an area of endemicity in Thailand. J Clin Microbiol 2014; 52:1471-7. [PMID: 24574279 DOI: 10.1128/jcm.03313-13] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The loop-mediated isothermal amplification (LAMP) method, developed by our group for diagnosis of four human malaria parasites, was evaluated on a large scale at a remote clinic in Thailand where malaria is endemic. A total of 899 febrile patients were analyzed in this study. LAMP was first evaluated in 219 patients, and the result was compared to those of two histidine-rich protein (HRP)-2 rapid diagnostic tests (RDTs) and microscopy as a gold standard. LAMP DNA extraction was conducted by a simple boiling method, and the test results were assessed visually. Sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) were 95.7%, 100%, 100%, and 98%, respectively, for LAMP and 98.6%, 98%, 95.8%, and 99.3%, respectively, for RDTs. Since RDT-positive results were based on one out of two RDTs, the sensitivity of RDTs was slightly higher than that of LAMP. However, LAMP tended to be more specific than RDTs. LAMP next was evaluated in 680 patients, and the result was compared to that of microscopy as a gold standard. Sensitivity, specificity, PPV, NPV, and diagnostic accuracy of LAMP were 88.9%, 96.9%, 92.2%, 95.5%, and 94.6%, respectively. Nested PCR was used to confirm the discrepant results. Malaria LAMP in a remote clinic in Thailand achieved an acceptable result, indicating that LAMP malaria diagnosis is feasible in a field setting with limited technical resources. Additionally, the rapid boiling method for extracting DNA from dried blood spots proved to be simple, fast, and suitable for use in the field.
Collapse
|
188
|
Modeling malaria infection and immunity against variant surface antigens in Príncipe Island, West Africa. PLoS One 2014; 9:e88110. [PMID: 24520349 PMCID: PMC3919732 DOI: 10.1371/journal.pone.0088110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Accepted: 01/07/2014] [Indexed: 11/21/2022] Open
Abstract
After remarkable success of vector control campaigns worldwide, concerns about loss of immunity against Plasmodium falciparum due to lack of exposure to the parasite are relevant since an increase of severe cases in less immune individuals is expected. We present a mathematical model to investigate the impact of reducing exposure to the parasite on the immune repertoire against P. falciparum erythrocyte membrane protein 1 (PfEMP1) variants. The model was parameterized with data from Príncipe Island, West Africa, and applied to simulate two alternative transmission scenarios: one where control measures are continued to eventually drive the system to elimination; and another where the effort is interrupted after 6 years of its initiation and the system returns to the initial transmission potential. Population dynamics of parasite prevalence predict that in a few years infection levels return to the pre-control values, while the re-acquisition of the immune repertoire against PfEMP1 is slower, creating a window for increased severity. The model illustrates the consequences of loss of immune repertoire against PfEMP1 in a given setting and can be applied to other regions where similar data may be available.
Collapse
|
189
|
VOGT-GEISSE KATIA, LORENZO CHRISTINA, FENG ZHILAN. IMPACT OF AGE-DEPENDENT RELAPSE AND IMMUNITY ON MALARIA DYNAMICS. J BIOL SYST 2014. [DOI: 10.1142/s0218339013400019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
An age-structured mathematical model for malaria is presented. The model explicitly includes the human and mosquito populations, structured by chronological age of humans. The infected human population is divided into symptomatic infectious, asymptomatic infectious and asymptomatic chronic infected individuals. The original partial differential equation (PDE) model is reduced to an ordinary differential equation (ODE) model with multiple age groups coupled by aging. The basic reproduction number [Formula: see text] is derived for the PDE model and the age group model in the case of general n age groups. We assume that infectiousness of chronic infected individuals gets triggered by bites of even susceptible mosquitoes. Our analysis points out that this assumption contributes greatly to the [Formula: see text] expression and therefore needs to be further studied and understood. Numerical simulations for n = 2 age groups and a sensitivity/uncertainty analysis are presented. Results suggest that it is important not only to consider asymptomatic infectious individuals as a hidden cause for malaria transmission, but also asymptomatic chronic infections (>60%), which often get neglected due to undetectable parasite loads. These individuals represent an important reservoir for future human infectiousness. By considering age-dependent immunity types, the model helps generate insight into effective control measures, by targeting age groups in an optimal way.
Collapse
Affiliation(s)
- KATIA VOGT-GEISSE
- Department of Mathematics, Purdue University, 150 N. University Street, West Lafayette, Indiana 47907, USA
| | - CHRISTINA LORENZO
- Department of Mathematics, Purdue University, 150 N. University Street, West Lafayette, Indiana 47907, USA
| | - ZHILAN FENG
- Department of Mathematics, Purdue University, 150 N. University Street, West Lafayette, Indiana 47907, USA
| |
Collapse
|
190
|
Tiono AB, Ouédraogo A, Diarra A, Coulibaly S, Soulama I, Konaté AT, Barry A, Mukhopadhyay A, Sirima SB, Hamed K. Lessons learned from the use of HRP-2 based rapid diagnostic test in community-wide screening and treatment of asymptomatic carriers of Plasmodium falciparum in Burkina Faso. Malar J 2014; 13:30. [PMID: 24467946 PMCID: PMC3925413 DOI: 10.1186/1475-2875-13-30] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Accepted: 01/22/2014] [Indexed: 12/02/2022] Open
Abstract
Background Rapid diagnostic tests (RDTs) are immune chromatographic tests targeting antigens of one or more Plasmodium species and offer the potential to extend accurate malaria diagnosis in endemic areas. In this study, the performance of Plasmodium falciparum-specific histidine-rich protein-2 (PfHRP-2) RDT in the detection of asymptomatic carriers from a hyperendemic region of Burkina Faso was compared with microscopy to gain further insight on its relevance in community-based interventions. Methods The performance of HRP-2 test was evaluated in terms of sensitivity, specificity, positive and negative predictive values, discordant values, likelihood ratios, accuracy, and precision using microscopy as the 'gold standard’. This analysis was carried out in a controlled, parallel, cluster-randomized (18 clusters; 1:1) study in children and adults. The effect of systematic treatment of P. falciparum asymptomatic carriers during three consecutive monthly community screening campaigns on the incidence of symptomatic malaria episodes over a 12-month period was compared with no treatment of asymptomatic carriers. Results Sensitivity of HRP-2 test in asymptomatic carriers was higher in campaign 1 (92.4%) when compared to campaign 2 (84.0%) and campaign 3 (77.8%). The sensitivity of HRP-2 test increased as parasite density increased across all the age groups. Highest sensitivity (≥97.0%) was recorded at parasite densities of 1,000-4,999/μl, except for children aged 10 to 14 years. The specificity of HRP-2 test was comparable across age groups and highest in campaign 3 (95.9%). The negative predictive values were high across the three campaigns (≥92.7%) while the positive predictive values ranged from 23.2 to 73.8%. False-positive and false-negative rates were high in campaign 1 and campaign 3, respectively. Conclusion The performance of HRP-2 test in detecting asymptomatic carriers of P. falciparum varied by age and parasite density. Although the use of HRP-2 test is beneficial for the diagnosis of acute malaria, its low sensitivity in screening asymptomatic carriers may limit its utility in pre-elimination interventional settings. The use of a practical and more sensitive test such as loop-mediated isothermal amplification in combination with a cost effective HRP-2 test may be worth exploring in such settings.
Collapse
Affiliation(s)
- Alfred B Tiono
- Centre National de Recherche et de Formation sur le Paludisme (CNRFP), 01 BP 2208, Ouagadougou 01, Burkina Faso, West Africa.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
191
|
Starzengruber P, Fuehrer HP, Ley B, Thriemer K, Swoboda P, Habler VE, Jung M, Graninger W, Khan WA, Haque R, Noedl H. High prevalence of asymptomatic malaria in south-eastern Bangladesh. Malar J 2014; 13:16. [PMID: 24406220 PMCID: PMC3896725 DOI: 10.1186/1475-2875-13-16] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Accepted: 12/22/2013] [Indexed: 12/23/2022] Open
Abstract
Background The WHO has reported that RDT and microscopy-confirmed malaria cases have declined in recent years. However, it is still unclear if this reflects a real decrease in incidence in Bangladesh, as particularly the hilly and forested areas of the Chittagong Hill Tract (CHT) Districts report more than 80% of all cases and deaths. surveillance and epidemiological data on malaria from the CHT are limited; existing data report Plasmodium falciparum and Plasmodium vivax as the dominant species. Methods A cross-sectional survey was conducted in the District of Bandarban, the southernmost of the three Hill Tracts Districts, to collect district-wide malaria prevalence data from one of the regions with the highest malaria endemicity in Bangladesh. A multistage cluster sampling technique was used to collect blood samples from febrile and afebrile participants and malaria microscopy and standardized nested PCR for diagnosis were performed. Demographic data, vital signs and splenomegaly were recorded. Results Malaria prevalence across all subdistricts in the monsoon season was 30.7% (95% CI: 28.3-33.2) and 14.2% (95% CI: 12.5-16.2) by PCR and microscopy, respectively. Plasmodium falciparum mono-infections accounted for 58.9%, P. vivax mono-infections for 13.6%, Plasmodium malariae for 1.8%, and Plasmodium ovale for 1.4% of all positive cases. In 24.4% of all cases mixed infections were identified by PCR. The proportion of asymptomatic infections among PCR-confirmed cases was 77.0%, oligosymptomatic and symptomatic cases accounted for only 19.8 and 3.2%, respectively. Significantly (p < 0.01) more asymptomatic cases were recorded among participants older than 15 years as compared to younger participants, whereas prevalence and parasite density were significantly (p < 0.01) higher in patients younger than 15 years. Spleen rate and malaria prevalence in two to nine year olds were 18.6 and 34.6%, respectively. No significant difference in malaria prevalence and parasite density was observed between dry and rainy season. Conclusions A large proportion of asymptomatic plasmodial infections was found which likely act as a reservoir of transmission. This has major implications for ongoing malaria control programmes that are based on the treatment of symptomatic patients. These findings highlight the need for new intervention strategies targeting asymptomatic carriers.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Harald Noedl
- Institute of Specific Prophylaxis and Tropical Medicine, Medical University of Vienna, Kinderspitalgasse 15, Vienna 1090, Austria.
| |
Collapse
|
192
|
Lindblade KA, Steinhardt L, Samuels A, Kachur SP, Slutsker L. The silent threat: asymptomatic parasitemia and malaria transmission. Expert Rev Anti Infect Ther 2014; 11:623-39. [PMID: 23750733 DOI: 10.1586/eri.13.45] [Citation(s) in RCA: 365] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Scale-up of malaria control interventions has resulted in a substantial decline in global malaria morbidity and mortality. Despite this achievement, there is evidence that current interventions alone will not lead to malaria elimination in most malaria-endemic areas and additional strategies need to be considered. Use of antimalarial drugs to target the reservoir of malaria infection is an option to reduce the transmission of malaria between humans and mosquito vectors. However, a large proportion of human malaria infections are asymptomatic, requiring treatment that is not triggered by care-seeking for clinical illness. This article reviews the evidence that asymptomatic malaria infection plays an important role in malaria transmission and that interventions to target this parasite reservoir may be needed to achieve malaria elimination in both low- and high-transmission areas.
Collapse
Affiliation(s)
- Kim A Lindblade
- Malaria Branch, Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, 1600 Clifton Rd. NE, MS A-06, Atlanta, GA 30333, USA.
| | | | | | | | | |
Collapse
|
193
|
Brouwer EE, van Hellemond JJ, van Genderen PJ, Slot E, van Lieshout L, Visser LG, Wismans PJ. A case report of transfusion-transmitted Plasmodium malariae from an asymptomatic non-immune traveller. Malar J 2013; 12:439. [PMID: 24304475 PMCID: PMC3866504 DOI: 10.1186/1475-2875-12-439] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2013] [Accepted: 11/28/2013] [Indexed: 11/10/2022] Open
Abstract
Background The incidence of transfusion-transmitted malaria is very low in non-endemic countries due to strict donor selection. The optimal strategy to mitigate the risk of transfusion-transmitted malaria in non-endemic countries without unnecessary exclusion of blood donations is, however, still debated and asymptomatic carriers of Plasmodium species may still be qualified to donate blood for transfusion purposes. Case description In April 2011, a 59-year-old Dutch woman with spiking fevers for four days was diagnosed with a Plasmodium malariae infection. The patient had never been abroad, but nine weeks before, she had received red blood cell transfusion for anaemia. The presumptive diagnosis of transfusion-transmitted quartan malaria was made and subsequently confirmed by retrospective PCR analysis of donor blood samples. The donor was a 36-year-old Dutch male who started donating blood in May 2006. His travel history outside Europe included a trip to Kenya, Tanzania and Zanzibar in 2005, to Thailand in 2006 and to Costa Rica in 2007. He only used malaria prophylaxis during his travel to Africa. The donor did not show any abnormalities upon physical examination in 2011, while laboratory examination demonstrated a thrombocytopenia of 126 × 109/L as the sole abnormal finding since 2007. Thick blood smear analysis and the Plasmodium PCR confirmed an ongoing subclinical P. malariae infection. Chloroquine therapy was started, after which the infection cleared and thrombocyte count normalized. Fourteen other recipients who received red blood cells from the involved donor were traced. None of them developed malaria symptoms. Discussion This case demonstrates that P. malariae infections in non-immune travellers may occur without symptoms and persist subclinically for years. In addition, this case shows that these infections pose a threat to transfusion safety when subclinically infected persons donate blood after their return in a non-endemic malaria region. Since thrombocytopenia was the only abnormality associated with the subclinical malaria infection in the donor, this case illustrates that an unexplained low platelet count after a visit to malaria-endemic countries may be an indicator for asymptomatic malaria even when caused by non-falciparum Plasmodium species.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Pieter J Wismans
- Department of Internal Medicine, Harbour Hospital and Institute for Tropical Diseases, Haringvliet 2 3011 TD, Rotterdam, The Netherlands.
| |
Collapse
|
194
|
Littrell M, Miller JM, Ndhlovu M, Hamainza B, Hawela M, Kamuliwo M, Hamer DH, Steketee RW. Documenting malaria case management coverage in Zambia: a systems effectiveness approach. Malar J 2013; 12:371. [PMID: 24160186 PMCID: PMC3842626 DOI: 10.1186/1475-2875-12-371] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Accepted: 10/22/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND National malaria control programmes and their partners must document progress associated with investments in malaria control. While documentation has been achieved through population-based surveys for most interventions, measuring changes in malaria case management has been challenging because the increasing use of diagnostic tests reduces the denominator of febrile children who should receive anti-malarial treatment. Thus the widely used indicator, "proportion of children under five with fever in the last two weeks who received anti-malarial treatment according to national policy within 24 hours from onset of fever" is no longer relevant. METHODS An alternative sequence of indicators using a systems effectiveness approach was examined using data from nationally representative surveys in Zambia: the 2012 population-based Malaria Indictor Survey (MIS) and the 2011 Health Facility Survey (HFS). The MIS measured fever treatment-seeking behaviour among 972 children under five years (CU5) and 1,848 people age five years and above. The HFS assessed management of 435 CU5 and 429 people age five and above with fever/history of fever seeking care at 149 health facilities. Consultation observation and exit interviews measured use of diagnostic tests, artemisinin combination therapy (ACT) prescription, and patient comprehension of prescribed regimens. RESULTS Systems effectiveness for malaria case management among CU5 was estimated as follows: [100% ACT efficacy] x [55% fever treatment-seeking from an appropriate provider (MIS)] x [71% malaria blood testing (HFS)] x [86% ACT prescription for positive cases (HFS)] x [73% patient comprehension of prescribed ACT drug regimens (HFS)] = 25%. Systems effectiveness for malaria case management among people age five and above was estimated at 15%. CONCLUSIONS Tracking progress in malaria case management coverage can no longer rely solely on population-based surveys; the way forward likely entails household surveys to track trends in fever treatment-seeking behaviour, and facility/provider data to track appropriate management of febrile patients. Applying health facility and population-based data to the systems effectiveness framework provides a cogent and feasible approach to documenting malaria case management coverage and identifying gaps to direct program action. In Zambia, this approach identified treatment-seeking behaviour as the largest contributor to reduction in systems effectiveness for malaria case management.
Collapse
Affiliation(s)
- Megan Littrell
- PATH Malaria Control and Evaluation Partnership (MACEPA), Seattle, WA, USA.
| | | | | | | | | | | | | | | |
Collapse
|
195
|
Smith Gueye C, Sanders KC, Galappaththy GNL, Rundi C, Tobgay T, Sovannaroth S, Gao Q, Surya A, Thakur GD, Baquilod M, Lee WJ, Bobogare A, Deniyage SL, Satimai W, Taleo G, Hung NM, Cotter C, Hsiang MS, Vestergaard LS, Gosling RD. Active case detection for malaria elimination: a survey among Asia Pacific countries. Malar J 2013; 12:358. [PMID: 24103345 PMCID: PMC3852840 DOI: 10.1186/1475-2875-12-358] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Accepted: 09/29/2013] [Indexed: 11/23/2022] Open
Abstract
Background Moving from malaria control to elimination requires national malaria control programmes to implement strategies to detect both symptomatic and asymptomatic cases in the community. In order to do this, malaria elimination programmes follow up malaria cases reported by health facilities to carry out case investigations that will determine the origin of the infection, whether it has been imported or is due to local malaria transmission. If necessary, the malaria programme will also carry out active surveillance to find additional malaria cases in the locality to prevent further transmission. To understand current practices and share information on malaria elimination strategies, a survey specifically addressing country policies on case investigation and reactive case detection was carried out among fourteen countries of the Asia Pacific Malaria Elimination Network (APMEN). Methods A questionnaire was distributed to the malaria control programme managers amongst 14 countries in the Asia Pacific who have national or sub-national malaria elimination goals. Results Results indicate that there are a wide variety of case investigation and active case detection activities employed by the 13 countries that responded to the survey. All respondents report conducting case investigation as part of surveillance activities. More than half of these countries conduct investigations for each case. Over half aim to accomplish the investigation within one to two days of a case report. Programmes collect a broad array of demographic data during investigation procedures and definitions for imported cases are varied across respondents. Some countries report intra-national (from a different province or district) importation while others report only international importation (from a different country). Reactive case detection in respondent countries is defined as screening households within a pre-determined radius in order to identify other locally acquired infections, whether symptomatic or asymptomatic. Respondents report that reactive case detection can be triggered in different ways, in some cases with only a single case report and in others if a defined threshold of multiple cases occurs. The spatial range of screening conducted varies from a certain number of households to an entire administrative unit (e g, village). Some countries target symptomatic people whereas others target all people in order to detect asymptomatic infections. The majority of respondent programmes collect a range of information from those screened for malaria, similar to the range of information collected during case investigation. Conclusion Case investigation and reactive case detection are implemented in the malaria elimination programmes in the Asia Pacific, however practices vary widely from country to country. There is little evidence available to support countries in deciding which methods to maintain, change or adopt for improved effectiveness and efficiency. The development and use of common evaluation metrics for these activities will allow malaria programmes to assess performance and results of resource-intensive surveillance measures and may benefit other countries that are considering implementing these activities.
Collapse
Affiliation(s)
- Cara Smith Gueye
- Global Health Group, University of California, San Francisco, 50 Beale Street, Suite 1200, San Francisco, CA USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
196
|
Keegan LT, Dushoff J. Population-level effects of clinical immunity to malaria. BMC Infect Dis 2013; 13:428. [PMID: 24024630 PMCID: PMC3848694 DOI: 10.1186/1471-2334-13-428] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Accepted: 08/28/2013] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Despite a resurgence in control efforts, malaria remains a serious public-health problem, causing millions of deaths each year. One factor that complicates malaria-control efforts is clinical immunity, the acquired immune response that protects individuals from symptoms despite the presence of parasites. Clinical immunity protects individuals against disease, but its effects at the population level are complex. It has been previously suggested that under certain circumstances, malaria is bistable: it can persist, if established, in areas where it would not be able to invade. This phenomenon has important implications for control: in areas where malaria is bistable, if malaria could be eliminated until immunity wanes, it would not be able to re-invade. METHODS Here, we formulate an analytically tractable, dynamical model of malaria transmission to explore the possibility that clinical immunity can lead to bistable malaria dynamics. We summarize what is known and unknown about the parameters underlying this simple model, and solve the model to find a criterion that determines under which conditions we expect bistability to occur. RESULTS We show that bistability can only occur when clinically immune individuals are more "effective" at transmitting malaria than naïve individuals are. We show how this "effectiveness" includes susceptibility, ability to transmit, and duration of infectiousness. We also show that the amount of extra effectiveness necessary depends on the ratio between the duration of infectiousness and the time scale at which immunity is lost. Thus, if the duration of immunity is long, even a small amount of extra transmission effectiveness by clinically immune individuals could lead to bistability. CONCLUSIONS We demonstrate a simple, plausible mechanism by which clinical immunity may be causing bistability in human malaria transmission. We suggest that simple summary parameters--in particular, the relative transmission effectiveness of clinically immune individuals and the time scale at which clinical immunity is lost--are key to determining where and whether bistability is happening. We hope these findings will guide future efforts to measure transmission parameters and to guide malaria control efforts.
Collapse
Affiliation(s)
- Lindsay T Keegan
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| | - Jonathan Dushoff
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
197
|
Anthony CN, Lau YL, Sum JS, Fong MY, Ariffin H, Zaw WL, Jeyajothi I, Mahmud R. Malaysian child infected with Plasmodium vivax via blood transfusion: a case report. Malar J 2013; 12:308. [PMID: 24007496 PMCID: PMC3846159 DOI: 10.1186/1475-2875-12-308] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Accepted: 08/20/2013] [Indexed: 12/22/2022] Open
Abstract
Malaria may be a serious complication of blood transfusion due to the asymptomatic persistence of parasites in some donors. This case report highlights the transfusion-transmitted malaria of Plasmodium vivax in a child diagnosed with germ cell tumour. This child had received blood transfusion from three donors and a week later started developing malaria like symptoms. Nested PCR and sequencing confirmed that one of the three donors was infected with P. vivax and this was transmitted to the 12-year-old child. To the best of the authors’ knowledge, this is the first reported transfusion-transmitted malaria case in Malaysia.
Collapse
Affiliation(s)
- Claudia N Anthony
- Department of Parasitology, Faculty of Medicine, University Malaya, 50603, Kuala Lumpur, Malaysia.
| | | | | | | | | | | | | | | |
Collapse
|
198
|
Shah NK, Poole C, MacDonald PDM, Srivastava B, Schapira A, Juliano JJ, Anvikar A, Meshnick SR, Valecha N, Mishra N. Epidemiology of Plasmodium falciparum gametocytemia in India: prevalence, age structure, risk factors and the role of a predictive score for detection. Trop Med Int Health 2013; 18:800-9. [PMID: 23627694 DOI: 10.1111/tmi.12119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
OBJECTIVE To characterise the epidemiology of Plasmodium falciparum gametocytemia and determine the prevalence, age structure and the viability of a predictive model for detection. METHODS We collected data from 21 therapeutic efficacy trials conducted in India during 2009-2010 and estimated the contribution of each age group to the reservoir of transmission. We built a predictive model for gametocytemia and calculated the diagnostic utility of different score cut-offs from our risk score. RESULTS Gametocytemia was present in 18% (248/1 335) of patients and decreased with age. Adults constituted 43%, school-age children 45% and under fives 12% of the reservoir for potential transmission. Our model retained age, sex, region and previous antimalarial drug intake as predictors of gametocytemia. The area under the receiver operator characteristic curve was 0.76 (95%CI:0.73,0.78), and a cut-off of 14 or more on a risk score ranging from 0 to 46 provided 91% (95%CI:88,95) sensitivity and 33% (95%CI:31,36) specificity for detecting gametocytemia. CONCLUSIONS Gametocytemia was common in India and varied by region. Notably, adults contributed substantially to the reservoir for potential transmission. Predictive modelling to generate a clinical algorithm for detecting gametocytemia did not provide sufficient discrimination for targeting interventions.
Collapse
Affiliation(s)
- Naman K Shah
- School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
199
|
Tiono AB, Ouédraogo A, Ogutu B, Diarra A, Coulibaly S, Gansané A, Sirima SB, O'Neil G, Mukhopadhyay A, Hamed K. A controlled, parallel, cluster-randomized trial of community-wide screening and treatment of asymptomatic carriers of Plasmodium falciparum in Burkina Faso. Malar J 2013; 12:79. [PMID: 23442748 PMCID: PMC3599538 DOI: 10.1186/1475-2875-12-79] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Accepted: 02/23/2013] [Indexed: 12/20/2022] Open
Abstract
Background In malaria-endemic countries, large proportions of infected individuals are asymptomatic, constituting a reservoir of parasites for infection of newly hatched mosquitoes. This study evaluated the impact of screening and treatment of asymptomatic carriers of Plasmodium falciparum. Methods Eighteen villages were randomized (1:1) to study arms and inhabitants participated in four community screening campaigns: three before the rainy season ~1 month apart, and the fourth after the rains at ~12 months. On day 1 of campaigns 1–3, asymptomatic carriers in the intervention arm were identified by rapid diagnostic test and treated with artemether-lumefantrine. Outcomes were symptomatic malaria with parasite density >5,000/μL per person-year in children < 5 years and change in haemoglobin between days 1 and 28 of campaign 1. Results At 12 months, the number of symptomatic malaria episodes with a parasite density >5,000/μL per person-year in children < 5 years was not significantly different between arms (1.69 vs 1.60, p = 0.3482). Mean haemoglobin change in asymptomatic carriers during campaign 1 was greater in the intervention vs control arm (+0.53 g/dL vs -0.21 g/dL, p < 0.0001). ANCOVA demonstrated that mean asymptomatic carriage at the cluster level was lower in the intervention vs control arm at day 1 of campaigns 2 (5.0% vs 34.9%, p < 0.0001) and 3 (3.5% vs 31.5%, p < 0.0001), but showed only a small difference at day 1 of campaign 4 (34.6% vs 37.6%, p = 0.2982). Mean gametocyte carriage was lower in the intervention vs control arm at day 1 of campaigns 2 and 3 (0.7% vs 5.4%, p < 0.0001; 0.5% vs 5.8%, p < 0.0001), but was similar at day 1 of campaign 4 (4.9% vs 5.1%, p = 0.7208). Conclusions Systematic screening and treatment of asymptomatic carriers at the community level did not reduce clinical malaria incidence in the subsequent transmission season, indicating greater levels of parasite clearance are required to achieve a sustained impact in this setting.
Collapse
Affiliation(s)
- Alfred B Tiono
- Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
200
|
Maltha J, Gillet P, Jacobs J. Malaria rapid diagnostic tests in endemic settings. Clin Microbiol Infect 2013; 19:399-407. [PMID: 23438048 DOI: 10.1111/1469-0691.12151] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Malaria rapid diagnostic tests (RDTs) are instrument-free tests that provide results within 20 min and can be used by community health workers. RDTs detect antigens produced by the Plasmodium parasite such as Plasmodium falciparum histidine-rich protein-2 (PfHPR2) and Plasmodium lactate dehydrogenase (pLDH). The accuracy of RDTs for the diagnosis of uncomplicated P. falciparum infection is equal or superior to routine microscopy (but inferior to expert microscopy). Sensitivity for Plasmodium vivax is 75-100%; for Plasmodium ovale and Plasmodium malariae, diagnostic performance is poor. Design limitations of RDTs include poor sensitivity at low parasite densities, susceptibility to the prozone effect (PfHRP2-detecting RDTs), false-negative results due to PfHRP2 deficiency in the case of pfhrp2 gene deletions (PfHRP2-detecting RDTs), cross-reactions between Plasmodium antigens and detection antibodies, false-positive results by other infections and susceptibility to heat and humidity. End-user's errors relate to safety, procedure (delayed reading, incorrect sample and buffer volumes) and interpretation (not recognizing invalid test results, disregarding faint test lines). Withholding antimalarial treatment in the case of negative RDT results tends to be infrequent and tendencies towards over-prescription of antibiotics have been noted. Numerous shortcomings in RDT kits' labelling, instructions for use (correctness and readability) and contents have been observed. The World Health Organization and partners actively address quality assurance of RDTs by comparative testing of RDTs, inspections of manufacturing sites, lot testing and training tools but no formal external quality assessment programme of end-user performance exists. Elimination of malaria requires RDTs with lower detection limits, for which nucleic acid amplification tests are under development.
Collapse
Affiliation(s)
- J Maltha
- Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp, Belgium.
| | | | | |
Collapse
|