151
|
Eskandari MR, Eftekhari P, Abbaszadeh S, Noubarani M, Shafaghi B, Pourahmad J. Inhibition of Different Pain Pathways Attenuates Oxidative Stress in Glial Cells: A Mechanistic View on Neuroprotective Effects of Different Types of Analgesics. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2021; 20:204-215. [PMID: 34903982 PMCID: PMC8653691 DOI: 10.22037/ijpr.2021.114476.14871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Neuropathic pain results from trauma or diseases affecting the central nervous system (CNS) and triggers a cascade of events in different CNS parts that eventually lead to oxidative injury. This study was aimed to investigate the protective effects of some selected analgesics in neuropathic pain-induced oxidative damage in the isolated glial cells of the rat brain. In this experiment, rats were randomly divided into 5 main groups. Rats in group 1 received no medication, whereas rats in groups 2 to 5 received ASA (aspirin), celecoxib, morphine, and etanercept daily, respectively. Each main group divides into 3 subgroups: normal, sham, and neuropathic pain model rats. The glial cells of the rat brain were isolated at different time points. Our results demonstrate that neuropathic pain induces ROS generation as the major cause of mitochondrial membrane potential collapse (%∆Ψm) and lysosomal membrane rupture, which result in oxidative damage of the glial cells. In addition, ASA and celecoxib had protective effects on the neuropathic pain-induced oxidative stress markers, including ROS production, mitochondrial membrane potential collapse, and lysosomal membrane leakiness at different time points. Furthermore, the oxidative damage markers were significantly decreased by morphine and etanercept in all investigated days. Since arachidonic acid metabolites and TNF-α are produced during neuropathic pain and inflammation, it can be concluded that the inhibition of the substances production or inhibition of the ligands binding with their receptors would help to decrease the destructive effects of neuropathic pain in the glial cells of rat brain.
Collapse
Affiliation(s)
- Mohammad Reza Eskandari
- Zanjan Pharmaceutical Nanotechnology Research Center (ZPNRC), Zanjan University of Medical Sciences, Zanjan, Iran.
- Department of Pharmacology and Toxicology, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran.
| | - Parivash Eftekhari
- Department of Toxicology and Pharmacology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Samin Abbaszadeh
- Department of Pharmacology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran.
| | - Maryam Noubarani
- Department of Pharmacology and Toxicology, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran.
| | - Bijan Shafaghi
- Department of Toxicology and Pharmacology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Jalal Pourahmad
- Department of Toxicology and Pharmacology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
152
|
Bannerman CA, Douchant K, Sheth PM, Ghasemlou N. The gut-brain axis and beyond: Microbiome control of spinal cord injury pain in humans and rodents. NEUROBIOLOGY OF PAIN (CAMBRIDGE, MASS.) 2021; 9:100059. [PMID: 33426367 PMCID: PMC7779861 DOI: 10.1016/j.ynpai.2020.100059] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 11/26/2020] [Accepted: 12/10/2020] [Indexed: 12/17/2022]
Abstract
Spinal cord injury (SCI) is a devastating injury to the central nervous system in which 60 to 80% of patients experience chronic pain. Unfortunately, this pain is notoriously difficult to treat, with few effective options currently available. Patients are also commonly faced with various compounding injuries and medical challenges, often requiring frequent hospitalization and antibiotic treatment. Change in the gut microbiome from the "normal" state to one of imbalance, referred to as gut dysbiosis, has been found in both patients and rodent models following SCI. Similarities exist in the bacterial changes observed after SCI and other diseases with chronic pain as an outcome. These changes cause a shift in the regulation of inflammation, causing immune cell activation and secretion of inflammatory mediators that likely contribute to the generation/maintenance of SCI pain. Therefore, correcting gut dysbiosis may be used as a tool towards providing patients with effective pain management and improved quality of life.
Collapse
Affiliation(s)
- Courtney A. Bannerman
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, Ontario, Canada
| | - Katya Douchant
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, Ontario, Canada
- Gastrointestinal Disease Research Unit, Kingston Health Sciences Center, Kingston, Ontario, Canada
| | - Prameet M. Sheth
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, Ontario, Canada
- Department of Pathology and Molecular Medicine, Queen’s University, Kingston, Ontario, Canada
- Division of Microbiology, Kingston Health Sciences Centre, Kingston, Ontario, Canada
- Gastrointestinal Disease Research Unit, Kingston Health Sciences Center, Kingston, Ontario, Canada
| | - Nader Ghasemlou
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, Ontario, Canada
- Department of Anesthesiology and Perioperative Medicine, Kingston Health Sciences Centre, Kingston, Ontario, Canada
- Centre for Neuroscience Studies, Queen’s University, Kingston, Ontario, Canada
| |
Collapse
|
153
|
Cosamalón-Gan I, Cosamalón-Gan T, Mattos-Piaggio G, Villar-Suárez V, García-Cosamalón J, Vega-Álvarez JA. Inflammation in the intervertebral disc herniation. Neurocirugia (Astur) 2021; 32:21-35. [PMID: 32169419 DOI: 10.1016/j.neucir.2020.01.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 12/16/2019] [Accepted: 01/12/2020] [Indexed: 01/01/2023]
Abstract
Up until fairly recently, it was thought that sciatic pain in the lumbar herniated disc was caused by compression on the nerve root. However, the lumbar herniated disc shows mixed pictures which are difficult to explain by simple mechanical compromise. In recent years various immunology, immunohistochemistry and molecular biology studies have shown that the herniated tissue is not an inert material, but rather it Is biologically very active with the capability of expressing a series of inflammatory mediators: cytokines such as interleukin-1, interleukin-6, interleuquin-8 and tumor necrosis factor being the ones which stand out. The inflammation is not only induced by the chemical irritation of the bioactive substances released by the nucleus pulposus but also by an autoimmune response against itself. Thus, in addition to the mechanical factor, the biomechanical mediation plays an important role in the pathophysiology of sciatic pain and of radiculopathy. Through a review of a wide range of literature, we researched the cellular molecular mediators involved in this inflammatory process around the lumbar herniated disc and its involvement in sciatic pain.
Collapse
Affiliation(s)
- Iván Cosamalón-Gan
- Departamento de Morfología y Biología Celular, Facultad de Medicina, Universidad de Oviedo, Oviedo, España
| | - Tatiana Cosamalón-Gan
- Departamento de Morfología y Biología Celular, Facultad de Medicina, Universidad de Oviedo, Oviedo, España
| | | | | | | | - José Antonio Vega-Álvarez
- Departamento de Morfología y Biología Celular, Facultad de Medicina, Universidad de Oviedo, Oviedo, España
| |
Collapse
|
154
|
Dib P, Zhang Y, Ihnat MA, Gallucci RM, Standifer KM. TNF-Alpha as an Initiator of Allodynia and Anxiety-Like Behaviors in a Preclinical Model of PTSD and Comorbid Pain. Front Psychiatry 2021; 12:721999. [PMID: 34512420 PMCID: PMC8424009 DOI: 10.3389/fpsyt.2021.721999] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 07/26/2021] [Indexed: 01/22/2023] Open
Abstract
Post-Traumatic Stress Disorder (PTSD) is a debilitating mental health disorder that occurs after exposure to a traumatic event. Patients with comorbid chronic pain experience affective distress, worse quality of life, and poorer responses to treatments for pain or PTSD than those with either condition alone. FDA-approved PTSD treatments are often ineffective analgesics, requiring additional drugs to treat co-morbid symptoms. Therefore, development of new treatment strategies necessitate a better understanding of the pathophysiology of PTSD and comorbid pain. The single prolonged stress (SPS) model of PTSD induces the development of persistent mechanical allodynia and thermal hyperalgesia. Increased Nociceptin/Orphanin FQ (N/OFQ) levels in serum and CSF accompany these exaggerated nociceptive responses, as well as increased serum levels of the pro-inflammatory cytokine tumor necrosis factor (TNF-α). Therefore, the primary goal was to determine the role of TNF-α in the development of SPS-induced allodynia/hyperalgesia and elevated serum and CNS N/OFQ using two approaches: TNF-α synthesis inhibition, and blockade with anti-TNF-α antibody that acts primarily in the periphery. Administration of TNF-α synthesis blocker, thalidomide (THL), immediately after SPS prevented increased TNF-α and development of allodynia and hyperalgesia. The THL effect lasted at least 21 days, well after thalidomide treatment ended (day 5). THL also prevented SPS-induced increases in serum N/OFQ and reversed regional N/OFQ mRNA expression changes in the CNS. Serum TNF-α increases detected at 4 and 24 h post SPS were not accompanied by blood brain barrier disruption. A single injection of anti-TNF-α antibody to male and female rats during the SPS procedure prevented the development of allodynia, hyperalgesia, and elevated serum N/OFQ, and reduced SPS-induced anxiety-like behaviors in males. Anti-TNFα treatment also blocked development of SPS-induced allodynia in females, and blocked increased hypothalamic N/OFQ in males and females. This suggests that a peripheral TNF-α surge is necessary for the initiation of allodynia associated with SPS, as well as the altered central and peripheral N/OFQ that maintains nociceptive sensitivity. Therefore, early alleviation of TNF-α provides new therapeutic options for investigation as future PTSD and co-morbid pain treatments.
Collapse
Affiliation(s)
- Patrick Dib
- Department of Pharmaceutical Sciences, University of Oklahoma College of Pharmacy, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Yong Zhang
- Department of Pharmaceutical Sciences, University of Oklahoma College of Pharmacy, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Michael A Ihnat
- Department of Pharmaceutical Sciences, University of Oklahoma College of Pharmacy, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States.,Harold Hamm Diabetes Center, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States.,Department of Physiology, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Randle M Gallucci
- Department of Pharmaceutical Sciences, University of Oklahoma College of Pharmacy, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States.,Harold Hamm Diabetes Center, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States.,Department of Cell Biology, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Kelly M Standifer
- Department of Pharmaceutical Sciences, University of Oklahoma College of Pharmacy, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States.,Harold Hamm Diabetes Center, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| |
Collapse
|
155
|
Zhang Y, Sevilla A, Weller R, Wang S, Gitlin MC, Candiotti KA. The role of α7-nicotinic acetylcholine receptor in a rat model of chronic nicotine-induced mechanical hypersensitivity. Neurosci Lett 2020; 743:135566. [PMID: 33352289 DOI: 10.1016/j.neulet.2020.135566] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 12/08/2020] [Accepted: 12/09/2020] [Indexed: 12/19/2022]
Abstract
Smokers have a higher incidence of chronic pain than non-smokers, but the neural mechanism is not yet fully understood. Nicotine is the main component of tobacco and acts as an agonist for nicotinic cholinergic receptors (nAChRs) in the nervous system. This study was approved by the IACUC of UM. The effects of chronic nicotine administration on mechanical sensitivity were studied using a rat model. The changes in the expression levels of the α7 isoform of nAChR (α7-nAChR), inflammatory cytokines TNFα and COX-2, as well as the density of neuro-immune cells (astrocytes and microglia) were measured concurrently. The results indicate that long-term nicotine administration induces hypersensitivity to mechanical stimuli, as demonstrated by a significant reduction in the pain perception threshold. In response to nicotine, the expression levels of α7-nAChR increased in the periaqueductal gray matter (PAG) and decreased in the spinal cord. Acute administration of the selective α7-nAChR agonist CDP-Choline reversed this hypersensitivity. Chronic nicotine administration led to an increase of microglial cells in the dorsal horn of the spinal cord and increased expression levels of the cytokines TNFα and COX-2. This study suggests that decreased α7-nAChR expression in the spinal cord, as a result of long-term exposure to nicotine, may be causatively linked to chronic pain. Simultaneously, the increase of neuro-immune factors in the spinal cord is also a potential factor leading to chronic pain.
Collapse
Affiliation(s)
- Yanping Zhang
- Department of Anesthesiology, Perioperative Medicine and Pain Management, University of Miami Miller School of Medicine, USA.
| | - Alec Sevilla
- Department of Anesthesiology, Perioperative Medicine and Pain Management, University of Miami Miller School of Medicine, USA
| | - Robert Weller
- Department of Anesthesiology, Perioperative Medicine and Pain Management, University of Miami Miller School of Medicine, USA
| | - Shuju Wang
- Hubei University of Chinese Medicine, Wuhan, Hubei, China
| | - Melvin C Gitlin
- Department of Anesthesiology, Perioperative Medicine and Pain Management, University of Miami Miller School of Medicine, USA
| | - Keith A Candiotti
- Department of Anesthesiology, Perioperative Medicine and Pain Management, University of Miami Miller School of Medicine, USA.
| |
Collapse
|
156
|
Balkrishna A, Sakat SS, Karumuri S, Singh H, Tomer M, Kumar A, Sharma N, Nain P, Haldar S, Varshney A. Herbal Decoction Divya-Peedantak-Kwath Alleviates Allodynia and Hyperalgesia in Mice Model of Chemotherapy-Induced Peripheral Neuropathy via Modulation in Cytokine Response. Front Pharmacol 2020; 11:566490. [PMID: 33324205 PMCID: PMC7723448 DOI: 10.3389/fphar.2020.566490] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 09/23/2020] [Indexed: 12/13/2022] Open
Abstract
The widely used cancer treatment, chemotherapy, causes severe long-term neuropathic pain in 30–40% cases, the condition clinically known as chemotherapy-induced peripheral neuropathy (CIPN). Approved conventional analgesics are sometimes ineffective, while others like opioids have undesirable side effects like addiction, seizures, and respiratory malfunctioning. Tricyclic antidepressants and anticonvulsants, although exhibit anti-allodynic effects in neuropathy, also have unpleasant side effects. Thus, alternative medicines are being explored for CIPN treatment. Despite scattered reports on different extracts from different plants having potential anti-allodynic effects against CIPN, no established medicine or formulation of herbal origin exists. In this study, efficacy of an herbal decoction, formulated based on ancient medicinal principles and protocols for treating neuropathic pain, Divya-Peedantak-Kwath (DPK), has been evaluated in a paclitaxel (PTX)-induced peripheral neuropathic mouse model. We observed that DPK has prominent anti-allodynic and anti-hyperalgesic effects and acts as a nociceptive modulator for CIPN. With exhibited antioxidative effects, DPK restored the redox potential of the sciatic nerves to the normal. On histopathological evaluation, DPK prevented the PTX-induced lesions in the sciatic nerve, in a dose-dependent manner. It also prevented inflammation by modulating the levels of pro-inflammatory cytokines involved in CIPN pathogenesis. Our observations evinced that DPK can alleviate CIPN by attenuating oxidative stress and concomitant neuroinflammation through immune modulation.
Collapse
Affiliation(s)
- Acharya Balkrishna
- Drug Discovery and Development Division, Patanjali Research Institute, Haridwar, India.,Department of Allied and Applied Sciences, University of Patanjali, Haridwar, India
| | - Sachin S Sakat
- Drug Discovery and Development Division, Patanjali Research Institute, Haridwar, India
| | - Shadrak Karumuri
- Drug Discovery and Development Division, Patanjali Research Institute, Haridwar, India
| | - Hoshiyar Singh
- Drug Discovery and Development Division, Patanjali Research Institute, Haridwar, India
| | - Meenu Tomer
- Drug Discovery and Development Division, Patanjali Research Institute, Haridwar, India
| | - Ajay Kumar
- Drug Discovery and Development Division, Patanjali Research Institute, Haridwar, India
| | - Niti Sharma
- Drug Discovery and Development Division, Patanjali Research Institute, Haridwar, India
| | - Pradeep Nain
- Drug Discovery and Development Division, Patanjali Research Institute, Haridwar, India
| | - Swati Haldar
- Drug Discovery and Development Division, Patanjali Research Institute, Haridwar, India
| | - Anurag Varshney
- Drug Discovery and Development Division, Patanjali Research Institute, Haridwar, India.,Department of Allied and Applied Sciences, University of Patanjali, Haridwar, India
| |
Collapse
|
157
|
Lan L, Xu M, Li J, Liu L, Xu M, Zhou C, Shen L, Tang Z, Wan F. Mas-related G protein-coupled receptor D participates in inflammatory pain by promoting NF-κB activation through interaction with TAK1 and IKK complex. Cell Signal 2020; 76:109813. [DOI: 10.1016/j.cellsig.2020.109813] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 10/15/2020] [Accepted: 10/16/2020] [Indexed: 01/28/2023]
|
158
|
Fan X, Bian W, Liu M, Li J, Wang Y. WITHDRAWN: MiR-216b-5p attenuates chronic constriction injury-induced neuropathic pain in female rats by targeting MAL2 and inactivating Wnt/β-catenin signaling pathway. Neurochem Int 2020:104930. [PMID: 33259862 DOI: 10.1016/j.neuint.2020.104930] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 11/17/2020] [Accepted: 11/24/2020] [Indexed: 12/13/2022]
Abstract
This article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at https://www.elsevier.com/about/our-business/policies/article-withdrawal.
Collapse
Affiliation(s)
- Xiaodi Fan
- Department of Anesthesiology, The Third Hospital of Jilin University, Changchun 130033, Jilin, China
| | - Wenchao Bian
- Department of Anesthesiology, The Third Hospital of Jilin University, Changchun 130033, Jilin, China
| | - Meichen Liu
- Department of Anesthesiology, The Third Hospital of Jilin University, Changchun 130033, Jilin, China
| | - Jinjie Li
- Department of Anesthesiology, The Third Hospital of Jilin University, Changchun 130033, Jilin, China
| | - Yunyun Wang
- Department of Anesthesiology, The Third Hospital of Jilin University, Changchun 130033, Jilin, China
| |
Collapse
|
159
|
Fujita W. The Possible Role of MOPr-DOPr Heteromers and Its Regulatory Protein RTP4 at Sensory Neurons in Relation to Pain Perception. Front Cell Neurosci 2020; 14:609362. [PMID: 33304244 PMCID: PMC7693438 DOI: 10.3389/fncel.2020.609362] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 10/28/2020] [Indexed: 12/25/2022] Open
Abstract
Heteromers between mu opioid receptor (MOPr) and delta opioid receptor (DOPr) (i.e., MOPr-DOPr heteromer) have been found to be expressed in different brain regions, in the spinal cord, and in dorsal root ganglia. Recent studies on this heteromer reveal its important pathophysiological function in pain regulation including neuropathic pain; this suggests a role as a novel therapeutic target in chronic pain management. In addition, receptor transporter protein 4 (RTP4) has been shown to be involved in the intracellular maturation of the MOPr-DOPr heteromers. RTP4 appears to have unique distribution in vivo being highly expressed in sensory neurons and also macrophages; the latter are effector cells of the innate immune system that phagocytose foreign substances and secrete both pro-inflammatory and antimicrobial mediators; this suggests a possible contribution of RTP4 to neuronal immune-related pathological conditions such as neuropathic pain. Although RTP4 could be considered as an important therapeutic target in the management of pain via MOPr-DOPr heteromer, a few reports have supported this. This review will summarize the possible role or functions of the MOPr-DOPr heteromer and its regulatory molecule RTP4 in pain modulation at sensory neurons.
Collapse
Affiliation(s)
- Wakako Fujita
- Department of Medical Pharmacology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| |
Collapse
|
160
|
Chang MC, Park D. Effectiveness of Intravenous Immunoglobulin for Management of Neuropathic Pain: A Narrative Review. J Pain Res 2020; 13:2879-2884. [PMID: 33209055 PMCID: PMC7669498 DOI: 10.2147/jpr.s273475] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 10/13/2020] [Indexed: 12/15/2022] Open
Abstract
Administrations of intravenous immunoglobulin (IVIG), an immune-modulating blood-derived product, may be beneficial for managing neuropathic pain. Here, we review previous studies to investigate the effectiveness of IVIG in managing neuropathic pain due to various neurological disorders. The electronic databases PubMed, Scopus, Embase, and the Cochrane Library were searched for studies published up to February 2020. Two reviewers independently assessed the studies using strict inclusion criteria. Ten studies were included and qualitatively analyzed. The review included patients with pain due to complex regional pain syndrome (CRPS), diabetic polyneuropathy, and others, such as postherpetic neuralgia and trigeminal neuralgia. We found that IVIG may be one of the beneficial options for managing neuropathic pain from various neurological disorders. In the four articles reviewed, no major adverse effects were reported, and the trend was toward a positive pain-reducing effect in eight articles. However, to confirm the benefits of IVIG on reducing neuropathic pain, more high-quality studies are required.
Collapse
Affiliation(s)
- Min Cheol Chang
- Department of Rehabilitation Medicine, College of Medicine, Yeungnam University, Daegu, Republic of Korea
| | - Donghwi Park
- Department of Physical Medicine and Rehabilitation, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, Republic of Korea
| |
Collapse
|
161
|
Li Z, Li A, Yan L, Yang T, Xu W, Fan P. Downregulation of long noncoding RNA DLEU1 attenuates hypersensitivity in chronic constriction injury-induced neuropathic pain in rats by targeting miR-133a-3p/SRPK1 axis. Mol Med 2020; 26:104. [PMID: 33167866 PMCID: PMC7653812 DOI: 10.1186/s10020-020-00235-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 10/26/2020] [Indexed: 02/06/2023] Open
Abstract
Background Neuropathic pain belongs to chronic pain and is caused by the primary dysfunction of the somatosensory nervous system. Long noncoding RNAs (lncRNAs) have been reported to regulate neuronal functions and play significant roles in neuropathic pain. DLEU1 has been indicated to have close relationship with neuropathic pain. Therefore, our study focused on the significant role of DLEU1 in neuropathic pain rat models. Methods We first constructed a chronic constrictive injury (CCI) rat model. Paw withdrawal threshold (PWT) and paw withdrawal latency (PWL) were employed to evaluate hypersensitivity in neuropathic pain. RT-qPCR was performed to analyze the expression of target genes. Enzyme-linked immunosorbent assay (ELISA) was conducted to detect the concentrations of interleukin‐6 (IL-6), tumor necrosis factor‐α (TNF-α) and IL-1β. The underlying mechanisms of DLEU1 were investigated using western blot and luciferase reporter assays. Results Our findings showed that DLEU1 was upregulated in CCI rats. DLEU1 knockdown reduced the concentrations of IL‐6, IL‐1β and TNF‐α in CCI rats, suggesting that neuroinflammation was inhibited by DLEU1 knockdown. Besides, knockdown of DLEU1 inhibited neuropathic pain behaviors. Moreover, it was confirmed that DLEU1 bound with miR-133a-3p and negatively regulated its expression. SRPK1 was the downstream target of miR-133a-3p. DLEU1 competitively bound with miR-133a-3p to upregulate SRPK1. Finally, rescue assays revealed that SRPK1 overexpression rescued the suppressive effects of silenced DLEU1 on hypersensitivity in neuropathic pain and inflammation of spinal cord in CCI rats. Conclusion DLEU1 regulated inflammation of the spinal cord and mediated hypersensitivity in neuropathic pain in CCI rats by binding with miR-133a-3p to upregulate SRPK1 expression.
Collapse
Affiliation(s)
- Zhen Li
- Department of Anesthesiology, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, 410008, Hunan, China
| | - Aiyuan Li
- Department of Anesthesiology, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, 410008, Hunan, China
| | - Liping Yan
- Department of Anesthesiology, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, 410008, Hunan, China
| | - Tian Yang
- Department of Anesthesiology, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, 410008, Hunan, China
| | - Wei Xu
- Department of Anesthesiology, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, 410008, Hunan, China
| | - Pengju Fan
- Department of Burn and Plastic Surgery, Xiangya Hospital Central South University, No. 87 Xiangya Road, Kaifu District, Changsha, 410008, Hunan, China.
| |
Collapse
|
162
|
Teixeira-Santos L, Albino-Teixeira A, Pinho D. Neuroinflammation, oxidative stress and their interplay in neuropathic pain: Focus on specialized pro-resolving mediators and NADPH oxidase inhibitors as potential therapeutic strategies. Pharmacol Res 2020; 162:105280. [PMID: 33161139 DOI: 10.1016/j.phrs.2020.105280] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 10/24/2020] [Accepted: 10/27/2020] [Indexed: 02/08/2023]
Abstract
Neuropathic pain (NP) is a chronic condition that results from a lesion or disease of the nervous system, greatly impacting patients' quality of life. Current pharmacotherapy options deliver inadequate and/or insufficient responses and thus a significant unmet clinical need remains for alternative treatments in NP. Neuroinflammation, oxidative stress and their reciprocal relationship are critically involved in NP pathophysiology. In this context, new pharmacological approaches, aiming at enhancing the resolution phase of inflammation and/or restoring redox balance by targeting specific reactive oxygen species (ROS) sources, are emerging as potential therapeutic strategies for NP, with improved efficacy and safety profiles. Several reports have demonstrated that administration of exogenous specialized pro-resolving mediators (SPMs) ameliorates NP pathophysiology. Likewise, deletion or inhibition of the ROS-generating enzyme NADPH oxidase (NOX), particularly its isoforms 2 and 4, results in beneficial effects in NP models. Notably, SPMs also modulate oxidative stress and NOX also regulates neuroinflammation. By targeting neuroinflammatory and oxidative pathways, both SPMs analogues and isoform-specific NOX inhibitors are promising therapeutic strategies for NP.
Collapse
Affiliation(s)
- Luísa Teixeira-Santos
- Departamento de Biomedicina - Unidade de Farmacologia e Terapêutica, Faculdade de Medicina, Universidade do Porto, Portugal; MedInUP - Centro de Investigação Farmacológica e Inovação Medicamentosa, Universidade do Porto, Portugal.
| | - António Albino-Teixeira
- Departamento de Biomedicina - Unidade de Farmacologia e Terapêutica, Faculdade de Medicina, Universidade do Porto, Portugal; MedInUP - Centro de Investigação Farmacológica e Inovação Medicamentosa, Universidade do Porto, Portugal.
| | - Dora Pinho
- Departamento de Biomedicina - Unidade de Farmacologia e Terapêutica, Faculdade de Medicina, Universidade do Porto, Portugal; MedInUP - Centro de Investigação Farmacológica e Inovação Medicamentosa, Universidade do Porto, Portugal.
| |
Collapse
|
163
|
Mini-review - Sodium channels and beyond in peripheral nerve disease: Modulation by cytokines and their effector protein kinases. Neurosci Lett 2020; 741:135446. [PMID: 33166641 DOI: 10.1016/j.neulet.2020.135446] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 10/01/2020] [Accepted: 10/03/2020] [Indexed: 12/18/2022]
Abstract
Peripheral neuropathy is associated with enhanced activity of primary afferents which is often manifested as pain. Voltage-gated sodium channels (VGSCs) are critical for the initiation and propagation of action potentials and are thus essential for the transmission of the noxious stimuli from the periphery. Human peripheral sensory neurons express multiple VGSCs, including Nav1.7, Nav1.8, and Nav1.9 that are almost exclusively expressed in the peripheral nervous system. Distinct biophysical properties of Nav1.7, Nav1.8, and Nav1.9 underlie their differential contributions to finely tuned neuronal firing of nociceptors, and mutations in these channels have been associated with several inherited human pain disorders. Functional characterization of these mutations has provided additional insights into the role of these channels in electrogenesis in nociceptive neurons and pain sensation. Peripheral tissue damage activates an inflammatory response and triggers generation and release of inflammatory mediators, which can act through diverse signaling cascades to modulate expression and activity of ion channels including VGSCs, contributing to the development and maintenance of pathological pain conditions. In this review, we discuss signaling pathways that are activated by pro-nociceptive inflammatory mediators that regulate peripheral sodium channels, with a specific focus on direct phosphorylation of these channels by multiple protein kinases.
Collapse
|
164
|
Huang SH, Yang SM, Lo JJ, Wu SH, Tai MH. Irisin Gene Delivery Ameliorates Burn-Induced Sensory and Motor Neuropathy. Int J Mol Sci 2020; 21:ijms21207798. [PMID: 33096842 PMCID: PMC7589574 DOI: 10.3390/ijms21207798] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 10/19/2020] [Accepted: 10/19/2020] [Indexed: 01/12/2023] Open
Abstract
Burn-related neuropathy is common and often involves pain, paresthesia, or muscle weakness. Irisin, an exercise-induced myokine after cleavage from its membrane precursor fibronectin type III domain-containing 5 (FNDC5), exhibits neuroprotective and anti-inflammatory activities. A rat model of third-degree burn on the right hind paw was used to investigate the therapeutic role of irisin/FNDC5. Rats received burn injury and were treated with intrathecal recombinant adenovirus containing the irisin sequence (Ad-irisin) at 3 weeks postburn. One week later, mechanical allodynia was examined. The expression of irisin in cerebrospinal fluid (CSF) was detected. Ipsilateral gastrocnemius muscle and lumbar spinal cord were also obtained for further investigation. Furthermore, the anti-apoptotic effect of recombinant irisin in SH-SY5Y cells was evaluated through tumor necrosis factor alpha (TNFα) stimulus to mimic burn injury. We noted intrathecal Ad-irisin attenuated pain sensitization and gastrocnemius muscle atrophy by modulating the level of irisin in CSF, and the expression of neuronal FNDC5/irisin and TNFα in the spinal cord. Ad-irisin also ameliorated neuronal apoptosis in both dorsal and ventral horns. Furthermore, recombinant irisin attenuated TNFα-induced SH-SY5Y cell apoptosis. In summary, irisin attenuated allodynia and muscle wasting by ameliorating neuroinflammation-induced neuronal apoptosis.
Collapse
Affiliation(s)
- Shu-Hung Huang
- Division of Plastic Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan;
- Department of Surgery, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Regeneration Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Shih-Ming Yang
- Institute of Biomedical Sciences, National Sun Yat-Sun University, Kaohsiung 804, Taiwan;
| | - Jing-Jou Lo
- Department of General Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
| | - Sheng-Hua Wu
- Department of Anesthesiology, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
- Department of Anesthesiology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Anesthesiology, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung 801, Taiwan
- Correspondence: (S.-H.W.); (M.-H.T.)
| | - Ming-Hong Tai
- Institute of Biomedical Sciences, National Sun Yat-Sun University, Kaohsiung 804, Taiwan;
- Correspondence: (S.-H.W.); (M.-H.T.)
| |
Collapse
|
165
|
Zhong Y, Hu Z, Wu J, Dai F, Lee F, Xu Y. STAU1 selectively regulates the expression of inflammatory and immune response genes and alternative splicing of the nerve growth factor receptor signaling pathway. Oncol Rep 2020; 44:1863-1874. [PMID: 33000283 PMCID: PMC7551455 DOI: 10.3892/or.2020.7769] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 06/26/2020] [Indexed: 01/01/2023] Open
Abstract
Double‑stranded RNA‑binding protein Staufen homolog 1 (STAU1) is a highly conserved multifunctional double‑stranded RNA‑binding protein, and is a key factor in neuronal differentiation. RNA sequencing was used to analyze the overall transcriptional levels of the upregulated cells by STAU1 and control cells, and select alternative splicing (AS). It was determined that the high expression of STAU1 led to changes in the expression levels of a variety of inflammatory and immune response genes, including IFIT2, IFIT3, OASL, and CCL2. Furthermore, STAU1 was revealed to exert a significant regulatory effect on the AS of genes related to the 'nerve growth factor receptor signaling pathway'. This is of significant importance for neuronal survival, differentiation, growth, post‑damage repair, and regeneration. In conclusion, overexpression of STAU1 was associated with immune response and regulated AS of pathways related to neuronal growth and repair. In the present study, the whole transcriptome of STAU1 expression was first analyzed, which laid a foundation for further understanding the key functions of STAU1.
Collapse
Affiliation(s)
- Yi Zhong
- College of Acupuncture and Orthopedics, Hubei University of Chinese Medicine, Wuhan, Hubei 430065, P.R. China
| | - Zhengchao Hu
- College of Acupuncture and Orthopedics, Hubei University of Chinese Medicine, Wuhan, Hubei 430065, P.R. China
| | - Jingcui Wu
- College of Acupuncture and Orthopedics, Hubei University of Chinese Medicine, Wuhan, Hubei 430065, P.R. China
| | - Fan Dai
- College of Acupuncture and Orthopedics, Hubei University of Chinese Medicine, Wuhan, Hubei 430065, P.R. China
| | - Feng Lee
- Department of Orthopedics, Hubei Provincial Hospital of TCM, Wuhan, Hubei 430074, P.R. China
| | - Yangping Xu
- Department of Orthopedics, Hubei Provincial Hospital of TCM, Wuhan, Hubei 430074, P.R. China
| |
Collapse
|
166
|
Mechanical pain of the lower extremity after compression of the upper spinal cord involves signal transducer and activator of transcription 3-dependent reactive astrocytes and interleukin-6. Brain Behav Immun 2020; 89:389-399. [PMID: 32717400 DOI: 10.1016/j.bbi.2020.07.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 07/08/2020] [Accepted: 07/19/2020] [Indexed: 02/07/2023] Open
Abstract
Chronic pain is one of the main symptoms of spinal disorders such as spinal canal stenosis. A major cause of this pain is related to compression of the spinal cord, and chronic pain can develop at the level of the compressed spinal segment. However, in many patients chronic pain arises in an area that does not correspond to the compressed segment, and the underlying mechanism involved remains unknown. This was investigated in the present study using a mouse model of spinal cord compression in which mechanical pain of the hindpaws develops after compression of the first lumbar segment (L1) of the spinal cord. Compression induced the activation of astrocytes in the L1 spinal dorsal horn (SDH)-but not the L4 SDH that corresponds to the hindpaws-and activated signal transducer and activator of transcription 3 (STAT3). Suppressing reactive astrocytes by expressing a dominant negative form of STAT3 (dnSTAT3) in the compressed SDH prevented mechanical pain. Expression of interleukin (IL)-6 was also upregulated in the compressed SDH, and it was inhibited by astrocytic expression of dnSTAT3. Intrathecal administration of a neutralizing anti-IL-6 antibody reversed the compression-induced mechanical pain. These results suggest that astrocytic STAT3 and IL-6 in the compressed SDH are involved in remote mechanical pain observed in the lower extremity, and may provide a target for treating chronic pain associated with spinal cord compression such as spinal canal stenosis.
Collapse
|
167
|
Du Preez A, Law T, Onorato D, Lim YM, Eiben P, Musaelyan K, Egeland M, Hye A, Zunszain PA, Thuret S, Pariante CM, Fernandes C. The type of stress matters: repeated injection and permanent social isolation stress in male mice have a differential effect on anxiety- and depressive-like behaviours, and associated biological alterations. Transl Psychiatry 2020; 10:325. [PMID: 32958745 PMCID: PMC7505042 DOI: 10.1038/s41398-020-01000-3] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/12/2020] [Accepted: 09/03/2020] [Indexed: 01/02/2023] Open
Abstract
Chronic stress can alter the immune system, adult hippocampal neurogenesis and induce anxiety- and depressive-like behaviour in rodents. However, previous studies have not discriminated between the effect(s) of different types of stress on these behavioural and biological outcomes. We investigated the effect(s) of repeated injection vs. permanent social isolation on behaviour, stress responsivity, immune system functioning and hippocampal neurogenesis, in young adult male mice, and found that the type of stress exposure does indeed matter. Exposure to 6 weeks of repeated injection resulted in an anxiety-like phenotype, decreased systemic inflammation (i.e., reduced plasma levels of TNFα and IL4), increased corticosterone reactivity, increased microglial activation and decreased neuronal differentiation in the dentate gyrus (DG). In contrast, exposure to 6 weeks of permanent social isolation resulted in a depressive-like phenotype, increased plasma levels of TNFα, decreased plasma levels of IL10 and VEGF, decreased corticosterone reactivity, decreased microglial cell density and increased cell density for radial glia, s100β-positive cells and mature neuroblasts-all in the DG. Interestingly, combining the two distinct stress paradigms did not have an additive effect on behavioural and biological outcomes, but resulted in yet a different phenotype, characterized by increased anxiety-like behaviour, decreased plasma levels of IL1β, IL4 and VEGF, and decreased hippocampal neuronal differentiation, without altered neuroinflammation or corticosterone reactivity. These findings demonstrate that different forms of chronic stress can differentially alter both behavioural and biological outcomes in young adult male mice, and that combining multiple stressors may not necessarily cause more severe pathological outcomes.
Collapse
Affiliation(s)
- Andrea Du Preez
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Thomas Law
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Diletta Onorato
- Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Yau M Lim
- Department of Old Age Psychiatry, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Paola Eiben
- Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Ksenia Musaelyan
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Martin Egeland
- Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Abdul Hye
- Department of Old Age Psychiatry, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Patricia A Zunszain
- Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Sandrine Thuret
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Carmine M Pariante
- Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Cathy Fernandes
- Social, Genetic & Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK.
- MRC Centre for Neurodevelopmental Disorders, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK.
| |
Collapse
|
168
|
Smith PA. K + Channels in Primary Afferents and Their Role in Nerve Injury-Induced Pain. Front Cell Neurosci 2020; 14:566418. [PMID: 33093824 PMCID: PMC7528628 DOI: 10.3389/fncel.2020.566418] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 08/21/2020] [Indexed: 12/12/2022] Open
Abstract
Sensory abnormalities generated by nerve injury, peripheral neuropathy or disease are often expressed as neuropathic pain. This type of pain is frequently resistant to therapeutic intervention and may be intractable. Numerous studies have revealed the importance of enduring increases in primary afferent excitability and persistent spontaneous activity in the onset and maintenance of peripherally induced neuropathic pain. Some of this activity results from modulation, increased activity and /or expression of voltage-gated Na+ channels and hyperpolarization-activated cyclic nucleotide-gated (HCN) channels. K+ channels expressed in dorsal root ganglia (DRG) include delayed rectifiers (Kv1.1, 1.2), A-channels (Kv1.4, 3.3, 3.4, 4.1, 4.2, and 4.3), KCNQ or M-channels (Kv7.2, 7.3, 7.4, and 7.5), ATP-sensitive channels (KIR6.2), Ca2+-activated K+ channels (KCa1.1, 2.1, 2.2, 2.3, and 3.1), Na+-activated K+ channels (KCa4.1 and 4.2) and two pore domain leak channels (K2p; TWIK related channels). Function of all K+ channel types is reduced via a multiplicity of processes leading to altered expression and/or post-translational modification. This also increases excitability of DRG cell bodies and nociceptive free nerve endings, alters axonal conduction and increases neurotransmitter release from primary afferent terminals in the spinal dorsal horn. Correlation of these cellular changes with behavioral studies provides almost indisputable evidence for K+ channel dysfunction in the onset and maintenance of neuropathic pain. This idea is underlined by the observation that selective impairment of just one subtype of DRG K+ channel can produce signs of pain in vivo. Whilst it is established that various mediators, including cytokines and growth factors bring about injury-induced changes in DRG function and excitability, evidence presently available points to a seminal role for interleukin 1β (IL-1β) in control of K+ channel function. Despite the current state of knowledge, attempts to target K+ channels for therapeutic pain management have met with limited success. This situation may change with the advent of personalized medicine. Identification of specific sensory abnormalities and genetic profiling of individual patients may predict therapeutic benefit of K+ channel activators.
Collapse
Affiliation(s)
- Peter A. Smith
- Department of Pharmacology and Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
169
|
Pancheri E, Guglielmi V, Wilczynski GM, Malatesta M, Tonin P, Tomelleri G, Nowis D, Vattemi G. Non-Hematologic Toxicity of Bortezomib in Multiple Myeloma: The Neuromuscular and Cardiovascular Adverse Effects. Cancers (Basel) 2020; 12:cancers12092540. [PMID: 32906684 PMCID: PMC7563977 DOI: 10.3390/cancers12092540] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 09/02/2020] [Accepted: 09/04/2020] [Indexed: 12/13/2022] Open
Abstract
Simple Summary Multiple myeloma (MM) is a still uncurable tumor of mainly elderly patients originating from the terminally differentiated B cells. Introduction to the treatment of MM patients of a new class of drugs called proteasome inhibitors (bortezomib followed by carfilzomib and ixazomib) significantly improved disease control. Proteasome inhibitors interfere with the major mechanism of protein degradation in a cell leading to the severe imbalance in the protein turnover that is deadly to MM cells. Currently, these drugs are the mainstream of MM therapy but are also associated with an increased rate of the injuries to multiple organs and tissues. In this review, we summarize the current knowledge on the molecular mechanisms of the first-in-class proteasome inhibitor bortezomib-induced disturbances in the function of peripheral nerves and cardiac and skeletal muscle. Abstract The overall approach to the treatment of multiple myeloma (MM) has undergone several changes during the past decade. and proteasome inhibitors (PIs) including bortezomib, carfilzomib, and ixazomib have considerably improved the outcomes in affected patients. The first-in-class selective PI bortezomib has been initially approved for the refractory forms of the disease but has now become, in combination with other drugs, the backbone of the frontline therapy for newly diagnosed MM patients, as well as in the maintenance therapy and relapsed/refractory setting. Despite being among the most widely used and highly effective agents for MM, bortezomib can induce adverse events that potentially lead to early discontinuation of the therapy with negative effects on the quality of life and outcome of the patients. Although peripheral neuropathy and myelosuppression have been recognized as the most relevant bortezomib-related adverse effects, cardiac and skeletal muscle toxicities are relatively common in MM treated patients, but they have received much less attention. Here we review the neuromuscular and cardiovascular side effects of bortezomib. focusing on the molecular mechanisms underlying its toxicity. We also discuss our preliminary data on the effects of bortezomib on skeletal muscle tissue in mice receiving the drug.
Collapse
Affiliation(s)
- Elia Pancheri
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Clinical Neurology, University of Verona, 37134 Verona, Italy; (E.P.); (V.G.); (P.T.); (G.T.)
| | - Valeria Guglielmi
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Clinical Neurology, University of Verona, 37134 Verona, Italy; (E.P.); (V.G.); (P.T.); (G.T.)
| | - Grzegorz M. Wilczynski
- Laboratory of Molecular and Systemic Neuromorphology, Department of Neurophysiology Warsaw, Nencki Institute of Experimental Biology, 02-093 Warsaw, Poland;
| | - Manuela Malatesta
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Anatomy and Histology, University of Verona, 37134 Verona, Italy;
| | - Paola Tonin
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Clinical Neurology, University of Verona, 37134 Verona, Italy; (E.P.); (V.G.); (P.T.); (G.T.)
| | - Giuliano Tomelleri
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Clinical Neurology, University of Verona, 37134 Verona, Italy; (E.P.); (V.G.); (P.T.); (G.T.)
| | - Dominika Nowis
- Department of Immunology, Medical University of Warsaw, 02-093 Warsaw, Poland;
- Laboratory of Experimental Medicine, Medical University of Warsaw, 02-093 Warsaw, Poland
| | - Gaetano Vattemi
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Clinical Neurology, University of Verona, 37134 Verona, Italy; (E.P.); (V.G.); (P.T.); (G.T.)
- Correspondence:
| |
Collapse
|
170
|
Kumar B, Singh SK, Prakash T, Bhatia A, Gulati M, Garg V, Pandey NK, Singh S, Melkani I. Pharmacokinetic and pharmacodynamic evaluation of Solid self-nanoemulsifying delivery system (SSNEDDS) loaded with curcumin and duloxetine in attenuation of neuropathic pain in rats. Neurol Sci 2020; 42:1785-1797. [PMID: 32885394 DOI: 10.1007/s10072-020-04628-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 07/23/2020] [Indexed: 10/23/2022]
Abstract
The present investigation is focused on improving oral bioavailability of poorly soluble and lipophilic drugs, curcumin (CRM) and duloxetine (DXH), through the solid self-nanoemulsifying drug delivery system (S-SNEDDS) and identifying their potential against attenuation of NP in chronic constriction injury (CCI)-induced rats through the solid self-nanoemulsifying drug delivery system (S-SNEDDS). The optimized batch of S-SNEDDS reported was containing CRM and DXH (30 mg each), castor oil (20% w/w), tween-80 (40% w/w), transcutol-P (40% w/w), and syloid 244 FP (1 g). The high dose of each of naïve CRM (NCH), naïve DXH (NDH), physical mixture of DXH and CRM (C-NCM-DXH), S-SNEDDS-CRM (SCH), S-SNEDDS-DXH (SDH), and S-SNEDDS-CRM-DXH (C-SCH-SDH) was subjected for MTT assay. The developed formulations were subjected to pharmacokinetic studies and results showed about 8 to 11.06 and 2-fold improvement in oral bioavailability of CRM and DXH through S-SNEDDS. Furthermore, CCI-induced male Wistar rats were treated with SSNEDDS containing CRM and DXH, S-SNEDDS containing individual drug, individual naïve forms, and their combination from the day of surgery for 14 days and evaluated for behavioral at pre-determined time intervals. On the terminal day, animals were sacrificed to assess tissue myeloperoxidase, superoxide anion, protein, tumor necrosis factor-α, total calcium levels, and histopathological changes. Pronounced effect was observed in rats treated with S-SNEDDS containing both drugs with respect to rats receiving any of other treatments owing to enhanced oral bioavailability through S-SNEDDS. Therefore, it can be concluded that S-SNEDDS of both drugs and their coadministration can accelerate the prevention of NP.
Collapse
Affiliation(s)
- Bimlesh Kumar
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - T Prakash
- Department of Physiology and Pharmacology, Acharya and B.M. Reddy College of Pharmacy, Soladeuanahalli Hesargatta Road, Chikkabanawara Post, Bangalore, Karnataka, 560 090, India.
| | - Amit Bhatia
- Department of Pharm. Sci. & Tech, Maharaja Ranjit Singh Punjab Technical University, Bathinda, Punjab, India
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Varun Garg
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Narendra Kumar Pandey
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Saurabh Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Indu Melkani
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| |
Collapse
|
171
|
Bagdas D, Paris JJ, Carper M, Wodarski R, Rice AS, Knapp PE, Hauser KF, Damaj MI. Conditional expression of HIV-1 tat in the mouse alters the onset and progression of tonic, inflammatory and neuropathic hypersensitivity in a sex-dependent manner. Eur J Pain 2020; 24:1609-1623. [PMID: 32533878 PMCID: PMC7856573 DOI: 10.1002/ejp.1618] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 05/21/2020] [Accepted: 06/05/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND At least one-third of HIV-1-afflicted individuals experience peripheral neuropathy. Although the underlying mechanisms are not known, they may involve neurotoxic HIV-1 proteins. METHODS We assessed the influence of the neurotoxic HIV-1 regulatory protein, Tat, on inflammatory and neuropathic nociceptive behaviours using transgenic male and female mice that conditionally expressed (or did not express) HIV-1 Tat1-86 in fibrillary acidic protein-expressing glia in the central and peripheral nervous systems. RESULTS Tat induction significantly attenuated the time spent paw-licking following formalin injection (2.5%, i.pl.) in both male and female mice. However, significant sex differences were observed in the onset and magnitude of inflammation and sensory sensitivity following complete Freund's adjuvant (CFA) injection (10%, i.pl.) after Tat activation. Unlike female mice, male mice showed a significant attenuation of paw swelling and an absence of mechanical/thermal hypersensitivity in response to CFA after Tat induction. Male Tat(+) mice also showed accelerated recovery from chronic constrictive nerve injury (CCI)-induced neuropathic mechanical and thermal hypersensitivity compared to female Tat(+) mice. Morphine (3.2 mg/kg) fully reversed CCI-induced mechanical hypersensitivity in female Tat(-) mice, but not in Tat(+) females. CONCLUSIONS The ability of Tat to decrease oedema, paw swelling, and limit allodynia suggests a sequel of events in which Tat-induced functional deficits precede the onset of mechanical hypersensitivity. Moreover, HIV-1 Tat attenuated responses to inflammatory and neuropathic insults in a sex-dependent manner. HIV-1 Tat appears to directly contribute to HIV sensory neuropathy and reveals sex differences in HIV responsiveness and/or the underlying peripheral neuroinflammatory and nociceptive mechanisms.
Collapse
Affiliation(s)
- Deniz Bagdas
- Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA 23298-0613, USA
- The Center for the Study for Tobacco Products, Virginia Commonwealth University, Richmond, VA 23284-2018, USA
| | - Jason J. Paris
- Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA 23298-0613, USA
- Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, University, MS 38677-1848, USA
- Research Institute of Pharmaceutical Sciences, School of Pharmacy, University of Mississippi, University, MS 38677-1848, USA
| | - Moriah Carper
- Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA 23298-0613, USA
| | - Rachel Wodarski
- Pain Research Group, Department of Surgery & Cancer, Imperial College, London, SW10 9NH, UK
| | - Andrew S.C. Rice
- Pain Research Group, Department of Surgery & Cancer, Imperial College, London, SW10 9NH, UK
| | - Pamela E. Knapp
- Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA 23298-0613, USA
- Department of Anatomy & Neurobiology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA 23298-0613, USA
- Institute for Drug and Alcohol Studies, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA 23298-0613, USA
| | - Kurt F. Hauser
- Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA 23298-0613, USA
- Department of Anatomy & Neurobiology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA 23298-0613, USA
- Institute for Drug and Alcohol Studies, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA 23298-0613, USA
| | - M. Imad Damaj
- Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA 23298-0613, USA
- The Center for the Study for Tobacco Products, Virginia Commonwealth University, Richmond, VA 23284-2018, USA
- Translational Research Initiative for Pain and Neuropathy at VCU, Virginia Commonwealth University, Richmond, VA 23298-0613, USA
| |
Collapse
|
172
|
Machine-learned analysis of the association of next-generation sequencing-based genotypes with persistent pain after breast cancer surgery. Pain 2020; 160:2263-2277. [PMID: 31107411 DOI: 10.1097/j.pain.0000000000001616] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cancer and its surgical treatment are among the most important triggering events for persistent pain, but additional factors need to be present for the clinical manifestation, such as variants in pain-relevant genes. In a cohort of 140 women undergoing breast cancer surgery, assigned based on a 3-year follow-up to either a persistent or nonpersistent pain phenotype, next-generation sequencing was performed for 77 genes selected for known functional involvement in persistent pain. Applying machine-learning and item categorization techniques, 21 variants in 13 different genes were found to be relevant to the assignment of a patient to either the persistent pain or the nonpersistent pain phenotype group. In descending order of importance for correct group assignment, the relevant genes comprised DRD1, FAAH, GCH1, GPR132, OPRM1, DRD3, RELN, GABRA5, NF1, COMT, TRPA1, ABHD6, and DRD4, of which one in the DRD4 gene was a novel discovery. Particularly relevant variants were found in the DRD1 and GPR132 genes, or in a cis-eCTL position of the OPRM1 gene. Supervised machine-learning-based classifiers, trained with 2/3 of the data, identified the correct pain phenotype group in the remaining 1/3 of the patients at accuracies and areas under the receiver operator characteristic curves of 65% to 72%. When using conservative classical statistical approaches, none of the variants passed α-corrected testing. The present data analysis approach, using machine learning and training artificial intelligences, provided biologically plausible results and outperformed classical approaches to genotype-phenotype association.
Collapse
|
173
|
El-Tedawy DM, Abd-Alhaseeb MM, Helmy MW, Ghoneim AI. Systemic bee venom exerts anti-arthritic and anti-inflammatory properties in a rat model of arthritis. Biomed Rep 2020; 13:20. [PMID: 32765859 PMCID: PMC7403832 DOI: 10.3892/br.2020.1327] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 04/16/2020] [Indexed: 01/04/2023] Open
Abstract
Bee venom (BV) is widely used as a traditional China medicine to treat various conditions, including rheumatoid arthritis (RA). The aim of the present study was to evaluate the effects of systemic BV (60 mg/kg) as an anti-arthritic natural product, compare it with Methotrexate and determine the possible underlying mechanisms of BV action using complete Freund's adjuvant-induced arthritic rats. The development of signs of RA signs (knee joint circumference and arthritis scoring index) was evaluated. Erythrocyte sedimentation rate, serum tumor necrosis factor-α (TNF-α) and serum interleukin-1β (IL-1β) levels were measured at the end of the study. Histopathological examination followed by immunostaining of NF-κB (P65) was performed on the affected knee joints. Additionally, in vitro cyclooxygenase (COX) inhibition activity, carrageenan paw edema test and acetic acid writhing tests were performed to evaluate the anti-inflammatory and analgesic effects of the assessed dose and compared with diclofenac. An acute toxicity test was performed to establish the safety of BV at high doses. The results of the present study highlighted the potential of systemic BV on preventing the development of signs of RA. BV also significantly reduced serum levels of TNF-α, IL-1β and NF-κB in the affected joints. In addition to its potent analgesic activity, BV exhibited favorable inhibitory activity of the COX pathway in both in vivo and in vitro models. Therefore, high dose administration of systemic BV displayed safe and promising anti-arthritic, anti-inflammatory and analgesic properties through regulation of different mechanisms associated with the pathogenesis of RA.
Collapse
Affiliation(s)
- Doaa Mohamed El-Tedawy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Damanhour University, Damanhour, Beheira 22516, Egypt
| | - Mohammad Mahmoud Abd-Alhaseeb
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Damanhour University, Damanhour, Beheira 22516, Egypt
| | - Maged Wasfy Helmy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Damanhour University, Damanhour, Beheira 22516, Egypt
| | - Asser Ibrahim Ghoneim
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Damanhour University, Damanhour, Beheira 22516, Egypt
| |
Collapse
|
174
|
Abstract
Neuropathic pain (NP) has become a serious global health issue and a huge clinical challenge without available effective treatment. P2 receptors family is involved in pain transmission and represents a promising target for pharmacological intervention. Traditional Chinese medicine (TCM) contains multiple components which are effective in targeting different pathological mechanisms involved in NP. Different from traditional analgesics, which target a single pathway, TCMs take the advantage of multiple components and multiple targets, and can significantly improve the efficacy of treatment and contribute to the prediction of the risks of NP. Compounds of TCM acting at nucleotide P2 receptors in neurons and glial cells could be considered as a potential research direction for moderating neuropathic pain. This review summarized the recently published data and highlighted several TCMs that relieved NP by acting at P2 receptors.
Collapse
|
175
|
O'Reilly ML, Tom VJ. Neuroimmune System as a Driving Force for Plasticity Following CNS Injury. Front Cell Neurosci 2020; 14:187. [PMID: 32792908 PMCID: PMC7390932 DOI: 10.3389/fncel.2020.00187] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 05/29/2020] [Indexed: 12/15/2022] Open
Abstract
Following an injury to the central nervous system (CNS), spontaneous plasticity is observed throughout the neuraxis and affects multiple key circuits. Much of this spontaneous plasticity can elicit beneficial and deleterious functional outcomes, depending on the context of plasticity and circuit affected. Injury-induced activation of the neuroimmune system has been proposed to be a major factor in driving this plasticity, as neuroimmune and inflammatory factors have been shown to influence cellular, synaptic, structural, and anatomical plasticity. Here, we will review the mechanisms through which the neuroimmune system mediates plasticity after CNS injury. Understanding the role of specific neuroimmune factors in driving adaptive and maladaptive plasticity may offer valuable therapeutic insight into how to promote adaptive plasticity and/or diminish maladaptive plasticity, respectively.
Collapse
Affiliation(s)
- Micaela L O'Reilly
- Department of Neurobiology and Anatomy, Marion Murray Spinal Cord Research Center, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Veronica J Tom
- Department of Neurobiology and Anatomy, Marion Murray Spinal Cord Research Center, Drexel University College of Medicine, Philadelphia, PA, United States
| |
Collapse
|
176
|
LOW-DOSE NALTREXONE REVERSES FACIAL MECHANICAL ALLODYNIA IN A RAT MODEL OF TRIGEMINAL NEURALGIA. Neurosci Lett 2020; 736:135248. [PMID: 32673692 DOI: 10.1016/j.neulet.2020.135248] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 07/08/2020] [Accepted: 07/10/2020] [Indexed: 12/14/2022]
Abstract
Trigeminal neuralgia (TN) is a type of neuropathic pain characterized by intense pain; although anticonvulsants are used as an option to relieve pain, adverse side effects can decrease patient adherence. In this context, a low dose of naltrexone is effective in relieving pain in other pain conditions. Thus, the objective of the present study was to evaluate the analgesic effect of low-dose naltrexone on facial mechanical allodynia in a rat model of TN, as well as its effect(s) on biomarkers in the central nervous system (tumor necrosis factor-alpha, brain-derived neurotrophic factor [BDNF], interleukin [IL]-10, and toll-like receptor-4). Fifty-nine adult male Wistar rats (CEUA-HCPA#2017-0575) were allocated to following groups: control; sham-pain + vehicle; sham-pain + carbamazepine (100 mg/kg); sham-pain + naltrexone (0.5 mg/kg); pain + vehicle; pain + carbamazepine; and pain + naltrexone. TN was induced using chronic constriction of the infraorbital nerve. Facial allodynia was assessed using von Frey test. Drugs were administered by gavage 14 days after surgery for 10 days. At baseline, the mechanical threshold was similar between groups (P > 0.05; generalized estimating equation). Seven days after surgery, facial allodynia was observed in sham-TN and pain-TN groups (P < 0.05). Fourteen days after surgery, only pain-TN groups exhibited facial allodynia. The first dose of low-dose naltrexone or carbamazepine partially reversed facial allodynia. After 10 days of treatment, both drugs completely reversed it. Spinal cord levels of BDNF and IL-10 were modulated by low-dose naltrexone. Thus, low-dose naltrexone may be suitable to relieve TN; however, the exact mechanisms need to be clarified.
Collapse
|
177
|
Rambaran TF. Nanopolyphenols: a review of their encapsulation and anti-diabetic effects. SN APPLIED SCIENCES 2020. [DOI: 10.1007/s42452-020-3110-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
AbstractPolyphenols are believed to possess numerous health benefits and can be grouped as phenolic acids, flavonoids or non-flavonoids. Research involving the synthesis of nanopolyphenols has attracted interest in the areas of functional food, nutraceutical and pharmaceutical development. This is in an effort to overcome current challenges which limit the application of polyphenols such as their rapid elimination, low water-solubility, instability at low pH, and their particle size. In the synthesis of nanopolyphenols, the type of nanocarrier used, the nanoencapsulation technique employed and the type of polymers that constitute the drug delivery system are crucial. For this review, all mentioned factors which can influence the therapeutic efficacy of nanopolyphenols were assessed. Their efficacy as anti-diabetic agents was also evaluated in 33 publications. Among these were phenolic acid (1), flavonoids (13), non-flavonoids (17) and polyphenol-rich extracts (2). The most researched polyphenols were quercetin and curcumin. Nanoparticles were the main nanocarrier and the size of the nanopolyphenols ranged from 15 to 333 nm with encapsulation efficiency and drug loading capacities of 56–97.7% and 4.2–53.2%, respectively. The quantity of nanomaterial administered orally ranged from 1 to 300 mg/kg/day with study durations of 1–70 days. Most studies compared the effect of the nanopolyphenol to its free-form and, in all but three cases, significantly greater effects of the former were reported. Assessment of the polyphenol to understand its properties and the subsequent synthesis of its nanoencapsulated form using suitable nanocarriers, polymers and encapsulation techniques can result in effective therapeutic agents for the treatment of diabetes.
Collapse
|
178
|
Martin Ginis KA, van der Scheer JW, Todd KR, Davis JC, Gaudet S, Hoekstra F, Karim ME, Kramer JLK, Little JP, Singer J, Townson A, West CR. A pragmatic randomized controlled trial testing the effects of the international scientific SCI exercise guidelines on SCI chronic pain: protocol for the EPIC-SCI trial. Spinal Cord 2020; 58:746-754. [PMID: 32409778 DOI: 10.1038/s41393-020-0478-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 04/21/2020] [Accepted: 04/22/2020] [Indexed: 02/03/2023]
Abstract
STUDY DESIGN Protocol for a pragmatic randomized controlled trial (the Exercise guideline Promotion and Implementation in Chronic SCI [EPIC-SCI] Trial). PRIMARY OBJECTIVES To test if home-/community-based exercise, prescribed according to the international SCI exercise guidelines, significantly reduces chronic bodily pain in adults with SCI. SECONDARY OBJECTIVES To investigate: (1) the effects of exercise on musculoskeletal and neuropathic chronic pain; (2) if reduced inflammation and increased descending inhibitory control are viable pathways by which exercise reduces pain; (3) the effects of chronic pain reductions on subjective well-being; and (4) efficiency of a home-/community-based exercise intervention. SETTING Exercise in home-/community-based settings; assessments in university-based laboratories in British Columbia, Canada. METHOD Eighty-four adults with chronic SCI, reporting chronic musculoskeletal or neuropathic pain, and not meeting the current SCI exercise guidelines, will be recruited and randomized to a 6-month Exercise or Wait-List Control condition. Exercise will occur in home/community settings and will be supported through behavioral counseling. All measures will be taken at baseline, 3-months and 6-months. Analyses will consist of linear mixed effect models, multiple regression analyses and a cost-utility analysis. The economic evaluation will examine the incremental costs and health benefits generated by the intervention compared with usual care. ETHICS AND DISSEMINATION The University of British Columbia Clinical Research Ethics Board approved the protocol (#H19-01650). Using an integrated knowledge translation approach, stakeholders will be engaged throughout the trial and will co-create and disseminate evidence-based recommendations and messages regarding the use of exercise to manage SCI chronic pain.
Collapse
Affiliation(s)
- Kathleen A Martin Ginis
- Department of Medicine, Division of Physical Medicine and Rehabilitation, University of British Columbia, Vancouver, BC, Canada.
- School of Health and Exercise Sciences, University of British Columbia, Kelowna, BC, Canada.
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, BC, Canada.
- Centre for Chronic Disease Prevention and Management, University of British Columbia, Kelowna, BC, Canada.
| | - Jan W van der Scheer
- Department of Medicine, Division of Physical Medicine and Rehabilitation, University of British Columbia, Vancouver, BC, Canada
- School of Health and Exercise Sciences, University of British Columbia, Kelowna, BC, Canada
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, BC, Canada
- Centre for Chronic Disease Prevention and Management, University of British Columbia, Kelowna, BC, Canada
| | - Kendra R Todd
- School of Health and Exercise Sciences, University of British Columbia, Kelowna, BC, Canada
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, BC, Canada
| | - Jennifer C Davis
- Centre for Chronic Disease Prevention and Management, University of British Columbia, Kelowna, BC, Canada
- Social & Economic Change Laboratory, Faculty of Management; Centre for Hip Health and Mobility, University of British Columbia, Kelowna, BC, Canada
| | - Sonja Gaudet
- Spinal Cord Injury British Columbia, Vancouver, BC, Canada
- The Thompson Okanagan Tourism Association; Canadian Paralympic Committee Alumni/3 X Paralympic Gold Medalist, Vernon, BC, Canada
| | - Femke Hoekstra
- School of Health and Exercise Sciences, University of British Columbia, Kelowna, BC, Canada
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, BC, Canada
| | - Mohammad Ehsanul Karim
- School of Population and Public Health and Centre for Health Evaluation and Outcome Sciences, Providence Health Care, University of British Columbia, Vancouver, BC, Canada
| | - John L K Kramer
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, BC, Canada
- School of Kinesiology, University of British Columbia, Vancouver, BC, Canada
| | - Jonathan Peter Little
- School of Health and Exercise Sciences, University of British Columbia, Kelowna, BC, Canada
- Centre for Chronic Disease Prevention and Management, University of British Columbia, Kelowna, BC, Canada
| | - Joel Singer
- School of Population and Public Health, UBC; Centre for Health Evaluation and Outcome Sciences, Vancouver, BC, Canada
| | - Andrea Townson
- Department of Medicine, Division of Physical Medicine and Rehabilitation, University of British Columbia, Vancouver, BC, Canada
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, BC, Canada
| | - Christopher R West
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, BC, Canada
- Centre for Chronic Disease Prevention and Management, University of British Columbia, Kelowna, BC, Canada
- Department of Cell & Physiological Sciences, Faculty of Medicine, Centre for Chronic Disease Prevention and Management, University of British Columbia, Kelowna, BC, Canada
| |
Collapse
|
179
|
Reduced inflammatory response and accelerated functional recovery following sciatic nerve crush lesion in CXCR3-deficient mice. Neuroreport 2020; 31:672-677. [PMID: 32398421 DOI: 10.1097/wnr.0000000000001468] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Despite the regenerative capacity of the peripheral nerve system (PNS), functional recovery after mechanical nerve trauma is often incomplete, resulting in motor, sensory, and autonomic deficits. The elucidation of key molecules involved in trauma-induced Wallerian degeneration and the ensuing regeneration processes is a prerequisite for the development of disease modifying drugs. The chemokine (C-X-C motif) receptor 3 (CXCR3) has been implicated in the recruitment of macrophages, the major immune cell population during the process of Wallerian degeneration. In this study, we examined whether deletion of CXCR3 affects macrophage recruitment, the expression of the proinflammatory cytokine tumor necrosis factor (TNF)- α and the CXCR3 agonist interferon gamma-induced protein 10 (CXCL10), and functional recovery in the sciatic nerve crush model. CXCR3 mice displayed significantly reduced macrophage counts preceded by diminished expression of CXCL10 and TNF- α. Furthermore, functional recovery of sciatic nerve motor function was significantly accelerated. In summary, these data indicate that the deletion of CXCR3 leads to a diminished inflammatory response and an accelerated functional recovery following sciatic nerve crush injury. Therefore, CXCR3 may be an interesting target for therapeutic interventions after traumatic nerve lesions.
Collapse
|
180
|
Yang H, Wu L, Deng H, Chen Y, Zhou H, Liu M, Wang S, Zheng L, Zhu L, Lv X. Anti-inflammatory protein TSG-6 secreted by bone marrow mesenchymal stem cells attenuates neuropathic pain by inhibiting the TLR2/MyD88/NF-κB signaling pathway in spinal microglia. J Neuroinflammation 2020; 17:154. [PMID: 32393298 PMCID: PMC7216552 DOI: 10.1186/s12974-020-1731-x] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 01/30/2020] [Indexed: 12/11/2022] Open
Abstract
Background Neuroinflammation plays a vital role in the development and maintenance of neuropathic pain. Recent evidence has proved that bone marrow mesenchymal stem cells (BMSCs) can inhibit neuropathic pain and possess potent immunomodulatory and immunosuppressive properties via secreting a variety of bioactive molecules, such as TNF-α-stimulated gene 6 protein (TSG-6). However, it is unknown whether BMSCs exert their analgesic effect against neuropathic pain by secreting TSG-6. Therefore, the present study aimed to evaluate the analgesic effects of TSG-6 released from BMSCs on neuropathic pain induced by chronic constriction injury (CCI) in rats and explored the possible underlying mechanisms in vitro and in vivo. Methods BMSCs were isolated from rat bone marrow and characterized by flow cytometry and functional differentiation. One day after CCI surgery, about 5 × 106 BMSCs were intrathecally injected into spinal cerebrospinal fluid. Behavioral tests, including mechanical allodynia, thermal hyperalgesia, and motor function, were carried out at 1, 3, 5, 7, 14 days after CCI surgery. Spinal cords were processed for immunohistochemical analysis of the microglial marker Iba-1. The mRNA and protein levels of pro-inflammatory cytokines (IL-1β, TNFα, IL-6) were detected by real-time RT-PCR and ELISA. The activation of the TLR2/MyD88/NF-κB signaling pathway was evaluated by Western blot and immunofluorescence staining. The analgesic effect of exogenous recombinant TSG-6 on CCI-induced mechanical allodynia and heat hyperalgesia was observed by behavioral tests. In the in vitro experiments, primary cultured microglia were stimulated with the TLR2 agonist Pam3CSK4, and then co-cultured with BMSCs or recombinant TSG-6. The protein expression of TLR2, MyD88, p-p65 was evaluated by Western blot. The mRNA and protein levels of IL-1β, TNFα, IL-6 were detected by real-time RT-PCR and ELISA. BMSCs were transfected with the TSG-6-specific shRNA and then intrathecally injected into spinal cerebrospinal fluid in vivo or co-cultured with Pam3CSK4-treated primary microglia in vitro to investigate whether TSG-6 participated in the therapeutic effect of BMSCs on CCI-induced neuropathic pain and neuroinflammation. Results We found that CCI-induced mechanical allodynia and heat hyperalgesia were ameliorated by intrathecal injection of BMSCs. Moreover, intrathecal administration of BMSCs inhibited CCI-induced neuroinflammation in spinal cord tissues. The analgesic effect and anti-inflammatory property of BMSCs were attenuated when TSG-6 expression was silenced. We also found that BMSCs inhibited the activation of the TLR2/MyD88/NF-κB pathway in the ipsilateral spinal cord dorsal horn by secreting TSG-6. Meanwhile, we proved that intrathecal injection of exogenous recombinant TSG-6 effectively attenuated CCI-induced neuropathic pain. Furthermore, in vitro experiments showed that BMSCs and TSG-6 downregulated the TLR2/MyD88/NF-κB signaling and reduced the production of pro-inflammatory cytokines, such as IL-1β, IL-6, and TNF-α, in primary microglia treated with the specific TLR2 agonist Pam3CSK4. Conclusions The present study demonstrated a paracrine mechanism by which intrathecal injection of BMSCs targets the TLR2/MyD88/NF-κB pathway in spinal cord dorsal horn microglia to elicit neuroprotection and sustained neuropathic pain relief via TSG-6 secretion.
Collapse
Affiliation(s)
- Hao Yang
- Department of Anesthesiology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, 507 Zhengmin Rd, Shanghai, 200433, China
| | - Lingmin Wu
- Department of Anesthesiology, The first Hospital of Anhui Medical University, 218 Jixi Rd, Hefei, 230022, China
| | - Huimin Deng
- Department of Anesthesiology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, 507 Zhengmin Rd, Shanghai, 200433, China
| | - Yuanli Chen
- Department of Anesthesiology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, 507 Zhengmin Rd, Shanghai, 200433, China
| | - Huanping Zhou
- Department of Anesthesiology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, 507 Zhengmin Rd, Shanghai, 200433, China
| | - Meiyun Liu
- Department of Anesthesiology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, 507 Zhengmin Rd, Shanghai, 200433, China
| | - Shaochen Wang
- Department of Anesthesiology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, 507 Zhengmin Rd, Shanghai, 200433, China
| | - Li Zheng
- Department of Anesthesiology, Fuyang Hospital of Anhui Medical University, 99 Huangshan Rd, Fuyang, 236000, China
| | - Lina Zhu
- Department of Anesthesiology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, 507 Zhengmin Rd, Shanghai, 200433, China.
| | - Xin Lv
- Department of Anesthesiology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, 507 Zhengmin Rd, Shanghai, 200433, China. .,Department of Anesthesiology, The first Hospital of Anhui Medical University, 218 Jixi Rd, Hefei, 230022, China.
| |
Collapse
|
181
|
Kaswan NK, Mohd Suhaimi NS, Mohammed Izham NA, Tengku Mohamad TAS, Sulaiman MR, Perimal EK. Cardamonin inhibits nitric oxide production modulated through NMDA receptor in LPS-Induced SH-SY5Y cell in vitro model. LIFE SCIENCES, MEDICINE AND BIOMEDICINE 2020. [DOI: 10.28916/lsmb.4.9.2020.58] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
182
|
Analgesic Mechanism of Sinomenine against Chronic Pain. Pain Res Manag 2020; 2020:1876862. [PMID: 32454918 PMCID: PMC7225909 DOI: 10.1155/2020/1876862] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 04/17/2020] [Accepted: 04/22/2020] [Indexed: 02/06/2023]
Abstract
Purified from the roots of the plant Sinomenium acutum, sinomenine is traditionally used in China and Japan for treating rheumatism and arthritis. Previously, we have demonstrated that sinomenine possessed a broad analgesic spectrum in various chronic pain animal models and repeated administration of sinomenine did not generate tolerance. In this review article, we discussed sinomenine's analgesic mechanism with focus on its role on immune regulation and neuroimmune interaction. Sinomenine has distinct immunoregulative properties, in which glutamate, adenosine triphosphate, nitric oxide, and proinflammatory cytokines are thought to be involved. Sinomenine may alter the unbalanced neuroimmune interaction and inhibit neuroinflammation, oxidative stress, and central sensitization in chronic pain states. In conclusion, sinomenine has promising potential for chronic pain management in different clinical settings.
Collapse
|
183
|
Yildirim E, Secen O, Keskin M. Should we be concerned about pain in hypertension treatment in young patients? GAZZETTA MEDICA ITALIANA ARCHIVIO PER LE SCIENZE MEDICHE 2020. [DOI: 10.23736/s0393-3660.19.04047-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
184
|
Wang L, Yin C, Liu T, Abdul M, Zhou Y, Cao JL, Lu C. Pellino1 regulates neuropathic pain as well as microglial activation through the regulation of MAPK/NF-κB signaling in the spinal cord. J Neuroinflammation 2020; 17:83. [PMID: 32171293 PMCID: PMC7071701 DOI: 10.1186/s12974-020-01754-z] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 02/21/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Spinal cord microglia plays a crucial role in the pathogenesis of neuropathic pain. However, the mechanisms underlying spinal microglial activation during neuropathic pain remain incompletely determined. Here, we investigated the role of Pellino1 (Peli1) and its interplay with spinal microglial activation in neuropathic pain. METHODS In this study, we examined the effects of Peli1 on pain hypersensitivity and spinal microglial activation after chronic constriction injury (CCI) of the sciatic nerve in mice. The molecular mechanisms involved in Peli1-mediated hyperalgesia were determined by western blot, immunofluorescence, quantitative polymerase chain reaction (qPCR), and enzyme-linked immunosorbent assay (ELISA). We utilized immunoprecipitation to examine the ubiquitination of tumor necrosis factor receptor-associated factor 6 (TRAF6) following CCI. In addition, we explored the effect of Peli1 on BV2 microglial cells in response to lipopolysaccharide (LPS) challenge. RESULTS We found that CCI induced a significant increase in the levels of Peli1, which was present in the great majority of microglia in the spinal dorsal horn. Our results showed that spinal Peli1 contributed to the induction and maintenance of CCI-induced neuropathic pain. The biochemical data revealed that CCI-induced Peli1 in the spinal cord significantly increased mitogen-activated protein kinase (MAPK) phosphorylation, activated nuclear factor kappa B (NF-κB), and enhanced the production of proinflammatory cytokines, accompanied by spinal microglial activation. Peli1 additionally was able to promote K63-linked ubiquitination of TRAF6 in the ipsilateral spinal cord following CCI. Furthermore, we demonstrated that Peli1 in microglial cells significantly enhanced inflammatory reactions after LPS treatment. CONCLUSION These results suggest that the upregulation of spinal Peli1 is essential for the pathogenesis of neuropathic pain via Peli1-dependent mobilization of spinal cord microglia, activation of MAPK/NF-κB signaling, and production of proinflammatory cytokines. Modulation of Peli1 may serve as a potential approach for the treatment of neuropathic pain.
Collapse
Affiliation(s)
- Lijuan Wang
- School of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, 221002, China
| | - Cui Yin
- School of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, 221002, China
| | - Tianya Liu
- School of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, 221002, China
- Department of Pharmacy, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, 221002, China
| | - Mannan Abdul
- School of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, 221002, China
| | - Yan Zhou
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, 221002, China
| | - Jun-Li Cao
- School of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, 221002, China.
- Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China.
| | - Chen Lu
- School of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, 221002, China.
- Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China.
| |
Collapse
|
185
|
Meng X, Cheng W, Zhong S, Zhang P, Qin L, Wang X. Anti-inflammatory effects of Jingshu Keli capsule and its components on human synoviocyte MH7A cells. ARTHROPLASTY 2020; 2:7. [PMID: 35236422 PMCID: PMC8796523 DOI: 10.1186/s42836-020-00026-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Accepted: 02/20/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Jingshu Keli (JSKL), a traditional Chinese medicine (TCM) formula consisting of multiple active compounds, has been officially approved by National Medical Products Administration (NMPA) for treatment of cervical radiculopathy. It relieves pain, according to TCM theory, by activating blood circulation to dissipate blood stasis. The pain mainly stems from neurogenic inflammation caused by mechanical compression of the cervical nerve root. In addition, inflammation mediators also cause the development of other joint diseases, such as osteoarthritis (OA). The purpose of this paper was to evaluate the anti-inflammatory effects of JSKL and identify the biologically active herbs and compounds in vitro. METHODS Enzyme-linked immunosorbent assay (Elisa) was used to determine the expression of pro-inflammatory cytokines, tumor necrosis factor-alpha (TNF-α), interleukin 6 (IL-6) and interleukin 8 (IL-8), in the culture medium of human MH7A cells stimulated by lipopolysaccharides (LPS). RESULTS JSKL and three single-herb capsules, Cinnamomum cassia Presl (C.C.), Angelica Sinensis (Oliv.) Diels (A.S.) and Carthamus tinctorius L. (C.T.), significantly inhibited the secretion of TNF-α. If one of these three herbal components was removed, suppressing effect of the single-herb-deleted JSKL on TNF-α was abolished. Cinnamaldehyde (CIN) from C.C. was the most potent ingredient that inhibited the expression of IL-6 and IL-8 in the culture medium of both LPS-stimulated MH7A cells and primary synovial cells. CONCLUSIONS JSKL was found to possess anti-inflammatory effect in vitro; C.C., A.S. and C.T. were the principal and essential herbal components responsible for such activity; CIN from C.C. is one the most potent single compound among indicator components of JSKL recorded in 2015 Chinese pharmacopoeia. This study provided scientific evidence for the clinical application of JSKL as an agent for targeted treatment of cervical radiculopathy. Furthermore, CIN has potential to be used for the treatment of some inflammation-related orthopedic diseases, such as rheumatic arthritis and osteoarthritis.
Collapse
Affiliation(s)
- Xiangbo Meng
- Translational Medicine R&D Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Wenxiang Cheng
- Translational Medicine R&D Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Shan Zhong
- Translational Medicine R&D Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Peng Zhang
- Translational Medicine R&D Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Ling Qin
- Translational Medicine R&D Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.,Musculoskeletal Research Laboratory, Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Xinluan Wang
- Translational Medicine R&D Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China. .,Musculoskeletal Research Laboratory, Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong, SAR, China.
| |
Collapse
|
186
|
Herzberg D, Strobel P, Ramirez-Reveco A, Werner M, Bustamante H. Chronic Inflammatory Lameness Increases Cytokine Concentration in the Spinal Cord of Dairy Cows. Front Vet Sci 2020; 7:125. [PMID: 32185190 PMCID: PMC7058553 DOI: 10.3389/fvets.2020.00125] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 02/19/2020] [Indexed: 12/20/2022] Open
Abstract
Lameness in dairy cows is an extremely painful multifactorial condition that affects the welfare of animals and economically impacts the dairy industry worldwide. The aim of this study was to determine the profile of cytokines in the spinal cord dorsal horn of dairy cows with painful chronic inflammatory lameness. Concentrations of 10 cytokines were measured in the spinal cord of seven adult dairy cows with chronic lameness and seven adult dairy cows with no lameness. In all cows lameness was evaluated using a mobility scoring system and registered accordingly. Immediately after euthanasia the spinal cord was removed and 20 cm of lumbar segments (L2–L5) were obtained. After dorsal horn removal and processing, cytokine quantification of tumor necrosis factor-alpha (TNF-α), interleukin-1alpha (IL-1α), interleukin 13 (IL-13), chemokine-10 (CXCL10/IP-10), chemokine-9 (CXCL9/MIG), interferon-alpha (IFN-α), interferon-gamma (IFN-γ), interleukin-21 (IL-21), interleukin-36ra (IL-36ra), and macrophage inflammatory protein-1 beta (MIP-1β) was performed using a multiplex array. Lame cows had higher concentrations of TNF-α, IL-1-α, IL-13, CXCL10, CXCL9, IFN-α, and IFN-γ in their dorsal horn compared to non-lame cows, while IL-21 concentration was decreased. No differences in IL-36ra and MIP-1β concentrations between lame and non-lame cows were observed. Painful chronic inflammation of the hoof in dairy cows leads to a marked increase in cytokine concentration in the dorsal horn of the spinal cord, which could represent a state of neuroinflammation of the Central Nervous System (CNS).
Collapse
Affiliation(s)
- Daniel Herzberg
- Faculty of Veterinary Sciences, Graduate School, Universidad Austral de Chile, Valdivia, Chile
| | - Pablo Strobel
- Faculty of Veterinary Sciences, Animal Science Institute, Universidad Austral de Chile, Valdivia, Chile
| | - Alfredo Ramirez-Reveco
- Faculty of Veterinary Sciences, Animal Science Institute, Universidad Austral de Chile, Valdivia, Chile
| | - Marianne Werner
- Faculty of Veterinary Sciences, Animal Science Institute, Universidad Austral de Chile, Valdivia, Chile
| | - Hedie Bustamante
- Faculty of Veterinary Sciences, Veterinary Clinical Sciences Institute, Universidad Austral de Chile, Valdivia, Chile
| |
Collapse
|
187
|
Ceredig RA, Pierre F, Doridot S, Alduntzin U, Hener P, Salvat E, Yalcin I, Gaveriaux-Ruff C, Barrot M, Massotte D. Peripheral Delta Opioid Receptors Mediate Formoterol Anti-allodynic Effect in a Mouse Model of Neuropathic Pain. Front Mol Neurosci 2020; 12:324. [PMID: 32116538 PMCID: PMC7033630 DOI: 10.3389/fnmol.2019.00324] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 12/17/2019] [Indexed: 01/18/2023] Open
Abstract
Neuropathic pain is a challenging condition for which current therapies often remain unsatisfactory. Chronic administration of β2 adrenergic agonists, including formoterol currently used to treat asthma and chronic obstructive pulmonary disease, alleviates mechanical allodynia in the sciatic nerve cuff model of neuropathic pain. The limited clinical data currently available also suggest that formoterol would be a suitable candidate for drug repurposing. The antiallodynic action of β2 adrenergic agonists is known to require activation of the delta-opioid (DOP) receptor but better knowledge of the molecular mechanisms involved is necessary. Using a mouse line in which DOP receptors were selectively ablated in neurons expressing Nav1.8 sodium channels (DOP cKO), we showed that these DOP peripheral receptors were necessary for the antiallodynic action of the β2 adrenergic agonist formoterol in the cuff model. Using a knock-in mouse line expressing a fluorescent version of the DOP receptor fused with the enhanced green fluorescent protein (DOPeGFP), we established in a previous study, that mechanical allodynia is associated with a smaller percentage of DOPeGFP positive small peptidergic sensory neurons in dorsal root ganglia (DRG), with a reduced density of DOPeGFP positive free nerve endings in the skin and with increased DOPeGFP expression at the cell surface. Here, we showed that the density of DOPeGFP positive free nerve endings in the skin is partially restored and no increase in DOPeGFP translocation to the plasma membrane is observed in mice in which mechanical pain is alleviated upon chronic oral administration of formoterol. This study, therefore, extends our previous results by confirming that changes in the mechanical threshold are associated with changes in peripheral DOP profile. It also highlights the common impact on DOP receptors between serotonin noradrenaline reuptake inhibitors such as duloxetine and the β2 mimetic formoterol.
Collapse
Affiliation(s)
- Rhian Alice Ceredig
- Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique, Université de Strasbourg, Strasbourg, France
| | - Florian Pierre
- Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique, Université de Strasbourg, Strasbourg, France
| | - Stéphane Doridot
- Chronobiotron, Centre National de la Recherche Scientifique, Strasbourg, France
| | - Unai Alduntzin
- Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique, Université de Strasbourg, Strasbourg, France
| | - Pierre Hener
- Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique, Université de Strasbourg, Strasbourg, France
| | - Eric Salvat
- Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique, Université de Strasbourg, Strasbourg, France.,Centre d'Evaluation et de Traitement de la Douleur, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Ipek Yalcin
- Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique, Université de Strasbourg, Strasbourg, France
| | - Claire Gaveriaux-Ruff
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique, Université de Strasbourg, INSERM, Illkirch, France
| | - Michel Barrot
- Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique, Université de Strasbourg, Strasbourg, France
| | - Dominique Massotte
- Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique, Université de Strasbourg, Strasbourg, France
| |
Collapse
|
188
|
Arzani M, Jahromi SR, Ghorbani Z, Vahabizad F, Martelletti P, Ghaemi A, Sacco S, Togha M. Gut-brain Axis and migraine headache: a comprehensive review. J Headache Pain 2020; 21:15. [PMID: 32054443 PMCID: PMC7020496 DOI: 10.1186/s10194-020-1078-9] [Citation(s) in RCA: 205] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 01/23/2020] [Indexed: 02/08/2023] Open
Abstract
The terminology "gut-brain axis "points out a bidirectional relationship between the GI system and the central nervous system (CNS). To date, several researches have shown that migraine is associated with some gastrointestinal (GI) disorders such as Helicobacter pylori (HP) infection, irritable bowel syndrome (IBS), and celiac disease (CD). The present review article aims to discuss the direct and indirect evidence suggesting relationships between migraine and the gut-brain axis. However, the mechanisms explaining how the gut and the brain may interact in patients with migraine are not entirely clear. Studies suggest that this interaction seems to be influenced by multiple factors such as inflammatory mediators (IL-1β, IL-6, IL-8, and TNF-α), gut microbiota profile, neuropeptides and serotonin pathway, stress hormones and nutritional substances. Neuropeptides including CGRP, SP, VIP, NPY are thought to have antimicrobial impact on a variety of the gut bacterial strains and thus speculated to be involved in the bidirectional relationship between the gut and the brain. According to the current knowledge, migraine headache in patients harboring HP might be improved following the bacteria eradication. Migraineurs with long headache history and high headache frequency have a higher chance of being diagnosed with IBS. IBS and migraine share some similarities and can alter gut microflora composition and thereby may affect the gut-brain axis and inflammatory status. Migraine has been also associated with CD and the condition should be searched particularly in patients with migraine with occipital and parieto-occipital calcification at brain neuroimaging. In those patients, gluten-free diet can also be effective in reducing migraine frequency. It has also been proposed that migraine may be improved by dietary approaches with beneficial effects on gut microbiota and gut-brain axis including appropriate consumption of fiber per day, adhering to a low glycemic index diet, supplementation with vitamin D, omega-3 and probiotics as well as weight loss dietary plans for overweight and obese patients.
Collapse
Affiliation(s)
- Mahsa Arzani
- Headache Department, Iranian Center of Neurological Research, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Soodeh Razeghi Jahromi
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zeinab Ghorbani
- Cardiovascular Diseases Research Center, Department of Cardiology, Heshmat Hospital, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Fahimeh Vahabizad
- Headache Department, Iranian Center of Neurological Research, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
- Headache Department, Neurology Ward, Sina University Hospital, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Paolo Martelletti
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Amir Ghaemi
- Department of Virology, Pasteur Institute of Iran, Tehran, Iran
| | - Simona Sacco
- Neuroscience section - Department of Applied Clinical Sciences and Biotechnology, University of L'Aquila, L'Aquila, Italy.
| | - Mansoureh Togha
- Headache Department, Iranian Center of Neurological Research, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran.
- Headache Department, Neurology Ward, Sina University Hospital, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
189
|
Kim Y, Shim J, Kim J, Lim E. Charantin relieves pain by inhibiting pro-inflammatory cytokine induction. Pharmacogn Mag 2020. [DOI: 10.4103/pm.pm_348_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
190
|
Oh SH, Lee HY, Ki YJ, Kim SH, Lim KJ, Jung KT. Gabexate mesilate ameliorates the neuropathic pain in a rat model by inhibition of proinflammatory cytokines and nitric oxide pathway via suppression of nuclear factor-κB. Korean J Pain 2020; 33:30-39. [PMID: 31888315 PMCID: PMC6944363 DOI: 10.3344/kjp.2020.33.1.30] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 11/02/2019] [Accepted: 11/03/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND This study examined the effects of gabexate mesilate on spinal nerve ligation (SNL)-induced neuropathic pain. To confirm the involvement of gabexate mesilate on neuroinflammation, we focused on the activation of nuclear factor-κB (NF-κB) and consequent the expression of proinflammatory cytokines and inducible nitric oxide synthase (iNOS). METHODS Male Sprague-Dawley rats were used for the study. After randomization into three groups: the sham-operation group, vehicle-treated group (administered normal saline as a control), and the gabexate group (administered gabexate mesilate 20 mg/kg), SNL was performed. At the 3rd day, mechanical allodynia was confirmed using von Frey filaments, and drugs were administered intraperitoneally daily according to the group. The paw withdrawal threshold (PWT) was examined on the 3rd, 7th, and 14th day. The expressions of p65 subunit of NF-κB, interleukin (IL)-1, IL-6, tumor necrosis factor-α, and iNOS were evaluated on the 7th and 14th day following SNL. RESULTS The PWT was significantly higher in the gabexate group compared with the vehicle-treated group (P < 0.05). The expressions of p65, proinflammatory cytokines, and iNOS significantly decreased in the gabexate group compared with the vehicle-treated group (P < 0.05) on the 7th day. On the 14th day, the expressions of p65 and iNOS showed lower levels, but those of the proinflammatory cytokines showed no significant differences. CONCLUSIONS Gabexate mesilate increased PWT after SNL and attenuate the progress of mechanical allodynia. These results seem to be involved with the anti-inflammatory effect of gabexate mesilate via inhibition of NF-κB, proinflammatory cytokines, and nitric oxide.
Collapse
Affiliation(s)
- Seon Hee Oh
- School of Medicine, Chosun University, Gwangju,
Korea
| | - Hyun Young Lee
- Department of Anesthesiology and Pain Medicine, Chosun University Hospital, Gwangju,
Korea
- Department of Anesthesiology and Pain Medicine, School of Medicine, Chosun University, Gwangju,
Korea
| | - Young Joon Ki
- Department of Anesthesiology and Pain Medicine, Chosun University Hospital, Gwangju,
Korea
| | - Sang Hun Kim
- Department of Anesthesiology and Pain Medicine, Chosun University Hospital, Gwangju,
Korea
- Department of Anesthesiology and Pain Medicine, School of Medicine, Chosun University, Gwangju,
Korea
| | - Kyung Joon Lim
- Department of Anesthesiology and Pain Medicine, Chosun University Hospital, Gwangju,
Korea
- Department of Anesthesiology and Pain Medicine, School of Medicine, Chosun University, Gwangju,
Korea
| | - Ki Tae Jung
- Department of Anesthesiology and Pain Medicine, Chosun University Hospital, Gwangju,
Korea
- Department of Anesthesiology and Pain Medicine, School of Medicine, Chosun University, Gwangju,
Korea
| |
Collapse
|
191
|
Nolan MW, Kelsey KL, Enomoto M, Ru H, Gieger TL, Lascelles BDX. Pet Dogs with Subclinical Acute Radiodermatitis Experience Widespread Somatosensory Sensitization. Radiat Res 2019; 193:241-248. [PMID: 31877255 DOI: 10.1667/rr15468.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Radiation-induced dermatitis (RID) is a common and painful complication of radiotherapy. When severe, radiation-associated pain (RAP) can reduce the efficacy of radiotherapy by limiting the radiation dose given, and/or necessitating breaks in treatment. Current RAP mitigation strategies are of limited efficacy. Our long-term goal is to develop a comparative oncology model, in which novel analgesic interventions for RAP can be evaluated. The aim of this study was to validate quantitative end points indicative of RAP in pet dogs with subclinical and low-grade RID. Extremity soft tissue sarcomas were treated with post-operative irradiation (54 Gy in 18 fractions). Visual toxicity scores, questionnaire-based pain instruments and objective algometry [mechanical quantitative sensory testing (mQST)], were evaluated regularly. Breed-matched control populations were also evaluated to address the effect of potential confounders. Skin biopsies from within the irradiated field were collected at baseline and after 24 Gy irradiation, for analysis of pain-related genes using the nanoString nCounter platform. Relative to control populations, mechanical thresholds decreased in irradiated test subjects as the total radiation dose increased, with the most pronounced effect at the irradiated site. This was accompanied by increased mRNA expression of GFRα3, TNFα, TRPV2 and TRPV4. In a separate set of dogs with moderate-to-severe RID, serum concentrations of artemin (the ligand for GFRα3) were elevated relative to controls (P = 0.015). Progressive reduction in mechanical thresholds, both locally and remotely, indicates widespread somatosensory sensitization during radiation treatment. mQST in pet dogs undergoing radiation treatment represents an innovative tool for preclinical evaluation of novel analgesics.
Collapse
Affiliation(s)
- Michael W Nolan
- Departments of Clinical Sciences.,Departments of Comparative Medicine Institute.,Departments of Translational Research in Pain, Comparative Pain Research and Education Centre, North Carolina State University, Raleigh, North Carolina 27607
| | | | | | - Hongyu Ru
- Departments of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina 27607
| | - Tracy L Gieger
- Departments of Clinical Sciences.,Departments of Comparative Medicine Institute
| | - B Duncan X Lascelles
- Departments of Clinical Sciences.,Departments of Comparative Medicine Institute.,Departments of Translational Research in Pain, Comparative Pain Research and Education Centre, North Carolina State University, Raleigh, North Carolina 27607
| |
Collapse
|
192
|
Vanderwall AG, Milligan ED. Cytokines in Pain: Harnessing Endogenous Anti-Inflammatory Signaling for Improved Pain Management. Front Immunol 2019; 10:3009. [PMID: 31921220 PMCID: PMC6935995 DOI: 10.3389/fimmu.2019.03009] [Citation(s) in RCA: 124] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 12/09/2019] [Indexed: 12/20/2022] Open
Abstract
Current pain therapeutics offer inadequate relief to patients with chronic pain. A growing literature supports that pro-inflammatory cytokine signaling between immune, glial, and neural cells is integral to the development of pathological pain. Modulation of these communications may hold the key to improved pain management. In this review we first offer an overview of the relationships between pro-inflammatory cytokine and chemokine signaling and pathological pain, with a focus on the actions of cytokines and chemokines in communication between glia (astrocytes and microglia), immune cells (macrophages and T cells), and neurons. These interactions will be discussed in relation to both peripheral and central nervous system locations. Several novel non-neuronal drug targets for controlling pain are emerging as highly promising, including non-viral IL-10 gene therapy, which offer the potential for substantial pain relief through localized modulation of targeted cytokine pathways. Preclinical investigation of the mechanisms underlying the success of IL-10 gene therapy revealed the unexpected discovery of the powerful anti-nociceptive anti-inflammatory properties of D-mannose, an adjuvant in the non-viral gene therapeutic formulation. This review will include gene therapeutic approaches showing the most promise in controlling pro-inflammatory signaling via increased expression of anti-inflammatory cytokines like interleukin-10 (IL-10) or IL-4, or by directly limiting the bioavailability of specific pro-inflammatory cytokines, as with tumor necrosis factor (TNF) by the TNF soluble receptor (TNFSR). Approaches that increase endogenous anti-inflammatory signaling may offer additional opportunities for pain therapeutic development in patients not candidates for gene therapy. Promising novel avenues discussed here include the disruption of lymphocyte function-associated antigen (LFA-1) activity, antagonism at the cannabinoid 2 receptor (CB2R), and toll-like receptor 4 (TLR4) antagonism. Given the partial efficacy of current drugs, new strategies to manipulate neuroimmune and cytokine interactions hold considerable promise.
Collapse
Affiliation(s)
- Arden G. Vanderwall
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM, United States
- Department of Anesthesiology and Critical Care, University of New Mexico School of Medicine, Albuquerque, NM, United States
| | - Erin D. Milligan
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM, United States
| |
Collapse
|
193
|
Silva PGDB, de Lima Martins JO, de Lima Praxedes Neto RA, Mota Lemos JV, Machado LC, Matos Carlos ACA, Alves APNN, Lima RA. Tumor necrosis factor alpha mediates orofacial discomfort in an occlusal dental interference model in rats: The role of trigeminal ganglion inflammation. J Oral Pathol Med 2019; 49:169-176. [PMID: 31829463 DOI: 10.1111/jop.12984] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 11/28/2019] [Accepted: 12/05/2019] [Indexed: 01/09/2023]
Abstract
BACKGROUND Tumor necrosis factor alpha (TNF-α) is a proinflammatory cytokine that plays an important role in the early stages of inflammation. In this study, we investigated its role in orofacial discomfort in rats subjected to occlusal dental interference (ODI). METHODS Female Wistar rats (180-200 g) were divided in three groups (n = 30/group): sham group, without ODI, and two experimental groups with ODI pre-treated with 0.1 mL/kg saline (ODI + SAL) or 5 mg/kg infliximab (ODI + INF) and treated every 3 days. The animals were euthanized after 1, 3, and 7 days. The number of bites and scratches and grimace scale scores were determined daily, and the bilateral trigeminal ganglion was histomorphometrically (neuronal body area) analyzed and submitted for immunohistochemistry for TNF-α, nitric oxide synthesis (NOS) neuronal (nNOS) and inducible (iNOS), peroxisome proliferator-activated receptors (PPAR) y (PPARy) and δ/β (PPARδ/β), and glial fibrillary acidic protein (GFAP). One-way/two-way ANOVA/Bonferroni tests were used (P < .05, GraphPad Prism 5.0). RESULTS ODI + SAL showed a large number of bites (P = .002), scratches (P = .002), and grimace scores (P < .001) in the firsts days, and ODI + INF partially reduced these parameters. The contralateral and ipsilateral neuronal body area was significantly reduced on day 1 in ODI + SAL, but returned to the basal size on days 3 and 7, by increase in TNF-α, nNOS, PPARy, PPARδ/β, and GFAP immunostaining. The infliximab treatment attenuated these alterations (P < .05). There was no iNOS immunostaining. CONCLUSION Occlusal dental interference induced transitory orofacial discomfort by trigeminal inflammatory mediator overexpression, and TNF-α blockage attenuated these processes.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ana Paula Negreiros Nunes Alves
- Division of Oral Pathology, Department of Dental Clinic, Faculty of Pharmacy, Dentistry and Nursing, Federal University of Ceara, Fortaleza, Brazil
| | | |
Collapse
|
194
|
LaMacchia ZM, Spengler RN, Jaffari M, Abidi AH, Ahmed T, Singh N, Tobinick EL, Ignatowski TA. Perispinal injection of a TNF blocker directed to the brain of rats alleviates the sensory and affective components of chronic constriction injury-induced neuropathic pain. Brain Behav Immun 2019; 82:93-105. [PMID: 31376497 DOI: 10.1016/j.bbi.2019.07.036] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 07/29/2019] [Accepted: 07/30/2019] [Indexed: 12/12/2022] Open
Abstract
Neuropathic pain is chronic pain that follows nerve injury, mediated in the brain by elevated levels of the inflammatory protein tumor necrosis factor-alpha (TNF). We have shown that peripheral nerve injury increases TNF in the hippocampus/pain perception region, which regulates neuropathic pain symptoms. In this study we assessed pain sensation and perception subsequent to specific targeting of brain-TNF (via TNF antibody) administered through a novel subcutaneous perispinal route. Neuropathic pain was induced in Sprague-Dawley rats via chronic constriction injury (CCI), and thermal hyperalgesia was monitored for 10 days post-surgery. On day 8 following CCI and sensory pain behavior testing, rats were randomized to receive perispinal injection of TNF antibody or control IgG isotype antibody. Pain perception was assessed using conditioned place preference (CPP) to the analgesic, amitriptyline. CCI-rats receiving the perispinal injection of TNF antibody had significantly decreased CCI-induced thermal hyperalgesia the following day, and did not form an amitriptyline-induced CPP, whereas CCI-rats receiving perispinal IgG antibody experienced pain alleviation only in conjunction with i.p. amitriptyline and did form an amitriptyline-induced CPP. The specific targeting of brain TNF via perispinal delivery alleviates thermal hyperalgesia and positively influences the affective component of pain. PERSPECTIVE: This study presents a novel route of drug administration to target central TNF for treatment of neuropathic pain. Targeting central TNF through perispinal drug delivery could potentially be a more efficient and sustained method to treat patients with neuropathic pain.
Collapse
Affiliation(s)
- Zach M LaMacchia
- Department of Pathology and Anatomical Sciences, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, USA
| | | | - Muhammad Jaffari
- Department of Pathology and Anatomical Sciences, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, USA
| | - Asif H Abidi
- Department of Pathology and Anatomical Sciences, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, USA
| | - Tariq Ahmed
- Department of Pathology and Anatomical Sciences, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, USA
| | - Natasha Singh
- Department of Pathology and Anatomical Sciences, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, USA
| | | | - Tracey A Ignatowski
- Department of Pathology and Anatomical Sciences, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, USA; Program for Neuroscience, University at Buffalo, The State University of New York, USA.
| |
Collapse
|
195
|
Zhang Y, Yuan L, Chen Y, Lin C, Ye G. Oxyntomodulin attenuates TNF‑α induced neuropathic pain by inhibiting the activation of the NF‑κB pathway. Mol Med Rep 2019; 20:5223-5228. [PMID: 31661136 DOI: 10.3892/mmr.2019.10770] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 08/08/2019] [Indexed: 11/06/2022] Open
Abstract
Neuropathic pain is rarely diagnosed. Oxyntomodulin is peripherally and centrally distributed; however, the potential mechanisms underlying the effects of oxyntomodulin in attenuating nociception remain unclear; thus, we aimed to explore them in the present study. A neuropathic pain model in male C57BL/6 mice was induced by intrathecal injection of tumor necrosis factor‑α (TNF‑α), and the duration of nociceptive behavioral responses was measured with a stop‑watch timer within 30 min. Western blotting was used to explore the protein levels of ionized calcium binding adaptor molecule‑1 (IBA1), nuclear factor‑κB (NF‑κB) phosphorylated‑p65, interleukin (IL)‑6 and IL‑1β. We performed reverse transcription‑quantitative polymerase chain reaction and ELISA were performed to determine the mRNA and protein expression levels of IL‑6 and IL‑1β, respectively. An MTT assay was conducted to detect BV2 cell viability. Oxyntomodulin was observed to attenuate TNF‑α‑induced pain hypersensitivity in mice, as well as the expression of IBA1, NF‑κB p‑p65, IL‑6 and IL‑1β in the spinal cord. Oxyntomodulin exhibited no cytotoxicity on BV2 cells, and attenuated TNF‑α‑induced IL‑6 and IL‑1β production and release in BV2 cells and culture medium, respectively. Collectively, we proposed oxyntomodulin to attenuate TNF‑α induced neuropathic pain associated with the release of glial cytokines IL‑6 and IL‑1β via inhibiting the activation of the NF‑κB pathway.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Anesthesiology, Ningbo No. 6 Hospital, Ningbo, Zhejiang 315040, P.R. China
| | - Liyong Yuan
- Department of Anesthesiology, Ningbo No. 6 Hospital, Ningbo, Zhejiang 315040, P.R. China
| | - Yuebo Chen
- Department of Anesthesiology, Ningbo No. 6 Hospital, Ningbo, Zhejiang 315040, P.R. China
| | - Chunyan Lin
- Department of Anesthesiology, Ningbo No. 6 Hospital, Ningbo, Zhejiang 315040, P.R. China
| | - Guangyao Ye
- Department of Anesthesiology, Ningbo No. 6 Hospital, Ningbo, Zhejiang 315040, P.R. China
| |
Collapse
|
196
|
Siqueira-Lima PS, Quintans JSS, Heimfarth L, Passos FRS, Pereira EWM, Rezende MM, Menezes-Filho JER, Barreto RSS, Coutinho HDM, Araújo AAS, Medrado AS, Naves LA, Bomfim HF, Lucchese AM, Gandhi SR, Quintans-Júnior LJ. Involvement of the PKA pathway and inhibition of voltage gated Ca2+ channels in antihyperalgesic activity of Lippia grata/β-cyclodextrin. Life Sci 2019; 239:116961. [PMID: 31654745 DOI: 10.1016/j.lfs.2019.116961] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 10/09/2019] [Accepted: 10/11/2019] [Indexed: 11/17/2022]
Abstract
Neuropathic pain (NP) is a difficult condition to treat because of the modest efficacy of available drugs. New treatments are required. In the study we aimed to investigate the effects of the essential oil from Lippia grata alone or complexed in β-cyclodextrin (LG or LG-βCD) on persistent inflammatory and neuropathic pain in a mouse model. We also investigated Ca2+ currents in rat dorsal root ganglion (DRG) neurons. Male Swiss mice were treated with LG or LG/β-CD (24 mg/kg, i.g.) and their effect was evaluated using an acute inflammatory pleurisy model and nociception triggered by intraplantar injection of an agonist of the TRPs channels. We also tested their effect in chronic pain models: injection of Freund's Complete Adjuvant and partial sciatic nerve ligation (PSNL). In the pleurisy model, LG reduced the number of leukocytes and the levels of TNF-α and IL-1β. It also inhibited cinnamaldehyde and menthol-induced nociceptive behavior. The pain threshold in mechanical and thermal hyperalgesia was increased and paw edema was decreased in models of inflammatory and neuropathic pain. PSNL increased inflammatory protein contents and LG and LG-βCD restored the protein contents of TNF-α, NF-κB, and PKA, but not IL-1β and IL-10. LG inhibited voltage gated Ca2+ channels from DRG neurons. Our results suggested that LG or LG-βCD produce anti-hyperalgesic effect in chronic pain models through reductions in TNF-α levels and PKA, and inhibited voltage-gated calcium channels and may be innovative therapeutic agents for the management of NP.
Collapse
Affiliation(s)
- Pollyana S Siqueira-Lima
- Multiuser Health Center Facility (CMulti-Saúde), Brazil; Department of Physiology (DFS). Federal University of Sergipe (UFS), São Cristóvão, SE, 49100-000 Brazil
| | - Jullyana S S Quintans
- Multiuser Health Center Facility (CMulti-Saúde), Brazil; Department of Physiology (DFS). Federal University of Sergipe (UFS), São Cristóvão, SE, 49100-000 Brazil.
| | - Luana Heimfarth
- Multiuser Health Center Facility (CMulti-Saúde), Brazil; Department of Physiology (DFS). Federal University of Sergipe (UFS), São Cristóvão, SE, 49100-000 Brazil
| | - Fabiolla R S Passos
- Multiuser Health Center Facility (CMulti-Saúde), Brazil; Department of Physiology (DFS). Federal University of Sergipe (UFS), São Cristóvão, SE, 49100-000 Brazil
| | - Erik W M Pereira
- Multiuser Health Center Facility (CMulti-Saúde), Brazil; Department of Physiology (DFS). Federal University of Sergipe (UFS), São Cristóvão, SE, 49100-000 Brazil
| | - Marilia M Rezende
- Multiuser Health Center Facility (CMulti-Saúde), Brazil; Department of Physiology (DFS). Federal University of Sergipe (UFS), São Cristóvão, SE, 49100-000 Brazil
| | - José E R Menezes-Filho
- Multiuser Health Center Facility (CMulti-Saúde), Brazil; Department of Physiology (DFS). Federal University of Sergipe (UFS), São Cristóvão, SE, 49100-000 Brazil
| | - Rosana S S Barreto
- Multiuser Health Center Facility (CMulti-Saúde), Brazil; Department of Physiology (DFS). Federal University of Sergipe (UFS), São Cristóvão, SE, 49100-000 Brazil
| | - Henrique D M Coutinho
- Regional University of Cariri. Universidade Regional do Cariri (URCA), Crato/CE, 63105-000, Brazil
| | - Adriano A S Araújo
- Department of Pharmacy, Federal University of Sergipe (UFS), São Cristóvão, SE, 49100-000, Brazil
| | - Aline S Medrado
- Federal University of Minas Gerais. Belo Horizonte, MG, CEP 31270-901, Brazil
| | - Ligia A Naves
- Federal University of Minas Gerais. Belo Horizonte, MG, CEP 31270-901, Brazil
| | - Horácio F Bomfim
- Post-Graduate Program in Biotechnology, State University of Feira de Santana, Feira de Santana, BA, 44036-900, Brazil
| | - Angélica M Lucchese
- Post-Graduate Program in Biotechnology, State University of Feira de Santana, Feira de Santana, BA, 44036-900, Brazil
| | | | - Lucindo J Quintans-Júnior
- Multiuser Health Center Facility (CMulti-Saúde), Brazil; Department of Physiology (DFS). Federal University of Sergipe (UFS), São Cristóvão, SE, 49100-000 Brazil.
| |
Collapse
|
197
|
Osthues T, Sisignano M. Oxidized Lipids in Persistent Pain States. Front Pharmacol 2019; 10:1147. [PMID: 31680947 PMCID: PMC6803483 DOI: 10.3389/fphar.2019.01147] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 09/05/2019] [Indexed: 12/13/2022] Open
Abstract
Chemotherapy, nerve injuries, or diseases like multiple sclerosis can cause pathophysiological processes of persistent and neuropathic pain. Thereby, the activation threshold of ion channels is reduced in peripheral sensory neurons to normally noxious stimuli like heat, cold, acid, or mechanical due to sensitization processes. This leads to enhanced neuronal activity, which can result in mechanical allodynia, cold allodynia, thermal hyperalgesia, spontaneous pain, and may initiate persistent and neuropathic pain. The treatment options for persistent and neuropathic pain patients are limited; for about 50% of them, current medication is not efficient due to severe side effects or low response to the treatment. Therefore, it is of special interest to find additional treatment strategies. One approach is the control of neuronal sensitization processes. Herein, signaling lipids are crucial mediators and play an important role during the onset and maintenance of pain. As preclinical studies demonstrate, lipids may act as endogenous ligands or may sensitize transient receptor potential (TRP)-channels. Likewise, they can cause enhanced activity of sensory neurons by mechanisms involving G-protein coupled receptors and activation of intracellular protein kinases. In this regard, oxidized metabolites of the essential fatty acid linoleic acid, 9- and 13-hydroxyoctadecadienoic acid (HODE), their dihydroxy-metabolites (DiHOMEs), as well as epoxides of linoleic acid (EpOMEs) and of arachidonic acid (EETs), as well as lysophospholipids, sphingolipids, and specialized pro-resolving mediators (SPMs) have been reported to play distinct roles in pain transmission or inhibition. Here, we discuss the underlying molecular mechanisms of the oxidized linoleic acid metabolites and eicosanoids. Furthermore, we critically evaluate their role as potential targets for the development of novel analgesics and for the treatment of persistent or neuropathic pain.
Collapse
Affiliation(s)
- Tabea Osthues
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Branch for Translational Medicine and Pharmacology TMP, Frankfurt, Germany
| | - Marco Sisignano
- Institute of Clinical Pharmacology, Pharmazentrum Frankfurt/ZAFES, University Hospital, Goethe-University, Frankfurt, Germany
| |
Collapse
|
198
|
Kordulewska NK, Kostyra E, Piskorz-Ogórek K, Moszyńska M, Cieślińska A, Fiedorowicz E, Jarmołowska B. Serum cytokine levels in children with spectrum autism disorder: Differences in pro- and anti-inflammatory balance. J Neuroimmunol 2019; 337:577066. [PMID: 31629288 DOI: 10.1016/j.jneuroim.2019.577066] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 04/13/2019] [Accepted: 09/10/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND Autism Spectrum Disorders (ASDs) is a developmental and neurological disorder that affects all aspects of social communication, with limited and stereotypical interest, and atypical responses to sensory stimuli. Diagnosis of ASD is currently phenotype based with no reliable laboratory test available to assist clinicians. Researches have shown that individuals with autism often exhibit dysfunction of cytokines. METHODS A total of 42 patients with ASD and 20 matched controls participants were recruited for the study. Diagnosis was conducted by medical specialists and based on the International Classification of Mental and Behavioral Disorders - ICD-10, DSM-5 and CARS sore. Whole blood samples were collected and serum IL's and chemokin levels were made using ELISA kits. RESULTS Results demonstrated that in comparison to the controls, the individuals with autism showed significantly higher concentration of IL-1β, IL-4, IL-6 and IL-13. We also demonstrated significant correlations between the levels of cytokines which implies the presence of an interactive network between them. The results of ROC analysis indicated the 4-factors (IL-1β, IL-4, IL-6 and IL-13) could be potential biomarkers in diagnosis of ASD. CONCLUSIONS In this study, serum levels of cytokine differed among children with ASD. However, the findings of this support the possibility of using an appropriate selection of serum cytokine for the diagnosis ASD and emphasize the need to standardize quantitative methods for serum analysis.
Collapse
Affiliation(s)
- Natalia Karolina Kordulewska
- Department of Biology and Biotechnology, University of Warmia and Mazury, Oczapowskiego 1A Street, 10-719 Olsztyn, Poland
| | - Elżbieta Kostyra
- Department of Biology and Biotechnology, University of Warmia and Mazury, Oczapowskiego 1A Street, 10-719 Olsztyn, Poland.
| | | | - Małgorzata Moszyńska
- Center for Diagnosis, Treatment and Therapy of Autism at the Regional Children's Hospital in Olsztyn, Zolnierska 18 A Street, 10-561 Olsztyn, Poland
| | - Anna Cieślińska
- Department of Biology and Biotechnology, University of Warmia and Mazury, Oczapowskiego 1A Street, 10-719 Olsztyn, Poland
| | - Ewa Fiedorowicz
- Department of Biology and Biotechnology, University of Warmia and Mazury, Oczapowskiego 1A Street, 10-719 Olsztyn, Poland
| | - Beata Jarmołowska
- Department of Biology and Biotechnology, University of Warmia and Mazury, Oczapowskiego 1A Street, 10-719 Olsztyn, Poland
| |
Collapse
|
199
|
Activation of mitogen-activated protein kinases in satellite glial cells of the trigeminal ganglion contributes to substance P-mediated inflammatory pain. Int J Oral Sci 2019; 11:24. [PMID: 31501412 PMCID: PMC6802677 DOI: 10.1038/s41368-019-0055-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 05/15/2019] [Accepted: 06/10/2019] [Indexed: 02/05/2023] Open
Abstract
Inflammatory orofacial pain, in which substance P (SP) plays an important role, is closely related to the cross-talk between trigeminal ganglion (TG) neurons and satellite glial cells (SGCs). SGC activation is emerging as the key mechanism underlying inflammatory pain through different signalling mechanisms, including glial fibrillary acidic protein (GFAP) activation, phosphorylation of mitogen-activated protein kinase (MAPK) signalling pathways, and cytokine upregulation. However, in the TG, the mechanism underlying SP-mediated orofacial pain generated by SGCs is largely unknown. In this study, we investigated whether SP is involved in inflammatory orofacial pain by upregulating interleukin (IL)-1β and tumour necrosis factor (TNF)-α from SGCs, and we explored whether MAPK signalling pathways mediate the pain process. In the present study, complete Freund’s adjuvant (CFA) was injected into the whisker pad of rats to induce an inflammatory model in vivo. SP was administered to SGC cultures in vitro to confirm the effect of SP. Facial expression analysis showed that pre-injection of L703,606 (an NK-1 receptor antagonist), U0126 (an inhibitor of MAPK/extracellular signal-regulated kinase [ERK] kinase [MEK] 1/2), and SB203580 (an inhibitor of P38) into the TG to induce targeted prevention of the activation of the NK-1 receptor and the phosphorylation of MAPKs significantly suppressed CFA-induced inflammatory allodynia. In addition, SP promoted SGC activation, which was proven by increased GFAP, p-MAPKs, IL-1β and TNF-α in SGCs under inflammatory conditions. Moreover, the increase in IL-1β and TNF-α was suppressed by L703, 606, U0126 and SB203580 in vivo and in vitro. These present findings suggested that SP, released from TG neurons, activated SGCs through the ERK1/2 and P38 pathways and promoted the production of IL-1β and TNF-α from SGCs, contributing to inflammatory orofacial pain associated with peripheral sensitization.
Collapse
|
200
|
TNFR2 promotes Treg-mediated recovery from neuropathic pain across sexes. Proc Natl Acad Sci U S A 2019; 116:17045-17050. [PMID: 31391309 PMCID: PMC6708347 DOI: 10.1073/pnas.1902091116] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Tumor necrosis factor (TNF) is a cytokine that induces signaling via two receptors, TNFR1 and TNFR2. TNF signaling via TNFR1 contributes to development and maintenance of neuropathic pain. Here, we show that TNFR2 is essential for recovery from neuropathic pain across sexes. Treatment of male and female neuropathic mice with a TNFR2 agonist resulted in long-lasting recovery from neuropathic pain. We identified Tregs as the cellular mediator of the analgesic effect of TNFR2. Indeed, TNFR2 agonist administration alleviated peripheral and central inflammation and promoted neuroprotection in a Treg-dependent manner, indicating that TNFR2-dependent modulation of immunity is neuroprotective. We therefore argue that TNFR2 agonists might be a class of nonopioid drugs that can promote long-lasting pain recovery in males and females. Tumor necrosis factor receptor 2 (TNFR2) is a transmembrane receptor that is linked to immune modulation and tissue regeneration. Here, we show that TNFR2 essentially promotes long-term pain resolution independently of sex. Genetic deletion of TNFR2 resulted in impaired neuronal regeneration and chronic nonresolving pain after chronic constriction injury (CCI). Further, pharmacological activation of TNFR2 using the TNFR2 agonist EHD2-sc-mTNFR2 in mice with chronic neuropathic pain promoted long-lasting pain recovery. TNFR2 agonist treatment reduced neuronal injury, alleviated peripheral and central inflammation, and promoted repolarization of central nervous system (CNS)-infiltrating myeloid cells into an antiinflammatory/reparative phenotype. Depletion of regulatory T cells (Tregs) delayed spontaneous pain recovery and abolished the therapeutic effect of EHD2-sc-mTNFR2. This study therefore reveals a function of TNFR2 in neuropathic pain recovery and demonstrates that both TNFR2 signaling and Tregs are essential for pain recovery after CCI. Therefore, therapeutic strategies based on the concept of enhancing TNFR2 signaling could be developed into a nonopioid therapy for the treatment of chronic neuropathic pain.
Collapse
|