151
|
Ye L, Jiang T, Shao H, Zhong L, Wang Z, Liu Y, Tang H, Qin B, Zhang X, Fan J. miR-1290 Is a Biomarker in DNA-Mismatch-Repair-Deficient Colon Cancer and Promotes Resistance to 5-Fluorouracil by Directly Targeting hMSH2. MOLECULAR THERAPY. NUCLEIC ACIDS 2017. [PMID: 28624221 PMCID: PMC5443909 DOI: 10.1016/j.omtn.2017.05.006] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
5-Fluorouracil (5FU)-based adjuvant therapy is the first-line therapy for treating stage II and III colon cancer after surgery. However, its therapeutic efficacy is limited because of chemoresistance, especially in deficient mismatch repair (dMMR) colon cancer. Here, we first used laser capture microdissection to obtain purified cells from four dMMR and four proficient mismatch repair (pMMR) colon cancer tissues. Second, microRNA (miRNA) microarray chips were used to identify miRNAs that are differentially expressed between these two classes of tumors. Third, we analyzed their differential expression by qRT-PCR in a panel of 5-FU-resistant colon cancer cell lines. We identified that miR-1290 was one of the most upregulated miRNAs in both dMMR colon cancer tissues and 5-FU-resistant cells. We also found that miR-1290 was positively correlated with dMMR status and predicted poor prognosis in stage II and III colon cancer patients who received 5-FU-based chemotherapy. Furthermore, we demonstrated that inhibition of the expression of miR-1290 enhanced sensitivity to 5-FU treatment in vitro and in tumor xenografts in vivo by direct targeting hMSH2. Our study indicates that miR-1290 may become a promising biomarker of dMMR colon cancer and predicts the prognosis of stage II and III patients who receive 5-FU-based adjuvant therapy.
Collapse
Affiliation(s)
- Ling Ye
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Tao Jiang
- Department of Anal-Colorectal Surgery, General Hospital of Ningxia Medical University, Yinchuan 750004, China
| | - Huanzhang Shao
- Department of Critical Care Medicine, Henan Provincial People's Hospital, Zhengzhou 450003, China
| | - Lin Zhong
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Zhaowen Wang
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Yuan Liu
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Huamei Tang
- Department of Pathology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Bingyu Qin
- Department of Critical Care Medicine, Henan Provincial People's Hospital, Zhengzhou 450003, China.
| | - Xiaoqing Zhang
- Department of Pharmacy, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China.
| | - Junwei Fan
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China.
| |
Collapse
|
152
|
Interaction of proliferating cell nuclear antigen with PMS2 is required for MutLα activation and function in mismatch repair. Proc Natl Acad Sci U S A 2017; 114:4930-4935. [PMID: 28439008 DOI: 10.1073/pnas.1702561114] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Eukaryotic MutLα (mammalian MLH1-PMS2 heterodimer; MLH1-PMS1 in yeast) functions in early steps of mismatch repair as a latent endonuclease that requires a mismatch, MutSα/β, and DNA-loaded proliferating cell nuclear antigen (PCNA) for activation. We show here that human PCNA and MutLα interact specifically but weakly in solution to form a complex of approximately 1:1 stoichiometry that depends on PCNA interaction with the C-terminal endonuclease domain of the MutLα PMS2 subunit. Amino acid substitution mutations within a PMS2 C-terminal 721QRLIAP motif attenuate or abolish human MutLα interaction with PCNA, as well as PCNA-dependent activation of MutLα endonuclease, PCNA- and DNA-dependent activation of MutLα ATPase, and MutLα function in in vitro mismatch repair. Amino acid substitution mutations within the corresponding yeast PMS1 motif (723QKLIIP) reduce or abolish mismatch repair in vivo. Coupling of a weak allele within this motif (723AKLIIP) with an exo1Δ null mutation, which individually confer only weak mutator phenotypes, inactivates mismatch repair in the yeast cell.
Collapse
|
153
|
Chalmers ZR, Connelly CF, Fabrizio D, Gay L, Ali SM, Ennis R, Schrock A, Campbell B, Shlien A, Chmielecki J, Huang F, He Y, Sun J, Tabori U, Kennedy M, Lieber DS, Roels S, White J, Otto GA, Ross JS, Garraway L, Miller VA, Stephens PJ, Frampton GM. Analysis of 100,000 human cancer genomes reveals the landscape of tumor mutational burden. Genome Med 2017; 9:34. [PMID: 28420421 PMCID: PMC5395719 DOI: 10.1186/s13073-017-0424-2] [Citation(s) in RCA: 2467] [Impact Index Per Article: 308.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 03/18/2017] [Indexed: 12/13/2022] Open
Abstract
Background High tumor mutational burden (TMB) is an emerging biomarker of sensitivity to immune checkpoint inhibitors and has been shown to be more significantly associated with response to PD-1 and PD-L1 blockade immunotherapy than PD-1 or PD-L1 expression, as measured by immunohistochemistry (IHC). The distribution of TMB and the subset of patients with high TMB has not been well characterized in the majority of cancer types. Methods In this study, we compare TMB measured by a targeted comprehensive genomic profiling (CGP) assay to TMB measured by exome sequencing and simulate the expected variance in TMB when sequencing less than the whole exome. We then describe the distribution of TMB across a diverse cohort of 100,000 cancer cases and test for association between somatic alterations and TMB in over 100 tumor types. Results We demonstrate that measurements of TMB from comprehensive genomic profiling are strongly reflective of measurements from whole exome sequencing and model that below 0.5 Mb the variance in measurement increases significantly. We find that a subset of patients exhibits high TMB across almost all types of cancer, including many rare tumor types, and characterize the relationship between high TMB and microsatellite instability status. We find that TMB increases significantly with age, showing a 2.4-fold difference between age 10 and age 90 years. Finally, we investigate the molecular basis of TMB and identify genes and mutations associated with TMB level. We identify a cluster of somatic mutations in the promoter of the gene PMS2, which occur in 10% of skin cancers and are highly associated with increased TMB. Conclusions These results show that a CGP assay targeting ~1.1 Mb of coding genome can accurately assess TMB compared with sequencing the whole exome. Using this method, we find that many disease types have a substantial portion of patients with high TMB who might benefit from immunotherapy. Finally, we identify novel, recurrent promoter mutations in PMS2, which may be another example of regulatory mutations contributing to tumorigenesis. Electronic supplementary material The online version of this article (doi:10.1186/s13073-017-0424-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | - David Fabrizio
- Foundation Medicine Inc., 150 Second St., Cambridge, MA, 02141, USA
| | - Laurie Gay
- Foundation Medicine Inc., 150 Second St., Cambridge, MA, 02141, USA
| | - Siraj M Ali
- Foundation Medicine Inc., 150 Second St., Cambridge, MA, 02141, USA
| | - Riley Ennis
- Foundation Medicine Inc., 150 Second St., Cambridge, MA, 02141, USA
| | - Alexa Schrock
- Foundation Medicine Inc., 150 Second St., Cambridge, MA, 02141, USA
| | | | - Adam Shlien
- The Hospital for Sick Children, Toronto, Ontario, Canada
| | | | - Franklin Huang
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Yuting He
- Foundation Medicine Inc., 150 Second St., Cambridge, MA, 02141, USA
| | - James Sun
- Foundation Medicine Inc., 150 Second St., Cambridge, MA, 02141, USA
| | - Uri Tabori
- The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Mark Kennedy
- Foundation Medicine Inc., 150 Second St., Cambridge, MA, 02141, USA
| | - Daniel S Lieber
- Foundation Medicine Inc., 150 Second St., Cambridge, MA, 02141, USA
| | - Steven Roels
- Foundation Medicine Inc., 150 Second St., Cambridge, MA, 02141, USA
| | - Jared White
- Foundation Medicine Inc., 150 Second St., Cambridge, MA, 02141, USA
| | - Geoffrey A Otto
- Foundation Medicine Inc., 150 Second St., Cambridge, MA, 02141, USA
| | - Jeffrey S Ross
- Foundation Medicine Inc., 150 Second St., Cambridge, MA, 02141, USA
| | - Levi Garraway
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA.,Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Vincent A Miller
- Foundation Medicine Inc., 150 Second St., Cambridge, MA, 02141, USA
| | | | | |
Collapse
|
154
|
The Rising Incidence of Younger Patients With Colorectal Cancer: Questions About Screening, Biology, and Treatment. Curr Treat Options Oncol 2017; 18:23. [DOI: 10.1007/s11864-017-0463-3] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
155
|
Bowen N, Kolodner RD. Reconstitution of Saccharomyces cerevisiae DNA polymerase ε-dependent mismatch repair with purified proteins. Proc Natl Acad Sci U S A 2017; 114:3607-3612. [PMID: 28265089 PMCID: PMC5389320 DOI: 10.1073/pnas.1701753114] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Mammalian and Saccharomyces cerevisiae mismatch repair (MMR) proteins catalyze two MMR reactions in vitro. In one, mispair binding by either the MutS homolog 2 (Msh2)-MutS homolog 6 (Msh6) or the Msh2-MutS homolog 3 (Msh3) stimulates 5' to 3' excision by exonuclease 1 (Exo1) from a single-strand break 5' to the mispair, excising the mispair. In the other, Msh2-Msh6 or Msh2-Msh3 activate the MutL homolog 1 (Mlh1)-postmeiotic segregation 1 (Pms1) endonuclease in the presence of a mispair and a nick 3' to the mispair, to make nicks 5' to the mispair, allowing Exo1 to excise the mispair. DNA polymerase δ (Pol δ) is thought to catalyze DNA synthesis to fill in the gaps resulting from mispair excision. However, colocalization of the S. cerevisiae mispair recognition proteins with the replicative DNA polymerases during DNA replication has suggested that DNA polymerase ε (Pol ε) may also play a role in MMR. Here we describe the reconstitution of Pol ε-dependent MMR using S. cerevisiae proteins. A mixture of Msh2-Msh6 (or Msh2-Msh3), Exo1, RPA, RFC-Δ1N, PCNA, and Pol ε was found to catalyze both short-patch and long-patch 5' nick-directed MMR of a substrate containing a +1 (+T) mispair. When the substrate contained a nick 3' to the mispair, a mixture of Msh2-Msh6 (or Msh2-Msh3), Exo1, RPA, RFC-Δ1N, PCNA, and Pol ε was found to catalyze an MMR reaction that required Mlh1-Pms1. These results demonstrate that Pol ε can act in eukaryotic MMR in vitro.
Collapse
Affiliation(s)
- Nikki Bowen
- Ludwig Institute for Cancer Research, University of California School of Medicine, La Jolla, CA 92093-0669
| | - Richard D Kolodner
- Ludwig Institute for Cancer Research, University of California School of Medicine, La Jolla, CA 92093-0669;
- Department of Cellular and Molecular Medicine, University of California School of Medicine, La Jolla, CA 92093-0669
- Moores-University of California San Diego Cancer Center, University of California School of Medicine, La Jolla, CA 92093-0669
- Institute of Genomic Medicine, University of California School of Medicine, La Jolla, CA 92093-0669
| |
Collapse
|
156
|
Lee HS, Kim WH, Kwak Y, Koh J, Bae JM, Kim KM, Chang MS, Han HS, Kim JM, Kim HW, Chang HK, Choi YH, Park JY, Gu MJ, Lhee MJ, Kim JY, Kim HS, Cho MY, The Gastrointestinal Pathology Study Group of Korean Society of Pathologists, The Molecular Pathology Study Group of Korean Society of Pathologists. Molecular Testing for Gastrointestinal Cancer. J Pathol Transl Med 2017; 51:103-121. [PMID: 28219002 PMCID: PMC5357760 DOI: 10.4132/jptm.2017.01.24] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 01/16/2017] [Accepted: 01/24/2017] [Indexed: 12/20/2022] Open
Abstract
With recent advances in molecular diagnostic methods and targeted cancer therapies, several molecular tests have been recommended for gastric cancer (GC) and colorectal cancer (CRC). Microsatellite instability analysis of gastrointestinal cancers is performed to screen for Lynch syndrome, predict favorable prognosis, and screen patients for immunotherapy. The epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor has been approved in metastatic CRCs with wildtype RAS (KRAS and NRAS exon 2-4). A BRAF mutation is required for predicting poor prognosis. Additionally, amplification of human epidermal growth factor receptor 2 (HER2) and MET is also associated with resistance to EGFR inhibitor in metastatic CRC patients. The BRAF V600E mutation is found in sporadic microsatellite unstable CRCs, and thus is helpful for ruling out Lynch syndrome. In addition, the KRAS mutation is a prognostic biomarker and the PIK3CA mutation is a molecular biomarker predicting response to phosphoinositide 3-kinase/AKT/mammalian target of rapamycin inhibitors and response to aspirin therapy in CRC patients. Additionally, HER2 testing should be performed in all recurrent or metastatic GCs. If the results of HER2 immunohistochemistry are equivocal, HER2 silver or fluorescence in situ hybridization testing are essential for confirmative determination of HER2 status. Epstein-Barr virus-positive GCs have distinct characteristics, including heavy lymphoid stroma, hypermethylation phenotype, and high expression of immune modulators. Recent advances in next-generation sequencing technologies enable us to examine various genetic alterations using a single test. Pathologists play a crucial role in ensuring reliable molecular testing and they should also take an integral role between molecular laboratories and clinicians.
Collapse
Affiliation(s)
- Hye Seung Lee
- Department of Pathology, Seoul National University Bundang Hospital, Seongnam, Korea
- Department of Pathology, Seoul National University College of Medicine, Seoul, Korea
| | - Woo Ho Kim
- Department of Pathology, Seoul National University College of Medicine, Seoul, Korea
| | - Yoonjin Kwak
- Department of Pathology, Seoul National University Bundang Hospital, Seongnam, Korea
- Department of Pathology, Seoul National University College of Medicine, Seoul, Korea
| | - Jiwon Koh
- Department of Pathology, Seoul National University College of Medicine, Seoul, Korea
| | - Jeong Mo Bae
- Department of Pathology, SMG-SNU Boramae Medical Center, Seoul, Korea
| | - Kyoung-Mee Kim
- Department of Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Mee Soo Chang
- Department of Pathology, Seoul National University College of Medicine, Seoul, Korea
- Department of Pathology, SMG-SNU Boramae Medical Center, Seoul, Korea
| | - Hye Seung Han
- Department of Pathology, Konkuk University School of Medicine, Seoul, Korea
| | - Joon Mee Kim
- Department of Pathology, Inha University School of Medicine, Incheon, Korea
| | - Hwal Woong Kim
- Department of Pathology, Seegene Medical Foundation, Busan, Korea
| | - Hee Kyung Chang
- Department of Pathology, Kosin University Gospel Hospital, Kosin University College of Medicine, Busan, Korea
| | - Young Hee Choi
- Department of Pathology, Hallym University Dongtan Sacred Heart Hospital, Hwaseong, Korea
| | - Ji Y. Park
- Department of Pathology, Catholic University of Daegu School of Medicine, Daegu, Korea
| | - Mi Jin Gu
- Department of Pathology, Yeungnam University College of Medicine, Daegu, Korea
| | - Min Jin Lhee
- Department of Pathology, Seoul Red Cross Hospital, Seoul, Korea
| | - Jung Yeon Kim
- Department of Pathology, Inje University Sanggye Paik Hospital, Seoul, Korea
| | - Hee Sung Kim
- Department of Pathology, Chung-Ang University College of Medicine, Seoul, Korea
| | - Mee-Yon Cho
- Department of Pathology, Wonju Severance Christian Hospital, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - The Gastrointestinal Pathology Study Group of Korean Society of Pathologists
- Department of Pathology, Seoul National University Bundang Hospital, Seongnam, Korea
- Department of Pathology, Seoul National University College of Medicine, Seoul, Korea
- Department of Pathology, SMG-SNU Boramae Medical Center, Seoul, Korea
- Department of Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
- Department of Pathology, Konkuk University School of Medicine, Seoul, Korea
- Department of Pathology, Inha University School of Medicine, Incheon, Korea
- Department of Pathology, Seegene Medical Foundation, Busan, Korea
- Department of Pathology, Kosin University Gospel Hospital, Kosin University College of Medicine, Busan, Korea
- Department of Pathology, Hallym University Dongtan Sacred Heart Hospital, Hwaseong, Korea
- Department of Pathology, Catholic University of Daegu School of Medicine, Daegu, Korea
- Department of Pathology, Yeungnam University College of Medicine, Daegu, Korea
- Department of Pathology, Seoul Red Cross Hospital, Seoul, Korea
- Department of Pathology, Inje University Sanggye Paik Hospital, Seoul, Korea
- Department of Pathology, Chung-Ang University College of Medicine, Seoul, Korea
- Department of Pathology, Wonju Severance Christian Hospital, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - The Molecular Pathology Study Group of Korean Society of Pathologists
- Department of Pathology, Seoul National University Bundang Hospital, Seongnam, Korea
- Department of Pathology, Seoul National University College of Medicine, Seoul, Korea
- Department of Pathology, SMG-SNU Boramae Medical Center, Seoul, Korea
- Department of Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
- Department of Pathology, Konkuk University School of Medicine, Seoul, Korea
- Department of Pathology, Inha University School of Medicine, Incheon, Korea
- Department of Pathology, Seegene Medical Foundation, Busan, Korea
- Department of Pathology, Kosin University Gospel Hospital, Kosin University College of Medicine, Busan, Korea
- Department of Pathology, Hallym University Dongtan Sacred Heart Hospital, Hwaseong, Korea
- Department of Pathology, Catholic University of Daegu School of Medicine, Daegu, Korea
- Department of Pathology, Yeungnam University College of Medicine, Daegu, Korea
- Department of Pathology, Seoul Red Cross Hospital, Seoul, Korea
- Department of Pathology, Inje University Sanggye Paik Hospital, Seoul, Korea
- Department of Pathology, Chung-Ang University College of Medicine, Seoul, Korea
- Department of Pathology, Wonju Severance Christian Hospital, Yonsei University Wonju College of Medicine, Wonju, Korea
| |
Collapse
|
157
|
Tabata S, Murata M, Takasawa A, Fukuda A, Ogasawara J, Koseki T, Nakano K, Segawa K, Morita R, Hasegawa T, Sawada N. Cytological findings of langerhans cell sarcoma in a case of quintuple cancer. Diagn Cytopathol 2017; 45:441-445. [PMID: 28233936 PMCID: PMC5413838 DOI: 10.1002/dc.23628] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 09/13/2016] [Accepted: 10/12/2016] [Indexed: 11/08/2022]
Abstract
Langerhans cell sarcoma (LCS) and quintuple cancers are extremely rare. In this report, a case of quintuple cancers including LCS was described. An 80-year-old man had squamous cell carcinoma of the nasal skin, colon and rectum adenocarcinomas, and T-cell/histiocyte-rich large B-cell lymphoma. As swelling of multiple submental lymph nodes was observed, fine-needle aspiration was carried out. Many large cells with high-grade nuclear atypia and abundant cytoplasm were observed. Lymphocytes and eosinophils were observed in the background. Although a malignant tumor was suspected, a definite diagnosis could not be made. In a biopsy sample, the tumor cells were positive for vimentin, CD68, S-100, CD1a, and CD163 and negative for epithelial, lymphocyte, and melanoma markers in immunohistochemistry. A diagnosis of LCS was made from the immunohistochemical findings and high mitotic rate with atypical forms. The patient died about 2 months after the first medical examination. Metastasis of LCS was confirmed in many organs by autopsy. LCS has a poor prognosis. In cases with the above-described cytological findings, LCS should be added to the list of differential diagnosis. The cytological findings presented here may be useful for determining appropriate clinical management such as staging of the disease and follow-up of the neoplasm. Diagn. Cytopathol. 2017;45:441-445. © 2017 The Authors Diagnostic Cytopathology Published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Satomi Tabata
- Department of Pathology, Kushiro City General Hospital, Syunkodai 1-12, Kushiro, 085-0822, Japan
| | - Masaki Murata
- Department of Pathology, Sapporo Medical University, School of medicine, South-1, West-17, Chuo-ku, Sapporo, 060-8556, Japan
| | - Akira Takasawa
- Department of Pathology, Sapporo Medical University, School of medicine, South-1, West-17, Chuo-ku, Sapporo, 060-8556, Japan
| | - Atsushi Fukuda
- Department of Otolaryngology-Head and Neck Surgery, Hokkaido University Graduate School of Medicine, Kita-15, Nishi-7, Kita-ku, Sapporo, 060-8638, Japan
| | - Jun Ogasawara
- Department of Pathology, Kushiro City General Hospital, Syunkodai 1-12, Kushiro, 085-0822, Japan
| | - Takayuki Koseki
- Department of Pathology, Kushiro City General Hospital, Syunkodai 1-12, Kushiro, 085-0822, Japan
| | - Katsuhiko Nakano
- Department of Pathology, Kushiro City General Hospital, Syunkodai 1-12, Kushiro, 085-0822, Japan
| | - Keiko Segawa
- Department of Surgical Pathology, Sapporo Medical University Hospital, South-1, West-16, Chuo-ku, Sapporo, 060-8543, Japan
| | - Rena Morita
- Department of Pathology, Kushiro City General Hospital, Syunkodai 1-12, Kushiro, 085-0822, Japan
| | - Tadashi Hasegawa
- Department of Surgical Pathology, Sapporo Medical University Hospital, South-1, West-16, Chuo-ku, Sapporo, 060-8543, Japan
| | - Norimasa Sawada
- Department of Pathology, Sapporo Medical University, School of medicine, South-1, West-17, Chuo-ku, Sapporo, 060-8556, Japan
| |
Collapse
|
158
|
Thomas A, Tanaka M, Trepel J, Reinhold WC, Rajapakse VN, Pommier Y. Temozolomide in the Era of Precision Medicine. Cancer Res 2017; 77:823-826. [PMID: 28159862 DOI: 10.1158/0008-5472.can-16-2983] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 11/07/2016] [Indexed: 11/16/2022]
Abstract
In the January 1, 2017, issue of Cancer Research, Nagel and colleagues demonstrate the value of assays that determine the DNA repair capacity of cancers in predicting response to temozolomide. Using a fluorescence-based multiplex flow cytometric host cell reactivation assay that provides simultaneous readout of DNA repair capacity across multiple pathways, they show that the multivariate drug response models derived from cell line data were applicable to patient-derived xenograft models of glioblastoma. In this commentary, we first outline the mechanism of activity and current clinical application of temozolomide, which, until now, has been largely limited to glioblastoma. Given the challenges of clinical application of functional assays, we argue that functional readouts be approximated by genomic signatures. In this context, a combination of MGMT activity and mismatch repair (MMR) status of the tumor are important parameters that determine sensitivity to temozolomide. More reliable methods are needed to determine MGMT activity as DNA methylation, the current standard, does not accurately reflect the expression of MGMT. Also, genomics for MMR are warranted. Furthermore, based on patterns of MGMT expression across different solid tumors, we make a case for revisiting temozolomide use in a broader spectrum of cancers based on our current understanding of its molecular basis of activity. Cancer Res; 77(4); 823-6. ©2017 AACR.
Collapse
Affiliation(s)
- Anish Thomas
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, NCI, Bethesda, Maryland.
| | - Mamoru Tanaka
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, NCI, Bethesda, Maryland
| | - Jane Trepel
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, NCI, Bethesda, Maryland
| | - William C Reinhold
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, NCI, Bethesda, Maryland
| | - Vinodh N Rajapakse
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, NCI, Bethesda, Maryland
| | - Yves Pommier
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, NCI, Bethesda, Maryland.
| |
Collapse
|
159
|
Cruz-Correa M, Pérez-Mayoral J, Dutil J, Echenique M, Mosquera R, Rivera-Román K, Umpierre S, Rodriguez-Quilichini S, Gonzalez-Pons M, Olivera MI, Pardo S, on behalf of the Puerto Rico Clinical Cancer Genetics Consortia. Hereditary cancer syndromes in Latino populations: genetic characterization and surveillance guidelines. Hered Cancer Clin Pract 2017; 15:3. [PMID: 28127413 PMCID: PMC5251307 DOI: 10.1186/s13053-017-0063-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Accepted: 01/05/2017] [Indexed: 12/17/2022] Open
Abstract
Hereditary cancer predisposition syndromes comprise approximately 10% of diagnosed cancers; however, familial forms are believed to account for up to 30% of some cancers. In Hispanics, the most commonly diagnosed hereditary cancers include colorectal cancer syndromes such as, Lynch Syndrome, Familial Adenomatous Polyposis, and hereditary breast and ovarian cancer syndromes. Although the incidence of hereditary cancers is low, patients diagnosed with hereditary cancer syndromes are at high-risk for developing secondary cancers. Furthermore, the productivity loss that occurs after cancer diagnosis in these high-risk patients has a negative socio-economic impact. This review summarizes the genetic basis, phenotype characteristics, and the National Comprehensive Cancer Network's screening, testing, and surveillance guidelines for the leading hereditary cancer syndromes. The aim of this review is to promote a better understanding of cancer genetics and genetic testing in Hispanic patients.
Collapse
Affiliation(s)
- Marcia Cruz-Correa
- Department of Cancer Biology, University of Puerto Rico Comprehensive Cancer Center, San Juan, PR USA
- University of Puerto Rico Medical Sciences Campus, School of Medicine, San Juan, PR USA
- University of Puerto Rico Comprehensive Cancer Center, PMB711 Ave. De Diego 89 Ste. 105, San Juan, PR 00927-6346 USA
| | - Julyann Pérez-Mayoral
- Department of Cancer Biology, University of Puerto Rico Comprehensive Cancer Center, San Juan, PR USA
- University of Puerto Rico Medical Sciences Campus, School of Medicine, San Juan, PR USA
| | - Julie Dutil
- Ponce Health Sciences University, Ponce Research Institute, Ponce, PR USA
| | | | | | - Keila Rivera-Román
- Department of Pediatrics, University of Puerto Rico School of Medicine, San Juan, PR USA
| | - Sharee Umpierre
- Department of Cancer Biology, University of Puerto Rico Comprehensive Cancer Center, San Juan, PR USA
| | | | - Maria Gonzalez-Pons
- Department of Cancer Biology, University of Puerto Rico Comprehensive Cancer Center, San Juan, PR USA
- University of Puerto Rico Medical Sciences Campus, School of Medicine, San Juan, PR USA
| | - Myrta I. Olivera
- Department of Cancer Biology, University of Puerto Rico Comprehensive Cancer Center, San Juan, PR USA
- University of Puerto Rico Medical Sciences Campus, School of Medicine, San Juan, PR USA
| | - Sherly Pardo
- Department of Pathology, University of Puerto Rico School of Medicine, San Juan, PR USA
| | - on behalf of the Puerto Rico Clinical Cancer Genetics Consortia
- Department of Cancer Biology, University of Puerto Rico Comprehensive Cancer Center, San Juan, PR USA
- University of Puerto Rico Medical Sciences Campus, School of Medicine, San Juan, PR USA
- Ponce Health Sciences University, Ponce Research Institute, Ponce, PR USA
- Cancer Center, Auxilio Mutuo Hospital, San Juan, PR USA
- Puerto Rico Gastroenterology Association, San Juan, PR USA
- Department of Pediatrics, University of Puerto Rico School of Medicine, San Juan, PR USA
- Department of Pathology, University of Puerto Rico School of Medicine, San Juan, PR USA
- University of Puerto Rico Comprehensive Cancer Center, PMB711 Ave. De Diego 89 Ste. 105, San Juan, PR 00927-6346 USA
| |
Collapse
|
160
|
Borges-Canha M, Portela-Cidade JP, Dinis-Ribeiro M, Leite-Moreira AF, Pimentel-Nunes P. Role of colonic microbiota in colorectal carcinogenesis: a systematic review. REVISTA ESPANOLA DE ENFERMEDADES DIGESTIVAS 2017; 107:659-71. [PMID: 26541655 DOI: 10.17235/reed.2015.3830/2015] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND AND AIM The human colonic mucosa is populated by a wide range of microorganisms, usually in a symbiotic relation with the host. Sometimes this balance is lost and a state of dysbiosis arises, exposing the colon to different metabolic and inflammatory stimuli (according to the microbiota's changing profile). Recent findings lead to hypothesize that this unbalance may create a subclinical pro-inflammatory state that increases DNA mutations and, therefore, colorectal carcinogenesis. In this article we aim to systematically review the scientific evidence regarding colonic microbiota and its role in colorectal carcinogenesis. METHODS Systematic review of PubMed searching results for original articles studying microbiota and colorectal cancer until November 2014. RESULTS Thirty-one original articles studied the role of colon microbiota in colorectal carcinoma including both human and animal studies. Different and heterogeneous methods were used and different bacteria were considered. Nevertheless, some bacteria are consistently augmented (such as Fusobacteria, Alistipes, Porphyromonadaceae, Coriobacteridae, Staphylococcaceae, Akkermansia spp. and Methanobacteriales), while other are constantly diminished in colorectal cancer (such as Bifidobacterium, Lactobacillus, Ruminococcus, Faecalibacterium spp., Roseburia, and Treponema). Moreover, bacteria metabolites amino acids are increased and butyrate is decreased throughout colonic carcinogenesis. CONCLUSION Conclusive evidence shows that colorectal carcinogenesis is associated with microbial dysbiosis. This information may be used to create new prophylactic, diagnostic and therapeutic strategies for colorectal cancer.
Collapse
Affiliation(s)
- Marta Borges-Canha
- Physiology and Cardiothoracic Surgery, Faculty of Medicine, University of Porto, Portugal
| | | | | | | | | |
Collapse
|
161
|
Basourakos SP, Li L, Aparicio AM, Corn PG, Kim J, Thompson TC. Combination Platinum-based and DNA Damage Response-targeting Cancer Therapy: Evolution and Future Directions. Curr Med Chem 2017; 24:1586-1606. [PMID: 27978798 PMCID: PMC5471128 DOI: 10.2174/0929867323666161214114948] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 11/04/2016] [Accepted: 11/09/2016] [Indexed: 02/07/2023]
Abstract
Maintenance of genomic stability is a critical determinant of cell survival and is necessary for growth and progression of malignant cells. Interstrand crosslinking (ICL) agents, including platinum-based agents, are first-line chemotherapy treatment for many solid human cancers. In malignant cells, ICL triggers the DNA damage response (DDR). When the damage burden is high and lesions cannot be repaired, malignant cells are unable to divide and ultimately undergo cell death either through mitotic catastrophe or apoptosis. The activities of ICL agents, in particular platinum-based therapies, establish a "molecular landscape," i.e., a pattern of DNA damage that can potentially be further exploited therapeutically with DDR-targeting agents. If the molecular landscape created by platinum-based agents could be better defined at the molecular level, a systematic, mechanistic rationale(s) could be developed for the use of DDR-targeting therapies in combination/maintenance protocols for specific, clinically advanced malignancies. New therapeutic drugs such as poly(ADP-ribose) polymerase (PARP) inhibitors are examples of DDR-targeting therapies that could potentially increase the DNA damage and replication stress imposed by platinum-based agents in tumor cells and provide therapeutic benefit for patients with advanced malignancies. Recent studies have shown that the use of PARP inhibitors together with platinum-based agents is a promising therapy strategy for ovarian cancer patients with "BRCAness", i.e., a phenotypic characteristic of tumors that not only can involve loss-of-function mutations in either BRCA1 or BRCA2, but also encompasses the molecular features of BRCA-mutant tumors. On the basis of these promising results, additional mechanism-based studies focused on the use of various DDR-targeting therapies in combination with platinum-based agents should be considered. This review discusses, in general, (1) ICL agents, primarily platinum-based agents, that establish a molecular landscape that can be further exploited therapeutically; (2) multiple points of potential intervention after ICL agent-induced crosslinking that further predispose to cell death and can be incorporated into a systematic, therapeutic rationale for combination/ maintenance therapy using DDR-targeting agents; and (3) available agents that can be considered for use in combination/maintenance clinical protocols with platinum-based agents for patients with advanced malignancies.
Collapse
Affiliation(s)
- Spyridon P. Basourakos
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Likun Li
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Ana M. Aparicio
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Paul G. Corn
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jeri Kim
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Timothy C. Thompson
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
162
|
Pecorino B, Rubino C, Guardalà VF, Galia A, Scollo P. Genetic screening in young women diagnosed with endometrial cancer. J Gynecol Oncol 2017; 28:e4. [PMID: 27670258 PMCID: PMC5165072 DOI: 10.3802/jgo.2017.28.e4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 08/01/2016] [Accepted: 08/04/2016] [Indexed: 11/30/2022] Open
Abstract
OBJECTIVE To evaluate the importance of Lynch syndrome associated risk screening in the patients aged less than 50 years affected from endometrial cancer. METHODS From 2007 to 2014, 41 patients affected from endometrial cancer and aged less than 50 years underwent surgery at the Complex Operative Unit of Gynecology and Obstetrics, Cannizzaro Hospital of Catania, Italy. They were selected to undergo mismatch repair gene mutation analysis using immunohistochemistry (IHC; four markers: MLH1, MSH2, MSH6, PMS2) and microsatellite instability (MSI) test. For samples that resulted negative to IHC (abnormal finding), MSI test was performed to further study the suspected mutation. Samples were classified as MSI-high (MSI-H) if more than one marker was identified as unstable; MSI-low (MSI-L) if only one marker was identified as unstable; or MSI-stable (MSI-S) if no marker was identified as unstable. Samples were subdivided into two groups: MSI-H/L and MSI-S. Statistical analysis was performed to assess differences regarding survival, tumor staging, grading, and invasion of lymphovascular space between these two groups. RESULTS IHC analysis showed that in 46% (19/41) of samples there was negative outcome. Forty-two percent (8/19) of these negative samples were unstable (either low or high). Of eight patients showing MSI, 75% were MSI-L, while 25% were MSI-H. Differences in survival, stage, grade, lymphovascular space invasion and Amsterdam criteria adherence were not statistically significant due to the small size of the cohort. CONCLUSION IHC and MSI test results of our cohort lead us to assess the relevance of performing Lynch syndrome genetic screening in endometrial cancer patients aged less than 50 years at the time of diagnosis.
Collapse
Affiliation(s)
- Basilio Pecorino
- Division of Gynecology and Obstetrics, Maternal and Child Department, Cannizzaro Hospital, Catania, Italy.
| | - Cinzia Rubino
- Division of Gynecology and Obstetrics, Magati Hospital, Scandiano AUSL Reggio Emilia, Scandiano, Italy
| | - Vito Fabio Guardalà
- Division of Gynecology and Obstetrics, Maternal and Child Department, Cannizzaro Hospital, Catania, Italy
| | - Antonio Galia
- Department of Pathology, Cannizzaro Hospital, Catania, Italy
| | - Paolo Scollo
- Division of Gynecology and Obstetrics, Maternal and Child Department, Cannizzaro Hospital, Catania, Italy
| |
Collapse
|
163
|
Chen Z, Tran M, Tang M, Wang W, Gong Z, Chen J. Proteomic Analysis Reveals a Novel Mutator S (MutS) Partner Involved in Mismatch Repair Pathway. Mol Cell Proteomics 2016; 15:1299-308. [PMID: 27037360 DOI: 10.1074/mcp.m115.056093] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Indexed: 01/08/2023] Open
Abstract
The mismatch repair (MMR) family is a highly conserved group of proteins that function in correcting base-base and insertion-deletion mismatches generated during DNA replication. Disruption of this process results in characteristic microsatellite instability (MSI), repair defects, and susceptibility to cancer. However, a significant fraction of MSI-positive cancers express MMR genes at normal levels and do not carry detectable mutation in known MMR genes, suggesting that additional factors and/or mechanisms may exist to explain these MSI phenotypes in patients. To systematically investigate the MMR pathway, we conducted a proteomic analysis and identified MMR-associated protein complexes using tandem-affinity purification coupled with mass spectrometry (TAP-MS) method. The mass spectrometry data have been deposited to the ProteomeXchange with identifier PXD003014 and DOI 10.6019/PXD003014. We identified 230 high-confidence candidate interaction proteins (HCIPs). We subsequently focused on MSH2, an essential component of the MMR pathway and uncovered a novel MSH2-binding partner, WDHD1. We further demonstrated that WDHD1 forms a stable complex with MSH2 and MSH3 or MSH6,i.e.the MutS complexes. The specific MSH2/WDHD1 interaction is mediated by the second lever domain of MSH2 and Ala(1123)site of WDHD1. Moreover, we showed that, just like MSH2-deficient cells, depletion of WDHD1 also led to 6-thioguanine (6-TG) resistance, indicating that WDHD1 likely contributes to the MMR pathway. Taken together, our study uncovers new components involved in the MMR pathway, which provides candidate genes that may be responsible for the development of MSI-positive cancers.
Collapse
Affiliation(s)
- Zhen Chen
- From the ‡Department of Experimental Radiation Oncology, The University of Texas M.D. Anderson Cancer Center, 6565 MD Anderson Boulevard, Houston, TX 77030
| | - Mykim Tran
- From the ‡Department of Experimental Radiation Oncology, The University of Texas M.D. Anderson Cancer Center, 6565 MD Anderson Boulevard, Houston, TX 77030
| | - Mengfan Tang
- From the ‡Department of Experimental Radiation Oncology, The University of Texas M.D. Anderson Cancer Center, 6565 MD Anderson Boulevard, Houston, TX 77030
| | - Wenqi Wang
- From the ‡Department of Experimental Radiation Oncology, The University of Texas M.D. Anderson Cancer Center, 6565 MD Anderson Boulevard, Houston, TX 77030
| | - Zihua Gong
- From the ‡Department of Experimental Radiation Oncology, The University of Texas M.D. Anderson Cancer Center, 6565 MD Anderson Boulevard, Houston, TX 77030
| | - Junjie Chen
- From the ‡Department of Experimental Radiation Oncology, The University of Texas M.D. Anderson Cancer Center, 6565 MD Anderson Boulevard, Houston, TX 77030
| |
Collapse
|
164
|
Chen Z, Tran M, Tang M, Wang W, Gong Z, Chen J. Proteomic Analysis Reveals a Novel Mutator S (MutS) Partner Involved in Mismatch Repair Pathway. Mol Cell Proteomics 2016. [PMID: 27037360 DOI: 10.1074/mcp.m115.056093+] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The mismatch repair (MMR) family is a highly conserved group of proteins that function in correcting base-base and insertion-deletion mismatches generated during DNA replication. Disruption of this process results in characteristic microsatellite instability (MSI), repair defects, and susceptibility to cancer. However, a significant fraction of MSI-positive cancers express MMR genes at normal levels and do not carry detectable mutation in known MMR genes, suggesting that additional factors and/or mechanisms may exist to explain these MSI phenotypes in patients. To systematically investigate the MMR pathway, we conducted a proteomic analysis and identified MMR-associated protein complexes using tandem-affinity purification coupled with mass spectrometry (TAP-MS) method. The mass spectrometry data have been deposited to the ProteomeXchange with identifier PXD003014 and DOI 10.6019/PXD003014. We identified 230 high-confidence candidate interaction proteins (HCIPs). We subsequently focused on MSH2, an essential component of the MMR pathway and uncovered a novel MSH2-binding partner, WDHD1. We further demonstrated that WDHD1 forms a stable complex with MSH2 and MSH3 or MSH6,i.e.the MutS complexes. The specific MSH2/WDHD1 interaction is mediated by the second lever domain of MSH2 and Ala(1123)site of WDHD1. Moreover, we showed that, just like MSH2-deficient cells, depletion of WDHD1 also led to 6-thioguanine (6-TG) resistance, indicating that WDHD1 likely contributes to the MMR pathway. Taken together, our study uncovers new components involved in the MMR pathway, which provides candidate genes that may be responsible for the development of MSI-positive cancers.
Collapse
Affiliation(s)
- Zhen Chen
- From the ‡Department of Experimental Radiation Oncology, The University of Texas M.D. Anderson Cancer Center, 6565 MD Anderson Boulevard, Houston, TX 77030
| | - Mykim Tran
- From the ‡Department of Experimental Radiation Oncology, The University of Texas M.D. Anderson Cancer Center, 6565 MD Anderson Boulevard, Houston, TX 77030
| | - Mengfan Tang
- From the ‡Department of Experimental Radiation Oncology, The University of Texas M.D. Anderson Cancer Center, 6565 MD Anderson Boulevard, Houston, TX 77030
| | - Wenqi Wang
- From the ‡Department of Experimental Radiation Oncology, The University of Texas M.D. Anderson Cancer Center, 6565 MD Anderson Boulevard, Houston, TX 77030
| | - Zihua Gong
- From the ‡Department of Experimental Radiation Oncology, The University of Texas M.D. Anderson Cancer Center, 6565 MD Anderson Boulevard, Houston, TX 77030
| | - Junjie Chen
- From the ‡Department of Experimental Radiation Oncology, The University of Texas M.D. Anderson Cancer Center, 6565 MD Anderson Boulevard, Houston, TX 77030
| |
Collapse
|
165
|
Yao DW, Zhan L, Hong YF, Liu JX, Xu JR, Yang DJ. Altered expression of the mismatch repair genes in DF-1 cells infected with the avian leukosis virus subgroup A. SPRINGERPLUS 2016; 5:1756. [PMID: 27795899 PMCID: PMC5055512 DOI: 10.1186/s40064-016-3433-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 09/29/2016] [Indexed: 11/17/2022]
Abstract
The absence or deficiency of DNA mismatch repair (MMR) activity results in microsatellite instability (MSI) in cancer. The avian leukosis virus (ALV) causes neoplastic disease in chickens. In this study, the status of MMR, MSI, the cell cycle and apoptosis were detected in DF-1 cells after avian leukosis virus subgroup A infection. Flow cytometry analysis results indicated that there was no significant difference in cell apoptosis between the control and infected groups. The percentage of cells in S and G2 phases were increased in the infected group. MSI and mutation of MSH2 and MLH1 gene exons were absent in DF-1 cells after infection. Levels of MSH2 and MLH1 mRNA were dramatically increased in DF-1 cells after infection. These results demonstrated that ALV RAV-1 infection may promote the expression of MSH2 and MLH1 genes rather than resulting in gene mutations. Mismatch repair functions were normal and may be have relationships with the arrest of S phase and G2 phase.
Collapse
Affiliation(s)
- Da-Wei Yao
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095 Jiangsu China
| | - Li Zhan
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095 Jiangsu China
| | - Yu-Fang Hong
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095 Jiangsu China
| | - Jian-Xin Liu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095 Jiangsu China
| | - Jia-Rong Xu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095 Jiangsu China
| | - De-Ji Yang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095 Jiangsu China
| |
Collapse
|
166
|
Takeda T, Banno K, Yanokura M, Adachi M, Iijima M, Kunitomi H, Nakamura K, Iida M, Nogami Y, Umene K, Masuda K, Kobayashi Y, Yamagami W, Hirasawa A, Tominaga E, Susumu N, Aoki D. Methylation Analysis of DNA Mismatch Repair Genes Using DNA Derived from the Peripheral Blood of Patients with Endometrial Cancer: Epimutation in Endometrial Carcinogenesis. Genes (Basel) 2016; 7:genes7100086. [PMID: 27754426 PMCID: PMC5083925 DOI: 10.3390/genes7100086] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 08/28/2016] [Accepted: 10/06/2016] [Indexed: 01/28/2023] Open
Abstract
Germline mutation of DNA mismatch repair (MMR) genes is a cause of Lynch syndrome. Methylation of MutL homolog 1 (MLH1) and MutS homolog 2 (MSH2) has been detected in peripheral blood cells of patients with colorectal cancer. This methylation is referred to as epimutation. Methylation of these genes has not been studied in an unselected series of endometrial cancer cases. Therefore, we examined methylation of MLH1, MSH2, and MSH6 promoter regions of peripheral blood cells in 206 patients with endometrial cancer using a methylation-specific polymerase chain reaction (MSP). Germline mutation of MMR genes, microsatellite instability (MSI), and immunohistochemistry (IHC) were also analyzed in each case with epimutation. MLH1 epimutation was detected in a single patient out of a total of 206 (0.49%)-1 out of 58 (1.72%) with an onset age of less than 50 years. The patient with MLH1 epimutation showed high level MSI (MSI-H), loss of MLH1 expression and had developed endometrial cancer at 46 years old, complicated with colorectal cancer. No case had epimutation of MSH2 or MSH6. The MLH1 epimutation detected in a patient with endometrial cancer may be a cause of endometrial carcinogenesis. This result indicates that it is important to check epimutation in patients with endometrial cancer without a germline mutation of MMR genes.
Collapse
Affiliation(s)
- Takashi Takeda
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo 160-8582, Japan.
| | - Kouji Banno
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo 160-8582, Japan.
| | - Megumi Yanokura
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo 160-8582, Japan.
| | - Masataka Adachi
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo 160-8582, Japan.
| | - Moito Iijima
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo 160-8582, Japan.
| | - Haruko Kunitomi
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo 160-8582, Japan.
| | - Kanako Nakamura
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo 160-8582, Japan.
| | - Miho Iida
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo 160-8582, Japan.
| | - Yuya Nogami
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo 160-8582, Japan.
| | - Kiyoko Umene
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo 160-8582, Japan.
| | - Kenta Masuda
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo 160-8582, Japan.
| | - Yusuke Kobayashi
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo 160-8582, Japan.
| | - Wataru Yamagami
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo 160-8582, Japan.
| | - Akira Hirasawa
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo 160-8582, Japan.
| | - Eiichiro Tominaga
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo 160-8582, Japan.
| | - Nobuyuki Susumu
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo 160-8582, Japan.
| | - Daisuke Aoki
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo 160-8582, Japan.
| |
Collapse
|
167
|
Im MM, Flanagan SA, Ackroyd JJ, Knapp B, Kramer A, Shewach DS. Late DNA Damage Mediated by Homologous Recombination Repair Results in Radiosensitization with Gemcitabine. Radiat Res 2016; 186:466-477. [PMID: 27740890 DOI: 10.1667/rr14443.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Gemcitabine (dFdCyd) shows broad antitumor activity in solid tumors in chemotherapeutic regimens or when combined with ionizing radiation (radiosensitization). While it is known that mismatches in DNA are necessary for dFdCyd radiosensitization, the critical event resulting in radiosensitization has not been identified. Here we hypothesized that late DNA damage (≥24 h after drug washout/irradiation) is a causal event in radiosensitization by dFdCyd, and that homologous recombination repair (HRR) is required for this late DNA damage. Using γ-H2AX as a measurement of DNA damage in MCF-7 breast cancer cells, we demonstrate that 10 or 80 nM dFdCyd alone produced significantly more late DNA damage compared to that observed within 4 h after treatment. The combination of dFdCyd treatment followed by irradiation did not produce a consistent increase in DNA damage in the first 4 h after treatment, however, there was a synergistic increase 24-48 h later relative to treatment with dFdCyd or radiation alone. RNAi suppression of the essential HRR protein, XRCC3, significantly decreased both radiosensitization and late DNA damage. Furthermore, inhibition of HRR with the Rad51 inhibitor B02 prevented radiosensitization when added after, but not during, treatment with dFdCyd and radiation. To our knowledge, this is the first published study to show that radiosensitization with dFdCyd results from a synergistic increase in DNA damage at 24-48 h after drug and radiation treatment, and that this damage and radiosensitization require HRR. These results suggest that tumors that overexpress HRR will be more vulnerable to chemoradiotherapy, and treatments that increase HRR and/or mismatches in DNA will enhance dFdCyd radiosensitization.
Collapse
Affiliation(s)
- Michael M Im
- Department of Pharmacology, University of Michigan Medical Center, Ann Arbor, Michigan 48109
| | - Sheryl A Flanagan
- Department of Pharmacology, University of Michigan Medical Center, Ann Arbor, Michigan 48109
| | - Jeffrey J Ackroyd
- Department of Pharmacology, University of Michigan Medical Center, Ann Arbor, Michigan 48109
| | - Brendan Knapp
- Department of Pharmacology, University of Michigan Medical Center, Ann Arbor, Michigan 48109
| | - Aaron Kramer
- Department of Pharmacology, University of Michigan Medical Center, Ann Arbor, Michigan 48109
| | - Donna S Shewach
- Department of Pharmacology, University of Michigan Medical Center, Ann Arbor, Michigan 48109
| |
Collapse
|
168
|
Cong Y, Wang L, Wang Z, He S, Zhou D, Jing X, Huang Y. Enhancing Therapeutic Efficacy of Cisplatin by Blocking DNA Damage Repair. ACS Med Chem Lett 2016; 7:924-928. [PMID: 27774130 PMCID: PMC5066156 DOI: 10.1021/acsmedchemlett.6b00236] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Accepted: 08/24/2016] [Indexed: 12/18/2022] Open
Abstract
Self-repair of nuclear DNA damage is the most known reason that leads to drug resistance of cancer tissue and limited therapeutic efficacy of anticancer drugs. Inhibition of protein phosphatase 2A (PP2A) would block DNA damage-induced defense of cancer cells to suppress DNA repair for enhanced cancer treatment. Here, we combined a PP2A inhibitor LB (4-(3-carboxy-7-oxa-bicyclo[2.2.1]heptane-2-carbonyl) piperazine-1-carboxylic acid tert-butyl ester) and the DNA damage chemotherapeutic drug cisplatin through a simple physical superposition. The two drugs administrated at a ratio of 1:1 exhibited an optional synergistic antitumor efficacy in vitro and in vivo. LB was demonstrated to specifically activate the protein kinase B (Akt) and mitogen-activated protein kinases (MAPK) signaling pathways by PP2A inhibition to overcome cell cycle arrest caused by cisplatin-induced DNA damage.
Collapse
Affiliation(s)
- Yuwei Cong
- State Key
Laboratory of Polymer Physics and Chemistry, Changchun Institute of
Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- University
of Chinese Academy of Sciences, Beijing 100049, P. R.
China
| | - Liangyan Wang
- Nanjing
Orientleader Technology Co., Ltd., Nanjing 210028, P. R.
China
| | - Zigui Wang
- State Key
Laboratory of Polymer Physics and Chemistry, Changchun Institute of
Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- University
of Chinese Academy of Sciences, Beijing 100049, P. R.
China
| | - Shasha He
- State Key
Laboratory of Polymer Physics and Chemistry, Changchun Institute of
Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- University
of Chinese Academy of Sciences, Beijing 100049, P. R.
China
| | - Dongfang Zhou
- State Key
Laboratory of Polymer Physics and Chemistry, Changchun Institute of
Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Xiabin Jing
- State Key
Laboratory of Polymer Physics and Chemistry, Changchun Institute of
Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Yubin Huang
- State Key
Laboratory of Polymer Physics and Chemistry, Changchun Institute of
Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| |
Collapse
|
169
|
Hu MH, Liu SY, Wang N, Wu Y, Jin F. Impact of DNA mismatch repair system alterations on human fertility and related treatments. J Zhejiang Univ Sci B 2016; 17:10-20. [PMID: 26739522 DOI: 10.1631/jzus.b1500162] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
DNA mismatch repair (MMR) is one of the biological pathways, which plays a critical role in DNA homeostasis, primarily by repairing base-pair mismatches and insertion/deletion loops that occur during DNA replication. MMR also takes part in other metabolic pathways and regulates cell cycle arrest. Defects in MMR are associated with genomic instability, predisposition to certain types of cancers and resistance to certain therapeutic drugs. Moreover, genetic and epigenetic alterations in the MMR system demonstrate a significant relationship with human fertility and related treatments, which helps us to understand the etiology and susceptibility of human infertility. Alterations in the MMR system may also influence the health of offspring conceived by assisted reproductive technology in humans. However, further studies are needed to explore the specific mechanisms by which the MMR system may affect human infertility. This review addresses the physiological mechanisms of the MMR system and associations between alterations of the MMR system and human fertility and related treatments, and potential effects on the next generation.
Collapse
Affiliation(s)
- Min-hao Hu
- Key Laboratory of Reproductive Genetics (Zhejiang), Ministry of Education, and Centre of Reproductive Medicine, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China
| | - Shu-yuan Liu
- Key Laboratory of Reproductive Genetics (Zhejiang), Ministry of Education, and Centre of Reproductive Medicine, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China
| | - Ning Wang
- Key Laboratory of Reproductive Genetics (Zhejiang), Ministry of Education, and Centre of Reproductive Medicine, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China
| | - Yan Wu
- Key Laboratory of Reproductive Genetics (Zhejiang), Ministry of Education, and Centre of Reproductive Medicine, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China
| | - Fan Jin
- Key Laboratory of Reproductive Genetics (Zhejiang), Ministry of Education, and Centre of Reproductive Medicine, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China
| |
Collapse
|
170
|
Bupathi M, Wu C. Biomarkers for immune therapy in colorectal cancer: mismatch-repair deficiency and others. J Gastrointest Oncol 2016; 7:713-720. [PMID: 27747085 DOI: 10.21037/jgo.2016.07.03] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Colorectal cancer (CRC) is a heterogeneous disease for which the treatment backbone has primarily been cytotoxic chemotherapy. With better understanding of the involved molecular mechanisms, it is now known that there are a number of epigenetic and genetic events, which are involved in CRC pathogenesis. Specific biomarkers have been identified which can be used to determine the clinical outcome of patients beyond tumor staging and predict for treatment efficacy. Molecular testing is now routinely performed to select for patients that will benefit the most from targeted agents and immunotherapy. In addition to KRAS, NRAS, and BRAF mutation (MT), analysis of DNA mismatch repair (MMR) status, tumor infiltrating lymphocytes, and checkpoint protein expression may be helpful to determine whether patients are eligible for certain therapies. The focus of this article is to discuss present and upcoming biomarkers for immunotherapy in CRC.
Collapse
Affiliation(s)
- Manojkumar Bupathi
- Division of Medical Oncology, The Ohio State University Wexner Medical Center, Richard Solove Research Institute and James Cancer Hospital, Columbus, Ohio, USA
| | - Christina Wu
- Division of Medical Oncology, The Ohio State University Wexner Medical Center, Richard Solove Research Institute and James Cancer Hospital, Columbus, Ohio, USA
| |
Collapse
|
171
|
Lagerstedt-Robinson K, Rohlin A, Aravidis C, Melin B, Nordling M, Stenmark-Askmalm M, Lindblom A, Nilbert M. Mismatch repair gene mutation spectrum in the Swedish Lynch syndrome population. Oncol Rep 2016; 36:2823-2835. [PMID: 27601186 DOI: 10.3892/or.2016.5060] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 05/31/2016] [Indexed: 12/21/2022] Open
Abstract
Lynch syndrome caused by constitutional mismatch‑repair defects is one of the most common hereditary cancer syndromes with a high risk for colorectal, endometrial, ovarian and urothelial cancer. Lynch syndrome is caused by mutations in the mismatch repair (MMR) genes i.e., MLH1, MSH2, MSH6 and PMS2. After 20 years of genetic counseling and genetic testing for Lynch syndrome, we have compiled the mutation spectrum in Sweden with the aim to provide a population-based perspective on the contribution from the different MMR genes, the various types of mutations and the influence from founder mutations. Mutation data were collected on a national basis from all laboratories involved in genetic testing. Mutation analyses were performed using mainly Sanger sequencing and multiplex ligation-dependent probe amplification. A total of 201 unique disease-predisposing MMR gene mutations were identified in 369 Lynch syndrome families. These mutations affected MLH1 in 40%, MSH2 in 36%, MSH6 in 18% and PMS2 in 6% of the families. A large variety of mutations were identified with splice site mutations being the most common mutation type in MLH1 and frameshift mutations predominating in MSH2 and MSH6. Large deletions of one or several exons accounted for 21% of the mutations in MLH1 and MSH2 and 22% in PMS2, but were rare (4%) in MSH6. In 66% of the Lynch syndrome families the variants identified were private and the effect from founder mutations was limited and predominantly related to a Finnish founder mutation that accounted for 15% of the families with mutations in MLH1. In conclusion, the Swedish Lynch syndrome mutation spectrum is diverse with private MMR gene mutations in two-thirds of the families, has a significant contribution from internationally recognized mutations and a limited effect from founder mutations.
Collapse
Affiliation(s)
- Kristina Lagerstedt-Robinson
- Department of Molecular Medicine and Surgery, Karolinska Institute and Department of Clinical Genetics, Karolinska University Hospital, Solna, SE-17176 Stockholm, Sweden
| | - Anna Rohlin
- Department of Clinical Pathology and Genetics, Sahlgrenska University Hospital, SE-41345 Gothenburg, Sweden
| | - Christos Aravidis
- Department of Immunology, Genetics and Pathology, Uppsala University, SE-75185 Uppsala, Sweden
| | - Beatrice Melin
- Department of Radiation Sciences, Division of Oncology, Umeå University, SE-90187 Umeå, Sweden
| | - Margareta Nordling
- Department of Clinical Pathology and Genetics, Sahlgrenska University Hospital, SE-41345 Gothenburg, Sweden
| | | | - Annika Lindblom
- Department of Molecular Medicine and Surgery, Karolinska Institute and Department of Clinical Genetics, Karolinska University Hospital, Solna, SE-17176 Stockholm, Sweden
| | - Mef Nilbert
- Department of Clinical Sciences, Division of Oncology and Pathology, Lund University, SE-22381 Lund, Sweden
| |
Collapse
|
172
|
Young K, Starling N, Cunningham D. Targeting deficient DNA damage repair in gastric cancer. Expert Opin Pharmacother 2016; 17:1757-66. [PMID: 27488684 DOI: 10.1080/14656566.2016.1217992] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Over recent years our understanding of DNA damage repair has evolved leading to an expansion of therapies attempting to exploit DNA damage repair deficiencies across multiple solid tumours. Gastric cancer has been identified as a tumour where a subgroup of patients demonstrates deficiencies in the homologous recombination pathway providing a potential novel treatment approach for this poor prognosis disease. AREA COVERED This review provides an overview of DNA damage repair and how this has been targeted to date in other tumour types exploiting the concept of synthetic lethality. This is followed by a discussion of how deficiencies in homologous recombination may be identified across tumour types and on recent progress in targeting DNA repair deficiencies in gastric cancer. EXPERT OPINION Gastric cancer remains a difficult malignancy to treat and the possibility of targeting deficient DNA repair in a subgroup of patients is an exciting prospect. Future combinations with immunotherapy and radiotherapy are appealing and appear to have a sound biological rationale. However, much work remains to be done to understand the significance of the genetic and epigenetic alterations involved, to elucidate the optimum predictive signatures or biomarkers and to consider means of overcoming treatment resistance.
Collapse
Affiliation(s)
- Kate Young
- a Department of Medicine , The Royal Marsden NHS Foundation Trust, GI and Lymphoma Unit , Sutton , UK
| | - Naureen Starling
- a Department of Medicine , The Royal Marsden NHS Foundation Trust, GI and Lymphoma Unit , Sutton , UK
| | - David Cunningham
- a Department of Medicine , The Royal Marsden NHS Foundation Trust, GI and Lymphoma Unit , Sutton , UK
| |
Collapse
|
173
|
Lodovichi S, Vitello M, Cervelli T, Galli A. Expression of cancer related BRCA1 missense variants decreases MMS-induced recombination in Saccharomyces cerevisiae without altering its nuclear localization. Cell Cycle 2016; 15:2723-31. [PMID: 27484786 DOI: 10.1080/15384101.2016.1215389] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
BRCA1 tumor suppressor gene is found mutated in familial breast and ovarian cancer. Most cancer related mutations were found located at the RING (Really Interesting New Gene) and at the BRCT (BRca1 C-Terminal) domain. However, 20 y after its identification, the biological role of BRCA1 and which domains are more relevant for tumor suppression are still being elucidated. We previously reported that expression of BRCA1 cancer related variants in the RING and BRCT domain increases spontaneous homologous recombination in yeast indicating that BRCA1 may interact with yeast DNA repair/recombination. To finally demonstrate whether BRCA1 interacts with yeast DNA repair, we exposed yeast cells expressing BRCA1wt, the cancer-related variants C-61G and M1775R to different doses of the alkylating agent methyl methane-sulfonate (MMS) and then evaluated the effect on survival and homologous recombination. Cells expressing BRCA1 cancer variants were more sensitive to MMS and less inducible to recombination as compared to cell expressing BRCA1wt. Moreover, BRCA1-C61G and -M1775R did not change their nuclear localization form as compared to the BRCA1wt or the neutral variant R1751Q indicating a difference in the DNA damage processing. We propose a model where BRCA1 cancer variants interact with the DNA double strand break repair pathways producing DNA recombination intermediates, that maybe less repairable and decrease MMS-induced recombination and survival. Again, this study strengthens the use of yeast as model system to characterize the mechanisms leading to cancer in humans carrying the BRCA1 missense variant.
Collapse
Affiliation(s)
- Samuele Lodovichi
- a Yeast Genetics and Genomics, Institute of Clinical Physiology , CNR, Pisa , Italy
| | - Martina Vitello
- a Yeast Genetics and Genomics, Institute of Clinical Physiology , CNR, Pisa , Italy
| | - Tiziana Cervelli
- a Yeast Genetics and Genomics, Institute of Clinical Physiology , CNR, Pisa , Italy
| | - Alvaro Galli
- a Yeast Genetics and Genomics, Institute of Clinical Physiology , CNR, Pisa , Italy
| |
Collapse
|
174
|
Berera S, Koru-Sengul T, Miao F, Carrasquillo O, Nadji M, Zhang Y, Hosein PJ, McCauley JL, Abreu MT, Sussman DA. Colorectal Tumors From Different Racial and Ethnic Minorities Have Similar Rates of Mismatch Repair Deficiency. Clin Gastroenterol Hepatol 2016; 14:1163-71. [PMID: 27046481 DOI: 10.1016/j.cgh.2016.03.037] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Revised: 02/18/2016] [Accepted: 03/13/2016] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Microsatellite instability (MSI) in colorectal cancer cells results from deficient mismatch repair (MMR) protein function, either acquired or from germline alterations such as in patients with Lynch syndrome. Universal screening initiatives for Lynch syndrome have been encouraged. However, little is known about the true prevalence of MMR deficiency and MSI in colorectal tumors among individuals from different racial and ethnic subgroups or their clinical effects in these populations. METHODS We performed a retrospective analysis of 253 surgically resected, primary colorectal adenocarcinoma specimens identified from the University of Miami tumor registry from 2005 through 2010. We collected clinical data, including overall survival (OS), the proportion of patients alive at specific intervals, from non-Hispanic white, Hispanic, and black patients matched by stage. We performed immunohistochemical staining to detect MMR proteins in all specimens and polymerase chain reaction analysis of 51 tumors to detect MSI. RESULTS We detected MMR deficiency in 28 of 253 cases (11.1%), evenly distributed among blacks (9.6%), non-Hispanic whites (10.4%), and Hispanics (12.6%) (P = .79). Combined deficiencies in MLH1 and PMS2 were found in 23 of 28 MMR-deficient samples (82.1%); MSH2 and MSH6 were most frequently absent in tumor samples from Hispanics (P = .03). Eleven of 51 tumor samples (21.6%) had high levels of MSI, and we observed a high level of concordance between MMR and MSI (κ = .81). OS was significantly better in patients whose tumors had deficient MMR (hazard ratio for patients with MMR-deficient tumors vs MMR proteins intact = 0.37; 95% confidence interval, 0.15-0.91; P = .03). Race and ethnicity were not significant predictors of OS. CONCLUSIONS MMR deficiency in colorectal tumors occurs with similar rates among patients of different racial and ethnic groups, which is based on immunohistochemical analysis of 253 primary tumor specimens. This finding indicates the potential value of universal testing of colorectal cancer by immunohistochemistry in minority populations and confirms the benefit of MMR deficiency to OS.
Collapse
Affiliation(s)
- Shivali Berera
- Division of Gastroenterology, Department of Internal Medicine, University of Miami Leonard Miller School of Medicine/Sylvester Comprehensive Cancer Center, Miami, Florida
| | - Tulay Koru-Sengul
- Division of Biostatistics, Department of Public Health Sciences, University of Miami Leonard Miller School of Medicine/Sylvester Comprehensive Cancer Center, Miami, Florida
| | - Feng Miao
- Division of Biostatistics, Department of Public Health Sciences, University of Miami Leonard Miller School of Medicine/Sylvester Comprehensive Cancer Center, Miami, Florida
| | - Olveen Carrasquillo
- Division of General Internal Medicine, Department of Internal Medicine, University of Miami Leonard Miller School of Medicine/Sylvester Comprehensive Cancer Center, Miami, Florida
| | - Mehrdad Nadji
- Department of Pathology, University of Miami Leonard Miller School of Medicine, Miami, Florida
| | - Yaxia Zhang
- Department of Pathology, Cleveland Clinic, Cleveland, Ohio
| | - Peter J Hosein
- Division of Hematology and Oncology, Department of Internal Medicine, University of Kentucky, Lexington, Kentucky/Sylvester Comprehensive Cancer Center, Lexington, Kentucky
| | - Jacob L McCauley
- Center for Genome Technology, John P. Hussman Institute for Human Genomics, University of Miami Leonard Miller School of Medicine, Miami, Florida
| | - Maria T Abreu
- Division of Gastroenterology, Department of Internal Medicine, University of Miami Leonard Miller School of Medicine/Sylvester Comprehensive Cancer Center, Miami, Florida
| | - Daniel A Sussman
- Division of Gastroenterology, Department of Internal Medicine, University of Miami Leonard Miller School of Medicine/Sylvester Comprehensive Cancer Center, Miami, Florida.
| |
Collapse
|
175
|
Modrich P. Mechanismen der Fehlpaarungsreparatur in E. coliund im Menschen (Nobel-Aufsatz). Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201601412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Paul Modrich
- Howard Hughes Medical Institute and Department of Biochemistry; Duke University, Medical Center; Durham NC 27710 USA
| |
Collapse
|
176
|
Modrich P. Mechanisms in E. coli and Human Mismatch Repair (Nobel Lecture). Angew Chem Int Ed Engl 2016; 55:8490-501. [PMID: 27198632 PMCID: PMC5193110 DOI: 10.1002/anie.201601412] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Indexed: 11/11/2022]
Abstract
DNA molecules are not completely stable, they are subject to chemical or photochemical damage and errors that occur during DNA replication resulting in mismatched base pairs. Through mechanistic studies Paul Modrich showed how replication errors are corrected by strand-directed mismatch repair in Escherichia coli and human cells.
Collapse
Affiliation(s)
- Paul Modrich
- Howard Hughes Medical Institute and Department of Biochemistry, Duke University, Medical Center, Durham, NC, 27710, USA.
| |
Collapse
|
177
|
Simonelli V, Leuzzi G, Basile G, D'Errico M, Fortini P, Franchitto A, Viti V, Brown AR, Parlanti E, Pascucci B, Palli D, Giuliani A, Palombo F, Sobol RW, Dogliotti E. Crosstalk between mismatch repair and base excision repair in human gastric cancer. Oncotarget 2016; 8:84827-84840. [PMID: 29156686 PMCID: PMC5689576 DOI: 10.18632/oncotarget.10185] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 05/23/2016] [Indexed: 12/05/2022] Open
Abstract
DNA repair gene expression in a set of gastric cancers suggested an inverse association between the expression of the mismatch repair (MMR) gene MLH1 and that of the base excision repair (BER) gene DNA polymerase β (Polβ). To gain insight into possible crosstalk of these two repair pathways in cancer, we analysed human gastric adenocarcinoma AGS cells over-expressing Polβ or Polβ active site mutants, alone or in combination with MLH1 silencing. Next, we investigated the cellular response to the alkylating agent methyl methanesulfonate (MMS) and the purine analogue 6-thioguanine (6-TG), agents that induce lesions that are substrates for BER and/or MMR. AGS cells over-expressing Polβ were resistant to 6-TG to a similar extent as when MLH1 was inactivated while inhibition of O6-methylguanine-DNA methyltransferase (MGMT) was required to detect resistance to MMS. Upon either treatment, the association with MLH1 down-regulation further amplified the resistant phenotype. Moreover, AGS cells mutated in Polβ were hypersensitive to both 6-TG and MMS killing and their sensitivity was partially rescued by MLH1 silencing. We provide evidence that the critical lethal lesions in this new pathway are double strand breaks that are exacerbated when Polβ is defective and relieved when MLH1 is silenced. In conclusion, we provide evidence of crosstalk between MLH1 and Polβ that modulates the response to alkylation damage. These studies suggest that the Polβ/MLH1 status should be taken into consideration when designing chemotherapeutic approaches for gastric cancer.
Collapse
Affiliation(s)
- Valeria Simonelli
- Department of Environment and Primary Prevention, Istituto Superiore di Sanità, Rome, Italy
| | - Giuseppe Leuzzi
- Department of Environment and Primary Prevention, Istituto Superiore di Sanità, Rome, Italy
| | - Giorgia Basile
- Department of Environment and Primary Prevention, Istituto Superiore di Sanità, Rome, Italy
| | - Mariarosaria D'Errico
- Department of Environment and Primary Prevention, Istituto Superiore di Sanità, Rome, Italy
| | - Paola Fortini
- Department of Environment and Primary Prevention, Istituto Superiore di Sanità, Rome, Italy
| | - Annapaola Franchitto
- Department of Environment and Primary Prevention, Istituto Superiore di Sanità, Rome, Italy
| | - Valentina Viti
- Istituto di Ricerche Biologia Molecolare P. Angeletti (IRBM), Pomezia (Rome), Italy
| | - Ashley R Brown
- University of Pittsburgh Cancer Institute, Hillman Cancer Center, Pittsburgh, PA, USA
| | - Eleonora Parlanti
- Department of Environment and Primary Prevention, Istituto Superiore di Sanità, Rome, Italy
| | - Barbara Pascucci
- Institute of Cristallography, Consiglio Nazionale delle Ricerche, Monterotondo Stazione, Rome, Italy
| | - Domenico Palli
- Molecular and Nutritional Epidemiology Unit, CSPO, Scientific Institute of Tuscany, Florence, Italy
| | - Alessandro Giuliani
- Department of Environment and Primary Prevention, Istituto Superiore di Sanità, Rome, Italy
| | | | - Robert W Sobol
- University of Pittsburgh Cancer Institute, Hillman Cancer Center, Pittsburgh, PA, USA.,Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA.,Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, AL, USA
| | - Eugenia Dogliotti
- Department of Environment and Primary Prevention, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
178
|
Deficient Mismatch Repair and the Role of Immunotherapy in Metastatic Colorectal Cancer. Curr Treat Options Oncol 2016; 17:41. [DOI: 10.1007/s11864-016-0414-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
179
|
Zeng Y, Wei L, Wang YJ, Liu C. Genetic Association between ERCC5 rs17655 Polymorphism and Colorectal Cancer Risk: Evidence Based on a Meta-analysis. Asian Pac J Cancer Prev 2016. [PMID: 26225711 DOI: 10.7314/apjcp.2015.16.13.5565] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Previous studies evaluating the association between the excision repair cross complementing group 5 (ERCC5) gene rs17655 polymorphism and colorectal cancer susceptibility generated controversial results. To generate large-scale evidence on whether the ERCC5 rs17655 polymorphism might indeed be associated with colorectal cancer susceptibility, the present meta-analysis was performed. MATERIALS AND METHODS Data were collected from PubMed, Embase and Web of Science, with the last report up to Apr 03, 2015. Odds ratios (ORs) with 95% confidence intervals (CIs) were used to assess the strength of any association. RESULTS A total of nine studies including 5,102 cases and 6,326 controls based on the search criteria were included and significant associations were found between ERCC5 rs17655 polymorphism CG vs GG overall (OR=1.29, 95% CI=1.18~1.40) and in the dominant model (OR=1.23, 95% CI=1.13~1.33). On subgroup analysis by ethnicity and source of controls, the ERCC5 rs17655 polymorphism was found to correlate with the pathogenesis of colorectal cancer among Asians and Caucasians and with hospital-based populations. CONCLUSIONS This meta-analysis suggests that the ERCC5 rs17655 polymorphism might contribute to genetic susceptibility to colorectal cancer.
Collapse
Affiliation(s)
- Yong Zeng
- Department of Cardiothoracic Surgery, Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing, Zhejiang Province, China E-mail : ,
| | | | | | | |
Collapse
|
180
|
Liu Y, Zhang X, Jia J, Tang L, Gao X, Yan L, Wang L, Yu F, Ma N, Liu W, Yang L, Liu X, Liu D. Correlation between polymorphisms in DNA mismatch repair genes and the risk of primary hepatocellular carcinoma for the Han population in northern China. Scand J Gastroenterol 2016; 50:1404-10. [PMID: 26027715 DOI: 10.3109/00365521.2015.1045429] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
PURPOSE This study investigated correlations between polymorphisms in DNA mismatch repair (MMR) genes and the risk of primary hepatocellular carcinoma (PHC). METHODS Single nucleotide polymorphisms (SNPs) in the DNA MMR genes MLH3 (rs175080), PMS1 (rs5742933), PMS2 (rs1059060), MSH3 (rs26279), MSH5 (rs1150793, rs2075789) and MSH6 (rs1042821) were detected using the SNaPshot method in 250 PHC cases and in 308 patients without PHC in the Han population in northern China. RESULTS The AA genotype in MLH3 (rs175080) increased the risk of PHC (odds ratio [OR] = 3.424; 95% confidence interval [CI]: 1.097-10.689). The AG and GG genotypes in MSH3 (rs26279) increased the risk of PHC (OR: 1.644 and 3.300; 95% CI: 1.112-2.428 and 1.765-6.168, respectively). The AA genotype in MSH5 (rs2075789) increased the risk of PHC (OR: 9.229; 95% CI: 1.174-72.535). The CT genotype in MSH6 (rs1042821) reduced the risk of PHC (OR: 0.629; 95% CI: 0.428-0.924). CONCLUSIONS Our study suggests that polymorphisms in MLH3 (rs175080), MSH3 (rs26279), MSH5 (rs2075789) and MSH6 (rs1042821) may be independent risk factors for PHC.
Collapse
Affiliation(s)
- Ying Liu
- Department of Epidemiology and Statistics, Hebei Medical University , Shi Jiazhuang , China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
181
|
Wagner VP, Webber LP, Salvadori G, Meurer L, Fonseca FP, Castilho RM, Squarize CH, Vargas PA, Martins MD. Overexpression of MutSα Complex Proteins Predicts Poor Prognosis in Oral Squamous Cell Carcinoma. Medicine (Baltimore) 2016; 95:e3725. [PMID: 27258499 PMCID: PMC4900707 DOI: 10.1097/md.0000000000003725] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
The DNA mismatch repair (MMR) system is responsible for the detection and correction of errors created during DNA replication, thereby avoiding the incorporation of mutations in dividing cells. The prognostic value of alterations in MMR system has not previously been analyzed in oral squamous cell carcinoma (OSCC).The study comprised 115 cases of OSCC diagnosed between 1996 and 2010. The specimens collected were constructed into tissue microarray blocks. Immunohistochemical staining for MutSα complex proteins hMSH2 and hMSH6 was performed. The slides were subsequently scanned into high-resolution images, and nuclear staining of hMSH2 and hMSH6 was analyzed using the Nuclear V9 algorithm. Univariable and multivariable Cox proportional hazard regression models were performed to evaluate the prognostic value of hMSH2 and hMSH6 in OSCC.All cases in the present cohort were positive for hMSH2 and hMSH6 and a direct correlation was found between the expression of the proteins (P < 0.05). The mean number of positive cells for hMSH2 and hMSH6 was 64.44 ± 15.21 and 31.46 ± 22.38, respectively. These values were used as cutoff points to determine high protein expression. Cases with high expression of both proteins simultaneously were classified as having high MutSα complex expression. In the multivariable analysis, high expression of the MutSα complex was an independent prognostic factor for poor overall survival (hazard ratio: 2.75, P = 0.02).This study provides a first insight of the prognostic value of alterations in MMR system in OSCC. We found that MutSα complex may constitute a molecular marker for the poor prognosis of OSCC.
Collapse
Affiliation(s)
- Vivian Petersen Wagner
- From the Department of Oral Pathology, School of Dentistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil (VPW, LPW, MDM); Experimental Pathology Unit, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil (VPW, LPW, LM, MDM); Institute of Oral Biology, Faculty of Dentistry, University of Oslo, Norway (GS); Department of Oral Diagnosis, Piracicaba Dental School, University of Campinas, Piracicaba, São Paulo, Brazil (FPF, PAV); and Laboratory of Epithelial Biology, Department of Periodontics and Oral Medicine, University of Michigan, School of Dentistry, Ann Arbor, MI (RMC, CHS)
| | | | | | | | | | | | | | | | | |
Collapse
|
182
|
Negureanu L, Salsbury FR. Insights into protein - DNA interactions, stability and allosteric communications: a computational study of mutSα-DNA recognition complexes. J Biomol Struct Dyn 2016; 29:757-76. [PMID: 22208277 DOI: 10.1080/07391102.2012.10507412] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
DNA mismatch repair proteins (MMR) maintain genetic stability by recognizing and repairing mismatched bases and insertion/deletion loops mistakenly incorporated during DNA replication, and initiate cellular response to certain types of DNA damage. Loss of MMR in mammalian cells has been linked to resistance to certain DNA damaging chemotherapeutic agents, as well as to increase risk of cancer. Mismatch repair pathway is considered to involve the concerted action of at least 20 proteins. The most abundant MMR mismatch-binding factor in eukaryotes, MutSα, recognizes and initiates the repair of base-base mismatches and small insertion/deletion. We performed molecular dynamics simulations on mismatched and damaged MutSα-DNA complexes. A comprehensive DNA binding site analysis of relevant conformations shows that MutSα proteins recognize the mismatched and platinum cross-linked DNA substrates in significantly different modes. Distinctive conformational changes associated with MutSα binding to mismatched and damaged DNA have been identified and they provide insight into the involvement of MMR proteins in DNA-repair and DNA-damage pathways. Stability and allosteric interactions at the heterodimer interface associated with the mismatch and damage recognition step allow for prediction of key residues in MMR cancer-causing mutations. A rigorous hydrogen bonding analysis for ADP molecules at the ATPase binding sites is also presented. Due to extended number of known MMR cancer causing mutations among the residues proved to make specific contacts with ADP molecules, recommendations for further studies on similar mutagenic effects were made.
Collapse
|
183
|
Graham DM, Coyle VM, Kennedy RD, Wilson RH. Molecular Subtypes and Personalized Therapy in Metastatic Colorectal Cancer. CURRENT COLORECTAL CANCER REPORTS 2016; 12:141-150. [PMID: 27340376 PMCID: PMC4879165 DOI: 10.1007/s11888-016-0312-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Development of colorectal cancer occurs via a number of key pathways, with the clinicopathological features of specific subgroups being driven by underlying molecular changes. Mutations in key genes within the network of signalling pathways have been identified; however, therapeutic strategies to target these aberrations remain limited. As understanding of the biology of colorectal cancer has improved, this has led to a move toward broader genomic testing, collaborative research and innovative, adaptive clinical trial design. Recent developments in therapy include the routine adoption of wider mutational spectrum testing prior to use of targeted therapies and the first promise of effective immunotherapy for colorectal cancer patients. This review details current biomarkers in colorectal cancer for molecular stratification and for treatment allocation purposes, including open and planned precision medicine trials. Advances in our understanding, therapeutic strategy and technology will also be outlined.
Collapse
Affiliation(s)
- Donna M. Graham
- Centre for Cancer Research and Cell Biology, Queen’s University Belfast, 97 Lisburn Road, Belfast, BT9 7AE N. Ireland UK
| | - Vicky M. Coyle
- Centre for Cancer Research and Cell Biology, Queen’s University Belfast, 97 Lisburn Road, Belfast, BT9 7AE N. Ireland UK
| | - Richard D. Kennedy
- Centre for Cancer Research and Cell Biology, Queen’s University Belfast, 97 Lisburn Road, Belfast, BT9 7AE N. Ireland UK
| | - Richard H. Wilson
- Centre for Cancer Research and Cell Biology, Queen’s University Belfast, 97 Lisburn Road, Belfast, BT9 7AE N. Ireland UK
| |
Collapse
|
184
|
Abstract
Lynch syndrome, an autosomal dominant inherited disorder, is caused by inactivating mutations involving DNA mismatch repair (MMR) genes. This leads to profound genetic instability, including microsatellite instability (MSI) and increased risk for cancer development, particularly colon and endometrial malignancies. Clinical testing of tumor tissues for the presence of MMR gene deficiency is standard practice in clinical oncology, with immunohistochemistry and PCR-based microsatellite instability analysis used as screening tests to identify potential Lynch syndrome families. The ultimate diagnosis of Lynch syndrome requires documentation of mutation within one of the four MMR genes (MLH1, PMS2, MSH2 and MSH6) or EPCAM, currently achieved by comprehensive sequencing analysis of germline DNA. In this review, the genetic basis of Lynch syndrome, methodologies of MMR deficiency testing, and current diagnostic algorithms in the clinical management of Lynch syndrome, are discussed.
Collapse
Affiliation(s)
- Natalia Buza
- a Department of Pathology, School of Medicine , Yale University , New Haven , CT , USA
| | - James Ziai
- b Genentech Inc ., San Francisco , CA , USA
| | - Pei Hui
- a Department of Pathology, School of Medicine , Yale University , New Haven , CT , USA
| |
Collapse
|
185
|
Waldmann E, Ferlitsch M, Binder N, Sellner F, Karner J, Heinisch B, Klimpfinger M, Trauner M. Tumor and Patient Characteristics of Individuals with Mismatch Repair Deficient Colorectal Cancer. Digestion 2016; 91:286-93. [PMID: 25924923 DOI: 10.1159/000381284] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 02/21/2015] [Indexed: 02/04/2023]
Abstract
AIMS To investigate tumor and patient characteristics of individuals with mismatch repair (MMR)-deficient colorectal carcinomas. METHODS We immunhistochemically investigated tissue samples of 307 consecutive patients with colorectal cancer for defects in DNA MMR proteins (hMLH1, hMSH2, hMSH6, hPMS2) and those with mutations further for microsatellite instability (MSI) and BRAF V600E mutations. RESULTS 32/308 (10.4%) tumors showed MMR deficiency. Seventy five percent (n = 24) had loss of hMLH1 and hPMS2 expression, 3% (n = 1) of hPMS2 alone, 18.8% (n = 6) of hMSH6 and hMSH2, 3% (n = 1) of hMSH2 alone. All MMR-deficient tumors showed high MSI. These tumors occurred preferably in the right-sided colon, in women and showed specific histological features. We obtained the family history of 18/32 patients; 2 (11.1%) met Amsterdam Criteria, 5 (27.8%) Bethesda Guidelines and 6 (33.3%) revised Bethesda Guidelines. BRAF V600E mutations were found in 16 (67%) of hMLH1 and none of the hMSH2 deficient tumors. CONCLUSION We suggest using immunhistochemical testing of tumor tissues with subsequent MSI analysis, which may be justified as a screening method for MMR deficiency in colorectal cancer, since it identifies patients with possibly hereditary defects and unalike response to chemotherapy.
Collapse
Affiliation(s)
- Elisabeth Waldmann
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | | | | | | | | | | | | | | |
Collapse
|
186
|
Lee JK, Choi YL, Kwon M, Park PJ. Mechanisms and Consequences of Cancer Genome Instability: Lessons from Genome Sequencing Studies. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2016; 11:283-312. [PMID: 26907526 DOI: 10.1146/annurev-pathol-012615-044446] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
During tumor evolution, cancer cells can accumulate numerous genetic alterations, ranging from single nucleotide mutations to whole-chromosomal changes. Although a great deal of progress has been made in the past decades in characterizing genomic alterations, recent cancer genome sequencing studies have provided a wealth of information on the detailed molecular profiles of such alterations in various types of cancers. Here, we review our current understanding of the mechanisms and consequences of cancer genome instability, focusing on the findings uncovered through analysis of exome and whole-genome sequencing data. These analyses have shown that most cancers have evidence of genome instability, and the degree of instability is variable within and between cancer types. Importantly, we describe some recent evidence supporting the idea that chromosomal instability could be a major driving force in tumorigenesis and cancer evolution, actively shaping the genomes of cancer cells to maximize their survival advantage.
Collapse
Affiliation(s)
- June-Koo Lee
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, South Korea;
| | - Yoon-La Choi
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, South Korea.,Department of Health Sciences and Technology, Samsung Advanced Institute of Health Sciences and Technology (SAIHST), Sungkyunkwan University School of Medicine, Seoul 06351, South Korea;
| | - Mijung Kwon
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115.,Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115;
| | - Peter J Park
- Department of Biomedical Informatics, Harvard Medical School, Boston, Massachusetts 02115;
| |
Collapse
|
187
|
In Deciphering the Future of Adjuvant Treatment in Colon Cancer, the Journey Matters More than the Achievements. CURRENT COLORECTAL CANCER REPORTS 2016. [DOI: 10.1007/s11888-016-0310-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
188
|
Areses Manrique MC, Iglesias Rey L, Cubiella J. [The long road from molecular biology to clinical practice in colorectal cancer]. GASTROENTEROLOGIA Y HEPATOLOGIA 2016; 39:429-32. [PMID: 26847767 DOI: 10.1016/j.gastrohep.2015.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 11/03/2015] [Accepted: 11/09/2015] [Indexed: 11/27/2022]
Affiliation(s)
| | - Leticia Iglesias Rey
- Servicio de Oncología Médica, Complexo Hospitalario Universitario de Ourense, Ourense, España
| | - Joaquín Cubiella
- Servicio de Aparato Digestivo, Complexo Hospitalario Universitario de Ourense, Instituto de Investigación Biomédica Ourense, Pontevedra y Vigo, Ourense, España.
| |
Collapse
|
189
|
Postel-Vinay S, Boursin Y, Massard C, Hollebecque A, Ileana E, Chiron M, Jung J, Lee J, Balogh Z, Adam J, Vielh P, Angevin E, Lacroix L, Soria JC. Seeking the driver in tumours with apparent normal molecular profile on comparative genomic hybridization and targeted gene panel sequencing: what is the added value of whole exome sequencing? Ann Oncol 2016; 27:344-52. [DOI: 10.1093/annonc/mdv570] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2015] [Accepted: 11/15/2015] [Indexed: 02/06/2023] Open
|
190
|
Kolodner RD. A personal historical view of DNA mismatch repair with an emphasis on eukaryotic DNA mismatch repair. DNA Repair (Amst) 2016; 38:3-13. [PMID: 26698650 PMCID: PMC4740188 DOI: 10.1016/j.dnarep.2015.11.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 10/30/2015] [Accepted: 11/30/2015] [Indexed: 01/12/2023]
Affiliation(s)
- Richard D Kolodner
- Ludwig Institute for Cancer Research, Department of Cellular and Molecular Medicine, Moores-UCSD Cancer Center and Institute for Molecular Medicine, University of CA, San Diego School of Medicine, La Jolla, CA 92093-0669, United States.
| |
Collapse
|
191
|
Schneider JL, Davis J, Kauffman TL, Reiss JA, McGinley C, Arnold K, Zepp J, Gilmore M, Muessig KR, Syngal S, Acheson L, Wiesner GL, Peterson SK, Goddard KAB. Stakeholder perspectives on implementing a universal Lynch syndrome screening program: a qualitative study of early barriers and facilitators. Genet Med 2016; 18:152-61. [PMID: 25880440 PMCID: PMC4608844 DOI: 10.1038/gim.2015.43] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 02/23/2015] [Indexed: 01/02/2023] Open
Abstract
PURPOSE Evidence-based guidelines recommend that all newly diagnosed colon cancer be screened for Lynch syndrome (LS), but best practices for implementing universal tumor screening have not been extensively studied. We interviewed a range of stakeholders in an integrated health-care system to identify initial factors that might promote or hinder the successful implementation of a universal LS screening program. METHODS We conducted interviews with health-plan leaders, managers, and staff. Interviews were audio-recorded and transcribed. Thematic analysis began with a grounded approach and was also guided by the Practical Robust Implementation and Sustainability Model (PRISM). RESULTS We completed 14 interviews with leaders/managers and staff representing involved clinical and health-plan departments. Although stakeholders supported the concept of universal screening, they identified several internal (organizational) and external (environment) factors that promote or hinder implementation. Facilitating factors included perceived benefits of screening for patients and organization, collaboration between departments, and availability of organizational resources. Barriers were also identified, including: lack of awareness of guidelines, lack of guideline clarity, staffing and program "ownership" concerns, and cost uncertainties. Analysis also revealed nine important infrastructure-type considerations for successful implementation. CONCLUSION We found that clinical, laboratory, and administrative departments supported universal tumor screening for LS. Requirements for successful implementation may include interdepartmental collaboration and communication, patient and provider/staff education, and significant infrastructure and resource support related to laboratory processing and systems for electronic ordering and tracking.
Collapse
Affiliation(s)
| | - James Davis
- Center for Health Research, Kaiser Permanente Northwest, Portland, Oregon, USA
| | - Tia L Kauffman
- Center for Health Research, Kaiser Permanente Northwest, Portland, Oregon, USA
| | - Jacob A Reiss
- Center for Health Research, Kaiser Permanente Northwest, Portland, Oregon, USA
| | - Cheryl McGinley
- Center for Health Research, Kaiser Permanente Northwest, Portland, Oregon, USA
| | - Kathleen Arnold
- Center for Health Research, Kaiser Permanente Northwest, Portland, Oregon, USA
| | - Jamilyn Zepp
- Northwest Permanente, Kaiser Permanente Northwest, Portland, Oregon, USA
| | - Marian Gilmore
- Northwest Permanente, Kaiser Permanente Northwest, Portland, Oregon, USA
| | - Kristin R Muessig
- Center for Health Research, Kaiser Permanente Northwest, Portland, Oregon, USA
| | - Sapna Syngal
- Dana-Farber Cancer Institute, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Louise Acheson
- Case Western Reserve University, University Hospitals Case Medical Center, Cleveland, Ohio, USA
| | - Georgia L Wiesner
- Vanderbilt Hereditary Cancer Program, Vanderbilt-Ingram Cancer Center, Nashville, Tennessee, USA
| | - Susan K Peterson
- The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Katrina A B Goddard
- Center for Health Research, Kaiser Permanente Northwest, Portland, Oregon, USA
| |
Collapse
|
192
|
Pusung M, Zeki S, Fitzgerald R. Genomics of Esophageal Cancer and Biomarkers for Early Detection. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 908:237-63. [PMID: 27573775 DOI: 10.1007/978-3-319-41388-4_12] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In-depth molecular characterization of esophageal oncogenesis has improved over the recent years. Advancement in molecular biology and bioinformatics has led to better understanding of its genomic landscape. More specifically, analysis of its pathogenesis at the genetic level has uncovered the involvement of a number of tumor suppressor genes, cell cycle regulators, and receptor tyrosine kinases. Due to its poor prognosis, the development of clinically applicable biomarkers for diagnosis, progression, and treatment has been the focus of many research studies concentrating on upper gastrointestinal malignancies. As in other cancers, early detection and subsequent intervention of the preneoplastic condition significantly improves patient outcomes. Currently, clinically approved surveillance practices heavily depend on expensive, invasive, and sampling-error-prone endoscopic procedures. There is, therefore, a great demand to establish clearly reliable biomarkers that could identify those patients at higher risk of neoplastic progression and hence would greatly benefit from further monitoring and/or intervention. This chapter will present the most recent advances in the analysis of the esophageal cancer genome serving as basis for biomarker development.
Collapse
Affiliation(s)
- Mark Pusung
- MRC Cancer Unit, University of Cambridge, Cambridge, UK
| | | | | |
Collapse
|
193
|
Ripperger T, Schlegelberger B. Acute lymphoblastic leukemia and lymphoma in the context of constitutional mismatch repair deficiency syndrome. Eur J Med Genet 2015; 59:133-42. [PMID: 26743104 DOI: 10.1016/j.ejmg.2015.12.014] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 11/28/2015] [Accepted: 12/01/2015] [Indexed: 12/15/2022]
Abstract
Constitutional mismatch repair deficiency (CMMRD) syndrome is one of the rare diseases associated with a high risk of cancer. Causative mutations are found in DNA mismatch repair genes PMS2, MSH6, MSH2 or MLH1 that are well known in the context of Lynch syndrome. CMMRD follows an autosomal recessive inheritance trait and is characterized by childhood brain tumors and hematological malignancies as well as gastrointestinal cancer in the second and third decades of life. There is a high risk of multiple cancers, occurring synchronously and metachronously. In general, the prognosis is poor. About one third of CMMRD patients develop hematological malignancies as primary (sometimes the only) malignancy or as secondary neoplasm. T-cell non-Hodgkin lymphomas, mainly of mediastinal origin, are the most frequent hematological malignancies. Besides malignant diseases, non-neoplastic features are frequently observed, e.g. café-au-lait spots sometimes resembling neurofibromatosis type I, hypopigmented skin lesions, numerous adenomatous polyps, multiple pilomatricomas, or impaired immunoglobulin class switch recombination. Within the present review, we summarize previously published CMMRD patients with at least one hematological malignancy, provide an overview of steps necessary to substantiate the diagnosis of CMMRD, and refer to the recent most relevant literature.
Collapse
Affiliation(s)
- Tim Ripperger
- Institute of Human Genetics, Hannover Medical School, Hannover, Germany.
| | | |
Collapse
|
194
|
Regulation of mismatch repair by histone code and posttranslational modifications in eukaryotic cells. DNA Repair (Amst) 2015; 38:68-74. [PMID: 26719139 DOI: 10.1016/j.dnarep.2015.11.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Revised: 09/09/2015] [Accepted: 11/30/2015] [Indexed: 12/15/2022]
Abstract
DNA mismatch repair (MMR) protects genome integrity by correcting DNA replication-associated mispairs, modulating DNA damage-induced cell cycle checkpoints and regulating homeologous recombination. Loss of MMR function leads to cancer development. This review describes progress in understanding how MMR is carried out in the context of chromatin and how chromatin organization/compaction, epigenetic mechanisms and posttranslational modifications of MMR proteins influence and regulate MMR in eukaryotic cells.
Collapse
|
195
|
Zheng J, Wang J, Pouliot M, Authier S, Zhou D, Loose DS, Hauer-Jensen M. Gene expression profiling in non-human primate jejunum, ileum and colon after total-body irradiation: a comparative study of segment-specific molecular and cellular responses. BMC Genomics 2015; 16:984. [PMID: 26589571 PMCID: PMC4654820 DOI: 10.1186/s12864-015-2168-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 10/29/2015] [Indexed: 12/26/2022] Open
Abstract
Background Although extensive studies have investigated radiation-induced injuries in particular gastrointestinal (GI) segments, a systematic comparison among the different segments on the basis of mode, magnitude and mechanism has not been reported. Here, a comparative study of segment-specific molecular and cellular responses was performed on jejunum, ileum and colon obtained at three time points (4, 7 and 12 days after irradiation) from non-human primate (Rhesus macaque) models exposed to 6.7 Gy or 7.4 Gy total body irradiation (TBI). Results Pathway analysis on the gene expression profiles identified radiation-induced time-, dose- and segment-dependent activation of tumor necrosis factor α (TNFα) cascade, tight junction, apoptosis, cell cycle control/DNA damage repair and coagulation system signaling. Activation of these signaling pathways suggests that colon sustained the severest mucosal barrier disruption and inflammation, and jejunum the greatest DNA damage, apoptosis and endothelial dysfunction. These more pronounced alterations correlate with the high incidence of macroscopic pathologies that are observed in the colon after TBI. Compared to colon and jejunum, ileum was resistant to radiation injury. In addition to the identification a marked increase of TNFα cascade, this study also identified radiation induced strikingly up-regulated tight junction gene CLDN2 (196-fold after 7.4-Gy TBI), matrix degradation genes such as MMP7 (increased 11- and 41-fold after 6.7-Gy and 7.4-Gy TBI), and anoikis mediated gene EDA2R that mediate mucosal shedding and barrier disruption. Conclusions This is the first systematic comparative study of the molecular and cellular responses to radiation injury in jejunum, ileum and colon. The strongest activation of TNFα cascades and the striking up-regulation of its down-stream matrix-dissociated genes suggest that TNFα modulation could be a target for mitigating radiation-induced mucosal barrier disruption. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-2168-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Junying Zheng
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, Arkansas, 72205, USA.
| | - Junru Wang
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, Arkansas, 72205, USA.
| | | | - Simon Authier
- CiToxLAB North America, Laval, Quebec, Canada, H7V 4B3.
| | - Daohong Zhou
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, Arkansas, 72205, USA.
| | - David S Loose
- Integrative Biology and Pharmacology, University of Texas Medical School at Houston, Houston, TX, 77030, USA.
| | - Martin Hauer-Jensen
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, Arkansas, 72205, USA. .,Surgical Service, Central Arkansas Veterans Healthcare System, Little Rock, Arkansas, 72205, USA.
| |
Collapse
|
196
|
Efficiency of Base Excision Repair of Oxidative DNA Damage and Its Impact on the Risk of Colorectal Cancer in the Polish Population. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2016:3125989. [PMID: 26649135 PMCID: PMC4663340 DOI: 10.1155/2016/3125989] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Revised: 07/08/2015] [Accepted: 07/27/2015] [Indexed: 12/12/2022]
Abstract
DNA oxidative lesions are widely considered as a potential risk factor for colorectal cancer development. The aim of this work was to determine the role of the efficiency of base excision repair, both in lymphocytes and in epithelial tissue, in patients with CRC and healthy subjects. SNPs were identified within genes responsible for steps following glycosylase action in BER, and patients and healthy subjects were genotyped. A radioisotopic BER assay was used for assessing repair efficiency and TaqMan for genotyping. Decreased BER activity was observed in lymphocyte extract from CRC patients and in cancer tissue extract, compared to healthy subjects. In addition, polymorphisms of EXO1, LIG3, and PolB may modulate the risk of colorectal cancer by decreasing (PolB) or increasing (LIG3 and EXO1) the chance of malignant transformation.
Collapse
|
197
|
Chae YK, Chung SY, Davis AA, Carneiro BA, Chandra S, Kaplan J, Kalyan A, Giles FJ. Adenoid cystic carcinoma: current therapy and potential therapeutic advances based on genomic profiling. Oncotarget 2015; 6:37117-34. [PMID: 26359351 PMCID: PMC4741919 DOI: 10.18632/oncotarget.5076] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 08/08/2015] [Indexed: 11/25/2022] Open
Abstract
Adenoid cystic carcinoma (ACC) is a rare cancer with high potential for recurrence and metastasis. Efficacy of current treatment options, particularly for advanced disease, is very limited. Recent whole genome and exome sequencing has dramatically improved our understanding of ACC pathogenesis. A balanced translocation resulting in the MYB-NFIB fusion gene appears to be a fundamental signature of ACC. In addition, sequencing has identified a number of other driver genes mutated in downstream pathways common to other well-studied cancers. Overexpression of oncogenic proteins involved in cell growth, adhesion, cell cycle regulation, and angiogenesis are also present in ACC. Collectively, studies have identified genes and proteins for targeted, mechanism-based, therapies based on tumor phenotypes, as opposed to nonspecific cytotoxic agents. In addition, although few studies in ACC currently exist, immunotherapy may also hold promise. Better genetic understanding will enable treatment with novel targeted agents and initial exploration of immune-based therapies with the goal of improving outcomes for patients with ACC.
Collapse
Affiliation(s)
- Young Kwang Chae
- Northwestern Medicine Developmental Therapeutics Institute, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Su Yun Chung
- Northwestern Medicine Developmental Therapeutics Institute, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Andrew A. Davis
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Benedito A. Carneiro
- Northwestern Medicine Developmental Therapeutics Institute, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Sunandana Chandra
- Northwestern Medicine Developmental Therapeutics Institute, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Jason Kaplan
- Northwestern Medicine Developmental Therapeutics Institute, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Aparna Kalyan
- Northwestern Medicine Developmental Therapeutics Institute, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Francis J. Giles
- Northwestern Medicine Developmental Therapeutics Institute, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
198
|
Lin AY, Lin E. Programmed death 1 blockade, an Achilles heel for MMR-deficient tumors? J Hematol Oncol 2015; 8:124. [PMID: 26542241 PMCID: PMC4636069 DOI: 10.1186/s13045-015-0222-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 10/28/2015] [Indexed: 02/07/2023] Open
Abstract
Program death receptor-1 (PD-1) is upregulated in many tumors and in tumor microenvironment, and PD-1 blockade has led to remarkable immune-based anti-tumor responses in across many tumor types. Pembrolizumab, an anti-programmed death 1 checkpoint inhibitor, resulted in a high rate of immune response in 41 patients with previously treated mismatch repair (MMR)-deficient tumor including colorectal cancer but not in MMR-stable tumor with expectant toxicities. Both immune-based progression-free and overall survival are quite promising and correlate with high mutation loads in the tumor. MMR-deficient tumors made up not an insignificant proportion of GI and GU cancers and are found mostly in younger patients who had better prognosis than MMR-stable tumors. However, MMR-deficient tumors do not respond to cytotoxic chemotherapy as these agents may require intact DNA mismatch repair to be effective. MMR deficiency occurred as a result of mutations in defined DNA repair complex mutations or epigenetics modifications and gene upstream of DNA repair complex. PD-1 blockade represents our first successful shot at one of the Achilles heels of this MMR-deficient tumor Goliath. Only coordinated attack on all of its Achilles heels and healing mechanisms can this tumor Goliath be brought down to its knees.
Collapse
Affiliation(s)
- Andy Yingjie Lin
- SIR RUN RUN SHAW Hospital, School of Medicine, Zhe-Jiang University, Hangzhou, China.
| | - Edward Lin
- P4 Medicine Institute, Seattle Cancer Care Alliance, Fred Hutchinson Cancer Research Center, University of Washington Medical Center, Seattle, WA, 98109, USA.
| |
Collapse
|
199
|
Maresca L, Spugnesi L, Lodovichi S, Cozzani C, Naccarato AG, Tancredi M, Collavoli A, Falaschi E, Rossetti E, Aretini P, Cervelli T, Galli A, Caligo MA. MSH2 role in BRCA1-driven tumorigenesis: A preliminary study in yeast and in human tumors from BRCA1-VUS carriers. Eur J Med Genet 2015; 58:531-9. [PMID: 26381082 DOI: 10.1016/j.ejmg.2015.09.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 09/02/2015] [Accepted: 09/11/2015] [Indexed: 01/18/2023]
Abstract
BRCA1 interacts with several proteins implicated in homologous and non homologous recombination and in mismatch repair. The aim of this study is to determine if MSH2, a well known partner of BRCA1 involved in DNA repair, may contribute to breast and ovarian cancer development and progression. To better understand the functional interaction between BRCA1 and MSH2, we studied the effect of the deletion of MSH2 gene on BRCA1-induced genome instability in yeast. Preliminary results in yeast indicated that MSH2 and BRCA1 may interact to modulate homologous recombination (HR). We also carried out a genetic and epigenetic profiling of MSH2 gene by mutational analysis and promoter methylation evaluation in 9 breast and 2 ovarian tumors from carriers of BRCA1 unknown significance variants (VUS). 2/2 ovarian and 2/9 breast tumors carried MSH2 somatic mutations possible pathogenics (4/11, 36%): a missense mutation in exon 3 (p.G162R), a duplication of exon 1 and a deletion of exon 2. In addition, two germline synonymous variants in exon 11 were identified. None of the tumors showed promoter methylation. In conclusion, a surprisingly high frequency of MSH2 gene mutations has been found in tumor tissues from BRCA1 VUS carrier patients. This result supports the indication deriving from the yeast model that BRCA1 driven tumorigenesis may be modulated by MSH2.
Collapse
Affiliation(s)
- Luisa Maresca
- Section of Genetic Oncology, University of Pisa, Pisa, Italy
| | - Laura Spugnesi
- Section of Genetic Oncology, University of Pisa, Pisa, Italy
| | | | | | | | | | - Anita Collavoli
- Section of Genetic Oncology, University of Pisa, Pisa, Italy
| | | | | | | | | | - Alvaro Galli
- Institute of Clinical Physiology, CNR, Pisa, Italy.
| | | |
Collapse
|
200
|
Neto N, Cunha TM. Do hereditary syndrome-related gynecologic cancers have any specific features? Insights Imaging 2015; 6:545-52. [PMID: 26337050 PMCID: PMC4569599 DOI: 10.1007/s13244-015-0425-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 07/20/2015] [Accepted: 07/29/2015] [Indexed: 12/21/2022] Open
Abstract
Abstract Hereditary syndromes are responsible for 10 % of gynaecologic cancers, among which hereditary breast-ovarian cancer and hereditary non-polyposis colon cancer syndromes, known as HBOC and Lynch syndromes respectively, present the highest relative risk. The latter predisposes to endometrial cancer and both contribute to ovarian cancer. Cowden syndrome-related endometrial cancer and the increased risk of ovarian, uterine and cervical cancers associated with Peutz-Jeghers syndrome, are also demonstrated, while Li-Fraumeni syndrome patients are prone to develop ovarian and endometrial cancers. Despite these syndromes’ susceptibility to gynaecologic cancers being consensual, it is still not clear whether these tumours have any epidemiologic, clinical, pathologic or imaging specific features that could allow any of the intervening physicians to raise suspicion of a hereditary syndrome in patients without known genetic risk. Moreover, controversy exists regarding both screening and surveillance schemes. Our literature review provides an updated perspective on the evidence-based specific features of tumours related to each of these syndromes as well as on the most accepted screening and surveillance guidelines. In addition, some illustrative cases are presented. Teaching Points • HBOC syndrome is mainly associated with ovarian HGSC, which arises in fallopian fimbriae. • LS-related endometrial tumours show histological diversity and predilection for lower uterine segment. • LS and CS-related ovarian cancers are mostly of non-serous type, usually endometrioid. • Ovarian SCTAT and cervical adenoma malignum are strongly associated with PJS. • Unfortunately, hereditary gynaecologic cancers do not seem to have distinctive imaging features.
Collapse
Affiliation(s)
- Nelson Neto
- Radiology Department, Centro Hospitalar de Lisboa Ocidental, Estrada do Forte do Alto do Duque, 1449-005, Lisboa, Portugal.
| | - Teresa Margarida Cunha
- Radiology Department, Instituto Português de Oncologia de Lisboa Francisco Gentil, Rua Professor Lima Basto, 1009-023, Lisboa, Portugal
| |
Collapse
|