151
|
Affiliation(s)
- Godfrey S Getz
- From the Department of Pathology (G.S.G.), The University of Chicago, IL
| | - Catherine A Reardon
- Ben May Institute for Cancer Research (C.A.R.), The University of Chicago, IL
| |
Collapse
|
152
|
Nam HS. Gut Microbiota and Ischemic Stroke: The Role of Trimethylamine N-Oxide. J Stroke 2019; 21:151-159. [PMID: 31161760 PMCID: PMC6549071 DOI: 10.5853/jos.2019.00472] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 04/18/2019] [Indexed: 12/17/2022] Open
Abstract
Trimethylamine N-oxide (TMAO) is produced when trimethylamine, a waste product of gut microbes, is converted via hepatic flavin monooxygenases. As TMAO is a potential causative factor in various cardiovascular diseases (CVDs) considerable research interest has arisen on its use as a biomarker. Higher TMAO levels are associated with future risk of both incident CVD in the general population and established CVD, including stroke. The addition of TMAO into models with traditional risk factors significantly improved the prediction of future CVD risk. TMAO promotes atherosclerosis and is associated with platelet hyperreactivity and inflammation, which are in turn associated with the development of stroke and its secondary consequences. Additionally, TMAO may play a key mediator role in the relationship between the diet, gut microbiota, and CVD development. Compelling evidence suggesting that TMAO is both a risk factor and prognostic marker of stroke and CVD. Potential therapeutic strategy of diet and drugs in reducing TMAO levels have emerged. Thus, TMAO is a novel biomarker and target in stroke and CVD prevention.
Collapse
Affiliation(s)
- Hyo Suk Nam
- Department of Neurology, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
153
|
The Role of the Microbiota in the Diabetic Peripheral Artery Disease. Mediators Inflamm 2019; 2019:4128682. [PMID: 31205450 PMCID: PMC6530226 DOI: 10.1155/2019/4128682] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 04/01/2019] [Accepted: 04/14/2019] [Indexed: 02/07/2023] Open
Abstract
Vascular complications of diabetes mellitus represent a major public health problem. Although many steps forward have been made to define the causes and to find the best possible therapies, the problem remains crucial. In recent years, more and more evidences have defined a link between microbiota and the initiation, promotion, and evolution of atherosclerotic disease, even in the diabetic scenario. There is an urgency to develop the knowledge of modern medicine about the link between gut microbiota and its host's metabolic pathways, and it would be useful to understand and justify the interindividual diversity of clinical disease presentation of diabetic vascular complication even if an optimization of pharmacological treatment has been made or in the case of young patients where hypertension, dyslipidemia, and diabetes are not able to justify a very quick progress of atherosclerotic process. The aim of the present review is to gather all the best available evidence in this regard and to define a new role of the microbiota in this field, from biomarker to possible therapeutic target.
Collapse
|
154
|
Winter M, Bretschneider T, Thamm S, Kleiner C, Grabowski D, Chandler S, Ries R, Kley JT, Fowler D, Bartlett C, Binetti R, Broadwater J, Luippold AH, Bischoff D, Büttner FH. Chemical Derivatization Enables MALDI-TOF-Based High-Throughput Screening for Microbial Trimethylamine (TMA)-Lyase Inhibitors. SLAS DISCOVERY 2019; 24:766-777. [PMID: 31059309 DOI: 10.1177/2472555219838216] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Microbial-dependent trimethylamine (TMA) generation from dietary precursors such as choline was recently linked to cardiovascular diseases (CVDs) as well as chronic kidney disease (CKD). Inhibition of TMA-generating enzymes in gut bacteria would be an innovative approach to treat these diseases. The potential to accurately quantify secreted TMA levels highlights the capacity of mass spectrometry (MS) for tracking microbial TMA-lyase activity. However, high-throughput screening (HTS) by conventional MS instrumentation is hampered by limited sample throughput. Recent advancement in liquid handling and instrumentation of matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) MS provides an HTS-compatible MS technology. The deciphering of enzymatic reactions using this label-free readout has been successfully applied but has thus far been limited to peptide/protein-centric activity assays. Here, we demonstrate the versatile applicability of MALDI-TOF by tracking a small molecule within a highly complex sample background. The key to success for this concept was chemical derivatization of the target molecule enabling quantitative assessment of microbial TMA formation. Further, its potential was demonstrated in a side-by-side comparison to RapidFire-MS in a primary screen and subsequent dose-response experiments. Overall, the established assay enables the screening for microbial TMA-lyase inhibitors and serves as a proof of concept for the applicability of MALDI-TOF for demanding assay concepts per se.
Collapse
Affiliation(s)
- Martin Winter
- 1 Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß, Germany
| | - Tom Bretschneider
- 1 Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß, Germany
| | - Sven Thamm
- 1 Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß, Germany
| | - Carola Kleiner
- 1 Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß, Germany
| | - Daniel Grabowski
- 1 Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß, Germany
| | - Sarah Chandler
- 1 Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß, Germany
| | - Robert Ries
- 1 Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß, Germany
| | - Jörg T Kley
- 2 Medicinal Chemistry, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß, Germany
| | - Danielle Fowler
- 3 Cardiometabolic Diseases Research, Boehringer Ingelheim Pharmaceuticals, Ridgefield, CT, USA
| | - Christina Bartlett
- 3 Cardiometabolic Diseases Research, Boehringer Ingelheim Pharmaceuticals, Ridgefield, CT, USA
| | - Ralph Binetti
- 4 Cancer Immunology & Immune Modulation, Boehringer Ingelheim Pharmaceuticals, Ridgefield, CT, USA
| | - John Broadwater
- 3 Cardiometabolic Diseases Research, Boehringer Ingelheim Pharmaceuticals, Ridgefield, CT, USA
| | - Andreas H Luippold
- 1 Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß, Germany
| | - Daniel Bischoff
- 1 Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß, Germany
| | - Frank H Büttner
- 1 Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß, Germany
| |
Collapse
|
155
|
Bresciani L, Dall'Asta M, Favari C, Calani L, Del Rio D, Brighenti F. An in vitro exploratory study of dietary strategies based on polyphenol-rich beverages, fruit juices and oils to control trimethylamine production in the colon. Food Funct 2019; 9:6470-6483. [PMID: 30465688 DOI: 10.1039/c8fo01778f] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Trimethylamine-N-oxide (TMAO) has been described as a new biomarker of cardiovascular disease (CVD), derived from gut microbial biotransformation of dietary choline and l-carnitine into trimethylamine (TMA) and subsequent hepatic oxidation. (Poly)phenols are among the dietary factors able to interfere with microbial enzymatic activity, possibly modulating TMA biotransformation at the gut level. The aim of this work was to investigate the in vitro biotransformation of choline and carnitine using faecal starters obtained from omnivorous and vegetarian subjects and the effect of (poly)phenol-rich foods on TMA production. Choline and l-carnitine were fermented with vegetarian or omnivorous faecal slurries, alone or in combination with 10 (poly)phenol-rich food items. TMA production from carnitine, but not from choline, was significantly lower when vegetarian faecal starters were used and, among the tested food items, blonde orange juice significantly reduced TMA formation during faecal biotransformation. Consequently, the main compounds of orange juice, namely phenolic compounds, terpenes, limonoids, organic acids and sugars, were tested individually. Sugars exerted the highest inhibitory effect on TMA production. Despite some limitations deriving from the applied in vitro model, this is the first work describing a possible role of some (poly)phenol-rich dietary products on the modulation of TMA colonic production. Free sugars were the main factor responsible for TMA inhibition, suggesting a potential beneficial role of colonic fermentation of carbohydrates in reducing TMA formation from its precursor molecules. This work opens new research directions to evaluate the effect of dietary fermentable fibre on TMA production and, potentially, on circulating TMAO levels.
Collapse
Affiliation(s)
- Letizia Bresciani
- The Laboratory of Phytochemicals in Physiology, Human Nutrition Unit, University of Parma, Via Volturno, 39 - 43125 Parma, Italy.
| | | | | | | | | | | |
Collapse
|
156
|
Joris BR, Gloor GB. Unaccounted risk of cardiovascular disease: the role of the microbiome in lipid metabolism. Curr Opin Lipidol 2019; 30:125-133. [PMID: 30664014 DOI: 10.1097/mol.0000000000000582] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW Not all of the risk of cardiovascular disease can be explained by diet and genetics, and the human microbiome, which lies at the interface of these two factors, may help explain some of the unaccounted risk. This review examines some of the well established links between the microbiome and cardiovascular health, and proposes relatively unexplored associations. RECENT FINDINGS Byproducts of microbial metabolism are associated with health and disease: Trimethylamine N oxide is associated with atherosclerosis; whereas short-chain fatty acids are associated with decreased inflammation and increased energy expenditure. More broadly, a large number of association studies have been conducted to explore the connections between bacterial taxa and metabolic syndrome. In contrast, the relationship between the microbiome and triglycerides levels remains poorly understood. SUMMARY We suggest that deeper understanding of the molecular mechanisms that drive linkages between the microbiome and disease can be determined by replacing 16S rRNA gene sequencing with shotgun metagenomic sequencing or other functional approaches. Furthermore, to ensure translatability and reproducibility of research findings, a combination of multiple different complementary '-omic' approaches should be employed.
Collapse
Affiliation(s)
- Benjamin R Joris
- Department of Biochemistry, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Canada
| | | |
Collapse
|
157
|
DiNicolantonio JJ, McCarty M, OKeefe J. Association of moderately elevated trimethylamine N-oxide with cardiovascular risk: is TMAO serving as a marker for hepatic insulin resistance. Open Heart 2019; 6:e000890. [PMID: 30997120 PMCID: PMC6443140 DOI: 10.1136/openhrt-2018-000890] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/03/2019] [Indexed: 02/06/2023] Open
Affiliation(s)
| | | | - James OKeefe
- University of Missouri-Kansas City, Saint Lukes Mid America Heart Institute, Kansas City, Missouri, USA
| |
Collapse
|
158
|
Wang Z, Bergeron N, Levison BS, Li XS, Chiu S, Jia X, Koeth RA, Li L, Wu Y, Tang WHW, Krauss RM, Hazen SL. Impact of chronic dietary red meat, white meat, or non-meat protein on trimethylamine N-oxide metabolism and renal excretion in healthy men and women. Eur Heart J 2019; 40:583-594. [PMID: 30535398 PMCID: PMC6374688 DOI: 10.1093/eurheartj/ehy799] [Citation(s) in RCA: 308] [Impact Index Per Article: 51.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 08/21/2018] [Accepted: 11/19/2018] [Indexed: 01/06/2023] Open
Abstract
AIMS Carnitine and choline are major nutrient precursors for gut microbiota-dependent generation of the atherogenic metabolite, trimethylamine N-oxide (TMAO). We performed randomized-controlled dietary intervention studies to explore the impact of chronic dietary patterns on TMAO levels, metabolism and renal excretion. METHODS AND RESULTS Volunteers (N = 113) were enrolled in a randomized 2-arm (high- or low-saturated fat) crossover design study. Within each arm, three 4-week isocaloric diets (with washout period between each) were evaluated (all meals prepared in metabolic kitchen with 25% calories from protein) to examine the effects of red meat, white meat, or non-meat protein on TMAO metabolism. Trimethylamine N-oxide and other trimethylamine (TMA) related metabolites were quantified at the end of each diet period. A random subset (N = 13) of subjects also participated in heavy isotope tracer studies. Chronic red meat, but not white meat or non-meat ingestion, increased plasma and urine TMAO (each >two-fold; P < 0.0001). Red meat ingestion also significantly reduced fractional renal excretion of TMAO (P < 0.05), but conversely, increased fractional renal excretion of carnitine, and two alternative gut microbiota-generated metabolites of carnitine, γ-butyrobetaine, and crotonobetaine (P < 0.05). Oral isotope challenge revealed red meat or white meat (vs. non-meat) increased TMA and TMAO production from carnitine (P < 0.05 each) but not choline. Dietary-saturated fat failed to impact TMAO or its metabolites. CONCLUSION Chronic dietary red meat increases systemic TMAO levels through: (i) enhanced dietary precursors; (ii) increased microbial TMA/TMAO production from carnitine, but not choline; and (iii) reduced renal TMAO excretion. Discontinuation of dietary red meat reduces plasma TMAO within 4 weeks.
Collapse
Affiliation(s)
- Zeneng Wang
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Euclid Ave, Cleveland, OH, USA
| | - Nathalie Bergeron
- Department of Atherosclerosis Research, Children’s Hospital Oakland Research Institute, Martin Luther King Jr Way, Oakland, CA, USA
- Department of Biological and Pharmaceutical Sciences, College of Pharmacy, Touro University California, Club Drive, Mare Island, Vallejo, CA, USA
| | - Bruce S Levison
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Euclid Ave, Cleveland, OH, USA
| | - Xinmin S Li
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Euclid Ave, Cleveland, OH, USA
| | - Sally Chiu
- Department of Atherosclerosis Research, Children’s Hospital Oakland Research Institute, Martin Luther King Jr Way, Oakland, CA, USA
| | - Xun Jia
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Euclid Ave, Cleveland, OH, USA
| | - Robert A Koeth
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Euclid Ave, Cleveland, OH, USA
- Department of Cardiovascular Medicine, Heart and Vascular Institute, Cleveland Clinic, Euclid Ave, Cleveland, OH, USA
| | - Lin Li
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Euclid Ave, Cleveland, OH, USA
| | - Yuping Wu
- Department of Mathematics, Cleveland State University, Euclid Ave, Cleveland, OH, USA
| | - W H Wilson Tang
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Euclid Ave, Cleveland, OH, USA
- Department of Cardiovascular Medicine, Heart and Vascular Institute, Cleveland Clinic, Euclid Ave, Cleveland, OH, USA
| | - Ronald M Krauss
- Department of Atherosclerosis Research, Children’s Hospital Oakland Research Institute, Martin Luther King Jr Way, Oakland, CA, USA
| | - Stanley L Hazen
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Euclid Ave, Cleveland, OH, USA
- Department of Cardiovascular Medicine, Heart and Vascular Institute, Cleveland Clinic, Euclid Ave, Cleveland, OH, USA
| |
Collapse
|
159
|
García-Ríos A, Camargo Garcia A, Perez-Jimenez F, Perez-Martinez P. Gut microbiota: A new protagonist in the risk of cardiovascular disease? CLINICA E INVESTIGACION EN ARTERIOSCLEROSIS 2019; 31:178-185. [PMID: 30737071 DOI: 10.1016/j.arteri.2018.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 11/12/2018] [Accepted: 11/23/2018] [Indexed: 11/26/2022]
Abstract
Cardiovascular disease remains the first cause of mortality in Western countries. New strategies for prevention and control of cardiovascular disease are needed. At the same time, the incidence of risk factors that lead to the development of this disease, such as obesity, hypertension and diabetes, continues to rise. Therefore, the search for new markers or mediators is a priority in most cardiovascular prevention programs. The study of the intestinal microbiota is emerging because it is known that intestinal microorganisms act collectively as an integrated organ, regulating multiple biological functions that can modulate cardiovascular risk factors and the pathogenic mechanisms of this process. This review considers the current situation regarding the influence of gut microbiota on cardiovascular disease and particularly, its influence on the main traditional risk factors that lead to cardiovascular disease, such as obesity, diabetes, hypertension and lipids.
Collapse
Affiliation(s)
- Antonio García-Ríos
- Unidad de Lípidos y Arteriosclerosis, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Universitario Reina Sofía, Universidad de Córdoba, Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Córdoba, España.
| | - Antonio Camargo Garcia
- Unidad de Lípidos y Arteriosclerosis, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Universitario Reina Sofía, Universidad de Córdoba, Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Córdoba, España
| | - Francisco Perez-Jimenez
- Unidad de Lípidos y Arteriosclerosis, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Universitario Reina Sofía, Universidad de Córdoba, Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Córdoba, España
| | - Pablo Perez-Martinez
- Unidad de Lípidos y Arteriosclerosis, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Universitario Reina Sofía, Universidad de Córdoba, Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Córdoba, España
| |
Collapse
|
160
|
Heianza Y, Sun D, Li X, DiDonato JA, Bray GA, Sacks FM, Qi L. Gut microbiota metabolites, amino acid metabolites and improvements in insulin sensitivity and glucose metabolism: the POUNDS Lost trial. Gut 2019; 68:263-270. [PMID: 29860242 PMCID: PMC6275143 DOI: 10.1136/gutjnl-2018-316155] [Citation(s) in RCA: 126] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 05/15/2018] [Accepted: 05/16/2018] [Indexed: 12/22/2022]
Abstract
OBJECTIVE Alterations in gut microbiota have been linked to host insulin resistance, diabetes and impaired amino acid metabolism. We investigated whether changes in gut microbiota-dependent metabolite of trimethylamine N-oxide (TMAO) and its nutrient precursors (choline and L-carnitine) were associated with improvements in glucose metabolism and diabetes-related amino acids in a weight-loss diet intervention. DESIGN We included 504 overweight and obese adults who were randomly assigned to one of four energy-reduced diets varying in macronutrient intake. The 6-month changes (Δ) in TMAO, choline and L-carnitine levels after the intervention were calculated. RESULTS Greater decreases in choline and L-carnitine were significantly (p<0.05) associated with greater improvements in fasting insulin concentrations and homeostasis model assessment of insulin resistance (HOMA-IR) at 6 months. The reduction of choline was significantly related to 2-year improvements in glucose and insulin resistance. We found significant linkages between dietary fat intake and ΔTMAO for changes in fasting glucose, insulin and HOMA-IR (pinteraction <0.05); a greater increase in TMAO was related to lesser improvements in the outcomes among participants who consumed a high-fat diet. In addition, ΔL-carnitine and Δcholine were significantly related to changes in amino acids (including branched-chain and aromatic amino acids). Interestingly, the associations of ΔTMAO, Δcholine and ΔL-carnitine with diabetes-related traits were independent of the changes in amino acids. CONCLUSION Our findings underscore the importance of changes in TMAO, choline and L-carnitine in improving insulin sensitivity during a weight-loss intervention for obese patients. Dietary fat intake may modify the associations of TMAO with insulin sensitivity and glucose metabolism. TRIAL REGISTRATION NUMBER NCT00072995.
Collapse
Affiliation(s)
- Yoriko Heianza
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA
| | - Dianjianyi Sun
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA
| | - Xiang Li
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA
| | - Joseph A. DiDonato
- Department of Cellular and Molecular Medicine, Cleveland Clinic, Cleveland, OH
| | - George A Bray
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA
| | - Frank M Sacks
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Lu Qi
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA
| |
Collapse
|
161
|
Wang F, Xu J, Jakovlić I, Wang WM, Zhao YH. Dietary betaine reduces liver lipid accumulationviaimprovement of bile acid and trimethylamine-N-oxide metabolism in blunt-snout bream. Food Funct 2019; 10:6675-6689. [DOI: 10.1039/c9fo01853k] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Dietary betaine decreased liver lipid accumulation caused by dietary carbohydrate through changes of TMA formation and TMAO and bile acid metabolism.
Collapse
Affiliation(s)
- Fan Wang
- College of Fisheries Huazhong Agricultural University
- Key Lab of Freshwater Animal Breeding
- Ministry of Agriculture
- Key Lab of Agricultural Animal Genetics
- Breeding and Reproduction of Ministry of Education
| | - Jia Xu
- College of Fisheries Huazhong Agricultural University
- Key Lab of Freshwater Animal Breeding
- Ministry of Agriculture
- Key Lab of Agricultural Animal Genetics
- Breeding and Reproduction of Ministry of Education
| | | | - Wei-Min Wang
- College of Fisheries Huazhong Agricultural University
- Key Lab of Freshwater Animal Breeding
- Ministry of Agriculture
- Key Lab of Agricultural Animal Genetics
- Breeding and Reproduction of Ministry of Education
| | - Yu-Hua Zhao
- College of Fisheries Huazhong Agricultural University
- Key Lab of Freshwater Animal Breeding
- Ministry of Agriculture
- Key Lab of Agricultural Animal Genetics
- Breeding and Reproduction of Ministry of Education
| |
Collapse
|
162
|
Ding L, Chang M, Guo Y, Zhang L, Xue C, Yanagita T, Zhang T, Wang Y. Trimethylamine-N-oxide (TMAO)-induced atherosclerosis is associated with bile acid metabolism. Lipids Health Dis 2018; 17:286. [PMID: 30567573 PMCID: PMC6300890 DOI: 10.1186/s12944-018-0939-6] [Citation(s) in RCA: 152] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 12/03/2018] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Recently, trimethylamine-N-oxide (TMAO) plasma levels have been proved to be associated with atherosclerosis development. Among the targets aimed to ameliorating atherosclerotic lesions, inducing bile acid synthesis to eliminate excess cholesterol in body is an effective way. Individual bile acid as endogenous ligands for the nuclear receptor has differential effects on regulating bile acid metabolism. It is unclear whether bile acid profiles are mechanistically linked to TMAO-induced development of atherosclerosis. METHODS Male apoE-/- mice were fed with control diet containing 0.3% TMAO for 8 weeks. Aortic lesion development and serum lipid profiles were determined. Bile acid profiles in bile, liver and serum were measured by liquid chromatographic separation and mass spectrometric detection (LC-MS). Real-time PCRs were performed to analyze mRNA expression of genes related to hepatic bile acid metabolism. RESULTS The total plaque areas in the aortas strongly increased 2-fold (P < 0.001) in TMAO administration mice. The levels of triglyceride (TG), total cholesterol (TC), low-density lipoprotein cholesterol (LDL-c) in TMAO group were also significantly increased by 25.5% (P = 0.044), 31.2% (P = 0.006), 28.3% (P = 0.032), respectively. TMAO notably changed bile acid profiles, especially in serum, the most prominent inductions were tauromuricholic acid (TMCA), deoxycholic acid (DCA) and cholic acid (CA). Mechanically, TMAO inhibited hepatic bile acid synthesis by specifically repressing the classical bile acid synthesis pathway, which might be mediated by activation of small heterodimer partner (SHP) and farnesoid X receptor (FXR). CONCLUSIONS These findings suggested that TMAO accelerated aortic lesion formation in apoE-/- mice by altering bile acid profiles, further activating nuclear receptor FXR and SHP to inhibit bile acid synthesis by reducing Cyp7a1 expression.
Collapse
Affiliation(s)
- Lin Ding
- College of Food Science and Engineering, Ocean University of China, No.5 Yushan Road, Qingdao, Shandong Province, 266003, People's Republic of China
| | - Mengru Chang
- College of Food Science and Engineering, Ocean University of China, No.5 Yushan Road, Qingdao, Shandong Province, 266003, People's Republic of China
| | - Ying Guo
- College of Food Science and Engineering, Ocean University of China, No.5 Yushan Road, Qingdao, Shandong Province, 266003, People's Republic of China
| | - Lingyu Zhang
- College of Food Science and Engineering, Ocean University of China, No.5 Yushan Road, Qingdao, Shandong Province, 266003, People's Republic of China
| | - Changhu Xue
- College of Food Science and Engineering, Ocean University of China, No.5 Yushan Road, Qingdao, Shandong Province, 266003, People's Republic of China.,Qingdao National Laboratory for Marine Science and Technology, Laboratory of Marine Drugs & Biological products, Qingdao, 266237, People's Republic of China
| | - Teruyoshi Yanagita
- Department of Applied Biochemistry and Food Science, Laboratory of Nutrition Biochemistry, Saga University, Saga, 840-8502, Japan
| | - Tiantian Zhang
- College of Food Science and Engineering, Ocean University of China, No.5 Yushan Road, Qingdao, Shandong Province, 266003, People's Republic of China.
| | - Yuming Wang
- College of Food Science and Engineering, Ocean University of China, No.5 Yushan Road, Qingdao, Shandong Province, 266003, People's Republic of China. .,Qingdao National Laboratory for Marine Science and Technology, Laboratory of Marine Drugs & Biological products, Qingdao, 266237, People's Republic of China.
| |
Collapse
|
163
|
Koeth RA, Lam-Galvez BR, Kirsop J, Wang Z, Levison BS, Gu X, Copeland MF, Bartlett D, Cody DB, Dai HJ, Culley MK, Li XS, Fu X, Wu Y, Li L, DiDonato JA, Tang WHW, Garcia-Garcia JC, Hazen SL. l-Carnitine in omnivorous diets induces an atherogenic gut microbial pathway in humans. J Clin Invest 2018; 129:373-387. [PMID: 30530985 DOI: 10.1172/jci94601] [Citation(s) in RCA: 223] [Impact Index Per Article: 31.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 10/30/2018] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND l-Carnitine, an abundant nutrient in red meat, accelerates atherosclerosis in mice via gut microbiota-dependent formation of trimethylamine (TMA) and trimethylamine N-oxide (TMAO) via a multistep pathway involving an atherogenic intermediate, γ-butyrobetaine (γBB). The contribution of γBB in gut microbiota-dependent l-carnitine metabolism in humans is unknown. METHODS Omnivores and vegans/vegetarians ingested deuterium-labeled l-carnitine (d3-l-carnitine) or γBB (d9-γBB), and both plasma metabolites and fecal polymicrobial transformations were examined at baseline, following oral antibiotics, or following chronic (≥2 months) l-carnitine supplementation. Human fecal commensals capable of performing each step of the l-carnitine→γBB→TMA transformation were identified. RESULTS Studies with oral d3-l-carnitine or d9-γBB before versus after antibiotic exposure revealed gut microbiota contribution to the initial 2 steps in a metaorganismal l-carnitine→γBB→TMA→TMAO pathway in subjects. Moreover, a striking increase in d3-TMAO generation was observed in omnivores over vegans/vegetarians (>20-fold; P = 0.001) following oral d3-l-carnitine ingestion, whereas fasting endogenous plasma l-carnitine and γBB levels were similar in vegans/vegetarians (n = 32) versus omnivores (n = 40). Fecal metabolic transformation studies, and oral isotope tracer studies before versus after chronic l-carnitine supplementation, revealed that omnivores and vegans/vegetarians alike rapidly converted carnitine to γBB, whereas the second gut microbial transformation, γBB→TMA, was diet inducible (l-carnitine, omnivorous). Extensive anaerobic subculturing of human feces identified no single commensal capable of l-carnitine→TMA transformation, multiple community members that converted l-carnitine to γBB, and only 1 Clostridiales bacterium, Emergencia timonensis, that converted γBB to TMA. In coculture, E. timonensis promoted the complete l-carnitine→TMA transformation. CONCLUSION In humans, dietary l-carnitine is converted into the atherosclerosis- and thrombosis-promoting metabolite TMAO via 2 sequential gut microbiota-dependent transformations: (a) initial rapid generation of the atherogenic intermediate γBB, followed by (b) transformation into TMA via low-abundance microbiota in omnivores, and to a markedly lower extent, in vegans/vegetarians. Gut microbiota γBB→TMA/TMAO transformation is induced by omnivorous dietary patterns and chronic l-carnitine exposure. TRIAL REGISTRATION ClinicalTrials.gov NCT01731236. FUNDING NIH and Office of Dietary Supplements grants HL103866, HL126827, and DK106000, and the Leducq Foundation.
Collapse
Affiliation(s)
- Robert A Koeth
- Department of Cellular and Molecular Medicine, Lerner Research Institute.,Center for Microbiome and Human Health, and.,Department of Cardiovascular Medicine, Cleveland Clinic, Cleveland, Ohio, USA
| | | | - Jennifer Kirsop
- Department of Cellular and Molecular Medicine, Lerner Research Institute.,Center for Microbiome and Human Health, and
| | - Zeneng Wang
- Department of Cellular and Molecular Medicine, Lerner Research Institute.,Center for Microbiome and Human Health, and
| | - Bruce S Levison
- Department of Cellular and Molecular Medicine, Lerner Research Institute
| | - Xiaodong Gu
- Department of Cellular and Molecular Medicine, Lerner Research Institute.,Center for Microbiome and Human Health, and
| | | | - David Bartlett
- Department of Cellular and Molecular Medicine, Lerner Research Institute
| | | | - Hong J Dai
- Global Biosciences, The Procter & Gamble Company, Cincinnati, Ohio, USA
| | - Miranda K Culley
- Department of Cellular and Molecular Medicine, Lerner Research Institute
| | - Xinmin S Li
- Department of Cellular and Molecular Medicine, Lerner Research Institute.,Center for Microbiome and Human Health, and
| | - Xiaoming Fu
- Department of Cellular and Molecular Medicine, Lerner Research Institute.,Center for Microbiome and Human Health, and
| | - Yuping Wu
- Department of Mathematics, Cleveland State University, Cleveland, Ohio, USA
| | - Lin Li
- Department of Cellular and Molecular Medicine, Lerner Research Institute.,Center for Microbiome and Human Health, and
| | - Joseph A DiDonato
- Department of Cellular and Molecular Medicine, Lerner Research Institute.,Center for Microbiome and Human Health, and
| | - W H Wilson Tang
- Department of Cellular and Molecular Medicine, Lerner Research Institute.,Center for Microbiome and Human Health, and.,Department of Cardiovascular Medicine, Cleveland Clinic, Cleveland, Ohio, USA
| | | | - Stanley L Hazen
- Department of Cellular and Molecular Medicine, Lerner Research Institute.,Center for Microbiome and Human Health, and.,Department of Cardiovascular Medicine, Cleveland Clinic, Cleveland, Ohio, USA
| |
Collapse
|
164
|
Peng J, Xiao X, Hu M, Zhang X. Interaction between gut microbiome and cardiovascular disease. Life Sci 2018; 214:153-157. [PMID: 30385177 DOI: 10.1016/j.lfs.2018.10.063] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Revised: 10/17/2018] [Accepted: 10/28/2018] [Indexed: 02/07/2023]
Abstract
Traditional cardiovascular risk factors do not underlie all incidence of cardiovascular disease. In recent years, accumulating evidence has demonstrated that gut microbiota and its metabolites also play a pivotal role in the onset and development of cardiovascular disease, including atherosclerosis, hypertension, heart failure, atrial fibrillation and myocardial fibrosis. Trillions of bacteria indwell the gastrointestinal tract and metabolize nutrients into trimethylamine-N-oxide, short-chain fatty acids and so on. Targeting these microorganisms and relevant metabolic pathways has beneficial effects in cardiovascular disease. This review will summarize the role of gut microbiota and its metabolites, mainly trimethylamine-N-oxide, in the pathogenesis of cardiovascular diseases, and discuss the possible mechanisms that drive cardiovascular diseases and highlight potential therapies in this field.
Collapse
Affiliation(s)
- Jieting Peng
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Xun Xiao
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Min Hu
- Laboratory of Clinical Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Xiangyu Zhang
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China.
| |
Collapse
|
165
|
Liang Z, Dong Z, Guo M, Shen Z, Yin D, Hu S, Hai X. Trimethylamine N-oxide as a risk marker for ischemic stroke in patients with atrial fibrillation. J Biochem Mol Toxicol 2018; 33:e22246. [PMID: 30370581 DOI: 10.1002/jbt.22246] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 08/25/2018] [Accepted: 09/07/2018] [Indexed: 12/27/2022]
Abstract
Trimethylamine N-oxide (TMAO) is an independent risk factor of cardiovascular disease. Our objective was to explore the relation between TMAO and ischemic stroke (IS) in patients with atrial fibrillation (AF). A total of 68 patients with AF with IS and 111 ones without IS were enrolled. The plasma levels of TMAO remarkably increased in IS-AF patients (8.25 ± 1.58 µM) compared with patients with AF (2.22 ± 0.09 µM, P < 0.01). The receiver operating characteristic analysis revealed that the best cutoff value of TMAO to predict IS in patients with AF was 3.53 µM with 75.0% sensitivity and 92.8% specificity (area under the curve: 0.917, 95% confidence intervals: 0.877-0.957). Univariate and multivariate logistic regression analysis showed that TMAO was an independent predictor in IS. The level of TMAO was correlated with the CHA2DS2-VASc score. In conclusion, TMAO was an independent predictor of IS, which could potentially refine stroke stratification in patients with AF.
Collapse
Affiliation(s)
- Zhaoguang Liang
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zengxiang Dong
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin, China.,Department of Pharmacy, he First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Meihua Guo
- Department of Pharmacy, he First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zhaoqian Shen
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Dechun Yin
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shuang Hu
- Department of Pharmacy, he First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xin Hai
- Department of Pharmacy, he First Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
166
|
Canyelles M, Tondo M, Cedó L, Farràs M, Escolà-Gil JC, Blanco-Vaca F. Trimethylamine N-Oxide: A Link among Diet, Gut Microbiota, Gene Regulation of Liver and Intestine Cholesterol Homeostasis and HDL Function. Int J Mol Sci 2018; 19:ijms19103228. [PMID: 30347638 PMCID: PMC6214130 DOI: 10.3390/ijms19103228] [Citation(s) in RCA: 134] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 10/16/2018] [Accepted: 10/17/2018] [Indexed: 12/12/2022] Open
Abstract
Recent evidence, including massive gene-expression analysis and a wide-variety of other multi-omics approaches, demonstrates an interplay between gut microbiota and the regulation of plasma lipids. Gut microbial metabolism of choline and l-carnitine results in the formation of trimethylamine (TMA) and concomitant conversion into trimethylamine-N-oxide (TMAO) by liver flavin monooxygenase 3 (FMO3). The plasma level of TMAO is determined by the genetic variation, diet and composition of gut microbiota. Multiple studies have demonstrated an association between TMAO plasma levels and the risk of atherothrombotic cardiovascular disease (CVD). We aimed to review the molecular pathways by which TMAO production and FMO3 exert their proatherogenic effects. TMAO may promote foam cell formation by upregulating macrophage scavenger receptors, deregulating enterohepatic cholesterol and bile acid metabolism and impairing macrophage reverse cholesterol transport (RCT). Furthermore, FMO3 may promote dyslipidemia by regulating multiple genes involved in hepatic lipogenesis and gluconeogenesis. FMO3 also impairs multiple aspects of cholesterol homeostasis, including transintestinal cholesterol export and macrophage-specific RCT. At least part of these FMO3-mediated effects on lipid metabolism and atherogenesis seem to be independent of the TMA/TMAO formation. Overall, these findings have the potential to open a new era for the therapeutic manipulation of the gut microbiota to improve CVD risk.
Collapse
Affiliation(s)
- Marina Canyelles
- Hospital de la Santa Creu i Sant Pau, Servei de Bioquímica-Institut d'Investigacions Biomèdiques (IIB) Sant Pau, 08041 Barcelona, Spain.
| | - Mireia Tondo
- Hospital de la Santa Creu i Sant Pau, Servei de Bioquímica-Institut d'Investigacions Biomèdiques (IIB) Sant Pau, 08041 Barcelona, Spain.
| | - Lídia Cedó
- Institut de Recerca de l'Hospital Santa Creu i Sant Pau-Institut d'Investigacions Biomèdiques (IIB) Sant Pau, 08025 Barcelona, Spain.
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 08907 Barcelona, Spain.
| | - Marta Farràs
- Institut de Recerca de l'Hospital Santa Creu i Sant Pau-Institut d'Investigacions Biomèdiques (IIB) Sant Pau, 08025 Barcelona, Spain.
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), ISCIII, 08003 Barcelona, Spain.
| | - Joan Carles Escolà-Gil
- Institut de Recerca de l'Hospital Santa Creu i Sant Pau-Institut d'Investigacions Biomèdiques (IIB) Sant Pau, 08025 Barcelona, Spain.
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 08907 Barcelona, Spain.
| | - Francisco Blanco-Vaca
- Hospital de la Santa Creu i Sant Pau, Servei de Bioquímica-Institut d'Investigacions Biomèdiques (IIB) Sant Pau, 08041 Barcelona, Spain.
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 08907 Barcelona, Spain.
- Departament de Bioquímica, Biologia Molecular i Biomedicina, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain.
| |
Collapse
|
167
|
Implication of Trimethylamine N-Oxide (TMAO) in Disease: Potential Biomarker or New Therapeutic Target. Nutrients 2018; 10:nu10101398. [PMID: 30275434 PMCID: PMC6213249 DOI: 10.3390/nu10101398] [Citation(s) in RCA: 423] [Impact Index Per Article: 60.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 09/26/2018] [Accepted: 09/27/2018] [Indexed: 12/12/2022] Open
Abstract
Trimethylamine N-oxide (TMAO) is a molecule generated from choline, betaine, and carnitine via gut microbial metabolism. The plasma level of TMAO is determined by several factors including diet, gut microbial flora, drug administration and liver flavin monooxygenase activity. In humans, recent clinical studies evidence a positive correlation between elevated plasma levels of TMAO and an increased risk for major adverse cardiovascular events. A direct correlation between increased TMAO levels and neurological disorders has been also hypothesized. Several therapeutic strategies are being explored to reduce TMAO levels, including use of oral broad spectrum antibiotics, promoting the growth of bacteria that use TMAO as substrate and the development of target-specific molecules. Despite the accumulating evidence, it is questioned whether TMAO is the mediator of a bystander in the disease process. Thus, it is important to undertake studies to establish the role of TMAO in human health and disease. In this article, we reviewed dietary sources and metabolic pathways of TMAO, as well as screened the studies suggesting possible involvement of TMAO in the etiology of cardiovascular and neurological disorders, underlying the importance of TMAO mediating inflammatory processes. Finally, the potential utility of TMAO as therapeutic target is also analyzed.
Collapse
|
168
|
|
169
|
Ma J, Li H. The Role of Gut Microbiota in Atherosclerosis and Hypertension. Front Pharmacol 2018; 9:1082. [PMID: 30319417 PMCID: PMC6167910 DOI: 10.3389/fphar.2018.01082] [Citation(s) in RCA: 128] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 09/06/2018] [Indexed: 12/20/2022] Open
Abstract
In recent years, accumulating evidence has indicated the importance of gut microbiota in maintaining human health. Gut dysbiosis is associated with the pathogenesis of a number of metabolic diseases including obesity, type 2 diabetes mellitus (T2DM), non-alcoholic fatty liver disease (NAFLD), and cardiovascular diseases (CVDs). Indeed, CVD has become the leading cause of death worldwide, especially in developed countries. In this review, we mainly discuss the gut microbiota-involved mechanisms of CVD focusing on atherosclerosis and hypertension, two major risk factors for serious CVD. Then, we briefly discuss the prospects of gut microbiota-targeted therapeutic strategies for the treatment of CVD in the future.
Collapse
Affiliation(s)
| | - Houkai Li
- Functional Metabolomic and Gut Microbiome Laboratory, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
170
|
Sircana A, Framarin L, Leone N, Berrutti M, Castellino F, Parente R, De Michieli F, Paschetta E, Musso G. Altered Gut Microbiota in Type 2 Diabetes: Just a Coincidence? Curr Diab Rep 2018; 18:98. [PMID: 30215149 DOI: 10.1007/s11892-018-1057-6] [Citation(s) in RCA: 128] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE OF REVIEW In the last decade many studies have suggested an association between the altered gut microbiota and multiple systemic diseases including diabetes. In this review, we will discuss potential pathophysiological mechanisms, the latest findings regarding the mechanisms linking gut dysbiosis and type 2 diabetes (T2D), and the results obtained with experimental modulation of microbiota. RECENT FINDINGS In T2D, gut dysbiosis contributes to onset and maintenance of insulin resistance. Different strategies that reduce dysbiosis can improve glycemic control. Evidence in animals and humans reveals differences between the gut microbial composition in healthy individuals and those with T2D. Changes in the intestinal ecosystem could cause inflammation, alter intestinal permeability, and modulate metabolism of bile acids, short-chain fatty acids and metabolites that act synergistically on metabolic regulation systems contributing to insulin resistance. Interventions that restore equilibrium in the gut appear to have beneficial effects and improve glycemic control. Future research should examine in detail and in larger studies other possible pathophysiological mechanisms to identify specific pathways modulated by microbiota modulation and identify new potential therapeutic targets.
Collapse
Affiliation(s)
| | - Luciana Framarin
- HUMANITAS Gradenigo, University of Turin, C.so Regina Margherita 8, 10132, Turin, Italy
| | - Nicola Leone
- HUMANITAS Gradenigo, University of Turin, C.so Regina Margherita 8, 10132, Turin, Italy
| | - Mara Berrutti
- HUMANITAS Gradenigo, University of Turin, C.so Regina Margherita 8, 10132, Turin, Italy
| | - Francesca Castellino
- HUMANITAS Gradenigo, University of Turin, C.so Regina Margherita 8, 10132, Turin, Italy
| | - Renato Parente
- HUMANITAS Gradenigo, University of Turin, C.so Regina Margherita 8, 10132, Turin, Italy
| | - Franco De Michieli
- Department of Medical Sciences, San Giovanni Battista Hospital, University of Turin, Turin, Italy
| | - Elena Paschetta
- HUMANITAS Gradenigo, University of Turin, C.so Regina Margherita 8, 10132, Turin, Italy
| | - Giovanni Musso
- HUMANITAS Gradenigo, University of Turin, C.so Regina Margherita 8, 10132, Turin, Italy.
| |
Collapse
|
171
|
Haghikia A, Li XS, Liman TG, Bledau N, Schmidt D, Zimmermann F, Kränkel N, Widera C, Sonnenschein K, Haghikia A, Weissenborn K, Fraccarollo D, Heimesaat MM, Bauersachs J, Wang Z, Zhu W, Bavendiek U, Hazen SL, Endres M, Landmesser U. Gut Microbiota-Dependent Trimethylamine N-Oxide Predicts Risk of Cardiovascular Events in Patients With Stroke and Is Related to Proinflammatory Monocytes. Arterioscler Thromb Vasc Biol 2018; 38:2225-2235. [PMID: 29976769 PMCID: PMC6202215 DOI: 10.1161/atvbaha.118.311023] [Citation(s) in RCA: 208] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 06/19/2018] [Indexed: 12/13/2022]
Abstract
Objective- Gut microbiota-dependent metabolites, in particular trimethylamine N-oxide (TMAO), have recently been reported to promote atherosclerosis and thrombosis. Here, we examined for the first time the relation of TMAO and the risk of incident cardiovascular events in patients with recent first-ever ischemic stroke in 2 independent prospective cohorts. Moreover, the link between TMAO and proinflammatory monocytes as a potential contributing factor for cardiovascular risk in stroke patients was studied. Approach and Results- In a first study (n=78), higher TMAO plasma levels were linked with an increased risk of incident cardiovascular events including myocardial infarction, recurrent stroke, and cardiovascular death (fourth quartile versus first quartile; hazard ratio, 2.31; 95% CI, 1.25-4.23; P<0.01). In the second independent validation cohort (n=593), high TMAO levels again heralded marked increased risk of adverse cardiovascular events (fourth quartile versus first quartile; hazard ratio, 5.0; 95% CI, 1.7-14.8; P<0.01), and also after adjustments for cardiovascular risk factors including hypertension, diabetes mellitus, LDL (low-density lipoprotein) cholesterol, and estimated glomerular filtration rate (hazard ratio, 3.3; 95% CI, 1.2-10.9; P=0.04). A significant correlation was also found between TMAO levels and percentage of proinflammatory intermediate CD14++CD16+ monocytes ( r=0.70; P<0.01). Moreover, in mice fed a diet enriched with choline to increase TMAO synthesis, levels of proinflammatory murine Ly6Chigh monocytes were higher than in the chow-fed control group (choline: 9.2±0.5×103 per mL versus control: 6.5±0.5×103 per mL; P<0.01). This increase was abolished in mice with depleted gut microbiota (choline+antibiotics: 5.4±0.7×103 per mL; P<0.001 versus choline). Conclusions- The present study demonstrates for the first time a graded relation between TMAO levels and the risk of subsequent cardiovascular events in patients with recent prior ischemic stroke. Our data support the notion that TMAO-related increase of proinflammatory monocytes may add to elevated cardiovascular risk of patients with increased TMAO levels.
Collapse
Affiliation(s)
- Arash Haghikia
- Department of Cardiology, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany
- DZHK (German Center for Cardiovascular Research), partner site Berlin, Berlin, Germany
| | - Xinmin S. Li
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Thomas G. Liman
- Department of Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Nils Bledau
- Cardiology and Angiology, Hannover Medical School, Hannover, Germany
| | - David Schmidt
- Department of Cardiology, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - Friederike Zimmermann
- Department of Cardiology, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - Nicolle Kränkel
- Department of Cardiology, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany
- DZHK (German Center for Cardiovascular Research), partner site Berlin, Berlin, Germany
| | - Christian Widera
- Department of Cardiology, Heart Center Oldenburg, European Medical School Oldenburg-Groningen, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| | | | - Aiden Haghikia
- Department of Neurology, Ruhr-University Bochum, Bochum, Germany
| | | | | | - Markus M. Heimesaat
- Institute of Microbiology and Infection Immunology, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
| | - Johann Bauersachs
- Cardiology and Angiology, Hannover Medical School, Hannover, Germany
| | - Zeneng Wang
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Weifei Zhu
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Udo Bavendiek
- Cardiology and Angiology, Hannover Medical School, Hannover, Germany
| | - Stanley L. Hazen
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
- Department of Cardiovascular Medicine, Heart and Vascular Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Matthias Endres
- DZHK (German Center for Cardiovascular Research), partner site Berlin, Berlin, Germany
- Department of Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
- Center for Stroke Research Berlin, Charité-Universitätsmedizin Berlin, Berlin, Germany
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
| | - Ulf Landmesser
- Department of Cardiology, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany
- DZHK (German Center for Cardiovascular Research), partner site Berlin, Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
| |
Collapse
|
172
|
Zhu W, Buffa JA, Wang Z, Warrier M, Schugar R, Shih DM, Gupta N, Gregory JC, Org E, Fu X, Li L, DiDonato JA, Lusis AJ, Brown JM, Hazen SL. Flavin monooxygenase 3, the host hepatic enzyme in the metaorganismal trimethylamine N-oxide-generating pathway, modulates platelet responsiveness and thrombosis risk. J Thromb Haemost 2018; 16:1857-1872. [PMID: 29981269 PMCID: PMC6156942 DOI: 10.1111/jth.14234] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 06/26/2018] [Indexed: 12/21/2022]
Abstract
Essentials Microbe-dependent production of trimethylamine N-oxide (TMAO) contributes to thrombosis risk. The impact of host flavin monooxygenase 3 (FMO3) modulation on platelet function is unknown. Genetic manipulation of FMO3 in mice alters systemic TMAO levels and thrombosis potential. Genetic manipulation of FMO3 is associated with alteration of gut microbial community structure. SUMMARY Background Gut microbes play a critical role in the production of trimethylamine N-oxide (TMAO), an atherogenic metabolite that impacts platelet responsiveness and thrombosis potential. Involving both microbe and host enzymatic machinery, TMAO generation utilizes a metaorganismal pathway, beginning with ingestion of trimethylamine (TMA)-containing dietary nutrients such as choline, phosphatidylcholine and carnitine, which are abundant in a Western diet. Gut microbial TMA lyases use these nutrients as substrates to produce TMA, which upon delivery to the liver via the portal circulation, is converted into TMAO by host hepatic flavin monooxygenases (FMOs). Gut microbial production of TMA is rate limiting in the metaorganismal TMAO pathway because hepatic FMO activity is typically in excess. Objectives FMO3 is the major FMO responsible for host generation of TMAO; however, a role for FMO3 in altering platelet responsiveness and thrombosis potential in vivo has not yet been explored. Methods The impact of FMO3 suppression (antisense oligonucleotide-targeting) and overexpression (as transgene) on plasma TMAO levels, platelet responsiveness and thrombosis potential was examined using a murine FeCl3 -induced carotid artery injury model. Cecal microbial composition was examined using 16S analyses. Results Modulation of FMO3 directly impacts systemic TMAO levels, platelet responsiveness and rate of thrombus formation in vivo. Microbial composition analyses reveal taxa whose proportions are associated with both plasma TMAO levels and in vivo thrombosis potential. Conclusions The present studies demonstrate that host hepatic FMO3, the terminal step in the metaorganismal TMAO pathway, participates in diet-dependent and gut microbiota-dependent changes in both platelet responsiveness and thrombosis potential in vivo.
Collapse
Affiliation(s)
- W. Zhu
- Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA
| | - J. A. Buffa
- Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA
| | - Z. Wang
- Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA
| | - M. Warrier
- Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA
| | - R. Schugar
- Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA
| | - D. M. Shih
- Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA
| | - N. Gupta
- Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA
| | - J. C. Gregory
- Departments of Human Genetics and Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - E. Org
- Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA
| | - X. Fu
- Departments of Human Genetics and Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - L. Li
- Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA
| | - J. A. DiDonato
- Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA
| | - A. J. Lusis
- Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA
| | - J. M. Brown
- Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA
- Departments of Human Genetics and Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - S. L. Hazen
- Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA
- Heart and Vascular Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA
| |
Collapse
|
173
|
Li P, Zhong C, Li S, Sun T, Huang H, Chen X, Zhu Y, Hu X, Peng X, Zhang X, Bao W, Shan Z, Cheng J, Hu FB, Yang N, Liu L. Plasma concentration of trimethylamine-N-oxide and risk of gestational diabetes mellitus. Am J Clin Nutr 2018; 108:603-610. [PMID: 30535087 PMCID: PMC6924263 DOI: 10.1093/ajcn/nqy116] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 05/07/2018] [Indexed: 12/31/2022] Open
Abstract
Background The microbiota-dependent metabolite trimethylamine-N-oxide (TMAO) has been reported as a novel and independent risk factor for the development of cardiovascular and metabolic diseases, but the association with gestational diabetes mellitus (GDM) remains unclear. Objective The aim of this study was to investigate the association between plasma TMAO concentration and GDM in a 2-phase study. Design A 2-phase design was used in the current study. An initial phase included 866 participants (433 GDM cases and 433 matched controls) with fasting blood samples collected at the time of GDM screening (24-32 wk of gestation). An independent-phase study, with 276 GDM cases and 552 matched controls who provided fasting blood samples before 20 wk of gestation and who had GDM screened during 24-32 wk of gestation, was nested within a prospective cohort study. These 2 studies were both conducted in Wuhan, China, and the incidence of GDM in the cohort study was 10.8%. Plasma TMAO concentrations were determined by stable isotope dilution liquid chromatography-tandem mass spectrometry. GDM was diagnosed according to the American Diabetes Association criteria by using an oral-glucose-tolerance test. Results In the initial case-control study, the adjusted OR of GDM comparing the highest TMAO quartile with the lowest quartile was 1.94 (95% CI: 1.28, 2.93). Each SD increment of ln-transformed plasma TMAO was associated with 22% (95% CI: 5%, 41%) higher odds of GDM. In the nested case-control study, women in the highest quartile also had increased odds of GDM (adjusted OR: 2.06; 95% CI: 1.28, 3.31) compared with women in the lowest quartile, and the adjusted OR for GDM per SD increment of ln-transformed plasma TMAO was 1.26 (95% CI: 1.08, 1.47). Conclusions Consistent findings from this 2-phase study indicate a positive association between plasma TMAO concentrations and GDM. Future studies are warranted to elucidate the underlying mechanisms. This trial was registered at www.clinicaltrials.gov as NCT03415295.
Collapse
Affiliation(s)
- Peiyun Li
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety,Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chunrong Zhong
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety,Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuzhen Li
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety,Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Taoping Sun
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety,Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hao Huang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety,Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xi Chen
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety,Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yalun Zhu
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety,Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoli Hu
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety,Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaobo Peng
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety,Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xu Zhang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety,Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Bao
- Department of Epidemiology, College of Public Health, University of Iowa, Iowa City, IA
| | - Zhilei Shan
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety,Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China,Departments of Nutrition
| | - Jinquan Cheng
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Frank B Hu
- Departments of Nutrition,Epidemiology, Harvard TH Chan School of Public Health, Boston, MA
| | - Nianhong Yang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety,Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China,Address correspondence to NY (e-mail: )
| | - Liegang Liu
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety,Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China,Address correspondence to LL (e-mail: )
| |
Collapse
|
174
|
The Association between Plasma Levels of Trimethylamine N-Oxide and the Risk of Coronary Heart Disease in Chinese Patients with or without Type 2 Diabetes Mellitus. DISEASE MARKERS 2018; 2018:1578320. [PMID: 30159101 PMCID: PMC6109488 DOI: 10.1155/2018/1578320] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 07/12/2018] [Indexed: 12/15/2022]
Abstract
Aim Trimethylamine N-oxide (TMAO) has been demonstrated as an independent risk factor for cardiovascular disease. Our objective was to determine the plasma levels of TMAO in Chinese coronary heart disease (CHD) patients with or without type 2 diabetes mellitus (T2DM). Methods A total of 132 control participants, 243 CHD patients, and 175 CHD patients with T2DM were enrolled. Plasma levels of TMAO in all patients were measured and analyzed. Results The plasma levels of TMAO were significantly higher in CHD patients than in control subjects (3.08 ± 0.13 μM versus 1.49 ± 0.05 μM; P < 0.01). In addition, plasma levels of TMAO were remarkably increased in CHD patients with T2DM compared with CHD patients (7.63 ± 0.97 μM versus 3.08 ± 0.13 μM; P < 0.01). The receiver operating characteristic analysis revealed that the area under the curve of TMAO was 0.794 and 0.927 to predict CHD or CHD-T2DM patients (P < 0.01). Univariate and multivariate logistic regression analysis showed that TMAO was an independent predictor in CHD patients with or without T2DM. The level of TMAO was correlated with high-sensitive troponin I (hs-TnI) and creatine kinase MB (CKMB). Conclusions TMAO was an independent predictor of CHD in Chinese patients; moreover, the TMAO levels were highly associated with diabetes in CHD patients.
Collapse
|
175
|
Schiattarella GG, Sannino A, Esposito G, Perrino C. Diagnostics and therapeutic implications of gut microbiota alterations in cardiometabolic diseases. Trends Cardiovasc Med 2018; 29:141-147. [PMID: 30126689 DOI: 10.1016/j.tcm.2018.08.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 07/30/2018] [Accepted: 08/01/2018] [Indexed: 02/06/2023]
Abstract
Alterations in gut microbiota composition and its metabolic activity are emerging as one of the most powerful determinants of cardiovascular disease. Although our knowledge of the precise molecular mechanisms by which gut microbiota influences cardiometabolic homeostasis is still limited, a growing body of knowledge has recently been uncovered about the potential modulation of microbiome for cardiovascular diagnostic and therapeutic aspects. The multitude of interactions between the microorganisms inhabiting the digestive tract and the host has been recognized crucial in the development and progression of atherosclerosis, obesity, diabetes and hypertension. Here, we summarize the role of gut microbiota in host physiology as well as in the pathophysiology of the most common cardio-metabolic disorders, discussing the potential therapeutic opportunities offered by interventions aimed at modifying microbiome composition and activity.
Collapse
Affiliation(s)
- Gabriele G Schiattarella
- Department of Internal Medicine (Cardiology), University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd, NB11.208, Dallas 75390-8573, TX, USA; Division of Cardiology, Department of Advanced Biomedical Sciences, Federico II University, Via Pansini 5, Naples 80131, Italy.
| | - Anna Sannino
- Division of Cardiology, Department of Advanced Biomedical Sciences, Federico II University, Via Pansini 5, Naples 80131, Italy; Baylor Heart and Vascular Hospital, Baylor Research Institute, Dallas, TX, USA
| | - Giovanni Esposito
- Division of Cardiology, Department of Advanced Biomedical Sciences, Federico II University, Via Pansini 5, Naples 80131, Italy
| | - Cinzia Perrino
- Division of Cardiology, Department of Advanced Biomedical Sciences, Federico II University, Via Pansini 5, Naples 80131, Italy
| |
Collapse
|
176
|
Wu X, Li C, Mariyam Z, Jiang P, Zhou M, Zeb F, Haq IU, Chen A, Feng Q. Acrolein-induced atherogenesis by stimulation of hepatic flavin containing monooxygenase 3 and a protection from hydroxytyrosol. J Cell Physiol 2018; 234:475-485. [PMID: 29953618 DOI: 10.1002/jcp.26600] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Accepted: 03/15/2018] [Indexed: 12/24/2022]
Abstract
Acrolein, a highly toxic α, β-unsaturated aldehyde, promotes the progression of atherosclerosis in association with inflammatory signaling pathway and reverse cholesterol transport (RCT) process. Additionally, hepatic flavin containing monooxygenase 3 (FMO3) is involved in the pathogenesis of atherosclerosis by regulating cholesterol metabolism. Hydroxytyrosol (HT), as a major phenolic compound in olive oil, exerts anti-inflammatory and anti-atherogenic activities in vitro and animal models. The current study was designed to evaluate whether FMO3 participated in pro-atherogenic process by acrolein and HT showed protective effect during this process. Here, endothelial cells and macrophage Raw264.7 cells were used as the cell models. Following oxidized low-density lipoprotein (OX-LDL) treatment, acrolein exposure promoted foam cells formation in macrophage Raw264.7 cells. The expression of FMO3 and inflammatory makers such as phospho-NF-κB, IL-1β, TNFα as well as IL-6 were significantly increased. However, ATP-binding cassette transporters subfamily A member 1 (ABCA1), a major transporter in RCT process, was repressed by acrolein. In addition, FMO3 knockdown could suppress inflammatory markers and promote ABCA1 expression. Hydroxytyrosol (HT) was observed to reduce lipid accumulation, FMO3 expression as well as inflammatory response. Moreover, it promoted ABCA1 expression. Therefore, our findings indicated that acrolein-enhanced atherogenesis by increasing FMO3 which increased inflammatory responses and decreased ABCA1 in vitro can be alleviated by HT, which may have a therapeutic potential for the treatment of atherosclerosis.
Collapse
Affiliation(s)
- Xiaoyue Wu
- Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Chaofeng Li
- Department of Cardiology, The Second Affiliated Hospital of Southeast University, Nanjing, China
| | - Zahula Mariyam
- Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Pan Jiang
- Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Ming Zhou
- Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Falak Zeb
- Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Ijaz Ul Haq
- Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Aochang Chen
- Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Qing Feng
- Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing, China
| |
Collapse
|
177
|
Binding of methimazole and NADP(H) to human FMO3: In vitro and in silico studies. Int J Biol Macromol 2018; 118:460-468. [PMID: 29959003 DOI: 10.1016/j.ijbiomac.2018.06.104] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Revised: 06/06/2018] [Accepted: 06/22/2018] [Indexed: 01/10/2023]
Abstract
Human flavin-containing monooxygenase isoform 3 (hFMO3) is an important hepatic drug-metabolizing enzyme, catalyzing the monooxygenation of nucleophilic heteroatom-containing xenobiotics. Based on the structure of bacterial FMO, it is proposed that a conserved asparagine is involved in both NADP(H) and substrate binding. In order to explore the role of this amino acid in hFMO3, two mutants were constructed. In the case of N61Q, increasing the steric hindrance above the flavin N5-C4a causes poor NADP(H) binding, destabilizing the catalytic FAD intermediate, whereas the introduction of a negatively charged residue, N61D, interferes mainly with catalytic intermediate formation and its stability. To better understand the substrate-enzyme interaction, in vitro as well as in silico experiments were carried out with methimazole as substrate. Methimazole is a high-affinity substrate of hFMO3 and can competitively suppress the metabolism of other compounds. Our results demonstrate that methimazole Pi-stacks above the isoalloxazine ring of FAD in hFMO3, in a similar way to indole binding to the bacterial FMO. However, for hFMO3 indole is found to act as a non-substrate competitive inhibitor. Finally, understanding the binding mode of methimazole and indole could be advantageous for development of hFMO3 inhibitors, currently investigated as a possible treatment strategy for atherosclerosis.
Collapse
|
178
|
Friedrich N, Skaaby T, Pietzner M, Budde K, Thuesen B, Nauck M, Linneberg A. Identification of urine metabolites associated with 5-year changes in biomarkers of glucose homoeostasis. DIABETES & METABOLISM 2018; 44:261-268. [DOI: 10.1016/j.diabet.2017.05.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 05/09/2017] [Accepted: 05/23/2017] [Indexed: 01/11/2023]
|
179
|
Wang Z, Zhao Y. Gut microbiota derived metabolites in cardiovascular health and disease. Protein Cell 2018; 9:416-431. [PMID: 29725935 PMCID: PMC5960473 DOI: 10.1007/s13238-018-0549-0] [Citation(s) in RCA: 293] [Impact Index Per Article: 41.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 04/16/2018] [Indexed: 02/08/2023] Open
Abstract
Trillions of microbes inhabit the human gut, not only providing nutrients and energy to the host from the ingested food, but also producing metabolic bioactive signaling molecules to maintain health and elicit disease, such as cardiovascular disease (CVD). CVD is the leading cause of mortality worldwide. In this review, we presented gut microbiota derived metabolites involved in cardiovascular health and disease, including trimethylamine-N-oxide (TMAO), uremic toxins, short chain fatty acids (SCFAs), phytoestrogens, anthocyanins, bile acids and lipopolysaccharide. These gut microbiota derived metabolites play critical roles in maintaining a healthy cardiovascular function, and if dysregulated, potentially causally linked to CVD. A better understanding of the function and dynamics of gut microbiota derived metabolites holds great promise toward mechanistic predicative CVD biomarker discoveries and precise interventions.
Collapse
Affiliation(s)
- Zeneng Wang
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA.
| | - Yongzhong Zhao
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| |
Collapse
|
180
|
de Faria Ghetti F, Oliveira DG, de Oliveira JM, de Castro Ferreira LEVV, Cesar DE, Moreira APB. Influence of gut microbiota on the development and progression of nonalcoholic steatohepatitis. Eur J Nutr 2018; 57:861-876. [PMID: 28875318 DOI: 10.1007/s00394-017-1524-x] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 08/06/2017] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Nonalcoholic steatohepatitis (NASH) is characterized by the presence of steatosis, inflammation, and ballooning degeneration of hepatocytes, with or without fibrosis. The prevalence of NASH has increased with the obesity epidemic, but its etiology is multifactorial. The current studies suggest the role of gut microbiota in the development and progression of NASH. The aim is to review the studies that investigate the relationship between gut microbiota and NASH. These review also discusses the pathophysiological mechanisms and the influence of diet on the gut-liver axis. RESULT The available literature has proposed mechanisms for an association between gut microbiota and NASH, such as: modification energy homeostasis, lipopolysaccharides (LPS)-endotoxemia, increased endogenous production of ethanol, and alteration in the metabolism of bile acid and choline. There is evidence to suggest that NASH patients have a higher prevalence of bacterial overgrowth in the small intestine and changes in the composition of the gut microbiota. However, there is still a controversy regarding the microbiome profile in this population. The abundance of Bacteroidetes phylum may be increased, decreased, or unaltered in NASH patients. There is an increase in the Escherichia and Bacteroides genus. There is depletion of certain taxa, such as Prevotella and Faecalibacterium. CONCLUSION Although few studies have evaluated the composition of the gut microbiota in patients with NASH, it is observed that these individuals have a distinct gut microbiota, compared to the control groups, which explains, at least in part, the genesis and progression of the disease through multiple mechanisms. Modulation of the gut microbiota through diet control offers new challenges for future studies.
Collapse
Affiliation(s)
- Fabiana de Faria Ghetti
- Universitary Hospital and School of Medicine, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil.
- Unidade de Nutrição Clínica, Hospital Universitário, Rua Catulo Breviglieri, s/n, Bairro Santa Catarina, Juiz de Fora, Minas Gerais, CEP 36036-330, Brazil.
| | - Daiane Gonçalves Oliveira
- Universitary Hospital and School of Medicine, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| | - Juliano Machado de Oliveira
- Universitary Hospital and School of Medicine, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| | | | | | | |
Collapse
|
181
|
Petriello MC, Charnigo R, Sunkara M, Soman S, Pavuk M, Birnbaum L, Morris AJ, Hennig B. Relationship between serum trimethylamine N-oxide and exposure to dioxin-like pollutants. ENVIRONMENTAL RESEARCH 2018; 162:211-218. [PMID: 29353125 PMCID: PMC5811317 DOI: 10.1016/j.envres.2018.01.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 01/08/2018] [Accepted: 01/09/2018] [Indexed: 05/29/2023]
Abstract
Trimethylamine N-oxide (TMAO) is a diet and gut microbiota-derived metabolite that has been linked to cardiovascular disease risk in human studies and animal models. TMAO levels show wide inter and intra individual variability in humans that can likely be accounted for by multiple factors including diet, the gut microbiota, levels of the TMAO generating liver enzyme Flavin-containing monooxygenase 3 (FMO3) and kidney function. We recently found that dioxin-like (DL) environmental pollutants increased FMO3 expression to elevate circulating diet-derived TMAO in mice, suggesting that exposure to this class of pollutants might also contribute to inter-individual variability in circulating TMAO levels in humans. To begin to explore this possibility we examined the relationship between body burden of DL pollutants (reported by serum lipid concentrations) and serum TMAO levels (n = 340) in the Anniston, AL cohort, which was highly exposed to polychlorinated biphenyls (PCBs). TMAO concentrations in archived serum samples from the Anniston Community Health Survey (ACHS-II) were measured, and associations of TMAO with 28 indices of pollutant body burden, including total dioxins toxic equivalent (TEQ), were quantified. Twenty-three (22 after adjustment for multiple comparisons) of the 28 indices were significantly positively associated with TMAO. Although the design of ACHS-II does not enable quantitative assessment of the contributions of previously known determinants of TMAO variability to this relationship, limited multivariate modeling revealed that total dioxins TEQ was significantly associated with TMAO among females (except at high BMIs) but not among males. Our results from this cross-sectional study indicate that exposure to DL pollutants may contribute to elevated serum TMAO levels. Prospective longitudinal studies will be required to assess the joint relationship between DL pollutant exposures, other determinants of TMAO, and health outcomes.
Collapse
Affiliation(s)
- Michael C Petriello
- Superfund Research Center, University of Kentucky, Lexington, KY 40536
- Department of Animal and Food Sciences, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY 40536
- Lexington Veterans Affairs Medical Center, Lexington, Kentucky, USA
- Division of Cardiovascular Medicine, College of Medicine, University of Kentucky, Lexington, KY 40536
| | - Richard Charnigo
- Department of Biostatistics, College of Public Health, University of Kentucky, Lexington, KY
| | - Manjula Sunkara
- Superfund Research Center, University of Kentucky, Lexington, KY 40536
- Division of Cardiovascular Medicine, College of Medicine, University of Kentucky, Lexington, KY 40536
| | - Sony Soman
- Superfund Research Center, University of Kentucky, Lexington, KY 40536
- Division of Cardiovascular Medicine, College of Medicine, University of Kentucky, Lexington, KY 40536
| | - Marian Pavuk
- CDC Agency for Toxic Substances and Disease Registry, Atlanta, GA, USA
| | | | - Andrew J Morris
- Superfund Research Center, University of Kentucky, Lexington, KY 40536
- Lexington Veterans Affairs Medical Center, Lexington, Kentucky, USA
- Division of Cardiovascular Medicine, College of Medicine, University of Kentucky, Lexington, KY 40536
| | - Bernhard Hennig
- Superfund Research Center, University of Kentucky, Lexington, KY 40536
- Department of Animal and Food Sciences, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY 40536
| |
Collapse
|
182
|
Schugar RC, Shih DM, Warrier M, Helsley RN, Burrows A, Ferguson D, Brown AL, Gromovsky AD, Heine M, Chatterjee A, Li L, Li XS, Wang Z, Willard B, Meng Y, Kim H, Che N, Pan C, Lee RG, Crooke RM, Graham MJ, Morton RE, Langefeld CD, Das SK, Rudel LL, Zein N, McCullough AJ, Dasarathy S, Tang WHW, Erokwu BO, Flask CA, Laakso M, Civelek M, Naga Prasad SV, Heeren J, Lusis AJ, Hazen SL, Brown JM. The TMAO-Producing Enzyme Flavin-Containing Monooxygenase 3 Regulates Obesity and the Beiging of White Adipose Tissue. Cell Rep 2018. [PMID: 28636934 DOI: 10.1016/j.celrep.2017.05.077] [Citation(s) in RCA: 179] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Emerging evidence suggests that microbes resident in the human intestine represent a key environmental factor contributing to obesity-associated disorders. Here, we demonstrate that the gut microbiota-initiated trimethylamine N-oxide (TMAO)-generating pathway is linked to obesity and energy metabolism. In multiple clinical cohorts, systemic levels of TMAO were observed to strongly associate with type 2 diabetes. In addition, circulating TMAO levels were associated with obesity traits in the different inbred strains represented in the Hybrid Mouse Diversity Panel. Further, antisense oligonucleotide-mediated knockdown or genetic deletion of the TMAO-producing enzyme flavin-containing monooxygenase 3 (FMO3) conferred protection against obesity in mice. Complimentary mouse and human studies indicate a negative regulatory role for FMO3 in the beiging of white adipose tissue. Collectively, our studies reveal a link between the TMAO-producing enzyme FMO3 and obesity and the beiging of white adipose tissue.
Collapse
Affiliation(s)
- Rebecca C Schugar
- Department of Cellular and Molecular Medicine, Cleveland Clinic, Cleveland, OH 44195, USA; Center for Microbiome and Human Health, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Diana M Shih
- Departments of Medicine, Microbiology, and Human Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Manya Warrier
- Department of Cellular and Molecular Medicine, Cleveland Clinic, Cleveland, OH 44195, USA; Center for Microbiome and Human Health, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Robert N Helsley
- Department of Cellular and Molecular Medicine, Cleveland Clinic, Cleveland, OH 44195, USA; Center for Microbiome and Human Health, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Amy Burrows
- Department of Cellular and Molecular Medicine, Cleveland Clinic, Cleveland, OH 44195, USA; Center for Microbiome and Human Health, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Daniel Ferguson
- Department of Cellular and Molecular Medicine, Cleveland Clinic, Cleveland, OH 44195, USA; Center for Microbiome and Human Health, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Amanda L Brown
- Department of Cellular and Molecular Medicine, Cleveland Clinic, Cleveland, OH 44195, USA; Center for Microbiome and Human Health, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Anthony D Gromovsky
- Department of Cellular and Molecular Medicine, Cleveland Clinic, Cleveland, OH 44195, USA; Center for Microbiome and Human Health, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Markus Heine
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
| | | | - Lin Li
- Department of Cellular and Molecular Medicine, Cleveland Clinic, Cleveland, OH 44195, USA; Center for Microbiome and Human Health, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Xinmin S Li
- Department of Cellular and Molecular Medicine, Cleveland Clinic, Cleveland, OH 44195, USA; Center for Microbiome and Human Health, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Zeneng Wang
- Department of Cellular and Molecular Medicine, Cleveland Clinic, Cleveland, OH 44195, USA; Center for Microbiome and Human Health, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Belinda Willard
- Department of Cellular and Molecular Medicine, Cleveland Clinic, Cleveland, OH 44195, USA; Center for Microbiome and Human Health, Cleveland Clinic, Cleveland, OH 44195, USA
| | - YongHong Meng
- Departments of Medicine, Microbiology, and Human Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Hanjun Kim
- Departments of Medicine, Microbiology, and Human Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Nam Che
- Departments of Medicine, Microbiology, and Human Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Calvin Pan
- Departments of Medicine, Microbiology, and Human Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Richard G Lee
- Cardiovascular Group, Antisense Drug Discovery, Ionis Pharmaceuticals, Inc., Carlsbad, CA 92010, USA
| | - Rosanne M Crooke
- Cardiovascular Group, Antisense Drug Discovery, Ionis Pharmaceuticals, Inc., Carlsbad, CA 92010, USA
| | - Mark J Graham
- Cardiovascular Group, Antisense Drug Discovery, Ionis Pharmaceuticals, Inc., Carlsbad, CA 92010, USA
| | - Richard E Morton
- Department of Cellular and Molecular Medicine, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Carl D Langefeld
- Department of Biostatistical Sciences, Wake Forest University School of Medicine, Winston-Salem, NC 27157-1040, USA
| | - Swapan K Das
- Department of Endocrinology and Metabolism, Wake Forest University School of Medicine, Winston-Salem, NC 27157-1040, USA
| | - Lawrence L Rudel
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27157-1040, USA
| | - Nizar Zein
- Department of Gastroenterology and Hepatology, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Arthur J McCullough
- Department of Gastroenterology and Hepatology, Cleveland Clinic, Cleveland, OH 44195, USA
| | | | - W H Wilson Tang
- Department of Cellular and Molecular Medicine, Cleveland Clinic, Cleveland, OH 44195, USA; Center for Microbiome and Human Health, Cleveland Clinic, Cleveland, OH 44195, USA; Department of Cardiovascular Medicine, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Bernadette O Erokwu
- Departments of Radiology, Biomedical Engineering, and Pediatrics, Case Western Reserve University, Cleveland, OH 44195, USA
| | - Chris A Flask
- Departments of Radiology, Biomedical Engineering, and Pediatrics, Case Western Reserve University, Cleveland, OH 44195, USA
| | - Markku Laakso
- Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland and Kuopio University Hospital, 70210 Kuopio, Finland
| | - Mete Civelek
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22904, USA
| | | | - Joerg Heeren
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
| | - Aldons J Lusis
- Departments of Medicine, Microbiology, and Human Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Stanley L Hazen
- Department of Cellular and Molecular Medicine, Cleveland Clinic, Cleveland, OH 44195, USA; Center for Microbiome and Human Health, Cleveland Clinic, Cleveland, OH 44195, USA; Department of Cardiovascular Medicine, Cleveland Clinic, Cleveland, OH 44195, USA
| | - J Mark Brown
- Department of Cellular and Molecular Medicine, Cleveland Clinic, Cleveland, OH 44195, USA; Center for Microbiome and Human Health, Cleveland Clinic, Cleveland, OH 44195, USA.
| |
Collapse
|
183
|
Savi M, Bocchi L, Bresciani L, Falco A, Quaini F, Mena P, Brighenti F, Crozier A, Stilli D, Del Rio D. Trimethylamine-N-Oxide (TMAO)-Induced Impairment of Cardiomyocyte Function and the Protective Role of Urolithin B-Glucuronide. Molecules 2018; 23:molecules23030549. [PMID: 29494535 PMCID: PMC6017162 DOI: 10.3390/molecules23030549] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 02/21/2018] [Accepted: 02/26/2018] [Indexed: 01/06/2023] Open
Abstract
One of the most recently proposed candidates as a potential trigger for cardiovascular diseases is trimethylamine-N-oxide (TMAO). Possible direct effects of TMAO on myocardial tissue, independent of vascular damage, have been only partially explored so far. In the present study, we assessed the detrimental direct effects of TMAO on cardiomyocyte contractility and intracellular calcium dynamics, and the ability of urolithin B-glucuronide (Uro B-gluc) in counteracting TMAO-induced cell damage. Cell mechanics and calcium transients were measured, and ultrastructural analysis was performed in ventricular cardiomyocytes isolated from the heart of normal adult rats. Cells were either untreated, exposed to TMAO, or to TMAO and Uro B-gluc. TMAO exposure worsened cardiomyocyte mechanics and intracellular calcium handling, as documented by the decrease in the fraction of shortening (FS) and the maximal rate of shortening and re-lengthening, associated with reduced efficiency in the intracellular calcium removal. Ultrastructurally, TMAO-treated cardiomyocytes also exhibited glycogen accumulation, a higher number of mitochondria and lipofuscin-like pigment deposition, suggesting an altered cellular energetic metabolism and a higher rate of protein oxidative damage, respectively. Uro B-gluc led to a complete recovery of cellular contractility and calcium dynamics, and morphologically to a reduced glycogen accumulation. We demonstrated for the first time a direct negative role of TMAO on cardiomyocyte functional properties and the ability of Uro B-gluc in counteracting these detrimental effects.
Collapse
Affiliation(s)
- Monia Savi
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy; (M.S.); (L.Bo.)
| | - Leonardo Bocchi
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy; (M.S.); (L.Bo.)
| | - Letizia Bresciani
- Department of Veterinary Science, University of Parma, Strada del Taglio 10, 43126 Parma, Italy;
| | - Angela Falco
- Department of Medicine and Surgery, University of Parma, Via A. Gramsci 14, 43126 Parma, Italy; (A.F.); (F.Q.)
| | - Federico Quaini
- Department of Medicine and Surgery, University of Parma, Via A. Gramsci 14, 43126 Parma, Italy; (A.F.); (F.Q.)
| | - Pedro Mena
- Department of Food and Drugs, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy; (P.M.); (F.B.)
| | - Furio Brighenti
- Department of Food and Drugs, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy; (P.M.); (F.B.)
| | - Alan Crozier
- Department of Nutrition, University of California, 3143 Meyer Hall One Shields Avenue, Davis, CA 95616-5270, USA;
| | - Donatella Stilli
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy; (M.S.); (L.Bo.)
- Correspondence: (D.S.); (D.D.R.); Tel: +39-0521-906-117 (D.S.); +39-0521-033-830 (D.D.R.)
| | - Daniele Del Rio
- Department of Veterinary Science, University of Parma, Strada del Taglio 10, 43126 Parma, Italy;
- Correspondence: (D.S.); (D.D.R.); Tel: +39-0521-906-117 (D.S.); +39-0521-033-830 (D.D.R.)
| |
Collapse
|
184
|
Li XS, Obeid S, Klingenberg R, Gencer B, Mach F, Räber L, Windecker S, Rodondi N, Nanchen D, Muller O, Miranda MX, Matter CM, Wu Y, Li L, Wang Z, Alamri HS, Gogonea V, Chung YM, Tang WHW, Hazen SL, Lüscher TF. Gut microbiota-dependent trimethylamine N-oxide in acute coronary syndromes: a prognostic marker for incident cardiovascular events beyond traditional risk factors. Eur Heart J 2018; 38:814-824. [PMID: 28077467 DOI: 10.1093/eurheartj/ehw582] [Citation(s) in RCA: 216] [Impact Index Per Article: 30.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 12/15/2016] [Indexed: 02/06/2023] Open
Abstract
Aims Systemic levels of trimethylamine N-oxide (TMAO), a pro-atherogenic and pro-thrombotic metabolite produced from gut microbiota metabolism of dietary trimethylamine (TMA)-containing nutrients such as choline or carnitine, predict incident cardiovascular event risks in stable primary and secondary prevention subjects. However, the prognostic value of TMAO in the setting of acute coronary syndromes (ACS) remains unknown. Methods and results We investigated the relationship of TMAO levels with incident cardiovascular risks among sequential patients presenting with ACS in two independent cohorts. In the Cleveland Cohort, comprised of sequential subjects (n = 530) presenting to the Emergency Department (ED) with chest pain of suspected cardiac origin, an elevated plasma TMAO level at presentation was independently associated with risk of major adverse cardiac events (MACE, including myocardial infarction, stroke, need for revascularization, or death) over the ensuing 30-day (4th quartile (Q4) adjusted odds ratio (OR) 6.30, 95% confidence interval (CI), 1.89-21.0, P < 0.01) and 6-month (Q4 adjusted OR 5.65, 95%CI, 1.91-16.7; P < 0.01) intervals. TMAO levels were also a significant predictor of the long term (7-year) mortality (Q4 adjusted HR 1.81, 95%CI, 1.04-3.15; P < 0.05). Interestingly, TMAO level at initial presentation predicted risk of incident MACE over the near-term (30 days and 6 months) even among subjects who were initially negative for troponin T (< 0.1 ng/mL) (30 days, Q4 adjusted OR 5.83, 95%CI, 1.79-19.03; P < 0.01). The prognostic value of TMAO was also assessed in an independent multicentre Swiss Cohort of ACS patients (n = 1683) who underwent coronary angiography. Trimethylamine N-oxide again predicted enhanced MACE risk (1-year) (adjusted Q4 hazard ratios: 1.57, 95% CI, 1.03-2.41; P <0.05). Conclusion Plasma TMAO levels among patients presenting with chest pain predict both near- and long-term risks of incident cardiovascular events, and may thus provide clinical utility in risk stratification among subjects presenting with suspected ACS.
Collapse
Affiliation(s)
- Xinmin S Li
- Department of Cellular & Molecular Medicine, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | - Slayman Obeid
- Department of Cardiology, University Heart Center, University Hospital Zurich, Switzerland
| | - Roland Klingenberg
- Department of Cardiology, University Heart Center, University Hospital Zurich, Switzerland
| | - Baris Gencer
- Department of Cardiology, Cardiovascular Center, University Hospital Geneva, Switzerland
| | - François Mach
- Department of Cardiology, Cardiovascular Center, University Hospital Geneva, Switzerland
| | - Lorenz Räber
- Department of Cardiology, Cardiovascular Center, University Hospital Bern, Switzerland
| | - Stephan Windecker
- Department of Cardiology, Cardiovascular Center, University Hospital Bern, Switzerland
| | - Nicolas Rodondi
- Department of General Internal Medicine, University Hospital Bern, Switzerland.,Institute of Primary Health Care (BIHAM), University of Bern, Switzerland
| | - David Nanchen
- Department of Ambulatory Care and Community Medicine, Lausanne University, Lausanne, Switzerland
| | - Olivier Muller
- Department of Cardiology, Cardiovascular Center, University Hospital Lausanne, Switzerland
| | - Melroy X Miranda
- Center for Molecular Cardiology, University of Zurich, Switzerland
| | - Christian M Matter
- Department of Cardiology, University Heart Center, University Hospital Zurich, Switzerland
| | - Yuping Wu
- Department of Mathematics, Cleveland State University, 2121 Euclid Avenue, Cleveland, OH 44115, USA
| | - Lin Li
- Department of Cellular & Molecular Medicine, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | - Zeneng Wang
- Department of Cellular & Molecular Medicine, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | - Hassan S Alamri
- Department of Cellular & Molecular Medicine, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA.,Department of Chemistry, Cleveland State University, 2121 Euclid Avenue, Cleveland, OH 44115, USA
| | - Valentin Gogonea
- Department of Cellular & Molecular Medicine, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA.,Department of Chemistry, Cleveland State University, 2121 Euclid Avenue, Cleveland, OH 44115, USA
| | - Yoon-Mi Chung
- Department of Cellular & Molecular Medicine, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | - W H Wilson Tang
- Department of Cellular & Molecular Medicine, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA.,Department of Cardiovascular Medicine, Heart and Vascular Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | - Stanley L Hazen
- Department of Cellular & Molecular Medicine, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA.,Department of Cardiovascular Medicine, Heart and Vascular Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | - Thomas F Lüscher
- Department of Cardiology, University Heart Center, University Hospital Zurich, Switzerland
| |
Collapse
|
185
|
Battson ML, Lee DM, Weir TL, Gentile CL. The gut microbiota as a novel regulator of cardiovascular function and disease. J Nutr Biochem 2017; 56:1-15. [PMID: 29427903 DOI: 10.1016/j.jnutbio.2017.12.010] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 12/18/2017] [Accepted: 12/21/2017] [Indexed: 02/07/2023]
Abstract
The gut microbiome has emerged as a critical regulator of human physiology. Deleterious changes to the composition or number of gut bacteria, commonly referred to as gut dysbiosis, has been linked to the development and progression of numerous diet-related diseases, including cardiovascular disease (CVD). Most CVD risk factors, including aging, obesity, certain dietary patterns, and a sedentary lifestyle, have been shown to induce gut dysbiosis. Dysbiosis is associated with intestinal inflammation and reduced integrity of the gut barrier, which in turn increases circulating levels of bacterial structural components and microbial metabolites that may facilitate the development of CVD. The aim of the current review is to summarize the available data regarding the role of the gut microbiome in regulating CVD function and disease processes. Particular emphasis is placed on nutrition-related alterations in the microbiome, as well as the underlying cellular mechanisms by which the microbiome may alter CVD risk.
Collapse
Affiliation(s)
- Micah L Battson
- Department of Food Science & Human Nutrition, Colorado State University, Fort Collins, CO 80523
| | - Dustin M Lee
- Department of Food Science & Human Nutrition, Colorado State University, Fort Collins, CO 80523
| | - Tiffany L Weir
- Department of Food Science & Human Nutrition, Colorado State University, Fort Collins, CO 80523
| | - Christopher L Gentile
- Department of Food Science & Human Nutrition, Colorado State University, Fort Collins, CO 80523.
| |
Collapse
|
186
|
Wang G, Song G, Wang L, Gao F, Guo N, Zhang Y, Zhao N, Yin X. Analysis of the correlation between adiponectin gene polymorphism and metabolic syndrome incidence and its relationship with the degree of atherosclerosis in patients. Exp Ther Med 2017; 14:5002-5006. [PMID: 29109761 PMCID: PMC5663026 DOI: 10.3892/etm.2017.5149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 09/04/2017] [Indexed: 11/23/2022] Open
Abstract
The aim of the present study was to determine the correlation between adiponectin (APN) gene polymorphism, metabolic syndrome incidence, and degree of atherosclerosis in patients with this disease. The study was conducted on 369 unrelated patients, diagnosed with metabolic abnormalities. The patients were divided into the metabolic syndrome group (MS group, n=182), the metabolic abnormality group (n=187) and the control group with metabolic normality (n=134), as per the degree of metabolic abnormality. The gene polymorphism of rs121917815 site of APN gene was detected by TaqMAN probe technique, and the OR values of different genotypes and alleles were calculated. The APN protein, C-reactive protein (CRP), IL-1 and high-density lipoprotein (HDL) 2a and 2b expression level changes were detected by immunoblotting. The atherosclerosis index (AI) of each allele in patients with MS was calculated. Compared with the control group, the expression levels of APN protein in the metabolic abnormality and MS groups were significantly decreased. However, there was no distinct difference in the comparison of gene polymorphism between the control and metabolic abnormality groups. The CC genotype frequency and C allele frequency of rs121917815 polymorphic site in the MS group were significantly increased, compared with the control group. The TT genotype frequency and T allele frequency were significantly decreased and the OR values of the CC genotype and C allele were increased. The results of immunoblotting showed that there was no obvious change of CRP, IL-1, HDL-2a and HDL-2b in the three groups, and there was no statistically significant difference in the comparison of AI between the MS and control groups as well as the metabolic abnormality group. The APN gene polymorphic site rs121917815 is associated with MS. The occurrence of CC genotype and C allele increased the incidence of MS, but it did not increase the degree of atherosclerosis in MS patients.
Collapse
Affiliation(s)
- Guangya Wang
- Teaching and Research Section of Medicine, Hebei Medical University, Shijiazhuang, Hebei 050017, P.R. China.,Second Department of Endocrinology and Metabolism, Cangzhou Central Hospital, Cangzhou, Hebei 061001, P.R. China
| | - Guangyao Song
- Teaching and Research Section of Medicine, Hebei Medical University, Shijiazhuang, Hebei 050017, P.R. China.,Department of Endocrinology and Metabolism, Hebei Provincial People's Hospital, Shijiazhuang, Hebei 050017, P.R. China
| | - Linxia Wang
- Second Department of Endocrinology and Metabolism, Cangzhou Central Hospital, Cangzhou, Hebei 061001, P.R. China
| | - Fang Gao
- Second Department of Endocrinology and Metabolism, Cangzhou Central Hospital, Cangzhou, Hebei 061001, P.R. China
| | - Ningning Guo
- Second Department of Endocrinology and Metabolism, Cangzhou Central Hospital, Cangzhou, Hebei 061001, P.R. China
| | - Yunna Zhang
- Second Department of Endocrinology and Metabolism, Cangzhou Central Hospital, Cangzhou, Hebei 061001, P.R. China
| | - Nairui Zhao
- Second Department of Endocrinology and Metabolism, Cangzhou Central Hospital, Cangzhou, Hebei 061001, P.R. China
| | - Xiuping Yin
- Teaching and Research Section of Medicine, Hebei Medical University, Shijiazhuang, Hebei 050017, P.R. China
| |
Collapse
|
187
|
Inactivation mechanism of N61S mutant of human FMO3 towards trimethylamine. Sci Rep 2017; 7:14668. [PMID: 29116146 PMCID: PMC5676948 DOI: 10.1038/s41598-017-15224-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 10/23/2017] [Indexed: 12/18/2022] Open
Abstract
Human flavin-containing monooxygenase 3 (hFMO3) catalyses the oxygenation of a wide variety of compounds including drugs as well as dietary compounds. It is the major hepatic enzyme involved in the production of the N-oxide of trimethylamine (TMAO) and clinical studies have uncovered a striking correlation between plasma TMAO concentration and cardiovascular disease. Certain mutations within the hFMO3 gene cause defective trimethylamine (TMA) N-oxygenation leading to trimethylaminuria (TMAU) also known as fish-odour syndrome. In this paper, the inactivation mechanism of a TMAU-causing polymorphic variant, N61S, is investigated. Transient kinetic experiments show that this variant has a > 170-fold lower NADPH binding affinity than the wild type. Thermodynamic and spectroscopic experiments reveal that the poor NADP+ binding affinity accelerates the C4a-hydroperoxyFAD intermediate decay, responsible for an unfavourable oxygen transfer to the substrate. Steady-state kinetic experiments show significantly decreased N61S catalytic activity towards other substrates; methimazole, benzydamine and tamoxifen. The in vitro data are corroborated by in silico data where compared to the wild type enzyme, a hydrogen bond required for the stabilisation of the flavin intermediate is lacking. Taken together, the data presented reveal the molecular basis for the loss of function observed in N61S mutant.
Collapse
|
188
|
Boini KM, Hussain T, Li PL, Koka S. Trimethylamine-N-Oxide Instigates NLRP3 Inflammasome Activation and Endothelial Dysfunction. Cell Physiol Biochem 2017; 44:152-162. [PMID: 29130962 DOI: 10.1159/000484623] [Citation(s) in RCA: 188] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 10/23/2017] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND/AIM Plasma trimethylamine-N-oxide (TMAO), a product of intestinal microbial metabolism of dietary phosphatidylcholine has been recently associated with atherosclerosis and increased risk of cardiovascular diseases (CVD) in rodents and humans. However, the molecular mechanisms of how TMAO induces atherosclerosis and CVD progression are still unclear. The present study tested whether TMAO induces NLRP3 inflammasome formation and activation and thereby contributes to endothelial injury initiating atherogenesis. METHODS Inflammasome formation and activation was determined by confocal microscopy, caspase-1 activity was measured by colorimetric assay, IL-1β production was measured using ELISA, cell permeability was determined by microplate reader and ZO-1 expression was determined by western blot analysis and confocal microscopy. In in vivo experiments, TMAO was infused by osmotic pump implantation. RESULTS TMAO treatment significantly increased the colocalization of NLRP3 with Asc or NLRP3 with caspase-1, caspase-1 activity, IL-1β production, cell permeability in carotid artery endothelial cells (CAECs) compared to control cells. Pretreatment with caspase-1 inhibitor, WEHD or Nlrp3 siRNA abolished the TMAO-induced inflammasome formation, activation and cell permeability in these cells. In addition, we explored the mechanisms by which TMAO activates NLRP3 inflammasomes. TMAO-induced the activation of NLRP3 inflammasomes was associated with both redox regulation and lysosomal dysfunction. In animal experiments, direct infusion of TMAO in mice with partially ligated carotid artery were found to have increased NLRP3 inflammasome formation and IL-1β production in the intima of wild type mice. CONCLUSION The formation and activation of NLRP3 inflammasomes by TMAO may be an important initiating mechanism to turn on the endothelial inflammatory response leading to endothelial dysfunction.
Collapse
Affiliation(s)
- Krishna M Boini
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas, USA
| | - Tahir Hussain
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas, USA
| | - Pin-Lan Li
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Sai Koka
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas, USA
| |
Collapse
|
189
|
Trenteseaux C, Gaston AT, Aguesse A, Poupeau G, de Coppet P, Andriantsitohaina R, Laschet J, Amarger V, Krempf M, Nobecourt-Dupuy E, Ouguerram K. Perinatal Hypercholesterolemia Exacerbates Atherosclerosis Lesions in Offspring by Altering Metabolism of Trimethylamine-N-Oxide and Bile Acids. Arterioscler Thromb Vasc Biol 2017; 37:2053-2063. [PMID: 28935756 DOI: 10.1161/atvbaha.117.309923] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 08/30/2017] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Experimental studies suggest that maternal hypercholesterolemia may be relevant for the early onset of cardiovascular disease in offspring. We investigated the effect of perinatal hypercholesterolemia on the atherosclerosis development in the offspring of apolipoprotein E-deficient mice and the underlying mechanism. APPROACH AND RESULTS Atherosclerosis and related parameters were studied in adult male or female apolipoprotein E-deficient mice offspring from either normocholesterolemic or hypercholesterolemic mothers and normocholesterolemic fathers. Female born to hypercholesterolemic mothers had more aortic root lesions than female born to normocholesterolemic mothers. Lesions in whole aorta did not differ between groups. Higher trimethylamine-N-oxide levels and Fmo3 hepatic gene expression were higher in female born to hypercholesterolemic mothers offspring compared with female born to normocholesterolemic mothers and male. Trimethylamine-N-oxide levels were correlated with the size of atherosclerotic root lesions. Levels of hepatic cholesterol and gallbladder bile acid were greater in male born to hypercholesterolemic mothers compared with male born to normocholesterolemic mothers. At 18 weeks of age, female born to hypercholesterolemic mothers showed lower hepatic Scarb1 and Cyp7a1 but higher Nr1h4 gene expression compared with female born to normocholesterolemic mothers. Male born to hypercholesterolemic mothers showed an increase in Scarb1 and Ldlr gene expression compared with male born to normocholesterolemic mothers. At 25 weeks of age, female born to hypercholesterolemic mothers had lower Cyp7a1 gene expression compared with female born to normocholesterolemic mothers. DNA methylation of Fmo3, Scarb1, and Ldlr promoter regions was slightly modified and may explain the mRNA expression modulation. CONCLUSIONS Our findings suggest that maternal hypercholesterolemia may exacerbate the development of atherosclerosis in female offspring by affecting metabolism of trimethylamine-N-oxide and bile acids. These data could be explained by epigenetic alterations.
Collapse
Affiliation(s)
- Charlotte Trenteseaux
- From the UMR 1280 Physiopathologie des Adaptations Nutritionnelles, INRA, Université de Nantes, France (C.T., G.P., P.d.C., V.A., M.K., E.N.-D., K.O.); Centre de Recherche en Nutrition Humaine Ouest, Nantes, France (C.T., A.A., M.K., K.O.); UMR1063 Stress Oxydant et Pathologies Métaboliques, INSERM, Université d'Angers, France (C.T., R.A.); and UMR 1148 Laboratoire de recherche Vasculaire Translationnelle, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Université Paris, France (A.-t.G., J.L.)
| | - Anh-Thu Gaston
- From the UMR 1280 Physiopathologie des Adaptations Nutritionnelles, INRA, Université de Nantes, France (C.T., G.P., P.d.C., V.A., M.K., E.N.-D., K.O.); Centre de Recherche en Nutrition Humaine Ouest, Nantes, France (C.T., A.A., M.K., K.O.); UMR1063 Stress Oxydant et Pathologies Métaboliques, INSERM, Université d'Angers, France (C.T., R.A.); and UMR 1148 Laboratoire de recherche Vasculaire Translationnelle, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Université Paris, France (A.-t.G., J.L.)
| | - Audrey Aguesse
- From the UMR 1280 Physiopathologie des Adaptations Nutritionnelles, INRA, Université de Nantes, France (C.T., G.P., P.d.C., V.A., M.K., E.N.-D., K.O.); Centre de Recherche en Nutrition Humaine Ouest, Nantes, France (C.T., A.A., M.K., K.O.); UMR1063 Stress Oxydant et Pathologies Métaboliques, INSERM, Université d'Angers, France (C.T., R.A.); and UMR 1148 Laboratoire de recherche Vasculaire Translationnelle, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Université Paris, France (A.-t.G., J.L.)
| | - Guillaume Poupeau
- From the UMR 1280 Physiopathologie des Adaptations Nutritionnelles, INRA, Université de Nantes, France (C.T., G.P., P.d.C., V.A., M.K., E.N.-D., K.O.); Centre de Recherche en Nutrition Humaine Ouest, Nantes, France (C.T., A.A., M.K., K.O.); UMR1063 Stress Oxydant et Pathologies Métaboliques, INSERM, Université d'Angers, France (C.T., R.A.); and UMR 1148 Laboratoire de recherche Vasculaire Translationnelle, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Université Paris, France (A.-t.G., J.L.)
| | - Pierre de Coppet
- From the UMR 1280 Physiopathologie des Adaptations Nutritionnelles, INRA, Université de Nantes, France (C.T., G.P., P.d.C., V.A., M.K., E.N.-D., K.O.); Centre de Recherche en Nutrition Humaine Ouest, Nantes, France (C.T., A.A., M.K., K.O.); UMR1063 Stress Oxydant et Pathologies Métaboliques, INSERM, Université d'Angers, France (C.T., R.A.); and UMR 1148 Laboratoire de recherche Vasculaire Translationnelle, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Université Paris, France (A.-t.G., J.L.)
| | - Ramaroson Andriantsitohaina
- From the UMR 1280 Physiopathologie des Adaptations Nutritionnelles, INRA, Université de Nantes, France (C.T., G.P., P.d.C., V.A., M.K., E.N.-D., K.O.); Centre de Recherche en Nutrition Humaine Ouest, Nantes, France (C.T., A.A., M.K., K.O.); UMR1063 Stress Oxydant et Pathologies Métaboliques, INSERM, Université d'Angers, France (C.T., R.A.); and UMR 1148 Laboratoire de recherche Vasculaire Translationnelle, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Université Paris, France (A.-t.G., J.L.)
| | - Jamila Laschet
- From the UMR 1280 Physiopathologie des Adaptations Nutritionnelles, INRA, Université de Nantes, France (C.T., G.P., P.d.C., V.A., M.K., E.N.-D., K.O.); Centre de Recherche en Nutrition Humaine Ouest, Nantes, France (C.T., A.A., M.K., K.O.); UMR1063 Stress Oxydant et Pathologies Métaboliques, INSERM, Université d'Angers, France (C.T., R.A.); and UMR 1148 Laboratoire de recherche Vasculaire Translationnelle, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Université Paris, France (A.-t.G., J.L.)
| | - Valérie Amarger
- From the UMR 1280 Physiopathologie des Adaptations Nutritionnelles, INRA, Université de Nantes, France (C.T., G.P., P.d.C., V.A., M.K., E.N.-D., K.O.); Centre de Recherche en Nutrition Humaine Ouest, Nantes, France (C.T., A.A., M.K., K.O.); UMR1063 Stress Oxydant et Pathologies Métaboliques, INSERM, Université d'Angers, France (C.T., R.A.); and UMR 1148 Laboratoire de recherche Vasculaire Translationnelle, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Université Paris, France (A.-t.G., J.L.)
| | - Michel Krempf
- From the UMR 1280 Physiopathologie des Adaptations Nutritionnelles, INRA, Université de Nantes, France (C.T., G.P., P.d.C., V.A., M.K., E.N.-D., K.O.); Centre de Recherche en Nutrition Humaine Ouest, Nantes, France (C.T., A.A., M.K., K.O.); UMR1063 Stress Oxydant et Pathologies Métaboliques, INSERM, Université d'Angers, France (C.T., R.A.); and UMR 1148 Laboratoire de recherche Vasculaire Translationnelle, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Université Paris, France (A.-t.G., J.L.)
| | - Estelle Nobecourt-Dupuy
- From the UMR 1280 Physiopathologie des Adaptations Nutritionnelles, INRA, Université de Nantes, France (C.T., G.P., P.d.C., V.A., M.K., E.N.-D., K.O.); Centre de Recherche en Nutrition Humaine Ouest, Nantes, France (C.T., A.A., M.K., K.O.); UMR1063 Stress Oxydant et Pathologies Métaboliques, INSERM, Université d'Angers, France (C.T., R.A.); and UMR 1148 Laboratoire de recherche Vasculaire Translationnelle, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Université Paris, France (A.-t.G., J.L.)
| | - Khadija Ouguerram
- From the UMR 1280 Physiopathologie des Adaptations Nutritionnelles, INRA, Université de Nantes, France (C.T., G.P., P.d.C., V.A., M.K., E.N.-D., K.O.); Centre de Recherche en Nutrition Humaine Ouest, Nantes, France (C.T., A.A., M.K., K.O.); UMR1063 Stress Oxydant et Pathologies Métaboliques, INSERM, Université d'Angers, France (C.T., R.A.); and UMR 1148 Laboratoire de recherche Vasculaire Translationnelle, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Université Paris, France (A.-t.G., J.L.).
| |
Collapse
|
190
|
Shan Z, Sun T, Huang H, Chen S, Chen L, Luo C, Yang W, Yang X, Yao P, Cheng J, Hu FB, Liu L. Association between microbiota-dependent metabolite trimethylamine- N-oxide and type 2 diabetes. Am J Clin Nutr 2017; 106:888-894. [PMID: 28724646 DOI: 10.3945/ajcn.117.157107] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 06/20/2017] [Indexed: 11/14/2022] Open
Abstract
Background: The association of trimethylamine-N-oxide (TMAO), a microbiota-dependent metabolite from dietary choline and carnitine, with type 2 diabetes was inconsistent.Objective: We evaluated the association of plasma TMAO with newly diagnosed type 2 diabetes and the potential modification of TMAO-generating enzyme flavin monooxygenase 3 (FMO3) polymorphisms.Design: This was an age- and sex-matched case-control study of 2694 participants: 1346 newly diagnosed cases of type 2 diabetes and 1348 controls. Concentrations of plasma TMAO were measured, and FMO3 E158K polymorphisms (rs2266782) were genotyped.Results: Medians (IQRs) of plasma TMAO concentration were 1.47 μmol/L (0.81-2.20 μmol/L) for controls and 1.77 μmol/L (1.09-2.80 μmol/L) for type 2 diabetes cases. From the lowest to the highest quartiles of plasma TMAO, the multivariable adjusted ORs of type 2 diabetes were 1.00 (reference), 1.38 (95% CI: 1.08, 1.77), 1.64 (95% CI: 1.28, 2.09), and 2.55 (95% CI: 1.99, 3.28) (P-trend < 0.001); each SD of ln-transformed plasma TMAO was associated with a 38% (95% CI: 26%, 51%) increment in ORs of type 2 diabetes. The FMO3 rs2266782 polymorphism was not associated with type 2 diabetes. The positive association between plasma TMAO and type 2 diabetes was consistent in each rs2266782 genotype group, and no significant interaction was observed (P = 0.093).Conclusions: Our results suggested that higher plasma TMAO was associated with increased odds of newly diagnosed type 2 diabetes and that this association was not modified by the FMO3 rs2266782 polymorphism. This study was registered at clinicaltrials.gov as NCT03130894.
Collapse
Affiliation(s)
- Zhilei Shan
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, and.,Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Departments of Nutrition and
| | - Taoping Sun
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, and.,Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hao Huang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, and.,Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Sijing Chen
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, and.,Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liangkai Chen
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, and.,Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Cheng Luo
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, and.,Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Yang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, and.,Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xuefeng Yang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, and.,Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ping Yao
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, and.,Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jinquan Cheng
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Frank B Hu
- Departments of Nutrition and .,Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA; and
| | - Liegang Liu
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, and .,Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
191
|
Astafev AA, Patel SA, Kondratov RV. Calorie restriction effects on circadian rhythms in gene expression are sex dependent. Sci Rep 2017; 7:9716. [PMID: 28851928 PMCID: PMC5575277 DOI: 10.1038/s41598-017-09289-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 07/24/2017] [Indexed: 01/08/2023] Open
Abstract
The rhythms in the expression of circadian clock genes are affected by calorie restriction (CR), a dietary paradigm known to increase lifespan. Many physiological effects of CR differ between males and females; here we investigated if the sex of animals affects the CR induced changes in the circadian rhythms. The liver expression of some circadian clock genes such as Bmal1 and three Periods (Per1, Per2 and Per3) and the effect of CR on the expression of these genes were sex independent, while the expression of Rev-Erb alpha, Ror gamma and both Cryptochome (Cry1 and Cry2) genes was different between males and females. The effect of CR on Rev-Erb alpha, Ror gamma and Cry1 gene expression was sex dependent. The expression and the effects of CR were sex-specific for several genes previously reported to be regulated by CR: Fmo3, Mup4, Serpina12 and Cyp4a12, while the expression of Cyp4a14a was sex independent. IGF signaling plays an important role in aging and CR effects. Igf-1 expression is regulated by CR and by the circadian clock, we found that rhythms in Igf-1 expression have sexual dimorphism. Our data provide molecular evidence that the sex of animals is an important modulator of circadian rhythms in gene expression and their response to CR.
Collapse
Affiliation(s)
- Artem A Astafev
- Department of Biological, Geological, and Environmental Sciences and Center for Gene Regulation in Health and Diseases, Cleveland State University, Cleveland, OH, 44115, USA
| | - Sonal A Patel
- Department of Biological, Geological, and Environmental Sciences and Center for Gene Regulation in Health and Diseases, Cleveland State University, Cleveland, OH, 44115, USA
| | - Roman V Kondratov
- Department of Biological, Geological, and Environmental Sciences and Center for Gene Regulation in Health and Diseases, Cleveland State University, Cleveland, OH, 44115, USA.
| |
Collapse
|
192
|
Tomlinson JAP, Wheeler DC. The role of trimethylamine N-oxide as a mediator of cardiovascular complications in chronic kidney disease. Kidney Int 2017; 92:809-815. [PMID: 28807612 DOI: 10.1016/j.kint.2017.03.053] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 03/06/2017] [Accepted: 03/09/2017] [Indexed: 01/07/2023]
Abstract
Patients with chronic kidney disease (CKD) have an enhanced risk of cardiovascular (CV) morbidity and mortality when compared with age- and gender-matched individuals with normal kidney function. Trimethlyamine N-oxide (TMAO) is a gut-derived amine oxide that has been implicated in the causation of CV diseases. Plasma TMAO is cleared by the kidney, and TMAO levels are elevated in CKD. Experimental studies have identified pathogenic mechanisms by which TMAO may contribute to CV disease through dysregulation of lipid metabolism, enhanced macrophage foam cell formation, and platelet dysfunction. Safe and well-tolerated therapeutic interventions such as pre- and probiotics, which modify the gut microbiome, offer the opportunity for interventional studies. This review examines the pathogenicity of TMAO, its value as a biomarker, and its potential as a therapeutic target in the context of CKD.
Collapse
Affiliation(s)
- James A P Tomlinson
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK; MRC London Institute of Medical Sciences, Imperial College London, London, UK.
| | - David C Wheeler
- Centre for Nephrology, University College London, London, UK
| |
Collapse
|
193
|
The Genetic Architecture of Coronary Artery Disease: Current Knowledge and Future Opportunities. Curr Atheroscler Rep 2017; 19:6. [PMID: 28130654 DOI: 10.1007/s11883-017-0641-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
PURPOSE OF REVIEW We provide an overview of our current understanding of the genetic architecture of coronary artery disease (CAD) and discuss areas of research that provide excellent opportunities for further exploration. RECENT FINDINGS Large-scale studies in human populations, coupled with rapid advances in genetic technologies over the last decade, have clearly established the association of common genetic variation with risk of CAD. However, the effect sizes of the susceptibility alleles are for the most part modest and collectively explain only a small fraction of the overall heritability. By comparison, evidence that rare variants make a substantial contribution to risk of CAD has been somewhat disappointing thus far, suggesting that other biological mechanisms have yet to be discovered. Emerging data suggests that novel pathways involved in the development of CAD can be identified through complementary and integrative systems genetics strategies in mice or humans. There is also convincing evidence that gut bacteria play a previously unrecognized role in the development of CAD, particularly through metabolism of certain dietary nutrients that lead to proatherogenic metabolites in the circulation. A major effort is now underway to functionally understand the newly discovered genetic and biological associations for CAD, which could lead to the development of potentially novel therapeutic strategies. Other important areas of investigation for understanding the pathophysiology of CAD, including epistatic interactions between genes or with either sex and environmental factors, have not been studied on a broad scope and represent additional opportunities for future studies.
Collapse
|
194
|
Abstract
Trimethylamine N-oxide (TMAO) is a biologically active molecule and is a putative promoter of chronic diseases including atherosclerosis in humans. Host intestinal bacteria produce its precursor trimethylamine (TMA) from carnitine, choline, or choline-containing compounds. Most of the TMA produced is passively absorbed into portal circulation, and hepatic flavin-dependent monooxygenases (FMOs) efficiently oxidize TMA to TMAO. Both observational and experimental studies suggest a strong positive correlation between increased plasma TMAO concentrations and adverse cardiovascular events, such as myocardial infarction, stroke, and death. However, a clear mechanistic link between TMAO and such diseases is not yet validated. Therefore, it is debated whether increased TMAO concentrations are the cause or result of these diseases. Here, we have tried to review the current understanding of the properties and physiological functions of TMAO, its dietary sources, and its effects on human metabolism. Studies that describe the potential role of TMAO in the etiology of cardiovascular and other diseases are also discussed.
Collapse
Affiliation(s)
- Steven H Zeisel
- Nutrition Research Institute and Department of Nutrition, University of North Carolina, Kannapolis, North Carolina 28081;
| | - Manya Warrier
- Nutrition Research Institute and Department of Nutrition, University of North Carolina, Kannapolis, North Carolina 28081;
| |
Collapse
|
195
|
Schiattarella GG, Sannino A, Toscano E, Giugliano G, Gargiulo G, Franzone A, Trimarco B, Esposito G, Perrino C. Gut microbe-generated metabolite trimethylamine-N-oxide as cardiovascular risk biomarker: a systematic review and dose-response meta-analysis. Eur Heart J 2017; 38:2948-2956. [DOI: 10.1093/eurheartj/ehx342] [Citation(s) in RCA: 281] [Impact Index Per Article: 35.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 06/05/2017] [Indexed: 12/11/2022] Open
|
196
|
Hernández-Alonso P, Cañueto D, Giardina S, Salas-Salvadó J, Cañellas N, Correig X, Bulló M. Effect of pistachio consumption on the modulation of urinary gut microbiota-related metabolites in prediabetic subjects. J Nutr Biochem 2017; 45:48-53. [PMID: 28432876 DOI: 10.1016/j.jnutbio.2017.04.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 02/17/2017] [Accepted: 04/06/2017] [Indexed: 01/09/2023]
Abstract
The specific nutritional composition of nuts could affect different metabolic pathways involved in a broad range of metabolic diseases. We therefore investigated whether chronic consumption of pistachio nuts modifies the urine metabolome in prediabetic subjects. We designed a randomized crossover clinical trial in 39 prediabetic subjects. They consumed a pistachio-supplemented diet (PD, 50% carbohydrates, 33% fat, including 57 g/d of pistachios daily) and a control diet (CD, 55% carbohydrates, 30% fat) for 4 months each, separated by a 2-week wash-out. Nuclear magnetic resonance (NRM) was performed to determine changes in 24-h urine metabolites. Significant changes in urine metabolites according to the different intervention periods were found in uni- and multivariate analysis. Score plot of the first two components of the multilevel partial least squares discriminant analysis (ML-PLS-DA) showed a clear separation of the intervention periods. Three metabolites related with gut microbiota metabolism (i.e., hippurate, p-cresol sulfate and dimethylamine) were found decreased in PD compared with CD (P<.05). Moreover, cis-aconitate [intermediate of the tricarboxylic acid (TCA)] was also found decreased following PD compared with CD. Intragroup analysis showed that creatinine levels were significantly increased in PD (P=.023), whereas trimethylamine N-oxide (TMAO) was found significantly reduced following PD (P=.034). Our results suggest that chronic pistachio consumption may modulate some urinary metabolites related to gut microbiota metabolism and the TCA cycle; all associated with metabolic derangements associated with insulin resistance and Type 2 diabetes.
Collapse
Affiliation(s)
- Pablo Hernández-Alonso
- Human Nutrition Unit, Biochemistry and Biotechnology Department, Faculty of Medicine and Health Sciences, University Hospital of Sant Joan de Reus, IISPV, Universitat Rovira i Virgili, Reus, Spain; CIBERobn Physiopathology of Obesity and Nutrition, Instituto de Salud Carlos III, Madrid, Spain
| | - Daniel Cañueto
- Metabolomics Platform, IISPV, Universitat Rovira i Virgili, Avinguda Països Catalans, 26, 43007 Tarragona, Spain; CIBERDEM, Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders, Barcelona, Spain
| | - Simona Giardina
- Human Nutrition Unit, Biochemistry and Biotechnology Department, Faculty of Medicine and Health Sciences, University Hospital of Sant Joan de Reus, IISPV, Universitat Rovira i Virgili, Reus, Spain
| | - Jordi Salas-Salvadó
- Human Nutrition Unit, Biochemistry and Biotechnology Department, Faculty of Medicine and Health Sciences, University Hospital of Sant Joan de Reus, IISPV, Universitat Rovira i Virgili, Reus, Spain; CIBERobn Physiopathology of Obesity and Nutrition, Instituto de Salud Carlos III, Madrid, Spain.
| | - Nicolau Cañellas
- Metabolomics Platform, IISPV, Universitat Rovira i Virgili, Avinguda Països Catalans, 26, 43007 Tarragona, Spain; CIBERDEM, Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders, Barcelona, Spain
| | - Xavier Correig
- Metabolomics Platform, IISPV, Universitat Rovira i Virgili, Avinguda Països Catalans, 26, 43007 Tarragona, Spain; CIBERDEM, Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders, Barcelona, Spain
| | - Mònica Bulló
- Human Nutrition Unit, Biochemistry and Biotechnology Department, Faculty of Medicine and Health Sciences, University Hospital of Sant Joan de Reus, IISPV, Universitat Rovira i Virgili, Reus, Spain; CIBERobn Physiopathology of Obesity and Nutrition, Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
197
|
Rossner R, Kaeberlein M, Leiser SF. Flavin-containing monooxygenases in aging and disease: Emerging roles for ancient enzymes. J Biol Chem 2017; 292:11138-11146. [PMID: 28515321 DOI: 10.1074/jbc.r117.779678] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Flavin-containing monooxygenases (FMOs) are primarily studied as xenobiotic metabolizing enzymes with a prominent role in drug metabolism. In contrast, endogenous functions and substrates of FMOs are less well understood. A growing body of recent evidence, however, implicates FMOs in aging, several diseases, and metabolic pathways. The evidence suggests an important role for these well-conserved proteins in multiple processes and raises questions about the endogenous substrate(s) and regulation of FMOs. Here, we present an overview of evidence for FMOs' involvement in aging and disease, discussing the biological context and arguing for increased investigation into the function of these enzymes.
Collapse
Affiliation(s)
- Ryan Rossner
- From the Department of Pathology, University of Washington, Seattle, Washington 98195 and
| | - Matt Kaeberlein
- From the Department of Pathology, University of Washington, Seattle, Washington 98195 and
| | - Scott F Leiser
- the Departments of Molecular & Integrative Physiology and .,Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109
| |
Collapse
|
198
|
Igami K, Shimojo Y, Ito H, Miyazaki T, Nakano F, Kashiwada Y. Fermented Ginseng Contains an Agonist of Peroxisome Proliferator Activated Receptors α and γ. J Med Food 2017; 19:817-22. [PMID: 27627700 DOI: 10.1089/jmf.2016.3673] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Peroxisome proliferator activated receptor (PPAR) is a nuclear receptor that is one of the transcription factors regulating lipid and glucose metabolism. Fermented ginseng (FG) is a ginseng fermented by Lactobacillus paracasei A221 containing minor ginsenosides and metabolites of fermentation. DNA microarray analysis of rat liver treated with FG indicated that FG affects on lipid metabolism are mediated by PPAR-α. To identify a PPAR-α agonist in FG, PPAR-α transcription reporter assay-guided fractionation was performed. The fraction obtained from the MeOH extract of FG, which showed potent transcription activity of PPAR-α, was fractionated by silica gel column chromatography into 16 subfractions, and further separation and crystallization gave compound 1 together with four known constituents of ginseng, including 20(R)- and 20(S)-protopanaxadiol, and 20(R)- and 20(S)-ginsenoside Rh1. The structure of compound 1 was identified as 10-hydroxy-octadecanoic acid by (1)H- and (13)C-NMR spectra and by EI-MS analysis of the methyl ester of 1. Compound 1 demonstrated much higher transcription activity of PPAR-α than the other isolated compounds. In addition, compound 1 also showed 5.5-fold higher transcription activity of PPAR-γ than vehicle at the dose of 20 μg/mL. In the present study, we identified 10-hydroxy-octadecanoic acid as a dual PPAR-α/γ agonist in FG. Our study suggested that metabolites of fermentation, in addition to ginsenosides, contribute to the health benefits of FG.
Collapse
Affiliation(s)
- Kentaro Igami
- 1 Research & Development Center, Nagase and Co., Ltd. , Kobe, Japan .,2 Graduate School of Pharmaceutical Sciences, Tokushima University , Tokushima, Japan
| | - Yosuke Shimojo
- 1 Research & Development Center, Nagase and Co., Ltd. , Kobe, Japan
| | - Hisatomi Ito
- 1 Research & Development Center, Nagase and Co., Ltd. , Kobe, Japan
| | | | - Fusako Nakano
- 2 Graduate School of Pharmaceutical Sciences, Tokushima University , Tokushima, Japan
| | - Yoshiki Kashiwada
- 2 Graduate School of Pharmaceutical Sciences, Tokushima University , Tokushima, Japan
| |
Collapse
|
199
|
Brown JM, Hazen SL. Targeting of microbe-derived metabolites to improve human health: The next frontier for drug discovery. J Biol Chem 2017; 292:8560-8568. [PMID: 28389555 DOI: 10.1074/jbc.r116.765388] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Recent advances in metabolomic and genome mining approaches have uncovered a poorly understood metabolome that originates solely or in part from bacterial enzyme sources. Whether living on exposed surfaces or within our intestinal tract, our microbial inhabitants produce a remarkably diverse set of natural products and small molecule metabolites that can impact human health and disease. Highlighted here, the gut microbe-derived metabolite trimethylamine N-oxide has been causally linked to the development of cardiovascular diseases. Recent studies reveal drugging this pathway can inhibit atherosclerosis development in mice. Building on this example, we discuss challenges and untapped potential of targeting bacterial enzymology for improvements in human health.
Collapse
Affiliation(s)
- J Mark Brown
- From the Departments of Cellular and Molecular Medicine and .,Center for Microbiome and Human Health, Cleveland Clinic, Cleveland, Ohio 44195
| | - Stanley L Hazen
- From the Departments of Cellular and Molecular Medicine and .,Center for Microbiome and Human Health, Cleveland Clinic, Cleveland, Ohio 44195.,Cardiovascular Medicine and
| |
Collapse
|
200
|
Catucci G, Polignano I, Cusumano D, Medana C, Gilardi G, Sadeghi SJ. Identification of human flavin-containing monooxygenase 3 substrates by a colorimetric screening assay. Anal Biochem 2017; 522:46-52. [DOI: 10.1016/j.ab.2017.01.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2016] [Revised: 01/24/2017] [Accepted: 01/25/2017] [Indexed: 11/30/2022]
|