151
|
Gräfe C, Müller EK, Gresing L, Weidner A, Radon P, Friedrich RP, Alexiou C, Wiekhorst F, Dutz S, Clement JH. Magnetic hybrid materials interact with biological matrices. PHYSICAL SCIENCES REVIEWS 2020. [DOI: 10.1515/psr-2019-0114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Abstract
Magnetic hybrid materials are a promising group of substances. Their interaction with matrices is challenging with regard to the underlying physical and chemical mechanisms. But thinking matrices as biological membranes or even structured cell layers they become interesting with regard to potential biomedical applications. Therefore, we established in vitro blood-organ barrier models to study the interaction and processing of superparamagnetic iron oxide nanoparticles (SPIONs) with these cellular structures in the presence of a magnetic field gradient. A one-cell-type–based blood-brain barrier model was used to investigate the attachment and uptake mechanisms of differentially charged magnetic hybrid materials. Inhibition of clathrin-dependent endocytosis and F-actin depolymerization led to a dramatic reduction of cellular uptake. Furthermore, the subsequent transportation of SPIONs through the barrier and the ability to detect these particles was of interest. Negatively charged SPIONs could be detected behind the barrier as well as in a reporter cell line. These observations could be confirmed with a two-cell-type–based blood-placenta barrier model. While positively charged SPIONs heavily interact with the apical cell layer, neutrally charged SPIONs showed a retarded interaction behavior. Behind the blood-placenta barrier, negatively charged SPIONs could be clearly detected. Finally, the transfer of the in vitro blood-placenta model in a microfluidic biochip allows the integration of shear stress into the system. Even without particle accumulation in a magnetic field gradient, the negatively charged SPIONs were detectable behind the barrier. In conclusion, in vitro blood-organ barrier models allow the broad investigation of magnetic hybrid materials with regard to biocompatibility, cell interaction, and transfer through cell layers on their way to biomedical application.
Collapse
Affiliation(s)
- Christine Gräfe
- Department of Internal Medicine II, Hematology and Medical Oncology , Jena University Hospital , Jena , Germany
| | - Elena K. Müller
- Department of Internal Medicine II, Hematology and Medical Oncology , Jena University Hospital , Jena , Germany
| | - Lennart Gresing
- Department of Internal Medicine II, Hematology and Medical Oncology , Jena University Hospital , Jena , Germany
| | - Andreas Weidner
- Institute of Biomedical Engineering and Informatics (BMTI), Technische Universität Ilmenau , Ilmenau , Germany
| | - Patricia Radon
- Physikalisch-Technische Bundesanstalt , Berlin , Germany
| | - Ralf P. Friedrich
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON) , Else Kröner-Fresenius-Stiftung-Professorship, Universitätsklinikum Erlangen , Erlangen , Germany
| | - Christoph Alexiou
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON) , Else Kröner-Fresenius-Stiftung-Professorship, Universitätsklinikum Erlangen , Erlangen , Germany
| | | | - Silvio Dutz
- Institute of Biomedical Engineering and Informatics (BMTI), Technische Universität Ilmenau , Ilmenau , Germany
| | - Joachim H. Clement
- Department of Internal Medicine II, Hematology and Medical Oncology , Jena University Hospital , Jena , Germany
| |
Collapse
|
152
|
Morofuji Y, Nakagawa S. Drug Development for Central Nervous System Diseases Using In vitro Blood-brain Barrier Models and Drug Repositioning. Curr Pharm Des 2020; 26:1466-1485. [PMID: 32091330 PMCID: PMC7499354 DOI: 10.2174/1381612826666200224112534] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 01/30/2020] [Indexed: 12/15/2022]
Abstract
An important goal of biomedical research is to translate basic research findings into practical clinical implementation. Despite the advances in the technology used in drug discovery, the development of drugs for central nervous system diseases remains challenging. The failure rate for new drugs targeting important central nervous system diseases is high compared to most other areas of drug discovery. The main reason for the failure is the poor penetration efficacy across the blood-brain barrier. The blood-brain barrier represents the bottleneck in central nervous system drug development and is the most important factor limiting the future growth of neurotherapeutics. Meanwhile, drug repositioning has been becoming increasingly popular and it seems a promising field in central nervous system drug development. In vitro blood-brain barrier models with high predictability are expected for drug development and drug repositioning. In this review, the recent progress of in vitro BBB models and the drug repositioning for central nervous system diseases will be discussed.
Collapse
Affiliation(s)
- Yoichi Morofuji
- Department of Neurosurgery, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki 852-8501, Japan
| | - Shinsuke Nakagawa
- Department of Medical Pharmacology, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| |
Collapse
|
153
|
Uzu M, Takezawa T. Novel microvascular endothelial model utilizing a collagen vitrigel membrane and its advantages for predicting histamine-induced microvascular hyperpermeability. J Pharmacol Toxicol Methods 2020; 106:106916. [DOI: 10.1016/j.vascn.2020.106916] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 08/20/2020] [Accepted: 08/24/2020] [Indexed: 12/22/2022]
|
154
|
Nishihara H, Gastfriend BD, Soldati S, Perriot S, Mathias A, Sano Y, Shimizu F, Gosselet F, Kanda T, Palecek SP, Du Pasquier R, Shusta EV, Engelhardt B. Advancing human induced pluripotent stem cell-derived blood-brain barrier models for studying immune cell interactions. FASEB J 2020; 34:16693-16715. [PMID: 33124083 PMCID: PMC7686106 DOI: 10.1096/fj.202001507rr] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 10/10/2020] [Accepted: 10/14/2020] [Indexed: 12/16/2022]
Abstract
Human induced pluripotent stem cell (hiPSC)‐derived blood‐brain barrier (BBB) models established to date lack expression of key adhesion molecules involved in immune cell migration across the BBB in vivo. Here, we introduce the extended endothelial cell culture method (EECM), which differentiates hiPSC‐derived endothelial progenitor cells to brain microvascular endothelial cell (BMEC)‐like cells with good barrier properties and mature tight junctions. Importantly, EECM‐BMEC‐like cells exhibited constitutive cell surface expression of ICAM‐1, ICAM‐2, and E‐selectin. Pro‐inflammatory cytokine stimulation increased the cell surface expression of ICAM‐1 and induced cell surface expression of P‐selectin and VCAM‐1. Co‐culture of EECM‐BMEC‐like cells with hiPSC‐derived smooth muscle‐like cells or their conditioned medium further increased the induction of VCAM‐1. Functional expression of endothelial ICAM‐1 and VCAM‐1 was confirmed by T‐cell interaction with EECM‐BMEC‐like cells. Taken together, we introduce the first hiPSC‐derived BBB model that displays an adhesion molecule phenotype that is suitable for the study of immune cell interactions.
Collapse
Affiliation(s)
| | - Benjamin D Gastfriend
- Department of Chemical and Biological Engineering, University of Wisconsin, Madison, WI, USA
| | - Sasha Soldati
- Theodor Kocher Institute, University of Bern, Bern, Switzerland
| | - Sylvain Perriot
- Laboratory of Neuroimmunology, Neuroscience Research Centre, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Amandine Mathias
- Laboratory of Neuroimmunology, Neuroscience Research Centre, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Yasuteru Sano
- Department of Neurology and Clinical Neuroscience, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | - Fumitaka Shimizu
- Department of Neurology and Clinical Neuroscience, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | - Fabien Gosselet
- Blood Brain Barrier Laboratory, University of Artois, Lens, France
| | - Takashi Kanda
- Department of Neurology and Clinical Neuroscience, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | - Sean P Palecek
- Department of Chemical and Biological Engineering, University of Wisconsin, Madison, WI, USA
| | - Renaud Du Pasquier
- Laboratory of Neuroimmunology, Neuroscience Research Centre, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Eric V Shusta
- Department of Chemical and Biological Engineering, University of Wisconsin, Madison, WI, USA.,Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA
| | | |
Collapse
|
155
|
Abstract
HIV-1 can cross the blood-brain barrier (BBB) to penetrate the brain and infect target cells, causing neurocognitive disorders as a result of neuroinflammation and brain damage. The HIV-1 envelope spike gp160 is partially required for viral transcytosis across the BBB endothelium. But do antibodies developing in infected individuals and targeting the HIV-1 gp160 glycoproteins block HIV-1 transcytosis through the BBB? We addressed this issue and discovered that anti-gp160 antibodies do not block HIV-1 transport; instead, free viruses and those in complex with antibodies can transit across BBB endothelial cells. Importantly, we found that only neutralizing antibodies could inhibit posttranscytosis viral infectivity, highlighting their ability to protect susceptible brain cells from HIV-1 infection. HIV-1 can cross the blood-brain barrier (BBB) to penetrate the brain and infect target cells, causing neurocognitive disorders as a result of neuroinflammation and brain damage. Here, we examined whether antibodies targeting the HIV-1 envelope glycoproteins interfere with the transcytosis of virions across the human BBB endothelium. We found that although the viral envelope spike gp160 is required for optimal endothelial cell endocytosis, no anti-gp160 antibodies blocked the BBB transcytosis of HIV-1 in vitro. Instead, both free viruses and those in complex with antibodies transited across endothelial cells in the BBB model, as observed by confocal microscopy. HIV-1 infectious capacity was considerably altered by the transcytosis process but still detectable, even in the presence of nonneutralizing antibodies. Only virions bound by neutralizing antibodies lacked posttranscytosis infectivity. Overall, our data support the role of neutralizing antibodies in protecting susceptible brain cells from HIV-1 infection despite their inability to inhibit viral BBB endocytic transport.
Collapse
|
156
|
Goldeman C, Andersen M, Al-Robai A, Buchholtz T, Svane N, Ozgür B, Holst B, Shusta E, Hall VJ, Saaby L, Hyttel P, Brodin B. Human induced pluripotent stem cells (BIONi010-C) generate tight cell monolayers with blood-brain barrier traits and functional expression of large neutral amino acid transporter 1 (SLC7A5). Eur J Pharm Sci 2020; 156:105577. [PMID: 33011235 DOI: 10.1016/j.ejps.2020.105577] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 09/02/2020] [Accepted: 09/22/2020] [Indexed: 12/25/2022]
Abstract
The barrier properties of the brain capillary endothelium, the blood-brain barrier (BBB) restricts uptake of most small and all large molecule drug compounds to the CNS. There is a need for predictive human in vitro models of the BBB to enable studies of brain drug delivery. Here, we investigated whether human induced pluripotent stem cell (hiPSC) line (BIONi010-C) could be differentiated to brain capillary endothelial- like cells (BCEC) and evaluated their potential use in drug delivery studies. BIONi010-C hIPSCs were differentiated according to established protocols. BCEC monolayers displayed transendothelial electrical resistance (TEER) values of 5,829±354 Ω∙cm2, a Papp,mannitol of 1.09±0.15 ∙ 10-6 cm∙s-1 and a Papp,diazepam of 85.7 ± 5.9 ∙ 10-6 cm ∙s-1. The Pdiazepam/Pmannitol ratio of ~80, indicated a large dynamic passive permeability range. Monolayers maintained their integrity after medium exchange. Claudin-5, Occludin, Zonulae Occludens 1 and VE-Cadherin were expressed at the cell-cell contact zones. Efflux transporters were present at the mRNA level, but functional efflux of substrates was not detected. Transferrin-receptor (TFR), Low density lipoprotein receptor-related protein 1 (LRP1) and Basigin receptors were expressed at the mRNA-level. The presence and localization of TFR and LRP1 were verified at the protein level. A wide range of BBB-expressed solute carriers (SLC's) were detected at the mRNA level. The presence and localization of SLC transporters GLUT1 and LAT1 was verified at the protein level. Functional studies revealed transport of the LAT1 substrate [3H]-L-Leucine and the LRP1 substrate angiopep-2. In conclusion, we have demonstrated that BIONi010-C-derived BCEC monolayers exhibited, BBB properties including barrier tightness and integrity, a high dynamic range, expression of some of the BBB receptor and transporter expression, as well as functional transport of LAT1 and LRP1 substrates. This suggests that BIONi010-C-derived BCEC monolayers may be useful for studying the roles of LAT-1 and LRP1 in brain drug delivery.
Collapse
Affiliation(s)
- C Goldeman
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - M Andersen
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - A Al-Robai
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - T Buchholtz
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - N Svane
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - B Ozgür
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - B Holst
- Bioneer A/S, Hørsholm, Denmark
| | - E Shusta
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - V J Hall
- Department of Veterinary Clinical and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - L Saaby
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Bioneer A/S, Hørsholm, Denmark
| | - P Hyttel
- Department of Veterinary Clinical and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - B Brodin
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
157
|
Salman MM, Marsh G, Kusters I, Delincé M, Di Caprio G, Upadhyayula S, de Nola G, Hunt R, Ohashi KG, Gray T, Shimizu F, Sano Y, Kanda T, Obermeier B, Kirchhausen T. Design and Validation of a Human Brain Endothelial Microvessel-on-a-Chip Open Microfluidic Model Enabling Advanced Optical Imaging. Front Bioeng Biotechnol 2020; 8:573775. [PMID: 33117784 PMCID: PMC7576009 DOI: 10.3389/fbioe.2020.573775] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 08/21/2020] [Indexed: 01/30/2023] Open
Abstract
We describe here the design and implementation of an in vitro microvascular open model system using human brain microvascular endothelial cells. The design has several advantages over other traditional closed microfluidic platforms: (1) it enables controlled unidirectional flow of media at physiological rates to support vascular function, (2) it allows for very small volumes which makes the device ideal for studies involving biotherapeutics, (3) it is amenable for multiple high resolution imaging modalities such as transmission electron microscopy (TEM), 3D live fluorescence imaging using traditional spinning disk confocal microscopy, and advanced lattice light sheet microscopy (LLSM). Importantly, we miniaturized the design, so it can fit within the physical constraints of LLSM, with the objective to study physiology in live cells at subcellular level. We validated barrier function of our brain microvessel-on-a-chip by measuring permeability of fluorescent dextran and a human monoclonal antibody. One potential application is to investigate mechanisms of transcytosis across the brain microvessel-like barrier of fluorescently-tagged biologics, viruses or nanoparticles.
Collapse
Affiliation(s)
- Mootaz M. Salman
- Department of Cell Biology, Harvard Medical School, Boston, MA, United States
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA, United States
| | | | - Ilja Kusters
- Department of Cell Biology, Harvard Medical School, Boston, MA, United States
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA, United States
| | - Matthieu Delincé
- Department of Cell Biology, Harvard Medical School, Boston, MA, United States
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA, United States
| | - Giuseppe Di Caprio
- Department of Cell Biology, Harvard Medical School, Boston, MA, United States
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA, United States
| | - Srigokul Upadhyayula
- Department of Cell Biology, Harvard Medical School, Boston, MA, United States
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA, United States
| | - Giovanni de Nola
- Department of Cell Biology, Harvard Medical School, Boston, MA, United States
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA, United States
| | - Ronan Hunt
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA, United States
| | - Kazuka G. Ohashi
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA, United States
| | | | | | - Yasuteru Sano
- Yamaguchi University Graduate School of Medicine, Ube, Japan
| | - Takashi Kanda
- Yamaguchi University Graduate School of Medicine, Ube, Japan
| | | | - Tom Kirchhausen
- Department of Cell Biology, Harvard Medical School, Boston, MA, United States
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA, United States
- Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
158
|
Özyurt MG, Bayir E, DoĞan Ş, ÖztÜrk Ş, Şendemİr A. Coculture model of blood-brain barrier on electrospun nanofibers. ACTA ACUST UNITED AC 2020; 44:121-132. [PMID: 32922120 PMCID: PMC7478137 DOI: 10.3906/biy-1908-42] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
The blood–brain barrier (BBB) is a control mechanism that limits the diffusion of many substances to the central nervous system (CNS). In this study, we designed an in-vitro 3-dimensional BBB system to obtain a fast and reliable model to mimic drug delivery characteristics of the CNS. A support membrane of polycaprolactone nanofiber surfaces was prepared using electrospinning. After confirming the fiber morphology and size, endothelial cells (HUVEC) and glial cells were cultured on either side of this membrane. The model’s similarity to in vivo physiology was tested with a home-designed transmembrane resistance (TR) device, with positive and negative control molecules. Finally, 2 doses of methotrexate (MTX), a chemotherapy agent, were applied to the model, and its permeability through the model was determined indirectly by a vitality test on the MCF-7 cell line. Nicotine, the positive control, completed its penetration through the model almost instantly, while albumin, the negative control, was blocked significantly even after 2 days. MTX reached a deadly threshold 24 h after application. The TR value of the model was promising, being around 260 ohm.cm2. The provided model proposes a disposable and reliable tool for investigating drug permeability through the BBB and has the potential to reduce the number of animal experiments.
Collapse
Affiliation(s)
- Mustafa Görkem Özyurt
- School of Medicine, Koç University, İstanbul Turkey.,Graduate School of Sciences and Engineering, Koç University, İstanbul Turkey
| | - Ece Bayir
- Central Research Testing and Analysis Laboratory Research and Application Center, Ege University, İzmir Turkey
| | - Şule DoĞan
- Department of Polymer Science and Technology, İstanbul Technical University, İstanbul Turkey
| | - Şükrü ÖztÜrk
- Department of Basic Pharmaceutical Sciences, Faculty of Pharmacy, Hacettepe University, Ankara Turkey
| | - Aylin Şendemİr
- Bioengineering Department, Faculty of Engineering, Ege University, İzmir Turkey.,Department of Biomedical Technologies, Graduate School of Natural and Applied Sciences, Ege University, İzmir Turkey
| |
Collapse
|
159
|
Abdul Y, Li W, Vargas JD, Clark E, He L, Jamil S, Ergul A. Diabetes-related sex differences in the brain endothelin system following ischemia in vivo and in human brain endothelial cells in vitro. Can J Physiol Pharmacol 2020; 98:587-595. [PMID: 32496159 PMCID: PMC7508777 DOI: 10.1139/cjpp-2019-0630] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The endothelin (ET) system has been implicated to contribute to the pathophysiology of cognitive impairment and stroke in experimental diabetes. Our goals were to test the hypotheses that (1) circulating and (or) periinfarct ET-1 levels are elevated after stroke in both sexes and this increase is greater in diabetes, (2) ET receptors are differentially regulated in the diabetic brain, (3) brain microvascular endothelial cells (BMVEC) of female and male origin express the ETA receptor subtype, and (4) diabetes- and stroke-mimicking conditions increase ET-1 levels in BMVECs of both sexes. Control and diabetic rats were randomized to sham or stroke surgery. BMVECs of male (hBEC5i) and female (hCMEC/D3) origin, cultured under normal and diabetes-mimicking conditions, were exposed to normoxia or hypoxia. Circulating ET-1 levels were higher in diabetic animals and this was more pronounced in the male cohort. Stroke did not further increase plasma ET-1. Tissue ET-1 levels were increased after stroke only in males, whereas periinfarct ET-1 increased in both control and diabetic females. Male BMVECs secreted more ET-1 than female cells and hypoxia increased ET-1 levels in both cell types. There was sexually dimorphic regulation of ET receptors in both tissue and cell culture samples. There are sex differences in the stroke- and diabetes-mediated changes in the brain ET system at the endothelial and tissue levels.
Collapse
Affiliation(s)
- Yasir Abdul
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina
- Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC
| | - Weiguo Li
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina
- Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC
| | - Juan D Vargas
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina
- Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC
| | - Emily Clark
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina
- Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC
| | - Lianying He
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina
- Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC
| | - Sarah Jamil
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina
- Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC
| | - Adviye Ergul
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina
- Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC
| |
Collapse
|
160
|
Gericke B, Römermann K, Noack A, Noack S, Kronenberg J, Blasig IE, Löscher W. A face-to-face comparison of claudin-5 transduced human brain endothelial (hCMEC/D3) cells with porcine brain endothelial cells as blood-brain barrier models for drug transport studies. Fluids Barriers CNS 2020; 17:53. [PMID: 32843059 PMCID: PMC7449095 DOI: 10.1186/s12987-020-00212-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 07/13/2020] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Predictive in vitro models of the human blood-brain barrier (BBB) are essential in early drug discovery and development. Among available immortalized human brain capillary endothelial cell lines (BCECs), the hCMEC/D3 cell line has become the most widely used in vitro BBB model. However, monolayers of hCMEC/D3 cells form only moderately restrictive barriers, most likely because the major tight junction protein, claudin-5, is markedly downregulated. Thus, hCMEC/D3 monolayers cannot be used for vectorial drug transport experiments, which is a major disadvantage of this model. METHODS Here we transduced hCMEC/D3 cells with a claudin-5 plasmid and compared the characteristics of these cells with those of hCMEC/D3 wildtype cells and primary cultured porcine BCECs. RESULTS The claudin-5 transduced hCMEC/D3 exhibited expression levels (and junctional localization) of claudin-5 similar to those of primary cultured porcine BCECs. The transduced cells exhibited increased TEER values (211 Ω cm2) and reduced paracellular mannitol permeability (8.06%/h), indicating improved BBB properties; however, the barrier properties of porcine BCECs (TEER 1650 Ω cm2; mannitol permeability 3.95%/h) were not reached. Hence, vectorial transport of a selective P-glycoprotein substrate (N-desmethyl-loperamide) was not observed in claudin-5 transduced hCMEC/D3 (or wildtype) cells, whereas such drug transport occurred in porcine BCECs. CONCLUSIONS The claudin-5 transduced hCMEC/D3 cells provide a tool to studying the contribution of claudin-5 to barrier tightness and how this can be further enhanced by additional transfections or other manipulations of this widely used in vitro model of the BBB.
Collapse
Affiliation(s)
- Birthe Gericke
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Kerstin Römermann
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Andreas Noack
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Sandra Noack
- Department of Trauma Surgery, Hannover Medical School, Hannover, Germany
| | - Jessica Kronenberg
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Hannover, Germany
| | | | - Wolfgang Löscher
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Hannover, Germany. .,Center for Systems Neuroscience, Hannover, Germany.
| |
Collapse
|
161
|
Zakharova M, Palma do Carmo MA, van der Helm MW, Le-The H, de Graaf MNS, Orlova V, van den Berg A, van der Meer AD, Broersen K, Segerink LI. Multiplexed blood-brain barrier organ-on-chip. LAB ON A CHIP 2020; 20:3132-3143. [PMID: 32756644 DOI: 10.1039/d0lc00399a] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Organ-on-chip devices are intensively studied in academia and industry due to their high potential in pharmaceutical and biomedical applications. However, most of the existing organ-on-chip models focus on proof of concept of individual functional units without the possibility of testing multiple experimental stimuli in parallel. Here we developed a polydimethylsiloxane (PDMS) multiplexed chip with eight parallel channels branching from a common access port through which all eight channels can be addressed simultaneously without the need for extra pipetting steps thus increasing the reproducibility of the experimental results. At the same time, eight outlets provide individual entry to each channel with the opportunity to create eight different experimental conditions. A multiplexed chip can be assembled as a one-layer device for studying monocultures or as a two-layer device for studying barrier tissue functions. For a two-layer device, a ∼2 μm thick transparent PDMS membrane with 5 μm through-hole pores was fabricated in-house using a soft lithography technique, thereby allowing visual inspection of the cell-culture in real-time. The functionality of the chip was studied by recapitulating the blood-brain barrier. For this, human cerebral microvascular endothelial cells (hCMEC/D3) were cultured in mono- or coculture with human astrocytes. Immunostaining revealed a cellular monolayer with the expression of tight junction ZO-1 and adherence junction VE-cadherin proteins in endothelial cells as well as glial fibrillary acidic protein (GFAP) expression in astrocytes. Furthermore, multiplexed permeability studies of molecule passage through the cellular barrier exhibited expected high permeability coefficients for smaller molecules (4 kDa FITC-dextran) whereas larger molecules (20 kDa) crossed the barrier at a lower rate. With these results, we show that our device can be used as an organ-on-chip model for future multiplexed drug testing.
Collapse
Affiliation(s)
- M Zakharova
- BIOS Lab on a Chip group, MESA+ Institute for Nanotechnology, Technical Medical Centre, Max Planck Institute for Complex Fluid Dynamics, University of Twente, The Netherlands.
| | - M A Palma do Carmo
- BIOS Lab on a Chip group, MESA+ Institute for Nanotechnology, Technical Medical Centre, Max Planck Institute for Complex Fluid Dynamics, University of Twente, The Netherlands.
| | - M W van der Helm
- BIOS Lab on a Chip group, MESA+ Institute for Nanotechnology, Technical Medical Centre, Max Planck Institute for Complex Fluid Dynamics, University of Twente, The Netherlands.
| | - H Le-The
- BIOS Lab on a Chip group, MESA+ Institute for Nanotechnology, Technical Medical Centre, Max Planck Institute for Complex Fluid Dynamics, University of Twente, The Netherlands. and Physics of Fluids, MESA+ Institute for Nanotechnology, Max Planck Institute for Complex Fluid Dynamics, University of Twente, The Netherlands
| | - M N S de Graaf
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, The Netherlands
| | - V Orlova
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, The Netherlands
| | - A van den Berg
- BIOS Lab on a Chip group, MESA+ Institute for Nanotechnology, Technical Medical Centre, Max Planck Institute for Complex Fluid Dynamics, University of Twente, The Netherlands.
| | - A D van der Meer
- Applied Stem Cell Technologies, Technical Medical Centre, University of Twente, The Netherlands
| | - K Broersen
- Applied Stem Cell Technologies, Technical Medical Centre, University of Twente, The Netherlands
| | - L I Segerink
- BIOS Lab on a Chip group, MESA+ Institute for Nanotechnology, Technical Medical Centre, Max Planck Institute for Complex Fluid Dynamics, University of Twente, The Netherlands.
| |
Collapse
|
162
|
Oliver CR, Westerhof TM, Castro MG, Merajver SD. Quantifying the Brain Metastatic Tumor Micro-Environment using an Organ-On-A Chip 3D Model, Machine Learning, and Confocal Tomography. J Vis Exp 2020. [PMID: 32865534 DOI: 10.3791/61654] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Brain metastases are the most lethal cancer lesions; 10-30% of all cancers metastasize to the brain, with a median survival of only ~5-20 months, depending on the cancer type. To reduce the brain metastatic tumor burden, gaps in basic and translational knowledge need to be addressed. Major challenges include a paucity of reproducible preclinical models and associated tools. Three-dimensional models of brain metastasis can yield the relevant molecular and phenotypic data used to address these needs when combined with dedicated analysis tools. Moreover, compared to murine models, organ-on-a-chip models of patient tumor cells traversing the blood brain barrier into the brain microenvironment generate results rapidly and are more interpretable with quantitative methods, thus amenable to high throughput testing. Here we describe and demonstrate the use of a novel 3D microfluidic blood brain niche (µmBBN) platform where multiple elements of the niche can be cultured for an extended period (several days), fluorescently imaged by confocal microscopy, and the images reconstructed using an innovative confocal tomography technique; all aimed to understand the development of micro-metastasis and changes to the tumor micro-environment (TME) in a repeatable and quantitative manner. We demonstrate how to fabricate, seed, image, and analyze the cancer cells and TME cellular and humoral components, using this platform. Moreover, we show how artificial intelligence (AI) is used to identify the intrinsic phenotypic differences of cancer cells that are capable of transit through a model µmBBN and to assign them an objective index of brain metastatic potential. The data sets generated by this method can be used to answer basic and translational questions about metastasis, the efficacy of therapeutic strategies, and the role of the TME in both.
Collapse
Affiliation(s)
- C Ryan Oliver
- Department of Internal Medicine, University of Michigan Ann Arbor; Rogel Cancer Center, University of Michigan Ann Arbor
| | - Trisha M Westerhof
- Department of Internal Medicine, University of Michigan Ann Arbor; Rogel Cancer Center, University of Michigan Ann Arbor
| | - Maria G Castro
- Rogel Cancer Center, University of Michigan Ann Arbor; Department of Neurosurgery, University of Michigan Ann Arbor; Department of Cell and Developmental Biology, University of Michigan Ann Arbor
| | - Sofia D Merajver
- Department of Internal Medicine, University of Michigan Ann Arbor; Rogel Cancer Center, University of Michigan Ann Arbor;
| |
Collapse
|
163
|
Al-azzawi S, Masheta D, Guildford A, Phillips G, Santin M. A Peptide-Based Nanocarrier for an Enhanced Delivery and Targeting of Flurbiprofen into the Brain for the Treatment of Alzheimer's Disease: An In Vitro Study. NANOMATERIALS 2020; 10:nano10081590. [PMID: 32823499 PMCID: PMC7466704 DOI: 10.3390/nano10081590] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/31/2020] [Accepted: 08/05/2020] [Indexed: 12/22/2022]
Abstract
Alzheimer's disease (AD) is an age-related disease caused by abnormal accumulation of amyloid-β in the brain leading to progressive tissue degeneration. Flurbiprofen (FP), a drug used to mitigate the disease progression, has low efficacy due to its limited permeability across the blood-brain barrier (BBB). In a previous work, FP was coupled at the uppermost branching of an ε-lysine-based branched carrier, its root presenting a phenylalanine moiety able to increase the hydrophobicity of the complex and enhance the transport across the BBB by adsorptive-mediated transcytosis (AMT). The present study explores a different molecular design of the FP-peptide delivery system, whereby its root presents an ApoE-mimicking peptide, a targeting ligand that could enhance transport across the BBB by receptor-mediated transcytosis (RMT). The functionalised complex was synthesised using a solid-phase peptide synthesis and characterised by mass spectrometry and FTIR. Cytotoxicity and permeability of this complex across an in vitro BBB model were analysed. Moreover, its activity and degradation to release the drug were investigated. The results revealed successful synthesis and grafting of FP molecules at the uppermost molecular branches of the lysine terminal without observed cytotoxicity. When covalently linked to the nanocarrier, FP was still active on target cells, albeit with a reduced activity, and was released as a free drug upon hydrolysis in a lysosome-mimicking medium. Noticeably, this work shows the high efficiency of RMT-driven FP delivery over delivery systems relying on AMT.
Collapse
Affiliation(s)
- Shafq Al-azzawi
- Centre for Regenerative Medicine and Devices, School of Pharmacy and Bimolecular Sciences, University of Brighton, Brighton BN2 4GJ, UK; (S.A.-a.); (D.M.); (A.G.); (G.P.)
- College of Pharmacy, University of Babylon, Ministry of Higher Education and Scientific Research, Hilla 51002, Iraq
| | - Dhafir Masheta
- Centre for Regenerative Medicine and Devices, School of Pharmacy and Bimolecular Sciences, University of Brighton, Brighton BN2 4GJ, UK; (S.A.-a.); (D.M.); (A.G.); (G.P.)
- College of Pharmacy, University of Babylon, Ministry of Higher Education and Scientific Research, Hilla 51002, Iraq
| | - Anna Guildford
- Centre for Regenerative Medicine and Devices, School of Pharmacy and Bimolecular Sciences, University of Brighton, Brighton BN2 4GJ, UK; (S.A.-a.); (D.M.); (A.G.); (G.P.)
- Tissue Click Ltd., Brighton BN2 6SJ, UK
| | - Gary Phillips
- Centre for Regenerative Medicine and Devices, School of Pharmacy and Bimolecular Sciences, University of Brighton, Brighton BN2 4GJ, UK; (S.A.-a.); (D.M.); (A.G.); (G.P.)
- Tissue Click Ltd., Brighton BN2 6SJ, UK
| | - Matteo Santin
- Centre for Regenerative Medicine and Devices, School of Pharmacy and Bimolecular Sciences, University of Brighton, Brighton BN2 4GJ, UK; (S.A.-a.); (D.M.); (A.G.); (G.P.)
- Correspondence:
| |
Collapse
|
164
|
Delsing L, Herland A, Falk A, Hicks R, Synnergren J, Zetterberg H. Models of the blood-brain barrier using iPSC-derived cells. Mol Cell Neurosci 2020; 107:103533. [PMID: 32717317 DOI: 10.1016/j.mcn.2020.103533] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 07/14/2020] [Accepted: 07/21/2020] [Indexed: 02/08/2023] Open
Abstract
The blood-brain barrier (BBB) constitutes the interface between the blood and the brain tissue. Its primary function is to maintain the tightly controlled microenvironment of the brain. Models of the BBB are useful for studying the development and maintenance of the BBB as well as diseases affecting it. Furthermore, BBB models are important tools in drug development and support the evaluation of the brain-penetrating properties of novel drug molecules. Currently used in vitro models of the BBB include immortalized brain endothelial cell lines and primary brain endothelial cells of human and animal origin. Unfortunately, many cell lines and primary cells do not recreate physiological restriction of transport in vitro. Human-induced pluripotent stem cell (iPSC)-derived brain endothelial cells have proven a promising alternative source of brain endothelial-like cells that replicate tight cell layers with low paracellular permeability. Given the possibility to generate large amounts of human iPSC-derived brain endothelial cells they are a feasible alternative when modelling the BBB in vitro. iPSC-derived brain endothelial cells form tight cell layers in vitro and their barrier properties can be enhanced through coculture with other cell types of the BBB. Currently, many different models of the BBB using iPSC-derived cells are under evaluation to study BBB formation, maintenance, disruption, drug transport and diseases affecting the BBB. This review summarizes important functions of the BBB and current efforts to create iPSC-derived BBB models in both static and dynamic conditions. In addition, it highlights key model requirements and remaining challenges for human iPSC-derived BBB models in vitro.
Collapse
Affiliation(s)
- Louise Delsing
- Institute of Neuroscience and Physiology, Department of Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden; Systems Biology Research Centre, School of Bioscience, University of Skövde, Skövde, Sweden; Discovery Biology, Discovery Sciences, R&D, AstraZeneca, Mölndal, Sweden.
| | - Anna Herland
- Division of Micro and Nanosystems, KTH Royal Institute of Technology, Stockholm, Sweden; AIMES, Department of Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - Anna Falk
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Ryan Hicks
- Discovery Biology, Discovery Sciences, R&D, AstraZeneca, Mölndal, Sweden
| | - Jane Synnergren
- Systems Biology Research Centre, School of Bioscience, University of Skövde, Skövde, Sweden
| | - Henrik Zetterberg
- Institute of Neuroscience and Physiology, Department of Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK; UK Dementia Research Institute at UCL, London, UK
| |
Collapse
|
165
|
Sera of elderly obstructive sleep apnea patients alter blood-brain barrier integrity in vitro: a pilot study. Sci Rep 2020; 10:11309. [PMID: 32647186 PMCID: PMC7347951 DOI: 10.1038/s41598-020-68374-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 06/08/2020] [Indexed: 01/23/2023] Open
Abstract
Obstructive sleep apnea syndrome (OSAS) is characterized by repeated episodes of hypoxia during the night. The severity of the disorder can be evaluated using an apnea–hypopnea index (AHI). The physiological consequences are mainly cardiovascular and neuronal dysfunctions. One hypothesis to explain such associated neurological disorders is disruption of the blood–brain barrier (BBB), which protects the brain from endovascular cytotoxic compounds. We selected two subgroups of volunteers from the PROOF cohort study (France), a group of patients suffering newly diagnosed severe OSAS (AHI > 30/h) and a group showing no sleep apnea (AHI < 5/h). We exposed a human in vitro BBB model of endothelial cells (HBEC-5i) with sera of patients with and without OSAS. After exposure, we measured the apparent BBB permeability as well as tight junction and ABC transporter expression using whole cell ELISA. We showed that after incubation with sera from OSAS patients, there was a loss of integrity in the human in vitro BBB model; this was reflected by an increase in permeability (43%; p < 0.001) and correlated with a 50% and 40% decrease in tight junction protein expression of ZO-1 and claudin-5, respectively. At the same time, we observed an upregulation in Pgp protein expression (52%) and functionality, and a downregulation in BCRP expression (52%). Our results demonstrated that severe BBB disorder after exposure to sera from OSAS patients was reflected by an opening of the BBB.
Collapse
|
166
|
Harun MSR, Marsh V, Elsaied NA, Webb KF, Elsheikha HM. Effects of Toxoplasma gondii infection on the function and integrity of human cerebrovascular endothelial cells and the influence of verapamil treatment in vitro. Brain Res 2020; 1746:147002. [PMID: 32592740 DOI: 10.1016/j.brainres.2020.147002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 06/07/2020] [Accepted: 06/20/2020] [Indexed: 12/16/2022]
Abstract
Toxoplasma gondii can cause parasitic encephalitis, a life-threatening infection that predominately occurs in immunocompromised individuals. T. gondii has the ability to invade the brain, but the mechanisms by which this parasite crosses the blood-brain-barrier (BBB) remain incompletely understood. The present study reports the changes associated with infection and replication of T. gondii within human brain microvascular endothelial cells (BMECs) in vitro. Our results indicated that exposure to T. gondii had an adverse impact on the function and integrity of the BMECs - through induction of cell cycle arrest, disruption of the BMEC barrier integrity, reduction of cellular viability and vitality, depolarization of the mitochondrial membrane potential, increase of the DNA fragmentation, and alteration of the expression of immune response and tight junction genes. The calcium channel/P-glycoprotein transporter inhibitor verapamil was effective in inhibiting T. gondii crossing the BMECs in a dose-dependent manner. The present study showed that T. gondii can compromise several functions of BMECs and demonstrated the ability of verapamil to inhibit T. gondii crossing of the BMECs in vitro.
Collapse
Affiliation(s)
- M S R Harun
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Leicestershire LE12 5RD, UK; Infectomics Cluster, Advanced Medical & Dental Institute, Universiti Sains Malaysia, Bertam, 13200 Kepala Batas, Pulau Pinang, Malaysia
| | - Victoria Marsh
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Leicestershire LE12 5RD, UK
| | - Nashwa A Elsaied
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Leicestershire LE12 5RD, UK
| | - Kevin F Webb
- Department of Electrical & Electronic Engineering, University of Nottingham, Nottingham NG7 2RD, UK
| | - Hany M Elsheikha
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Leicestershire LE12 5RD, UK.
| |
Collapse
|
167
|
Nowak M, Brown TD, Graham A, Helgeson ME, Mitragotri S. Size, shape, and flexibility influence nanoparticle transport across brain endothelium under flow. Bioeng Transl Med 2020; 5:e10153. [PMID: 32440560 PMCID: PMC7237148 DOI: 10.1002/btm2.10153] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 11/28/2019] [Accepted: 12/11/2019] [Indexed: 12/19/2022] Open
Abstract
Nanoparticle-based therapeutic formulations are being increasingly explored for the treatment of various ailments. Despite numerous advances, the success of nanoparticle-based technologies in treating brain diseases has been limited. Translational hurdles of nanoparticle therapies are attributed primarily to their limited ability to cross the blood-brain barrier (BBB), which is one of the body's most exclusive barriers. Several efforts have been focused on developing affinity-based agents and using them to increase nanoparticle accumulation at the brain endothelium. Very little is known about the role of fundamental physical parameters of nanoparticles such as size, shape, and flexibility in determining their interactions with and penetration across the BBB. Using a three-dimensional human BBB microfluidic model (μHuB), we investigate the impact of these physical parameters on nanoparticle penetration across the BBB. To gain insights into the dependence of transport on nanoparticle properties, two separate parameters were measured: the number of nanoparticles that fully cross the BBB and the number that remain associated with the endothelium. Association of nanoparticles with the brain endothelium was substantially impacted by their physical characteristics. Hard particles associate more with the endothelium compared to soft particles, as do small particles compared to large particles, and spherical particles compared to rod-shaped particles. Transport across the BBB also exhibited a dependence on nanoparticle properties. A nonmonotonic dependence on size was observed, where 200 nm particles exhibited higher BBB transport compared to 100 and 500 nm spheres. Rod-shaped particles exhibited higher BBB transport when normalized by endothelial association and soft particles exhibited comparable transport to hard particles when normalized by endothelial association. Tuning nanoparticles' physical parameters could potentially enhance their ability to cross the BBB for therapeutic applications.
Collapse
Affiliation(s)
- Maksymilian Nowak
- John A. Paulson School of Engineering and Applied SciencesHarvard University29 Oxford St. CambridgeMA02138
- Wyss Institute of Biologically Inspired EngineeringHarvard University3 Blackfan CircleBostonMA02115
| | - Tyler D. Brown
- John A. Paulson School of Engineering and Applied SciencesHarvard University29 Oxford St. CambridgeMA02138
- Wyss Institute of Biologically Inspired EngineeringHarvard University3 Blackfan CircleBostonMA02115
| | - Adam Graham
- Center for Nanoscale SystemsHarvard University11 Oxford St. CambridgeMA02138
| | - Matthew E. Helgeson
- Department of Chemical EngineeringUniversity of California, Santa BarbaraSanta BarbaraCA93106
| | - Samir Mitragotri
- John A. Paulson School of Engineering and Applied SciencesHarvard University29 Oxford St. CambridgeMA02138
- Wyss Institute of Biologically Inspired EngineeringHarvard University3 Blackfan CircleBostonMA02115
| |
Collapse
|
168
|
GM1 Oligosaccharide Crosses the Human Blood-Brain Barrier In Vitro by a Paracellular Route. Int J Mol Sci 2020; 21:ijms21082858. [PMID: 32325905 PMCID: PMC7215935 DOI: 10.3390/ijms21082858] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 04/16/2020] [Accepted: 04/17/2020] [Indexed: 01/08/2023] Open
Abstract
Ganglioside GM1 (GM1) has been reported to functionally recover degenerated nervous system in vitro and in vivo, but the possibility to translate GM1′s potential in clinical settings is counteracted by its low ability to overcome the blood–brain barrier (BBB) due to its amphiphilic nature. Interestingly, the soluble and hydrophilic GM1-oligosaccharide (OligoGM1) is able to punctually replace GM1 neurotrophic functions alone, both in vitro and in vivo. In order to take advantage of OligoGM1 properties, which overcome GM1′s pharmacological limitations, here we characterize the OligoGM1 brain transport by using a human in vitro BBB model. OligoGM1 showed a 20-fold higher crossing rate than GM1 and time–concentration-dependent transport. Additionally, OligoGM1 crossed the barrier at 4 °C and in inverse transport experiments, allowing consideration of the passive paracellular route. This was confirmed by the exclusion of a direct interaction with the active ATP-binding cassette (ABC) transporters using the “pump out” system. Finally, after barrier crossing, OligoGM1 remained intact and able to induce Neuro2a cell neuritogenesis by activating the TrkA pathway. Importantly, these in vitro data demonstrated that OligoGM1, lacking the hydrophobic ceramide, can advantageously cross the BBB in comparison with GM1, while maintaining its neuroproperties. This study has improved the knowledge about OligoGM1′s pharmacological potential, offering a tangible therapeutic strategy.
Collapse
|
169
|
Gerhartl A, Pracser N, Vladetic A, Hendrikx S, Friedl HP, Neuhaus W. The pivotal role of micro-environmental cells in a human blood-brain barrier in vitro model of cerebral ischemia: functional and transcriptomic analysis. Fluids Barriers CNS 2020; 17:19. [PMID: 32138745 PMCID: PMC7059670 DOI: 10.1186/s12987-020-00179-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Accepted: 02/21/2020] [Indexed: 02/08/2023] Open
Abstract
Background The blood–brain barrier (BBB) is altered in several diseases of the central nervous system. For example, the breakdown of the BBB during cerebral ischemia in stroke or traumatic brain injury is a hallmark of the diseases’ progression. This functional damage is one key event which is attempted to be mimicked in in vitro models. Recent studies showed the pivotal role of micro-environmental cells such as astrocytes for this barrier damage in mouse stroke in vitro models. The aim of this study was to evaluate the role of micro-environmental cells for the functional, paracellular breakdown in a human BBB cerebral ischemia in vitro model accompanied by a transcriptional analysis. Methods Transwell models with human brain endothelial cell line hCMEC/D3 in mono-culture or co-culture with human primary astrocytes and pericytes or rat glioma cell line C6 were subjected to oxygen/glucose deprivation (OGD). Changes of transendothelial electrical resistance (TEER) and FITC-dextran 4000 permeability were recorded as measures for paracellular tightness. In addition, qPCR and high-throughput qPCR Barrier chips were applied to investigate the changes of the mRNA expression of 38 relevant, expressed barrier targets (tight junctions, ABC-transporters) by different treatments. Results In contrast to the mono-culture, the co-cultivation with human primary astrocytes/pericytes or glioma C6 cells resulted in a significantly increased paracellular permeability after 5 h OGD. This indicated the pivotal role of micro-environmental cells for BBB breakdown in the human model. Hierarchical cluster analysis of qPCR data revealed differently, but also commonly regulated clustered targets dependent on medium exchange, serum reduction, hydrocortisone addition and co-cultivations. Conclusions The co-cultivation with micro-environmental cells is necessary to achieve a functional breakdown of the BBB in the cerebral ischemia model within an in vivo relevant time window. Comprehensive studies by qPCR revealed that distinct expression clusters of barrier markers exist and that these are regulated by different treatments (even by growth medium change) indicating that controls for single cell culture manipulation steps are crucial to understand the observed effects properly.
Collapse
Affiliation(s)
- Anna Gerhartl
- Competence Unit Molecular Diagnostics, Center Health and Bioresources, AIT-Austrian Institute of Technology GmbH, Giefinggasse 4, 1210, Vienna, Austria
| | - Nadja Pracser
- Competence Unit Molecular Diagnostics, Center Health and Bioresources, AIT-Austrian Institute of Technology GmbH, Giefinggasse 4, 1210, Vienna, Austria
| | - Alexandra Vladetic
- Competence Unit Molecular Diagnostics, Center Health and Bioresources, AIT-Austrian Institute of Technology GmbH, Giefinggasse 4, 1210, Vienna, Austria
| | - Sabrina Hendrikx
- Competence Unit Molecular Diagnostics, Center Health and Bioresources, AIT-Austrian Institute of Technology GmbH, Giefinggasse 4, 1210, Vienna, Austria
| | - Heinz-Peter Friedl
- Competence Unit Molecular Diagnostics, Center Health and Bioresources, AIT-Austrian Institute of Technology GmbH, Giefinggasse 4, 1210, Vienna, Austria
| | - Winfried Neuhaus
- Competence Unit Molecular Diagnostics, Center Health and Bioresources, AIT-Austrian Institute of Technology GmbH, Giefinggasse 4, 1210, Vienna, Austria.
| |
Collapse
|
170
|
Gray KM, Jung JW, Inglut CT, Huang HC, Stroka KM. Quantitatively relating brain endothelial cell-cell junction phenotype to global and local barrier properties under varied culture conditions via the Junction Analyzer Program. Fluids Barriers CNS 2020; 17:16. [PMID: 32046757 PMCID: PMC7014765 DOI: 10.1186/s12987-020-0177-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 01/31/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND The endothelial cell-cell junctions of the blood-brain barrier (BBB) play a pivotal role in the barrier's function. Altered cell-cell junctions can lead to barrier dysfunction and have been implicated in several diseases. Despite this, the driving forces regulating junctional protein presentation remain relatively understudied, largely due to the lack of efficient techniques to quantify their presentation at sites of cell-cell adhesion. Here, we used our novel Junction Analyzer Program (JAnaP) to quantify junction phenotype (i.e., continuous, punctate, or perpendicular) in response to various substrate compositions, cell culture times, and cAMP treatments in human brain microvascular endothelial cells (HBMECs). We then quantitatively correlated junction presentation with barrier permeability on both a "global" and "local" scale. METHODS We cultured HBMECs on collagen I, fibronectin, collagen IV, laminin, fibronectin/collagen IV/laminin, or hyaluronic acid/gelatin for 2, 4, and 7 days with varying cAMP treatment schedules. Images of immunostained ZO-1, VE-cadherin, and claudin-5 were analyzed using the JAnaP to calculate the percent of the cell perimeter presenting continuous, punctate, or perpendicular junctions. Transwell permeability assays and resistance measurements were used to measure bulk ("global") barrier properties, and a "local" permeability assay was used to correlate junction presentation proximal to permeable monolayer regions. RESULTS Substrate composition was found to play little role in junction presentation, while cAMP supplements significantly increased the continuous junction architecture. Increased culture time required increased cAMP treatment time to reach similar ZO-1 and VE-cadherin coverage observed with shorter culture, though longer cultures were required for claudin-5 presentation. Prolonged cAMP treatment (6 days) disrupted junction integrity for all three junction proteins. Transwell permeability and TEER assays showed no correlation with junction phenotype, but a local permeability assay revealed a correlation between the number of discontinuous and no junction regions with barrier penetration. CONCLUSIONS These results suggest that cAMP signaling influences HBMEC junction architecture more than matrix composition. Our studies emphasized the need for local barrier measurement to mechanistically understand the role of junction phenotype and supported previous results that continuous junctions are indicative of a more mature/stable endothelial barrier. Understanding what conditions influence junction presentations, and how they, in turn, affect barrier integrity, could lead to the development of therapeutics for diseases associated with BBB dysfunction.
Collapse
Affiliation(s)
- Kelsey M Gray
- Fischell Department of Bioengineering, University of Maryland, 8278 Paint Branch Drive, 3110 A. James Clark Hall, College Park, MD, 20742, USA
| | - Jae W Jung
- Fischell Department of Bioengineering, University of Maryland, 8278 Paint Branch Drive, 3110 A. James Clark Hall, College Park, MD, 20742, USA
| | - Collin T Inglut
- Fischell Department of Bioengineering, University of Maryland, 8278 Paint Branch Drive, 3110 A. James Clark Hall, College Park, MD, 20742, USA
| | - Huang-Chiao Huang
- Fischell Department of Bioengineering, University of Maryland, 8278 Paint Branch Drive, 3110 A. James Clark Hall, College Park, MD, 20742, USA
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland-Baltimore, Baltimore, MD, 21201, USA
| | - Kimberly M Stroka
- Fischell Department of Bioengineering, University of Maryland, 8278 Paint Branch Drive, 3110 A. James Clark Hall, College Park, MD, 20742, USA.
- Biophysics Program, University of Maryland, College Park, MD, 20742, USA.
- Center for Stem Cell Biology and Regenerative Medicine, University of Maryland-Baltimore, Baltimore, MD, 21201, USA.
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland-Baltimore, Baltimore, MD, 21201, USA.
| |
Collapse
|
171
|
Ahn SI, Sei YJ, Park HJ, Kim J, Ryu Y, Choi JJ, Sung HJ, MacDonald TJ, Levey AI, Kim Y. Microengineered human blood-brain barrier platform for understanding nanoparticle transport mechanisms. Nat Commun 2020; 11:175. [PMID: 31924752 PMCID: PMC6954233 DOI: 10.1038/s41467-019-13896-7] [Citation(s) in RCA: 215] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 12/05/2019] [Indexed: 12/15/2022] Open
Abstract
Challenges in drug development of neurological diseases remain mainly ascribed to the blood-brain barrier (BBB). Despite the valuable contribution of animal models to drug discovery, it remains difficult to conduct mechanistic studies on the barrier function and interactions with drugs at molecular and cellular levels. Here we present a microphysiological platform that recapitulates the key structure and function of the human BBB and enables 3D mapping of nanoparticle distributions in the vascular and perivascular regions. We demonstrate on-chip mimicry of the BBB structure and function by cellular interactions, key gene expressions, low permeability, and 3D astrocytic network with reduced reactive gliosis and polarized aquaporin-4 (AQP4) distribution. Moreover, our model precisely captures 3D nanoparticle distributions at cellular levels and demonstrates the distinct cellular uptakes and BBB penetrations through receptor-mediated transcytosis. Our BBB platform may present a complementary in vitro model to animal models for prescreening drug candidates for the treatment of neurological diseases.
Collapse
Affiliation(s)
- Song Ih Ahn
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Yoshitaka J Sei
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Hyun-Ji Park
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Jinhwan Kim
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Yujung Ryu
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Jeongmoon J Choi
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Hak-Joon Sung
- Department of Medical Engineering, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | | | - Allan I Levey
- Department of Neurology, Emory University, Atlanta, GA, 30322, USA
| | - YongTae Kim
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
- Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
| |
Collapse
|
172
|
Abstract
Knowledge about the transport of active compounds across the blood-brain barrier is of essential importance for drug development. Systemically applied drugs for the central nervous system (CNS) must be able to cross the blood-brain barrier in order to reach their target sites, whereas drugs that are supposed to act in the periphery should not permeate the blood-brain barrier so that they do not trigger any adverse central adverse effects. A number of approaches have been pursued, and manifold in silico, in vitro, and in vivo animal models were developed in order to be able to make a better prediction for humans about the possible penetration of active substances into the CNS. In this particular case, however, in vitro models play a special role, since the data basis for in silico models is usually in need of improvement, and the predictive power of in vivo animal models has to be checked for possible species differences. The blood-brain barrier is a dynamic, highly selective barrier formed by brain capillary endothelial cells. One of its main tasks is the maintenance of homeostasis in the CNS. The function of the barrier is regulated by cells of the microenvironment and the shear stress mediated by the blood flow, which makes the model development most complex. In general, one could follow the credo "as easy as possible, as complex as necessary" for the usage of in vitro BBB models for drug development. In addition to the description of the classical cell culture models (transwell, hollow fiber) and guidance how to apply them, the latest developments (spheroids, microfluidic models) will be introduced in this chapter, as it is attempted to get more in vivo-like and to be applicable for high-throughput usage with these models. Moreover, details about the development of models based on stem cells derived from different sources with a special focus on human induced pluripotent stem cells are presented.
Collapse
Affiliation(s)
- Winfried Neuhaus
- Competence Unit Molecular Diagnostics, Center Health and Bioresources, AIT - Austrian Institute of Technology GmbH, Vienna, Austria.
| |
Collapse
|
173
|
Ghosh S, Lalani R, Patel V, Bhowmick S, Misra A. Surface engineered liposomal delivery of therapeutics across the blood brain barrier: recent advances, challenges and opportunities. Expert Opin Drug Deliv 2019; 16:1287-1311. [DOI: 10.1080/17425247.2019.1676721] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Saikat Ghosh
- Department of Pharmaceutics, Faculty of Pharmacy, Kalabhavan Campus, The Maharaja Sayajirao University of Baroda, Vadodara, India
- Formulation Development Department-Novel Drug Delivery Systems, Sun Pharmaceutical Industries Ltd, Vadodara, India
| | - Rohan Lalani
- Department of Pharmaceutics, Faculty of Pharmacy, Kalabhavan Campus, The Maharaja Sayajirao University of Baroda, Vadodara, India
- Formulation Development Department-Novel Drug Delivery Systems, Sun Pharmaceutical Industries Ltd, Vadodara, India
| | - Vivek Patel
- Department of Pharmaceutics, Faculty of Pharmacy, Kalabhavan Campus, The Maharaja Sayajirao University of Baroda, Vadodara, India
| | - Subhas Bhowmick
- Department of Pharmaceutics, Faculty of Pharmacy, Kalabhavan Campus, The Maharaja Sayajirao University of Baroda, Vadodara, India
- Formulation Development Department-Novel Drug Delivery Systems, Sun Pharmaceutical Industries Ltd, Vadodara, India
| | - Ambikanandan Misra
- Department of Pharmaceutics, Faculty of Pharmacy, Kalabhavan Campus, The Maharaja Sayajirao University of Baroda, Vadodara, India
| |
Collapse
|
174
|
Steimle BL, Smith FM, Kosman DJ. The solute carriers ZIP8 and ZIP14 regulate manganese accumulation in brain microvascular endothelial cells and control brain manganese levels. J Biol Chem 2019; 294:19197-19208. [PMID: 31699897 DOI: 10.1074/jbc.ra119.009371] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 10/29/2019] [Indexed: 12/29/2022] Open
Abstract
Manganese supports numerous neuronal functions but in excess is neurotoxic. Consequently, regulation of manganese flux at the blood-brain barrier (BBB) is critical to brain homeostasis. However, the molecular pathways supporting the transcellular trafficking of divalent manganese ions within the microvascular capillary endothelial cells (BMVECs) that constitute the BBB have not been examined. In this study, we have determined that ZIP8 and ZIP14 (Zrt- and Irt-like proteins 8 and 14) support Mn2+ uptake by BMVECs and that neither DMT1 nor an endocytosis-dependent pathway play any significant role in Mn2+ uptake. Specifically, siRNA-mediated knockdown of ZIP8 and ZIP14 coincided with a decrease in manganese uptake, and kinetic analyses revealed that manganese uptake depends on pH and bicarbonate and is up-regulated by lipopolysaccharide, all biochemical markers of ZIP8 or ZIP14 activity. Mn2+ uptake also was associated with cell-surface membrane presentation of ZIP8 and ZIP14, as indicated by membrane protein biotinylation. Importantly, surface ZIP8 and ZIP14 biotinylation and Mn2+-uptake experiments together revealed that these transporters support manganese uptake at both the apical, blood and basal, brain sides of BMVECs. This indicated that in the BMVECs of the BBB, these two transporters support a bidirectional Mn2+ flux. We conclude that BMVECs play a critical role in controlling manganese homeostasis in the brain.
Collapse
Affiliation(s)
- Brittany L Steimle
- Department of Biochemistry, State University of New York at Buffalo, Jacobs School of Medicine and Biomedical Sciences, Buffalo, New York 14203
| | - Frances M Smith
- Department of Biochemistry, State University of New York at Buffalo, Jacobs School of Medicine and Biomedical Sciences, Buffalo, New York 14203
| | - Daniel J Kosman
- Department of Biochemistry, State University of New York at Buffalo, Jacobs School of Medicine and Biomedical Sciences, Buffalo, New York 14203
| |
Collapse
|
175
|
Ajikumar A, Long MB, Heath PR, Wharton SB, Ince PG, Ridger VC, Simpson JE. Neutrophil-Derived Microvesicle Induced Dysfunction of Brain Microvascular Endothelial Cells In Vitro. Int J Mol Sci 2019; 20:E5227. [PMID: 31652502 PMCID: PMC6834153 DOI: 10.3390/ijms20205227] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 10/16/2019] [Accepted: 10/18/2019] [Indexed: 12/19/2022] Open
Abstract
The blood-brain barrier (BBB), composed of brain microvascular endothelial cells (BMEC) that are tightly linked by tight junction (TJ) proteins, restricts the movement of molecules between the periphery and the central nervous system. Elevated systemic levels of neutrophils have been detected in patients with altered BBB function, but the role of neutrophils in BMEC dysfunction is unknown. Neutrophils are key players of the immune response and, when activated, produce neutrophil-derived microvesicles (NMV). NMV have been shown to impact the integrity of endothelial cells throughout the body and we hypothesize that NMV released from circulating neutrophils interact with BMEC and induce endothelial cell dysfunction. Therefore, the current study investigated the interaction of NMV with human BMEC and determined whether they altered gene expression and function in vitro. Using flow cytometry and confocal imaging, NMV were shown to be internalized by the human cerebral microvascular endothelial cell line hCMEC/D3 via a variety of energy-dependent mechanisms, including endocytosis and macropinocytosis. The internalization of NMV significantly altered the transcriptomic profile of hCMEC/D3, specifically inducing the dysregulation of genes associated with TJ, ubiquitin-mediated proteolysis and vesicular transport. Functional studies confirmed NMV significantly increased permeability and decreased the transendothelial electrical resistance (TEER) of a confluent monolayer of hCMEC/D3. These findings indicate that NMV interact with and affect gene expression of BMEC as well as impacting their integrity. We conclude that NMV may play an important role in modulating the permeability of BBB during an infection.
Collapse
Affiliation(s)
- Anjana Ajikumar
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield S10 2HQ, UK.
| | - Merete B Long
- Department of Infection Immunity and Cardiovascular Diseases, University of Sheffield, Medical School, Sheffield S10 2RX, UK.
| | - Paul R Heath
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield S10 2HQ, UK.
| | - Stephen B Wharton
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield S10 2HQ, UK.
| | - Paul G Ince
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield S10 2HQ, UK.
| | - Victoria C Ridger
- Department of Infection Immunity and Cardiovascular Diseases, University of Sheffield, Medical School, Sheffield S10 2RX, UK.
| | - Julie E Simpson
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield S10 2HQ, UK.
| |
Collapse
|
176
|
Ito R, Umehara K, Suzuki S, Kitamura K, Nunoya KI, Yamaura Y, Imawaka H, Izumi S, Wakayama N, Komori T, Anzai N, Akita H, Furihata T. A Human Immortalized Cell-Based Blood-Brain Barrier Triculture Model: Development and Characterization as a Promising Tool for Drug-Brain Permeability Studies. Mol Pharm 2019; 16:4461-4471. [PMID: 31573814 DOI: 10.1021/acs.molpharmaceut.9b00519] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Brain microvascular endothelial cells (BMEC), together with astrocytes and pericytes, form the blood-brain barrier (BBB) that strictly restricts drug penetration into the brain. Therefore, in central nervous system drug development, the establishment of an in vitro human BBB model for use in studies estimating the in vivo human BBB permeability of drug candidates has long been awaited. The current study developed and characterized a human immortalized cell-based BBB triculture model, termed the "hiBBB" model. To set up the hiBBB model, human immortalized BMEC (HBMEC/ci18) were cocultured with human immortalized astrocytes (HASTR/ci35) and brain pericytes (HBPC/ci37) in a transwell system. The trans-endothelial electrical resistance of the hiBBB model was 134.4 ± 5.5 (Ω × cm2), and the efflux ratios of rhodamine123 and dantrolene were 1.72 ± 0.11 and 1.72 ± 0.45, respectively, suggesting that the hiBBB model possesses essential cellular junction and efflux transporter functions. In BBB permeability assays, the mean value of the permeability coefficients (Pe) of BBB permeable compounds (propranolol, pyrilamine, memantine, and diphenhydramine) was 960 × 10-6 cm/s, which was clearly distinguishable from that of BBB nonpermeable compounds (sodium fluorescein and Lucifer yellow, 18 × 10-6 cm/s). Collectively, this study successfully developed the hiBBB model, which exhibits essential BBB functionality. Taking into consideration the high availability of the immortalized cells used in the hiBBB model, our results are expected to become an initial step toward the establishment of a useful human BBB model to investigate drug penetration into the human brain.
Collapse
Affiliation(s)
- Ryo Ito
- Pharmacokinetic Research Laboratories , Ono Pharmaceutical Co., Ltd. , Osaka 618-8585 , Japan
| | - Kenta Umehara
- Laboratory of DDS Design and Drug Disposition, Graduate School of Pharmaceutical Sciences , Chiba University , Chiba 260-8670 , Japan
| | - Shota Suzuki
- Laboratory of DDS Design and Drug Disposition, Graduate School of Pharmaceutical Sciences , Chiba University , Chiba 260-8670 , Japan
| | - Keita Kitamura
- Laboratory of DDS Design and Drug Disposition, Graduate School of Pharmaceutical Sciences , Chiba University , Chiba 260-8670 , Japan
| | - Ken-Ichi Nunoya
- Pharmacokinetic Research Laboratories , Ono Pharmaceutical Co., Ltd. , Osaka 618-8585 , Japan
| | - Yoshiyuki Yamaura
- Pharmacokinetic Research Laboratories , Ono Pharmaceutical Co., Ltd. , Osaka 618-8585 , Japan
| | - Haruo Imawaka
- Pharmacokinetic Research Laboratories , Ono Pharmaceutical Co., Ltd. , Osaka 618-8585 , Japan
| | - Saki Izumi
- Drug Metabolism and Pharmacokinetics Tsukuba, Tsukuba Research Laboratories , Eisai Co., Ltd. , Ibaraki 300-2635 , Japan
| | - Naomi Wakayama
- Drug Metabolism and Pharmacokinetics Tsukuba, Tsukuba Research Laboratories , Eisai Co., Ltd. , Ibaraki 300-2635 , Japan
| | - Takafumi Komori
- Drug Metabolism and Pharmacokinetics Tsukuba, Tsukuba Research Laboratories , Eisai Co., Ltd. , Ibaraki 300-2635 , Japan
| | - Naohiko Anzai
- Department of Pharmacology, Graduate School of Medicine , Chiba University , Chiba 260-8670 , Japan
| | - Hidetaka Akita
- Laboratory of DDS Design and Drug Disposition, Graduate School of Pharmaceutical Sciences , Chiba University , Chiba 260-8670 , Japan
| | - Tomomi Furihata
- Department of Clinical Pharmacy & Experimental Therapeutics, School of Pharmacy , Tokyo University of Pharmacy and Life Sciences , Tokyo 192-0392 , Japan
| |
Collapse
|
177
|
Ji X, Wang H, Chen Y, Zhou J, Liu Y. Recombinant expressing angiopep-2 fused anti-VEGF single chain Fab (scFab) could cross blood-brain barrier and target glioma. AMB Express 2019; 9:165. [PMID: 31617104 PMCID: PMC6794332 DOI: 10.1186/s13568-019-0869-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 08/30/2019] [Indexed: 12/22/2022] Open
Abstract
In 2009, the FDA approved bevacizumab for the treatment of adult patients diagnosed with recurrent glioblastoma. However, the poor permeability of the macromolecules across the blood–brain barrier, determined by multifactorial anatomical and physiological milieu, restricts the clinical therapeutic effect of bevacizumab. The low-density lipoprotein receptor related protein 1 (LRP1) is highly expressed in the endothelial cells of the brain capillary and the glioma cells. Angiopep-2 (ANG) is a 19-aa oligopeptide that can bind to LRP1 and penetrate the blood–brain barrier by receptor-mediated transport. Therefore, ANG can be used as a dual-targeting drug delivery carrier into the brain and the glioma sites. In this study, ANG gene was fused with the C-terminal domain of single-chain antigen binding fragment (scFab) of the anti-VEGF antibody and recombinant scFab-ANG protein was expressed and purified using Rosatte (DE3) strain. We confirmed that ANG could carry anti-VEGF-scFab, penetrate a three-dimensional model of the brain tumor, and cross the hCMEC/D3 monolayer in the in vitro blood–brain barrier model. The animal experiments demonstrated that 3 h after the tail intravenous protein injection, the fluorescent signals in the brains of the mice in the scFab-ANG group were stronger than that in the scFab group. Furthermore, the study of the in situ rat glioma model shows that scFab-ANG could target glioma while anti-VEGF-scFab could not. These findings indicate that scFab-ANG had stronger transepithelial permeability and glioma targeting capacity. Thus, it can be a potential candidate drug for glioblastoma therapy.
Collapse
|
178
|
Ayala-Nunez NV, Follain G, Delalande F, Hirschler A, Partiot E, Hale GL, Bollweg BC, Roels J, Chazal M, Bakoa F, Carocci M, Bourdoulous S, Faklaris O, Zaki SR, Eckly A, Uring-Lambert B, Doussau F, Cianferani S, Carapito C, Jacobs FMJ, Jouvenet N, Goetz JG, Gaudin R. Zika virus enhances monocyte adhesion and transmigration favoring viral dissemination to neural cells. Nat Commun 2019; 10:4430. [PMID: 31562326 PMCID: PMC6764950 DOI: 10.1038/s41467-019-12408-x] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 09/04/2019] [Indexed: 02/06/2023] Open
Abstract
Zika virus (ZIKV) invades and persists in the central nervous system (CNS), causing severe neurological diseases. However the virus journey, from the bloodstream to tissues through a mature endothelium, remains unclear. Here, we show that ZIKV-infected monocytes represent suitable carriers for viral dissemination to the CNS using human primary monocytes, cerebral organoids derived from embryonic stem cells, organotypic mouse cerebellar slices, a xenotypic human-zebrafish model, and human fetus brain samples. We find that ZIKV-exposed monocytes exhibit higher expression of adhesion molecules, and higher abilities to attach onto the vessel wall and transmigrate across endothelia. This phenotype is associated to enhanced monocyte-mediated ZIKV dissemination to neural cells. Together, our data show that ZIKV manipulates the monocyte adhesive properties and enhances monocyte transmigration and viral dissemination to neural cells. Monocyte transmigration may represent an important mechanism required for viral tissue invasion and persistence that could be specifically targeted for therapeutic intervention. Zika virus (ZIKV) can infect the central nervous system, but it is not clear how it reaches the brain. Here, Ayala-Nunez et al. show in ex vivo and in vivo models that ZIKV can hitch a ride in monocytes in a Trojan Horse manner to cross the endothelium and disseminate the virus.
Collapse
Affiliation(s)
- Nilda Vanesa Ayala-Nunez
- Institut de Recherche en Infectiologie de Montpellier (IRIM), CNRS, Université de Montpellier, 34293, Montpellier, France.,Université de Strasbourg, INSERM, 67000, Strasbourg, France
| | | | - François Delalande
- Laboratoire de Spectrométrie de Masse Bio-Organique, IPHC, UMR 7178, CNRS-Université de Strasbourg, ECPM, 67087, Strasbourg, France
| | - Aurélie Hirschler
- Laboratoire de Spectrométrie de Masse Bio-Organique, IPHC, UMR 7178, CNRS-Université de Strasbourg, ECPM, 67087, Strasbourg, France
| | - Emma Partiot
- Institut de Recherche en Infectiologie de Montpellier (IRIM), CNRS, Université de Montpellier, 34293, Montpellier, France
| | - Gillian L Hale
- Infectious Diseases Pathology Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases (NCEZID), Centers for Disease Control and Prevention, 1600 Clifton Rd NE, MS: G32, Atlanta, GA, 30329-4027, USA
| | - Brigid C Bollweg
- Infectious Diseases Pathology Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases (NCEZID), Centers for Disease Control and Prevention, 1600 Clifton Rd NE, MS: G32, Atlanta, GA, 30329-4027, USA
| | - Judith Roels
- University of Amsterdam, Swammerdam Institute for Life Sciences, Science Park 904, 1098XH, Amsterdam, The Netherlands
| | - Maxime Chazal
- Viral Genomics and Vaccination Unit, UMR3569 CNRS, Virology Department, Institut Pasteur, 75015, Paris, France
| | - Florian Bakoa
- Viral Genomics and Vaccination Unit, UMR3569 CNRS, Virology Department, Institut Pasteur, 75015, Paris, France
| | - Margot Carocci
- Université de Strasbourg, INSERM, EFS Grand Est, BPPS UMR-S1255, FMTS, 67000, Strasbourg, France
| | - Sandrine Bourdoulous
- INSERM U1016, Institut Cochin, CNRS UMR8104, Université Paris Descartes, Paris, France
| | - Orestis Faklaris
- MRI Core facility, Biocampus, CNRS UMS 3426, 34293, Montpellier, France
| | - Sherif R Zaki
- Infectious Diseases Pathology Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases (NCEZID), Centers for Disease Control and Prevention, 1600 Clifton Rd NE, MS: G32, Atlanta, GA, 30329-4027, USA
| | - Anita Eckly
- Université de Strasbourg, INSERM, EFS Grand Est, BPPS UMR-S1255, FMTS, 67000, Strasbourg, France
| | - Béatrice Uring-Lambert
- Hôpitaux universitaires de Strasbourg, laboratoire central d'immunologie, 67000, Strasbourg, France
| | - Frédéric Doussau
- Institut des Neurosciences Cellulaires et Intégratives, CNRS, Université de Strasbourg, 67000, Strasbourg, France
| | - Sarah Cianferani
- Laboratoire de Spectrométrie de Masse Bio-Organique, IPHC, UMR 7178, CNRS-Université de Strasbourg, ECPM, 67087, Strasbourg, France
| | - Christine Carapito
- Laboratoire de Spectrométrie de Masse Bio-Organique, IPHC, UMR 7178, CNRS-Université de Strasbourg, ECPM, 67087, Strasbourg, France
| | - Frank M J Jacobs
- University of Amsterdam, Swammerdam Institute for Life Sciences, Science Park 904, 1098XH, Amsterdam, The Netherlands
| | - Nolwenn Jouvenet
- Viral Genomics and Vaccination Unit, UMR3569 CNRS, Virology Department, Institut Pasteur, 75015, Paris, France
| | | | - Raphael Gaudin
- Institut de Recherche en Infectiologie de Montpellier (IRIM), CNRS, Université de Montpellier, 34293, Montpellier, France. .,Université de Strasbourg, INSERM, 67000, Strasbourg, France.
| |
Collapse
|
179
|
Sitia L, Catelani T, Guarnieri D, Pompa PP. In Vitro Blood-Brain Barrier Models for Nanomedicine: Particle-Specific Effects and Methodological Drawbacks. ACS APPLIED BIO MATERIALS 2019; 2:3279-3289. [PMID: 35030770 DOI: 10.1021/acsabm.9b00305] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Predicting the therapeutic efficacy of a nanocarrier, in a rapid and cost-effective way, is pivotal for the drug delivery to the central nervous system (CNS). In this context, in vitro testing platforms, like the transwell systems, offer numerous advantages to study the passage through the blood-brain barrier (BBB), such as overcoming ethical and methodological issues of in vivo models. However, the use of different transwell filters and nanocarriers with various physical-chemical features makes it difficult to assess the nanocarrier efficacy and achieve data reproducibility. In this work, we performed a systematic study to elucidate the role of the most widely used transwell filters in affecting the passage of nanocarriers, as a function of filter pore size and density. In particular, the transport of carboxyl- and amine-modified 100 nm polystyrene nanoparticles (NPs), chosen as model nanocarriers, was quantified and compared to the behavior of Lucifer yellow (LY), a molecular marker of paracellular transport. Results indicate that the filter type affects the growth and formation of the confluent endothelial barrier, as well as the transport of NPs. Interestingly, the in situ dispersion of NPs was found to play a key role in governing their passage through the filters, both in absence and in presence of the cellular barrier. By framing the underlying nanobiointeractions, we found that particle-specific effects modulated cellular uptake and barrier intracellular distribution, eventually governing transcytosis through their interplay with "size exclusion effects" by the porous filters. This study highlights the importance of a careful evaluation of the physical-chemical profile of the tested nanocarrier along with filter parameters for a correct methodological approach to test BBB permeability in nanomedicine.
Collapse
Affiliation(s)
- Leopoldo Sitia
- Nanobiointeractions & Nanodiagnostics, Istituto Italiano di Tecnologia (IIT), via Morego 30, Genova 16163, Italy.,Department of Biomedical and Clinical Sciences "L. Sacco″, Università Degli Studi di Milano, via G. B. Grassi 74, Milano 20157, Italy
| | - Tiziano Catelani
- Electron Microscopy Facility, Istituto Italiano di Tecnologia, via Morego 30, Genova 16163, Italy.,Piattaforma Interdipartimentale di Microscopia, Università Degli Studi di Milano-Bicocca, Piazza della Scienza 2, Milano 20126, Italy
| | - Daniela Guarnieri
- Nanobiointeractions & Nanodiagnostics, Istituto Italiano di Tecnologia (IIT), via Morego 30, Genova 16163, Italy.,Dipartimento di Chimica e Biologia "A. Zambelli", Università di Salerno, via Giovanni Paolo II 132, Fisciano, Salerno I-84084, Italy
| | - Pier Paolo Pompa
- Nanobiointeractions & Nanodiagnostics, Istituto Italiano di Tecnologia (IIT), via Morego 30, Genova 16163, Italy
| |
Collapse
|
180
|
Phoolcharoen W, Banyard AC, Prehaud C, Selden D, Wu G, Birch CPD, Szeto TH, Lafon M, Fooks AR, Ma JKC. In vitro and in vivo evaluation of a single chain antibody fragment generated in planta with potent rabies neutralisation activity. Vaccine 2019; 37:4673-4680. [PMID: 29523449 PMCID: PMC6677913 DOI: 10.1016/j.vaccine.2018.02.057] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 01/31/2018] [Accepted: 02/15/2018] [Indexed: 12/13/2022]
Abstract
Rabies causes more than 60,000 human deaths annually in areas where the virus is endemic. Importantly, rabies is one of the few pathogens for which there is no treatment following the onset of clinical disease with the outcome of infection being death in almost 100% of cases. Whilst vaccination, and the combination of vaccine and rabies immunoglobulin treatment for post-exposure administration are available, no tools have been identified that can reduce or prevent rabies virus replication once clinical disease has initiated. The search for effective antiviral molecules to treat those that have already developed clinical disease associated with rabies virus infection is considered one of the most important goals in rabies research. The current study assesses a single chain antibody molecule (ScFv) based on a monoclonal antibody that potently neutralises rabies in vitro as a potential therapeutic candidate. The recombinant ScFv was generated in Nicotiana benthamiana by transient expression, and was chemically conjugated (ScFv/RVG) to a 29 amino acid peptide, specific for nicotinic acetylcholine receptor (nAchR) binding in the CNS. This conjugated molecule was able to bind nAchR in vitro and enter neuronal cells more efficiently than ScFv. The ability of the ScFv/RVG to neutralise virus in vivo was assessed using a staggered administration where the molecule was inoculated either four hours before, two days after or four days after infection. The ScFv/RVG conjugate was evaluated in direct comparison with HRIG and a potential antiviral molecule, Favipiravir (also known as T-705) to indicate whether there was greater bioavailability of the ScFv in the brains of treated mice. The study indicated that the approach taken with the ScFv/RVG conjugate may have utility in the design and implementation of novel tools targetting rabies virus infection in the brain.
Collapse
Affiliation(s)
- Waranyoo Phoolcharoen
- Institute for Infection and Immunity, St. George's Hospital Medical School, University of London, London, UK; Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Ashley C Banyard
- Wildlife Zoonoses and Vector-borne Diseases Research Group, Animal and Plant Health Agency (APHA), Addlestone, Surrey KT15 3NB, UK
| | - Christophe Prehaud
- Institut Pasteur, Unité de Neuroimmunologie Virale, Département de Virologie, Paris, France
| | - David Selden
- Wildlife Zoonoses and Vector-borne Diseases Research Group, Animal and Plant Health Agency (APHA), Addlestone, Surrey KT15 3NB, UK
| | - Guanghui Wu
- Wildlife Zoonoses and Vector-borne Diseases Research Group, Animal and Plant Health Agency (APHA), Addlestone, Surrey KT15 3NB, UK
| | - Colin P D Birch
- Biomathematics and Risk Research Group, Animal and Plant Health Agency (APHA), Addlestone, Surrey KT15 3NB, UK
| | - Tim H Szeto
- Institute for Infection and Immunity, St. George's Hospital Medical School, University of London, London, UK
| | - Monique Lafon
- Institut Pasteur, Unité de Neuroimmunologie Virale, Département de Virologie, Paris, France
| | - Anthony R Fooks
- Wildlife Zoonoses and Vector-borne Diseases Research Group, Animal and Plant Health Agency (APHA), Addlestone, Surrey KT15 3NB, UK
| | - Julian K-C Ma
- Institute for Infection and Immunity, St. George's Hospital Medical School, University of London, London, UK.
| |
Collapse
|
181
|
Bergman L, Torres-Vergara P, Penny J, Wikström J, Nelander M, Leon J, Tolcher M, Roberts JM, Wikström AK, Escudero C. Investigating Maternal Brain Alterations in Preeclampsia: the Need for a Multidisciplinary Effort. Curr Hypertens Rep 2019; 21:72. [PMID: 31375930 DOI: 10.1007/s11906-019-0977-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
PURPOSE OF REVIEW To provide insight into the mechanisms underlying cerebral pathophysiology and to highlight possible methods for evaluation, screening, and surveillance of cerebral complications in preeclampsia. RECENT FINDINGS The pathophysiology of eclampsia remains enigmatic. Animal studies show that the cerebral circulation in pregnancy and preeclampsia might be affected with increased permeability over the blood-brain barrier and altered cerebral blood flow due to impaired cerebral autoregulation. The increased blood pressure cannot be the only underlying cause of eclampsia and cerebral edema, since some cases of eclampsia arise without simultaneous hypertension. Findings from animal studies need to be confirmed in human tissues. Evaluation of brain alterations in preeclampsia and eclampsia is challenging and demands a multidisciplinary collaboration, since no single method can accurately and fully describe how preeclampsia affects the brain. Cerebral complications of preeclampsia are significant factors in maternal morbidity and mortality worldwide. No single method can accurately describe the full picture of how preeclampsia affects the brain vasculature and parenchyma. We recommend an international and multidisciplinary effort not only to overcome the issue of limited sample availability but also to optimize the quality of research.
Collapse
Affiliation(s)
- Lina Bergman
- Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden.
- Center for Clinical Research Dalarna, Falun, Uppsala, Sweden.
| | - Pablo Torres-Vergara
- Pharmacy Department, Faculty of Pharmacy, Universidad de Concepción, Concepción, Chile
- Group of Research and Innovation in Vascular Health (GRIVAS Health), Chillán, Chile
| | - Jeffrey Penny
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Johan Wikström
- Department of Radiology, Uppsala University, Uppsala, Sweden
| | - Maria Nelander
- Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden
| | - Jose Leon
- Group of Research and Innovation in Vascular Health (GRIVAS Health), Chillán, Chile
- Vascular Physiology Laboratory, Group of Investigation in Tumor Angiogenesis, (LFV-GIANT), Department of Basic Sciences, Faculty of Sciences, Universidad del Bío-Bío, Chillán, Chile
| | - Mary Tolcher
- Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden
| | - James M Roberts
- Magee Womens Research Institute, Dept of Obstetrics Gynecology and Reproductive Sciences, Epidemiology and Clinical and Translational Research, University of Pittsburgh, Pittsburgh, PA, USA
| | - Anna-Karin Wikström
- Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden
| | - Carlos Escudero
- Group of Research and Innovation in Vascular Health (GRIVAS Health), Chillán, Chile.
- Vascular Physiology Laboratory, Group of Investigation in Tumor Angiogenesis, (LFV-GIANT), Department of Basic Sciences, Faculty of Sciences, Universidad del Bío-Bío, Chillán, Chile.
| |
Collapse
|
182
|
Meng L, Chu X, Xing H, Liu X, Xin X, Chen L, Jin M, Guan Y, Huang W, Gao Z. Improving glioblastoma therapeutic outcomes via doxorubicin-loaded nanomicelles modified with borneol. Int J Pharm 2019; 567:118485. [PMID: 31260781 DOI: 10.1016/j.ijpharm.2019.118485] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 06/25/2019] [Accepted: 06/28/2019] [Indexed: 01/18/2023]
Abstract
Glioblastoma is a grade IV malignant glioma with high recurrence and metastasis and faces a therapeutic obstacle that the blood-brain barrier (BBB) severely hinders the brain entry and efficacy of therapeutic drugs. Previous studies suggest that borneol (BO) has been used to enhance interested drugs to penetrate the BBB. In this study, a borneol-modified nanomicelle delivery system was established to facilitate the brain entry of doxorubicin for glioblastoma therapy. Herein, we firstly conjugated borneol molecules with DSPE-PEG2000-COOH to synthesize a novel carrier DSPE-PEG2000-BO and also characterized its structure. Doxorubicin-loaded nanomicelles (DOX BO-PMs) were prepared using DSPE-PEG2000-BO via electrostatic interaction and the physicochemical properties were investigated. The average particle size and zeta potential of DOX BO-PMs were respectively (14.95 ± 0.17)nm and (-1.27 ± 0.06)mV, and the drug encapsulation efficiency and loading capacity in DOX BO-PMs were (95.69 ± 0.49)% and (14.62 ± 0.39)%, respectively. The drug release of the DOX BO-PMs exhibited a both time- and pH-dependent pattern. The results demonstrated that DOX BO-PMs significantly enhanced the transport efficiency of DOX across the BBB and also exhibited a quick accumulation in the brain tissues. The in vitro anti-proliferation assay results suggested that DOX BO-PMs exerted a strong inhibitory effect on proliferation of glioblastoma cells. Importantly, in vivo antitumor results demonstrated that DOX BO-PMs significantly inhibited the tumor growth and metastasis of glioblastoma. In conclusion, DOX BO-PMs can improve the glioblastoma therapeutic outcomes and become a promising nanodrug candidate for the application of doxorubicin in the field of glioblastoma therapy.
Collapse
Affiliation(s)
- Lingwei Meng
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Xiaoyang Chu
- Department of Stomatology, The 5th Medical Center of Chinese PLA General Hospital, Beijing 100071, China
| | - Haoyue Xing
- Beijing No. 2 Middle School, Beijing 100010, China
| | - Xuan Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Xin Xin
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Liqing Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Mingji Jin
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Youyan Guan
- Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China.
| | - Wei Huang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Zhonggao Gao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| |
Collapse
|
183
|
Kim BJ, Shusta EV, Doran KS. Past and Current Perspectives in Modeling Bacteria and Blood-Brain Barrier Interactions. Front Microbiol 2019; 10:1336. [PMID: 31263460 PMCID: PMC6585309 DOI: 10.3389/fmicb.2019.01336] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 05/29/2019] [Indexed: 01/18/2023] Open
Abstract
The central nervous system (CNS) barriers are highly specialized cellular barriers that promote brain homeostasis while restricting pathogen and toxin entry. The primary cellular constituent regulating pathogen entry in most of these brain barriers is the brain endothelial cell (BEC) that exhibits properties that allow for tight regulation of CNS entry. Bacterial meningoencephalitis is a serious infection of the CNS and occurs when bacteria can cross specialized brain barriers and cause inflammation. Models have been developed to understand the bacterial - BEC interaction that lead to pathogen crossing into the CNS, however, these have been met with challenges due to these highly specialized BEC phenotypes. This perspective provides a brief overview and outlook of the in vivo and in vitro models currently being used to study bacterial brain penetration, and opinion on improved models for the future.
Collapse
Affiliation(s)
- Brandon J Kim
- Institute for Hygiene and Microbiology, University of Würzburg, Würzburg, Germany
| | - Eric V Shusta
- Department of Chemical and Biological Engineering, University of Wisconsin, Madison, WI, United States
| | - Kelly S Doran
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States
| |
Collapse
|
184
|
Hinkel S, Mattern K, Dietzel A, Reichl S, Müller-Goymann CC. Parametric investigation of static and dynamic cell culture conditions and their impact on hCMEC/D3 barrier properties. Int J Pharm 2019; 566:434-444. [PMID: 31163193 DOI: 10.1016/j.ijpharm.2019.05.074] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 05/27/2019] [Accepted: 05/30/2019] [Indexed: 01/27/2023]
Abstract
In brain research, the hCMEC/D3 cell line is widely used for the establishment of a human in vitro blood-brain barrier (BBB) model. However, its barrier integrity seems to be insufficient for drug permeability studies, represented by rather low transendothelial electrical resistance (TEER) and high permeability of small molecules. Therefore, this study covers a parametric investigation of static and dynamic cell culture conditions to improve barrier functionality of hCMEC/D3. The effect of basal media was investigated by analyzing changes in proliferation rate, barrier integrity and gene expression of cellular junction proteins. The cells were able to grow in different cell culture media, including serum-free media. However, none of these media enhanced strongly the growth rate or barrier integrity compared to the microvascular endothelial cell growth medium-2 (EGM™-2 MV). Furthermore, hCMEC/D3 cells did not respond positively regarding TEER to any tested parameter neither supplements, coating materials nor co-cultures with the human immortalized astrocyte cell line SVGmm. Furthermore, the impact of dynamic conditions was examined by using the Dynamic Micro Tissue Engineering System (DynaMiTES). Cultivation conditions were successfully adapted to the DynaMiTES design and no negative effect was detected by analyzing cell viability and cell count, albeit TEER remained also unchanged. Consequently, the hCMEC/D3 model has considerable limitations and further improvements or alternative cell lines are required.
Collapse
Affiliation(s)
- S Hinkel
- Technische Universität Braunschweig, Institut für Pharmazeutische Technologie, Mendelssohnstraße 1, 38106 Braunschweig, Germany; Technische Universität Braunschweig, Center of Pharmaceutical Engineering (PVZ), Franz-Liszt-Straße 35a, 38106 Braunschweig, Germany
| | - K Mattern
- Technische Universität Braunschweig, Institut für Mikrotechnik, Alte Salzdahlumer Str. 203, 38124 Braunschweig, Germany; Technische Universität Braunschweig, Center of Pharmaceutical Engineering (PVZ), Franz-Liszt-Straße 35a, 38106 Braunschweig, Germany
| | - A Dietzel
- Technische Universität Braunschweig, Institut für Mikrotechnik, Alte Salzdahlumer Str. 203, 38124 Braunschweig, Germany; Technische Universität Braunschweig, Center of Pharmaceutical Engineering (PVZ), Franz-Liszt-Straße 35a, 38106 Braunschweig, Germany
| | - S Reichl
- Technische Universität Braunschweig, Institut für Pharmazeutische Technologie, Mendelssohnstraße 1, 38106 Braunschweig, Germany; Technische Universität Braunschweig, Center of Pharmaceutical Engineering (PVZ), Franz-Liszt-Straße 35a, 38106 Braunschweig, Germany
| | - C C Müller-Goymann
- Technische Universität Braunschweig, Institut für Pharmazeutische Technologie, Mendelssohnstraße 1, 38106 Braunschweig, Germany; Technische Universität Braunschweig, Center of Pharmaceutical Engineering (PVZ), Franz-Liszt-Straße 35a, 38106 Braunschweig, Germany.
| |
Collapse
|
185
|
Abstract
PURPOSE OF REVIEW We review current knowledge regarding HDL and Alzheimer's disease, focusing on HDL's vasoprotective functions and potential as a biomarker and therapeutic target for the vascular contributions of Alzheimer's disease. RECENT FINDINGS Many epidemiological studies have observed that circulating HDL levels associate with decreased Alzheimer's disease risk. However, it is now understood that the functions of HDL may be more informative than levels of HDL cholesterol (HDL-C). Animal model studies demonstrate that HDL protects against memory deficits, neuroinflammation, and cerebral amyloid angiopathy (CAA). In-vitro studies using state-of-the-art 3D models of the human blood-brain barrier (BBB) confirm that HDL reduces vascular Aβ accumulation and attenuates Aβ-induced endothelial inflammation. Although HDL-based therapeutics have not been tested in clinical trials for Alzheimer's disease , several HDL formulations are in advanced phase clinical trials for coronary artery disease and atherosclerosis and could be leveraged toward Alzheimer's disease . SUMMARY Evidence from human studies, animal models, and bioengineered arteries supports the hypothesis that HDL protects against cerebrovascular dysfunction in Alzheimer's disease. Assays of HDL functions relevant to Alzheimer's disease may be desirable biomarkers of cerebrovascular health. HDL-based therapeutics may also be of interest for Alzheimer's disease, using stand-alone or combination therapy approaches.
Collapse
Affiliation(s)
- Emily B. Button
- Department of Pathology and Laboratory Medicine
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jérôme Robert
- Department of Pathology and Laboratory Medicine
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Tara M. Caffrey
- Department of Pathology and Laboratory Medicine
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jianjia Fan
- Department of Pathology and Laboratory Medicine
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Wenchen Zhao
- Department of Pathology and Laboratory Medicine
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Cheryl L. Wellington
- Department of Pathology and Laboratory Medicine
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
186
|
Martins Gomes SF, Westermann AJ, Sauerwein T, Hertlein T, Förstner KU, Ohlsen K, Metzger M, Shusta EV, Kim BJ, Appelt-Menzel A, Schubert-Unkmeir A. Induced Pluripotent Stem Cell-Derived Brain Endothelial Cells as a Cellular Model to Study Neisseria meningitidis Infection. Front Microbiol 2019; 10:1181. [PMID: 31191497 PMCID: PMC6548865 DOI: 10.3389/fmicb.2019.01181] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 05/09/2019] [Indexed: 11/13/2022] Open
Abstract
Meningococcal meningitis is a severe central nervous system infection that occurs when Neisseria meningitidis (Nm) penetrates brain endothelial cells (BECs) of the meningeal blood-cerebrospinal fluid barrier. As a human-specific pathogen, in vivo models are greatly limited and pose a significant challenge. In vitro cell models have been developed, however, most lack critical BEC phenotypes limiting their usefulness. Human BECs generated from induced pluripotent stem cells (iPSCs) retain BEC properties and offer the prospect of modeling the human-specific Nm interaction with BECs. Here, we exploit iPSC-BECs as a novel cellular model to study Nm host-pathogen interactions, and provide an overview of host responses to Nm infection. Using iPSC-BECs, we first confirmed that multiple Nm strains and mutants follow similar phenotypes to previously described models. The recruitment of the recently published pilus adhesin receptor CD147 underneath meningococcal microcolonies could be verified in iPSC-BECs. Nm was also observed to significantly increase the expression of pro-inflammatory and neutrophil-specific chemokines IL6, CXCL1, CXCL2, CXCL8, and CCL20, and the secretion of IFN-γ and RANTES. For the first time, we directly observe that Nm disrupts the three tight junction proteins ZO-1, Occludin, and Claudin-5, which become frayed and/or discontinuous in BECs upon Nm challenge. In accordance with tight junction loss, a sharp loss in trans-endothelial electrical resistance, and an increase in sodium fluorescein permeability and in bacterial transmigration, was observed. Finally, we established RNA-Seq of sorted, infected iPSC-BECs, providing expression data of Nm-responsive host genes. Altogether, this model provides novel insights into Nm pathogenesis, including an impact of Nm on barrier properties and tight junction complexes, and suggests that the paracellular route may contribute to Nm traversal of BECs.
Collapse
Affiliation(s)
- Sara F Martins Gomes
- Institute of Hygiene and Microbiology, University of Würzburg, Würzburg, Germany
| | - Alexander J Westermann
- Institute of Molecular Infection Biology (IMIB), University of Würzburg, Würzburg, Germany.,Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), Würzburg, Germany
| | - Till Sauerwein
- Institute of Molecular Infection Biology (IMIB), University of Würzburg, Würzburg, Germany.,ZB MED, Information Centre for Life Sciences, Cologne, Germany.,TH Köln, University of Applied Sciences, Faculty of Information Science and Communication Studies, Cologne, Germany
| | - Tobias Hertlein
- Institute of Molecular Infection Biology (IMIB), University of Würzburg, Würzburg, Germany
| | - Konrad U Förstner
- Institute of Molecular Infection Biology (IMIB), University of Würzburg, Würzburg, Germany.,ZB MED, Information Centre for Life Sciences, Cologne, Germany.,TH Köln, University of Applied Sciences, Faculty of Information Science and Communication Studies, Cologne, Germany
| | - Knut Ohlsen
- Institute of Molecular Infection Biology (IMIB), University of Würzburg, Würzburg, Germany
| | - Marco Metzger
- Chair Tissue Engineering and Regenerative Medicine, University Hospital Würzburg, Würzburg, Germany.,Fraunhofer Institute for Silicate Research ISC, Translational Center Regenerative Therapies (TLC-RT), Würzburg, Germany
| | - Eric V Shusta
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, United States
| | - Brandon J Kim
- Institute of Hygiene and Microbiology, University of Würzburg, Würzburg, Germany.,Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, United States
| | - Antje Appelt-Menzel
- Chair Tissue Engineering and Regenerative Medicine, University Hospital Würzburg, Würzburg, Germany.,Fraunhofer Institute for Silicate Research ISC, Translational Center Regenerative Therapies (TLC-RT), Würzburg, Germany
| | | |
Collapse
|
187
|
Oddo A, Peng B, Tong Z, Wei Y, Tong WY, Thissen H, Voelcker NH. Advances in Microfluidic Blood-Brain Barrier (BBB) Models. Trends Biotechnol 2019; 37:1295-1314. [PMID: 31130308 DOI: 10.1016/j.tibtech.2019.04.006] [Citation(s) in RCA: 142] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 04/17/2019] [Accepted: 04/18/2019] [Indexed: 12/21/2022]
Abstract
Therapeutic options for neurological disorders currently remain limited. The intrinsic complexity of the brain architecture prevents potential therapeutics from reaching their cerebral target, thus limiting their efficacy. Recent advances in microfluidic technology and organ-on-chip systems have enabled the development of a new generation of in vitro platforms that can recapitulate complex in vivo microenvironments and physiological responses. In this context, microfluidic-based in vitro models of the blood-brain barrier (BBB) are of particular interest as they provide an innovative approach for conducting research related to the brain, including modeling of neurodegenerative diseases and high-throughput drug screening. Here, we present the most recent advances in BBB-on-chip devices and examine validation steps that will strengthen their future applications.
Collapse
Affiliation(s)
- Arianna Oddo
- Drug Delivery, Disposition, and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Bo Peng
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Clayton, Victoria 3168, Australia.
| | - Ziqiu Tong
- Drug Delivery, Disposition, and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Yingkai Wei
- Drug Delivery, Disposition, and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Wing Yin Tong
- Drug Delivery, Disposition, and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Helmut Thissen
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Clayton, Victoria 3168, Australia
| | - Nicolas Hans Voelcker
- Drug Delivery, Disposition, and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia; Commonwealth Scientific and Industrial Research Organisation (CSIRO), Clayton, Victoria 3168, Australia; Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Clayton, Victoria 3168, Australia; Department of Materials Science and Engineering, Monash University, Clayton, Victoria 3168, Australia.
| |
Collapse
|
188
|
Bhuvanendran S, Hanapi NA, Ahemad N, Othman I, Yusof SR, Shaikh MF. Embelin, a Potent Molecule for Alzheimer's Disease: A Proof of Concept From Blood-Brain Barrier Permeability, Acetylcholinesterase Inhibition and Molecular Docking Studies. Front Neurosci 2019; 13:495. [PMID: 31156375 PMCID: PMC6532548 DOI: 10.3389/fnins.2019.00495] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 04/30/2019] [Indexed: 12/27/2022] Open
Abstract
Embelin is well-known in ethnomedicine and reported to have central nervous system activities. However, there is no report on blood-brain barrier (BBB) permeability of embelin. Here the BBB permeability of embelin was evaluated using in vitro primary porcine brain endothelial cell (PBEC) model of the BBB. Embelin was also evaluated for acetylcholinesterase (AChE) inhibitory activity and docking prediction for interaction with AChE and amyloid beta (Aβ) binding sites. Embelin was found to be non-toxic to the PBECs and did not disturb the PBEC barrier function. The PBECs showed restrictive tight junctions with average transendothelial electrical resistance of 365.37 ± 113.00 Ω.cm2, for monolayers used for permeability assays. Permeability assays were conducted from apical-to-basolateral direction (blood-to-brain side). Embelin showed apparent permeability (Papp) value of 35.46 ± 20.33 × 10−6 cm/s with 85.53% recovery. In vitro AChE inhibitory assay demonstrated that embelin could inhibit the enzyme. Molecular docking study showed that embelin binds well to active site of AChE with CDOCKER interaction energy of −65.75 kcal/mol which correlates with the in vitro results. Docking of embelin with Aβ peptides also revealed the promising binding with low CDOCKER interaction energy. Thus, findings from this study indicate that embelin could be a suitable molecule to be further developed as therapeutic molecule to treat neurological disorders particularly Alzheimer's disease.
Collapse
Affiliation(s)
- Saatheeyavaane Bhuvanendran
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia
| | - Nur Aziah Hanapi
- Centre for Drug Research, Universiti Sains Malaysia, Penang, Malaysia
| | - Nafees Ahemad
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, Malaysia.,Tropical Medicine and Biology Multidisciplinary Platform, Monash University Malaysia, Bandar Sunway, Malaysia
| | - Iekhsan Othman
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia
| | | | - Mohd Farooq Shaikh
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia
| |
Collapse
|
189
|
Development of Human in vitro Brain-blood Barrier Model from Induced Pluripotent Stem Cell-derived Endothelial Cells to Predict the in vivo Permeability of Drugs. Neurosci Bull 2019; 35:996-1010. [PMID: 31079318 DOI: 10.1007/s12264-019-00384-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 02/02/2019] [Indexed: 10/26/2022] Open
Abstract
An in vitro blood-brain barrier (BBB) model is critical for enabling rapid screening of the BBB permeability of the drugs targeting on the central nervous system. Though many models have been developed, their reproducibility and renewability remain a challenge. Furthermore, drug transport data from many of the models do not correlate well with the data for in vivo BBB drug transport. Induced-pluripotent stem cell (iPSC) technology provides reproducible cell resources for in vitro BBB modeling. Here, we generated a human in vitro BBB model by differentiating the human iPSC (hiPSC) line GM25256 into brain endothelial-type cells. The model displayed BBB characteristics including tight junction proteins (ZO-1, claudin-5, and occludin) and endothelial markers (von Willebrand factor and Ulex), as well as high trans-endothelial electrical resistance (TEER) (1560 Ω.cm2 ± 230 Ω.cm2) and γ-GTPase activity. Co-culture with primary rat astrocytes significantly increased the TEER of the model (2970 Ω.cm2 to 4185 Ω.cm2). RNAseq analysis confirmed the expression of key BBB-related genes in the hiPSC-derived endothelial cells in comparison with primary human brain microvascular endothelial cells, including P-glycoprotein (Pgp) and breast cancer resistant protein (BCRP). Drug transport assays for nine CNS compounds showed that the permeability of non-Pgp/BCRP and Pgp/BCRP substrates across the model was strongly correlated with rodent in situ brain perfusion data for these compounds (R2 = 0.982 and R2 = 0.9973, respectively), demonstrating the functionality of the drug transporters in the model. Thus, this model may be used to rapidly screen CNS compounds, to predict the in vivo BBB permeability of these compounds and to study the biology of the BBB.
Collapse
|
190
|
Brown TD, Nowak M, Bayles AV, Prabhakarpandian B, Karande P, Lahann J, Helgeson ME, Mitragotri S. A microfluidic model of human brain (μHuB) for assessment of blood brain barrier. Bioeng Transl Med 2019; 4:e10126. [PMID: 31249876 PMCID: PMC6584314 DOI: 10.1002/btm2.10126] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 12/10/2018] [Accepted: 12/11/2018] [Indexed: 01/04/2023] Open
Abstract
Microfluidic cellular models, commonly referred to as "organs-on-chips," continue to advance the field of bioengineering via the development of accurate and higher throughput models, captivating the essence of living human organs. This class of models can mimic key in vivo features, including shear stresses and cellular architectures, in ways that cannot be realized by traditional two-dimensional in vitro models. Despite such progress, current organ-on-a-chip models are often overly complex, require highly specialized setups and equipment, and lack the ability to easily ascertain temporal and spatial differences in the transport kinetics of compounds translocating across cellular barriers. To address this challenge, we report the development of a three-dimensional human blood brain barrier (BBB) microfluidic model (μHuB) using human cerebral microvascular endothelial cells (hCMEC/D3) and primary human astrocytes within a commercially available microfluidic platform. Within μHuB, hCMEC/D3 monolayers withstood physiologically relevant shear stresses (2.73 dyn/cm2) over a period of 24 hr and formed a complete inner lumen, resembling in vivo blood capillaries. Monolayers within μHuB expressed phenotypical tight junction markers (Claudin-5 and ZO-1), which increased expression after the presence of hemodynamic-like shear stress. Negligible cell injury was observed when the monolayers were cultured statically, conditioned to shear stress, and subjected to nonfluorescent dextran (70 kDa) transport studies. μHuB experienced size-selective permeability of 10 and 70 kDa dextrans similar to other BBB models. However, with the ability to probe temporal and spatial evolution of solute distribution, μHuBs possess the ability to capture the true variability in permeability across a cellular monolayer over time and allow for evaluation of the full breadth of permeabilities that would otherwise be lost using traditional end-point sampling techniques. Overall, the μHuB platform provides a simplified, easy-to-use model to further investigate the complexities of the human BBB in real-time and can be readily adapted to incorporate additional cell types of the neurovascular unit and beyond.
Collapse
Affiliation(s)
- Tyler D Brown
- John A. Paulson School of Engineering and Applied Sciences Harvard University, 29 Oxford St. Cambridge MA 02138
- Wyss Institute of Biologically Inspired Engineering, Harvard University 3 Blackfan Circle, Boston MA 02115
| | - Maksymilian Nowak
- John A. Paulson School of Engineering and Applied Sciences Harvard University, 29 Oxford St. Cambridge MA 02138
- Wyss Institute of Biologically Inspired Engineering, Harvard University 3 Blackfan Circle, Boston MA 02115
| | - Alexandra V Bayles
- Dept. of Chemical Engineering University of California Santa Barbara CA 93106
| | | | - Pankaj Karande
- Dept. of Chemical and Biological Engineering Rensselaer Polytechnic Institute 110 8th Street, Troy NY 12180
| | - Joerg Lahann
- Dept. of Chemical Engineering University of Michigan Ann Arbor MI 48109
- Dept. of Material Science & Engineering University of Michigan Ann Arbor MI 48109
- Dept. of Macromolecular Science & Engineering University of Michigan Ann Arbor MI 48109
- Dept. of Biomedical Engineering, and Biointerfaces Institute University of Michigan Ann Arbor MI 48109
- Biointerfaces Institute University of Michigan Ann Arbor MI 48109
| | - Matthew E Helgeson
- Dept. of Chemical Engineering University of California Santa Barbara CA 93106
| | - Samir Mitragotri
- John A. Paulson School of Engineering and Applied Sciences Harvard University, 29 Oxford St. Cambridge MA 02138
- Wyss Institute of Biologically Inspired Engineering, Harvard University 3 Blackfan Circle, Boston MA 02115
| |
Collapse
|
191
|
Setiadi AF, Abbas AR, Jeet S, Wong K, Bischof A, Peng I, Lee J, Bremer M, Eggers EL, DeVoss J, Staton T, Herman A, von Büdingen HC, Townsend MJ. IL-17A is associated with the breakdown of the blood-brain barrier in relapsing-remitting multiple sclerosis. J Neuroimmunol 2019; 332:147-154. [PMID: 31034962 DOI: 10.1016/j.jneuroim.2019.04.011] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 04/18/2019] [Accepted: 04/19/2019] [Indexed: 01/29/2023]
Abstract
IL-17 has been implicated in the pathogenesis of multiple sclerosis (MS). Here, we show that blockade of IL-17A, but not IL-17F, attenuated experimental autoimmune encephalomyelitis (EAE). We further show that IL-17A levels were elevated in the CSF of relapsing-remitting MS (RRMS) patients and that they correlated with the CSF/serum albumin quotient (Qalb), a measure of blood-brain barrier (BBB) dysfunction. We then demonstrated that the combination of IL-17A and IL-6 reduced the expression of tight junction (TJ)-associated genes and disrupted monolayer integrity in the BBB cell line hCMEC/D3. However, unlike IL-17A, IL-6 in the CSF from RRMS patients did not correlate with Qalb. These data highlight the potential importance of targeting IL-17A in preserving BBB integrity in RRMS.
Collapse
Affiliation(s)
| | | | - Surinder Jeet
- Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Kit Wong
- Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Antje Bischof
- Weill Institute for Neurosciences, Department of Neurology, UCSF, 675 Nelson Rising Lane, San Francisco, California 94158, USA; Neurology and Neurologic Policlinic, Departments of Medicine, Biomedicine and Clinical Research, University Hospital Basel, Petersgraben 4, 4031 Basel, Switzerland
| | - Ivan Peng
- Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - James Lee
- Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Meire Bremer
- Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Erica L Eggers
- Weill Institute for Neurosciences, Department of Neurology, UCSF, 675 Nelson Rising Lane, San Francisco, California 94158, USA
| | - Jason DeVoss
- Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Tracy Staton
- Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Ann Herman
- Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - H-Christian von Büdingen
- Weill Institute for Neurosciences, Department of Neurology, UCSF, 675 Nelson Rising Lane, San Francisco, California 94158, USA
| | | |
Collapse
|
192
|
Quantitative Phenotyping of Cell-Cell Junctions to Evaluate ZO-1 Presentation in Brain Endothelial Cells. Ann Biomed Eng 2019; 47:1675-1687. [PMID: 30993538 DOI: 10.1007/s10439-019-02266-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 04/06/2019] [Indexed: 12/28/2022]
Abstract
The selective permeability of the blood-brain barrier (BBB) is controlled by tight junction-expressing brain endothelial cells. The integrity of these junctional proteins, which anchor to actin via zonula occludens (e.g., ZO-1), plays a vital role in barrier function. While disrupted junctions are linked with several neurodegenerative diseases, the mechanisms underlying disruption are not fully understood. This is largely due to the lack of appropriate models and efficient techniques to quantify edge-localized protein. Here, we developed a novel junction analyzer program (JAnaP) to semi-automate the quantification of junctional protein presentation. Because significant evidence suggests a link between myosin-II mediated contractility and endothelial barrier properties, we used the JAnaP to investigate how biochemical and physical cues associated with altered contractility influence ZO-1 presentation in brain endothelial cells. Treatment with contractility-decreasing agents increased continuous ZO-1 presentation; however, this increase was greatest on soft gels of brain-relevant stiffness, suggesting improved barrier maturation. This effect was reversed by biochemically inhibiting protein phosphatases to increase cell contractility on soft substrates. These results promote the use of brain-mimetic substrate stiffness in BBB model design and motivates the use of this novel JAnaP to provide insight into the role of junctional protein presentation in BBB physiology and pathologies.
Collapse
|
193
|
Masuda T, Hoshiyama T, Uemura T, Hirayama-Kurogi M, Ogata S, Furukawa A, Couraud PO, Furihata T, Ito S, Ohtsuki S. Large-Scale Quantitative Comparison of Plasma Transmembrane Proteins between Two Human Blood–Brain Barrier Model Cell Lines, hCMEC/D3 and HBMEC/ciβ. Mol Pharm 2019; 16:2162-2171. [DOI: 10.1021/acs.molpharmaceut.9b00114] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Takeshi Masuda
- AMED-CREST, Japan Agency for Medical Research and Development, 1-7-1 Otemachi, Chiyoda, Tokyo 100-0004, Japan
| | | | | | | | | | | | - Pierre-Olivier Couraud
- Institut Cochin, Paris Descartes University, Inserm U1016, CNRS UMR8104, Paris 75014, France
| | - Tomomi Furihata
- Department of Pharmacology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba-shi, Chiba 260-8670 Japan
| | - Shingo Ito
- AMED-CREST, Japan Agency for Medical Research and Development, 1-7-1 Otemachi, Chiyoda, Tokyo 100-0004, Japan
| | - Sumio Ohtsuki
- AMED-CREST, Japan Agency for Medical Research and Development, 1-7-1 Otemachi, Chiyoda, Tokyo 100-0004, Japan
| |
Collapse
|
194
|
Mossu A, Rosito M, Khire T, Li Chung H, Nishihara H, Gruber I, Luke E, Dehouck L, Sallusto F, Gosselet F, McGrath JL, Engelhardt B. A silicon nanomembrane platform for the visualization of immune cell trafficking across the human blood-brain barrier under flow. J Cereb Blood Flow Metab 2019; 39:395-410. [PMID: 30565961 PMCID: PMC6421249 DOI: 10.1177/0271678x18820584] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Here we report on the development of a breakthrough microfluidic human in vitro cerebrovascular barrier (CVB) model featuring stem cell-derived brain-like endothelial cells (BLECs) and nanoporous silicon nitride (NPN) membranes (µSiM-CVB). The nanoscale thinness of NPN membranes combined with their high permeability and optical transparency makes them an ideal scaffold for the assembly of an in vitro microfluidic model of the blood-brain barrier (BBB) featuring cellular elements of the neurovascular unit (NVU). Dual-chamber devices divided by NPN membranes yield tight barrier properties in BLECs and allow an abluminal pericyte-co-culture to be replaced with pericyte-conditioned media. With the benefit of physiological flow and superior imaging quality, the µSiM-CVB platform captures each phase of the multi-step T-cell migration across the BBB in live cell imaging. The small volume of <100 µL of the µSiM-CVB will enable in vitro investigations of rare patient-derived immune cells with the human BBB. The µSiM-CVB is a breakthrough in vitro human BBB model to enable live and high-quality imaging of human immune cell interactions with the BBB under physiological flow. We expect it to become a valuable new tool for the study of cerebrovascular pathologies ranging from neuroinflammation to metastatic cancer.
Collapse
Affiliation(s)
- Adrien Mossu
- 1 Theodor Kocher Institute, University of Bern, Bern, Switzerland
| | - Maria Rosito
- 1 Theodor Kocher Institute, University of Bern, Bern, Switzerland
| | - Tejas Khire
- 2 Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA
| | - Hung Li Chung
- 2 Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA
| | | | - Isabelle Gruber
- 1 Theodor Kocher Institute, University of Bern, Bern, Switzerland
| | - Emma Luke
- 2 Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA
| | - Lucie Dehouck
- 3 Blood Brain Barrier Laboratory, University of Artois, Lens, France
| | - Federica Sallusto
- 4 Institute for Research in Biomedicine, Università della Svizzera Italiana, Bellinzona, Switzerland.,5 Institute for Microbiology, ETH Zurich, Zurich, Switzerland
| | - Fabien Gosselet
- 3 Blood Brain Barrier Laboratory, University of Artois, Lens, France
| | - James L McGrath
- 2 Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA
| | | |
Collapse
|
195
|
Abstract
Treatment of certain central nervous system disorders, including different types of cerebral malignancies, is limited by traditional oral or systemic administrations of therapeutic drugs due to possible serious side effects and/or lack of the brain penetration and, therefore, the efficacy of the drugs is diminished. During the last decade, several new technologies were developed to overcome barrier properties of cerebral capillaries. This review gives a short overview of the structural elements and anatomical features of the blood–brain barrier. The various in vitro (static and dynamic), in vivo (microdialysis), and in situ (brain perfusion) blood–brain barrier models are also presented. The drug formulations and administration options to deliver molecules effectively to the central nervous system (CNS) are presented. Nanocarriers, nanoparticles (lipid, polymeric, magnetic, gold, and carbon based nanoparticles, dendrimers, etc.), viral and peptid vectors and shuttles, sonoporation and microbubbles are briefly shown. The modulation of receptors and efflux transporters in the cell membrane can also be an effective approach to enhance brain exposure to therapeutic compounds. Intranasal administration is a noninvasive delivery route to bypass the blood–brain barrier, while direct brain administration is an invasive mode to target the brain region with therapeutic drug concentrations locally. Nowadays, both technological and mechanistic tools are available to assist in overcoming the blood–brain barrier. With these techniques more effective and even safer drugs can be developed for the treatment of devastating brain disorders.
Collapse
|
196
|
Ysrayl BB, Balasubramaniam M, Albert I, Villalta F, Pandhare J, Dash C. A Novel Role of Prolidase in Cocaine-Mediated Breach in the Barrier of Brain Microvascular Endothelial Cells. Sci Rep 2019; 9:2567. [PMID: 30796241 PMCID: PMC6385491 DOI: 10.1038/s41598-018-37495-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 11/26/2018] [Indexed: 02/06/2023] Open
Abstract
Cocaine use is associated with breach in the blood brain barrier (BBB) and increased HIV-1 neuro-invasion. We show that the cellular enzyme "Prolidase" plays a key role in cocaine-induced disruption of the BBB. We established a barrier model to mimic the BBB by culturing human brain microvascular endothelial cells (HBMECs) in transwell inserts. In this model, cocaine treatment enhanced permeability of FITC-dextran suggesting a breach in the barrier. Interestingly, cocaine treatment increased the activity of matrix metallo-proteinases that initiate degradation of the BBB-associated collagen. Cocaine exposure also induced prolidase expression and activity in HBMECs. Prolidase catalyzes the final and rate-limiting step of collagen degradation during BBB remodeling. Knock-down of prolidase abrogated cocaine-mediated increased permeability suggesting a direct role of prolidase in BBB breach. To decipher the mechanism by which cocaine regulates prolidase, we probed the inducible nitric oxide synthase (iNOS) mediated phosphorylation of prolidase since mRNA levels of the protein were not altered upon cocaine treatment. We observed increased iNOS expression concurrent with increased prolidase phosphorylation in cocaine treated cells. Subsequently, inhibition of iNOS decreased prolidase phosphorylation and reduced cocaine-mediated permeability. Finally, cocaine treatment increased transmigration of monocytic cells through the HBMEC barrier. Knock-down of prolidase reduced cocaine-mediated monocyte transmigration, establishing a key role of prolidase in cocaine-induced breach in endothelial cell barrier.
Collapse
Affiliation(s)
- Binah Baht Ysrayl
- Center for AIDS Health Disparities Research, Meharry Medical College, Nashville, Tennessee, USA
- Center for Molecular and Behavioral Neurosciences, Meharry Medical College, Nashville, Tennessee, USA
- School of Graduate Studies and Research, Meharry Medical College, Nashville, Tennessee, USA
- Department of Microbiology, Immunology, and Physiology, Meharry Medical College, Nashville, Tennessee, USA
| | - Muthukumar Balasubramaniam
- Center for AIDS Health Disparities Research, Meharry Medical College, Nashville, Tennessee, USA
- Center for Molecular and Behavioral Neurosciences, Meharry Medical College, Nashville, Tennessee, USA
- Department of Microbiology, Immunology, and Physiology, Meharry Medical College, Nashville, Tennessee, USA
| | - Ife Albert
- Center for AIDS Health Disparities Research, Meharry Medical College, Nashville, Tennessee, USA
| | - Fernando Villalta
- Department of Microbiology, Immunology, and Physiology, Meharry Medical College, Nashville, Tennessee, USA
| | - Jui Pandhare
- Center for AIDS Health Disparities Research, Meharry Medical College, Nashville, Tennessee, USA.
- Center for Molecular and Behavioral Neurosciences, Meharry Medical College, Nashville, Tennessee, USA.
- School of Graduate Studies and Research, Meharry Medical College, Nashville, Tennessee, USA.
- Department of Microbiology, Immunology, and Physiology, Meharry Medical College, Nashville, Tennessee, USA.
| | - Chandravanu Dash
- Center for AIDS Health Disparities Research, Meharry Medical College, Nashville, Tennessee, USA.
- Center for Molecular and Behavioral Neurosciences, Meharry Medical College, Nashville, Tennessee, USA.
- School of Graduate Studies and Research, Meharry Medical College, Nashville, Tennessee, USA.
- Department of Microbiology, Immunology, and Physiology, Meharry Medical College, Nashville, Tennessee, USA.
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, Meharry Medical College, Nashville, Tennessee, USA.
| |
Collapse
|
197
|
Piazzini V, Landucci E, D'Ambrosio M, Tiozzo Fasiolo L, Cinci L, Colombo G, Pellegrini-Giampietro DE, Bilia AR, Luceri C, Bergonzi MC. Chitosan coated human serum albumin nanoparticles: A promising strategy for nose-to-brain drug delivery. Int J Biol Macromol 2019; 129:267-280. [PMID: 30726749 DOI: 10.1016/j.ijbiomac.2019.02.005] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 02/01/2019] [Accepted: 02/02/2019] [Indexed: 12/29/2022]
Abstract
The aim of the present study was the development of human serum albumin nanoparticles (HSA NPs) as nose-to-brain carrier. To strengthen, the efficacy of nanoparticles as drug delivery system, the influence of chitosan (CS) coating on the performance of HSA NPs was investigated for nasal application. HSA NPs were prepared by desolvation technique. CS coating was obtained adding the CS solution to HSA NPs. The mean particle sizes was 241 ± 18 nm and 261 ± 8 nm and the ζ-potential was -47 ± 3 mV and + 45 ± 1 mV for HSA NPs and CS-HSA NPs, respectively. The optimized formulations showed excellent stability upon storage both as suspension and as freeze-dried product after 3 months. The mucoadhesion properties were assessed by turbidimetric and indirect method. NPs were loaded with sulforhodamine B sodium salt as model drug and the effect of CS coating was investigated performing release studies, permeation and uptake experiments using Caco-2 and hCMEC/D3 cells as model of the nasal epithelium and blood-brain barrier, respectively. Furthermore, ex vivo diffusion experiments have been carried out using rabbit nasal mucosa. Finally, the ability of the formulations to reversibly open tight and gap junctions was explored by western blotting and RT-PCR analyzing in both Caco-2 and hCMEC/D3 cells.
Collapse
Affiliation(s)
- Vieri Piazzini
- Department of Chemistry, via U. Schiff 6, 50519, Sesto Fiorentino, Florence, Italy
| | - Elisa Landucci
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, Viale Pieraccini 6, 50139 Florence, Italy
| | - Mario D'Ambrosio
- Department of NEUROFARBA, Department of Neurosciences, Psychology, Drug Research and Child Health, Section of Pharmacology and Toxicology, Viale Pieraccini 6, 50139 Florence, Italy
| | - Laura Tiozzo Fasiolo
- Department of Food and Drug, via delle Scienze 27/A, 43124 Parma, Italy; Department of Life Sciences and Biotechnology, Via Fossato di Mortara 17/19, 44121 Ferrara, Italy
| | - Lorenzo Cinci
- Department of NEUROFARBA, Department of Neurosciences, Psychology, Drug Research and Child Health, Section of Pharmacology and Toxicology, Viale Pieraccini 6, 50139 Florence, Italy
| | - Gaia Colombo
- Department of Life Sciences and Biotechnology, Via Fossato di Mortara 17/19, 44121 Ferrara, Italy
| | | | - Anna Rita Bilia
- Department of Chemistry, via U. Schiff 6, 50519, Sesto Fiorentino, Florence, Italy
| | - Cristina Luceri
- Department of NEUROFARBA, Department of Neurosciences, Psychology, Drug Research and Child Health, Section of Pharmacology and Toxicology, Viale Pieraccini 6, 50139 Florence, Italy
| | | |
Collapse
|
198
|
Khan AM, Korzeniowska B, Gorshkov V, Tahir M, Schrøder H, Skytte L, Rasmussen KL, Khandige S, Møller-Jensen J, Kjeldsen F. Silver nanoparticle-induced expression of proteins related to oxidative stress and neurodegeneration in an in vitro human blood-brain barrier model. Nanotoxicology 2019; 13:221-239. [DOI: 10.1080/17435390.2018.1540728] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Asif Manzoor Khan
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Barbara Korzeniowska
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Vladimir Gorshkov
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Muhammad Tahir
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Henrik Schrøder
- Department of Pathology, Odense University Hospital, Odense, Denmark
| | - Lilian Skytte
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Kaare Lund Rasmussen
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Surabhi Khandige
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Jakob Møller-Jensen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Frank Kjeldsen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
199
|
In Vitro Cell Models of the Human Blood-Brain Barrier: Demonstrating the Beneficial Influence of Shear Stress on Brain Microvascular Endothelial Cell Phenotype. ACTA ACUST UNITED AC 2018. [DOI: 10.1007/978-1-4939-8946-1_5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
200
|
DeStefano JG, Jamieson JJ, Linville RM, Searson PC. Benchmarking in vitro tissue-engineered blood-brain barrier models. Fluids Barriers CNS 2018; 15:32. [PMID: 30514389 PMCID: PMC6280508 DOI: 10.1186/s12987-018-0117-2] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 11/11/2018] [Indexed: 12/13/2022] Open
Abstract
The blood–brain barrier (BBB) plays a key role in regulating transport into and out of the brain. With increasing interest in the role of the BBB in health and disease, there have been significant advances in the development of in vitro models. The value of these models to the research community is critically dependent on recapitulating characteristics of the BBB in humans or animal models. However, benchmarking in vitro models is surprisingly difficult since much of our knowledge of the structure and function of the BBB comes from in vitro studies. Here we describe a set of parameters that we consider a starting point for benchmarking and validation. These parameters are associated with structure (ultrastructure, wall shear stress, geometry), microenvironment (basement membrane and extracellular matrix), barrier function (transendothelial electrical resistance, permeability, efflux transport), cell function (expression of BBB markers, turnover), and co-culture with other cell types (astrocytes and pericytes). In suggesting benchmarks, we rely primarily on imaging or direct measurements in humans and animal models.
Collapse
Affiliation(s)
- Jackson G DeStefano
- Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD, USA.,Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - John J Jamieson
- Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD, USA.,Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Raleigh M Linville
- Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD, USA.,Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Peter C Searson
- Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD, USA. .,Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD, USA. .,120 Croft Hall, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD, 21218, USA.
| |
Collapse
|