151
|
Karoly HC, YorkWilliams SL, Hutchison KE. Clinical Neuroscience of Addiction: Similarities and Differences Between Alcohol and Other Drugs. Alcohol Clin Exp Res 2015; 39:2073-84. [DOI: 10.1111/acer.12884] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 08/21/2015] [Indexed: 01/14/2023]
Affiliation(s)
- Hollis C. Karoly
- Department of Psychology and Neuroscience University of Colorado, Boulder Boulder Colorado
| | - Sophie L. YorkWilliams
- Department of Psychology and Neuroscience University of Colorado, Boulder Boulder Colorado
| | - Kent E. Hutchison
- Department of Psychology and Neuroscience University of Colorado, Boulder Boulder Colorado
| |
Collapse
|
152
|
Wei P, Yang XJ, Fu Q, Han B, Ling L, Bai J, Zong B, Jiang CY. Intermedin attenuates myocardial infarction through activation of autophagy in a rat model of ischemic heart failure via both cAMP and MAPK/ERK1/2 pathways. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2015; 8:9836-9844. [PMID: 26617693 PMCID: PMC4637778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 08/26/2015] [Indexed: 06/05/2023]
Abstract
Intermedin is a proopiomelanocortin-derived peptide before opioid promoting cortical hormone, its main function embodies in mononuclear macrophages and neutrophilic granulocytes to inhibit the proinflammatory cytokines. The aim of this study is to determine intermedin attenuates myocardial infarction and its related mechanisms in a rat model of ischemic heart failure. After rat model of ischemic heart failure was set up, myocardial infarction, blood levels of activities of creatine kinase (CK), the MB isoenzyme of creatine kinase (CK-MB), lactate dehydrogenase (LDH) and cardiac troponin T (cTnT) were effectively reduced by treatment with intermedin. Tumor necrosis factor (TNF-α) and interleukin-6 (IL-6) in a rat model of ischemic heart failure were recovered by pretreatment with intermedin. Administrate of intermedin availably promoted cAMP contents and suppressed caspase-3 protein in ischemic heart failure rat. ERK1/2 and LC3 protein expression were significantly activated and autophagy was significantly promoted by intermedin in a rat model of ischemic heart failure. These results indicate that intermedin protected rat heart, attenuates myocardial infarction from ischemic heart failure in the rat model. The underlying mechanisms may include upregulation of cAMP, ERK1/2 and LC3 protein expression and activating of autophagy.
Collapse
Affiliation(s)
- Peng Wei
- Department of Cardiology, First Affiliated Hospital, Soochow UniversitySuzhou 215006, China
| | - Xiang-Jun Yang
- Department of Cardiology, First Affiliated Hospital, Soochow UniversitySuzhou 215006, China
| | - Qiang Fu
- Department of Cardiology, Xuzhou Central HospitalXuzhou 221009, China
| | - Bing Han
- Department of Cardiology, Xuzhou Central HospitalXuzhou 221009, China
| | - Lin Ling
- Department of Cardiology, First Affiliated Hospital, Soochow UniversitySuzhou 215006, China
| | - Jie Bai
- Department of Geriatrics Changhai Hospital of Second Military Medical UniversityShanghai 200433 China
| | - Bin Zong
- Department of Cardiology, Xuzhou Central HospitalXuzhou 221009, China
| | - Chun-Ying Jiang
- Department of Cardiology, Xuzhou Central HospitalXuzhou 221009, China
| |
Collapse
|
153
|
Chastain LG, Sarkar DK. Role of microglia in regulation of ethanol neurotoxic action. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2015; 118:81-103. [PMID: 25175862 DOI: 10.1016/b978-0-12-801284-0.00004-x] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Exposure to alcohol, during development or adulthood, may result in damage to the nervous system, which underlies neurological and cognitive disruptions observed in patients with alcohol-related disorders, including fetal alcohol spectrum disorders (FASDs) and alcohol-use disorders (AUDs). Both clinical and preclinical evidence suggest microglia, the immune cells of the central nervous system, play a key role in modulating alcohol-induced neurotoxicity. Particularly, microglia are implicated in alcohol-induced neuroinflammation and in alcohol-induced increases in oxidative stress, which can lead to neuronal apoptosis. Recent studies also suggest a regenerative role for microglia in reestablishing homeostasis after alcohol exposure. These studies are summarized and reviewed in this chapter with emphasis on relevance to FASD and AUD.
Collapse
Affiliation(s)
- Lucy G Chastain
- Endocrinology Program, Department of Animal Sciences, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, USA
| | - Dipak K Sarkar
- Endocrinology Program, Department of Animal Sciences, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, USA.
| |
Collapse
|
154
|
Daulatzai MA. “Boomerang Neuropathology” of Late-Onset Alzheimer’s Disease is Shrouded in Harmful “BDDS”: Breathing, Diet, Drinking, and Sleep During Aging. Neurotox Res 2015; 28:55-93. [PMID: 25911292 DOI: 10.1007/s12640-015-9528-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2014] [Revised: 04/03/2015] [Accepted: 04/03/2015] [Indexed: 12/12/2022]
|
155
|
Vitamin D prevents hypoxia/reoxygenation-induced blood-brain barrier disruption via vitamin D receptor-mediated NF-kB signaling pathways. PLoS One 2015; 10:e0122821. [PMID: 25815722 PMCID: PMC4376709 DOI: 10.1371/journal.pone.0122821] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 02/21/2015] [Indexed: 11/19/2022] Open
Abstract
Maintaining blood-brain barrier integrity and minimizing neuronal injury are critical components of any therapeutic intervention following ischemic stroke. However, a low level of vitamin D hormone is a risk factor for many vascular diseases including stroke. The neuroprotective effects of 1,25(OH)2D3 (vitamin D) after ischemic stroke have been studied, but it is not known whether it prevents ischemic injury to brain endothelial cells, a key component of the neurovascular unit. We analyzed the effect of 1,25(OH)2D3 on brain endothelial cell barrier integrity and tight junction proteins after hypoxia/reoxygenation in a mouse brain endothelial cell culture model that closely mimics many of the features of the blood-brain barrier in vitro. Following hypoxic injury in bEnd.3 cells, 1,25(OH)2D3 treatment prevented the decrease in barrier function as measured by transendothelial electrical resistance and permeability of FITC-dextran (40 kDa), the decrease in the expression of the tight junction proteins zonula occludin-1, claudin-5, and occludin, the activation of NF-kB, and the increase in matrix metalloproteinase-9 expression. These responses were blocked when the interaction of 1,25(OH) )2D3 with the vitamin D receptor (VDR) was inhibited by pyridoxal 5'-phosphate treatment. Our findings show a direct, VDR-mediated, protective effect of 1,25(OH) )2D3 against ischemic injury-induced blood-brain barrier dysfunction in cerebral endothelial cells.
Collapse
|
156
|
Increased brain nitric oxide levels following ethanol administration. Nitric Oxide 2015; 47:52-7. [PMID: 25819134 DOI: 10.1016/j.niox.2015.03.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 03/10/2015] [Accepted: 03/13/2015] [Indexed: 01/14/2023]
Abstract
Nitric oxide is a ubiquitous messenger molecule, which at elevated concentrations has been implicated in the pathogenesis of several neurological disorders. Its role in oxidative stress, attributed in particular to the formation of peroxynitrite, proceeds through its high affinity for the superoxide radical. Alcoholism has recently been associated with the induction of oxidative stress, which is generally defined as a shift in equilibrium between pro-oxidant and anti-oxidant species in the direction of the former. Furthermore, its primary metabolite acetaldehyde, has been extensively associated with oxidative damage related toxic effects following alcohol ingestion. The principal objective of this study was the application of long term in vivo electrochemistry (LIVE) to investigate the effect of ethanol (0.125, 0.5 and 2.0 g kg(-1)) and acetaldehyde (12.5, 50 and 200 mg kg(-1)) on NO levels in the nucleus accumbens of freely moving rats. Systemic administrations of ethanol and acetaldehyde resulted in a dose-dependent increases in NO levels, albeit with very differing time courses. Subsequent to this the effect on accumbal NO levels, of subjecting the animal to different drug combinations, was also elucidated. The nitric oxide synthase inhibitor L-NAME (20 mg kg(-1)) and acetaldehyde sequestering agent D-penicillamine (50 mg kg(-1)) both attenuated the increase in NO levels following ethanol (1 g kg(-1)) administration. Conversely, the alcohol dehydrogenase inhibitor 4-methylpyrazole (25 mg kg(-1)) and catalase inhibitor sodium azide (10 mg kg(-1)) potentiated the increase in NO levels following ethanol administration. Finally, dual inhibition of aldehyde dehydrogenase and catalase by cyanamide (25 mg kg(-1)) caused an attenuation of ethanol effects on NO levels. Taken together these data highlight a robust increase in brain NO levels following systemic alcohol administration which is dependent on NO synthase activity and may involve both alcohol- and acetaldehyde-dependent mechanisms.
Collapse
|
157
|
Prasad RG, Choi YH, Kim GY. Shikonin Isolated from Lithospermum erythrorhizon Downregulates Proinflammatory Mediators in Lipopolysaccharide-Stimulated BV2 Microglial Cells by Suppressing Crosstalk between Reactive Oxygen Species and NF-κB. Biomol Ther (Seoul) 2015; 23:110-8. [PMID: 25767678 PMCID: PMC4354311 DOI: 10.4062/biomolther.2015.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 01/29/2015] [Accepted: 02/05/2015] [Indexed: 11/17/2022] Open
Abstract
According to the expansion of lifespan, neuronal disorder based on inflammation has been social problem. Therefore, we isolated shikonin from Lithospermum erythrorhizon and evaluated anti-inflammatory effects of shikonin in lipopolysaccharide (LSP)-stimulated BV2 microglial cells. Shikonin dose-dependently inhibits the expression of the proinflammatory mediators, nitric oxide (NO), prostaglandin E2 (PGE2), and tumor necrosis factor-α (TNF-α) as well as their main regulatory genes and products such as inducible NO synthase (iNOS), cyclooxygenase-2 (COX-2), and TNF-α in LPS-stimulated BV2 microglial cells. Additionally, shikonin suppressed the LPS-induced DNA-binding activity of nuclear factor-κB (NF-κB) to regulate the key regulatory genes of the proinflammatory mediators, such as iNOS, COX-2, and TNF-α, accompanied with downregulation of reactive oxygen species (ROS) generation. The results indicate that shikonin may downregulate the expression of proinflammatory genes involved in the synthesis of NO, PGE2, and TNF-α in LPS-treated BV2 microglial cells by suppressing ROS and NF-κB. Taken together, our results revealed that shikonin exerts downregulation of proinflammatory mediators by interference the ROS and NF-κB signaling pathway.
Collapse
Affiliation(s)
| | - Yung Hyun Choi
- Department of Biochemistry, College of Oriental Medicine, Dongeui University, Busan 614-051, Republic of Korea
| | - Gi-Young Kim
- Department of Marine Life Sciences, Jeju National University, Jeju 690-756, Republic of Korea
| |
Collapse
|
158
|
Roux A, Muller L, Jackson SN, Baldwin K, Womack V, Pagiazitis JG, O’Rourke JR, Thanos PK, Balaban C, Schultz JA, Volkow ND, Woods AS. Chronic ethanol consumption profoundly alters regional brain ceramide and sphingomyelin content in rodents. ACS Chem Neurosci 2015; 6:247-59. [PMID: 25387107 PMCID: PMC4372063 DOI: 10.1021/cn500174c] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
![]()
Ceramides
(CER) are involved in alcohol-induced neuroinflammation.
In a mouse model of chronic alcohol exposure, 16 CER and 18 sphingomyelin
(SM) concentrations from whole brain lipid extracts were measured
using electrospray mass spectrometry. All 18 CER concentrations in
alcohol exposed adults increased significantly (range: 25–607%);
in juveniles, 6 CER decreased (range: −9 to −37%). In
contrast, only three SM decreased in adult and one increased significantly
in juvenile. Next, regional identification at 50 μm spatial
resolution from coronal sections was obtained with matrix implanted
laser desorption/ionization mass spectrometry imaging (MILDI-MSI)
by implanting silver nanoparticulate matrices followed by focused
laser desorption. Most of the CER and SM quantified in whole brain
extracts were detected in MILDI images. Coronal sections from three
brain levels show qualitative regional changes in CER-SM ion intensities,
as a function of group and brain region, in cortex, striatum, accumbens,
habenula, and hippocampus. Highly correlated changes in certain white
matter CER-SM pairs occur in regions across all groups, including
the hippocampus and the lateral (but not medial) cerebellar cortex
of adult mice. Our data provide the first microscale MS evidence of
regional lipid intensity variations induced by alcohol.
Collapse
Affiliation(s)
- Aurelie Roux
- Structural Biology Unit, NIDA IRP, NIH, Baltimore, Maryland 21224, United States
| | - Ludovic Muller
- Structural Biology Unit, NIDA IRP, NIH, Baltimore, Maryland 21224, United States
- University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Shelley N. Jackson
- Structural Biology Unit, NIDA IRP, NIH, Baltimore, Maryland 21224, United States
| | - Katherine Baldwin
- Structural Biology Unit, NIDA IRP, NIH, Baltimore, Maryland 21224, United States
| | - Virginia Womack
- Structural Biology Unit, NIDA IRP, NIH, Baltimore, Maryland 21224, United States
- University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - John G. Pagiazitis
- Behavioral Neuropharmacology and Neuroimaging Lab, Department of Psychology, Stony Brook University, Stony Brook, New York 11790, United States
| | - Joseph R. O’Rourke
- Behavioral Neuropharmacology and Neuroimaging Lab, Department of Psychology, Stony Brook University, Stony Brook, New York 11790, United States
| | - Panayotis K. Thanos
- Behavioral Neuropharmacology and Neuroimaging Lab, Department of Psychology, Stony Brook University, Stony Brook, New York 11790, United States
| | - Carey Balaban
- University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | | | - Nora D. Volkow
- Structural Biology Unit, NIDA IRP, NIH, Baltimore, Maryland 21224, United States
| | - Amina S. Woods
- Structural Biology Unit, NIDA IRP, NIH, Baltimore, Maryland 21224, United States
| |
Collapse
|
159
|
Cytotoxin-induced NADPH oxides activation: roles in regulation of cell death. Arch Toxicol 2015; 89:991-1006. [PMID: 25690733 DOI: 10.1007/s00204-015-1476-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 02/09/2015] [Indexed: 02/07/2023]
Abstract
Numerous studies have shown that a variety of cytotoxic agents can activate the NADPH oxidase system and induce redox-dependent regulation of cellular functions. Cytotoxin-induced NADPH oxidase activation may either exert cytoprotective actions (e.g., survival, proliferation, and stress tolerance) or cause cell death. Here we summarize the experimental evidence showing the context-dependent dichotomous effects of NADPH oxidase on cell fate under cytotoxic stress conditions and the potential redox signaling mechanisms underlying this phenomenon. Clearly, it is difficult to create a unified paradigm on the toxicological implications of NADPH oxidase activation in response to cytotoxic stimuli. We suggest that interventional strategies targeting the NADPH oxidase system to prevent the adverse impacts of cytotoxins need to be contemplated in a stimuli- and cell type-specific manner.
Collapse
|
160
|
Wilhelm CJ, Hashimoto JG, Roberts ML, Bloom SH, Beard DK, Wiren KM. Females uniquely vulnerable to alcohol-induced neurotoxicity show altered glucocorticoid signaling. Brain Res 2015; 1601:102-16. [PMID: 25601008 DOI: 10.1016/j.brainres.2015.01.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 10/28/2014] [Accepted: 01/01/2015] [Indexed: 12/29/2022]
Abstract
Women are more sensitive to the harmful effects of alcohol (EtOH) abuse than men, yet the underlying mechanisms remain poorly understood. Previous gene expression analysis of the medial prefrontal cortex (mPFC) following a chronic intoxication paradigm using continuous 72 h vapor inhalation found that females, but not males, exhibit an inflammatory response at peak withdrawal that is associated with cell damage. Given that glucocorticoids can function as anti-inflammatories, are known to increase with EtOH exposure, and influence neurotoxicity, we hypothesized that males and females may exhibit an altered corticosterone (CORT) response following chronic intoxication. Analysis of serum CORT levels revealed the expected increase during withdrawal with no difference between males and females, while control males but not females exhibited higher CORT concentrations than naive animals. Glucocorticoid signaling characterized using focused qPCR arrays identified a sexually dimorphic response in the mPFC during withdrawal, particularly among astrocyte-enriched genes. These genes include aquaporin-1 (Aqp1), sphingosine kinase 1 (Sphk1) and connective tissue growth factor (Ctgf); genes associated with inflammatory signaling, and tissue damage and repair. Bioinformatic analysis also revealed activation of inflammatory signaling and cell death pathways in females. Confirmation studies showed that female mice exhibited significant neuronal degeneration within the anterior cingulate cortex (ACC). By contrast, EtOH exposure lead to a significant reduction in cell death in males. Thus, distinct glucocorticoid signaling pathways are associated with sexually dimorphic neurotoxicity, suggesting one mechanism by which EtOH-exposed females are particularly vulnerable to the damaging effects of alcohol in the CNS.
Collapse
Affiliation(s)
- Clare J Wilhelm
- VA Portland Health Care System, Portland, OR 97239, USA; Department of Psychiatry, Oregon Health & Science University, Portland, OR 97239, USA.
| | - Joel G Hashimoto
- VA Portland Health Care System, Portland, OR 97239, USA; Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239, USA
| | | | | | | | - Kristine M Wiren
- VA Portland Health Care System, Portland, OR 97239, USA; Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239, USA
| |
Collapse
|
161
|
Crews FT, Sarkar DK, Qin L, Zou J, Boyadjieva N, Vetreno RP. Neuroimmune Function and the Consequences of Alcohol Exposure. Alcohol Res 2015; 37:331-41, 344-51. [PMID: 26695754 PMCID: PMC4590627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Induction of neuroimmune genes by binge drinking increases neuronal excitability and oxidative stress, contributing to the neurobiology of alcohol dependence and causing neurodegeneration. Ethanol exposure activates signaling pathways featuring high-mobility group box 1 and Toll-like receptor 4 (TLR4), resulting in induction of the transcription factor nuclear factor kappa-light-chain-enhancer of activated B cells, which regulates expression of several cytokine genes involved in innate immunity, and its target genes. This leads to persistent neuroimmune responses to ethanol that stimulate TLRs and/or certain glutamate receptors (i.e., N-methyl-d-aspartate receptors). Alcohol also alters stress responses, causing elevation of peripheral cytokines, which further sensitize neuroimmune responses to ethanol. Neuroimmune signaling and glutamate excitotoxicity are linked to alcoholic neurodegeneration. Models of alcohol abuse have identified significant frontal cortical degeneration and loss of hippocampal neurogenesis, consistent with neuroimmune activation pathology contributing to these alcohol-induced, long-lasting changes in the brain. These alcohol-induced long-lasting increases in brain neuroimmune-gene expression also may contribute to the neurobiology of alcohol use disorder.
Collapse
|
162
|
Bell RL, Lopez MF, Cui C, Egli M, Johnson KW, Franklin KM, Becker HC. Ibudilast reduces alcohol drinking in multiple animal models of alcohol dependence. Addict Biol 2015; 20:38-42. [PMID: 24215262 PMCID: PMC4017009 DOI: 10.1111/adb.12106] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Neuroinflammatory signaling pathways in the central nervous system are of current interest as potential pharmacotherapy targets for alcohol dependence. In this study, we examined the ability of ibudilast, a non-selective phosphodiesterase inhibitor, to reduce alcohol drinking and relapse in alcohol-preferring P rats, high-alcohol drinking HAD1 rats, and in mice made dependent on alcohol through cycles of alcohol vapor exposure. When administered twice daily, ibudilast reduced alcohol drinking in rats by approximately 50% and reduced drinking by alcohol-dependent mice at doses which had no effect in non-dependent mice. These findings support the viability of ibudilast as a possible treatment for alcohol dependence.
Collapse
Affiliation(s)
- Richard L. Bell
- Department of Psychiatry and Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Marcelo F. Lopez
- Department of Psychiatry and Behavioral Sciences, Charleston Alcohol Research Center, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Changhai Cui
- Division of Neuroscience and Behavior, National Institute on Alcohol Abuse and Alcoholism, NIH, DHHS, Bethesda, MD 20892, USA
| | - Mark Egli
- Division of Neuroscience and Behavior, National Institute on Alcohol Abuse and Alcoholism, NIH, DHHS, Bethesda, MD 20892, USA
| | | | - Kelle M. Franklin
- Department of Psychiatry and Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Howard C. Becker
- Department of Psychiatry and Behavioral Sciences, Charleston Alcohol Research Center, Medical University of South Carolina, Charleston, SC 29425, USA
| |
Collapse
|
163
|
Yang JY, Xue X, Tian H, Wang XX, Dong YX, Wang F, Zhao YN, Yao XC, Cui W, Wu CF. Role of microglia in ethanol-induced neurodegenerative disease: Pathological and behavioral dysfunction at different developmental stages. Pharmacol Ther 2014; 144:321-37. [DOI: 10.1016/j.pharmthera.2014.07.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 07/03/2014] [Indexed: 01/04/2023]
|
164
|
González-Reimers E, Santolaria-Fernández F, Martín-González MC, Fernández-Rodríguez CM, Quintero-Platt G. Alcoholism: A systemic proinflammatory condition. World J Gastroenterol 2014; 20:14660-14671. [PMID: 25356029 PMCID: PMC4209532 DOI: 10.3748/wjg.v20.i40.14660] [Citation(s) in RCA: 121] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2013] [Accepted: 05/29/2014] [Indexed: 02/06/2023] Open
Abstract
Excessive ethanol consumption affects virtually any organ, both by indirect and direct mechanisms. Considerable research in the last two decades has widened the knowledge about the paramount importance of proinflammatory cytokines and oxidative damage in the pathogenesis of many of the systemic manifestations of alcoholism. These cytokines derive primarily from activated Kupffer cells exposed to Gram-negative intestinal bacteria, which reach the liver in supra-physiological amounts due to ethanol-mediated increased gut permeability. Reactive oxygen species (ROS) that enhance the inflammatory response are generated both by activation of Kupffer cells and by the direct metabolic effects of ethanol. The effects of this increased cytokine secretion and ROS generation lie far beyond liver damage. In addition to the classic consequences of endotoxemia associated with liver cirrhosis that were described several decades ago, important research in the last ten years has shown that cytokines may also induce damage in remote organs such as brain, bone, muscle, heart, lung, gonads, peripheral nerve, and pancreas. These effects are even seen in alcoholics without significant liver disease. Therefore, alcoholism can be viewed as an inflammatory condition, a concept which opens the possibility of using new therapeutic weapons to treat some of the complications of this devastating and frequent disease. In this review we examine some of the most outstanding consequences of the altered cytokine regulation that occurs in alcoholics in organs other than the liver.
Collapse
|
165
|
Rojo AI, McBean G, Cindric M, Egea J, López MG, Rada P, Zarkovic N, Cuadrado A. Redox control of microglial function: molecular mechanisms and functional significance. Antioxid Redox Signal 2014; 21:1766-801. [PMID: 24597893 PMCID: PMC4186766 DOI: 10.1089/ars.2013.5745] [Citation(s) in RCA: 247] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Neurodegenerative diseases are characterized by chronic microglial over-activation and oxidative stress. It is now beginning to be recognized that reactive oxygen species (ROS) produced by either microglia or the surrounding environment not only impact neurons but also modulate microglial activity. In this review, we first analyze the hallmarks of pro-inflammatory and anti-inflammatory phenotypes of microglia and their regulation by ROS. Then, we consider the production of reactive oxygen and nitrogen species by NADPH oxidases and nitric oxide synthases and the new findings that also indicate an essential role of glutathione (γ-glutamyl-l-cysteinylglycine) in redox homeostasis of microglia. The effect of oxidant modification of macromolecules on signaling is analyzed at the level of oxidized lipid by-products and sulfhydryl modification of microglial proteins. Redox signaling has a profound impact on two transcription factors that modulate microglial fate, nuclear factor kappa-light-chain-enhancer of activated B cells, and nuclear factor (erythroid-derived 2)-like 2, master regulators of the pro-inflammatory and antioxidant responses of microglia, respectively. The relevance of these proteins in the modulation of microglial activity and the interplay between them will be evaluated. Finally, the relevance of ROS in altering blood brain barrier permeability is discussed. Recent examples of the importance of these findings in the onset or progression of neurodegenerative diseases are also discussed. This review should provide a profound insight into the role of redox homeostasis in microglial activity and help in the identification of new promising targets to control neuroinflammation through redox control of the brain.
Collapse
Affiliation(s)
- Ana I Rojo
- 1 Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED) , Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
166
|
Xiao L, Saiki C, Ide R. Stem cell therapy for central nerve system injuries: glial cells hold the key. Neural Regen Res 2014; 9:1253-60. [PMID: 25221575 PMCID: PMC4160849 DOI: 10.4103/1673-5374.137570] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/01/2014] [Indexed: 12/13/2022] Open
Abstract
Mammalian adult central nerve system (CNS) injuries are devastating because of the intrinsic difficulties for effective neuronal regeneration. The greatest problem to be overcome for CNS recovery is the poor regeneration of neurons and myelin-forming cells, oligodendrocytes. Endogenous neural progenitors and transplanted exogenous neuronal stem cells can be the source for neuronal regeneration. However, because of the harsh local microenvironment, they usually have very low efficacy for functional neural regeneration which cannot compensate for the loss of neurons and oligodendrocytes. Glial cells (including astrocytes, microglia, oligodendrocytes and NG2 glia) are the majority of cells in CNS that provide support and protection for neurons. Inside the local microenvironment, glial cells largely influence local and transplanted neural stem cells survival and fates. This review critically analyzes current finding of the roles of glial cells in CNS regeneration, and highlights strategies for regulating glial cells’ behavior to create a permissive microenvironment for neuronal stem cells.
Collapse
Affiliation(s)
- Li Xiao
- Pharmacology Department, The Nippon Dental University, School of Life Dentistry at Tokyo, Tokyo, Japan
| | - Chikako Saiki
- Physiology Department, The Nippon Dental University, School of Life Dentistry at Tokyo, Tokyo, Japan
| | - Ryoji Ide
- Physiology Department, The Nippon Dental University, School of Life Dentistry at Tokyo, Tokyo, Japan
| |
Collapse
|
167
|
Landel V, Baranger K, Virard I, Loriod B, Khrestchatisky M, Rivera S, Benech P, Féron F. Temporal gene profiling of the 5XFAD transgenic mouse model highlights the importance of microglial activation in Alzheimer's disease. Mol Neurodegener 2014; 9:33. [PMID: 25213090 PMCID: PMC4237952 DOI: 10.1186/1750-1326-9-33] [Citation(s) in RCA: 119] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Accepted: 08/27/2014] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND The 5XFAD early onset mouse model of Alzheimer's disease (AD) is gaining momentum. Behavioral, electrophysiological and anatomical studies have identified age-dependent alterations that can be reminiscent of human AD. However, transcriptional changes during disease progression have not yet been investigated. To this end, we carried out a transcriptomic analysis on RNAs from the neocortex and the hippocampus of 5XFAD female mice at the ages of one, four, six and nine months (M1, M4, M6, M9). RESULTS Our results show a clear shift in gene expression patterns between M1 and M4. At M1, 5XFAD animals exhibit region-specific variations in gene expression patterns whereas M4 to M9 mice share a larger proportion of differentially expressed genes (DEGs) that are common to both regions. Analysis of DEGs from M4 to M9 underlines the predominance of inflammatory and immune processes in this AD mouse model. The rise in inflammation, sustained by the overexpression of genes from the complement and integrin families, is accompanied by an increased expression of transcripts involved in the NADPH oxidase complex, phagocytic processes and IFN-γ related pathways. CONCLUSIONS Overall, our data suggest that, from M4 to M9, sustained microglial activation becomes the predominant feature and point out that both detrimental and neuroprotective mechanisms appear to be at play in this model. Furthermore, our study identifies a number of genes already known to be altered in human AD, thus confirming the use of the 5XFAD strain as a valid model for understanding AD pathogenesis and for screening potential therapeutic molecules.
Collapse
Affiliation(s)
- Véréna Landel
- Aix Marseille Université, CNRS, NICN UMR 7259, 13916 Marseille, France
| | - Kévin Baranger
- Aix Marseille Université, CNRS, NICN UMR 7259, 13916 Marseille, France
- APHM, Hôpitaux de la Timone, Service de Neurologie et Neuropsychologie, 13385 Marseille, France
| | - Isabelle Virard
- Aix Marseille Université, CNRS, NICN UMR 7259, 13916 Marseille, France
| | - Béatrice Loriod
- Aix Marseille Université, TAGC UMR 1090, 13288 Marseille, France
- INSERM, TAGC UMR 1090, 13288 Marseille, France
| | | | - Santiago Rivera
- Aix Marseille Université, CNRS, NICN UMR 7259, 13916 Marseille, France
| | - Philippe Benech
- Aix Marseille Université, CNRS, NICN UMR 7259, 13916 Marseille, France
| | - François Féron
- Aix Marseille Université, CNRS, NICN UMR 7259, 13916 Marseille, France
| |
Collapse
|
168
|
Zhang Y, Wei G, Di Z, Zhao Q. miR-339-5p inhibits alcohol-induced brain inflammation through regulating NF-κB pathway. Biochem Biophys Res Commun 2014; 452:450-6. [DOI: 10.1016/j.bbrc.2014.08.092] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Accepted: 08/19/2014] [Indexed: 01/10/2023]
|
169
|
Byun K, Bayarsaikhan D, Bayarsaikhan E, Son M, Oh S, Lee J, Son HI, Won MH, Kim SU, Song BJ, Lee B. Microglial AGE-albumin is critical in promoting alcohol-induced neurodegeneration in rats and humans. PLoS One 2014; 9:e104699. [PMID: 25140518 PMCID: PMC4139297 DOI: 10.1371/journal.pone.0104699] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Accepted: 07/15/2014] [Indexed: 02/04/2023] Open
Abstract
Alcohol is a neurotoxic agent, since long-term heavy ingestion of alcohol can cause various neural diseases including fetal alcohol syndrome, cerebellar degeneracy and alcoholic dementia. However, the molecular mechanisms of alcohol-induced neurotoxicity are still poorly understood despite numerous studies. Thus, we hypothesized that activated microglial cells with elevated AGE-albumin levels play an important role in promoting alcohol-induced neurodegeneration. Our results revealed that microglial activation and neuronal damage were found in the hippocampus and entorhinal cortex following alcohol treatment in a rat model. Increased AGE-albumin synthesis and secretion were also observed in activated microglial cells after alcohol exposure. The expressed levels of receptor for AGE (RAGE)-positive neurons and RAGE-dependent neuronal death were markedly elevated by AGE-albumin through the mitogen activated protein kinase pathway. Treatment with soluble RAGE or AGE inhibitors significantly diminished neuronal damage in the animal model. Furthermore, the levels of activated microglial cells, AGE-albumin and neuronal loss were significantly elevated in human brains from alcoholic indivisuals compared to normal controls. Taken together, our data suggest that increased AGE-albumin from activated microglial cells induces neuronal death, and that efficient regulation of its synthesis and secretion is a therapeutic target for preventing alcohol-induced neurodegeneration.
Collapse
Affiliation(s)
- Kyunghee Byun
- Center for Genomics and Proteomics, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, Korea
- Department of Anatomy and Cell Biology, Gachon University Graduate school of Medicine, Incheon, Korea
| | - Delger Bayarsaikhan
- Center for Genomics and Proteomics, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, Korea
| | - Enkhjargal Bayarsaikhan
- Center for Genomics and Proteomics, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, Korea
| | - Myeongjoo Son
- Center for Genomics and Proteomics, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, Korea
| | - Seyeon Oh
- Center for Genomics and Proteomics, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, Korea
| | - Jaesuk Lee
- Center for Genomics and Proteomics, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, Korea
| | - Hye-in Son
- Department of Bioengineering, University of California, Berkeley, CA, United States of America
| | - Moo-Ho Won
- Department of Anatomy and Neurobiology, and Institute of Neurodegeneration and Neuroregeneration, College of Medicine, Kangwon National University, Chuncheon, Korea
| | - Seung U. Kim
- Department of Medicine, University of British Columbia, Vancouver, Canada
| | - Byoung-Joon Song
- Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, United States of America
- * E-mail: (BL); (BS)
| | - Bonghee Lee
- Center for Genomics and Proteomics, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, Korea
- Department of Anatomy and Cell Biology, Gachon University Graduate school of Medicine, Incheon, Korea
- * E-mail: (BL); (BS)
| |
Collapse
|
170
|
Teixeira FB, Santana LNDS, Bezerra FR, De Carvalho S, Fontes-Júnior EA, Prediger RD, Crespo-López ME, Maia CSF, Lima RR. Chronic ethanol exposure during adolescence in rats induces motor impairments and cerebral cortex damage associated with oxidative stress. PLoS One 2014; 9:e101074. [PMID: 24967633 PMCID: PMC4072717 DOI: 10.1371/journal.pone.0101074] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Accepted: 06/03/2014] [Indexed: 11/18/2022] Open
Abstract
Binge drinking is common among adolescents, and this type of ethanol exposure may lead to long-term nervous system damage. In the current study, we evaluated motor performance and tissue alterations in the cerebral cortex of rats subjected to intermittent intoxication with ethanol from adolescence to adulthood. Adolescent male Wistar rats (35 days old) were treated with distilled water or ethanol (6.5 g/kg/day, 22.5% w/v) during 55 days by gavage to complete 90 days of age. The open field, inclined plane and the rotarod tests were used to assess the spontaneous locomotor activity and motor coordination performance in adult animals. Following completion of behavioral tests, half of animals were submitted to immunohistochemical evaluation of NeuN (marker of neuronal bodies), GFAP (a marker of astrocytes) and Iba1 (microglia marker) in the cerebral cortex while the other half of the animals were subjected to analysis of oxidative stress markers by biochemical assays. Chronic ethanol intoxication in rats from adolescence to adulthood induced significant motor deficits including impaired spontaneous locomotion, coordination and muscle strength. These behavioral impairments were accompanied by marked changes in all cellular populations evaluated as well as increased levels of nitrite and lipid peroxidation in the cerebral cortex. These findings indicate that continuous ethanol intoxication from adolescence to adulthood is able to provide neurobehavioral and neurodegenerative damage to cerebral cortex.
Collapse
Affiliation(s)
- Francisco Bruno Teixeira
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém-Pará, Brazil
| | - Luana Nazaré da Silva Santana
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém-Pará, Brazil
| | - Fernando Romualdo Bezerra
- Laboratory Pharmacology of Inflammation and Behavior, Institute of Health Sciences, Federal University of Pará, Belém-Pará, Brazil
| | - Sabrina De Carvalho
- Laboratory Pharmacology of Inflammation and Behavior, Institute of Health Sciences, Federal University of Pará, Belém-Pará, Brazil
| | - Enéas Andrade Fontes-Júnior
- Laboratory Pharmacology of Inflammation and Behavior, Institute of Health Sciences, Federal University of Pará, Belém-Pará, Brazil; Laboratory of Molecular Pharmacology, Institute of Biological Sciences, Federal University of Pará, Belém-Pará, Brazil
| | - Rui Daniel Prediger
- Department of Pharmacology, Center of Biological Sciences, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Maria Elena Crespo-López
- Laboratory of Molecular Pharmacology, Institute of Biological Sciences, Federal University of Pará, Belém-Pará, Brazil
| | - Cristiane Socorro Ferraz Maia
- Laboratory Pharmacology of Inflammation and Behavior, Institute of Health Sciences, Federal University of Pará, Belém-Pará, Brazil
| | - Rafael Rodrigues Lima
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém-Pará, Brazil
| |
Collapse
|
171
|
Glutathione and redox signaling in substance abuse. Biomed Pharmacother 2014; 68:799-807. [PMID: 25027386 DOI: 10.1016/j.biopha.2014.06.001] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 06/12/2014] [Indexed: 01/04/2023] Open
Abstract
Throughout the last couple decades, the cause and consequences of substance abuse has expanded to identify the underlying neurobiological signaling mechanisms associated with addictive behavior. Chronic use of drugs, such as cocaine, methamphetamine and alcohol leads to the formation of oxidative or nitrosative stress (ROS/RNS) and changes in glutathione and redox homeostasis. Of importance, redox-sensitive post-translational modifications on cysteine residues, such as S-glutathionylation and S-nitrosylation could impact on the structure and function of addiction related signaling proteins. In this commentary, we evaluate the role of glutathione and redox signaling in cocaine-, methamphetamine- and alcohol addiction and conclude by discussing the possibility of targeting redox pathways for the therapeutic intervention of these substance abuse disorders.
Collapse
|
172
|
Marchi KC, Muniz JJ, Tirapelli CR. Hypertension and chronic ethanol consumption: What do we know after a century of study? World J Cardiol 2014; 6:283-294. [PMID: 24944758 PMCID: PMC4062120 DOI: 10.4330/wjc.v6.i5.283] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 03/11/2014] [Accepted: 04/16/2014] [Indexed: 02/06/2023] Open
Abstract
The influences of life habits on the cardiovascular system may have important implications for public health, as cardiovascular diseases are among the leading causes of shorter life expectancy worldwide. A link between excessive ethyl alcohol (ethanol) consumption and arterial hypertension was first suggested early last century. Since then, this proposition has received considerable attention. Support for the concept of ethanol as a cause of hypertension derives from several epidemiologic studies demonstrating that in the general population, increased blood pressure is significantly correlated with ethanol consumption. Although the link between ethanol consumption and hypertension is well established, the mechanism through which ethanol increases blood pressure remains elusive. Possible mechanisms underlying ethanol-induced hypertension were proposed based on clinical and experimental observations. These mechanisms include an increase in sympathetic nervous system activity, stimulation of the renin-angiotensin-aldosterone system, an increase of intracellular Ca2+ in vascular smooth muscle, increased oxidative stress and endothelial dysfunction. The present report reviews the relationship between ethanol intake and hypertension and highlights some mechanisms underlying this response. These issues are of interest for the public health, as ethanol consumption contributes to blood pressure elevation in the population.
Collapse
|
173
|
Zheng J, Li G, Chen S, Bihl J, Buck J, Zhu Y, Xia H, Lazartigues E, Chen Y, Olson JE. Activation of the ACE2/Ang-(1-7)/Mas pathway reduces oxygen-glucose deprivation-induced tissue swelling, ROS production, and cell death in mouse brain with angiotensin II overproduction. Neuroscience 2014; 273:39-51. [PMID: 24814023 DOI: 10.1016/j.neuroscience.2014.04.060] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Revised: 04/14/2014] [Accepted: 04/29/2014] [Indexed: 12/16/2022]
Abstract
We previously demonstrated that mice which overexpress human renin and angiotensinogen (R+A+) show enhanced cerebral damage in both in vivo and in vitro experimental ischemia models. Angiotensin-converting enzyme 2 (ACE2) counteracts the effects of angiotensin (Ang-II) by transforming it into Ang-(1-7), thus reducing the ligand for the AT1 receptor and increasing stimulation of the Mas receptor. Triple transgenic mice, SARA, which specifically overexpress ACE2 in neurons of R+A+ mice were used to study the role of ACE2 in ischemic stroke using oxygen and glucose deprivation (OGD) of brain slices as an in vitro model. We examined tissue swelling, the production of reactive oxygen species (ROS), and cell death in the cerebral cortex (CX) and the hippocampal CA1 region during OGD. Expression levels of NADPH oxidase (Nox) isoforms, Nox2 and Nox4 were measured using western blots. Results show that SARA mice and R+A+ mice treated with the Mas receptor agonist Ang-(1-7) had less swelling, cell death, and ROS production in CX and CA1 areas compared to those in R+A+ animals. Treatment of slices from SARA mice with the Mas antagonist A779 eliminated this protection. Finally, western blots revealed less Nox2 and Nox4 expression in SARA mice compared with R+A+ mice both before and after OGD. We suggest that reduced brain swelling and cell death observed in SARA animals exposed to OGD result from diminished ROS production coupled with lower expression of Nox isoforms. Thus, the ACE2/Ang-(1-7)/Mas receptor pathway plays a protective role in brain ischemic damage by counteracting the detrimental effects of Ang-II-induced ROS production.
Collapse
Affiliation(s)
- J Zheng
- Department of Pharmacology and Toxicology, Wright State University, Boonshoft School of Medicine, Dayton, OH, United States; Department of Neurology, Second Affiliated Hospital, Harbin Medical University, China
| | - G Li
- Department of Emergency Medicine, Wright State University, Boonshoft School of Medicine, Dayton, OH, United States
| | - S Chen
- Department of Pharmacology and Toxicology, Wright State University, Boonshoft School of Medicine, Dayton, OH, United States
| | - J Bihl
- Department of Pharmacology and Toxicology, Wright State University, Boonshoft School of Medicine, Dayton, OH, United States
| | - J Buck
- Department of Pharmacology and Toxicology, Wright State University, Boonshoft School of Medicine, Dayton, OH, United States
| | - Y Zhu
- Department of Neurology, Second Affiliated Hospital, Harbin Medical University, China
| | - H Xia
- Department of Pharmacology, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - E Lazartigues
- Department of Pharmacology, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Y Chen
- Department of Pharmacology and Toxicology, Wright State University, Boonshoft School of Medicine, Dayton, OH, United States.
| | - J E Olson
- Department of Emergency Medicine, Wright State University, Boonshoft School of Medicine, Dayton, OH, United States; Department of Neuroscience, Cell Biology and Physiology, Wright State University, Boonshoft School of Medicine, Dayton, OH, United States.
| |
Collapse
|
174
|
Badshah H, Kim TH, Kim MJ, Ahmad A, Ali T, Yoon GH, Naseer MI, Kim MO. Apomorphine attenuates ethanol-induced neurodegeneration in the adult rat cortex. Neurochem Int 2014; 74:8-15. [PMID: 24795108 DOI: 10.1016/j.neuint.2014.04.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2013] [Revised: 03/26/2014] [Accepted: 04/11/2014] [Indexed: 02/07/2023]
Abstract
Apomorphine, therapeutically used for Parkinson's disease, is a dopamine D1/D2 receptor agonist that has been determined to be a potent antioxidant and to prevent the reaction of free radicals in the brain. Alcohol is a neurotoxic agent that induces neurodegeneration possibly through the generation of free radicals. In this study, we investigated the antioxidant potential of apomorphine upon ethanol-induced neurodegeneration in the cortex of adult rats. Ethanol-induced apoptotic neurodegeneration was measured via the suppression of Bcl-2, the induction of Bax, the release of cytochrome C and the activation of caspase-9 and caspase-3. Moreover, ethanol-induced elevated levels of cleaved PARP-1 indicated exaggerated neuronal DNA damage. Our results demonstrated the neuroprotective effect of apomorphine by reversing the ethanol-induced apoptotic trend as observed by the increased expression of Bcl-2, down regulation of Bax, inhibition of mitochondrial cytochrome C release and inhibition of activated caspase-9 and caspase-3. Moreover, apomorphine treatment further decreased the expression of cleaved PARP-1 to reveal a reduction in ethanol-induced neuronal damage. Immunohistochemical analysis and Nissl staining also revealed neuroprotective effect of apomorphine after ethanol-induced neuronal cell death. In this study, our results indicated that apomorphine at doses of 1 and 5mg/kg has neuroprotective effects for ethanol-induced neuronal damage. Finally, we can conclude that apomorphine has effective therapeutic potential to protect the brain against ethanol-induced neurotoxicity.
Collapse
Affiliation(s)
- Haroon Badshah
- Department of Biology, College of Natural Sciences (RINS) and Applied Life Science (BK21 plus), Gyeongsang National University, Jinju 660-701, Republic of Korea
| | - Tae Hyun Kim
- Department of Biology, College of Natural Sciences (RINS) and Applied Life Science (BK21 plus), Gyeongsang National University, Jinju 660-701, Republic of Korea
| | - Min Ju Kim
- Department of Biology, College of Natural Sciences (RINS) and Applied Life Science (BK21 plus), Gyeongsang National University, Jinju 660-701, Republic of Korea
| | - Ashfaq Ahmad
- Department of Biology, College of Natural Sciences (RINS) and Applied Life Science (BK21 plus), Gyeongsang National University, Jinju 660-701, Republic of Korea
| | - Tahir Ali
- Department of Biology, College of Natural Sciences (RINS) and Applied Life Science (BK21 plus), Gyeongsang National University, Jinju 660-701, Republic of Korea
| | - Gwang Ho Yoon
- Department of Biology, College of Natural Sciences (RINS) and Applied Life Science (BK21 plus), Gyeongsang National University, Jinju 660-701, Republic of Korea
| | - Muhammad Imran Naseer
- Center of Excellence in Genomic Medicine and Research (CEGMR), King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Myeong Ok Kim
- Department of Biology, College of Natural Sciences (RINS) and Applied Life Science (BK21 plus), Gyeongsang National University, Jinju 660-701, Republic of Korea.
| |
Collapse
|
175
|
Role of early life exposure and environment on neurodegeneration: implications on brain disorders. Transl Neurodegener 2014; 3:9. [PMID: 24847438 PMCID: PMC4028099 DOI: 10.1186/2047-9158-3-9] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2014] [Accepted: 04/17/2014] [Indexed: 12/12/2022] Open
Abstract
Neurodegenerative diseases such as Alzheimer's disease (AD), Parkinson's disease (PD), Amyotrophic lateral sclerosis (ALS) and retinal degeneration have been studied extensively and varying molecular mechanisms have been proposed for onset of such diseases. Although genetic analysis of these diseases has also been described, yet the mechanisms governing the extent of vulnerability to such diseases remains unresolved. Recent studies have, therefore, focused on the role of environmental exposure in progression of such diseases especially in the context of prenatal and postnatal life, explaining how molecular mechanisms mediate epigenetic changes leading to degenerative diseases. This review summarizes both the animal and human studies describing various environmental stimuli to which an individual or an animal is exposed during in-utero and postnatal period and mechanisms that promote neurodegeneration. The SNPs mediating gene environment interaction are also described. Further, preventive and therapeutic strategies are suggested for effective intervention.
Collapse
|
176
|
Oliveira GB, Fontes EDA, de Carvalho S, da Silva JB, Fernandes LMP, Oliveira MCSP, Prediger RD, Gomes-Leal W, Lima RR, Maia CSF. Minocycline mitigates motor impairments and cortical neuronal loss induced by focal ischemia in rats chronically exposed to ethanol during adolescence. Brain Res 2014; 1561:23-34. [PMID: 24637259 DOI: 10.1016/j.brainres.2014.03.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 01/29/2014] [Accepted: 03/07/2014] [Indexed: 12/12/2022]
Abstract
Ethanol is an important risk factor for the occurrence of cerebral ischemia contributing to poor prognosis and inefficacy of drug treatments for stroke-related symptoms. Females have a higher lifetime risk for stroke than males. Moreover, female gender has been associated with increased ethanol consumption during adolescence. In the present study, we investigated whether chronic ethanol exposure during adolescence may potentiate the motor impairments and cortical damage induced by focal ischemia in female rats. We also addressed whether these effects can be mitigated by minocycline, which has been shown to be neuroprotective against different insults in the CNS. Female rats were treated with distilled water or ethanol (6.5 g/kg/day, 22.5% w/v) for 55 days by gavage. Focal ischemia was induced by microinjections of endothelin-1 (ET-1) into the motor cortex. Animals of both groups were treated daily with minocycline (25-50 mg/kg, i.p.) or sterile saline (i.p.) for 5 days, and motor function was assessed using open field, inclined plane and rotarod tests. Chronic ethanol exposure exacerbated locomotor activity and motor coordination impairments induced by focal ischemia in rats. Moreover, histological analysis revealed that microinjections of ET-1 induced pyramidal neuron loss and microglial activation in the motor cortex. Minocycline reversed the observed motor impairments, microglial activation and pyramidal neuron loss in the motor cortex of ischemic rats even in those exposed to ethanol. These results suggest that minocycline induces neuroprotection and functional recovery in ischemic female rats intoxicated with ethanol during adolescence. Furthermore, the mechanism underlying this protective effect may be related to the modulation of neuroinflammation.
Collapse
Affiliation(s)
- Gedeão Batista Oliveira
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Instituto de Ciências da Saúde, Universidade Federal do Pará, 66075-900 Belém, Pará, Brazil
| | - Enéas de Andrade Fontes
- Programa de Pós-graduação em Neurociências e Biologia Celular, Faculdade de Farmácia, Instituto de Ciências da Saúde, Universidade Federal do Pará, 66075-900 Belém, Pará, Brazil
| | - Sabrina de Carvalho
- Laboratório de Farmacologia da Inflamação e do Comportamento, Faculdade de Farmácia, Instituto de Ciências da Saúde, Universidade Federal do Pará, 66075-900 Belém, Pará, Brazil
| | - Josiane Batista da Silva
- Laboratório de Farmacologia da Inflamação e do Comportamento, Faculdade de Farmácia, Instituto de Ciências da Saúde, Universidade Federal do Pará, 66075-900 Belém, Pará, Brazil
| | - Luanna Melo Pereira Fernandes
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Instituto de Ciências da Saúde, Universidade Federal do Pará, 66075-900 Belém, Pará, Brazil; Laboratório de Farmacologia da Inflamação e do Comportamento, Faculdade de Farmácia, Instituto de Ciências da Saúde, Universidade Federal do Pará, 66075-900 Belém, Pará, Brazil
| | - Maria Cristina Souza Pereira Oliveira
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Instituto de Ciências da Saúde, Universidade Federal do Pará, 66075-900 Belém, Pará, Brazil
| | - Rui Daniel Prediger
- Departamento de Farmacologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, 88049-900 Florianópolis, SC, Brazil
| | - Walace Gomes-Leal
- Laboratório de Neuroproteção e Neurorregeneração Experimental do Instituto de Ciências Biológicas, Universidade Federal do Pará, 66075-900 Belém, Pará, Brazil
| | - Rafael Rodrigues Lima
- Laboratório de Neuroproteção e Neurorregeneração Experimental do Instituto de Ciências Biológicas, Universidade Federal do Pará, 66075-900 Belém, Pará, Brazil
| | - Cristiane Socorro Ferraz Maia
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Instituto de Ciências da Saúde, Universidade Federal do Pará, 66075-900 Belém, Pará, Brazil; Programa de Pós-graduação em Neurociências e Biologia Celular, Faculdade de Farmácia, Instituto de Ciências da Saúde, Universidade Federal do Pará, 66075-900 Belém, Pará, Brazil; Laboratório de Farmacologia da Inflamação e do Comportamento, Faculdade de Farmácia, Instituto de Ciências da Saúde, Universidade Federal do Pará, 66075-900 Belém, Pará, Brazil.
| |
Collapse
|
177
|
Release of neuronal HMGB1 by ethanol through decreased HDAC activity activates brain neuroimmune signaling. PLoS One 2014. [PMID: 24551070 DOI: 10.1371/journal.pone.0087915.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Neuroimmune gene induction is involved in many brain pathologies including addiction. Although increased expression of proinflammatory cytokines has been found in ethanol-treated mouse brain and rat brain slice cultures as well as in post-mortem human alcoholic brain, the mechanisms remain elusive. High-mobility group box 1 (HMGB1) protein is a nuclear protein that has endogenous cytokine-like activity. We previously found increased HMGB1 in post-mortem alcoholic human brain as well as in ethanol treated mice and rat brain slice cultures. The present study investigated the mechanisms for ethanol-induced release of HMGB1 and neuroimmune activation in a model of rat hippocampal-entorhinal cortex (HEC) brain slice cultures. Ethanol exposure triggered dose-dependent HMGB1 release, predominantly from neuronal cells. Inhibitors of histone deacetylases (HDACs) promoted nucleocytoplasmic mobilization of HDAC1/4 and HMGB1 resulting in increased total HMGB1 and acetylated HMGB1 release. Similarly, ethanol treatment was found to induce the translocation of HDAC1/4 and HMGB1 proteins from nuclear to cytosolic fractions. Furthermore, ethanol treatment reduced HDAC1/4 mRNA and increased acetylated HMGB1 release into the media. These results suggest decreased HDAC activity may be critical in regulating acetylated HMGB1 release from neurons in response to ethanol. Ethanol and HMGB1 treatment increased mRNA expression of proinflammatory cytokines TNFα and IL-1β as well as toll-like receptor 4 (TLR4). Targeting HMGB1 or microglial TLR4 by using siRNAs to HMGB1 and TLR4, HMGB1 neutralizing antibody, HMGB1 inhibitor glycyrrhizin and TLR4 antagonist as well as inhibitor of microglial activation all blocked ethanol-induced expression of proinflammatory cytokines TNFα and IL-1β. These results support the hypothesis that ethanol alters HDACs that regulate HMGB1 release and that danger signal HMGB1 as endogenous ligand for TLR4 mediates ethanol-induced brain neuroimmune signaling through activation of microglial TLR4. These findings provide new therapeutic targets for brain neuroimmune activation and alcoholism.
Collapse
|
178
|
Zou JY, Crews FT. Release of neuronal HMGB1 by ethanol through decreased HDAC activity activates brain neuroimmune signaling. PLoS One 2014; 9:e87915. [PMID: 24551070 PMCID: PMC3925099 DOI: 10.1371/journal.pone.0087915] [Citation(s) in RCA: 135] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Accepted: 12/31/2013] [Indexed: 12/11/2022] Open
Abstract
Neuroimmune gene induction is involved in many brain pathologies including addiction. Although increased expression of proinflammatory cytokines has been found in ethanol-treated mouse brain and rat brain slice cultures as well as in post-mortem human alcoholic brain, the mechanisms remain elusive. High-mobility group box 1 (HMGB1) protein is a nuclear protein that has endogenous cytokine-like activity. We previously found increased HMGB1 in post-mortem alcoholic human brain as well as in ethanol treated mice and rat brain slice cultures. The present study investigated the mechanisms for ethanol-induced release of HMGB1 and neuroimmune activation in a model of rat hippocampal-entorhinal cortex (HEC) brain slice cultures. Ethanol exposure triggered dose-dependent HMGB1 release, predominantly from neuronal cells. Inhibitors of histone deacetylases (HDACs) promoted nucleocytoplasmic mobilization of HDAC1/4 and HMGB1 resulting in increased total HMGB1 and acetylated HMGB1 release. Similarly, ethanol treatment was found to induce the translocation of HDAC1/4 and HMGB1 proteins from nuclear to cytosolic fractions. Furthermore, ethanol treatment reduced HDAC1/4 mRNA and increased acetylated HMGB1 release into the media. These results suggest decreased HDAC activity may be critical in regulating acetylated HMGB1 release from neurons in response to ethanol. Ethanol and HMGB1 treatment increased mRNA expression of proinflammatory cytokines TNFα and IL-1β as well as toll-like receptor 4 (TLR4). Targeting HMGB1 or microglial TLR4 by using siRNAs to HMGB1 and TLR4, HMGB1 neutralizing antibody, HMGB1 inhibitor glycyrrhizin and TLR4 antagonist as well as inhibitor of microglial activation all blocked ethanol-induced expression of proinflammatory cytokines TNFα and IL-1β. These results support the hypothesis that ethanol alters HDACs that regulate HMGB1 release and that danger signal HMGB1 as endogenous ligand for TLR4 mediates ethanol-induced brain neuroimmune signaling through activation of microglial TLR4. These findings provide new therapeutic targets for brain neuroimmune activation and alcoholism.
Collapse
Affiliation(s)
- Jian Y. Zou
- Bowles Center For Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Fulton T. Crews
- Bowles Center For Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
179
|
Abstract
Acute alcohol intoxication causes cellular changes in the brain that last for hours, while chronic alcohol use induces widespread neuroadaptations in the nervous system that can last a lifetime. Chronic alcohol use and the progression into dependence involve the remodeling of synapses caused by changes in gene expression produced by alcohol. The progression of alcohol use, abuse, and dependence can be divided into stages, which include intoxication, withdrawal, and craving. Each stage is associated with specific changes in gene expression, cellular function, brain circuits, and ultimately behavior. What are the molecular mechanisms underlying the transition from recreational use (acute) to dependence (chronic)? What cellular adaptations result in drug memory retention, leading to the persistence of addictive behaviors, even after prolonged drug abstinence? Research into the neurobiology of alcoholism aims to answer these questions. This chapter will describe the molecular adaptations caused by alcohol use and dependence, and will outline key neurochemical participants in alcoholism at the molecular level, which are also potential targets for therapy.
Collapse
Affiliation(s)
- Dana Most
- Waggoner Center for Alcohol and Addiction Research, University of Texas, Austin, TX, USA
| | - Laura Ferguson
- Waggoner Center for Alcohol and Addiction Research, University of Texas, Austin, TX, USA
| | - R Adron Harris
- Waggoner Center for Alcohol and Addiction Research, University of Texas, Austin, TX, USA.
| |
Collapse
|
180
|
Abstract
Chronic use of alcohol results in progressive changes to brain and behavior that often lead to the development of alcohol dependence and alcoholism. Although the mechanisms underlying the development of alcoholism remain to be fully elucidated, diminished executive functioning due to hypoactive prefrontal cortex executive control and hyperactive limbic system anxiety and negative emotion might contribute mechanistically to the shift from experimental use to alcoholism and dependence. In the chapter that follows, behavioral deficits associated with cortical dysfunction and neurodegeneration will be related to the behavioral characteristics of alcoholism (e.g., diminished executive function, impulsivity, altered limbic modulation). We will provide evidence that alterations in cyclic AMP-responsive element binding protein (CREB: neurotrophic) and NF-κB (neuroimmune) signaling contribute to the development and persistence of alcoholism. In addition, genetic predispositions and an earlier age of drinking onset will be discussed as contributing factors to the development of alcohol dependence and alcoholism. Overall chronic ethanol-induced neuroimmune gene induction is proposed to alter limbic and frontal neuronal networks contributing to the development and persistence of alcoholism.
Collapse
Affiliation(s)
- R P Vetreno
- Bowles Center for Alcohol Studies, Department of Pharmacology and Psychiatry, University of North Carolina, Chapel Hill, NC, USA.
| | - F T Crews
- Bowles Center for Alcohol Studies, Department of Pharmacology and Psychiatry, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
181
|
Abstract
Alcohol-induced brain damage likely contributes to the dysfunctional poor decisions associated with alcohol dependence. Human alcoholics have a global loss of brain volume that is most severe in the frontal cortex. Neuroimmune gene induction by binge drinking increases neurodegeneration through increased oxidative stress, particularly NADPH oxidase-induced oxidative stress. In addition, HMGB1-TLR4 and innate immune NF-κB target genes are increased leading to persistent and sensitized neuroimmune responses to ethanol and other agents that release HMGB1 or directly stimulate TLR receptors and/or NMDA receptors. Neuroimmune signaling and glutamate excitotoxicity are linked to alcoholic neurodegeneration. Models of adolescent alcohol abuse lead to significant frontal cortical degeneration and show the most severe loss of hippocampal neurogenesis. Adolescence is a period of high risk for ethanol-induced neurodegeneration and alterations in brain structure, gene expression, and maturation of adult phenotypes. Together, these findings support the hypothesis that adolescence is a period of risk for persistent and long-lasting increases in brain neuroimmune gene expression that promote persistent and long-term increases in alcohol consumption, neuroimmune gene induction, and neurodegeneration that we find associated with alcohol use disorders.
Collapse
Affiliation(s)
- Fulton T Crews
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.
| | - Ryan P Vetreno
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
182
|
Niciu MJ, Henter ID, Sanacora G, Zarate CA. Glial abnormalities in substance use disorders and depression: does shared glutamatergic dysfunction contribute to comorbidity? World J Biol Psychiatry 2014; 15:2-16. [PMID: 24024876 PMCID: PMC4180366 DOI: 10.3109/15622975.2013.829585] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVES Preclinical and clinical research in neuropsychiatric disorders, particularly mood and substance use disorders, have historically focused on neurons; however, glial cells-astrocytes, microglia, and oligodendrocytes - also play key roles in these disorders. METHODS Peer-reviewed PubMed/Medline articles published through December 2012 were identified using the following keyword combinations: glia, astrocytes, oligodendrocytes/glia, microglia, substance use, substance abuse, substance dependence, alcohol, opiate, opioid, cocaine, psychostimulants, stimulants, and glutamate. RESULTS Depressive and substance use disorders are highly comorbid, suggesting a common or overlapping aetiology and pathophysiology. Reduced astrocyte cell number occurs in both disorders. Altered glutamate neurotransmission and metabolism - specifically changes in the levels/activity of transporters, receptors, and synaptic proteins potentially related to synaptic physiology - appear to be salient features of both disorders. Glial cell pathology may also underlie the pathophysiology of both disorders via impaired astrocytic production of neurotrophic factors. Microglial/neuroinflammatory pathology is also evident in both depressive and substance use disorders. Finally, oligodendrocyte impairment decreases myelination and impairs expression of myelin-related genes in both substance use and depressive disorders. CONCLUSIONS Glial-mediated glutamatergic dysfunction is a common neuropathological pathway in both substance use and depression. Therefore, glutamatergic neuromodulation is a rational drug target in this comorbidity.
Collapse
Affiliation(s)
- Mark J. Niciu
- Yale University Department of Psychiatry/Connecticut Mental Health Center (CMHC), Clinical Neuroscience Research Unit (CNRU), New Haven, CT, USA,Experimental Therapeutics and Pathophysiology Branch, Intramural Research Program, National Institute of Mental Health, Bethesda, MD, USA
| | - Ioline D. Henter
- Molecular Imaging Branch, National Institute of Mental Health, Bethesda, MD USA
| | - Gerard Sanacora
- Yale University Department of Psychiatry/Connecticut Mental Health Center (CMHC), Clinical Neuroscience Research Unit (CNRU), New Haven, CT, USA
| | - Carlos A. Zarate
- Experimental Therapeutics and Pathophysiology Branch, Intramural Research Program, National Institute of Mental Health, Bethesda, MD, USA
| |
Collapse
|
183
|
Vetreno RP, Qin L, Crews FT. Increased receptor for advanced glycation end product expression in the human alcoholic prefrontal cortex is linked to adolescent drinking. Neurobiol Dis 2013; 59:52-62. [PMID: 23867237 PMCID: PMC3775891 DOI: 10.1016/j.nbd.2013.07.002] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Revised: 06/21/2013] [Accepted: 07/08/2013] [Indexed: 02/06/2023] Open
Abstract
Adolescence is characterized behaviorally by increased impulsivity and risk-taking that declines in parallel with maturation of the prefrontal cortex and executive function. In the brain, the receptor for advanced glycation end products (RAGE) is critically involved in neurodevelopment and neuropathology. In humans, the risk of alcoholism is greatly increased in those who begin drinking between 13 and 15years of age, and adolescents binge drink more than any other age group. We have previously found that alcoholism is associated with increased expression of neuroimmune genes. This manuscript tested the hypothesis that adolescent binge drinking upregulates RAGE and Toll-like receptor (TLR) 4 as well as their endogenous agonist, high-mobility group box 1 (HMGB1). Immunohistochemistry, Western blot, and mRNA analyses found that RAGE expression was increased in the human post-mortem alcoholic orbitofrontal cortex (OFC). Further, an earlier age of drinking onset correlated with increased expression of RAGE, TLR4, and HMGB1. To determine if alcohol contributed to these changes, we used an adolescent binge ethanol model in rats (5.0g/kg, i.g., 2-day on/2-day off from postnatal day [P] 25 to P55) and assessed neuroimmune gene expression. We found an age-associated decline of RAGE expression from late adolescence (P56) to young adulthood (P80). Adolescent intermittent ethanol exposure did not alter RAGE expression at P56, but increased RAGE in the young adult PFC (P80). Adolescent intermittent ethanol exposure also increased TLR4 and HMGB1 expression at P56 that persisted into young adulthood (P80). Assessment of young adult frontal cortex mRNA (RT-PCR) found increased expression of proinflammatory cytokines, oxidases, and neuroimmune agonists at P80, 25days after ethanol treatment. Together, these human and animal data support the hypothesis that an early age of drinking onset upregulates RAGE/TLR4-HMGB1 and other neuroimmune genes that persist into young adulthood and could contribute to risk of alcoholism or other brain diseases associated with neuroinflammation.
Collapse
Affiliation(s)
- Ryan P Vetreno
- Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | | | | |
Collapse
|
184
|
Microglial ion channels as potential targets for neuroprotection in Parkinson's disease. Neural Plast 2013; 2013:587418. [PMID: 24288626 PMCID: PMC3832972 DOI: 10.1155/2013/587418] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Accepted: 09/19/2013] [Indexed: 12/13/2022] Open
Abstract
Parkinson's disease (PD) is a chronic, degenerative neurological disorder that is estimated to affect at least 1 million individuals in the USA and over 10 million worldwide. It is thought that the loss of neurons and development of inclusion bodies occur gradually over decades until they progress to the point where ~60% of the dopamine neurons are lost and patients present with motor dysfunction. At present, it is not clear what causes this progression, and there are no current therapies that have been successful in preventing PD progression. Although there are many hypotheses regarding the mechanism of PD progression, neuroinflammation may be a major contributor to PD pathogenesis. Indeed, activated microglia and subsequent neuroinflammation have been consistently associated with the pathogenesis of PD. Thus, interference with this process could provide a means of neuroprotection in PD. This review will discuss the potential of targeting microglia to reduce neuroinflammation in PD. Further, we discuss the potential of microglial ion channels to serve as novel targets for neuroprotection in PD.
Collapse
|
185
|
Silverstein PS, Kumar A. HIV-1 and alcohol: interactions in the central nervous system. Alcohol Clin Exp Res 2013; 38:604-10. [PMID: 24134164 DOI: 10.1111/acer.12282] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2013] [Accepted: 08/15/2013] [Indexed: 12/19/2022]
Abstract
The use of alcohol has been associated with both an increased risk of acquisition of HIV-1 infection and an increased rate of disease progression among those already infected by the virus. The potential for alcohol to exacerbate the effects of HIV infection is especially important in the central nervous system (CNS) because this area is vulnerable to the combined effects of alcohol and HIV infection. The effects of alcohol on glial cells are mediated through receptors such as Toll-like receptor 4 and N-methyl-d-aspartate receptor. This causes the activation of signaling molecules such as interleukin-1 receptor-associated kinase and various members of the P38 mitogen-activated protein kinase family and subsequent activation of transcription factors such as nuclear factor-kappa beta and activator protein 1. The eventual outcome is an increase in pro-inflammatory cytokine production by glial cells. Alcohol also induces higher levels of NADPH oxidase in glial cells, which leads to an increased production of reactive oxygen species (ROS). Viral invasion of the CNS occurs early after infection, and HIV proteins have also been demonstrated to increase levels of pro-inflammatory cytokines and ROS in glial cells through activation of some of the same pathways activated by alcohol. Both cell culture systems and animal models have demonstrated that concomitant exposure to alcohol and HIV/HIV proteins results in increased levels of expression of pro-inflammatory cytokines such as interleukin-1 beta and tumor necrosis factor-alpha, along with increased levels of oxidative stress. Clinical studies also suggest that alcohol exacerbates the CNS effects of HIV-1 infection. This review focuses on the mechanisms by which alcohol causes increased CNS damage in HIV-1 infection.
Collapse
Affiliation(s)
- Peter S Silverstein
- Division of Pharmacology and Toxicology , School of Pharmacy, University of Missouri-Kansas City, Kansas City, Missouri
| | | |
Collapse
|
186
|
González-Reimers E, Fernández-Rodríguez CM, Candelaria Martín-González M, Hernández-Betancor I, Abreu-González P, José de la Vega-Prieto M, Elvira-Cabrera O, Santolaria-Fernández F. Antioxidant vitamins and brain dysfunction in alcoholics. Alcohol Alcohol 2013; 49:45-50. [PMID: 24070686 DOI: 10.1093/alcalc/agt150] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
AIMS Alcohol induces cytokine secretion by Kupffer cells, which may exert also deleterious effects on distant organs, mediated in part by cytokine-derived increased production of reactive oxygen species (ROS). It is therefore important to assess antioxidant levels. The objective of this study is to analyse the relation of antioxidant vitamins with brain atrophy and cognitive dysfunction. METHODS In 77 alcoholic patients admitted for withdrawal syndrome, subjected to brain computed tomography (CT), and 19 controls, we determined antioxidant vitamin levels and analysed their relationships with data of brain atrophy and dysfunction. Searching for causes of altered vitamin levels, we also assessed liver function, nutritional status, eating habits, alcohol intake, proinflammatory cytokine (TNF-α, IL-6, IL-8) levels and malondialdehyde (MDA) levels. RESULTS Both retinol (vitamin A) and tocopherol (vitamin E) levels were decreased in alcoholics, the former in relation with liver failure, and the latter in relation with triglyceride levels and fat mass. Both were related to data of brain atrophy and cerebellar shrinkage (to which also IL-6 was significantly related). CONCLUSION Among alcoholics, liver function impairment leads to altered serum vitamin A levels, which are related to brain alterations. Vitamin E levels are also decreased, but although in relation with liver function impairment, its decrease seems to be more dependent on nutritional status and irregular eating habits. Both vitamins are lower in patients with cerebellar atrophy and other features related to brain atrophy.
Collapse
Affiliation(s)
- Emilio González-Reimers
- Corresponding author: Servicio de Medicina Interna, Hospital Universitario, Ofra s/n. Tenerife, Canary Islands, Spain
| | | | | | | | | | | | | | | |
Collapse
|
187
|
Hossain MM, Sonsalla PK, Richardson JR. Coordinated role of voltage-gated sodium channels and the Na+/H+ exchanger in sustaining microglial activation during inflammation. Toxicol Appl Pharmacol 2013; 273:355-64. [PMID: 24070585 DOI: 10.1016/j.taap.2013.09.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Revised: 08/23/2013] [Accepted: 09/13/2013] [Indexed: 11/18/2022]
Abstract
Persistent neuroinflammation and microglial activation play an integral role in the pathogenesis of many neurological disorders. We investigated the role of voltage-gated sodium channels (VGSC) and Na(+)/H(+) exchangers (NHE) in the activation of immortalized microglial cells (BV-2) after lipopolysaccharide (LPS) exposure. LPS (10 and 100 ng/ml) caused a dose- and time-dependent accumulation of intracellular sodium [(Na(+))i] in BV-2 cells. Pre-treatment of cells with the VGSC antagonist tetrodotoxin (TTX, 1 μM) abolished short-term Na(+) influx, but was unable to prevent the accumulation of (Na(+))i observed at 6 and 24h after LPS exposure. The NHE inhibitor cariporide (1 μM) significantly reduced accumulation of (Na(+))i 6 and 24h after LPS exposure. Furthermore, LPS increased the mRNA expression and protein level of NHE-1 in a dose- and time-dependent manner, which was significantly reduced after co-treatment with TTX and/or cariporide. LPS increased production of TNF-α, ROS, and H2O2 and expression of gp91(phox), an active subunit of NADPH oxidase, in a dose- and time-dependent manner, which was significantly reduced by TTX or TTX+cariporide. Collectively, these data demonstrate a closely-linked temporal relationship between VGSC and NHE-1 in regulating function in activated microglia, which may provide avenues for therapeutic interventions aimed at reducing neuroinflammation.
Collapse
Affiliation(s)
- Muhammad M Hossain
- Department of Environmental and Occupational Medicine and Environmental and Occupational Health Sciences Institute, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ, USA
| | | | | |
Collapse
|
188
|
Transdermal delivery of cannabidiol attenuates binge alcohol-induced neurodegeneration in a rodent model of an alcohol use disorder. Pharmacol Biochem Behav 2013; 111:120-7. [PMID: 24012796 DOI: 10.1016/j.pbb.2013.08.013] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Revised: 08/06/2013] [Accepted: 08/29/2013] [Indexed: 12/21/2022]
Abstract
Excessive alcohol consumption, characteristic of alcohol use disorders, results in neurodegeneration and behavioral and cognitive impairments that are hypothesized to contribute to the chronic and relapsing nature of alcoholism. Therefore, the current study aimed to advance the preclinical development of transdermal delivery of cannabidiol (CBD) for the treatment of alcohol-induced neurodegeneration. In Experiment 1, 1.0%, 2.5% and 5.0% CBD gels were evaluated for neuroprotection. The 5.0% CBD gel resulted in a 48.8% reduction in neurodegeneration in the entorhinal cortex assessed by Fluoro-Jade B (FJB), which trended to statistical significance (p=0.069). Treatment with the 5.0% CBD gel resulted in day 3 CBD plasma concentrations of ~100.0 ng/mL so this level was used as a target concentration for development of an optimized gel formulation. Experiment 2 tested a next generation 2.5% CBD gel formulation, which was compared to CBD administration by intraperitoneal injection (IP; 40.0 mg/kg/day). This experiment found similar magnitudes of neuroprotection following both routes of administration; transdermal CBD decreased FJB+ cells in the entorhinal cortex by 56.1% (p<0.05), while IP CBD resulted in a 50.6% (p<0.05) reduction in FJB+ cells. These results demonstrate the feasibility of using CBD transdermal delivery systems for the treatment of alcohol-induced neurodegeneration.
Collapse
|
189
|
Lippai D, Bala S, Csak T, Kurt-Jones EA, Szabo G. Chronic alcohol-induced microRNA-155 contributes to neuroinflammation in a TLR4-dependent manner in mice. PLoS One 2013; 8:e70945. [PMID: 23951048 PMCID: PMC3739772 DOI: 10.1371/journal.pone.0070945] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Accepted: 06/25/2013] [Indexed: 01/28/2023] Open
Abstract
Introduction Alcohol-induced neuroinflammation is mediated by pro-inflammatory cytokines and chemokines including tumor necrosis factor-α (TNFα), monocyte chemotactic protein-1 (MCP1) and interleukin-1-beta (IL-1β). Toll-like receptor-4 (TLR4) pathway induced nuclear factor-κB (NF-κB) activation is involved in the pathogenesis of alcohol-induced neuroinflammation. Inflammation is a highly regulated process. Recent studies suggest that microRNAs (miRNAs) play crucial role in fine tuning gene expression and miR-155 is a major regulator of inflammation in immune cells after TLR stimulation. Aim To evaluate the role of miR-155 in the pathogenesis of alcohol-induced neuroinflammation. Methods Wild type (WT), miR-155- and TLR4-knockout (KO) mice received 5% ethanol-containing or isocaloric control diet for 5 weeks. Microglia markers were measured by q-RTPCR; inflammasome activation was measured by enzyme activity; TNFα, MCP1, IL-1β mRNA and protein were measured by q-RTPCR and ELISA; phospho-p65 protein and NF-κB were measured by Western-blotting and EMSA; miRNAs were measured by q-PCR in the cerebellum. MiR-155 was measured in immortalized and primary mouse microglia after lipopolysaccharide and ethanol stimulation. Results Chronic ethanol feeding up-regulated miR-155 and miR-132 expression in mouse cerebellum. Deficiency in miR-155 protected mice from alcohol-induced increase in inflammatory cytokines; TNFα, MCP1 protein and TNFα, MCP1, pro-IL-1β and pro-caspase-1 mRNA levels were reduced in miR-155 KO alcohol-fed mice. NF-κB was activated in WT but not in miR-155 KO alcohol-fed mice. However increases in cerebellar caspase-1 activity and IL-1β levels were similar in alcohol-fed miR-155-KO and WT mice. Alcohol-fed TLR4-KO mice were protected from the induction of miR-155. NF-κB activation measured by phosphorylation of p65 and neuroinflammation were reduced in alcohol-fed TLR4-KO compared to control mice. TLR4 stimulation with lipopolysaccharide in primary or immortalized mouse microglia resulted in increased miR-155. Conclusion Chronic alcohol induces miR-155 in the cerebellum in a TLR4-dependent manner. Alcohol-induced miR-155 regulates TNFα and MCP1 expression but not caspase-dependent IL-1β increase in neuroinflammation.
Collapse
Affiliation(s)
- Dora Lippai
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Shashi Bala
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Timea Csak
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Evelyn A. Kurt-Jones
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Gyongyi Szabo
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
190
|
Xanthine oxidase mediates axonal and myelin loss in a murine model of multiple sclerosis. PLoS One 2013; 8:e71329. [PMID: 23951137 PMCID: PMC3738596 DOI: 10.1371/journal.pone.0071329] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Accepted: 06/28/2013] [Indexed: 01/01/2023] Open
Abstract
Objectives Oxidative stress plays an important role in the pathogenesis of multiple sclerosis (MS). Though reactive oxygen species (ROS) are produced by various mechanisms, xanthine oxidase (XO) is a major enzyme generating ROS in the context of inflammation. The objectives of this study were to investigate the involvement of XO in the pathogenesis of MS and to develop a potent new therapy for MS based on the inhibition of ROS. Methods XO were assessed in a model of MS: experimental autoimmune encephalomyelitis (EAE). The contribution of XO-generated ROS to the pathogenesis of EAE was assessed by treating EAE mice with a novel XO inhibitor, febuxostat. The efficacy of febuxostat was also examined in in vitro studies. Results We showed for the first time that the expression and the activity of XO were increased dramatically within the central nervous system of EAE mice as compared to naïve mice. Furthermore, prophylactic administration of febuxostat, a XO inhibitor, markedly reduced the clinical signs of EAE. Both in vivo and in vitro studies showed infiltrating macrophages and microglia as the major sources of excess XO production, and febuxostat significantly suppressed ROS generation from these cells. Inflammatory cellular infiltration and glial activation in the spinal cord of EAE mice were inhibited by the treatment with febuxostat. Importantly, therapeutic efficacy was observed not only in mice with relapsing-remitting EAE but also in mice with secondary progressive EAE by preventing axonal loss and demyelination. Conclusion These results highlight the implication of XO in EAE pathogenesis and suggest XO as a target for MS treatment and febuxostat as a promising therapeutic option for MS neuropathology.
Collapse
|
191
|
Moon KH, Tajuddin N, Brown J, Neafsey EJ, Kim HY, Collins MA. Phospholipase A2, oxidative stress, and neurodegeneration in binge ethanol-treated organotypic slice cultures of developing rat brain. Alcohol Clin Exp Res 2013; 38:161-9. [PMID: 23909864 DOI: 10.1111/acer.12221] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Accepted: 05/22/2013] [Indexed: 11/29/2022]
Abstract
BACKGROUND Brain neurodamage from chronic binge ethanol (EtOH) exposure is linked to neuroinflammation and associated oxidative stress. Using rat organotypic hippocampal-entorhinal cortical (HEC) slice cultures of developing brain age, we reported that binge EtOH promotes release of a neuroinflammatory instigator, arachidonic acid (AA), concomitant with neurodegeneration, and that mepacrine, a global inhibitor of phospholipase A2 (PLA2) enzymes mobilizing AA from phospholipids, is neuroprotective. Here, we sought with binge EtOH-treated HEC cultures to establish that PLA2 activity is responsible in part for significant oxidative stress and to ascertain the PLA2 families responsible for AA release and neurodegeneration. METHODS HEC slices, prepared from 1-week-old rats and cultured 2 to 2.5 weeks, were exposed to 100 mM EtOH over 6 successive days, with 4 daytime "withdrawals" (no EtOH). Brain 3-nitrotyrosinated (3-NT)- and 4-hydroxy-2-nonenal (4-HNE)-adducted proteins, oxidative stress footprints, were immunoassayed on days 3 through 6, and mepacrine's effect was determined on day 6. The effects of specific PLA2 inhibitors on neurodegeneration (propidium iodide staining) and AA release (ELISA levels in media) in the cultures were then determined. Also, the effect of JZL184, an inhibitor of monoacylglycerol lipase (MAGL) which is reported to mobilize AA from endocannabinoids during neuroinflammatory insults, was examined. RESULTS 3-NT- and 4-HNE-adducted proteins were significantly increased by the binge EtOH exposure, consistent with oxidative stress, and mepacrine prevented the increases. The PLA2 inhibitor results implicated secretory PLA2 (group II sPLA2) and to some extent Ca(2+) -independent cytosolic PLA2 (group VI iPLA2) in binge EtOH-induced neurotoxicity and in AA release, but surprisingly, Ca(2+) -dependent cytosolic PLA2 (group IV cPLA2) did not appear important. Furthermore, unlike PLA2 inhibition, MAGL inhibition failed to prevent the neurodegeneration. CONCLUSIONS In these developing HEC slice cultures, pro-oxidative signaling via sPLA2 and iPLA2, but not necessarily cPLA2 or MAGL, is involved in EtOH neurotoxicity. This study provides further insights into neuroinflammatory phospholipase signaling and oxidative stress underlying binge EtOH-induced neurodegeneration in developing (adolescent age) brain in vitro.
Collapse
Affiliation(s)
- Kwan-Hoon Moon
- Department of Molecular Pharmacology & Therapeutics , Stritch School of Medicine, Loyola University Chicago, Maywood, Illinois
| | | | | | | | | | | |
Collapse
|
192
|
Starke RM, Chalouhi N, Ali MS, Jabbour PM, Tjoumakaris SI, Gonzalez LF, Rosenwasser RH, Koch WJ, Dumont AS. The role of oxidative stress in cerebral aneurysm formation and rupture. Curr Neurovasc Res 2013; 10:247-55. [PMID: 23713738 PMCID: PMC3845363 DOI: 10.2174/15672026113109990003] [Citation(s) in RCA: 103] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 04/17/2013] [Accepted: 05/08/2013] [Indexed: 02/07/2023]
Abstract
Oxidative stress is known to contribute to the progression of cerebrovascular disease. Additionally, oxidative stress may be increased by, but also augment inflammation, a key contributor to cerebral aneurysm development and rupture. Oxidative stress can induce important processes leading to cerebral aneurysm formation including direct endothelial injury as well as smooth muscle cell phenotypic switching to an inflammatory phenotype and ultimately apoptosis. Oxidative stress leads to recruitment and invasion of inflammatory cells through upregulation of chemotactic cytokines and adhesion molecules. Matrix metalloproteinases can be activated by free radicals leading to vessel wall remodeling and breakdown. Free radicals mediate lipid peroxidation leading to atherosclerosis and contribute to hemodynamic stress and hypertensive pathology, all integral elements of cerebral aneurysm development. Preliminary studies suggest that therapies targeted at oxidative stress may provide a future beneficial treatment for cerebral aneurysms, but further studies are indicated to define the role of free radicals in cerebral aneurysm formation and rupture. The goal of this review is to assess the role of oxidative stress in cerebral aneurysm pathogenesis.
Collapse
Affiliation(s)
- Robert M. Starke
- Joseph and Marie Field Cerebrovascular Research Laboratory, Division of Neurovascular & Endovascular Surgery, Department of Neurological Surgery, Thomas Jefferson University and Jefferson Hospital for Neuroscience, Philadelphia, Pennsylvania
- Department of Neurological Surgery, University of Virginia, Charlottesville, Virginia
| | - Nohra Chalouhi
- Joseph and Marie Field Cerebrovascular Research Laboratory, Division of Neurovascular & Endovascular Surgery, Department of Neurological Surgery, Thomas Jefferson University and Jefferson Hospital for Neuroscience, Philadelphia, Pennsylvania
| | - Muhammad S. Ali
- Joseph and Marie Field Cerebrovascular Research Laboratory, Division of Neurovascular & Endovascular Surgery, Department of Neurological Surgery, Thomas Jefferson University and Jefferson Hospital for Neuroscience, Philadelphia, Pennsylvania
| | - Pascal M. Jabbour
- Joseph and Marie Field Cerebrovascular Research Laboratory, Division of Neurovascular & Endovascular Surgery, Department of Neurological Surgery, Thomas Jefferson University and Jefferson Hospital for Neuroscience, Philadelphia, Pennsylvania
| | - Stavropoula I. Tjoumakaris
- Joseph and Marie Field Cerebrovascular Research Laboratory, Division of Neurovascular & Endovascular Surgery, Department of Neurological Surgery, Thomas Jefferson University and Jefferson Hospital for Neuroscience, Philadelphia, Pennsylvania
| | - L. Fernando Gonzalez
- Joseph and Marie Field Cerebrovascular Research Laboratory, Division of Neurovascular & Endovascular Surgery, Department of Neurological Surgery, Thomas Jefferson University and Jefferson Hospital for Neuroscience, Philadelphia, Pennsylvania
| | - Robert H. Rosenwasser
- Joseph and Marie Field Cerebrovascular Research Laboratory, Division of Neurovascular & Endovascular Surgery, Department of Neurological Surgery, Thomas Jefferson University and Jefferson Hospital for Neuroscience, Philadelphia, Pennsylvania
| | - Walter J. Koch
- Center for Translational Medicine and Department of Pharmacology, Temple University, Philadelphia, Pennsylvania USA
| | - Aaron S. Dumont
- Joseph and Marie Field Cerebrovascular Research Laboratory, Division of Neurovascular & Endovascular Surgery, Department of Neurological Surgery, Thomas Jefferson University and Jefferson Hospital for Neuroscience, Philadelphia, Pennsylvania
| |
Collapse
|
193
|
Daulatzai MA. Neurotoxic Saboteurs: Straws that Break the Hippo’s (Hippocampus) Back Drive Cognitive Impairment and Alzheimer’s Disease. Neurotox Res 2013; 24:407-59. [DOI: 10.1007/s12640-013-9407-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 06/06/2013] [Accepted: 06/17/2013] [Indexed: 12/29/2022]
|
194
|
Hernandes MS, Britto LRG. NADPH oxidase and neurodegeneration. Curr Neuropharmacol 2013; 10:321-7. [PMID: 23730256 PMCID: PMC3520042 DOI: 10.2174/157015912804143540] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Revised: 07/22/2012] [Accepted: 08/08/2012] [Indexed: 12/21/2022] Open
Abstract
NADPH oxidase (Nox) is a unique, multi-protein, electron transport system that produces large amounts of superoxide via the reduction of molecular oxygen. Nox-derived reactive oxygen species (ROS) are known to be involved in a variety of physiological processes, including host defense and signal transduction. However, over the past decade, the involvement of (Nox)-dependent oxidative stress in the pathophysiology of several neurodegenerative diseases has been increasingly recognized. ROS produced by Nox proteins contribute to neurodegenerative diseases through distinct mechanisms, such as oxidation of DNA, proteins, lipids, amino acids and metals, in addition to activation of redox-sensitive signaling pathways. In this review, we discuss the recent literature on Nox involvement in neurodegeneration, focusing on Parkinson and Alzheimer diseases.
Collapse
Affiliation(s)
- Marina S Hernandes
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biomédicas and Núcleo de Apoio à Pesquisa em Neurociência Aplicada, Universidade de São Paulo, SP, Brasil
| | | |
Collapse
|
195
|
Qin L, Liu Y, Hong JS, Crews FT. NADPH oxidase and aging drive microglial activation, oxidative stress, and dopaminergic neurodegeneration following systemic LPS administration. Glia 2013; 61:855-68. [PMID: 23536230 PMCID: PMC3631289 DOI: 10.1002/glia.22479] [Citation(s) in RCA: 212] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Accepted: 01/14/2013] [Indexed: 11/11/2022]
Abstract
Parkinson's disease is characterized by a progressive degeneration of substantia nigra (SN) dopaminergic neurons with age. We previously found that a single systemic lipopolysaccharide (LPS, 5 mg/kg, i.p.) injection caused a slow progressive loss of tyrosine hydroxylase immunoreactive (TH+IR) neurons in SN associated with increasing motor dysfunction. In this study, we investigated the role of NADPH oxidase (NOX) in inflammation-mediated SN neurotoxicity. A comparison of control (NOX2(+/+) ) mice with NOX subunit gp91(phox) -deficient (NOX2(-/-) ) mice 10 months after LPS administration (5 mg/kg, i.p.) resulted in a 39% (P < 0.01) loss of TH+IR neurons in NOX2(+/+) mice, whereas NOX2(-/-) mice did not show a significant decrease. Microglia (Iba1+IR) showed morphological activation in NOX2(+/+) mice, but not in NOX2(-/-) mice at 1 hr. Treatment of NOX2(+/+) mice with LPS resulted in a 12-fold increase in NOX2 mRNA in midbrain and 5.5-6.5-fold increases in NOX2 protein (+IR) in SN compared with the saline controls. Brain reactive oxygen species (ROS), determined using diphenyliodonium histochemistry, was increased by LPS in SN between 1 hr and 20 months. Diphenyliodonium (DPI), an NOX inhibitor, blocked LPS-induced activation of microglia and production of ROS, TNFα, IL-1β, and MCP-1. Although LPS increased microglial activation and ROS at all ages studied, saline control NOX2(+/+) mice showed age-related increases in microglial activation, NOX, and ROS levels at 12 and 22 months of age. Together, these results suggest that NOX contributes to persistent microglial activation, ROS production, and dopaminergic neurodegeneration that persist and continue to increase with age.
Collapse
Affiliation(s)
- Liya Qin
- Bowles Center for Alcohol Studies, University of North Carolina School of Medicine, CB#7178, Chapel Hill, NC 27599-7178
| | - Yuxin Liu
- Laboratory of Cell Pharmacology, School of Pharmaceutical Sciences, Hebei University, PR China
| | | | - Fulton T. Crews
- Bowles Center for Alcohol Studies, University of North Carolina School of Medicine, CB#7178, Chapel Hill, NC 27599-7178
- Department of Psychiatry, University of North Carolina School of Medicine, CB#7178, Chapel Hill, NC 27599-7178
- Department of Pharmacology, University of North Carolina School of Medicine, CB#7178, Chapel Hill, NC 27599-7178
| |
Collapse
|
196
|
Chandrasekar R. Alcohol and NMDA receptor: current research and future direction. Front Mol Neurosci 2013; 6:14. [PMID: 23754976 PMCID: PMC3664776 DOI: 10.3389/fnmol.2013.00014] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Accepted: 05/07/2013] [Indexed: 01/05/2023] Open
Abstract
The brain is one of the major targets of alcohol actions. Most of the excitatory synaptic transmission in the central nervous system is mediated by N-methyl-D-aspartate (NMDA) receptors. However, one of the most devastating effects of alcohol leads to brain shrinkage, loss of nerve cells at specific regions through a mechanism involving excitotoxicity, oxidative stress. Earlier studies have indicated that chronic exposure to ethanol both in vivo and in vitro, increases NR1 and NR2B gene expression and their polypeptide levels. The effect of alcohol and molecular changes on the regulatory process, which modulates NMDAR functions including factors altering transcription, translation, post-translational modifications, and protein expression, as well as those influencing their interactions with different regulatory proteins (downstream effectors) are incessantly increasing at the cellular level. Further, I discuss the various genetically altered mice approaches that have been used to study NMDA receptor subunits and their functional implication. In a recent countable review, epigenetic dimension (i.e., histone modification-induced chromatin remodeling and DNA methylation, in the process of alcohol related neuroadaptation) is one of the key molecular mechanisms in alcohol mediated NMDAR alteration. Here, I provide a recount on what has already been achieved, current trends and how the future research/studies of the NMDA receptor might lead to even greater engagement with many possible new insights into the neurobiology and treatment of alcoholism.
Collapse
Affiliation(s)
- Raman Chandrasekar
- Department of Biochemistry and Biotechnology Core Facility, Kansas State University Manhattan, KS, USA
| |
Collapse
|
197
|
Lippai D, Bala S, Petrasek J, Csak T, Levin I, Kurt-Jones EA, Szabo G. Alcohol-induced IL-1β in the brain is mediated by NLRP3/ASC inflammasome activation that amplifies neuroinflammation. J Leukoc Biol 2013; 94:171-82. [PMID: 23625200 DOI: 10.1189/jlb.1212659] [Citation(s) in RCA: 167] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Alcohol-induced neuroinflammation is mediated by proinflammatory cytokines, including IL-1β. IL-1β production requires caspase-1 activation by inflammasomes-multiprotein complexes that are assembled in response to danger signals. We hypothesized that alcohol-induced inflammasome activation contributes to increased IL-1β in the brain. WT and TLR4-, NLRP3-, and ASC-deficient (KO) mice received an ethanol-containing or isocaloric control diet for 5 weeks, and some received the rIL-1ra, anakinra, or saline treatment. Inflammasome activation, proinflammatory cytokines, endotoxin, and HMGB1 were measured in the cerebellum. Expression of inflammasome components (NLRP1, NLRP3, ASC) and proinflammatory cytokines (TNF-α, MCP-1) was increased in brains of alcohol-fed compared with control mice. Increased caspase-1 activity and IL-1β protein in ethanol-fed mice indicated inflammasome activation. TLR4 deficiency protected from TNF-α, MCP-1, and attenuated alcohol-induced IL-1β increases. The TLR4 ligand, LPS, was not increased in the cerebellum. However, we found up-regulation of acetylated and phosphorylated HMGB1 and increased expression of the HMGB1 receptors (TLR2, TLR4, TLR9, RAGE) in alcohol-fed mice. NLRP3- or ASC-deficient mice were protected from caspase-1 activation and alcohol-induced IL-1β increase in the brain. Furthermore, in vivo treatment with rIL-1ra prevented alcohol-induced inflammasome activation and IL-1β, TNF-α, and acetylated HMGB1 increases in the cerebellum. Conversely, intracranial IL-1β administration induced TNF-α and MCP-1 in the cerebellum. In conclusion, alcohol up-regulates and activates the NLRP3/ASC inflammasome, leading to caspase-1 activation and IL-1β increase in the cerebellum. IL-1β amplifies neuroinflammation, and disruption of IL-1/IL-1R signaling prevents alcohol-induced inflammasome activation and neuroinflammation. Increased levels of acetylated and phosphorylated HMGB1 may contribute to alcoholic neuroinflammation.
Collapse
Affiliation(s)
- Dora Lippai
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | | | | | | | | | | | | |
Collapse
|
198
|
Crews FT, Qin L, Sheedy D, Vetreno RP, Zou J. High mobility group box 1/Toll-like receptor danger signaling increases brain neuroimmune activation in alcohol dependence. Biol Psychiatry 2013; 73:602-12. [PMID: 23206318 PMCID: PMC3602398 DOI: 10.1016/j.biopsych.2012.09.030] [Citation(s) in RCA: 229] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Revised: 08/30/2012] [Accepted: 09/19/2012] [Indexed: 12/30/2022]
Abstract
BACKGROUND Innate immune gene expression is regulated in part through high mobility group box 1 (HMGB1), an endogenous proinflammatory cytokine, that activates multiple members of the interleukin-1/Toll-like receptor (TLR) family associated with danger signaling. We investigated expression of HMGB1, TLR2, TLR3, and TLR4 in chronic ethanol-treated mouse brain, postmortem human alcoholic brain, and rat brain slice culture to test the hypothesis that neuroimmune activation in alcoholic brain involves ethanol activation of HMGB1/TLR danger signaling. METHODS Protein levels were assessed using Western blot, enzyme-linked immunosorbent assay, and immunohistochemical immunoreactivity (+IR), and messenger RNA (mRNA) levels were measured by real time polymerase chain reaction in ethanol-treated mice (5 g/kg/day, intragastric, 10 days + 24 hours), rat brain slice culture, and postmortem human alcoholic brain. RESULTS Ethanol treatment of mice increased brain mRNA and +IR protein expression of HMGB1, TLR2, TLR3, and TLR4. Postmortem human alcoholic brain also showed increased HMGB1, TLR2, TLR3, and TLR4 +IR cells that correlated with lifetime alcohol consumption, as well as each other. Ethanol treatment of brain slice culture released HMGB1 into the media and induced the proinflammatory cytokine, interleukin-1 beta (IL-1β). Neutralizing antibodies to HMGB1 and small inhibitory mRNA to HMGB1 or TLR4 blunted ethanol induction of IL-1β. CONCLUSIONS Ethanol-induced HMGB1/TLR signaling contributes to induction of the proinflammatory cytokine, IL-1β. Increased expression of HMGB1, TLR2, TLR3, and TLR4 in alcoholic brain and in mice treated with ethanol suggests that chronic alcohol-induced brain neuroimmune activation occurs through HMGB1/TLR signaling.
Collapse
Affiliation(s)
- Fulton T Crews
- Bowles Center for Alcohol Studies, Department of Pharmacology and Psychiatry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7178, USA.
| | | | | | | | | |
Collapse
|
199
|
Islam A, Abraham P, Hapner CD, Deuster PA, Chen Y. Tissue-specific upregulation of HSP72 in mice following short-term administration of alcohol. Cell Stress Chaperones 2013; 18:215-22. [PMID: 23011927 PMCID: PMC3581633 DOI: 10.1007/s12192-012-0375-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Revised: 09/13/2012] [Accepted: 09/14/2012] [Indexed: 12/24/2022] Open
Abstract
Oxidative stress and cellular injury have been implicated in induction of HSP72 by alcohol. We investigated the association between HSP72 induction and oxidative stress in mouse tissues following short-term administration of high doses of alcohol and caffeine alone or in combination. Adult male C57BL/6J mice were gavaged with vehicle, alcohol (∼1.7 g/kg/day), caffeine (∼44 mg/kg/day), or alcohol plus caffeine once daily for ten consecutive days. Upon completion of the treatments, tissues were collected for structural and biochemical analyses. Alcohol alone caused mild to moderate lesions in heart, liver, and gastrocnemius muscle. Similar structural changes were observed following administration of alcohol and caffeine combined. Alcohol administration also led to decreased glutathione levels in all three tissues and reduced plasma superoxide dismutase capacity. In contrast, alcohol and caffeine in combination reduced glutathione levels only in liver and gastrocnemius muscle and had no effect on plasma superoxide dismutase. Significant elevations in HSP72 protein and mRNA and in HSF1 protein levels were noted only in liver by alcohol alone or in combination with caffeine. No significant changes in morphology and HSP72 were detected in any tissues tested following administration of caffeine alone. These results suggest that a redox mechanism is involved in the structural impairment caused by short-term high-dose alcohol. Oxidative tissue injury by alcohol may not be associated with tissue HSP72 induction. Induction of HSP72 in liver by alcohol is mediated at both the transcriptional and translational levels.
Collapse
Affiliation(s)
- Aminul Islam
- Department of Military and Emergency Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814 USA
| | - Preetha Abraham
- Department of Military and Emergency Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814 USA
| | - Christopher D. Hapner
- Department of Military and Emergency Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814 USA
| | - Patricia A. Deuster
- Department of Military and Emergency Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814 USA
| | - Yifan Chen
- Department of Military and Emergency Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814 USA
| |
Collapse
|
200
|
Neuroimmune signaling: a key component of alcohol abuse. Curr Opin Neurobiol 2013; 23:513-20. [PMID: 23434064 DOI: 10.1016/j.conb.2013.01.024] [Citation(s) in RCA: 149] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Revised: 01/16/2013] [Accepted: 01/24/2013] [Indexed: 12/13/2022]
Abstract
Molecular and behavioral studies corroborate a pivotal role for the innate immune system in mediating the acute and chronic effects of alcohol and support a neuroimmune hypothesis of alcohol addiction. Changes in expression of neuroimmune genes and microglial transcripts occur in postmortem brain from alcoholics and animals exposed to alcohol, and null mutant animals lacking certain innate immune genes show decreased alcohol-mediated responses. Many of the differentially expressed genes are part of the toll like receptor (TLR) signaling pathway and culminate in an increased expression of pro-inflammatory immune genes. Compounds known to inhibit inflammation, microglial activation, and neuroimmune gene expression have shown promising results in reducing alcohol-mediated behaviors in animal models, indicating that neuroimmune signaling pathways offer unexplored targets in the treatment of alcohol abuse.
Collapse
|