151
|
Lee JA, Hall B, Allsop J, Alqarni R, Allen SP. Lipid metabolism in astrocytic structure and function. Semin Cell Dev Biol 2020; 112:123-136. [PMID: 32773177 DOI: 10.1016/j.semcdb.2020.07.017] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 06/18/2020] [Accepted: 07/29/2020] [Indexed: 02/06/2023]
Abstract
Astrocytes are the most abundant glial cell in the central nervous system and are involved in multiple processes including metabolic homeostasis, blood brain barrier regulation and neuronal crosstalk. Astrocytes are the main storage point of glycogen in the brain and it is well established that astrocyte uptake of glutamate and release of lactate prevents neuronal excitability and supports neuronal metabolic function. However, the role of lipid metabolism in astrocytes in relation to neuronal support has been until recently, unclear. Lipids play a fundamental role in astrocyte function, including energy generation, membrane fluidity and cell to cell signaling. There is now emerging evidence that astrocyte storage of lipids in droplets has a crucial physiological and protective role in the central nervous system. This pathway links β-oxidation in astrocytes to inflammation, signalling, oxidative stress and mitochondrial energy generation in neurons. Disruption in lipid metabolism, structure and signalling in astrocytes can lead to pathogenic mechanisms associated with a range of neurological disorders.
Collapse
Affiliation(s)
- James Ak Lee
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, 385 Glossop Road, Sheffield, S10 2HQ, UK
| | - Benjamin Hall
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, 385 Glossop Road, Sheffield, S10 2HQ, UK
| | - Jessica Allsop
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, 385 Glossop Road, Sheffield, S10 2HQ, UK
| | - Razan Alqarni
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, 385 Glossop Road, Sheffield, S10 2HQ, UK
| | - Scott P Allen
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, 385 Glossop Road, Sheffield, S10 2HQ, UK.
| |
Collapse
|
152
|
Blackburn ML, Ono-Moore KD, Sobhi HF, Adams SH. Carnitine palmitoyltransferase 2 knockout potentiates palmitate-induced insulin resistance in C 2C 12 myotubes. Am J Physiol Endocrinol Metab 2020; 319:E265-E275. [PMID: 32459525 DOI: 10.1152/ajpendo.00515.2019] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Saturated fatty acids (SFAs) are implicated in muscle inflammation/cell stress and insulin resistance, but the catalog of factors involved is incomplete. SFA derivatives that accumulate with mismatched FA availability and FA oxidation (FAO) are likely involved, and evidence has emerged that select acylcarnitines should be considered. To understand if excessive long-chain acylcarnitine accumulation and limited FAO associate with lipotoxicity, carnitine palmitoyltransferase 2 knockout C2C12 cells were generated (CPT2 KO). CPT2 KO was confirmed by Western blot, increased palmitoylcarnitine accumulation, and loss of FAO capacity. There was no effect of CPT2 KO on palmitic acid (PA) concentration-dependent increases in media IL-6 or adenylate kinase. PA at 200 and 500 µM did not trigger cell stress responses (phospho-Erk, -JNK, or -p38) above that of vehicle in WT or CPT2 KO cells. In contrast, loss of CPT2 exacerbated PA-induced insulin resistance (acute phospho-Akt; 10 or 100 nM insulin) by as much as ~50-96% compared with WT. Growing cells in carnitine-free media abolished differences between WT and CPT2 KO, but this did not fully rescue PA-induced insulin resistance. The results suggest that PA-induced insulin resistance stems in part from palmitoylcarnitine accumulation, further supporting the hypothesis that select acylcarnitines participate in cell signaling and, when in excess, can compromise cell function. Since carnitine-free conditions could not fully rescue insulin signaling, and CPT2 KO did not alter cell stress responses, the majority of PA-induced "lipotoxicity" in C2C12 myotubes cannot be attributed to palmitoylcarnitine alone.
Collapse
Affiliation(s)
- Michael L Blackburn
- Arkansas Children's Nutrition Center, Little Rock, Arkansas
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | | | - Hany F Sobhi
- Center for Organic Synthesis, Department of Natural Sciences, Coppin State University, Baltimore, Maryland
| | - Sean H Adams
- Arkansas Children's Nutrition Center, Little Rock, Arkansas
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| |
Collapse
|
153
|
Zheng XY, Sun CC, Liu Q, Lu XY, Fu LL, Liang G, Zhang XH, Chen GZ. Compound LM9, a novel MyD88 inhibitor, efficiently mitigates inflammatory responses and fibrosis in obesity-induced cardiomyopathy. Acta Pharmacol Sin 2020; 41:1093-1101. [PMID: 32341464 PMCID: PMC7468329 DOI: 10.1038/s41401-020-0410-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Accepted: 03/27/2020] [Indexed: 12/20/2022]
Abstract
Mechanisms of cardiomyopathy caused by obesity/hyperlipidemia are complicated. Obesity is usually associated with chronic low-grade inflammation and may lead to the onset and progression of myocardial fibrosis and remodeling. TLR4/MyD88 signaling pathway, as a key regulator of inflammation, plays an important role in the pathogenesis of obesity-induced cardiomyopathy. We previously demonstrated that LM9, a novel MyD88 inhibitor, attenuated inflammatory responses and fibrosis in obesity-induced cardiomyopathy by inhibiting the formation of TLR4/MyD88 complex. In this study, we investigated the protective effects of LM9 on obesity-induced cardiomyopathy in vitro and in vivo. We showed that LM9 (5, 10 μM) significantly attenuates palmitic acid (PA)-induced inflammation in mouse peritoneal macrophages, evidenced by decreased expression of proinflammatory genes including TNF-α, IL-6, IL-1β, and ICAM-1. In cardiac-derived H9C2 cells, LM9 treatment suppressed PA-induced inflammation, lipid accumulation, and fibrotic responses. In addition, LM9 treatment also inhibited PA-activated TLR4/MyD88/NF-κB signaling pathway. We further revealed in HEK293 cells that LM9 treatment blocked the TLR4/MyD88 binding and MyD88 homodimer formation. In HFD-fed mice, administration of LM9 (5, 10 mg/kg, ig, every other days for 8 weeks) dose-dependently alleviated inflammation and fibrosis in heart tissues and decreased serum lipid concentration. In conclusion, this study demonstrates that MyD88 inhibitor LM9 exerts protective effects against obesity-induced cardiomyopathy, suggesting LM9 to be a promising therapeutic candidate drug for the obesity-related cardiac complications.
Collapse
Affiliation(s)
- Xu-Yong Zheng
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
- Department of Pharmacy, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China
| | - Chu-Chu Sun
- The Third Affiliated Hospital of Wenzhou Medical University, Ruian, 325200, China
| | - Qian Liu
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
- Department of Pharmacy, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China
| | - Xiao-Yao Lu
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Li-Li Fu
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Guang Liang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Xiu-Hua Zhang
- Department of Pharmacy, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China.
| | - Gao-Zhi Chen
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China.
| |
Collapse
|
154
|
Davis FM, denDekker A, Joshi AD, Wolf SJ, Audu C, Melvin WJ, Mangum K, Riordan MO, Kunkel SL, Gallagher KA. Palmitate-TLR4 signaling regulates the histone demethylase, JMJD3, in macrophages and impairs diabetic wound healing. Eur J Immunol 2020; 50:1929-1940. [PMID: 32662520 DOI: 10.1002/eji.202048651] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/30/2020] [Accepted: 07/10/2020] [Indexed: 12/13/2022]
Abstract
Chronic macrophage inflammation is a hallmark of type 2 diabetes (T2D) and linked to the development of secondary diabetic complications. T2D is characterized by excess concentrations of saturated fatty acids (SFA) that activate innate immune inflammatory responses, however, mechanism(s) by which SFAs control inflammation is unknown. Using monocyte-macrophages isolated from human blood and murine models, we demonstrate that palmitate (C16:0), the most abundant circulating SFA in T2D, increases expression of the histone demethylase, Jmjd3. Upregulation of Jmjd3 results in removal of the repressive histone methylation (H3K27me3) mark on NFκB-mediated inflammatory gene promoters driving macrophage-mediated inflammation. We identify that the effects of palmitate are fatty acid specific, as laurate (C12:0) does not regulate Jmjd3 and the associated inflammatory profile. Further, palmitate-induced Jmjd3 expression is controlled via TLR4/MyD88-dependent signaling mechanism, where genetic depletion of TLR4 (Tlr4-/- ) or MyD88 (MyD88-/- ) negated the palmitate-induced changes in Jmjd3 and downstream NFκB-induced inflammation. Pharmacological inhibition of Jmjd3 using a small molecule inhibitor (GSK-J4) reduced macrophage inflammation and improved diabetic wound healing. Together, we conclude that palmitate contributes to the chronic Jmjd3-mediated activation of macrophages in diabetic peripheral tissue and a histone demethylase inhibitor-based therapy may represent a novel treatment for nonhealing diabetic wounds.
Collapse
Affiliation(s)
- Frank M Davis
- Section of Vascular Surgery, Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Aaron denDekker
- Section of Vascular Surgery, Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Amrita D Joshi
- Section of Vascular Surgery, Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Sonya J Wolf
- Section of Vascular Surgery, Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Christopher Audu
- Section of Vascular Surgery, Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| | - William J Melvin
- Section of Vascular Surgery, Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Kevin Mangum
- Section of Vascular Surgery, Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Mary O Riordan
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, USA
| | - Steven L Kunkel
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Katherine A Gallagher
- Section of Vascular Surgery, Department of Surgery, University of Michigan, Ann Arbor, MI, USA.,Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
155
|
TLR4 Receptor D299G/T399I Haplotype Polymorphism Is Associated with Insulin Resistance in Obese Female Subjects. Genes (Basel) 2020; 11:genes11070814. [PMID: 32708841 PMCID: PMC7397302 DOI: 10.3390/genes11070814] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/01/2020] [Accepted: 07/06/2020] [Indexed: 12/15/2022] Open
Abstract
Background: Activation of Toll-like-receptor 4 (TLR4) causes chronic inflammation that can result in obesity and metabolic syndrome (MeS). Aim: This study aimed to investigate the role of TLR4 polymorphisms of TLR4D299G/T399I, and its impact on protein expression of TLR4 in obese female subjects. Methodology: A prospective cross-sectional association study was performed on Arab female subjects from Qatar University. The subjects were categorized according to BMI classifications into two groups: “obese; n = 69” and “non-obese; n = 136”. Anthropometric measurements, weight (kg), height (m) and waist circumference (WC) were evaluated, and the body mass index (BMI) was calculated. Fasting blood samples were collected, and assessment of glucose, lipid profile, C-reactive protein (CRP), leptin, IL-6 and insulin was performed. Insulin resistance was computed using HOMA-IR. Genotyping of the TLR4 polymorphisms of TLR4D299G (rs4986790) and TLR4T399I (rs4986791) was performed by the 5′ nuclease assay by TaqMan MGB probe. Flow cytometry was used to evaluate the monocyte cell surface expression of TLR4. Results: The frequency distribution of the genotype revealed that homozygous AA is the most frequent among obese subjects (86.4%) for (TLR4D299G, A > G) and the homozygous CC genotype is the most frequent (92.4%) for (TLR4T399I, C > T). Haplotype analysis of TLR4 D299G/T399I showed that GT carriers had a significant association with increased probability of insulin resistance (odds ratio = 4.73; 95% CI 1.19–18.90; p-value = 0.016). The monocyte cell surface of TLR4 was significantly higher by 1.3 folds in obese compared to non-obese subjects. Conclusions: TLR4 D299G/T399I haplotype polymorphism is associated with an increased risk of insulin resistance with the upregulation of TLR4 protein expression in obese subjects.
Collapse
|
156
|
Falahatian M. The Effects of Different Kinds of Nutrition and Functional Foods on Multiple Sclerosis. CURRENT NUTRITION & FOOD SCIENCE 2020. [DOI: 10.2174/1573401316666200129115858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
It is an assumption that different kinds of nutrition, diet, and functional foods might have
different positive or negative effects on multiple sclerosis (MS), a neuroinflammatory disease of the
central nervous system (CNS). This brief paper involved a study on various kinds of nutrition including
salt, fat, dairy, fruit, and vegetables. At the end of this study, appropriate diets were evaluated for
MS patients. Based on previous studies both on animal models and on MS patients, excessive dietary
salt intake and animal fat had worsening effects on MS patients but fruit and vegetable intake helped
the remission of MS and decreased the risk of developing it. There were, of course, conflicting results
in different studies over the role of some nutrition in MS and future studies on larger numbers
of cases were required to collect reliable results. As a result, at the end of this study and based on literature,
it is suggested that a diet should be programmed by nutritionists containing fewer salt, fat,
and dairy intake and more fruits and vegetables for MS patients in order to better management of the
disease.
Collapse
Affiliation(s)
- Masih Falahatian
- Isfahan Neurosciences Research Center, Alzahra Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
157
|
Tibolone Ameliorates the Lipotoxic Effect of Palmitic Acid in Normal Human Astrocytes. Neurotox Res 2020; 38:585-595. [DOI: 10.1007/s12640-020-00247-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 06/13/2020] [Accepted: 06/17/2020] [Indexed: 02/06/2023]
|
158
|
Hyder A. RETRACTED: Dietary oligosaccharides attenuate DSS-induced colitis in mice, induce PGlyRP3 expression, and inhibit NF-κB and MEK/ERK signaling. Cell Immunol 2020; 354:104144. [PMID: 32619849 DOI: 10.1016/j.cellimm.2020.104144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 05/25/2020] [Accepted: 06/09/2020] [Indexed: 11/19/2022]
Abstract
This article has been retracted: please see Elsevier Policy on Article Withdrawal (https://www.elsevier.com/about/our-business/policies/article-withdrawal).
This article has been retracted at the request of the Editors.
The Editors of Cellular Immunology have been informed by Elsevier that the article had been submitted to another journal while under consideration at "Cellular Immunology", which is a case of double submission.
Based on the above infringement and its deleterious impact on the mutual trust necessary for the evaluation of scientific work - the corresponding authors had stated that the article was not submitted to another journal - it was decided to retract this article.
Collapse
Affiliation(s)
- Ayman Hyder
- Faculty of Science, Damietta University, New Damietta34517, Egypt.
| |
Collapse
|
159
|
Carballeda-Sangiao N, Sánchez-Alonso I, Navas A, Arcos SC, de Palencia PF, Careche M, González-Muñoz M. Anisakis simplex products impair intestinal epithelial barrier function and occludin and zonula occludens-1 localisation in differentiated Caco-2 cells. PLoS Negl Trop Dis 2020; 14:e0008462. [PMID: 32628665 PMCID: PMC7365482 DOI: 10.1371/journal.pntd.0008462] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 07/16/2020] [Accepted: 06/06/2020] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Anisakis spp. are nematode parasites found in a wide range of marine organisms. Human beings may accidentally become infected, showing the symptoms of anisakiasis and allergic responses. There has been evidence of increased intestinal permeability in A. simplex-sensitized subjects and that specific IgE titres increase in some allergic patients when fishery products are re-introduced into their diet. The aims of this work were to study the effect of A. simplex crude extract on the intestinal integrity and permeability by using Caco-2 cell monolayer. To analyse the capacity of Ani s 4 allergen to cross the epithelial barrier. METHODOLOGY/PRINCIPAL FINDINGS Cellular bioenergetics, transepithelial electrical resistance, viability, permeability, reactive oxygen species generation and immunofluorescent staining of tight junction proteins were analysed. A. simplex crude extract compromises the Caco-2 cell monolayer integrity in a dose-dependent manner. This effect is detected at 1 hour of culture and integrity is recovered after 24 hours of culture. The epithelial barrier disruption is accompanied by an increase in paracellular permeability and reactive oxygen species production and by a delocalization of occludin and zonula occludens-1. Finally, Ani s 4, a thermostable and resistant to digestion allergen with cystatin activity, is able to cross the epithelial barrier in Caco-2 monolayer and reach a cumulative mean percentage of 22.7% of total concentration in the basolateral side after 24 hours of culture. CONCLUSIONS/SIGNIFICANCE Our results demonstrate that A. simplex induces an early and reversible alteration of integrity and permeability of Caco-2 cell monolayer and that an underlying mechanism of this effect would involve the oxidative stress and disruption of epithelial tight junctions. Additionally, it has been shown that Ani s 4 allergen is able to cross the epithelial barrier. These findings could explain the increased intestinal permeability observed in Anisakis-sensitized patients, the changes over time in IgE sensitization to A. simplex allergens, and the specific IgE persistence in Anisakis allergy.
Collapse
Affiliation(s)
- Noelia Carballeda-Sangiao
- Unit of Immunology, University Hospital La Paz Institute for Health Research (IdiPaz), Madrid, Spain
- Department of Products, Institute of Food Science, Technology and Nutrition (ICTAN), Agencia Estatal Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Isabel Sánchez-Alonso
- Department of Products, Institute of Food Science, Technology and Nutrition (ICTAN), Agencia Estatal Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Alfonso Navas
- Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales (MNCN), CSIC, Madrid, Spain
| | - Susana C Arcos
- Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales (MNCN), CSIC, Madrid, Spain
| | - Pilar Fernández de Palencia
- Department of Products, Institute of Food Science, Technology and Nutrition (ICTAN), Agencia Estatal Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Mercedes Careche
- Department of Products, Institute of Food Science, Technology and Nutrition (ICTAN), Agencia Estatal Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Miguel González-Muñoz
- Unit of Immunology, University Hospital La Paz Institute for Health Research (IdiPaz), Madrid, Spain
| |
Collapse
|
160
|
Zhao Y, Tang J, Yang D, Tang C, Chen J. Staphylococcal enterotoxin M induced inflammation and impairment of bovine mammary epithelial cells. J Dairy Sci 2020; 103:8350-8359. [PMID: 32622596 DOI: 10.3168/jds.2019-17444] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 04/20/2020] [Indexed: 01/04/2023]
Abstract
Staphylococcus aureus is one of the major etiological pathogens of bovine mastitis. Its invasion into mammary epithelial cells has been proven to be a key event in the pathogenesis of mastitis. However, the specific pathogenic factors have not been clearly identified. Staphylococcus aureus often triggers infections by releasing virulence factor. Recent several studies reported that staphylococcal enterotoxin M was one of the most frequently found enterotoxin genes associated with bovine mastitis. Thus, the effect of staphylococcal enterotoxin M on inflammation and damage of the bovine mammary epithelial bovine mammary gland epithelial cell line (MAC-T) cells with 48 h treatment was explored in the present study. First, staphylococcal enterotoxin M protein was purified by a Ni-NTA spin column (GE Life Science, Westborough, MA). The levels of tumor necrosis factor-α, IL-6, and monocyte chemoattractant protein 1 (MCP-1) secretion were measured with the corresponding ELISA kits (R&D Systems, Abingdon, UK). Second, cell viability was assessed with a Cell Counting Kit-8 (Bioswamp, Wuhan, China) and the apoptotic percentage of cells was determined by annexin V-fluorescein isothiocyanate (FITC)/propidium iodide (PI; Beyotime, Nanjing, China) staining. Third, ATP concentration, reactive oxygen species (ROS) generation and lactate dehydrogenase (LDH) release were assayed with commercial kits, then mitochondrial membrane potential (ΔΨm) was estimated using fluorescent probe JC-1 (Beyotime). Finally, the production intercellular cell adhesion molecule-1 (ICAM-1), microtubule-associated protein 1A/1B-light chain 3 I/II (LC3 I/II), p62 (Proteintech, Rosemont, IL), and phosphorylation of IκBα, caspase 3, and mammalian target of rapamycin were detected by Western blot. The results showed that staphylococcal enterotoxin M induced inflammation of epithelial cells (upregulating tumor necrosis factor-α, IL-6, MCP-1, and ICAM-1 production) and activated NF-κB (promoting phosphorylation of IκBα). Furthermore, staphylococcal enterotoxin M impaired MAC-T cells via cell necrosis (enhancing LDH release), apoptosis (annexin V-FITC/PI stain, exacerbating oxidative stress, decreasing ΔΨm and intracellular ATP concentration, and activating caspase 3), but independent of autophagy (nonsignificantly increasing LC3-II, decreasing p62 expression, and activating mammalian target of rapamycin). Thereby, staphylococcal enterotoxin M induced the inflammatory property of bovine mammary epithelial cells by boosting cytokine, chemokine, and adhesion molecule production. Furthermore, it caused epithelial cell dysfunction via depressing cell viability and initiating cell necrosis and apoptosis. Because epithelial cells played important roles in orchestrating the inflammatory response and protecting bovine mammary tissue from mastitis, our results indicated that staphylococcal enterotoxin M may be associated with mastitis.
Collapse
Affiliation(s)
- Yanying Zhao
- Key Laboratory of Qinghai-Tibetan Plateau, Animal Genetic Resource Reservation and Utilization of Ministry of Education, College of Life Science and Technology, Southwest Minzu University, Chengdu, China, 610041
| | - Junni Tang
- Key Laboratory of Qinghai-Tibetan Plateau, Animal Genetic Resource Reservation and Utilization of Ministry of Education, College of Life Science and Technology, Southwest Minzu University, Chengdu, China, 610041.
| | - Danru Yang
- Key Laboratory of Qinghai-Tibetan Plateau, Animal Genetic Resource Reservation and Utilization of Ministry of Education, College of Life Science and Technology, Southwest Minzu University, Chengdu, China, 610041
| | - Cheng Tang
- Key Laboratory of Qinghai-Tibetan Plateau, Animal Genetic Resource Reservation and Utilization of Ministry of Education, College of Life Science and Technology, Southwest Minzu University, Chengdu, China, 610041
| | - Juan Chen
- Key Laboratory of Qinghai-Tibetan Plateau, Animal Genetic Resource Reservation and Utilization of Ministry of Education, College of Life Science and Technology, Southwest Minzu University, Chengdu, China, 610041
| |
Collapse
|
161
|
Rodrigues MOM, Evangelista-Silva PH, Neves NN, Moreno LG, Santos CS, Rocha KLS, Ottone VO, Batista-da-Silva B, Dias-Peixoto MF, Magalhães FC, Esteves EA. Caloric restriction-induced weight loss with a high-fat diet does not fully recover visceral adipose tissue inflammation in previously obese C57BL/6 mice. Appl Physiol Nutr Metab 2020; 45:1353-1359. [PMID: 32574503 DOI: 10.1139/apnm-2020-0220] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Caloric restriction (CR) reduces body weight and systemic inflammation, but the effects on adipose tissue under dietary lipid overload are controversial. We evaluated the effects of CR-induced weight loss with a high-fat diet on adipose tissue inflammation of obese mice. Male mice were assigned into low-fat diet (LF) and high-fat diet (HF) groups. After 8 weeks, the mice in the HF group were reassigned for another 7 weeks into the following 3 conditions: (i) kept in the HF condition; (ii) changed to low-fat diet ad libitum (LFAL); and (iii) changed to high-fat calorie-restricted (RHF) diet to reach LFAL body weight. Serum markers, adipocytokines, morphology, and inflammatory infiltrates in retroperitoneal adipose tissue (RAT) were accessed. The body weights of the LFAL and RHF groups were reduced, equaling the body weights of the LF group. The LFAL mice had restored almost all inflammatory markers as the LF mice, except tumor necrosis factor-alpha (TNF-α), monocyte chemoattractant protein-1 (MCP-1), and adiponectin. Compared with the HF group, the RHF group had lowered visceral adiposity, retroperitoneal adipocyte sizes, and RAT inflammatory cell infiltration, as well as TNF-α, interleukin-6, and hepatic and serum C-reactive protein, which were higher than that of the LFAL group; adiponectin and MCP-1 did not change. CR with high-fat diet reduced body weight and attenuated visceral adiposity but did not fully recover visceral tissue inflammation. Novelty Caloric restriction in a high-fat diet ameliorated visceral adiposity. Caloric restriction in a high-fat diet did not recover visceral adipose tissue inflammation.
Collapse
Affiliation(s)
- M O M Rodrigues
- Programa Multicêntrico de Pós-graduação em Ciências Fisiológicas, Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, MG 39100-000, Brazil
| | - P H Evangelista-Silva
- Programa Multicêntrico de Pós-graduação em Ciências Fisiológicas, Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, MG 39100-000, Brazil
| | - N N Neves
- Programa Multicêntrico de Pós-graduação em Ciências Fisiológicas, Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, MG 39100-000, Brazil
| | - L G Moreno
- Programa Multicêntrico de Pós-graduação em Ciências Fisiológicas, Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, MG 39100-000, Brazil
| | - C S Santos
- Programa Multicêntrico de Pós-graduação em Ciências Fisiológicas, Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, MG 39100-000, Brazil
| | - K L S Rocha
- Programa Multicêntrico de Pós-graduação em Ciências Fisiológicas, Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, MG 39100-000, Brazil
| | - V O Ottone
- Programa Multicêntrico de Pós-graduação em Ciências Fisiológicas, Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, MG 39100-000, Brazil
| | - B Batista-da-Silva
- Instituto de Biotecnologia, Universidade Federal de Uberlândia, Uberlândia, MG 38408-100, Brazil
| | - M F Dias-Peixoto
- Programa Multicêntrico de Pós-graduação em Ciências Fisiológicas, Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, MG 39100-000, Brazil
| | - F C Magalhães
- Programa Multicêntrico de Pós-graduação em Ciências Fisiológicas, Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, MG 39100-000, Brazil
| | - E A Esteves
- Programa Multicêntrico de Pós-graduação em Ciências Fisiológicas, Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, MG 39100-000, Brazil
| |
Collapse
|
162
|
Xu D, Liang J, Cui M, Zhang L, Ren S, Zheng W, Dong X, Zhang B. Saturated fatty acids activate the inflammatory signalling pathway in Schwann cells: Implication in sciatic nerve injury. Scand J Immunol 2020; 92:e12896. [PMID: 32557749 DOI: 10.1111/sji.12896] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 04/21/2020] [Accepted: 05/14/2020] [Indexed: 11/30/2022]
Abstract
Sciatic nerve injury affects quality of life. Many immune cells and inflammatory cytokines have been reported to be involved in sciatic nerve injury, but little is known about the ligands and receptors that trigger inflammatory responses. By using a modified sciatic nerve clamp injury method, we found that the recruitment of Schwann cells and the inflammatory response were enhanced after sciatic nerve injury. Toll-like receptor 4 (TLR4), one of the major members of the TLR family, is highly expressed in Schwann cells. Under certain conditions, myeloid differentiation protein 2 (MD2) binds to TLR4 on the membrane and plays important roles in the inflammatory response. The reductions in the recruitment of Schwann cells and the inflammatory response induced by the blockade of TLR4 or MD2 suggest that TLR4 and MD2 are involved in sciatic nerve injury. What are the endogenous signals that activate the inflammatory response? A large number of free saturated fatty acids (SFAs) are released from Schwann cells, adipocytes and the blood after sciatic nerve injury. Liang et al reported that Schwann cells can be stimulated by palmitic acid (PA). Here, we found that the expression and secretion of TNF-α and IL-6 were enhanced by PA treatment. Moreover, PA activated TLR4 signalling pathway-related proteins and stimulated a strong association between TLR4 and MD2. Blocking TLR4 or MD2 reversed the PA-induced inflammatory response and TLR4 downstream signalling pathway. Thus, we speculated that SFAs act as endogenous ligands that activate TLR4/MD2, thus triggering Schwann cell inflammation during sciatic nerve injury.
Collapse
Affiliation(s)
- Dan Xu
- Department of Immunology, Medical College of Qingdao University, Qingdao, China
| | - Jie Liang
- Department of Immunology, Medical College of Qingdao University, Qingdao, China
| | - Mengli Cui
- Department of Immunology, Medical College of Qingdao University, Qingdao, China
| | - Li Zhang
- Department of Immunology, Medical College of Qingdao University, Qingdao, China
| | - Shurong Ren
- Department of Immunology, Medical College of Qingdao University, Qingdao, China
| | - Wenxiang Zheng
- Department of Biochemistry and Molecular Biology, Medical College of Qingdao University, Qingdao, China
| | - Xiaolei Dong
- Department of Genetics, Medical College of Qingdao University, Qingdao, China
| | - Bei Zhang
- Department of Immunology, Medical College of Qingdao University, Qingdao, China
| |
Collapse
|
163
|
Neural metabolic imbalance induced by MOF dysfunction triggers pericyte activation and breakdown of vasculature. Nat Cell Biol 2020; 22:828-841. [PMID: 32541879 DOI: 10.1038/s41556-020-0526-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 04/22/2020] [Indexed: 12/13/2022]
Abstract
Mutations in chromatin-modifying complexes and metabolic enzymes commonly underlie complex human developmental syndromes affecting multiple organs. A major challenge is to determine how disease-causing genetic lesions cause deregulation of homeostasis in unique cell types. Here we show that neural-specific depletion of three members of the non-specific lethal (NSL) chromatin complex-Mof, Kansl2 or Kansl3-unexpectedly leads to severe vascular defects and brain haemorrhaging. Deregulation of the epigenetic landscape induced by the loss of the NSL complex in neural cells causes widespread metabolic defects, including an accumulation of free long-chain fatty acids (LCFAs). Free LCFAs induce a Toll-like receptor 4 (TLR4)-NFκB-dependent pro-inflammatory signalling cascade in neighbouring vascular pericytes that is rescued by TLR4 inhibition. Pericytes display functional changes in response to LCFA-induced activation that result in vascular breakdown. Our work establishes that neurovascular function is determined by the neural metabolic environment.
Collapse
|
164
|
Li X, Shi Z, Zhu Y, Shen T, Wang H, Shui G, Loor JJ, Fang Z, Chen M, Wang X, Peng Z, Song Y, Wang Z, Du X, Liu G. Cyanidin-3-O-glucoside improves non-alcoholic fatty liver disease by promoting PINK1-mediated mitophagy in mice. Br J Pharmacol 2020; 177:3591-3607. [PMID: 32343398 DOI: 10.1111/bph.15083] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 04/16/2020] [Accepted: 04/17/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND AND PURPOSE Identifying safe and effective compounds that target to mitophagy to eliminate impaired mitochondria may be an attractive therapeutic strategy for non-alcoholic fatty liver disease. Here, we investigated the effects of cyanidin-3-O-glucoside (C3G) on non-alcoholic fatty liver disease (NAFLD) and the underlying mechanism. EXPERIMENTAL APPROACH Non-alcoholic fatty liver disease was induced by a high-fat diet for 16 weeks. C3G was administered during the last 4 weeks. In vivo, recombinant adenoviruses and AAV8 were used for overexpression and knockdown of PTEN-induced kinase 1 (PINK1), respectively. AML-12 and HepG2 cells were used for the mechanism study. KEY RESULTS C3G administration suppressed hepatic oxidative stress, NLR family pyrin domain containing 3 (NLRP3) inflammasome activation and steatosis and improved systemic glucose metabolism in mice with NAFLD. These effects of C3G were also observed in palmitic acid-treated AML-12 cells and hepatocytes from NAFLD patients. Mechanistic investigations revealed that C3G increased PINK1/Parkin expression and mitochondrial localization and promoted PINK1-mediated mitophagy to clear damaged mitochondria. Knockdown of hepatic PINK1 abolished the mitophagy-inducing effect of C3G, which blunted the beneficial effects of C3G on oxidative stress, NLRP3 inflammasome activation, hepatic steatosis and glucose metabolism. CONCLUSION AND IMPLICATIONS These results demonstrate that PINK1-mediated mitophagy plays an essential role in the ability of C3G to alleviate NAFLD and suggest that C3G may be a potential drug candidate for NAFLD treatment.
Collapse
Affiliation(s)
- Xinwei Li
- Key Laboratory of Zoonoses Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Zhen Shi
- Key Laboratory of Zoonoses Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Yiwei Zhu
- Key Laboratory of Zoonoses Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Taiyu Shen
- Key Laboratory of Zoonoses Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Heyuan Wang
- The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Guanghou Shui
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Juan J Loor
- Mammalian NutriPhysioGenomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Zhiyuan Fang
- Key Laboratory of Zoonoses Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Meng Chen
- Key Laboratory of Zoonoses Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xinghui Wang
- Key Laboratory of Zoonoses Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Zhicheng Peng
- Key Laboratory of Zoonoses Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Yuxiang Song
- Key Laboratory of Zoonoses Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Zhe Wang
- Key Laboratory of Zoonoses Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xiliang Du
- Key Laboratory of Zoonoses Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Guowen Liu
- Key Laboratory of Zoonoses Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| |
Collapse
|
165
|
Mo Z, Huang S, Burnett DJ, Rutledge JC, Hwang DH. Endotoxin May Not Be the Major Cause of Postprandial Inflammation in Adults Who Consume a Single High-Fat or Moderately High-Fat Meal. J Nutr 2020; 150:1303-1312. [PMID: 32040591 DOI: 10.1093/jn/nxaa003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 08/30/2019] [Accepted: 01/07/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Metabolic endotoxemia is considered a cause for high-fat diet (HFD)-induced inflammation. However, convincing experimental evidence in humans is scant. OBJECTIVE We determined whether a HFD or moderately HFD increases LPS and LPS-mediated cytokine production in the postprandial blood (PPB). METHODS Ninety-eight volunteers (age: 37.3 ± 1.5 y) from the cross-sectional phenotyping study (PS) and 62 volunteers (age: 26.8 ± 1.2 y) from the intervention study (IS) consumed a breakfast containing 60% kcal fat (HF) and 36% kcal fat (moderately HF), respectively. For the IS, only the results from the placebo group are presented. Blood samples were probed for LPS-mediated cytokine production by incubating them with LPS inhibitor polymyxin B (PMB) for 24 h at 37°C besides the Limulus amebocyte lysate (LAL) assay. Repeated-measures ANOVA was used to compare the temporal changes of metabolic profiles and treatment outcomes. RESULTS At least 87.5% of the plasma LPS measurements in 32 PS volunteers from each time point were below the LAL assay sensitivity (0.002 EU/mL). PMB suppressed IL-1β (P = 0.035) and IL-6 (P = 0.0487) production in the 3 h PPB of the PS after 24 h incubation at 37°C compared to the vehicle control, suggesting the presence of LPS. However, the amount of LPS did not increase the cytokine concentrations in the 3 h PPB above the fasting concentrations. Such suppression was not detected in the PPB of the IS. Treating whole blood with lipoprotein lipase (LPL) significantly (P < 0.05) increased FFA and cytokine (IL-1β, IL-6, TNF-α) concentrations in both studies. CONCLUSION LPS may not be the major cause of postprandial inflammation in healthy adults consuming a moderately HF meal (36% kcal fat, similar to the typical American diet) or a HF meal (60% kcal fat). Plasma FFAs may modulate postprandial inflammation. The prevailing concept of HFD-induced metabolic endotoxemia requires careful re-evaluation. The PS was registered at clinicaltrials.gov as NCT02367287 and the IS as NCT02472171.
Collapse
Affiliation(s)
- Zhenzhen Mo
- USDA-ARS Western Human Nutrition Research Center, 430 West Health Sciences Dr., Davis, CA 95616, USA.,Department of Nutrition, University of California-Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Shurong Huang
- USDA-ARS Western Human Nutrition Research Center, 430 West Health Sciences Dr., Davis, CA 95616, USA
| | - Dustin J Burnett
- USDA-ARS Western Human Nutrition Research Center, 430 West Health Sciences Dr., Davis, CA 95616, USA.,Department of Nutrition, University of California-Davis, One Shields Avenue, Davis, CA 95616, USA
| | - John C Rutledge
- Department of Internal Medicine, School of Medicine, University of California-Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Daniel H Hwang
- USDA-ARS Western Human Nutrition Research Center, 430 West Health Sciences Dr., Davis, CA 95616, USA.,Department of Nutrition, University of California-Davis, One Shields Avenue, Davis, CA 95616, USA
| |
Collapse
|
166
|
Zhu L, Song H, Zhang L, Meng H. Characterization of IL-17-producing Treg cells in type 2 diabetes patients. Immunol Res 2020; 67:443-449. [PMID: 31713831 DOI: 10.1007/s12026-019-09095-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The association between type 2 diabetes (T2D) pathogenesis and immune-mediated tissue damage and insulin resistance suggests that T2D patients might benefit from the suppression of pathogenic inflammation. Foxp3+ Treg cells are crucial suppressors of inflammation, but the differentiation of Foxp3+ Treg cells is not static and is subject to conversion into IL-17-producing Th17-like cells upon receiving external signals. In this study, we examined the production of IL-17 by Treg cells. Compared to non-T2D controls, T2D patients presented significantly higher levels of IL-17-expressing cells in both Foxp3- CD4 T cells and Foxp3+ Treg cells. The frequencies of IL-17-nonexpressing Foxp3+ Treg cells, on the other hand, were not changed. Interestingly, IL-17-expressing Foxp3+ Treg cells were mutually exclusive from IL-10-expressing and TGF-β-expressing Foxp3+ Treg cells, suggesting that multiple subpopulations exist within the Foxp3+ Treg cells from T2D patients. In T2D patients, the frequencies of IL-17-expressing Foxp3+ Treg cells were positively correlated with the body mass index (BMI) and the HbA1c levels of T2D patients. The frequencies of IL-10-expressing Treg cells, on the other hand, were inversely associated with the BMI of both non-T2D controls and T2D patients. In addition, the suppressive activity of Treg cells was significantly lower in T2D patients than in non-T2D controls. Together, our study uncovered a dysregulation in Foxp3+ Treg cells from T2D patients, characterized by high IL-17 expression and low suppression activity.
Collapse
Affiliation(s)
- Lei Zhu
- Department of Endocrinology, Shandong Provincial Third Hospital, 11 Wuyingshan Middle Road, Jinan, Shandong, China.
| | - Haihan Song
- DICAT Biomedical Computation Centre, Vancouver, British Columbia, Canada
| | - Li Zhang
- Department of Endocrinology, Shandong Provincial Third Hospital, 11 Wuyingshan Middle Road, Jinan, Shandong, China
| | - Haiyan Meng
- Department of Cardiology, Shandong Provincial Third Hospital, 11 Wuyingshan Middle Road, Jinan, Shandong, China.
| |
Collapse
|
167
|
Saad ZA, Khodeer DM, Zaitone SA, Ahmed AAM, Moustafa YM. Exenatide ameliorates experimental non-alcoholic fatty liver in rats via suppression of toll-like receptor 4/NFκB signaling: Comparison to metformin. Life Sci 2020; 253:117725. [PMID: 32348835 DOI: 10.1016/j.lfs.2020.117725] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 04/20/2020] [Accepted: 04/21/2020] [Indexed: 02/07/2023]
Abstract
AIMS Non-alcoholic fatty liver disease (NAFLD) is a common liver disease. This study aimed to evaluate the role of exenatide compared with metformin in halting the progression of fatty liver stimulated by a high-fat diet (HiFD) in rats. MAIN METHODS Thirty male Wistar rats were allocated into 6 groups, 5 rats per each group. Group I: maintained on normal diet (normal group) for fourteen weeks. The other five groups were kept on HiFD throughout the experiment, HiFD was administered beside pharmacological treatments/or vehicle. Group II: (NAFLD control group), group III: received metformin (60 mg/kg/day, P.O.), group IV-VI: received exenatide (10, 20, and 40 μg/kg/day, S.C.) respectively for 7 weeks. At the end of the therapeutic period, fasting blood glucose was determined, and body weight was registered. Rats were sacrificed, and blood samples were taken to measure serum insulin, lipids, and liver enzymes. The liver index and homeostasis model of insulin resistance (HOMA-IR) index were calculated. Further, livers were dissected for histopathological examination and Western blot analysis. KEY FINDINGS NAFLD control group showed hyperglycemia, hyperinsulinemia, increased liver enzymes, hypertriglyceridemia, elevated hepatic lipid peroxides, and inflammatory mediators (interlukin 6, nuclear factor-κB, tumor necrosis factor-α and Toll-like receptor4) in addition to hepatic fatty degeneration. In a dose-dependent manner, exenatide significantly improved most of the above mentioned markers in comparsion with NAFLD at P≤0.05. SIGNIFICANCE The current results suggest that exenatide is equivalent to metformin in controlling insulin resistance, body weight gain, improving liver function, suppressing inflammation, and attenuating NAFLD progression in male rats.
Collapse
Affiliation(s)
- Zeinab A Saad
- Medical Administration, Suez Canal University, Ismailia, Egypt
| | - Dina M Khodeer
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt.
| | - Sawsan A Zaitone
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt; Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia
| | - Amal A M Ahmed
- Department of Histology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Yasser M Moustafa
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
| |
Collapse
|
168
|
Martínez-Oca P, Robles-Vera I, Sánchez-Roncero A, Escrivá F, Pérez-Vizcaíno F, Duarte J, Álvarez C, Fernández-Millán E. Gut DYSBIOSIS and altered barrier function precedes the appearance of metabolic syndrome in a rat model of nutrient-induced catch-up growth. J Nutr Biochem 2020; 81:108383. [PMID: 32388252 DOI: 10.1016/j.jnutbio.2020.108383] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 02/29/2020] [Accepted: 03/26/2020] [Indexed: 12/17/2022]
Abstract
Nutritional restriction early in life followed by catch-up growth has been associated with increased risk of metabolic syndrome in adulthood. To elucidate whether altered gut colonization underlies the mechanisms responsible of this predisposition gut microbiome was studied before or afterwards catch-up growth. Offspring of dams fed ad libitum (C) or undernourished during pregnancy and suckling (U), were weaned onto high-fat diet (HFD) for 22 weeks (CHF and UHF, respectively) or continued on their diet. HF-feeding induced glucose intolerance (P<.05), insulin resistance (P<.001), and white adipose tissue inflammation (P<.001) in UHF rats compared to CHF. Analyses of gut microbial composition before catch-up growth revealed reduced F/B ratio and significant expansion of the mucolytic genera Akkermansia (P<.05) and Desulfovibrio (P<.05) in U pups. Although relative abundance of Akkermansia remained elevated to adulthood in U rats, HFD normalized its levels to C and CHF. Food-restriction increased intestinal permeability causing disorganization on the tight-junction proteins of colonic epithelium, Zonula Occludens-1 (ZO-1) and occludin, and reducing the mucus thickness layer in U adult rats. The levels of ZO-1 and occludin were not recovered in U rats after HF-feeding. This event was correlated with increased circulating levels of bacterial lipopolysaccharides in both U and UHF adult rats. Even more, serum lipopolysaccharides were already elevated in U rats compared to C group (P<.001) at weaning. Thus, gut dysbiosis and chronic endotoxemia observed in U rats, even before catch-up growth, might anticipate a pro-inflammatory milieu promoting metabolic diseases when fed hyperlipidic diets.
Collapse
Affiliation(s)
- P Martínez-Oca
- Department of Biochemistry and Molecular Biology, School of Pharmacy, University Complutense of Madrid, Madrid, Spain; Ciber de Diabetes y Enfermedades Metabólicas Asociadas (Ciberdem, ISCIII), Madrid, Spain
| | - I Robles-Vera
- Department of Pharmacology, School of Pharmacy, University of Granada, Granada, Spain
| | - A Sánchez-Roncero
- Department of Biochemistry and Molecular Biology, School of Pharmacy, University Complutense of Madrid, Madrid, Spain; Ciber de Diabetes y Enfermedades Metabólicas Asociadas (Ciberdem, ISCIII), Madrid, Spain
| | - F Escrivá
- Department of Biochemistry and Molecular Biology, School of Pharmacy, University Complutense of Madrid, Madrid, Spain; Ciber de Diabetes y Enfermedades Metabólicas Asociadas (Ciberdem, ISCIII), Madrid, Spain
| | - F Pérez-Vizcaíno
- Department of Pharmacology, School of Medicine, Complutense University of Madrid, Spain; Ciber Enfermedades Respiratorias (Ciberes, ISCIII) and Instituto de Investigación Sanitaria Gregorio Marañón (IISGM), Madrid, Spain
| | - J Duarte
- Department of Pharmacology, School of Pharmacy, University of Granada, Granada, Spain; Instituto de Investigación Biosanitaria de Granada (Ibs.GRANADA), Granada, Spain; Ciber de Enfermedades Cardiovasculares (CiberCV, ISCIII), Granada, Spain
| | - C Álvarez
- Department of Biochemistry and Molecular Biology, School of Pharmacy, University Complutense of Madrid, Madrid, Spain; Ciber de Diabetes y Enfermedades Metabólicas Asociadas (Ciberdem, ISCIII), Madrid, Spain.
| | - E Fernández-Millán
- Department of Biochemistry and Molecular Biology, School of Pharmacy, University Complutense of Madrid, Madrid, Spain; Ciber de Diabetes y Enfermedades Metabólicas Asociadas (Ciberdem, ISCIII), Madrid, Spain.
| |
Collapse
|
169
|
Butler MJ, Perrini AA, Eckel LA. Estradiol treatment attenuates high fat diet-induced microgliosis in ovariectomized rats. Horm Behav 2020; 120:104675. [PMID: 31923417 PMCID: PMC7117977 DOI: 10.1016/j.yhbeh.2020.104675] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 11/20/2019] [Accepted: 12/28/2019] [Indexed: 01/03/2023]
Abstract
Consumption of a high fat diet (HFD) increases circulating free fatty acids, which can enter the brain and promote a state of microgliosis, as defined by a change in microglia number and/or morphology. Most studies investigating diet-induced microgliosis have been conducted in male rodents despite well-documented sex differences in the neural control of food intake and neuroimmune signaling. This highlights the need to investigate how sex hormones may modulate the behavioral and cellular response to HFD consumption. Estradiol is of particular interest since it exerts a potent anorexigenic effect and has both anti-inflammatory and neuroprotective effects in the brain. As such, the aim of the current study was to investigate whether estradiol attenuates the development of HFD-induced microgliosis in female rats. Estradiol- and vehicle-treated ovariectomized rats were fed either a low-fat chow diet or a 60% HFD for 4 days, after which they were perfused and brain sections were processed via immunohistochemistry for microglia-specific Iba1 protein. Four days of HFD consumption promoted microgliosis, as measured via an increase in the number of microglia in the arcuate nucleus (ARC) of the hypothalamus and nucleus of the solitary tract (NTS), and a decrease in microglial branching in the ARC, NTS, lateral hypothalamus (LH), and ventromedial hypothalamus. Estradiol replacement attenuated the HFD-induced changes in microglia accumulation and morphology in the ARC, LH, and NTS. We conclude that estradiol has protective effects against HFD-induced microgliosis in a region-specific manner in hypothalamic and hindbrain areas implicated in the neural control of food intake.
Collapse
Affiliation(s)
- Michael J Butler
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, FL 32306, United States; Institute for Behavioral Medicine Research, Ohio State University Wexner Medical Center, Columbus, OH, 43210, United States
| | - Alexis A Perrini
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, FL 32306, United States
| | - Lisa A Eckel
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, FL 32306, United States.
| |
Collapse
|
170
|
Role of c-Jun N-terminal Kinase (JNK) in Obesity and Type 2 Diabetes. Cells 2020; 9:cells9030706. [PMID: 32183037 PMCID: PMC7140703 DOI: 10.3390/cells9030706] [Citation(s) in RCA: 151] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 02/16/2020] [Accepted: 03/11/2020] [Indexed: 12/13/2022] Open
Abstract
Obesity has been described as a global epidemic and is a low-grade chronic inflammatory disease that arises as a consequence of energy imbalance. Obesity increases the risk of type 2 diabetes (T2D), by mechanisms that are not entirely clarified. Elevated circulating pro-inflammatory cytokines and free fatty acids (FFA) during obesity cause insulin resistance and ß-cell dysfunction, the two main features of T2D, which are both aggravated with the progressive development of hyperglycemia. The inflammatory kinase c-jun N-terminal kinase (JNK) responds to various cellular stress signals activated by cytokines, free fatty acids and hyperglycemia, and is a key mediator in the transition between obesity and T2D. Specifically, JNK mediates both insulin resistance and ß-cell dysfunction, and is therefore a potential target for T2D therapy.
Collapse
|
171
|
Sookrung N, Tungtrongchitr A, Chaicumpa W. Cockroaches: Allergens, Component-Resolved Diagnosis (CRD) and Component-Resolved Immunotherapy. Curr Protein Pept Sci 2020; 21:124-141. [DOI: 10.2174/1389203720666190731144043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 06/18/2019] [Accepted: 06/21/2019] [Indexed: 12/27/2022]
Abstract
Allergic diseases are assuming increasing trend of prevalence worldwide. The diseases confer increasing demand on medical and healthcare facilities. Patients with allergies have poor quality of life and impaired cognition. Adult patients have subpar working efficiency while afflicted children are less effective at school, often have school absenteeism and need more attention of their caregivers. All of them lead to negative socio-economic impact. This narrative review focuses on cockroach allergy including currently recognized cockroach allergens, pathogenic mechanisms of allergy, componentresolved diagnosis and allergen-specific immunotherapy, particularly the component-resolved immunotherapy and the molecular mechanisms that bring about resolution of the chronic airway inflammation.
Collapse
Affiliation(s)
- Nitat Sookrung
- Center of Research Excellence on Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Anchalee Tungtrongchitr
- Center of Research Excellence on Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Wanpen Chaicumpa
- Center of Research Excellence on Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
172
|
Ha SY, Qiu XM, Lai ZZ, Yang HL, Wang Y, Ruan LY, Shi JW, Zhu XY, Li DJ, Li MQ. Excess palmitate induces decidual stromal cell apoptosis via the TLR4/JNK/NF-kB pathways and possibly through glutamine oxidation. Mol Hum Reprod 2020; 26:88-100. [PMID: 31977025 DOI: 10.1093/molehr/gaaa004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 12/23/2019] [Accepted: 01/08/2020] [Indexed: 12/30/2022] Open
Abstract
During gestation, excess palmitate (PA) is enriched in decidua. Both excess PA and decidual dysfunctions are associated with numerous adverse pregnancy outcomes such as gestational diabetes, preeclampsia and preterm birth and intrauterine growth restriction. Here, mRNA data about the effects of PA were collected from multiple databases and analyzed. Human decidual tissues were obtained from clinically normal pregnancies, terminated for non-medical reasons, during the first trimester, and decidual stromal cells (DSCs) were isolated and exposed to PA, alone or together with the inhibitors of Toll-like receptor 4 (TLR4), Jun N-terminal kinase (JNK), nuclear factor-kappa-gene binding (NF-kB) or glutamine (GLN) oxidation. Furthermore, DSCs were transfected with lentiviral particles overexpressing human TLR4. We demonstrate that excess PA interacting with its receptor TLR4 disturbs DSC hemostasis during the first trimester. Specifically, high PA signal induced DSC apoptosis and formed an inflammatory program (elevated interleukin-1 beta and decreased interleukin-10) via the activation of TLR4/JNK/NF-kB pathways. A complexed cross-talk was found between TLR4/JNK/NF-kB signals and PA deposition in DSCs. Besides, under an excess PA environment, GLN oxidation was significantly enhanced in DSCs and the suppression of GLN oxidation further augmented PA-mediated DSC apoptosis and inflammatory responses. In conclusion, excess PA induces apoptosis and inflammation in DSCs via the TLR4/JNK/NF-kB pathways, which can be augmented by the suppression of GLN oxidation.
Collapse
Affiliation(s)
- Si-Yao Ha
- Laboratory for Reproductive Immunology, National Health Commission (NHC) Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai 200082, People's Republic of China
| | - Xue-Min Qiu
- Laboratory for Reproductive Immunology, National Health Commission (NHC) Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai 200082, People's Republic of China
| | - Zhen-Zhen Lai
- Laboratory for Reproductive Immunology, National Health Commission (NHC) Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai 200082, People's Republic of China
| | - Hui-Li Yang
- Laboratory for Reproductive Immunology, National Health Commission (NHC) Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai 200082, People's Republic of China
| | - Yan Wang
- Laboratory for Reproductive Immunology, National Health Commission (NHC) Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai 200082, People's Republic of China
| | - Lu-Yu Ruan
- Laboratory for Reproductive Immunology, National Health Commission (NHC) Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai 200082, People's Republic of China
| | - Jia-Wei Shi
- Laboratory for Reproductive Immunology, National Health Commission (NHC) Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai 200082, People's Republic of China
| | - Xiao-Yong Zhu
- Laboratory for Reproductive Immunology, National Health Commission (NHC) Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai 200082, People's Republic of China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai 200011, People's Republic of China
| | - Da-Jin Li
- Laboratory for Reproductive Immunology, National Health Commission (NHC) Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai 200082, People's Republic of China
| | - Ming-Qing Li
- Laboratory for Reproductive Immunology, National Health Commission (NHC) Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai 200082, People's Republic of China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai 200011, People's Republic of China
| |
Collapse
|
173
|
Bi S, Huang W, Chen S, Huang C, Li C, Guo Z, Yang J, Zhu J, Song L, Yu R. Cordyceps militaris polysaccharide converts immunosuppressive macrophages into M1-like phenotype and activates T lymphocytes by inhibiting the PD-L1/PD-1 axis between TAMs and T lymphocytes. Int J Biol Macromol 2020; 150:261-280. [PMID: 32044366 DOI: 10.1016/j.ijbiomac.2020.02.050] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 01/31/2020] [Accepted: 02/06/2020] [Indexed: 01/13/2023]
Abstract
Tumour-associated macrophages (TAMs) inhibit the killing effect of T lymphocytes on tumour cells through the immunocheckpoint programmed death ligand-1 (PD-L1)/programmed death-1 (PD-1) axis. TAMs-targeted therapy is a promising approach that could be used to reverse the immunosuppressive tumour microenvironment. Here, we further report CMPB90-1, a novel natural polysaccharide from Cordyceps militaris, could function as an anti-tumour modulator that resets TAMs from a tumour-promoting M2 phenotype to a tumour-killing M1 phenotype. This process involves reversing the functional inhibition of T lymphocytes by inhibiting the PD-L1/PD-1 axis between TAMs and T lymphocytes. Mechanistically, the membrane receptor of CMPB90-1 binding to M2 macrophages was identified by tandem mass spectrometry. CMPB90-1 converts immunosuppressive TAMs via binding to toll-like receptor 2 (TLR2), which causes the release of Ca2+ and the activation of p38, Akt and NF-κB, or ERK. This process then leads to the polarization of TAMs from M2 phenotype to the M1 phenotype. In vivo experiment shows that CMPB90-1 is able to polarize TAMs into the M1 phenotype and has anti-tumour effects with improved safety. Additionally, the anti-tumour effects of CMPB90-1 in vivo depend on the phenotypic conversion of TAMs. The results demonstrated that CMPB90-1 could be developed as a potential immune-oncology treatment reagent.
Collapse
Affiliation(s)
- Sixue Bi
- Department of Pharmacology, College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Weijuan Huang
- Biotechnological Institute of Chinese Materia Medica, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Shan Chen
- Department of Natural Products Chemistry, College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Chunhua Huang
- Department of Natural Products Chemistry, College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Chunlei Li
- Department of Pharmacology, College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Zhongyi Guo
- Biotechnological Institute of Chinese Materia Medica, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Jianing Yang
- Department of Pharmacology, College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Jianhua Zhu
- Department of Natural Products Chemistry, College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China.
| | - Liyan Song
- Department of Pharmacology, College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China.
| | - Rongmin Yu
- Biotechnological Institute of Chinese Materia Medica, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China; Department of Natural Products Chemistry, College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China.
| |
Collapse
|
174
|
Bao M, Zhang K, Wei Y, Hua W, Gao Y, Li X, Ye L. Therapeutic potentials and modulatory mechanisms of fatty acids in bone. Cell Prolif 2020; 53:e12735. [PMID: 31797479 PMCID: PMC7046483 DOI: 10.1111/cpr.12735] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 11/02/2019] [Accepted: 11/05/2019] [Indexed: 02/05/2023] Open
Abstract
Bone metabolism is a lifelong process that includes bone formation and resorption. Osteoblasts and osteoclasts are the predominant cell types associated with bone metabolism, which is facilitated by other cells such as bone marrow mesenchymal stem cells (BMMSCs), osteocytes and chondrocytes. As an important component in our daily diet, fatty acids are mainly categorized as long-chain fatty acids including polyunsaturated fatty acids (LCPUFAs), monounsaturated fatty acids (LCMUFAs), saturated fatty acids (LCSFAs), medium-/short-chain fatty acids (MCFAs/SCFAs) as well as their metabolites. Fatty acids are closely associated with bone metabolism and associated bone disorders. In this review, we summarized the important roles and potential therapeutic implications of fatty acids in multiple bone disorders, reviewed the diverse range of critical effects displayed by fatty acids on bone metabolism, and elucidated their modulatory roles and mechanisms on specific bone cell types. The evidence supporting close implications of fatty acids in bone metabolism and disorders suggests fatty acids as potential therapeutic and nutritional agents for the treatment and prevention of metabolic bone diseases.
Collapse
Affiliation(s)
- Minyue Bao
- State Key Laboratory of Oral DiseasesNational Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduChina
| | - Kaiwen Zhang
- State Key Laboratory of Oral DiseasesNational Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduChina
| | - Yangyini Wei
- State Key Laboratory of Oral DiseasesNational Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduChina
| | - Weihan Hua
- State Key Laboratory of Oral DiseasesNational Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduChina
| | - Yanzi Gao
- State Key Laboratory of Oral DiseasesNational Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduChina
| | - Xin Li
- State Key Laboratory of Oral DiseasesNational Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduChina
| | - Ling Ye
- State Key Laboratory of Oral DiseasesNational Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduChina
- State Key Laboratory of Oral DiseasesNational Clinical Research Center for Oral DiseasesDepartment of Cariology and EndodonticsWest China Hospital of StomatologySichuan UniversityChengduChina
| |
Collapse
|
175
|
Beraldi EJ, Borges SC, de Almeida FLA, Dos Santos A, Saad MJA, Buttow NC. Colonic neuronal loss and delayed motility induced by high-fat diet occur independently of changes in the major groups of microbiota in Swiss mice. Neurogastroenterol Motil 2020; 32:e13745. [PMID: 31721393 DOI: 10.1111/nmo.13745] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 09/16/2019] [Accepted: 09/24/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND Obesity has been linked to gastrointestinal disorders, and the loss of myenteric neurons in the intestine caused by high-fat diets (HFD) has been attributed to changes in microbiota and lipotoxicity. We investigated whether the prebiotic inulin modulates bacterial populations and alleviates neuronal loss in mice fed HFD. METHODS Swiss mice were fed purified rodent diet or HFD (59% kcal fat), or both diets supplemented with inulin for 17 weeks. Intestinal motility was assessed and a metagenome analysis of the colonic microbiota was performed. The gene expression of inflammatory markers was evaluated, and immunofluorescence was performed for different types of myenteric neurons and glial cells in the distal colon. KEY RESULTS The HFD caused obesity and delayed colonic motility. The loss of myenteric neurons and glial cells in obese mice affected all of the studied neuronal populations, including neurons positive for myosin-V, neuronal nitric oxide synthase, vasoactive intestinal peptide, and calretinin. Although obese mice supplemented with inulin exhibited improvements in colonic motility, neuronal, and glial cell loss persisted. The HFD did not altered the expression levels of inflammatory cytokines in the intestine or the prevalence of the major groups in microbiota, but inulin increased the proportion of the genus Akkermansia in the obese mice. CONCLUSIONS AND INFERENCES In Swiss mice, the HFD-induced neuronal loss but did not change the major groups in microbiota. This suggests that, despite the increase in the beneficial bacteria, other factors that are directly linked to excess dietary lipid intake affect the enteric nervous system.
Collapse
Affiliation(s)
- Evandro José Beraldi
- Graduate Program in Biological Sciences (PBC), State University of Maringá, Maringá, Brazil
| | | | | | - Andrey Dos Santos
- Department of Internal Medicine, State University of Campinas, Campinas, Brazil
| | | | | |
Collapse
|
176
|
Riccardi DMDR, das Neves RX, de Matos-Neto EM, Camargo RG, Lima JDCC, Radloff K, Alves MJ, Costa RGF, Tokeshi F, Otoch JP, Maximiano LF, de Alcantara PSM, Colquhoun A, Laviano A, Seelaender M. Plasma Lipid Profile and Systemic Inflammation in Patients With Cancer Cachexia. Front Nutr 2020; 7:4. [PMID: 32083092 PMCID: PMC7005065 DOI: 10.3389/fnut.2020.00004] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Accepted: 01/10/2020] [Indexed: 12/11/2022] Open
Abstract
Cancer cachexia affects about 80% of advanced cancer patients, it is linked to poor prognosis and to date, there is no efficient treatment or cure. The syndrome leads to progressive involuntary loss of muscle and fat mass induced by systemic inflammatory processes. The role of the white adipose tissue (WAT) in the onset and manifestation of cancer cachexia gained importance during the last decade. WAT wasting is not only characterized by increased lipolysis and release of free fatty acids (FFA), but in addition, owing to its high capacity to produce a variety of inflammatory factors. The aim of this study was to characterize plasma lipid profile of cachectic patients and to correlate the FA composition with circulating inflammatory markers; finally, we sought to establish whether the fatty acids released by adipocytes trigger and/or contribute to local and systemic inflammation in cachexia. The study selected 65 patients further divided into 3 groups: control (N); weight stable cancer (WSC); and cachectic cancer (CC). The plasma FA profile was significantly different among the groups and was positively correlated with pro-inflammatory cytokines expression in the CC patients. Therefore, we propose that saturated to unsaturated FFA ratio may serve as a means of detecting cachexia.
Collapse
Affiliation(s)
| | - Rodrigo Xavier das Neves
- Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, United States
| | - Emidio Marques de Matos-Neto
- Cancer Metabolism Research Group, Institute of Biomedical Sciences University of São Paulo, São Paulo, Brazil.,Department of Physical Education, Federal University of Piaui, Teresina, Brazil
| | - Rodolfo Gonzalez Camargo
- Cancer Metabolism Research Group, Institute of Biomedical Sciences University of São Paulo, São Paulo, Brazil
| | | | - Katrin Radloff
- Cancer Metabolism Research Group, Institute of Biomedical Sciences University of São Paulo, São Paulo, Brazil
| | - Michele Joana Alves
- Cancer Metabolism Research Group, Institute of Biomedical Sciences University of São Paulo, São Paulo, Brazil
| | | | - Flávio Tokeshi
- University Hospital of the University of São Paulo, São Paulo, Brazil
| | - José Pinhata Otoch
- University Hospital of the University of São Paulo, São Paulo, Brazil.,University of São Paulo Medical School (FMUSP), São Paulo, Brazil
| | - Linda Ferreira Maximiano
- University Hospital of the University of São Paulo, São Paulo, Brazil.,University of São Paulo Medical School (FMUSP), São Paulo, Brazil
| | | | - Alison Colquhoun
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences University of São Paulo, São Paulo, Brazil
| | - Alessandro Laviano
- Department of Clinical Medicine, Sapienza University of Rome, Rome, Italy
| | - Marilia Seelaender
- Cancer Metabolism Research Group, Institute of Biomedical Sciences University of São Paulo, São Paulo, Brazil.,University of São Paulo Medical School (FMUSP), São Paulo, Brazil
| |
Collapse
|
177
|
Lanchais K, Capel F, Tournadre A. Could Omega 3 Fatty Acids Preserve Muscle Health in Rheumatoid Arthritis? Nutrients 2020; 12:E223. [PMID: 31952247 PMCID: PMC7019846 DOI: 10.3390/nu12010223] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 12/23/2019] [Accepted: 01/10/2020] [Indexed: 12/15/2022] Open
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory disease characterized by a high prevalence of death due to cardiometabolic diseases. As observed during the aging process, several comorbidities, such as cardiovascular disorders (CVD), insulin resistance, metabolic syndrome and sarcopenia, are frequently associated to RA. These abnormalities could be closely linked to alterations in lipid metabolism. Indeed, RA patients exhibit a lipid paradox, defined by reduced levels of total, low-density lipoprotein (LDL) and high-density lipoprotein (HDL) cholesterol whereas the CVD risk is increased. Moreover, the accumulation of toxic lipid mediators (i.e., lipotoxicity) in skeletal muscles can induce mitochondrial dysfunctions and insulin resistance, which are both crucial determinants of CVD and sarcopenia. The prevention or reversion of these biological perturbations in RA patients could contribute to the maintenance of muscle health and thus be protective against the increased risk for cardiometabolic diseases, dysmobility and mortality. Yet, several studies have shown that omega 3 fatty acids (FA) could prevent the development of RA, improve muscle metabolism and limit muscle atrophy in obese and insulin-resistant subjects. Thereby, dietary supplementation with omega 3 FA should be a promising strategy to counteract muscle lipotoxicity and for the prevention of comorbidities in RA patients.
Collapse
Affiliation(s)
- Kassandra Lanchais
- Université Clermont Auvergne, INRAE, Unité de Nutrition Humaine (UNH), 28 Place Henri Dunant—BP 38, UFR Médecine, UMR1019, 63009 Clermont-Ferrand, France; (K.L.); (A.T.)
| | - Frederic Capel
- Université Clermont Auvergne, INRAE, Unité de Nutrition Humaine (UNH), 28 Place Henri Dunant—BP 38, UFR Médecine, UMR1019, 63009 Clermont-Ferrand, France; (K.L.); (A.T.)
| | - Anne Tournadre
- Université Clermont Auvergne, INRAE, Unité de Nutrition Humaine (UNH), 28 Place Henri Dunant—BP 38, UFR Médecine, UMR1019, 63009 Clermont-Ferrand, France; (K.L.); (A.T.)
- CHU de Clermont-Ferrand, Service de rhumatologie, 63003 Clermont-Ferrand, France
| |
Collapse
|
178
|
Barabás K, Szabó-Meleg E, Ábrahám IM. Effect of Inflammation on Female Gonadotropin-Releasing Hormone (GnRH) Neurons: Mechanisms and Consequences. Int J Mol Sci 2020; 21:ijms21020529. [PMID: 31947687 PMCID: PMC7014424 DOI: 10.3390/ijms21020529] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/06/2020] [Accepted: 01/08/2020] [Indexed: 02/06/2023] Open
Abstract
: Inflammation has a well-known suppressive effect on fertility. The function of gonadotropin-releasing hormone (GnRH) neurons, the central regulator of fertility is substantially altered during inflammation in females. In our review we discuss the latest results on how the function of GnRH neurons is modified by inflammation in females. We first address the various effects of inflammation on GnRH neurons and their functional consequences. Second, we survey the possible mechanisms underlying the inflammation-induced actions on GnRH neurons. The role of several factors will be discerned in transmitting inflammatory signals to the GnRH neurons: cytokines, kisspeptin, RFamide-related peptides, estradiol and the anti-inflammatory cholinergic pathway. Since aging and obesity are both characterized by reproductive decline our review also focuses on the mechanisms and pathophysiological consequences of the impact of inflammation on GnRH neurons in aging and obesity.
Collapse
Affiliation(s)
- Klaudia Barabás
- Molecular Neuroendocrinology Research Group, Institute of Physiology, Medical School, Centre for Neuroscience, Szentágothai Research Institute, University of Pécs, H-7624 Pécs, Hungary;
| | - Edina Szabó-Meleg
- Departement of Biophysics, Medical School, University of Pécs, H-7624 Pécs, Hungary;
| | - István M. Ábrahám
- Molecular Neuroendocrinology Research Group, Institute of Physiology, Medical School, Centre for Neuroscience, Szentágothai Research Institute, University of Pécs, H-7624 Pécs, Hungary;
- Correspondence:
| |
Collapse
|
179
|
High-Fat Diet Aggravates Acute Pancreatitis via TLR4-Mediated Necroptosis and Inflammation in Rats. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:8172714. [PMID: 31998444 PMCID: PMC6973188 DOI: 10.1155/2020/8172714] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 12/07/2019] [Accepted: 12/24/2019] [Indexed: 12/18/2022]
Abstract
High-fat diet (HFD) often increases oxidative stress and enhances inflammatory status in the body. Toll-like receptor 4 (TLR4) is widely expressed in the pancreatic tissues and plays an important role in pancreatitis. This study is aimed at investigating the effect of HFD on acute pancreatitis (AP) and the role of TLR4-mediated necroptosis and inflammation in this disease. Weight-matched rats were allocated for an 8-week feeding on the standard chow diet (SCD) or HFD, and then, the AP model was induced by infusion of 5% sodium taurocholate into the biliopancreatic duct. Rats were sacrificed at an indicated time point after modeling. Additionally, inhibition of TLR4 signaling by TAK-242 in HFD rats with AP was conducted in vivo. The results showed that the levels of serum free fatty acid (FFA) in HFD rats were higher than those in SCD rats. Moreover, HFD rats were more vulnerable to AP injury than SCD rats, as indicated by more serious pathological damage and much higher pancreatic malondialdehyde (MDA) and lipid peroxidation (LPO) levels as well as lower pancreatic superoxide dismutase (SOD) activities and reduced glutathione (GSH) contents and more intense infiltration of MPO-positive neutrophils and CD68-positive macrophages. In addition, HFD markedly increased the expressions of TLR4 and necroptosis marker (RIP3) and aggravated the activation of NF-κB p65 and the expression of TNF-α in the pancreas of AP rats at indicated time points. However, TLR4 inhibition significantly attenuated the structural and functional damage of the pancreas induced by AP in HFD rats, as indicated by improvement of the above indexes. Taken together, these findings suggest that HFD exacerbated the extent and severity of AP via oxidative stress, inflammatory response, and necroptosis. Inhibition of TLR4 signaling by TAK-242 alleviated oxidative stress and decreased inflammatory reaction and necroptosis, exerting a protective effect during AP in HFD rats.
Collapse
|
180
|
Zhou H, Urso CJ, Jadeja V. Saturated Fatty Acids in Obesity-Associated Inflammation. J Inflamm Res 2020; 13:1-14. [PMID: 32021375 PMCID: PMC6954080 DOI: 10.2147/jir.s229691] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 11/11/2019] [Indexed: 01/14/2023] Open
Abstract
Obesity is a major risk factor for the development of various pathological conditions including insulin resistance, diabetes, cardiovascular diseases, and non-alcoholic fatty liver disease (NAFLD). Central to these conditions is obesity-associated chronic low-grade inflammation in many tissues including adipose, liver, muscle, kidney, pancreas, and brain. There is increasing evidence that saturated fatty acids (SFAs) increase the phosphorylation of MAPKs, enhance the activation of transcription factors such as nuclear factor (NF)-κB, and elevate the expression of inflammatory genes. This paper focuses on the mechanisms by which SFAs induce inflammation. SFAs may induce the expression inflammatory genes via different pathways including toll-like receptor (TLR), protein kinase C (PKC), reactive oxygen species (ROS), NOD-like receptors (NLRs), and endoplasmic reticulum (ER) stress. These findings suggest that SFAs act as an important link between obesity and inflammation.
Collapse
Affiliation(s)
- Heping Zhou
- Department of Biological Sciences, Seton Hall University, South Orange, NJ 07079, USA
| | - C J Urso
- Department of Biological Sciences, Seton Hall University, South Orange, NJ 07079, USA
| | - Viren Jadeja
- Department of Biological Sciences, Seton Hall University, South Orange, NJ 07079, USA
| |
Collapse
|
181
|
González-Quilen C, Rodríguez-Gallego E, Beltrán-Debón R, Pinent M, Ardévol A, Blay MT, Terra X. Health-Promoting Properties of Proanthocyanidins for Intestinal Dysfunction. Nutrients 2020; 12:E130. [PMID: 31906505 PMCID: PMC7019584 DOI: 10.3390/nu12010130] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 12/20/2019] [Accepted: 12/31/2019] [Indexed: 12/22/2022] Open
Abstract
The intestinal barrier is constantly exposed to potentially harmful environmental factors, including food components and bacterial endotoxins. When intestinal barrier function and immune homeostasis are compromised (intestinal dysfunction), inflammatory conditions may develop and impact overall health. Evidence from experimental animal and cell culture studies suggests that exposure of intestinal mucosa to proanthocyanidin (PAC)-rich plant products, such as grape seeds, may contribute to maintaining the barrier function and to ameliorating the pathological inflammation present in diet-induced obesity and inflammatory bowel disease. In this review, we aim to update the current knowledge on the bioactivity of PACs in experimental models of intestinal dysfunction and in humans, and to provide insights into the underlying biochemical and molecular mechanisms.
Collapse
Affiliation(s)
| | | | | | | | | | - M Teresa Blay
- MoBioFood Research Group, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, 43007 Tarragona, Spain; (C.G.-Q.); (E.R.-G.); (R.B.-D.); (M.P.); (A.A.); (X.T.)
| | | |
Collapse
|
182
|
Rohr MW, Narasimhulu CA, Rudeski-Rohr TA, Parthasarathy S. Negative Effects of a High-Fat Diet on Intestinal Permeability: A Review. Adv Nutr 2020; 11:77-91. [PMID: 31268137 PMCID: PMC7442371 DOI: 10.1093/advances/nmz061] [Citation(s) in RCA: 382] [Impact Index Per Article: 76.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 04/16/2019] [Accepted: 06/04/2019] [Indexed: 12/16/2022] Open
Abstract
The intestinal tract is the largest barrier between a person and the environment. In this role, the intestinal tract is responsible not only for absorbing essential dietary nutrients, but also for protecting the host from a variety of ingested toxins and microbes. The intestinal barrier system is composed of a mucus layer, intestinal epithelial cells (IECs), tight junctions (TJs), immune cells, and a gut microbiota, which are all susceptible to external factors such as dietary fats. When components of this barrier system are disrupted, intestinal permeability to luminal contents increases, which is implicated in intestinal pathologies such as inflammatory bowel disease, necrotizing enterocolitis, and celiac disease. Currently, there is mounting evidence that consumption of excess dietary fats can enhance intestinal permeability differentially. For example, dietary fat modulates the expression and distribution of TJs, stimulates a shift to barrier-disrupting hydrophobic bile acids, and even induces IEC oxidative stress and apoptosis. In addition, a high-fat diet (HFD) enhances intestinal permeability directly by stimulating proinflammatory signaling cascades and indirectly via increasing barrier-disrupting cytokines [TNFα, interleukin (IL) 1B, IL6, and interferon γ (IFNγ)] and decreasing barrier-forming cytokines (IL10, IL17, and IL22). Finally, an HFD negatively modulates the intestinal mucus composition and enriches the gut microflora with barrier-disrupting species. Although further research is necessary to understand the precise role HFDs play in intestinal permeability, current data suggest a stronger link between diet and intestinal disease than was first thought to exist. Therefore, this review seeks to highlight the various ways an HFD disrupts the gut barrier system and its many implications in human health.
Collapse
Affiliation(s)
- Michael W Rohr
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, USA
| | - Chandrakala A Narasimhulu
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, USA
| | - Trina A Rudeski-Rohr
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, USA
| | - Sampath Parthasarathy
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, USA
| |
Collapse
|
183
|
Soltani N, Marandi SM, Kazemi M, Esmaeil N. Combined All-Extremity High-Intensity Interval Training Regulates Immunometabolic Responses through Toll-Like Receptor 4 Adaptors and A20 Downregulation in Obese Young Females. Obes Facts 2020; 13:415-431. [PMID: 32615574 PMCID: PMC7445579 DOI: 10.1159/000509132] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 06/02/2020] [Indexed: 12/17/2022] Open
Abstract
Metainflammation and malfunctions of toll-like receptor 4 (TLR4) are related to obesity-induced immunometabolic morbidities. There are almost no studies relating exercise training to the TLR4 pathway and its adaptors and negative regulators. Thirty young women with obesity (exercise group and control group) were included in a 10-week all-extremity combined high-intensity interval training program. The immunomodulatory impacts of exercise on TLR4, its related adaptors (TIR domain-containing adaptor-inducing IFN-β[TRIF], myeloid differentiation factor 88 [MyD88],and tumor receptor-associated factor 6 [TRAF6]), transcriptional factors (nuclear factor [NF]-κB and interferon regulatory factor 3 [IRF3]), and negative regulator (A20) mRNA levels were assessed by real-time PCR. Also, the serum concentration of TLR4 final products (tumor necrosis factor α [TNFα] and interferon γ [IFNγ]) was measured by ELISA. Cardiorespiratory and body composition parameters were tested, as well. There was a significant improvement in body composition and cardiorespiratory fitness. This intervention downregulated TLR4 (from 2.25 ± 1.07 to 0.84 ± 1.01), MyD88 (from 4.53 ± 5.15 to 1.27 ± 0.88), NF-κB (from 1.61 ± 2.03 to 0.23 ± 0.39), IRF3 (from 1.22 ± 0.77 to 0.25 ± 0.36), and A20 (from 0.88 ± 0.59 to 0.22 ± 0.33) levels and reduced the TNFα concentrations (from 22.39 ± 11.43 to 6.26 ± 5.31) significantly in the exercise group, while no statistically significant change was found in TRIF and TRAF6 expression and IFNγ circulating levels. It is concluded that long-term exercise modifies the inflammatory pathways and modulates the immune function at the early stages of inflammation initiation in circulating immune cells. Accordingly, we suggest time-efficient exercise protocols as a possible therapy approach for the prevention of M1 polarization.
Collapse
Affiliation(s)
- Nakisa Soltani
- Department of Exercise Physiology, Faculty of Sport Sciences, University of Isfahan, Isfahan, Iran
| | - Sayed Mohammad Marandi
- Department of Exercise Physiology, Faculty of Sport Sciences, University of Isfahan, Isfahan, Iran
- **Sayed Mohammad Marandi, Department of Exercise Physiology, Faculty of Sport Sciences, University of Isfahan, Azadi Sq., Isfahan 81746-73441 (Iran),
| | - Mohammad Kazemi
- Department of Genetics and Molecular Biology, University of Medical Sciences, Isfahan, Iran
| | - Nafiseh Esmaeil
- Department of Immunology, School of Medicine, University of Medical Sciences, Isfahan, Iran
- *Nafiseh Esmaeil, Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Hezar Jerib St., Isfahan 81746-73461 (Iran),
| |
Collapse
|
184
|
Denisenko YK, Kytikova OY, Novgorodtseva TP, Antonyuk MV, Gvozdenko TA, Kantur TA. Lipid-Induced Mechanisms of Metabolic Syndrome. J Obes 2020; 2020:5762395. [PMID: 32963827 PMCID: PMC7491450 DOI: 10.1155/2020/5762395] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 07/23/2020] [Accepted: 07/30/2020] [Indexed: 12/23/2022] Open
Abstract
Metabolic syndrome (MetS) has a worldwide tendency to increase and depends on many components, which explains the complexity of diagnosis, approaches to the prevention, and treatment of this pathology. Insulin resistance (IR) is the crucial cause of the MetS pathogenesis, which develops against the background of abdominal obesity. In light of recent evidence, it has been shown that lipids, especially fatty acids (FAs), are important signaling molecules that regulate the signaling pathways of insulin and inflammatory mediators. On the one hand, the lack of n-3 polyunsaturated fatty acids (PUFAs) in the body leads to impaired molecular mechanisms of glucose transport, the formation of unresolved inflammation. On the other hand, excessive formation of free fatty acids (FFAs) underlies the development of oxidative stress and mitochondrial dysfunction in MetS. Understanding the molecular mechanisms of the participation of FAs and their metabolites in the pathogenesis of MetS will contribute to the development of new diagnostic methods and targeted therapy for this disease. The purpose of this review is to highlight recent advances in the study of the effect of fatty acids as modulators of insulin response and inflammatory process in the pathogenesis and treatment for MetS.
Collapse
Affiliation(s)
- Yulia K. Denisenko
- Vladivostok Branch of the Far Eastern Scientific Centre of Physiology and Pathology of Respiration, Institute of Medical Climatology and Rehabilitative Treatment, Vladivostok 690105, Russia
| | - Oxana Yu Kytikova
- Vladivostok Branch of the Far Eastern Scientific Centre of Physiology and Pathology of Respiration, Institute of Medical Climatology and Rehabilitative Treatment, Vladivostok 690105, Russia
| | - Tatyana P. Novgorodtseva
- Vladivostok Branch of the Far Eastern Scientific Centre of Physiology and Pathology of Respiration, Institute of Medical Climatology and Rehabilitative Treatment, Vladivostok 690105, Russia
| | - Marina V. Antonyuk
- Vladivostok Branch of the Far Eastern Scientific Centre of Physiology and Pathology of Respiration, Institute of Medical Climatology and Rehabilitative Treatment, Vladivostok 690105, Russia
| | - Tatyana A. Gvozdenko
- Vladivostok Branch of the Far Eastern Scientific Centre of Physiology and Pathology of Respiration, Institute of Medical Climatology and Rehabilitative Treatment, Vladivostok 690105, Russia
| | | |
Collapse
|
185
|
Mizuno Y, Taguchi T. A hydrophobic gelatin fiber sheet promotes secretion of endogenous vascular endothelial growth factor and stimulates angiogenesis. RSC Adv 2020; 10:24800-24807. [PMID: 35517459 PMCID: PMC9055140 DOI: 10.1039/d0ra03593a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 06/20/2020] [Indexed: 01/24/2023] Open
Abstract
In tissue engineering and regenerative medicine, the formation of vascular beds is an effective method to supply oxygen and nutrients to implanted cells or tissues to improve their survival and promote normal cellular functions. Various types of angiogenic materials have been developed by incorporating growth factors, such as vascular endothelial growth factor, in biocompatible materials. However, these exogenous growth factors suffer from instability and inactivation under physiological conditions. In this study, we designed a novel angiogenic electrospun fiber sheet (C16-FS) composed of Alaska pollock-derived gelatin (ApGltn) modified with hexadecyl (C16) groups to induce localized and sustained angiogenesis without growth factors. C16-FS was thermally crosslinked to enhance its stability. We demonstrated that C16-FS swells in phosphate-buffered saline for over 24 h and resists degradation. Laser doppler perfusion imaging showed that C16-FS induced increased blood perfusion when implanted subcutaneously in rats compared with unmodified ApGltn-fiber sheets (Org-FS) and the sham control. Furthermore, angiogenesis was sustained for up to 7 days following implantation. Immunohistochemical studies revealed elevated nuclear factor-κB and CD31 levels around the C16-FS implantation site compared with the Org-FS implantation site and the control incision site. These results demonstrate that C16-FS is a promising angiogenic material to promote the formation of vascular beds for cell and tissue transplantation without the need for growth factors. In vivo long-term growth factor-free angiogenesis by LPS-mimicking C16-modified gelatin based electrospun fiber sheet.![]()
Collapse
Affiliation(s)
- Yosuke Mizuno
- Graduate School of Science and Technology
- University of Tsukuba
- Tsukuba
- Japan
- Polymers and Biomaterials Field
| | - Tetsushi Taguchi
- Graduate School of Science and Technology
- University of Tsukuba
- Tsukuba
- Japan
- Polymers and Biomaterials Field
| |
Collapse
|
186
|
Abstract
Neuroimmunology and immunometabolism are burgeoning topics of study, but the intersection of these two fields is scarcely considered. This interplay is particularly prevalent within adipose tissue, where immune cells and the sympathetic nervous system (SNS) have an important role in metabolic homeostasis and pathology, namely in obesity. In the present Review, we first outline the established reciprocal adipose-SNS relationship comprising the neuroendocrine loop facilitated primarily by adipose tissue-derived leptin and SNS-derived noradrenaline. Next, we review the extensive crosstalk between adipocytes and resident innate immune cells as well as the changes that occur in these secretory and signalling pathways in obesity. Finally, we discuss the effect of SNS adrenergic signalling in immune cells and conclude with exciting new research demonstrating an immutable role for SNS-resident macrophages in modulating SNS-adipose crosstalk. We posit that the latter point constitutes the existence of a new field - neuroimmunometabolism.
Collapse
Affiliation(s)
- Chelsea M Larabee
- Department of Physiology, Anatomy & Genetics, Oxford University, Oxford, UK
| | - Oliver C Neely
- Department of Physiology, Anatomy & Genetics, Oxford University, Oxford, UK
| | - Ana I Domingos
- Department of Physiology, Anatomy & Genetics, Oxford University, Oxford, UK.
- The Howard Hughes Medical Institute (HHMI), New York, NY, USA.
| |
Collapse
|
187
|
Rutting S, Zakarya R, Bozier J, Xenaki D, Horvat JC, Wood LG, Hansbro PM, Oliver BG. Dietary Fatty Acids Amplify Inflammatory Responses to Infection through p38 MAPK Signaling. Am J Respir Cell Mol Biol 2019; 60:554-568. [PMID: 30648905 DOI: 10.1165/rcmb.2018-0215oc] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Obesity is an important risk factor for severe asthma exacerbations, which are mainly caused by respiratory infections. Dietary fatty acids, which are increased systemically in obese patients and are further increased after high-fat meals, affect the innate immune system and may contribute to dysfunctional immune responses to respiratory infection. In this study we investigated the effects of dietary fatty acids on immune responses to respiratory infection in pulmonary fibroblasts and a bronchial epithelial cell line (BEAS-2B). Cells were challenged with BSA-conjugated fatty acids (ω-6 polyunsaturated fatty acids [PUFAs], ω-3 PUFAs, or saturated fatty acids [SFAs]) +/- the viral mimic polyinosinic:polycytidylic acid (poly[I:C]) or bacterial compound lipoteichoic acid (LTA), and release of proinflammatory cytokines was measured. In both cell types, challenge with arachidonic acid (AA) (ω-6 PUFA) and poly(I:C) or LTA led to substantially greater IL-6 and CXCL8 release than either challenge alone, demonstrating synergy. In epithelial cells, palmitic acid (SFA) combined with poly(I:C) also led to greater IL-6 release. The underlying signaling pathways of AA and poly(I:C)- or LTA-induced cytokine release were examined using specific signaling inhibitors and IB. Cytokine production in pulmonary fibroblasts was prostaglandin dependent, and synergistic upregulation occurred via p38 mitogen-activated protein kinase signaling, whereas cytokine production in bronchial epithelial cell lines was mainly mediated through JNK and p38 mitogen-activated protein kinase signaling. We confirmed these findings using rhinovirus infection, demonstrating that AA enhances rhinovirus-induced cytokine release. This study suggests that during respiratory infection, increased levels of dietary ω-6 PUFAs and SFAs may lead to more severe airway inflammation and may contribute to and/or increase the severity of asthma exacerbations.
Collapse
Affiliation(s)
- Sandra Rutting
- 1 Respiratory Cellular and Molecular Biology, Woolcock Institute of Medical Research, The University of Sydney, Sydney, Australia.,2 Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and University of Newcastle, Newcastle, Australia
| | - Razia Zakarya
- 1 Respiratory Cellular and Molecular Biology, Woolcock Institute of Medical Research, The University of Sydney, Sydney, Australia.,3 School of Life Sciences and
| | - Jack Bozier
- 1 Respiratory Cellular and Molecular Biology, Woolcock Institute of Medical Research, The University of Sydney, Sydney, Australia.,3 School of Life Sciences and
| | - Dia Xenaki
- 1 Respiratory Cellular and Molecular Biology, Woolcock Institute of Medical Research, The University of Sydney, Sydney, Australia
| | - Jay C Horvat
- 2 Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and University of Newcastle, Newcastle, Australia
| | - Lisa G Wood
- 2 Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and University of Newcastle, Newcastle, Australia
| | - Philip M Hansbro
- 2 Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and University of Newcastle, Newcastle, Australia.,5 University of Technology Sydney, Faculty of Science, Ultimo, Australia; and.,4 Centre for Inflammation, Centenary Institute, Sydney, Australia
| | - Brian G Oliver
- 1 Respiratory Cellular and Molecular Biology, Woolcock Institute of Medical Research, The University of Sydney, Sydney, Australia.,3 School of Life Sciences and
| |
Collapse
|
188
|
A global perspective on the crosstalk between saturated fatty acids and Toll-like receptor 4 in the etiology of inflammation and insulin resistance. Prog Lipid Res 2019; 77:101020. [PMID: 31870728 DOI: 10.1016/j.plipres.2019.101020] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 11/15/2019] [Accepted: 11/25/2019] [Indexed: 12/16/2022]
Abstract
Obesity is featured by chronic systemic low-grade inflammation that eventually contributes to the development of insulin resistance. Toll-like receptor 4 (TLR4) is an important mediator that triggers the innate immune response by activating inflammatory signaling cascades. Human, animal and cell culture studies identified saturated fatty acids (SFAs), the dominant non-esterified fatty acid (NEFA) in the circulation of obese subjects, as non-microbial agonists that trigger the inflammatory response via activating TLR4 signaling, which acts as an important causative link between fatty acid overload, chronic low-grade inflammation and the related metabolic aberrations. The interaction between SFAs and TLR4 may be modulated through the myeloid differentiation primary response gene 88-dependent and independent signaling pathway. Greater understanding of the crosstalk between dietary SFAs and TLR4 signaling in the pathogenesis of metabolic imbalance may facilitate the design of a more efficient pharmacological strategy to alleviate the risk of developing chronic diseases elicited in part by fatty acid overload. The current review discusses recent advances in the impact of crosstalk between SFAs and TLR4 on inflammation and insulin resistance in multiple cell types, tissues and organs in the context of metabolic dysregulation.
Collapse
|
189
|
Marrone MC, Coccurello R. Dietary Fatty Acids and Microbiota-Brain Communication in Neuropsychiatric Diseases. Biomolecules 2019; 10:E12. [PMID: 31861745 PMCID: PMC7022659 DOI: 10.3390/biom10010012] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 12/16/2019] [Accepted: 12/17/2019] [Indexed: 12/13/2022] Open
Abstract
The gut-brain axis is a multimodal communication system along which immune, metabolic, autonomic, endocrine and enteric nervous signals can shape host physiology and determine liability, development and progression of a vast number of human diseases. Here, we broadly discussed the current knowledge about the either beneficial or deleterious impact of dietary fatty acids on microbiota-brain communication (MBC), and the multiple mechanisms by which different types of lipids can modify gut microbial ecosystem and contribute to the pathophysiology of major neuropsychiatric diseases (NPDs), such as schizophrenia (SCZ), depression and autism spectrum disorders (ASD).
Collapse
Affiliation(s)
- Maria Cristina Marrone
- European Brain Research Institute (EBRI), Fondazione Rita Levi-Montalcini, 00161 Rome, Italy;
| | - Roberto Coccurello
- National Research Council (CNR), Institute for Complex System (ISC), 00185 Rome, Italy
- IRCCS–S. Lucia Foundation (FSL), 00143 Rome, Italy
| |
Collapse
|
190
|
Zuo H, Wan Y. Metabolic Reprogramming in Mitochondria of Myeloid Cells. Cells 2019; 9:cells9010005. [PMID: 31861356 PMCID: PMC7017304 DOI: 10.3390/cells9010005] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 12/15/2019] [Accepted: 12/16/2019] [Indexed: 12/17/2022] Open
Abstract
The myeloid lineage consists of multiple immune cell types, such as macrophages, monocytes, and dendritic cells. It actively participates in both innate and adaptive immunity. In response to pro- or anti-inflammatory signals, these cells undergo distinct programmed metabolic changes especially in mitochondria. Pro-inflammatory signals induce not only a simple shift from oxidative phosphorylation to glycolysis, but also complicated metabolic alterations during the early and tolerant stages in myeloid cells. In mitochondria, a broken Krebs cycle leads to the accumulation of two metabolites, citrate and succinate, both of which trigger pro-inflammatory responses of myeloid cells. A deficient electron transport chain induces pro-inflammatory responses in the resting myeloid cells while it suppresses these responses in the polarized cells during inflammation. The metabolic reprogramming in mitochondria is also associated with altered mitochondrial morphology. On the other hand, intact oxidative phosphorylation is required for the anti-inflammatory functions of myeloid cells. Fatty acid synthesis is essential for the pro-inflammatory effect and glutamine metabolism in mitochondria exhibits the anti-inflammatory effect. A few aspects of metabolic reprogramming remain uncertain, for example, glycolysis and fatty acid oxidation in anti-inflammation. Overall, metabolic reprogramming is an important element of immune responses in myeloid cells.
Collapse
Affiliation(s)
- Hao Zuo
- Department of Pharmacology, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yihong Wan
- Department of Pharmacology, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Harold C. Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Hamon Center for Regenerative Science and Medicine, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Correspondence: ; Tel.: +1-214-645-6062
| |
Collapse
|
191
|
Human Postprandial Nutrient Metabolism and Low-Grade Inflammation: A Narrative Review. Nutrients 2019; 11:nu11123000. [PMID: 31817857 PMCID: PMC6950246 DOI: 10.3390/nu11123000] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 12/03/2019] [Accepted: 12/04/2019] [Indexed: 12/11/2022] Open
Abstract
The importance of the postprandial state has been acknowledged, since hyperglycemia and hyperlipidemia are linked with several chronic systemic low-grade inflammation conditions. Humans spend more than 16 h per day in the postprandial state and the postprandial state is acknowledged as a complex interplay between nutrients, hormones and diet-derived metabolites. The purpose of this review is to provide insight into the physiology of the postprandial inflammatory response, the role of different nutrients, the pro-inflammatory effects of metabolic endotoxemia and the anti-inflammatory effects of bile acids. Moreover, we discuss nutritional strategies that may be linked to the described pathways to modulate the inflammatory component of the postprandial response.
Collapse
|
192
|
Kumar NG, Contaifer D, Madurantakam P, Carbone S, Price ET, Van Tassell B, Brophy DF, Wijesinghe DS. Dietary Bioactive Fatty Acids as Modulators of Immune Function: Implications on Human Health. Nutrients 2019; 11:E2974. [PMID: 31817430 PMCID: PMC6950193 DOI: 10.3390/nu11122974] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 11/05/2019] [Accepted: 11/20/2019] [Indexed: 12/11/2022] Open
Abstract
Diet is major modifiable risk factor for cardiovascular disease that can influence the immune status of the individual and contribute to persistent low-grade inflammation. In recent years, there has been an increased appreciation of the role of polyunsaturated fatty acids (PUFA) in improving immune function and reduction of systemic inflammation via the modulation of pattern recognition receptors (PRR) on immune cells. Extensive research on the use of bioactive lipids such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) and their metabolites have illustrated the importance of these pro-resolving lipid mediators in modulating signaling through PRRs. While their mechanism of action, bioavailability in the blood, and their efficacy for clinical use forms an active area of research, they are found widely administered as marine animal-based supplements like fish oil and krill oil to promote health. The focus of this review will be to discuss the effect of these bioactive fatty acids and their metabolites on immune cells and the resulting inflammatory response, with a brief discussion about modern methods for their analysis using mass spectrometry-based methods.
Collapse
Affiliation(s)
- Naren Gajenthra Kumar
- Department of Microbiology and Immunology, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA;
| | - Daniel Contaifer
- Department of Pharmacotherapy and Outcomes Sciences, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298, USA; (D.C.); (E.T.P.); (B.V.T.); (D.F.B.)
| | - Parthasarathy Madurantakam
- Department of General Practice, School of Dentistry, Virginia Commonwealth University, Richmond, VA 23298, USA;
| | - Salvatore Carbone
- Department of Kinesiology & Health Sciences, College of Humanities & Sciences, Virginia Commonwealth University, Richmond, VA 23220, USA;
- VCU Pauley Heart Center, Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Elvin T. Price
- Department of Pharmacotherapy and Outcomes Sciences, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298, USA; (D.C.); (E.T.P.); (B.V.T.); (D.F.B.)
| | - Benjamin Van Tassell
- Department of Pharmacotherapy and Outcomes Sciences, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298, USA; (D.C.); (E.T.P.); (B.V.T.); (D.F.B.)
| | - Donald F. Brophy
- Department of Pharmacotherapy and Outcomes Sciences, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298, USA; (D.C.); (E.T.P.); (B.V.T.); (D.F.B.)
| | - Dayanjan S. Wijesinghe
- Department of Pharmacotherapy and Outcomes Sciences, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298, USA; (D.C.); (E.T.P.); (B.V.T.); (D.F.B.)
- da Vinci Center, Virginia Commonwealth University, Richmond, VA 23220, USA
- Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University School of Pharmacy, Richmond, VA 23298, USA
| |
Collapse
|
193
|
Frommer KW, Hasseli R, Schäffler A, Lange U, Rehart S, Steinmeyer J, Rickert M, Sarter K, Zaiss MM, Culmsee C, Ganjam G, Michels S, Müller-Ladner U, Neumann E. Free Fatty Acids in Bone Pathophysiology of Rheumatic Diseases. Front Immunol 2019; 10:2757. [PMID: 31849953 PMCID: PMC6901602 DOI: 10.3389/fimmu.2019.02757] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 11/11/2019] [Indexed: 01/10/2023] Open
Abstract
Obesity-in which free fatty acid (FFA) levels are chronically elevated-is a known risk factor for different rheumatic diseases, and obese patients are more likely to develop osteoarthritis (OA) also in non-weight-bearing joints. These findings suggest that FFA may also play a role in inflammation-related joint damage and bone loss in rheumatoid arthritis (RA) and OA. Therefore, the objective of this study was to analyze if and how FFA influence cells of bone metabolism in rheumatic diseases. When stimulated with FFA, osteoblasts from RA and OA patients secreted higher amounts of the proinflammatory cytokine interleukin (IL)-6 and the chemokines IL-8, growth-related oncogene α, and monocyte chemotactic protein 1. Receptor activator of nuclear factor kappa B ligand (RANKL), osteoprotegerin, and osteoblast differentiation markers were not influenced by FFA. Mineralization activity of osteoblasts correlated inversely with the level of FFA-induced IL-6 secretion. Expression of the Wnt signaling molecules, axin-2 and β-catenin, was not changed by palmitic acid (PA) or linoleic acid (LA), suggesting no involvement of the Wnt signaling pathway in FFA signaling for osteoblasts. On the other hand, Toll-like receptor 4 blockade significantly reduced PA-induced IL-8 secretion by osteoblasts, while blocking Toll-like receptor 2 had no effect. In osteoclasts, IL-8 secretion was enhanced by PA and LA particularly at the earliest time point of differentiation. Differences were observed between the responses of RA and OA osteoclasts. FFA might therefore represent a new molecular factor by which adipose tissue contributes to subchondral bone damage in RA and OA. In this context, their mechanisms of action appear to be dependent on inflammation and innate immune system rather than Wnt-RANKL pathways.
Collapse
Affiliation(s)
- Klaus W. Frommer
- Department of Rheumatology and Clinical Immunology, Justus-Liebig-University Gießen, Giessen, Germany
| | - Rebecca Hasseli
- Department of Rheumatology and Clinical Immunology, Justus-Liebig-University Gießen, Giessen, Germany
| | - Andreas Schäffler
- Department of Internal Medicine III, Endocrinology, Diabetes, Metabolism, Justus-Liebig-University of Giessen, Giessen, Germany
| | - Uwe Lange
- Department of Rheumatology and Clinical Immunology, Justus-Liebig-University Gießen, Giessen, Germany
| | - Stefan Rehart
- Department of Orthopedics and Trauma Surgery, Agaplesion Markus Hospital, Frankfurt, Germany
| | - Jürgen Steinmeyer
- Department of Orthopaedics and Orthopaedic Surgery, University Hospital Giessen and Marburg, Giessen, Germany
| | - Markus Rickert
- Department of Orthopaedics and Orthopaedic Surgery, University Hospital Giessen and Marburg, Giessen, Germany
| | - Kerstin Sarter
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Mario M. Zaiss
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Carsten Culmsee
- Institute for Pharmacology and Clinical Pharmacy, University of Marburg, Marburg, Germany
- Center for Mind Brain and Behavior (CMBB), Universities of Marburg and Gießen, Marburg, Germany
| | - Goutham Ganjam
- Institute for Pharmacology and Clinical Pharmacy, University of Marburg, Marburg, Germany
- Center for Mind Brain and Behavior (CMBB), Universities of Marburg and Gießen, Marburg, Germany
- Department of Neurology, Philipps University Marburg, Marburg, Germany
| | - Susanne Michels
- Institute for Pharmacology and Clinical Pharmacy, University of Marburg, Marburg, Germany
- Center for Mind Brain and Behavior (CMBB), Universities of Marburg and Gießen, Marburg, Germany
| | - Ulf Müller-Ladner
- Department of Rheumatology and Clinical Immunology, Justus-Liebig-University Gießen, Giessen, Germany
| | - Elena Neumann
- Department of Rheumatology and Clinical Immunology, Justus-Liebig-University Gießen, Giessen, Germany
| |
Collapse
|
194
|
Chen Z, Yuan W, Liu T, Huang D, Xiang L. Bioinformatics analysis of hepatic gene expression profiles in type 2 diabetes mellitus. Exp Ther Med 2019; 18:4303-4312. [PMID: 31772629 PMCID: PMC6861877 DOI: 10.3892/etm.2019.8092] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 09/19/2019] [Indexed: 12/13/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) is characterized by hyperglycemia. The liver has a critical role in regulating glucose homeostasis. The present study aimed to analyze hepatic gene expression profiles and to identify the key genes and pathways involved in T2DM. Gene expression profiles of 10 patients with T2DM and 7 subjects with normal glucose tolerance were downloaded from the Gene Expression Omnibus database. Subsequently, differentially expressed genes (DEGs) were identified and functional enrichment analysis was performed. In addition, a protein-protein interaction network was built and hub genes were identified. In total, 1,320 DEGs were identified, including 698 up- and 622 downregulated genes, and these were mainly enriched in positive regulation of transcription from RNA polymerase II promoter, cell adhesion, inflammatory response, positive regulation of apoptotic process, signal transduction and the Tolllike receptor signaling pathway. A total of 8 hub genes (G-protein subunit gamma transducin 2, ubiquitinconjugating enzyme E2 D1, glutamate metabotropic receptor 1, G-protein signaling modulator 1, C-X-C motif chemokine ligand 9, neurotensin, purinergic receptor P2Y1 and ring finger protein 41) were screened from the network. The present study may contribute to the elucidation of the hepatic pathology of T2DM.
Collapse
Affiliation(s)
- Zhe Chen
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| | - Weiqu Yuan
- The Fourth Clinical Medical School, Guangzhou University of Chinese Medicine, Shenzhen, Guangdong 518033, P.R. China
| | - Tao Liu
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, P.R. China
| | - Danping Huang
- The Fourth Clinical Medical School, Guangzhou University of Chinese Medicine, Shenzhen, Guangdong 518033, P.R. China
| | - Lei Xiang
- Department of Integrative Chinese and Western Medicine, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, Guangdong 510080, P.R. China
- Correspondence to: Dr Lei Xiang, Department of Integrative Chinese and Western Medicine, The First Affiliated Hospital of Guangdong Pharmaceutical University, 19 Nonglinxia Road, Guangzhou, Guangdong 510080, P.R. China, E-mail:
| |
Collapse
|
195
|
Norde MM, Fisberg RM, Marchioni DML, Rogero MM. Systemic low-grade inflammation-associated lifestyle, diet, and genetic factors: A population-based cross-sectional study. Nutrition 2019; 70:110596. [PMID: 31743813 DOI: 10.1016/j.nut.2019.110596] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 07/24/2019] [Accepted: 08/25/2019] [Indexed: 12/26/2022]
Abstract
OBJECTIVES Systemic low-grade inflammation (SLGI) is an intermediary common condition to the physiopathology of chronic noncommunicable diseases and targeting its determinants could lead to more efficient public health strategies. We aimed to investigate SLGI-independent associations with lifestyle, diet, and genetic factors in a population-based sample of adults using a systemic low-grade inflammation score (SIS). METHODS The study sample is composed of 269 participants from the cross-sectional population-based Health Survey of Sao Paulo (2008-2010), ages 20 to 59 y, whose data on socioeconomic variables, lifestyle, health parameters, and blood samples were available. Diet was assessed by two 24-h recalls, and the Brazilian Health Eating Index-Revised (BHEI-R) was scored. From blood samples, 30 single nucleotide polymorphisms on inflammatory genes were genotyped, and plasma eleven inflammatory biomarkers levels that composed the SIS were determined. A multiple, stepwise, linear regression was used to investigate SIS-independent associated factors. RESULTS Factors independently associated with SIS were BHEI-R score (partial R² = 5.1; β = -0.13; P = 0.003), body mass index (partial R² = 3.4; β = 0.19; P = 0.001), TLR4 rs5030728 GA + AA genotype (partial R² = 3.1; β = -1.37; P = 0.008), age 50 to 59 y (partial R² = 2.5; β = 1.93; P = 0.029) in comparison with the reference category (20 to 29 y), and commuting physical activity >150 min/wk (partial R² = 2.2; β = -1.29; P = 0.043) after adjustment for current smoking status, medication use, and dietary misreporting. CONCLUSIONS Eating a lower quality diet, having a higher body mass index score and age, being GG homozygous for TLR4 rs5030728, and spending <150 min/wk in transportation physical activity are independent determinants of SLGI.
Collapse
Affiliation(s)
- Marina M Norde
- Department of Nutrition, School of Public Health, University of Sao Paulo, Sao Paulo City, SP, Brazil
| | - Regina M Fisberg
- Department of Nutrition, School of Public Health, University of Sao Paulo, Sao Paulo City, SP, Brazil
| | - Dirce M L Marchioni
- Department of Nutrition, School of Public Health, University of Sao Paulo, Sao Paulo City, SP, Brazil
| | - Marcelo Macedo Rogero
- Department of Nutrition, School of Public Health, University of Sao Paulo, Sao Paulo City, SP, Brazil.
| |
Collapse
|
196
|
Nasoohi S, Parveen K, Ishrat T. Metabolic Syndrome, Brain Insulin Resistance, and Alzheimer's Disease: Thioredoxin Interacting Protein (TXNIP) and Inflammasome as Core Amplifiers. J Alzheimers Dis 2019; 66:857-885. [PMID: 30372683 DOI: 10.3233/jad-180735] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Empirical evidence indicates a strong association between insulin resistance and pathological alterations related to Alzheimer's disease (AD) in different cerebral regions. While cerebral insulin resistance is not essentially parallel with systemic metabolic derangements, type 2 diabetes mellitus (T2DM) has been established as a risk factor for AD. The circulating "toxic metabolites" emerging in metabolic syndrome may engage several biochemical pathways to promote oxidative stress and neuroinflammation leading to impair insulin function in the brain or "type 3 diabetes". Thioredoxin-interacting protein (TXNIP) as an intracellular amplifier of oxidative stress and inflammasome activation may presumably mediate central insulin resistance. Emerging data including those from our recent studies has demonstrated a sharp TXNIP upregulation in stroke, aging and AD and well underlining the significance of this hypothesis. With the main interest to illustrate TXNIP place in type 3 diabetes, the present review primarily briefs the potential mechanisms contributing to cerebral insulin resistance in a metabolically deranged environment. Then with a particular focus on plausible TXNIP functions to drive and associate with AD pathology, we present the most recent evidence supporting TXNIP as a promising therapeutic target in AD as an age-associated dementia.
Collapse
|
197
|
Desterke C, Chiappini F. Lipid Related Genes Altered in NASH Connect Inflammation in Liver Pathogenesis Progression to HCC: A Canonical Pathway. Int J Mol Sci 2019; 20:ijms20225594. [PMID: 31717414 PMCID: PMC6888337 DOI: 10.3390/ijms20225594] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 11/03/2019] [Accepted: 11/04/2019] [Indexed: 02/06/2023] Open
Abstract
Nonalcoholic steatohepatitis (NASH) is becoming a public health problem worldwide. While the number of research studies on NASH progression rises every year, sometime their findings are controversial. To identify the most important and commonly described findings related to NASH progression, we used an original bioinformatics, integrative, text-mining approach that combines PubMed database querying and available gene expression omnibus dataset. We have identified a signature of 25 genes that are commonly found to be dysregulated during steatosis progression to NASH and cancer. These genes are implicated in lipid metabolism, insulin resistance, inflammation, and cancer. They are functionally connected, forming the basis necessary for steatosis progression to NASH and further progression to hepatocellular carcinoma (HCC). We also show that five of the identified genes have genome alterations present in HCC patients. The patients with these genes associated to genome alteration are associated with a poor prognosis. In conclusion, using an integrative literature- and data-mining approach, we have identified and described a canonical pathway underlying progression of NASH. Other parameters (e.g., polymorphisms) can be added to this pathway that also contribute to the progression of the disease to cancer. This work improved our understanding of the molecular basis of NASH progression and will help to develop new therapeutic approaches.
Collapse
Affiliation(s)
| | - Franck Chiappini
- Laboratoire Croissance, Régénération, Réparation et Régénération Tissulaires (CRRET)/ EAC CNRS 7149, Univ Paris-Est Créteil (UPEC), F-94010 Créteil, France
- Correspondence: ; Tel.: +33-(0)1-45177080; Fax: +33-(0)1-45171816
| |
Collapse
|
198
|
Protective properties of milk sphingomyelin against dysfunctional lipid metabolism, gut dysbiosis, and inflammation. J Nutr Biochem 2019; 73:108224. [DOI: 10.1016/j.jnutbio.2019.108224] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 06/25/2019] [Accepted: 07/31/2019] [Indexed: 12/20/2022]
|
199
|
Akieda-Asai S, Ma H, Date Y. Palmitic acid induces guanylin gene expression through the Toll-like receptor 4/nuclear factor-κB pathway in rat macrophages. Am J Physiol Cell Physiol 2019; 317:C1239-C1246. [PMID: 31553648 DOI: 10.1152/ajpcell.00081.2019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Recently, we showed that double-transgenic rats overexpressing guanylin (Gn), a bioactive peptide, and its receptor, guanylyl cyclase-C (GC-C), specifically in macrophages demonstrate an antiobesity phenotype and low-expression levels of proinflammatory cytokines in the mesenteric fat even when fed a high-fat diet. Here, we examined the levels and mechanism of Gn and GC-C transcription following saturated fatty acid and lipopolysaccharide (LPS), an activator of Toll-like receptor 4 (TLR4), exposure by using the NR8383 macrophage cell line. In addition, the levels of guanylin and cGMP were increased by addition of either palmitic acid or LPS. Next, we investigated the interaction of the gene transcription and nuclear factor-κB (NF-κB) by using an NF-κB inhibitor and chromatin immunoprecipitation assay. We showed that palmitic acid induced Gn gene expression via TLR4 and NF-κB. Moreover, we demonstrated that NF-κB binding to the Gn promoter was responsible for the induction of gene transcription by palmitic acid or LPS. Our results indicate that saturated fatty acids such as palmitic acid activate Gn gene expression via the NF-κB pathway, raising the possibility that the activated Gn-GC-C system may contribute to the inhibition of high-fat diet-induced proinflammatory cytokines in macrophages.
Collapse
Affiliation(s)
- Sayaka Akieda-Asai
- Frontier Science Research Center, University of Miyazaki, Miyazaki, Japan
| | - Hao Ma
- Frontier Science Research Center, University of Miyazaki, Miyazaki, Japan
| | - Yukari Date
- Frontier Science Research Center, University of Miyazaki, Miyazaki, Japan
| |
Collapse
|
200
|
Mizuno Y, Taguchi T. Growth factor-free, angiogenic hydrogel based on hydrophobically modified Alaska pollock gelatin. J Tissue Eng Regen Med 2019; 13:2291-2299. [PMID: 31503405 DOI: 10.1002/term.2957] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 08/11/2019] [Accepted: 09/02/2019] [Indexed: 12/11/2022]
Abstract
Angiogenesis is important for supplying oxygen and nutrients to implanted cells and organs and thereby promoting their survival. However, exogenously administered growth factors such as vascular endothelial growth factor (VEGF) have a short half-life and are unstable under physiological conditions. In the present study, we developed an angiogenesis-inducing hydrogel by modifying Alaska pollock-derived gelatin with a dodecyl group (C12-ApGltn), and demonstrated that it is biodegradable and highly fluid at room temperature (25°C). C12-ApGltn dissolved in phosphate-buffered saline at 20 w/v% formed a self-assembling hydrogel with thixotropic properties that stimulated VEGF secretion by macrophage-like RAW264 cells. Moreover, C12-ApGltn stimulated nuclear factor-κB and VEGF expression when subcutaneously injected into mice and increased the cluster of differentiation 31-positive area compared with injection of unmodified ApGltn and phosphate-buffered saline control in the absence of any growth factors. Hematoxylin and eosin staining confirmed vascular capillaries around the C12-ApGltn injection site. These results demonstrate that C12-ApGltn hydrogel is a promising angiogenic material for clinical applications that can stimulate endogenous VEGF expression without requiring additional growth factors.
Collapse
Affiliation(s)
- Yosuke Mizuno
- Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Japan
| | - Tetsushi Taguchi
- Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Japan.,Biomaterials Field, Research Center for Functional Materials, National Institute for Materials Science, Tsukuba, Japan
| |
Collapse
|