151
|
Khuituan P, K-da S, Bannob K, Hayeeawaema F, Peerakietkhajorn S, Tipbunjong C, Wichienchot S, Charoenphandhu N. Prebiotic oligosaccharides from dragon fruits alter gut motility in mice. Biomed Pharmacother 2019; 114:108821. [DOI: 10.1016/j.biopha.2019.108821] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 03/20/2019] [Accepted: 03/26/2019] [Indexed: 12/28/2022] Open
|
152
|
Keski-Rahkonen P, Kolehmainen M, Lappi J, Micard V, Jokkala J, Rosa-Sibakov N, Pihlajamäki J, Kirjavainen PV, Mykkänen H, Poutanen K, Gunter MJ, Scalbert A, Hanhineva K. Decreased plasma serotonin and other metabolite changes in healthy adults after consumption of wholegrain rye: an untargeted metabolomics study. Am J Clin Nutr 2019; 109:1630-1639. [PMID: 31136658 DOI: 10.1093/ajcn/nqy394] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 12/31/2018] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Wholegrain consumption has been associated with beneficial health effects including reduction of diabetes and cancer risk; however, the underlying mechanisms are not fully understood. OBJECTIVE The aim of this study was to characterize the effects of wholegrain rye intake on circulating metabolites in a human intervention study using untargeted metabolomics. METHODS The intervention consisted of 2 successive 4-wk periods in a randomized crossover design, where 15 adults consumed wholegrain rye bread (WGR) or white wheat bread enriched with fermented rye bran (WW+RB), following a 4-wk rye-free period with white wheat bread (WW). Fasting plasma samples were collected at the end of each period and analyzed using liquid chromatography-mass spectrometry. Metabolic profiles were compared to identify compounds discriminating WGR from the WW+RB and WW periods. Because peripheral serotonin is produced mainly in the gut, a hypothesis of its altered biosynthesis as a response to increased cereal fiber intake was tested by measuring intestinal serotonin of mice fed for 9 wk on a high-fat diet supplemented with different sources of fiber (rye bran flour, ground wheat aleurone, or powdered cellulose). RESULTS Five endogenous metabolites and 15 rye phytochemicals associated with WGR intake were identified. Plasma concentrations of serotonin, taurine, and glycerophosphocholine were significantly lower after the WGR than WW period (Q < 0.05). Concentrations of 2 phosphatidylethanolamine plasmalogens, PE(18:2/P-18:0) and PE(18:2/P-16:0), were lower after the WGR period than the WW+RB period (Q < 0.05). The concentration of serotonin was significantly lower in the colonic tissue of mice that consumed rye bran or wheat aleurone compared with cellulose (P < 0.001). CONCLUSIONS Wholegrain rye intake decreases plasma serotonin in healthy adults when compared with refined wheat. Intake of rye bran and wheat aleurone decreases colonic serotonin in mice. These results suggest that peripheral serotonin could be a potential link between wholegrain consumption and its associated health effects.Data used in the study were derived from a trial registered at www.clinicaltrials.gov as NCT03550365.
Collapse
Affiliation(s)
| | - Marjukka Kolehmainen
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| | - Jenni Lappi
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| | - Valerie Micard
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
- Montpellier SupAgro-INRA-University of Montpellier-CIRAD, Montpellier, France
| | - Jenna Jokkala
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| | - Natalia Rosa-Sibakov
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
- Montpellier SupAgro-INRA-University of Montpellier-CIRAD, Montpellier, France
| | - Jussi Pihlajamäki
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
- Clinical Nutrition and Obesity Center, Kuopio University Hospital, Kuopio, Finland
| | - Pirkka V Kirjavainen
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
- Environmental Health Unit, The National Institute for Health and Welfare, Kuopio, Finland
| | - Hannu Mykkänen
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| | - Kaisa Poutanen
- VTT Technical Research Centre of Finland, Espoo, Finland
| | - Marc J Gunter
- International Agency for Research on Cancer, Lyon, France
| | | | - Kati Hanhineva
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
153
|
Liu D, Wen B, Zhu K, Luo Y, Li J, Li Y, Lin H, Huang J, Liu Z. Antibiotics-induced perturbations in gut microbial diversity influence metabolic phenotypes in a murine model of high-fat diet-induced obesity. Appl Microbiol Biotechnol 2019; 103:5269-5283. [PMID: 31020379 DOI: 10.1007/s00253-019-09764-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 03/08/2019] [Accepted: 03/12/2019] [Indexed: 12/11/2022]
Abstract
Gut microbiota play a key role in the regulation of obesity and associated metabolic disorders. To study the relationship between them, antibiotics have been widely used to generate pseudo-germ-free rodents as control models. However, it is not clear whether antibiotics impact an animal's metabolic phenotype. Therefore, the effect of antibiotics-induced gut microbial perturbations on metabolic phenotypes in high-fat diet (HFD) fed mice was investigated. The results showed that antibiotics perturbed gut microbial composition and structure. Community diversity and richness were reduced, and the phyla Firmicutes/Bacteroidetes (F/B) ratio was decreased by antibiotics. Visualization of Unifrac distance data using principal component analysis (PCA) and unweighted pair-group method with arithmetic mean (UPGAM) demonstrated that fecal samples of HFD-fed mice separated from those of chow diet (CD) fed mice. Fecal samples from antibiotics-treated and non-treated mice were clustered into two different microbial populations. Moreover, antibiotics suppressed HFD-induced metabolic features, including body weight gain (BWG), liver weight (LW), epididymal fat weight (EFW), and serum levels of total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), alanine aminotransferase (ALT), fasting blood glucose (FBG), and insulin (INS) significantly (P < 0.05). Lachnospiraceae, Ruminiclostridium and Helicobacter, biomarkers of mouse gut microbiota before treatment by antibiotics, were positively correlated with obesity phenotypes significantly (P < 0.05) and were decreased by (92.95 ± 5.09) %, (97.73 ± 2.09) % and (99.48 ± 0.21) % respectively after 30 days of treatment by antibiotics. However, Bacteroidia were enriched in HFD-fed antibiotics-treated mice and were negatively correlated with obesity phenotypes significantly (P < 0.05). We suggested that the antibiotics-induced depletion of Lachnospiraceae, Ruminiclostridium, and Helicobacter, and the decrease in F/B ratio in gut microbiota played a role in the prevention of HFD-induced obesity in mice.
Collapse
Affiliation(s)
- Dongmin Liu
- Key Laboratory of Ministry of Education for Tea Science, Hunan Agricultural University, Changsha, 410128, China.,Hunan University of Science and Engineering, Yongzhou, 425199, China
| | - Beibei Wen
- Key Laboratory of Ministry of Education for Tea Science, Hunan Agricultural University, Changsha, 410128, China
| | - Kun Zhu
- Key Laboratory of Ministry of Education for Tea Science, Hunan Agricultural University, Changsha, 410128, China
| | - Yong Luo
- Key Laboratory of Ministry of Education for Tea Science, Hunan Agricultural University, Changsha, 410128, China
| | - Juan Li
- Key Laboratory of Ministry of Education for Tea Science, Hunan Agricultural University, Changsha, 410128, China.,National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Changsha, 410128, China.,Collaborative Innovation Center of Utilization of Functional Ingredients from Botanicals, Changsha, 410128, China
| | - Yinhua Li
- Key Laboratory of Ministry of Education for Tea Science, Hunan Agricultural University, Changsha, 410128, China.,National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Changsha, 410128, China.,Collaborative Innovation Center of Utilization of Functional Ingredients from Botanicals, Changsha, 410128, China
| | - Haiyan Lin
- Key Laboratory of Ministry of Education for Tea Science, Hunan Agricultural University, Changsha, 410128, China.,National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Changsha, 410128, China.,Collaborative Innovation Center of Utilization of Functional Ingredients from Botanicals, Changsha, 410128, China
| | - Jianan Huang
- Key Laboratory of Ministry of Education for Tea Science, Hunan Agricultural University, Changsha, 410128, China. .,National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Changsha, 410128, China. .,Collaborative Innovation Center of Utilization of Functional Ingredients from Botanicals, Changsha, 410128, China.
| | - Zhonghua Liu
- Key Laboratory of Ministry of Education for Tea Science, Hunan Agricultural University, Changsha, 410128, China. .,National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Changsha, 410128, China. .,Collaborative Innovation Center of Utilization of Functional Ingredients from Botanicals, Changsha, 410128, China.
| |
Collapse
|
154
|
Antibiotics and the nervous system: More than just the microbes? Brain Behav Immun 2019; 77:7-15. [PMID: 30582961 DOI: 10.1016/j.bbi.2018.12.014] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 12/18/2018] [Accepted: 12/20/2018] [Indexed: 12/20/2022] Open
Abstract
The use of antibiotics has recently risen to prominence in neuroscience due to their potential value in studying the microbiota-gut-brain axis. In this context they have been largely employed to illustrate the many influences of the gut microbiota on brain function and behaviour. Much of this research is bolstered by the abnormal behaviour seen in germ-free animals and other well-controlled experiments. However, this literature has largely failed to consider the neuroactive potential of antibiotics themselves, independent from, or in addition to, their microbicidal effects. This is problematic, as clinical as well as experimental literature, largely neglected through the past decade, has clearly demonstrated that broad classes of antibiotics are neuroactive or neurotoxic. This is true even for some antibiotics that are widely regarded as not absorbed in the intestinal tract, and is especially concerning when considering the highly-concentrated and widely-ranging doses that have been used. In this review we will critically survey the clinical and experimental evidence that antibiotics may influence a variety of nervous system functions, from the enteric nervous system through to the brain and resultant behaviour. We will discuss substantial evidence which clearly suggests neuro-activity or -toxicity by most classes of antibiotics. We will conclude that, while evidence for the microbiota-gut-brain axis remains strong, clinical and experimental studies which employ antibiotics to probe it must consider this potential confound.
Collapse
|
155
|
Clostridium ramosum regulates enterochromaffin cell development and serotonin release. Sci Rep 2019; 9:1177. [PMID: 30718836 PMCID: PMC6362283 DOI: 10.1038/s41598-018-38018-z] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 11/14/2018] [Indexed: 12/22/2022] Open
Abstract
Peripheral serotonin (5-hydroxytryptamine: 5-HT) synthesized in the intestine by enterochromaffin cells (ECs), plays an important role in the regulation of peristaltic of the gut, epithelial secretion and promotes the development and maintenance of the enteric neurons. Recent studies showed that the indigenous gut microbiota modulates 5-HT signalling and that ECs use sensory receptors to detect dietary and microbiota-derived signals from the lumen to subsequently transduce the information to the nervous system. We hypothesized that Clostridium ramosum by increasing gut 5-HT availability consequently contributes to high-fat diet-induced obesity. Using germ-free mice and mice monoassociated with C. ramosum, intestinal cell lines and mouse organoids, we demonstrated that bacterial cell components stimulate host 5-HT secretion and program the differentiation of colonic intestinal stem progenitors toward the secretory 5-HT-producing lineage. An elevated 5-HT level regulates the expression of major proteins involved in intestinal fatty acid absorption in vitro, suggesting that the presence of C. ramosum in the gut promotes 5-HT secretion and thereby could facilitates intestinal lipid absorption and the development of obesity.
Collapse
|
156
|
Pretreatment with broad-spectrum antibiotics alters the pharmacokinetics of major constituents of Shaoyao-Gancao decoction in rats after oral administration. Acta Pharmacol Sin 2019; 40:288-296. [PMID: 29773886 DOI: 10.1038/s41401-018-0011-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 01/23/2018] [Accepted: 01/31/2018] [Indexed: 12/11/2022]
Abstract
The influence of broad-spectrum antibiotics on the pharmacokinetics and biotransformation of major constituents of Shaoyao-Gancao decoction (SGD) in rats was investigated. The pharmacokinetic behaviors of paeoniflorin (PF), albiflorin (AF), liquiritin (LT), isoliquiritin (ILT), liquiritin apioside (LA), isoliquiritin apioside (ILA), and glycyrrhizic acid (GL), seven major constituents of SGD, as well as glycyrrhetinic acid (GA), a major metabolite of GL, were analyzed. A 1-week pretreatment with broad-spectrum antibiotics (ampicillin, metronidazole, neomycin, 1 g L-1; and vancomycin, 0.5 g L-1) via drinking water reduced plasma exposure of the major constituents. The AUC0-24 h of PF and LT was significantly decreased by 28.7% and 33.8% (P < 0.05 and P < 0.005), respectively. Although the differences were not statistically significant, the AUC0-24 h of AF, ILT, LA, ILA, and GL was decreased by 31.4%, 50.9%, 16.9%, 44.1%, and 37.0%, respectively, compared with the control group. In addition, the plasma GA exposure in the antibiotic-pretreated group was significantly lower (P < 0.005) than the control group. The in vitro stability of the major constituents of SGD in the rat intestinal contents with or without broad-spectrum antibiotics was also investigated. The major constituents were comparatively stable in the rat duodenum contents, and the biotransformation of GL mainly occurred in the rat colon contents. In summary, broad-spectrum antibiotics suppressed the absorption of the major constituents of SGD and significantly inhibited the biotransformation of GL to GA by suppressing the colon microbiota. The results indicated a potential clinical drug-drug interaction (DDI) when SGD was administered with broad-spectrum antibiotics.
Collapse
|
157
|
Wu H, Denna TH, Storkersen JN, Gerriets VA. Beyond a neurotransmitter: The role of serotonin in inflammation and immunity. Pharmacol Res 2019; 140:100-114. [DOI: 10.1016/j.phrs.2018.06.015] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 06/01/2018] [Accepted: 06/17/2018] [Indexed: 12/16/2022]
|
158
|
Stasi C, Sadalla S, Milani S. The Relationship Between the Serotonin Metabolism, Gut-Microbiota and the Gut-Brain Axis. Curr Drug Metab 2019; 20:646-655. [PMID: 31345143 DOI: 10.2174/1389200220666190725115503] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 06/05/2019] [Accepted: 07/16/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Serotonin (5-HT) has a pleiotropic function in gastrointestinal, neurological/psychiatric and liver diseases. The aim of this review was to elucidate whether the gut-microbiota played a critical role in regulating peripheral serotonin levels. METHODS We searched for relevant studies published in English using the PubMed database from 1993 to the present. RESULTS Several studies suggested that alterations in the gut-microbiota may contribute to a modulation of serotonin signalling. The first indication regarded the changes in the composition of the commensal bacteria and the intestinal transit time caused by antibiotic treatment. The second indication regarded the changes in serotonin levels correlated to specific bacteria. The third indication regarded the fact that decreased serotonin transporter expression was associated with a shift in gut-microbiota from homeostasis to inflammatory type microbiota. Serotonin plays a key role in the regulation of visceral pain, secretion, and initiation of the peristaltic reflex; however, its altered levels are also detected in many different psychiatric disorders. Symptoms of some gastrointestinal functional disorders may be due to deregulation in central nervous system activity, dysregulation at the peripheral level (intestine), or a combination of both (brain-gut axis) by means of neuro-endocrine-immune stimuli. Moreover, several studies have demonstrated the profibrogenic role of 5-HT in the liver, showing that it works synergistically with platelet-derived growth factor in stimulating hepatic stellate cell proliferation. CONCLUSION Although the specific interaction mechanisms are still unclear, some studies have suggested that there is a correlation between the gut-microbiota, some gastrointestinal and liver diseases and the serotonin metabolism.
Collapse
Affiliation(s)
- Cristina Stasi
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
| | - Sinan Sadalla
- Department of Medical and Surgical Sciences, University of Bologna, 40126 Bologna, Italy
| | - Stefano Milani
- Department of Biomedical, Experimental and Clinical Sciences, University of Florence, 50134 Florence, Italy
| |
Collapse
|
159
|
Kennedy EA, King KY, Baldridge MT. Mouse Microbiota Models: Comparing Germ-Free Mice and Antibiotics Treatment as Tools for Modifying Gut Bacteria. Front Physiol 2018; 9:1534. [PMID: 30429801 PMCID: PMC6220354 DOI: 10.3389/fphys.2018.01534] [Citation(s) in RCA: 380] [Impact Index Per Article: 54.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 10/11/2018] [Indexed: 12/14/2022] Open
Abstract
As the intestinal microbiota has become better appreciated as necessary for maintenance of physiologic homeostasis and also as a modulator of disease processes, there has been a corresponding increase in manipulation of the microbiota in mouse models. While germ-free mouse models are generally considered to be the gold standard for studies of the microbiota, many investigators turn to antibiotics treatment models as a rapid, inexpensive, and accessible alternative. Here we describe and compare these two approaches, detailing advantages and disadvantages to both. Further, we detail what is known about the effects of antibiotics treatment on cell populations, cytokines, and organs, and clarify how this compares to germ-free models. Finally, we briefly describe recent findings regarding microbiota regulation of infectious diseases and other immunologic challenges by the microbiota, and highlight important future directions and considerations for the use of antibiotics treatment in manipulation of the microbiota.
Collapse
Affiliation(s)
- Elizabeth A. Kennedy
- Division of Infectious Diseases, Department of Medicine, Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, United States
| | - Katherine Y. King
- Section of Infectious Diseases, Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States
| | - Megan T. Baldridge
- Division of Infectious Diseases, Department of Medicine, Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
160
|
Heat-killed Lactobacillus casei subsp. casei 327 promotes colonic serotonin synthesis in mice. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.05.050] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
|
161
|
Zhao L, Huang Y, Lu L, Yang W, Huang T, Lin Z, Lin C, Kwan H, Wong HLX, Chen Y, Sun S, Xie X, Fang X, Yang H, Wang J, Zhu L, Bian Z. Saturated long-chain fatty acid-producing bacteria contribute to enhanced colonic motility in rats. MICROBIOME 2018; 6:107. [PMID: 29903041 PMCID: PMC6003035 DOI: 10.1186/s40168-018-0492-6] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 06/01/2018] [Indexed: 05/24/2023]
Abstract
BACKGROUND The gut microbiota is closely associated with gastrointestinal (GI) motility disorder, but the mechanism(s) by which bacteria interact with and affect host GI motility remains unclear. In this study, through using metabolomic and metagenomic analyses, an animal model of neonatal maternal separation (NMS) characterized by accelerated colonic motility and gut dysbiosis was used to investigate the mechanism underlying microbiota-driven motility dysfunction. RESULTS An excess of intracolonic saturated long-chain fatty acids (SLCFAs) was associated with enhanced bowel motility in NMS rats. Heptadecanoic acid (C17:0) and stearic acid (C18:0), as the most abundant odd- and even-numbered carbon SLCFAs in the colon lumen, can promote rat colonic muscle contraction and increase stool frequency. Increase of SLCFAs was positively correlated with elevated abundances of Prevotella, Lactobacillus, and Alistipes. Functional annotation found that the level of bacterial LCFA biosynthesis was highly enriched in NMS group. Essential synthetic genes Fabs were largely identified from the genera Prevotella, Lactobacillus, and Alistipes. Pseudo germ-free (GF) rats receiving fecal microbiota from NMS donors exhibited increased defecation frequency and upregulated bacterial production of intracolonic SLCFAs. Modulation of gut dysbiosis by neomycin effectively attenuated GI motility and reduced bacterial SLCFA generation in the colon lumen of NMS rats. CONCLUSIONS These findings reveal a previously unknown relationship between gut bacteria, intracolonic SLCFAs, and host GI motility, suggesting the importance of SLCFA-producing bacteria in GI motility disorders. Further exploration of this relationship could lead to a precise medication targeting the gut microbiota for treating GI motility disorders.
Collapse
Affiliation(s)
- Ling Zhao
- Chinese Medicine Clinical Study Center, Jockey Club School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China
| | | | - Lin Lu
- Chinese Medicine Clinical Study Center, Jockey Club School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China
| | - Wei Yang
- Chinese Medicine Clinical Study Center, Jockey Club School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China
| | - Tao Huang
- Chinese Medicine Clinical Study Center, Jockey Club School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China
| | - Zesi Lin
- Preparatory Office of Shenzhen-Melbourne Institute of Life Sciences and Bioengineering, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Chengyuan Lin
- Chinese Medicine Clinical Study Center, Jockey Club School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China
- YMU-HKBU Joint Laboratory of Traditional Natural Medicine, Yunnan Minzu University, Kunming, China
| | - Hiuyee Kwan
- Chinese Medicine Clinical Study Center, Jockey Club School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China
| | - Hoi Leong Xavier Wong
- Chinese Medicine Clinical Study Center, Jockey Club School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China
| | - Yang Chen
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Silong Sun
- BGI Genomics, BGI-Shenzhen, Shenzhen, China
| | | | - Xiaodong Fang
- BGI Genomics, BGI-Shenzhen, Shenzhen, China
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | | | | | - Lixin Zhu
- Digestive Diseases and Nutrition Center, Department of Pediatrics, The State University of New York at Buffalo, 3435 Main Street, 422BRB, Buffalo, NY, 14214, USA.
| | - Zhaoxiang Bian
- Chinese Medicine Clinical Study Center, Jockey Club School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China.
| |
Collapse
|
162
|
Deng Y, Li M, Mei L, Cong LM, Liu Y, Zhang BB, He CY, Zheng PY, Yuan JL. Manipulation of intestinal dysbiosis by a bacterial mixture ameliorates loperamide-induced constipation in rats. Benef Microbes 2018; 9:453-464. [PMID: 29633634 DOI: 10.3920/bm2017.0062] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Constipation has a significant influence on quality of life. Patients with constipation have slow waves in their gastrointestinal smooth muscles and less faecal water contents, which are closely associated with down-regulation of the interstitial cells of Cajal (ICC) in the gastrointestinal muscles and the aquaporin protein AQP3 expressed in colon epithelial cells. Recent studies supported that patients with constipation have altered intestinal microbial structures compared with healthy controls. Intestinal dysbiosis might be one possible pathophysiological mechanism causing constipation. Bacterial strains, such as Lactobacillus spp., have shown many beneficial effects on the amelioration of constipation. However, few studies reported the structural changes of intestinal microbiota post-intervention of probiotics. In this study, a bacterial mixture was administrated to rats with loperamide-induced constipation. Effects of the bacterial mixture on small intestine transit (SIT), faecal water content, and the intestinal microbiome in rats were evaluated. Meanwhile, we investigated several factors involved in signalling pathways that regulate function of ICC and expression of AQP3 to discuss the possible underlying molecular mechanisms. Intervention of the bacterial mixture improved SIT and faecal water content in constipated rats. The up-regulation of C-kit/SP signalling pathways in ICC and AQP3 significantly contributed to improvements. These changes were closely associated with the manipulation of intestinal dysbiosis in constipated rats. Furthermore, our results revealed the important role of intestinal microbiota in affecting gut motility through regulation of serotonin biosynthesis. This monoamine neurotransmitter, secreted from enterochromaffin cells, up-regulated both substance P/neurokinin 1 receptors pathway of ICC and the expression of AQP3 in intestinal epithelial cells. Our study suggested that the disrupted microbiome in patients could be a potential therapeutic target for the improvement of constipation.
Collapse
Affiliation(s)
- Y Deng
- 1 Department of Microecology, College of Basic Medical Science, Dalian Medical University, Dalian, China P.R
| | - M Li
- 1 Department of Microecology, College of Basic Medical Science, Dalian Medical University, Dalian, China P.R
| | - L Mei
- 2 Department of Gastroenterology, the Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China P.R
| | - L M Cong
- 1 Department of Microecology, College of Basic Medical Science, Dalian Medical University, Dalian, China P.R
| | - Y Liu
- 1 Department of Microecology, College of Basic Medical Science, Dalian Medical University, Dalian, China P.R
| | - B B Zhang
- 3 Laboratory of Pathogenic Biology, College of Basic Medical Science, Dalian Medical University, Dalian, China P.R
| | - C Y He
- 1 Department of Microecology, College of Basic Medical Science, Dalian Medical University, Dalian, China P.R
| | - P Y Zheng
- 2 Department of Gastroenterology, the Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China P.R
| | - J L Yuan
- 1 Department of Microecology, College of Basic Medical Science, Dalian Medical University, Dalian, China P.R
| |
Collapse
|
163
|
Long-term follow-up of the effects of fecal microbiota transplantation in combination with soluble dietary fiber as a therapeutic regimen in slow transit constipation. SCIENCE CHINA-LIFE SCIENCES 2018; 61:779-786. [PMID: 29441452 DOI: 10.1007/s11427-017-9229-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 11/22/2017] [Indexed: 02/07/2023]
Abstract
As some studies have reported that strategies targeting the gut microbiota such as fecal microbiota transplantation (FMT) with or without other microecological therapy might have efficacy in treating slow transit constipation (STC), we conducted a single-center, open-label trial to study the long-term effect of FMT combined with soluble dietary fiber (pectin) on STC. Thirty-one adult patients with STC were enrolled into the trial. Patients received 6-day FMT procedures repeatedly for the first 3 months and soluble dietary fiber (pectin) daily during the follow-up. The rate of clinical remission and improvement, stool consistency, the Wexner constipation scale, and assessment of constipation-related symptoms were evaluated at week 4 and 1 year later. The clinical remission and improvement rates at week 4 were 69.0% (20/29) and 75.9% (22/29), respectively. At the end of the study, 48.3% (14/29) of patients continued to have at least three complete spontaneous bowel movements per week and 58.6% (17/29) of patients showed clinical improvements. Stool consistency, the Wexner constipation scale, and constipation symptoms improved both at short-term and long-term follow-up. The results indicated that FMT in combination with soluble dietary fiber (pectin) had both short-term and long-term efficacy in treating STC.
Collapse
|
164
|
Abstract
PURPOSE OF REVIEW To summarize the most recent findings relevant to the biology of serotonin (5-hydroxytryptamine; 5-HT) and the enzyme tryptophan hydroxylase (TPH) in human gastrointestinal disease. RECENT FINDINGS Serotonin is synthesized in the central nervous system (CNS) and the gastrointestinal tract where it is secreted from enteroendocrine cells. Its biosynthesis is regulated by two isoforms of the enzyme TPH of which TPH1 is localized predominantly in gastrointestinal enteroendocrine cells. Serotonin activates the peristaltic reflexes, regulates gastrointestinal motility, and has a role in intestinal inflammation. Inhibition of TPH with novel molecules represents a new pharmacological tool in the successful management of carcinoid syndrome in patients with gastrointestinal neuroendocrine tumors (GI-NETs). Certain 5-HT receptor subtype agonists and antagonists are useful in the treatment of functional gastrointestinal disorders. SUMMARY The gastrointestinal tract is the largest storage organ for serotonin where its biosynthesis is regulated by TPH1. It has several important functions in gastrointestinal motility, secretion, and inflammation. Furthermore, TPH represents a target for inhibitory pharmacological therapy of serotonin access states such as the carcinoid syndrome.
Collapse
Affiliation(s)
- Tara Swami
- Section of Gastroenterology, Boston University School of Medicine, Boston, Massachusetts, USA
| | | |
Collapse
|
165
|
Antibiotic Persistence as a Metabolic Adaptation: Stress, Metabolism, the Host, and New Directions. Pharmaceuticals (Basel) 2018; 11:ph11010014. [PMID: 29389876 PMCID: PMC5874710 DOI: 10.3390/ph11010014] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Revised: 01/25/2018] [Accepted: 01/27/2018] [Indexed: 12/16/2022] Open
Abstract
Persistence is a phenomenon during which a small fraction of a total bacterial population survives treatment with high concentrations of antibiotics for an extended period of time. In conjunction with biofilms, antibiotic persisters represent a major cause of recalcitrant and recurring infections, resulting in significant morbidity and mortality. In this review, we discuss the clinical significance of persister cells and the central role of bacterial metabolism in their formation, specifically with respect to carbon catabolite repression, sugar metabolism, and growth regulation. Additionally, we will examine persister formation as an evolutionary strategy used to tolerate extended periods of stress and discuss some of the response mechanisms implicated in their formation. To date, the vast majority of the mechanistic research examining persistence has been conducted in artificial in vitro environments that are unlikely to be representative of host conditions. Throughout this review, we contextualize the existing body of literature by discussing how in vivo conditions may create ecological niches that facilitate the development of persistence. Lastly, we identify how the development of next-generation sequencing and other “big data” tools may enable researchers to examine persistence mechanisms within the host to expand our understanding of their clinical importance.
Collapse
|
166
|
Mullineaux-Sanders C, Suez J, Elinav E, Frankel G. Sieving through gut models of colonization resistance. Nat Microbiol 2018; 3:132-140. [PMID: 29358683 DOI: 10.1038/s41564-017-0095-1] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 12/08/2017] [Indexed: 12/24/2022]
Abstract
The development of innovative high-throughput genomics and metabolomics technologies has considerably expanded our understanding of the commensal microorganisms residing within the human body, collectively termed the microbiota. In recent years, the microbiota has been reported to have important roles in multiple aspects of human health, pathology and host-pathogen interactions. One function of commensals that has attracted particular interest is their role in protection against pathogens and pathobionts, a concept known as colonization resistance. However, pathogens are also able to sense and exploit the microbiota during infection. Therefore, obtaining a holistic understanding of colonization resistance mechanisms is essential for the development of microbiome-based and microbiome-targeting therapies for humans and animals. Achieving this is dependent on utilizing physiologically relevant animal models. In this Perspective, we discuss the colonization resistance functions of the gut microbiota and sieve through the advantages and limitations of murine models commonly used to study such mechanisms within the context of enteric bacterial infection.
Collapse
Affiliation(s)
- Caroline Mullineaux-Sanders
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College, London, UK
| | - Jotham Suez
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Eran Elinav
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Gad Frankel
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College, London, UK.
| |
Collapse
|
167
|
Lee JM, Ong JR, Vergnes L, de Aguiar Vallim TQ, Nolan J, Cantor RM, Walters JRF, Reue K. Diet1, bile acid diarrhea, and FGF15/19: mouse model and human genetic variants. J Lipid Res 2018; 59:429-438. [PMID: 29295820 DOI: 10.1194/jlr.m078279] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 12/29/2017] [Indexed: 01/12/2023] Open
Abstract
Diet1 modulates intestinal production of the hormone, fibroblast growth factor (FGF)15, which signals in liver to regulate bile acid synthesis. C57BL/6ByJ mice with a spontaneous Diet1-null mutation are resistant to hypercholesterolemia compared with wild-type C57BL/6J mice through enhanced cholesterol conversion to bile acids. To further characterize the role of Diet1 in metabolism, we generated Diet1-/- mice on the C57BL/6J genetic background. C57BL/6J Diet1-/- mice had elevated bile acid levels, reduced Fgf15 expression, and increased gastrointestinal motility and intestinal luminal water content, which are symptoms of bile acid diarrhea (BAD) in humans. Natural genetic variation in Diet1 mRNA expression levels across 76 inbred mouse strains correlated positively with Ffg15 mRNA and negatively with serum bile acid levels. This led us to investigate the role of DIET1 genetic variation in primary BAD patients. We identified a DIET1 coding variant (rs12256835) that had skewed prevalence between BAD cases and controls. This variant causes an H1721Q amino acid substitution that increases the levels of FGF19 protein secreted from cultured cells. We propose that genetic variation in DIET1 may be a determinant of FGF19 secretion levels, and may affect bile acid metabolism in both physiological and pathological conditions.
Collapse
Affiliation(s)
- Jessica M Lee
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA
| | - Jessica R Ong
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA
| | - Laurent Vergnes
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA
| | - Thomas Q de Aguiar Vallim
- Department of Biological Chemistry and Division of Cardiology, University of California, Los Angeles, Los Angeles, CA
| | - Jonathan Nolan
- Department of Medicine, Section of Hepatology and Gastroenterology, Imperial College London and Imperial College Healthcare, London, United Kingdom
| | - Rita M Cantor
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA
| | - Julian R F Walters
- Department of Medicine, Section of Hepatology and Gastroenterology, Imperial College London and Imperial College Healthcare, London, United Kingdom
| | - Karen Reue
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA .,David Geffen School of Medicine, and Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA
| |
Collapse
|
168
|
Shallis RM, Terry CM, Lim SH. Changes in intestinal microbiota and their effects on allogeneic stem cell transplantation. Am J Hematol 2018; 93:122-128. [PMID: 28842931 DOI: 10.1002/ajh.24896] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 07/31/2017] [Accepted: 08/22/2017] [Indexed: 12/30/2022]
Abstract
The human intestinal microbiota is essential for microbial homeostasis, regulation of metabolism, and intestinal immune tolerance. Rapidly evolving understanding of the importance of the microbiota implicates changes in the composition and function of intestinal microbial communities in an assortment of systemic conditions. Complications following allogeneic stem cell transplant now join the ever-expanding list of pathologic states regulated by intestinal microbiota. Dysbiosis, or disruption of the normal ecology of this microbiome, has been directly implicated in the pathogenesis of entities such as Clostridium difficile infections, graft-versus-host disease (GVHD), and most recently disease relapse, all of which are major causes of morbidity and mortality in patients undergoing allogeneic stem cell transplant. In this review, we elucidate the key origins of microbiotic alterations and discuss how dysbiosis influences complications following allogeneic stem cell transplant. Our emerging understanding of the importance of a balanced and diverse intestinal microbiota is prompting investigation into the appropriate treatment of dysbiosis, reliable and early detection of such, and ultimately its prevention in patients to improve the outcome following allogeneic hematopoietic stem cell transplant.
Collapse
Affiliation(s)
- Rory M. Shallis
- Division of Hematology and Oncology; Rhode Island Hospital/Brown University Warren Alpert School of Medicine; Providence Rhode Island
| | - Christopher M. Terry
- Division of Hematology and Oncology; Rhode Island Hospital/Brown University Warren Alpert School of Medicine; Providence Rhode Island
| | - Seah H. Lim
- Division of Hematology and Oncology; Rhode Island Hospital/Brown University Warren Alpert School of Medicine; Providence Rhode Island
| |
Collapse
|
169
|
Lach G, Schellekens H, Dinan TG, Cryan JF. Anxiety, Depression, and the Microbiome: A Role for Gut Peptides. Neurotherapeutics 2018; 15:36-59. [PMID: 29134359 PMCID: PMC5794698 DOI: 10.1007/s13311-017-0585-0] [Citation(s) in RCA: 353] [Impact Index Per Article: 50.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The complex bidirectional communication between the gut and the brain is finely orchestrated by different systems, including the endocrine, immune, autonomic, and enteric nervous systems. Moreover, increasing evidence supports the role of the microbiome and microbiota-derived molecules in regulating such interactions; however, the mechanisms underpinning such effects are only beginning to be resolved. Microbiota-gut peptide interactions are poised to be of great significance in the regulation of gut-brain signaling. Given the emerging role of the gut-brain axis in a variety of brain disorders, such as anxiety and depression, it is important to understand the contribution of bidirectional interactions between peptide hormones released from the gut and intestinal bacteria in the context of this axis. Indeed, the gastrointestinal tract is the largest endocrine organ in mammals, secreting dozens of different signaling molecules, including peptides. Gut peptides in the systemic circulation can bind cognate receptors on immune cells and vagus nerve terminals thereby enabling indirect gut-brain communication. Gut peptide concentrations are not only modulated by enteric microbiota signals, but also vary according to the composition of the intestinal microbiota. In this review, we will discuss the gut microbiota as a regulator of anxiety and depression, and explore the role of gut-derived peptides as signaling molecules in microbiome-gut-brain communication. Here, we summarize the potential interactions of the microbiota with gut hormones and endocrine peptides, including neuropeptide Y, peptide YY, pancreatic polypeptide, cholecystokinin, glucagon-like peptide, corticotropin-releasing factor, oxytocin, and ghrelin in microbiome-to-brain signaling. Together, gut peptides are important regulators of microbiota-gut-brain signaling in health and stress-related psychiatric illnesses.
Collapse
Affiliation(s)
- Gilliard Lach
- APC Microbiome Institute, University College Cork, Cork, Ireland
| | - Harriet Schellekens
- APC Microbiome Institute, University College Cork, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
- Food for Health Ireland, University College Cork, Cork, Ireland
| | - Timothy G Dinan
- APC Microbiome Institute, University College Cork, Cork, Ireland
- Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
| | - John F Cryan
- APC Microbiome Institute, University College Cork, Cork, Ireland.
- Food for Health Ireland, University College Cork, Cork, Ireland.
| |
Collapse
|
170
|
Guan XF, Duan ZJ. Protective effects of brain-gut peptides against intestinal barrier injury and mechanisms involved. Shijie Huaren Xiaohua Zazhi 2017; 25:2805-2812. [DOI: 10.11569/wcjd.v25.i31.2805] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Brain-gut peptides, a group of small molecule polypeptides, have been found to distribute widely in the brain and the gastrointestinal system and act as both neurotransmitters and hormones. Intestinal barrier injury has a serious impact on the prognosis of critical diseases. Brain-gut peptides can modulate tight junction proteins, promote epithelial cell proliferation, and inhibit apoptosis and inflammatory cytokines, thus playing an important role in the maintenance of intestinal barrier and mucosal immunity. In this review, we discuss the protective effects of brain-gut peptides against intestinal barrier injury and the underlying mechanisms.
Collapse
Affiliation(s)
- Xing-Fang Guan
- Department of Gastroenterology, the First Affiliated Hospital of Dalian Medical University, Dalian 116011, Liaoning Province, China
| | - Zhi-Jun Duan
- Department of Gastroenterology, the First Affiliated Hospital of Dalian Medical University, Dalian 116011, Liaoning Province, China
| |
Collapse
|
171
|
Delungahawatta T, Amin JY, Stanisz AM, Bienenstock J, Forsythe P, Kunze WA. Antibiotic Driven Changes in Gut Motility Suggest Direct Modulation of Enteric Nervous System. Front Neurosci 2017; 11:588. [PMID: 29104530 PMCID: PMC5655012 DOI: 10.3389/fnins.2017.00588] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 10/06/2017] [Indexed: 01/12/2023] Open
Abstract
Antibiotic-mediated changes to the intestinal microbiome have largely been assumed to be the basis of antibiotic-induced neurophysiological and behavioral changes. However, relatively little research has addressed whether antibiotics act directly on the host nervous system to produce these changes. We aimed to identify whether acute exposure of the gastrointestinal tract to antibiotics directly modulates neuronally dependent motility reflexes, ex vivo. Motility of colon and jejunum segments in a perfusion organ bath was recorded by video and alterations to neuronally dependent propagating contractile clusters (PCC), measured using spatiotemporal maps of diameter changes. Short latency (<10 min) changes to PCC serve as an index of putative effects on the host nervous system. Bacitracin, penicillin V, and neomycin, all produced dose-dependent alterations to the velocity, frequency, and amplitude of PCC. Most significantly, colonic PCC velocity increased by 53% [probability of superiority (PS) = 87%] with 1.42 mg/ml bacitracin, 19% (PS = 81%) with 0.91 mg/ml neomycin, and 19% (PS = 86%) with 3.88 mg/ml penicillin V. Colonic frequency increased by 16% (PS = 73%) with 1.42 mg/ml bacitracin, 21% (PS = 79%) with 0.91 mg/ml neomycin, and 34% (PS = 85%) at 3.88 mg/ml penicillin V. Conversely, colonic amplitude decreased by 41% (PS = 79%) with 1.42 mg/ml bacitracin, 30% (PS = 80%) with 0.27 mg/ml neomycin and 25% (PS = 79%) at 3.88 mg/ml penicillin V. In the jejunum, antibiotic-specific changes were identified. Taken together, our findings provide evidence that acute exposure of the gastrointestinal lumen to antibiotics modulates neuronal reflexes. Future work should acknowledge the importance of this mechanism in mediating antibiotic-driven changes on gut-brain signaling.
Collapse
Affiliation(s)
- Thilini Delungahawatta
- Department of Medical Science, McMaster University, Hamilton, ON, Canada.,McMaster Brain-Body Institute, St. Joseph's Healthcare, Hamilton, ON, Canada
| | - Jessica Y Amin
- McMaster Brain-Body Institute, St. Joseph's Healthcare, Hamilton, ON, Canada
| | - Andrew M Stanisz
- McMaster Brain-Body Institute, St. Joseph's Healthcare, Hamilton, ON, Canada
| | - John Bienenstock
- McMaster Brain-Body Institute, St. Joseph's Healthcare, Hamilton, ON, Canada.,Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | - Paul Forsythe
- McMaster Brain-Body Institute, St. Joseph's Healthcare, Hamilton, ON, Canada.,Department of Medicine, McMaster University, Hamilton, ON, Canada.,Firestone Institute for Respiratory Health, St. Joseph's Healthcare, Hamilton, ON, Canada
| | - Wolfgang A Kunze
- McMaster Brain-Body Institute, St. Joseph's Healthcare, Hamilton, ON, Canada.,Department of Biology, McMaster University, Hamilton, ON, Canada.,Department of Psychiatry and Behavioural Neuroscience, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
172
|
Caputi V, Marsilio I, Filpa V, Cerantola S, Orso G, Bistoletti M, Paccagnella N, De Martin S, Montopoli M, Dall'Acqua S, Crema F, Di Gangi I, Galuppini F, Lante I, Bogialli S, Rugge M, Debetto P, Giaroni C, Giron MC. Antibiotic-induced dysbiosis of the microbiota impairs gut neuromuscular function in juvenile mice. Br J Pharmacol 2017; 174:3623-3639. [PMID: 28755521 PMCID: PMC5610159 DOI: 10.1111/bph.13965] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 07/18/2017] [Accepted: 07/19/2017] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND AND PURPOSE Gut microbiota is essential for the development of the gastrointestinal system, including the enteric nervous system (ENS). Perturbations of gut microbiota in early life have the potential to alter neurodevelopment leading to functional bowel disorders later in life. We examined the hypothesis that gut dysbiosis impairs the structural and functional integrity of the ENS, leading to gut dysmotility in juvenile mice. EXPERIMENTAL APPROACH To induce gut dysbiosis, broad-spectrum antibiotics were administered by gavage to juvenile (3weeks old) male C57Bl/6 mice for 14 days. Bile acid composition in the intestinal lumen was analysed by liquid chromatography-mass spectrometry. Changes in intestinal motility were evaluated by stool frequency, transit of a fluorescent-labelled marker and isometric muscle responses of ileal full-thickness preparations to receptor and non-receptor-mediated stimuli. Alterations in ENS integrity were assessed by immunohistochemistry and Western blot analysis. KEY RESULTS Antibiotic treatment altered gastrointestinal transit, luminal bile acid metabolism and bowel architecture. Gut dysbiosis resulted in distorted glial network, loss of myenteric plexus neurons, altered cholinergic, tachykininergic and nitrergic neurotransmission associated with reduced number of nNOS neurons and different ileal distribution of the toll-like receptor TLR2. Functional defects were partly reversed by activation of TLR2 signalling. CONCLUSIONS AND IMPLICATIONS Gut dysbiosis caused complex morpho-functional neuromuscular rearrangements, characterized by structural defects of the ENS and increased tachykininergic neurotransmission. Altogether, our findings support the beneficial role of enteric microbiota for ENS homeostasis instrumental in ensuring proper gut neuromuscular function during critical stages of development.
Collapse
Affiliation(s)
- Valentina Caputi
- Department of Pharmaceutical and Pharmacological SciencesUniversity of PadovaPadovaItaly
| | - Ilaria Marsilio
- Department of Pharmaceutical and Pharmacological SciencesUniversity of PadovaPadovaItaly
| | - Viviana Filpa
- Department of Medicine and SurgeryUniversity of InsubriaVareseItaly
| | - Silvia Cerantola
- Department of Pharmaceutical and Pharmacological SciencesUniversity of PadovaPadovaItaly
- San Camillo HospitalTrevisoItaly
| | - Genny Orso
- IRCCS ‘E. Medea’ Bosisio PariniLeccoItaly
| | | | - Nicola Paccagnella
- Department of Pharmaceutical and Pharmacological SciencesUniversity of PadovaPadovaItaly
| | - Sara De Martin
- Department of Pharmaceutical and Pharmacological SciencesUniversity of PadovaPadovaItaly
| | - Monica Montopoli
- Department of Pharmaceutical and Pharmacological SciencesUniversity of PadovaPadovaItaly
| | - Stefano Dall'Acqua
- Department of Pharmaceutical and Pharmacological SciencesUniversity of PadovaPadovaItaly
| | - Francesca Crema
- Department of Internal Medicine and Therapeutics, Section of PharmacologyUniversity of PaviaPaviaItaly
| | | | | | | | - Sara Bogialli
- Department of Chemical SciencesUniversity of PadovaPadovaItaly
| | - Massimo Rugge
- Department of MedicineUniversity of PadovaPadovaItaly
| | - Patrizia Debetto
- Department of Pharmaceutical and Pharmacological SciencesUniversity of PadovaPadovaItaly
| | - Cristina Giaroni
- Department of Medicine and SurgeryUniversity of InsubriaVareseItaly
| | - Maria Cecilia Giron
- Department of Pharmaceutical and Pharmacological SciencesUniversity of PadovaPadovaItaly
| |
Collapse
|
173
|
Takiishi T, Fenero CIM, Câmara NOS. Intestinal barrier and gut microbiota: Shaping our immune responses throughout life. Tissue Barriers 2017; 5:e1373208. [PMID: 28956703 DOI: 10.1080/21688370.2017.1373208] [Citation(s) in RCA: 593] [Impact Index Per Article: 74.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The gastrointestinal (GI) tract is considered the largest immunological organ in the body having a central role in regulating immune homeostasis. Contrary to earlier belief, the intestinal epithelial barrier is not a static physical barrier but rather strongly interacts with the gut microbiome and cells of the immune system. This intense communication between epithelial cells, immune cells and microbiome will shape specific immune responses to antigens, balancing tolerance and effector immune functions. Recent studies indicate that composition of the gut microbiome affects immune system development and modulates immune mediators, which in turn affect the intestinal barrier. Moreover, dysbiosis may favor intestinal barrier disruption and could be related to increased susceptibility to certain diseases. This review will be focused on the development of the intestinal barrier and its function in host immune defense and how gut microbiome composition throughout life can affect this role.
Collapse
Affiliation(s)
- Tatiana Takiishi
- a Department of Immunology, Institute of Biomedical Sciences , University of São Paulo (USP), São Paulo - SP , Brazil
| | - Camila Ideli Morales Fenero
- a Department of Immunology, Institute of Biomedical Sciences , University of São Paulo (USP), São Paulo - SP , Brazil
| | - Niels Olsen Saraiva Câmara
- a Department of Immunology, Institute of Biomedical Sciences , University of São Paulo (USP), São Paulo - SP , Brazil
| |
Collapse
|
174
|
Thursby E, Juge N. Introduction to the human gut microbiota. Biochem J 2017; 474:1823-1836. [PMID: 28512250 PMCID: PMC5433529 DOI: 10.1042/bcj20160510] [Citation(s) in RCA: 2001] [Impact Index Per Article: 250.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 03/03/2017] [Accepted: 03/06/2017] [Indexed: 02/08/2023]
Abstract
The human gastrointestinal (GI) tract harbours a complex and dynamic population of microorganisms, the gut microbiota, which exert a marked influence on the host during homeostasis and disease. Multiple factors contribute to the establishment of the human gut microbiota during infancy. Diet is considered as one of the main drivers in shaping the gut microbiota across the life time. Intestinal bacteria play a crucial role in maintaining immune and metabolic homeostasis and protecting against pathogens. Altered gut bacterial composition (dysbiosis) has been associated with the pathogenesis of many inflammatory diseases and infections. The interpretation of these studies relies on a better understanding of inter-individual variations, heterogeneity of bacterial communities along and across the GI tract, functional redundancy and the need to distinguish cause from effect in states of dysbiosis. This review summarises our current understanding of the development and composition of the human GI microbiota, and its impact on gut integrity and host health, underlying the need for mechanistic studies focusing on host-microbe interactions.
Collapse
Affiliation(s)
- Elizabeth Thursby
- The Gut Health and Food Safety Programme, Institute of Food Research, Norwich Research Park, Norwich NR4 7UA, U.K
| | - Nathalie Juge
- The Gut Health and Food Safety Programme, Institute of Food Research, Norwich Research Park, Norwich NR4 7UA, U.K.
| |
Collapse
|
175
|
Abstract
PURPOSE OF THE REVIEW Evidence is rapidly accumulating implicating gut dysbiosis in hypertension (HTN). However, we are far from understanding whether this is a cause or consequence of HTN, and how to best translate this fundamental knowledge to advance the management of HTN. This review aims to summarize recent advances in the field, illustrate the connections between the gut and hypertension, and establish that the gut microbiota (GM)-gut interaction is centrally positioned for consideration as an innovative approach for HTN therapeutics. RECENT FINDINGS Animal models of HTN have shown that gut pathology occurs in HTN, and provides some clues to mechanisms linking the dysbiosis, gut pathology, and HTN. Circumstantial evidence links gut dysbiosis and HTN. Gut pathology, apparent in animal HTN models, has not been fully investigated in hypertensive patients. Objective evidence and an understanding of mechanisms could have a major impact for new antihypertensive therapies and/or improved applications of current ones.
Collapse
Affiliation(s)
- Elaine M Richards
- Departments of Physiology and Functional Genomics, University of Florida, PO Box 100274, Gainesville, FL, 32610-0274, USA
| | - Carl J Pepine
- Department of Medicine, Division of Cardiovascular Medicine, University of Florida, Gainesville, Florida, USA
| | - Mohan K Raizada
- Departments of Physiology and Functional Genomics, University of Florida, PO Box 100274, Gainesville, FL, 32610-0274, USA.
| | - Seungbum Kim
- Departments of Physiology and Functional Genomics, University of Florida, PO Box 100274, Gainesville, FL, 32610-0274, USA
| |
Collapse
|