151
|
Kadara H, Tran LM, Liu B, Vachani A, Li S, Sinjab A, Zhou XJ, Dubinett SM, Krysan K. Early Diagnosis and Screening for Lung Cancer. Cold Spring Harb Perspect Med 2021; 11:a037994. [PMID: 34001525 PMCID: PMC8415293 DOI: 10.1101/cshperspect.a037994] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Cancer interception refers to actively blocking the cancer development process by preventing progression of premalignancy to invasive disease. The rate-limiting steps for effective lung cancer interception are the incomplete understanding of the earliest molecular events associated with lung carcinogenesis, the lack of preclinical models of pulmonary premalignancy, and the challenge of developing highly sensitive and specific methods for early detection. Recent advances in cancer interception are facilitated by developments in next-generation sequencing, computational methodologies, as well as the renewed emphasis in precision medicine and immuno-oncology. This review summarizes the current state of knowledge in the areas of molecular abnormalities in lung cancer continuum, preclinical human models of lung cancer pathogenesis, and the advances in early lung cancer diagnostics.
Collapse
Affiliation(s)
- Humam Kadara
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Linh M Tran
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California 90095, USA
| | - Bin Liu
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California 90095, USA
| | - Anil Vachani
- Pulmonary, Allergy, and Critical Care Division, Department of Medicine, University of Pennsylvania and Philadelphia VA Medical Center, Philadelphia, Pennsylvania 19104, USA
| | - Shuo Li
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California 90095, USA
| | - Ansam Sinjab
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Xianghong J Zhou
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California 90095, USA
| | - Steven M Dubinett
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California 90095, USA
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California 90095, USA
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, California 90095, USA
- UCLA Jonsson Comprehensive Cancer Center, Los Angeles, California 90024, USA
- VA Greater Los Angeles Healthcare System, Los Angeles, California 90073, USA
| | - Kostyantyn Krysan
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California 90095, USA
- VA Greater Los Angeles Healthcare System, Los Angeles, California 90073, USA
| |
Collapse
|
152
|
Circulating Tumor Cells: Technologies and Their Clinical Potential in Cancer Metastasis. Biomedicines 2021; 9:biomedicines9091111. [PMID: 34572297 PMCID: PMC8467892 DOI: 10.3390/biomedicines9091111] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/21/2021] [Accepted: 08/26/2021] [Indexed: 02/07/2023] Open
Abstract
Circulating tumor cells (CTCs) are single cells or clusters of cells within the circulatory system of a cancer patient. While most CTCs will perish, a small proportion will proceed to colonize the metastatic niche. The clinical importance of CTCs was reaffirmed by the 2008 FDA approval of CellSearch®, a platform that could extract EpCAM-positive, CD45-negative cells from whole blood samples. Many further studies have demonstrated the presence of CTCs to stratify patients based on overall and progression-free survival, among other clinical indices. Given their unique role in metastasis, CTCs could also offer a glimpse into the genetic drivers of metastasis. Investigation of CTCs has already led to groundbreaking discoveries such as receptor switching between primary tumors and metastatic nodules in breast cancer, which could greatly affect disease management, as well as CTC-immune cell interactions that enhance colonization. In this review, we will highlight the growing variety of isolation techniques for investigating CTCs. Next, we will provide clinically relevant context for CTCs, discussing key clinical trials involving CTCs. Finally, we will provide insight into the future of CTC studies and some questions that CTCs are primed to answer.
Collapse
|
153
|
Seibold T, Waldenmaier M, Seufferlein T, Eiseler T. Small Extracellular Vesicles and Metastasis-Blame the Messenger. Cancers (Basel) 2021; 13:cancers13174380. [PMID: 34503190 PMCID: PMC8431296 DOI: 10.3390/cancers13174380] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/23/2021] [Accepted: 08/26/2021] [Indexed: 01/18/2023] Open
Abstract
Simple Summary Due to their systemic nature, metastatic lesions are a major problem for curative cancer treatment. According to a common model for metastasis, tumor cells disseminate by local invasion, survival in the blood stream and extravasation into suitable tissue environments. At secondary sites, metastatic cells adapt, proliferate and foster vascularization to satisfy nutrient and oxygen demand. In recent years, tumors were shown to extensively communicate with cells in the local microenvironment and future metastatic sites by secreting small extracellular vesicles (sEVs, exosomes). sEVs deliver bioactive cargos, e.g., proteins, and in particular, several nucleic acid classes to reprogram target cells, which in turn facilitate tumor growth, cell motility, angiogenesis, immune evasion and establishment of pre-metastatic niches. sEV-cargos also act as biomarkers for diagnosis and prognosis. This review discusses how tumor cells utilize sEVs with nucleic acid cargos to progress through metastasis, and how sEVs may be employed for prognosis and treatment. Abstract Cancer is a complex disease, driven by genetic defects and environmental cues. Systemic dissemination of cancer cells by metastasis is generally associated with poor prognosis and is responsible for more than 90% of cancer deaths. Metastasis is thought to follow a sequence of events, starting with loss of epithelial features, detachment of tumor cells, basement membrane breakdown, migration, intravasation and survival in the circulation. At suitable distant niches, tumor cells reattach, extravasate and establish themselves by proliferating and attracting vascularization to fuel metastatic growth. These processes are facilitated by extensive cross-communication of tumor cells with cells in the primary tumor microenvironment (TME) as well as at distant pre-metastatic niches. A vital part of this communication network are small extracellular vesicles (sEVs, exosomes) with a size of 30–150 nm. Tumor-derived sEVs educate recipient cells with bioactive cargos, such as proteins, and in particular, major nucleic acid classes, to drive tumor growth, cell motility, angiogenesis, immune evasion and formation of pre-metastatic niches. Circulating sEVs are also utilized as biomarker platforms for diagnosis and prognosis. This review discusses how tumor cells facilitate progression through the metastatic cascade by employing sEV-based communication and evaluates their role as biomarkers and vehicles for drug delivery.
Collapse
|
154
|
Martínez-Pena I, Hurtado P, Carmona-Ule N, Abuín C, Dávila-Ibáñez AB, Sánchez L, Abal M, Chaachou A, Hernández-Losa J, Cajal SRY, López-López R, Piñeiro R. Dissecting Breast Cancer Circulating Tumor Cells Competence via Modelling Metastasis in Zebrafish. Int J Mol Sci 2021; 22:ijms22179279. [PMID: 34502201 PMCID: PMC8431683 DOI: 10.3390/ijms22179279] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/06/2021] [Accepted: 08/25/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Cancer metastasis is a deathly process, and a better understanding of the different steps is needed. The shedding of circulating tumor cells (CTCs) and CTC-cluster from the primary tumor, its survival in circulation, and homing are key events of the metastasis cascade. In vitro models of CTCs and in vivo models of metastasis represent an excellent opportunity to delve into the behavior of metastatic cells, to gain understanding on how secondary tumors appear. METHODS Using the zebrafish embryo, in combination with the mouse and in vitro assays, as an in vivo model of the spatiotemporal development of metastases, we study the metastatic competency of breast cancer CTCs and CTC-clusters and the molecular mechanisms. RESULTS CTC-clusters disseminated at a lower frequency than single CTCs in the zebrafish and showed a reduced capacity to invade. A temporal follow-up of the behavior of disseminated CTCs showed a higher survival and proliferation capacity of CTC-clusters, supported by their increased resistance to fluid shear stress. These data were corroborated in mouse studies. In addition, a differential gene signature was observed, with CTC-clusters upregulating cell cycle and stemness related genes. CONCLUSIONS The zebrafish embryo is a valuable model system to understand the biology of breast cancer CTCs and CTC-clusters.
Collapse
Affiliation(s)
- Inés Martínez-Pena
- Roche-Chus Joint Unit, Translational Medical Oncology Group, Oncomet, Health Research Institute of Santiago de Compostela, Travesía da Choupana s/n, 15706 Santiago de Compostela, Spain; (I.M.-P.); (P.H.); (N.C.-U.); (C.A.); (A.B.D.-I.); (R.L.-L.)
- CIBERONC, Centro de Investigación Biomédica en Red Cáncer, 28029 Madrid, Spain; (M.A.); (J.H.-L.); (S.R.y.C.)
| | - Pablo Hurtado
- Roche-Chus Joint Unit, Translational Medical Oncology Group, Oncomet, Health Research Institute of Santiago de Compostela, Travesía da Choupana s/n, 15706 Santiago de Compostela, Spain; (I.M.-P.); (P.H.); (N.C.-U.); (C.A.); (A.B.D.-I.); (R.L.-L.)
| | - Nuria Carmona-Ule
- Roche-Chus Joint Unit, Translational Medical Oncology Group, Oncomet, Health Research Institute of Santiago de Compostela, Travesía da Choupana s/n, 15706 Santiago de Compostela, Spain; (I.M.-P.); (P.H.); (N.C.-U.); (C.A.); (A.B.D.-I.); (R.L.-L.)
| | - Carmen Abuín
- Roche-Chus Joint Unit, Translational Medical Oncology Group, Oncomet, Health Research Institute of Santiago de Compostela, Travesía da Choupana s/n, 15706 Santiago de Compostela, Spain; (I.M.-P.); (P.H.); (N.C.-U.); (C.A.); (A.B.D.-I.); (R.L.-L.)
| | - Ana Belén Dávila-Ibáñez
- Roche-Chus Joint Unit, Translational Medical Oncology Group, Oncomet, Health Research Institute of Santiago de Compostela, Travesía da Choupana s/n, 15706 Santiago de Compostela, Spain; (I.M.-P.); (P.H.); (N.C.-U.); (C.A.); (A.B.D.-I.); (R.L.-L.)
| | - Laura Sánchez
- Departamento de Zoología, Genética y Antropología Física, Facultad de Veterinaria, Universidade de Santiago de Compostela, 27002 Lugo, Spain;
| | - Miguel Abal
- CIBERONC, Centro de Investigación Biomédica en Red Cáncer, 28029 Madrid, Spain; (M.A.); (J.H.-L.); (S.R.y.C.)
- Translational Medical Oncology Group, Oncomet, CIBERONC, Health Research Institute of Santiago (IDIS), University Hospital of Santiago de Compostela (SERGAS), Trav. Choupana s/n, 15706 Santiago de Compostela, Spain
| | - Anas Chaachou
- Translational Molecular Pathology, Department of Pathology, Vall d’Hebron Institute of Research (VHIR), Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain;
| | - Javier Hernández-Losa
- CIBERONC, Centro de Investigación Biomédica en Red Cáncer, 28029 Madrid, Spain; (M.A.); (J.H.-L.); (S.R.y.C.)
- Translational Molecular Pathology, Department of Pathology, Vall d’Hebron Institute of Research (VHIR), Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain;
| | - Santiago Ramón y Cajal
- CIBERONC, Centro de Investigación Biomédica en Red Cáncer, 28029 Madrid, Spain; (M.A.); (J.H.-L.); (S.R.y.C.)
- Translational Molecular Pathology, Department of Pathology, Vall d’Hebron Institute of Research (VHIR), Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain;
| | - Rafael López-López
- Roche-Chus Joint Unit, Translational Medical Oncology Group, Oncomet, Health Research Institute of Santiago de Compostela, Travesía da Choupana s/n, 15706 Santiago de Compostela, Spain; (I.M.-P.); (P.H.); (N.C.-U.); (C.A.); (A.B.D.-I.); (R.L.-L.)
- CIBERONC, Centro de Investigación Biomédica en Red Cáncer, 28029 Madrid, Spain; (M.A.); (J.H.-L.); (S.R.y.C.)
- Translational Medical Oncology Group, Oncomet, CIBERONC, Health Research Institute of Santiago (IDIS), University Hospital of Santiago de Compostela (SERGAS), Trav. Choupana s/n, 15706 Santiago de Compostela, Spain
- Department of Oncology, Complexo Hospitalario Universitario de Santiago de Compostela (SERGAS), 15706 Santiago de Compostela, Spain
| | - Roberto Piñeiro
- Roche-Chus Joint Unit, Translational Medical Oncology Group, Oncomet, Health Research Institute of Santiago de Compostela, Travesía da Choupana s/n, 15706 Santiago de Compostela, Spain; (I.M.-P.); (P.H.); (N.C.-U.); (C.A.); (A.B.D.-I.); (R.L.-L.)
- CIBERONC, Centro de Investigación Biomédica en Red Cáncer, 28029 Madrid, Spain; (M.A.); (J.H.-L.); (S.R.y.C.)
- Correspondence: ; Tel.: +34-981-955-602
| |
Collapse
|
155
|
Zhu HH, Liu YT, Feng Y, Zhang LN, Zhang TM, Dong GL, Xing PY, Wang HY, Shi YK, Hu XS. Circulating tumor cells (CTCs)/circulating tumor endothelial cells (CTECs) and their subtypes in small cell lung cancer: Predictors for response and prognosis. Thorac Cancer 2021; 12:2749-2757. [PMID: 34423906 PMCID: PMC8520806 DOI: 10.1111/1759-7714.14120] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/04/2021] [Accepted: 08/05/2021] [Indexed: 12/27/2022] Open
Abstract
Background The aim of the study was to define the clinical significance of circulating tumor cells (CTCs)/circulating tumor endothelial cells (CTECs) and their subtypes in small cell lung cancer (SCLC) patients. Methods CTCs/CTECs and their subtypes were determined using SE‐iFISH technology in 33 SCLC patients before initial treatment (B1), after two cycles of chemotherapy (B2), at the completion of chemotherapy (B3), and disease progression (B4). The correlations with clinical characteristics, progression‐free survival (PFS), and overall survival (OS) were analyzed. Results CTCs and CTECs were detected in 96.6% and 65.5% of patients, respectively. Patients had higher levels of CTCs compared with CTECs in circulation (p < 0.05). Extensive‐stage SCLC patients tended to have higher CTEC counts (p = 0.035), and the detection of CTC‐white blood cell (CTC‐WBC) clusters was associated with a worse response to treatment (p = 0.030). Patients with CTC‐WBC clusters at B1 (17.3 vs. 22.6 months, p = 0.041) and B2 (19.9 vs. 25.2 months, p = 0.018) had significantly shorter OS than those with no detection. Additionally, their presence was revealed as independent predictors for a worse OS in multivariable analyses (B1: HR 9.3, 95% CI: 1.4–48, p = 0.0079; B2: HR 4.4, 95% CI: 1.1–18, p = 0.041). A high CTC level at B4 was an adverse prognostic factor for SCLC patients (PFS: 8.7 vs. 22.5 months, p = 0.0026; OS: 19 months vs. not reached, p = 0.0086). CTC clusters and CTECs also showed prognostic values. Conclusions The presence of CTC‐WBC clusters at baseline and after two‐cycle chemotherapy and the total CTC counts at the completion of chemotherapy are strong predictors for the prognostic survival of SCLC patients receiving first‐line treatment.
Collapse
Affiliation(s)
- Hao-Hua Zhu
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yu-Tao Liu
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yu Feng
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Li-Na Zhang
- Department of General Medicine, Beijing Chest Hospital, Capital Medical University & Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Tong-Mei Zhang
- Department of General Medicine, Beijing Chest Hospital, Capital Medical University & Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Gui-Lan Dong
- Department of Medical Oncology, The People's Hospital of Tangshan City, Tangshan, China
| | - Pu-Yuan Xing
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Hong-Yu Wang
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yuan-Kai Shi
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xing-Sheng Hu
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
156
|
Bueno de Oliveira T, Camila Braun A, Ribaldo Nicolau U, Ali Abdallah E, da Silva Alves V, Hugo Fonseca de Jesus V, Fernando Calsavara V, Paulo Kowaslki L, Domingos Chinen LT. Prognostic impact and potential predictive role of baseline circulating tumor cells in locally advanced head and neck squamous cell carcinoma. Oral Oncol 2021; 121:105480. [PMID: 34403888 DOI: 10.1016/j.oraloncology.2021.105480] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 07/28/2021] [Accepted: 08/02/2021] [Indexed: 12/24/2022]
Abstract
OBJECTIVES The prognostic impact of circulating tumor cells (CTCs) or circulating tumor microemboli (CTM) in locally advanced head and neck squamous cell carcinoma (LA-HNSCC) is yet to be determined, with conflicting results in previous trials. The role of induction chemotherapy (ICT) in the management of LA-HNSCC is controversial with no predictive biomarkers to guide treatment strategy in this scenario. The aim of this trial is to determine the prognostic impact of CTCs and CTM, their biomarkers expression by immunocytochemistry (ICC), and its potential role as predictors of ICT benefit in LA-HNSCC. MATERIALS AND METHODS Prospective study, with newly diagnosed stage III/IV non-metastatic LA-HNSCC patients treated with curative intent. Blood samples analyzed for CTCs and CTM before treatment using the ISET method. RESULTS A total of 83 patients were included. CTCs counts were an independent prognostic factor for overall survival (OS; HR: 1.17; 95 %CI: 1.05-1.31; p = 0.005) and progression free survival (PFS; HR:1.14; 95 %CI: 1.03-1.26; p = 0.007). Using the Lausen and Schumacher technique, 2.8 CTCs/mL for OS and 3.8 CTCs/mL for PFS were defined as the best cut-offs. CTM were detected in 27.7% of patients, correlating with worse PFS (HR = 2.70; IC95%: 1.30-5.58; p = 0.007). MRP-7 expression in CTM correlated with worse OS (HR = 3.49; 95 %CI: 1.01-12.04; p = 0.047) and PFS (HR = 3.62; 95 %CI: 1.08-12.13; p = 0.037). CTCs counts were predictive of complete response to treatment (OR = 0.74; 95 %CI: 0.58-0.95; p = 0.022) and high counts (cut-off 3.8/mL) and CTM were potential predictors of ICT benefit. CONCLUSION CTCs/CTM had significant prognostic impact and potential role as predictors of ICT benefit in LA-HNSCC.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Luiz Paulo Kowaslki
- Head and Neck Surgery and Otorhinolaryngology Department - AC Camargo Cancer Center, Brazil
| | | |
Collapse
|
157
|
Partial EMT in head and neck cancer biology: a spectrum instead of a switch. Oncogene 2021; 40:5049-5065. [PMID: 34239045 PMCID: PMC8934590 DOI: 10.1038/s41388-021-01868-5] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 05/03/2021] [Accepted: 05/25/2021] [Indexed: 12/14/2022]
Abstract
Our understanding of epithelial-to-mesenchymal transition (EMT) has slowly evolved from a simple two state, binary model to a multi-step, dynamic continuum of epithelial-to-mesenchymal plasticity, with metastable intermediate transition states that may drive cancer metastasis. Head and neck cancer is no exception, and in this review, we use head and neck as a case study for how partial-EMT (p-EMT) cell states may play an important role in cancer progression. In particular, we summarize recent in vitro and in vivo studies that uncover these intermediate transition states, which exhibit both epithelial and mesenchymal properties and appear to have distinct advantages in migration, survival in the bloodstream, and seeding and propagation within secondary metastatic sites. We then summarize the common and distinct regulators of p-EMT as well as methodologies for identifying this unique cellular subpopulation, with a specific emphasis on the role of cutting-edge technologies, such as single cell approaches. Finally, we propose strategies to target p-EMT cells, highlighting potential opportunities for therapeutic intervention to specifically target the process of metastasis. Thus, although significant challenges remain, including numerous gaps in current knowledge, a deeper understanding of EMT plasticity and a genuine identification of EMT as spectrum rather than a switch will be critical for improving patient diagnosis and treatment across oncology.
Collapse
|
158
|
Emerging nanomedicine-based therapeutics for hematogenous metastatic cascade inhibition: Interfering with the crosstalk between "seed and soil". Acta Pharm Sin B 2021; 11:2286-2305. [PMID: 34522588 PMCID: PMC8424221 DOI: 10.1016/j.apsb.2020.11.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/18/2020] [Accepted: 09/28/2020] [Indexed: 12/26/2022] Open
Abstract
Despite considerable progresses in cancer treatment, tumor metastasis is still a thorny issue, which leads to majority of cancer-related deaths. In hematogenous metastasis, the concept of “seed and soil” suggests that the crosstalk between cancer cells (seeds) and premetastatic niche (soil) facilitates tumor metastasis. Considerable efforts have been dedicated to inhibit the tumor metastatic cascade, which is a highly complicated process involving various pathways and biological events. Nonetheless, satisfactory therapeutic outcomes are rarely observed, since it is a great challenge to thwart this multi-phase process. Recent advances in nanotechnology-based drug delivery systems have shown great potential in the field of anti-metastasis, especially compared with conventional treatment methods, which are limited by serious side effects and poor efficacy. In this review, we summarized various factors involved in each phase of the metastatic cascade ranging from the metastasis initiation to colonization. Then we reviewed current approaches of targeting these factors to stifle the metastatic cascade, including modulating primary tumor microenvironment, targeting circulating tumor cells, regulating premetastatic niche and eliminating established metastasis. Additionally, we highlighted the multi-phase targeted drug delivery systems, which hold a better chance to inhibit metastasis. Besides, we demonstrated the limitation and future perspectives of nanomedicine-based anti-metastasis strategies.
Collapse
|
159
|
Wrenn E, Huang Y, Cheung K. Collective metastasis: coordinating the multicellular voyage. Clin Exp Metastasis 2021; 38:373-399. [PMID: 34254215 PMCID: PMC8346286 DOI: 10.1007/s10585-021-10111-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 06/14/2021] [Indexed: 12/16/2022]
Abstract
The metastatic process is arduous. Cancer cells must escape the confines of the primary tumor, make their way into and travel through the circulation, then survive and proliferate in unfavorable microenvironments. A key question is how cancer cells overcome these multiple barriers to orchestrate distant organ colonization. Accumulating evidence in human patients and animal models supports the hypothesis that clusters of tumor cells can complete the entire metastatic journey in a process referred to as collective metastasis. Here we highlight recent studies unraveling how multicellular coordination, via both physical and biochemical coupling of cells, induces cooperative properties advantageous for the completion of metastasis. We discuss conceptual challenges and unique mechanisms arising from collective dissemination that are distinct from single cell-based metastasis. Finally, we consider how the dissection of molecular transitions regulating collective metastasis could offer potential insight into cancer therapy.
Collapse
Affiliation(s)
- Emma Wrenn
- Translational Research Program, Public Health Sciences and Human Biology Divisions, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
- Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, WA, 98195, USA
| | - Yin Huang
- Translational Research Program, Public Health Sciences and Human Biology Divisions, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
| | - Kevin Cheung
- Translational Research Program, Public Health Sciences and Human Biology Divisions, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA.
| |
Collapse
|
160
|
Spelling Out CICs: A Multi-Organ Examination of the Contributions of Cancer Initiating Cells' Role in Tumor Progression. Stem Cell Rev Rep 2021; 18:228-240. [PMID: 34244971 DOI: 10.1007/s12015-021-10195-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/01/2021] [Indexed: 12/15/2022]
Abstract
Tumor invasion and metastasis remain the leading causes of mortality for patients with cancer despite current treatment strategies. In some cancer types, recurrence is considered inevitable due to the lack of effective anti-metastatic therapies. Recent studies across many cancer types demonstrate a close relationship between cancer-initiating cells (CICs) and metastasis, as well as general cancer progression. First, this review describes CICs' contribution to cancer progression. Then we discuss our recent understanding of mechanisms through which CICs promote tumor invasion and metastasis by examining the role of CICs in each stage. Finally, we examine the current understanding of CICs' contribution to therapeutic resistance and recent developments in CIC-targeting drugs. We believe this understanding is key to advancing anti-CIC clinical therapeutics.
Collapse
|
161
|
Enkhbat M, Liu Y, Kim J, Xu Y, Yin Z, Liu T, Deng C, Zou C, Xie X, Li X, Wang P. Expansion of Rare Cancer Cells into Tumoroids for Therapeutic Regimen and Cancer Therapy. ADVANCED THERAPEUTICS 2021. [DOI: 10.1002/adtp.202100017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Myagmartsend Enkhbat
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation Shenzhen Institute of Advanced Technology Chinese Academy of Sciences Shenzhen Guangdong 518055 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Yung‐Chiang Liu
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation Shenzhen Institute of Advanced Technology Chinese Academy of Sciences Shenzhen Guangdong 518055 China
| | - Jua Kim
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation Shenzhen Institute of Advanced Technology Chinese Academy of Sciences Shenzhen Guangdong 518055 China
| | - Yanshan Xu
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation Shenzhen Institute of Advanced Technology Chinese Academy of Sciences Shenzhen Guangdong 518055 China
| | - Zongyi Yin
- Department of Hepatobiliary Surgery General Hospital of Shenzhen University Guangdong 518055 China
| | - Tzu‐Ming Liu
- Cancer Center, Faculty of Health Sciences University of Macau Macao 999078 China
| | - Chu‐Xia Deng
- Cancer Center, Faculty of Health Sciences University of Macau Macao 999078 China
| | - Chang Zou
- The First Affiliated Hospital of Southern University Shenzhen People's Hospital Shenzhen Guangdong 518020 China
| | - Xi Xie
- State Key Laboratory of Optoelectronic Materials and Technologies School of Electronics and Information Technology Sun Yat‐sen University Guangzhou 510275 China
| | - Xiaowu Li
- Department of Hepatobiliary Surgery General Hospital of Shenzhen University Guangdong 518055 China
| | - Peng‐Yuan Wang
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation Shenzhen Institute of Advanced Technology Chinese Academy of Sciences Shenzhen Guangdong 518055 China
- Department of Chemistry and Biotechnology Swinburne University of Technology Victoria 3122 Australia
| |
Collapse
|
162
|
Berthelet J, Wimmer VC, Whitfield HJ, Serrano A, Boudier T, Mangiola S, Merdas M, El-Saafin F, Baloyan D, Wilcox J, Wilcox S, Parslow AC, Papenfuss AT, Yeo B, Ernst M, Pal B, Anderson RL, Davis MJ, Rogers KL, Hollande F, Merino D. The site of breast cancer metastases dictates their clonal composition and reversible transcriptomic profile. SCIENCE ADVANCES 2021; 7:eabf4408. [PMID: 34233875 PMCID: PMC8262813 DOI: 10.1126/sciadv.abf4408] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 05/25/2021] [Indexed: 05/03/2023]
Abstract
Intratumoral heterogeneity is a driver of breast cancer progression, but the nature of the clonal interactive network involved in this process remains unclear. Here, we optimized the use of optical barcoding to visualize and characterize 31 cancer subclones in vivo. By mapping the clonal composition of thousands of metastases in two clinically relevant sites, the lungs and liver, we found that metastases were highly polyclonal in lungs but not in the liver. Furthermore, the transcriptome of the subclones varied according to their metastatic niche. We also identified a reversible niche-driven signature that was conserved in lung and liver metastases collected during patient autopsies. Among this signature, we found that the tumor necrosis factor-α pathway was up-regulated in lung compared to liver metastases, and inhibition of this pathway affected metastasis diversity. These results highlight that the cellular and molecular heterogeneity observed in metastases is largely dictated by the tumor microenvironment.
Collapse
Affiliation(s)
- Jean Berthelet
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC 3084, Australia.
- School of Cancer Medicine, La Trobe University, Bundoora, VIC 3086, Australia
| | - Verena C Wimmer
- Advanced Technology and Biology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
- Department of Medical Biology, Faculty of Medicine, Dentistry, and Health Science, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Holly J Whitfield
- Department of Medical Biology, Faculty of Medicine, Dentistry, and Health Science, The University of Melbourne, Parkville, VIC 3010, Australia
- Bioinformatics Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
| | - Antonin Serrano
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC 3084, Australia
- Department of Medical Biology, Faculty of Medicine, Dentistry, and Health Science, The University of Melbourne, Parkville, VIC 3010, Australia
- Immunology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
| | - Thomas Boudier
- Advanced Technology and Biology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
- Department of Medical Biology, Faculty of Medicine, Dentistry, and Health Science, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Stefano Mangiola
- Department of Medical Biology, Faculty of Medicine, Dentistry, and Health Science, The University of Melbourne, Parkville, VIC 3010, Australia
- Bioinformatics Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
| | - Michal Merdas
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC 3084, Australia
- School of Cancer Medicine, La Trobe University, Bundoora, VIC 3086, Australia
| | - Farrah El-Saafin
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC 3084, Australia
- School of Cancer Medicine, La Trobe University, Bundoora, VIC 3086, Australia
| | - David Baloyan
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC 3084, Australia
- School of Cancer Medicine, La Trobe University, Bundoora, VIC 3086, Australia
| | - Jordan Wilcox
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC 3084, Australia
- School of Cancer Medicine, La Trobe University, Bundoora, VIC 3086, Australia
| | - Steven Wilcox
- Advanced Technology and Biology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
- Department of Medical Biology, Faculty of Medicine, Dentistry, and Health Science, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Adam C Parslow
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC 3084, Australia
- School of Cancer Medicine, La Trobe University, Bundoora, VIC 3086, Australia
| | - Anthony T Papenfuss
- Department of Medical Biology, Faculty of Medicine, Dentistry, and Health Science, The University of Melbourne, Parkville, VIC 3010, Australia
- Bioinformatics Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
- Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC 3000, Australia
| | - Belinda Yeo
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC 3084, Australia
- School of Cancer Medicine, La Trobe University, Bundoora, VIC 3086, Australia
- Austin Health, Heidelberg, VIC 3084, Australia
| | - Matthias Ernst
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC 3084, Australia
- School of Cancer Medicine, La Trobe University, Bundoora, VIC 3086, Australia
| | - Bhupinder Pal
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC 3084, Australia
- School of Cancer Medicine, La Trobe University, Bundoora, VIC 3086, Australia
| | - Robin L Anderson
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC 3084, Australia
- School of Cancer Medicine, La Trobe University, Bundoora, VIC 3086, Australia
- Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC 3000, Australia
| | - Melissa J Davis
- Department of Medical Biology, Faculty of Medicine, Dentistry, and Health Science, The University of Melbourne, Parkville, VIC 3010, Australia
- Bioinformatics Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
- Department of Clinical Pathology, Faculty of Medicine, Dentistry, and Health Science, The University of Melbourne, Melbourne, VIC 3000, Australia
| | - Kelly L Rogers
- Advanced Technology and Biology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
- Department of Medical Biology, Faculty of Medicine, Dentistry, and Health Science, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Frédéric Hollande
- Department of Clinical Pathology, Faculty of Medicine, Dentistry, and Health Science, The University of Melbourne, Melbourne, VIC 3000, Australia
- University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Melbourne, VIC 3000, Australia
| | - Delphine Merino
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC 3084, Australia.
- School of Cancer Medicine, La Trobe University, Bundoora, VIC 3086, Australia
- Department of Medical Biology, Faculty of Medicine, Dentistry, and Health Science, The University of Melbourne, Parkville, VIC 3010, Australia
- Immunology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
| |
Collapse
|
163
|
Tsai WS, Hung TF, Chen JY, Huang SH, Chang YC. Early Detection and Dynamic Changes of Circulating Tumor Cells in Transgenic NeuN Transgenic (NTTg) Mice with Spontaneous Breast Tumor Development. Cancers (Basel) 2021; 13:cancers13133294. [PMID: 34209279 PMCID: PMC8267737 DOI: 10.3390/cancers13133294] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 06/21/2021] [Accepted: 06/23/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary This study aimed to prove the early presence of circulating tumor cells (CTCs) with viability and tumorigenesis in a murine model that spontaneously develops breast cancer. Serial CTC examinations were performed on NeuN transgenic mice, starting from the age of 8 weeks and continuing after palpable tumor formation. Prior to the detection of palpable tumors, the CTC counts rose over time from 1 ± 1.6 to 16 ± 9.5 per 75 μL; this number continued to grow with tumor development. The viability and tumorigenesis of the collected CTCs were confirmed by re-implanting the cells into a non-cancer-bearing mouse. Ultrasonography with Doppler showed a significant correlation between CTCs and tumor vascular density (p-value < 0.01), rather than tumor volume (p-value 0.076). Abstract Background: This study used NeuN transgenic (NTTg) mice with spontaneous breast tumor development to evaluate the dynamic changes of circulating tumor cells (CTCs) prior to and during tumor development. Methods: In this longitudinal, clinically uninterrupted study, we collected 75 μL of peripheral blood at the age of 8, 12, 16, and 20 weeks in the first group of five mice, and at the age of 32 weeks, the time of tumor palpability, and one week after tumor palpability in the second group of four mice. Diluted blood samples were run through a modified mouse-CMx chip to isolate the CTCs. Results: The CTC counts of the first group of mice were low (1 ± 1.6) initially. The average CTC counts were 16 ± 9.5, 29.0 ± 18.2, and 70.0 ± 30.3 cells per 75 μL blood at the age of 32 weeks, the time of tumor palpability, and one week after tumor palpability, respectively. There was a significant positive correlation between an increase in CTC levels and tumor vascular density (p-value < 0.01). This correlation was stronger than that between CTC levels and tumor size (p-value = 0.076). The captured CTCs were implanted into a non-tumor-bearing NTTg mouse for xenografting, confirming their viability and tumorigenesis. Conclusion: Serial CTCs during an early stage of tumor progression were quantified and found to be positively correlated with the later tumor vascular density and size. Furthermore, the successful generation of CTC-derived xenografts indicates the tumorigenicity of this early onset CTC population.
Collapse
Affiliation(s)
- Wen-Sy Tsai
- Division of Colon and Rectal Surgery, Department of Surgery, Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Taoyuan 33305, Taiwan; (W.-S.T.); (S.-H.H.)
| | - Tsung-Fu Hung
- Genomics Research Center, Academia Sinica, Nankang, Taipei 115, Taiwan; (T.-F.H.); (J.-Y.C.)
| | - Jia-Yang Chen
- Genomics Research Center, Academia Sinica, Nankang, Taipei 115, Taiwan; (T.-F.H.); (J.-Y.C.)
- National Laboratory Animal Center, National Research Laboratories, Taipei 115, Taiwan
| | - Shu-Huan Huang
- Division of Colon and Rectal Surgery, Department of Surgery, Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Taoyuan 33305, Taiwan; (W.-S.T.); (S.-H.H.)
| | - Ying-Chih Chang
- Genomics Research Center, Academia Sinica, Nankang, Taipei 115, Taiwan; (T.-F.H.); (J.-Y.C.)
- National Laboratory Animal Center, National Research Laboratories, Taipei 115, Taiwan
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
- Biomedical Translational Research Center, Academia Sinica, Taipei 115, Taiwan
- Correspondence: ; Tel.: +886-227899930
| |
Collapse
|
164
|
Ju L, Yang J, Zhai C, Chai S, Dong Z, Li M. Survival, Chemotherapy and Chemosensitivity Predicted by CTC Cultured In Vitro of SCLC Patients. Front Oncol 2021; 11:683318. [PMID: 34249732 PMCID: PMC8267575 DOI: 10.3389/fonc.2021.683318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 06/10/2021] [Indexed: 11/13/2022] Open
Abstract
Purpose The prognosis for small cell lung cancer (SCLC) patients receiving later-line treatment is very poor and there is still no standard treatments after the second-line setting. Analyzing the susceptibility of chemotherapeutic drugs with circulating tumor cells (CTCs) cultured in vitro may contribute to optimize the therapeutic regimen. However, so far CTCs have been barely used for studying their chemosensitivity due to the lack of technology to obtain wholly intact and viable CTCs. Methods Based on a retrospective study of the therapeutic response of 99 patients with unresectable SCLC, the CTC count in 14 SCLC patients was detected before and after chemotherapy to evaluate its role as a potential marker of response. Furthermore, the drug susceptibility of CTCs cultured in vitro obtained from ClearCell FX® System was tested and the therapy response was evaluated. Results All of the 99 patients received the first-line chemotherapy and the objective response rate (ORR) was 74.7%. A total of 36 patients received the second-line therapy and the average duration was 2.6 months, and only 11 cases out of them received the third-line therapy but no one responded. The change of CTC counts was identified to be correlated with therapy response. However all the five SCLC patients who were administered with the drugs according to the drug susceptibility test of CTCs for two cycles underwent progression of disease. Conclusion The results showed that the responses of chemotherapy are very poor in later lines and the drug susceptibility test using CTCs primary cultured in vitro may not benefit the improvement of therapeutic regimen of SCLC patients.
Collapse
Affiliation(s)
- Lixia Ju
- Department of Integrative Medicine, Shanghai Pulmonary Hospital, Tongji University, Shanghai, China
| | - Juan Yang
- Department of Integrative Medicine, Shanghai Pulmonary Hospital, Tongji University, Shanghai, China
| | - Changyun Zhai
- Department of Medical Oncology, Yancheng Traditional Chinese Medicine (TCM) Hospital, Nanjing University of Traditional Chinese Medicine, Yancheng, China
| | - Shuizhen Chai
- Department of Integrative Medicine, Shanghai Pulmonary Hospital, Tongji University, Shanghai, China
| | - Zhiyi Dong
- Department of Integrative Medicine, Shanghai Pulmonary Hospital, Tongji University, Shanghai, China
| | - Minghua Li
- Department of Oncology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
165
|
Zhang H, Lin X, Huang Y, Wang M, Cen C, Tang S, Dique MR, Cai L, Luis MA, Smollar J, Wan Y, Cai F. Detection Methods and Clinical Applications of Circulating Tumor Cells in Breast Cancer. Front Oncol 2021; 11:652253. [PMID: 34150621 PMCID: PMC8208079 DOI: 10.3389/fonc.2021.652253] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 04/29/2021] [Indexed: 12/18/2022] Open
Abstract
Circulating Tumor Cells (CTCs) are cancer cells that split away from the primary tumor and appear in the circulatory system as singular units or clusters, which was first reported by Dr. Thomas Ashworth in 1869. CTCs migrate and implantation occurs at a new site, in a process commonly known as tumor metastasis. In the case of breast cancer, the tumor cells often migrate into locations such as the lungs, brain, and bones, even during the early stages, and this is a notable characteristic of breast cancer. Survival rates have increased significantly over the past few decades because of progress made in radiology and tissue biopsy, making early detection and diagnosis of breast cancer possible. However, liquid biopsy, particularly that involving the collection of CTCs, is a non-invasive method to detect tumor cells in the circulatory system, which can be easily isolated from human plasma, serum, and other body fluids. Compared to traditional tissue biopsies, fluid sample collection has the advantages of being readily available and more acceptable to the patient. It can also detect tumor cells in blood earlier and in smaller numbers, possibly allowing for diagnosis prior to any tumor detection using imaging methods. Because of the scarcity of CTCs circulating in blood vessels (only a few CTCs among billions of erythrocytes and leukocytes), thorough but accurate detection methods are particularly important for further clinical applications.
Collapse
Affiliation(s)
- Hongyi Zhang
- Department of Breast Surgery, Yangpu Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiaoyan Lin
- Department of Breast Surgery, Yangpu Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yuan Huang
- Cellomics International Limited, Hong Kong, China
| | - Minghong Wang
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Chunmei Cen
- Department of Breast Surgery, Yangpu Hospital, Tongji University School of Medicine, Shanghai, China
| | - Shasha Tang
- Department of Breast Surgery, Yangpu Hospital, Tongji University School of Medicine, Shanghai, China
| | - Marcia R Dique
- Department of Breast Surgery, Yangpu Hospital, Tongji University School of Medicine, Shanghai, China
| | - Lu Cai
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Manuel A Luis
- Department of Breast Surgery, Yangpu Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jillian Smollar
- Department of Biomedical Engineering, The City College of New York, New York, NY, United States
| | - Yuan Wan
- Department of Biomedical Engineering, The City College of New York, New York, NY, United States
| | - Fengfeng Cai
- Department of Breast Surgery, Yangpu Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
166
|
Vasseur A, Kiavue N, Bidard F, Pierga J, Cabel L. Clinical utility of circulating tumor cells: an update. Mol Oncol 2021; 15:1647-1666. [PMID: 33289351 PMCID: PMC8169442 DOI: 10.1002/1878-0261.12869] [Citation(s) in RCA: 134] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 11/21/2020] [Accepted: 11/30/2020] [Indexed: 12/12/2022] Open
Abstract
The prognostic role of circulating tumor cells (CTCs) has been clearly demonstrated in many types of cancer. However, their roles in diagnostic and treatment strategies remain to be defined. In this review, we present an overview of the current clinical validity of CTCs in nonmetastatic and metastatic cancer, and the main studies or concepts investigating the clinical utility of CTCs. In particular, we focus on breast, lung, colorectal, and prostate cancer. Two major topics concerning the clinical utility of CTC are discussed: treatment based on CTC count or CTC variations, and treatment based on the molecular characteristics of CTCs. Although some of these studies are inconclusive, many are still ongoing, and their results could help to define the role of CTCs in the management of cancers. A summary of published or ongoing phase II-III trials is also presented.
Collapse
Affiliation(s)
- Antoine Vasseur
- Department of Medical OncologyParis and Saint‐Cloud Institut CurieFrance
| | - Nicolas Kiavue
- Department of Medical OncologyParis and Saint‐Cloud Institut CurieFrance
| | - François‐Clément Bidard
- Department of Medical OncologyParis and Saint‐Cloud Institut CurieFrance
- UVSQParis‐Saclay UniversityFrance
- Circulating Tumor Biomarkers laboratoryInserm CIC‐BT 1428Institut CurieParisFrance
| | - Jean‐Yves Pierga
- Department of Medical OncologyParis and Saint‐Cloud Institut CurieFrance
- Circulating Tumor Biomarkers laboratoryInserm CIC‐BT 1428Institut CurieParisFrance
- Paris UniversityFrance
| | - Luc Cabel
- Department of Medical OncologyParis and Saint‐Cloud Institut CurieFrance
- Circulating Tumor Biomarkers laboratoryInserm CIC‐BT 1428Institut CurieParisFrance
| |
Collapse
|
167
|
Farino Reyes CJ, Pradhan S, Slater JH. The Influence of Ligand Density and Degradability on Hydrogel Induced Breast Cancer Dormancy and Reactivation. Adv Healthc Mater 2021; 10:e2002227. [PMID: 33929776 PMCID: PMC8555704 DOI: 10.1002/adhm.202002227] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 03/26/2021] [Indexed: 01/07/2023]
Abstract
The role of hydrogel properties in regulating the phenotype of triple negative metastatic breast cancer is investigated using four cell lines: the MDA-MB-231 parental line and three organotropic sublines BoM-1833 (bone-tropic), LM2-4175 (lung-tropic), and BrM2a-831 (brain-tropic). Each line is encapsulated and cultured for 15 days in three poly(ethylene glycol) (PEG)-based hydrogel formulations composed of proteolytically degradable PEG, integrin-ligating RGDS, and the non-degradable crosslinker N-vinyl pyrrolidone. Dormancy-associated metrics including viable cell density, proliferation, metabolism, apoptosis, chemoresistance, phosphorylated-ERK and -p38, and morphological characteristics are quantified. A multimetric classification approach is implemented to categorize each hydrogel-induced phenotype as: 1) growth, 2) balanced tumor dormancy, 3) balanced cellular dormancy, or 4) restricted survival, cellular dormancy. Hydrogels with high adhesivity and degradability promote growth. Hydrogels with no adhesivity, but high degradability, induce restricted survival, cellular dormancy in the parental line and balanced cellular dormancy in the organotropic lines. Hydrogels with reduced adhesivity and degradability induce balanced cellular dormancy in the parental and lung-tropic lines and balanced tumor mass dormancy in bone- and brain-tropic lines. The ability to induce escape from dormancy via dynamic incorporation of RGDS is also presented. These results demonstrate that ECM properties and organ-tropism synergistically regulate cancer cell phenotype and dormancy.
Collapse
Affiliation(s)
- Cindy J Farino Reyes
- Department of Biomedical Engineering, University of Delaware, 590 Avenue 1743, Biomedical Engineering, Newark, DE, 19713, USA
| | - Shantanu Pradhan
- Department of Biomedical Engineering, University of Delaware, 590 Avenue 1743, Biomedical Engineering, Newark, DE, 19713, USA
| | - John H Slater
- Department of Biomedical Engineering, University of Delaware, 590 Avenue 1743, Biomedical Engineering, Newark, DE, 19713, USA
| |
Collapse
|
168
|
Labib M, Kelley SO. Circulating tumor cell profiling for precision oncology. Mol Oncol 2021; 15:1622-1646. [PMID: 33448107 PMCID: PMC8169448 DOI: 10.1002/1878-0261.12901] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 12/19/2020] [Accepted: 01/11/2021] [Indexed: 02/06/2023] Open
Abstract
Analysis of circulating tumor cells (CTCs) collected from patient's blood offers a broad range of opportunities in the field of precision oncology. With new advances in profiling technology, it is now possible to demonstrate an association between the molecular profiles of CTCs and tumor response to therapy. In this Review, we discuss mechanisms of tumor resistance to therapy and their link to phenotypic and genotypic properties of CTCs. We summarize key technologies used to isolate and analyze CTCs and discuss recent clinical studies that examined CTCs for genomic and proteomic predictors of responsiveness to therapy. We also point out current limitations that still hamper the implementation of CTCs into clinical practice. We finally reflect on how these shortcomings can be addressed with the likely contribution of multiparametric approaches and advanced data analytics.
Collapse
Affiliation(s)
- Mahmoud Labib
- Department of Pharmaceutical SciencesUniversity of TorontoCanada
| | - Shana O. Kelley
- Department of Pharmaceutical SciencesUniversity of TorontoCanada
- Institute for Biomaterials and Biomedical EngineeringUniversity of TorontoCanada
- Department of BiochemistryUniversity of TorontoCanada
- Department of ChemistryUniversity of TorontoCanada
| |
Collapse
|
169
|
Charles Jacob HK, Charles Richard JL, Signorelli R, Kashuv T, Lavania S, Vaish U, Boopathy R, Middleton A, Boone MM, Sundaram R, Dudeja V, Saluja AK. Modulation of Early Neutrophil Granulation: The Circulating Tumor Cell-Extravesicular Connection in Pancreatic Ductal Adenocarcinoma. Cancers (Basel) 2021; 13:cancers13112727. [PMID: 34072942 PMCID: PMC8198339 DOI: 10.3390/cancers13112727] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/19/2021] [Accepted: 05/24/2021] [Indexed: 12/22/2022] Open
Abstract
Simple Summary Circulating tumor cells (CTCs) found in the blood of pancreatic cancer patients show a worse prognosis to therapy if they are seen in clusters of cells with neutrophils or platelets or with other cell types than when they are seen as singlets. We wanted to investigate if there is a secondary mode of communication between the CTCs and neutrophils that causes them to associate. We describe for the first time an extravesicular (EV) mediated communication between CTCs and neutrophils that modulates early transcriptome changes that can cause neutrophils to partially degranulate and form associations. We also identify the protein cargo carried in such EVs and how when added to naïve neutrophils, they can modulate transcriptomic changes in neutrophils partially disarming them to form clusters rather than undergo specialized cell death, which is characterized by release of condensed chromatin (NETs) and granular contents termed as NETosis. Abstract Tumor cells dissociate from the primary site and enter into systemic circulation (circulating tumor cells, CTCs) either alone or as tumor microemboli (clusters); the latter having an increased predisposition towards forming distal metastases than single CTCs. The formation of clusters is, in part, created by contacts between cell–cell junction proteins and/or cytokine receptor pairs with other cells such as neutrophils, platelets, fibroblasts, etc. In the present study, we provide evidence for an extravesicular (EV) mode of communication between pancreatic cancer CTCs and neutrophils. Our results suggest that the EV proteome of CTCs contain signaling proteins that can modulate degranulation and granule mobilization in neutrophils and, also, contain tissue plasminogen activator and other proteins that can regulate cluster formation. By exposing naïve neutrophils to EVs isolated from CTCs, we further show how these changes are modulated in a dynamic fashion indicating evidence for a deeper EV based remodulatory effect on companion cells in clusters.
Collapse
Affiliation(s)
- Harrys Kishore Charles Jacob
- Departments of Surgery, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (H.K.C.J.); (S.L.); (A.M.); (R.S.); (V.D.)
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, FL 33136, USA
| | - John Lalith Charles Richard
- School of Biosciences, Engineering and Technology (SBET), VIT Bhopal University, Madhya Pradesh 466114, India;
| | | | - Tyler Kashuv
- Department of Biochemistry and Molecular Biology, University of Miami, Miami, FL 33146, USA;
| | - Shweta Lavania
- Departments of Surgery, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (H.K.C.J.); (S.L.); (A.M.); (R.S.); (V.D.)
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, FL 33136, USA
| | - Utpreksha Vaish
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35233, USA;
| | - Ranjitha Boopathy
- Department of Life Sciences, Shiv Nadar University, Greater Noida 201304, India;
| | - Ashley Middleton
- Departments of Surgery, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (H.K.C.J.); (S.L.); (A.M.); (R.S.); (V.D.)
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, FL 33136, USA
| | | | - Ramakrishnan Sundaram
- Departments of Surgery, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (H.K.C.J.); (S.L.); (A.M.); (R.S.); (V.D.)
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, FL 33136, USA
| | - Vikas Dudeja
- Departments of Surgery, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (H.K.C.J.); (S.L.); (A.M.); (R.S.); (V.D.)
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, FL 33136, USA
- Department of Life Sciences, Shiv Nadar University, Greater Noida 201304, India;
| | - Ashok Kumar Saluja
- Departments of Surgery, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (H.K.C.J.); (S.L.); (A.M.); (R.S.); (V.D.)
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, FL 33136, USA
- Correspondence: ; Tel.: +1-305-243-2703
| |
Collapse
|
170
|
Interplay between desmoglein2 and hypoxia controls metastasis in breast cancer. Proc Natl Acad Sci U S A 2021; 118:2014408118. [PMID: 33431674 DOI: 10.1073/pnas.2014408118] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Metastasis is the major cause of cancer death. An increased level of circulating tumor cells (CTCs), metastatic cancer cells that have intravasated into the circulatory system, is particularly associated with colonization of distant organs and poor prognosis. However, the key factors required for tumor cell dissemination and colonization remain elusive. We found that high expression of desmoglein2 (DSG2), a component of desmosome-mediated intercellular adhesion complexes, promoted tumor growth, increased the prevalence of CTC clusters, and facilitated distant organ colonization. The dynamic regulation of DSG2 by hypoxia was key to this process, as down-regulation of DSG2 in hypoxic regions of primary tumors led to elevated epithelial-mesenchymal transition (EMT) gene expression, allowing cells to detach from the primary tumor and undergo intravasation. Subsequent derepression of DSG2 after intravasation and release of hypoxic stress was associated with an increased ability to colonize distant organs. This dynamic regulation of DSG2 was mediated by Hypoxia-Induced Factor1α (HIF1α). In contrast to its more widely observed function to promote expression of hypoxia-inducible genes, HIF1α repressed DSG2 by recruitment of the polycomb repressive complex 2 components, EZH2 and SUZ12, to the DSG2 promoter in hypoxic cells. Consistent with our experimental data, DSG2 expression level correlated with poor prognosis and recurrence risk in breast cancer patients. Together, these results demonstrated the importance of DSG2 expression in metastasis and revealed a mechanism by which hypoxia drives metastasis.
Collapse
|
171
|
Zhou J, Zhu Y, Li Y, Liu K, He F, Xu S, Li X, Li L, Hu J, Liu Y. Combined detection of circulating tumor cells, α-fetoprotein heterogene-3 and α-fetoprotein in the early diagnosis of HCC for the prediction of efficacy, prognosis, recurrence after microwave ablation. Infect Agent Cancer 2021; 16:28. [PMID: 33971914 PMCID: PMC8111940 DOI: 10.1186/s13027-021-00367-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 04/12/2021] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Early diagnosis can significantly improve treatment outcomes for hepatocellular carcinoma (HCC) patients. Currently, the dosage of serum alpha fetoprotein (AFP) is widely used in the diagnosis of HCC, but this biomarker has low specificity and may cause false positive or false negative results. Thus, it's necessary to find and validate other serum tumor markers that in association for AFP would increase the sensitivity and the specificity in the HCC diagnosis. This study investigated the predictive value of combined of AFP, AFP-L3, and Circulating tumor cells (CTCs). METHODS A total of 105 patients with HCC after microwave ablation (MWA) were divided into non recurrence group, recurrence group, good prognosis (CR + PR group, CR: Complete remission, PR: Partial remission) and poor prognosis (SD + PD group, SD: Stable, PD: Progression). ROC curve was used to analyze the short-term efficacy, prognosis and clinical value of combined detection of the three indicators in predicting postoperative recurrence of HCC patients with MWA. RESULTS The positive rate of serum CTCs, AFP-L3 and AFP combined detection in the diagnosis of HCC is higher than that of single index and two index detection. The AUC, sensitivity and specificity of serum CTCs, AFP-L3 and AFP combined detection was better than that of single index and two indexes in patients with HCC after MWA. CONCLUSIONS Combined detection of AFP, AFP-L3, and CTCs can effectively make up for the shortcomings of the detection with single and pairwise indicators. It can't only diagnose HCC in early, but also has a high clinical value of predicting the short-term efficacy, prognosis and recurrence of HCC patients after MWA treatment.
Collapse
Affiliation(s)
- Jian Zhou
- Department of Infectious Diseases, Puren Hospital Affiliated to Wuhan University of Science and Technology, 430081, Wuhan, China
| | - Yue Zhu
- Biological Cell Therapy Research Center, Puren Hospital Affiliated to Wuhan University of Science and Technology, 430081, Wuhan, China
| | - Yi Li
- Department of Infectious Diseases, Puren Hospital Affiliated to Wuhan University of Science and Technology, 430081, Wuhan, China
| | - Kun Liu
- Biological Cell Therapy Research Center, Puren Hospital Affiliated to Wuhan University of Science and Technology, 430081, Wuhan, China
| | - Fei He
- Department of Ultrasound Interventional Therapy, Tianyou Hospital Affiliated to Wuhan University of Science and Technology, 430064, Wuhan, China
| | - Sihuan Xu
- Biological Cell Therapy Research Center, Puren Hospital Affiliated to Wuhan University of Science and Technology, 430081, Wuhan, China
| | - Xin Li
- Biological Cell Therapy Research Center, Puren Hospital Affiliated to Wuhan University of Science and Technology, 430081, Wuhan, China
| | - Li Li
- The Ministry of Science and Education, Puren Hospital Affiliated to Wuhan University of Science and Technology, 430081, Wuhan, China
| | - Junfang Hu
- Department of Pharmacy, Puren Hospital Affiliated to Wuhan University of Science and Technology, 430081, Wuhan, China
| | - Yan Liu
- Biological Cell Therapy Research Center, Puren Hospital Affiliated to Wuhan University of Science and Technology, 430081, Wuhan, China.
| |
Collapse
|
172
|
Pizzutilo EG, Pedrani M, Amatu A, Ruggieri L, Lauricella C, Veronese SM, Signorelli D, Cerea G, Giannetta L, Siena S, Sartore-Bianchi A. Liquid Biopsy for Small Cell Lung Cancer either De Novo or Transformed: Systematic Review of Different Applications and Meta-Analysis. Cancers (Basel) 2021; 13:2265. [PMID: 34066817 PMCID: PMC8125928 DOI: 10.3390/cancers13092265] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 05/02/2021] [Accepted: 05/03/2021] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND The potential added value of liquid biopsy (LB) is not well determined in the case of small cell lung cancer (SCLC), an aggressive tumor that can occur either de novo or from the histologic transformation of non-small cell lung cancer (NSCLC). METHODS A systematic review of studies adopting LB in patients with SCLC have been performed to assess the clinical utility of circulating tumor DNA (ctDNA) or circulating tumor cells (CTCs). RESULTS After a screening of 728 records, 62 studies (32 evaluating CTCs, 27 ctDNA, and 3 both) met predetermined eligibility criteria. Only four studies evaluated LB in the diagnostic setting for SCLC, while its prognostic significance was evaluated in 38 studies and prominently supported by both ctDNA and CTCs. A meta-analysis of 11 studies as for CTCs enumeration showed an HR for overall survival of 2.63 (1.71-4.05), with a potential publication bias. The feasibility of tumor genomic profiling and the predictive role of LB in terms of response/resistance to chemotherapy was assessed in 11 and 24 studies, respectively, with greater consistency for those regarding ctDNA. Intriguingly, several case reports suggest that LB can indirectly capture the transition to SCLC in NSCLC treated with EGFR tyrosine kinase inhibitors. CONCLUSIONS While dedicated trials are needed, LB holds potential clinical roles in both de novo and transformed SCLC. CtDNA analysis appears the most valuable and practicable tool for both disease monitoring and genomic profiling.
Collapse
Affiliation(s)
- Elio Gregory Pizzutilo
- Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, 20162 Milan, Italy; (E.G.P.); (M.P.); (A.A.); (L.R.); (C.L.); (S.M.V.); (D.S.); (G.C.); (L.G.); (S.S.)
- Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, 20122 Milan, Italy
| | - Martino Pedrani
- Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, 20162 Milan, Italy; (E.G.P.); (M.P.); (A.A.); (L.R.); (C.L.); (S.M.V.); (D.S.); (G.C.); (L.G.); (S.S.)
- Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, 20122 Milan, Italy
| | - Alessio Amatu
- Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, 20162 Milan, Italy; (E.G.P.); (M.P.); (A.A.); (L.R.); (C.L.); (S.M.V.); (D.S.); (G.C.); (L.G.); (S.S.)
| | - Lorenzo Ruggieri
- Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, 20162 Milan, Italy; (E.G.P.); (M.P.); (A.A.); (L.R.); (C.L.); (S.M.V.); (D.S.); (G.C.); (L.G.); (S.S.)
- Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, 20122 Milan, Italy
| | - Calogero Lauricella
- Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, 20162 Milan, Italy; (E.G.P.); (M.P.); (A.A.); (L.R.); (C.L.); (S.M.V.); (D.S.); (G.C.); (L.G.); (S.S.)
| | - Silvio Marco Veronese
- Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, 20162 Milan, Italy; (E.G.P.); (M.P.); (A.A.); (L.R.); (C.L.); (S.M.V.); (D.S.); (G.C.); (L.G.); (S.S.)
| | - Diego Signorelli
- Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, 20162 Milan, Italy; (E.G.P.); (M.P.); (A.A.); (L.R.); (C.L.); (S.M.V.); (D.S.); (G.C.); (L.G.); (S.S.)
| | - Giulio Cerea
- Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, 20162 Milan, Italy; (E.G.P.); (M.P.); (A.A.); (L.R.); (C.L.); (S.M.V.); (D.S.); (G.C.); (L.G.); (S.S.)
| | - Laura Giannetta
- Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, 20162 Milan, Italy; (E.G.P.); (M.P.); (A.A.); (L.R.); (C.L.); (S.M.V.); (D.S.); (G.C.); (L.G.); (S.S.)
| | - Salvatore Siena
- Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, 20162 Milan, Italy; (E.G.P.); (M.P.); (A.A.); (L.R.); (C.L.); (S.M.V.); (D.S.); (G.C.); (L.G.); (S.S.)
- Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, 20122 Milan, Italy
| | - Andrea Sartore-Bianchi
- Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, 20162 Milan, Italy; (E.G.P.); (M.P.); (A.A.); (L.R.); (C.L.); (S.M.V.); (D.S.); (G.C.); (L.G.); (S.S.)
- Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, 20122 Milan, Italy
| |
Collapse
|
173
|
Chemi F, Mohan S, Guevara T, Clipson A, Rothwell DG, Dive C. Early Dissemination of Circulating Tumor Cells: Biological and Clinical Insights. Front Oncol 2021; 11:672195. [PMID: 34026650 PMCID: PMC8138033 DOI: 10.3389/fonc.2021.672195] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 04/07/2021] [Indexed: 12/16/2022] Open
Abstract
Circulating tumor cells (CTCs) play a causal role in the development of metastasis, the major cause of cancer-associated mortality worldwide. In the past decade, the development of powerful cellular and molecular technologies has led to a better understanding of the molecular characteristics and timing of dissemination of CTCs during cancer progression. For instance, genotypic and phenotypic characterization of CTCs, at the single cell level, has shown that CTCs are heterogenous, disseminate early and could represent only a minor subpopulation of the primary tumor responsible for disease relapse. While the impact of molecular profiling of CTCs has not yet been translated to the clinic, CTC enumeration has been widely used as a prognostic biomarker to monitor treatment response and to predict disease relapse. However, previous studies have revealed a major challenge: the low abundance of CTCs in the bloodstream of patients with cancer, especially in early stage disease where the identification and characterization of subsequently "lethal" cells has potentially the greatest clinical relevance. The CTC field is rapidly evolving with development of new technologies to improve the sensitivity of CTC detection, enumeration, isolation, and molecular profiling. Here we examine the technical and analytical validity of CTC technologies, we summarize current data on the biology of CTCs that disseminate early and review CTC-based clinical applications.
Collapse
Affiliation(s)
- Francesca Chemi
- Cancer Research UK Manchester Institute Cancer Biomarker Centre, University of Manchester, Macclesfield, United Kingdom
| | | | | | | | | | - Caroline Dive
- Cancer Research UK Manchester Institute Cancer Biomarker Centre, University of Manchester, Macclesfield, United Kingdom
| |
Collapse
|
174
|
Nathanson SD, Detmar M, Padera TP, Yates LR, Welch DR, Beadnell TC, Scheid AD, Wrenn ED, Cheung K. Mechanisms of breast cancer metastasis. Clin Exp Metastasis 2021; 39:117-137. [PMID: 33950409 PMCID: PMC8568733 DOI: 10.1007/s10585-021-10090-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 03/20/2021] [Indexed: 02/06/2023]
Abstract
Invasive breast cancer tends to metastasize to lymph nodes and systemic sites. The management of metastasis has evolved by focusing on controlling the growth of the disease in the breast/chest wall, and at metastatic sites, initially by surgery alone, then by a combination of surgery with radiation, and later by adding systemic treatments in the form of chemotherapy, hormone manipulation, targeted therapy, immunotherapy and other treatments aimed at inhibiting the proliferation of cancer cells. It would be valuable for us to know how breast cancer metastasizes; such knowledge would likely encourage the development of therapies that focus on mechanisms of metastasis and might even allow us to avoid toxic therapies that are currently used for this disease. For example, if we had a drug that targeted a gene that is critical for metastasis, we might even be able to cure a vast majority of patients with breast cancer. By bringing together scientists with expertise in molecular aspects of breast cancer metastasis, and those with expertise in the mechanical aspects of metastasis, this paper probes interesting aspects of the metastasis cascade, further enlightening us in our efforts to improve the outcome from breast cancer treatments.
Collapse
Affiliation(s)
- S David Nathanson
- Department of Surgery, Henry Ford Cancer Institute, 2799 W Grand Boulevard, Detroit, MI, USA.
| | - Michael Detmar
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology, Zurich, Switzerland
| | - Timothy P Padera
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Danny R Welch
- Department of Cancer Biology, University of Kansas Medical Center and University of Kansas Cancer Center, Kansas City, KS, USA
| | - Thomas C Beadnell
- Department of Cancer Biology, University of Kansas Medical Center and University of Kansas Cancer Center, Kansas City, KS, USA
| | - Adam D Scheid
- Department of Cancer Biology, University of Kansas Medical Center and University of Kansas Cancer Center, Kansas City, KS, USA
| | - Emma D Wrenn
- Translational Research Program, Public Health Sciences and Human Biology Divisions, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.,Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, WA, USA
| | - Kevin Cheung
- Translational Research Program, Public Health Sciences and Human Biology Divisions, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| |
Collapse
|
175
|
Park CK, Oh HJ, Kim MS, Koh BG, Cho HJ, Kim YC, Yang HJ, Lee JY, Chun SM, Oh IJ. Comprehensive analysis of blood-based biomarkers for predicting immunotherapy benefits in patients with advanced non-small cell lung cancer. Transl Lung Cancer Res 2021; 10:2103-2117. [PMID: 34164263 PMCID: PMC8182702 DOI: 10.21037/tlcr-21-100] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Background This study aimed to investigate the feasibility of using circulating tumor cells (CTCs), peripheral blood cells (PBCs), and circulating cell-free DNA (cfDNA) as biomarkers of immune checkpoint inhibitor treatment response in patients with advanced non-small cell lung cancer (NSCLC). Methods We recruited patients diagnosed with advanced NSCLC who received pembrolizumab or atezolizumab between July 2019 and June 2020. Blood was collected before each treatment cycle (C1–C4) to calculate absolute neutrophil count (ANC), neutrophil-to-lymphocyte ratio (NLR), derived NLR (dNLR), and platelet-to-lymphocyte ratio (PLR). CTCs, isolated using the CD-PRIMETM system, exhibited EpCAM/CK+/CD45− phenotype in BioViewCCBSTM. The cfDNA was extracted from plasma at the beginning of C1 and C4. Results The durable clinical benefit (DCB) rate among 83 response-evaluable patients was 34%. CTC, PBC, and cfDNA levels at baseline (C1) were not significantly correlated with treatment response, although patients with DCB had lower CTC counts from C2 to C4. However, patients with low NLR, dNLR, PLR, and cfDNA levels at C1 had improved progression-free survival (PFS) and overall survival (OS). Patients with decreased CTC counts from C1 to C2 had higher median PFS (6.2 vs. 2.3 months; P=0.078) and OS (not reached vs. 6.8 months, P=0.021) than those with increased CTC counts. Low dNLR (≤2.0) at C1 and decreased CTC counts were independent factors for predicting survival. Conclusions Comprehensive analysis of CTC, PBC, and cfDNA levels at baseline and during treatment demonstrated they might be biomarkers for predicting survival benefit. This finding could aid in risk stratification of patients with advanced NSCLC who are undergoing immune checkpoint inhibitor treatment.
Collapse
Affiliation(s)
- Cheol-Kyu Park
- Department of Internal Medicine, Chonnam National University Medical School and Hwasun Hospital, Jeonnam, Republic of Korea
| | - Hyung-Joo Oh
- Department of Internal Medicine, Chonnam National University Medical School and Hwasun Hospital, Jeonnam, Republic of Korea
| | - Min-Seok Kim
- Department of Internal Medicine, Chonnam National University Medical School and Hwasun Hospital, Jeonnam, Republic of Korea
| | - Bo-Gun Koh
- Department of Internal Medicine, Chonnam National University Medical School and Hwasun Hospital, Jeonnam, Republic of Korea
| | - Hyun-Ju Cho
- Department of Internal Medicine, Chonnam National University Medical School and Hwasun Hospital, Jeonnam, Republic of Korea
| | - Young-Chul Kim
- Department of Internal Medicine, Chonnam National University Medical School and Hwasun Hospital, Jeonnam, Republic of Korea
| | - Hyung-Jeong Yang
- Department of Artificial Intelligence Convergence, Chonnam National University, Gwangju, Republic of Korea
| | - Ji-Young Lee
- Department of Medical Science, Asan Medical Institute of Convergence Science and Technology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - Sung-Min Chun
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - In-Jae Oh
- Department of Internal Medicine, Chonnam National University Medical School and Hwasun Hospital, Jeonnam, Republic of Korea
| |
Collapse
|
176
|
Clinical Relevance of Mesenchymal- and Stem-Associated Phenotypes in Circulating Tumor Cells Isolated from Lung Cancer Patients. Cancers (Basel) 2021; 13:cancers13092158. [PMID: 33947159 PMCID: PMC8124761 DOI: 10.3390/cancers13092158] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/16/2021] [Accepted: 04/27/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Lung cancer is the most frequent malignancy in the world. Most lung cancer patients are diagnosed at an advanced stage. To make matters worse, the survival of patients is very poor. Circulating tumor cells (CTCs), albeit rare, have been portrayed as essential players in the progression of lung cancer. It is definitely not easy being a CTC. First, they escape from the primary tumor, then they travel in the bloodstream, have to survive really harsh conditions, and finally, they form metastases. The adoption of epithelial-to-mesenchymal transition as well as cancer stem cell features has been suggested to allow CTCs to survive and metastasize. This review will focus on how these features can be used to estimate the prognosis of lung cancer patients. Abstract Lung cancer is the leading cause of cancer-related mortality globally. Among the types of lung cancer, non-small-cell lung cancer (NSCLC) is more common, while small-cell lung cancer (SCLC) is less frequent yet more aggressive. Circulating tumor cells (CTCs), albeit rare, have been portrayed as essential players in the progression of lung cancer. CTCs are considered to adopt an epithelial-to-mesenchymal transition (EMT) phenotype and characteristics of cancer stem cells (CSCs). This EMT (or partial) phenotype affords these cells the ability to escape from the primary tumor, travel into the bloodstream, and survive extremely adverse conditions, before colonizing distant foci. Acquisition of CSC features, such as self-renewal, differentiation, and migratory potential, further reflect CTCs’ invasive potential. CSCs have been identified in lung cancer, and expression of EMT markers has previously been correlated with poor clinical outcomes. Thus far, a vast majority of studies have concentrated on CTC detection and enumeration as a prognostic tools of patients’ survival or for monitoring treatment efficacy. In this review, we highlight EMT and CSC markers in CTCs and focus on the clinical significance of these phenotypes in the progression of both non-small- and small-cell lung cancer.
Collapse
|
177
|
Einoch-Amor R, Broza YY, Haick H. Detection of Single Cancer Cells in Blood with Artificially Intelligent Nanoarray. ACS NANO 2021; 15:7744-7755. [PMID: 33787212 DOI: 10.1021/acsnano.1c01741] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Detection and monitoring of single cancer cells (SCCs), such as circulating tumor cells (CTCs), would be of aid in an efficient early detection of cancer, a tailored (personalized) therapy, and in a fast bedside assessment of treatment efficacy. Nevertheless, currently available techniques, which mostly rely on the isolation of SCCs based on their physical or biological properties, suffer from low sensitivity, complicated technical procedures, low cost-effectiveness, and being unsuitable for continuous monitoring. We report here on the design and use of an artificially intelligent nanoarray based on a heterogeneous set of chemisensitive nanostructured films for the detection of SCCs using volatile organic compounds emanating in the air trapped above blood samples containing SCCs. For demonstration purposes, we have focused on samples containing A549 lung cancer cells (hereafter, SCCA549). The nanoarray developed to detect SCCA549 has >90% accuracy, >85% sensitivity, and >95% specificity. Detection works irrespective of the medium and/or the environment. These results were validated by complementary mass spectrometry. The ability to continuously record, store, and preprocess the signals increases the chances that this nanotechnology might also be useful in the early detection of cancer cells in the blood and continuous monitoring of their possible progression.
Collapse
Affiliation(s)
- Reef Einoch-Amor
- Department of Chemical Engineering and Russell Berrie Nanotechnology Institute, Technion-Israel Institute of Technology, 3200003, Haifa, Israel
| | - Yoav Y Broza
- Department of Chemical Engineering and Russell Berrie Nanotechnology Institute, Technion-Israel Institute of Technology, 3200003, Haifa, Israel
| | - Hossam Haick
- Department of Chemical Engineering and Russell Berrie Nanotechnology Institute, Technion-Israel Institute of Technology, 3200003, Haifa, Israel
| |
Collapse
|
178
|
De Luca A, Gallo M, Esposito C, Morabito A, Normanno N. Promising Role of Circulating Tumor Cells in the Management of SCLC. Cancers (Basel) 2021; 13:2029. [PMID: 33922300 PMCID: PMC8122820 DOI: 10.3390/cancers13092029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/13/2021] [Accepted: 04/20/2021] [Indexed: 12/11/2022] Open
Abstract
Small cell lung cancer is an aggressive disease for which few therapeutic options are currently available. Although patients initially respond to therapy, they rapidly relapse. Up to today, no biomarkers for guiding treatment of SCLC patients have been identified. SCLC patients rarely undergo surgery and often the available tissue samples are inadequate for biomarker analysis. Circulating tumor cells (CTCs) are rare cells in the peripheral blood that might be used as surrogates of tissue samples. Different methodological approaches have been developed for studies of CTCs in SCLC. In addition to CTC count, which might provide prognostic and predictive information, genomic and transcriptomic analyses allow the characterization of molecular profiles of CTCs and permit the study of tumor heterogeneity. The employment of CTC-derived xenografts offers complementary information to genomic analyses and CTC enumeration about the mechanisms involved in the sensitivity/resistance to treatments. Using these approaches, CTC analysis is providing relevant information on SCLC biology that might aid in the development of personalized therapeutic strategies for SCLC patients.
Collapse
Affiliation(s)
- Antonella De Luca
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori—IRCCS—Fondazione G. Pascale, 80131 Naples, Italy; (A.D.L.); (M.G.); (C.E.)
| | - Marianna Gallo
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori—IRCCS—Fondazione G. Pascale, 80131 Naples, Italy; (A.D.L.); (M.G.); (C.E.)
| | - Claudia Esposito
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori—IRCCS—Fondazione G. Pascale, 80131 Naples, Italy; (A.D.L.); (M.G.); (C.E.)
| | - Alessandro Morabito
- Thoracic Medical Oncology Unit, Istituto Nazionale Tumori—IRCCS—Fondazione G. Pascale, 80131 Naples, Italy;
| | - Nicola Normanno
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori—IRCCS—Fondazione G. Pascale, 80131 Naples, Italy; (A.D.L.); (M.G.); (C.E.)
| |
Collapse
|
179
|
Hu CL, Zhang YJ, Zhang XF, Fei X, Zhang H, Li CG, Sun B. 3D Culture of Circulating Tumor Cells for Evaluating Early Recurrence and Metastasis in Patients with Hepatocellular Carcinoma. Onco Targets Ther 2021; 14:2673-2688. [PMID: 33888992 PMCID: PMC8057830 DOI: 10.2147/ott.s298427] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 03/24/2021] [Indexed: 12/24/2022] Open
Abstract
Purpose Circulating tumor cells (CTCs) are considered to be a key factor involved in tumor metastasis. However, the isolation and culture of CTCs in vitro remains challenging, and their clinical application for predicting prognosis and survival is still limited. The development of accurate evaluating system for CTCs will benefit for clinical assessment of HCC. Methods Density gradient centrifugation and magnetic separation based on CD45 antibody were used to isolate CTCs. 3D culture was used to maintain and amplify CTCs and HCC cells. Cellular immunofluorescence was used to identify CTCs and spheroids. The cutoff value of CTC spheroid was calculated using X-tile software. The relationship between clinicopathological variables and CTC spheroids in HCC patients is analyzed. In vivo models were used to evaluate tumor growth and metastasis of CTC spheroids. Results Patient-derived CTCs/HCC cells were isolated and expanded to form spheroids using 3D culture. CTC spheroids could be used to predict short-term recurrence of CTCs compared with conventional CTC enumeration. Different cell lines exhibited different formation rates and grew to different sizes. Identification of CTC spheroids revealed that EpCAM and β-catenin were expressed in spheroids derived from HCC cells and in the HCC/CTCs. EpCAM-positive HCC cells exhibited improved spheroid formation in 3D culture and were more tumorigenic and likely to metastasize to the lung in vivo. Abnormal activation of the Wnt/β-catenin signaling pathway was observed in EpCAM positive cells. Conclusion CTC spheroids could predict prognosis of HCC more precisely compared with conventional CTC enumeration. EpCAM may participate in the formation and survival of CTC spheroids which dependent on Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Cong-Li Hu
- Translational Medicine Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201620, People's Republic of China.,Department of Molecular Oncology, Eastern Hepatobiliary Surgical Hospital & National Center for Liver Cancer, Second Military Medical University, Shanghai, 200438, People's Republic of China
| | - Yan-Jun Zhang
- School of Health and Social Care, Shanghai Urban Construction Vocational College, Shanghai, 201415, People's Republic of China
| | - Xiao-Feng Zhang
- Department of Molecular Oncology, Eastern Hepatobiliary Surgical Hospital & National Center for Liver Cancer, Second Military Medical University, Shanghai, 200438, People's Republic of China
| | - Xiang Fei
- Department of Thoracic Surgery, Changhai Hospital, Second Military Medical University, Shanghai, 200438, People's Republic of China
| | - Hai Zhang
- Department of Pharmacy, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, 201204, People's Republic of China
| | - Chun-Guang Li
- Department of Thoracic Surgery, Changhai Hospital, Second Military Medical University, Shanghai, 200438, People's Republic of China
| | - Bin Sun
- Department of Molecular Oncology, Eastern Hepatobiliary Surgical Hospital & National Center for Liver Cancer, Second Military Medical University, Shanghai, 200438, People's Republic of China
| |
Collapse
|
180
|
Beasley AB, Acheampong E, Lin W, Gray ES. Multi-Marker Immunomagnetic Enrichment of Circulating Melanoma Cells. Methods Mol Biol 2021; 2265:213-222. [PMID: 33704717 DOI: 10.1007/978-1-0716-1205-7_16] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
Within the last decade, circulating tumor cells (CTCs) have emerged as a promising biomarker for prognostication, treatment monitoring, and detection of markers of treatment resistance, and their isolation can be used as a minimally invasive means of profiling tumors across multiple body sites. However, CTCs represent a minuscule fraction of the total circulating cells in a patient. Therefore, sensitive isolation methods are needed for the detection and downstream analysis of these cells. Herein we describe a sensitive method for melanoma CTC isolation using a multi-marker immunomagnetic bead method. This method has been purposely optimized to detect CTCs in melanoma patients.
Collapse
Affiliation(s)
- Aaron B Beasley
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Emmanuel Acheampong
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Weitao Lin
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Elin S Gray
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia.
| |
Collapse
|
181
|
Alix-Panabières C, Pantel K. Liquid Biopsy: From Discovery to Clinical Application. Cancer Discov 2021; 11:858-873. [PMID: 33811121 DOI: 10.1158/2159-8290.cd-20-1311] [Citation(s) in RCA: 554] [Impact Index Per Article: 138.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 01/22/2021] [Accepted: 01/29/2021] [Indexed: 12/23/2022]
Abstract
Over the past 10 years, circulating tumor cells (CTC) and circulating tumor DNA (ctDNA) have received enormous attention as new biomarkers and subjects of translational research. Although both biomarkers are already used in numerous clinical trials, their clinical utility is still under investigation with promising first results. Clinical applications include early cancer detection, improved cancer staging, early detection of relapse, real-time monitoring of therapeutic efficacy, and detection of therapeutic targets and resistance mechanisms. Here, we propose a conceptual framework of CTC and ctDNA assays and point out current challenges of CTC and ctDNA research, which might structure this dynamic field of translational cancer research. SIGNIFICANCE: The analysis of blood for CTCs or cell-free nucleic acids called "liquid biopsy" has opened new avenues for cancer diagnostics, including early detection of tumors, improved risk assessment and staging, as well as early detection of relapse and monitoring of tumor evolution in the context of cancer therapies.
Collapse
Affiliation(s)
- Catherine Alix-Panabières
- Laboratory of Rare Human Circulating Cells (LCCRH), University Medical Centre of Montpellier, Montpellier, France. .,CREEC/CANECEV, MIVEGEC (CREES), University of Montpellier, CNRS, IRD, Montpellier, France
| | - Klaus Pantel
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
182
|
Foy V, Lindsay CR, Carmel A, Fernandez-Gutierrez F, Krebs MG, Priest L, Carter M, Groen HJM, Hiltermann TJN, de Luca A, Farace F, Besse B, Terstappen L, Rossi E, Morabito A, Perrone F, Renehan A, Faivre-Finn C, Normanno N, Dive C, Blackhall F, Michiels S. EPAC-lung: European pooled analysis of the prognostic value of circulating tumour cells in small cell lung cancer. Transl Lung Cancer Res 2021; 10:1653-1665. [PMID: 34012782 PMCID: PMC8107738 DOI: 10.21037/tlcr-20-1061] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 01/17/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND Circulating tumour cell (CTC) number is an independent prognostic factor in patients with small cell lung cancer (SCLC) but there is no consensus on the CTC threshold for prognostic significance. We undertook a pooled analysis of individual patient data to clinically validate CTC enumeration and threshold for prognostication. METHODS Four European cancer centres, experienced in CellSearch CTC enumeration for SCLC provided pseudo anonymised data for patients who had undergone pre-treatment CTC count. Data was collated, and Cox regression models, stratified by centre, explored the relationship between CTC count and survival. The added value of incorporating CTCs into clinico-pathological models was investigated using likelihood ratio tests. RESULTS A total of 367 patient records were evaluated. A one-unit increase in log-transformed CTC counts corresponded to an estimated hazard ratio (HR) of 1.24 (95% CI: 1.19-1.29, P<0.0001) for progression free survival (PFS) and 1.23 (95% CI: 1.18-1.28, P<0.0001) for overall survival (OS). CTC count of ≥15 or ≥50 was significantly associated with an increased risk of progression (CTC ≥15: HR 3.20, 95% CI: 2.50-4.09, P<0.001; CTC ≥50: HR 2.56, 95% CI: 2.01-3.25, P<0.001) and an increased risk of death (CTC ≥15: HR 2.90, 95% CI: 2.28-3.70, P<0.001; CTC ≥50: HR 2.47, 95% CI: 1.95-3.13, P<0.001). There was no significant inter-centre heterogeneity observed. Addition of CTC count to clinico-pathological models as a continuous log-transformed variable, offers further prognostic value (both likelihood ratio P<0.001 for OS and PFS). CONCLUSIONS Higher pre-treatment CTC counts are a negative independent prognostic factor in SCLC when considered as a continuous variable or dichotomised counts of ≥15 or ≥50. Incorporating CTC counts, as a continuous variable, improves clinic-pathological prognostic models.
Collapse
Affiliation(s)
- Victoria Foy
- Cancer Research UK Manchester Institute Cancer Biomarker Centre, Cancer Research UK Manchester Institute, University of Manchester, Manchester, UK
- Department of Medical Oncology, The Christie NHS Foundation Trust, Wilmslow Road, Manchester, M20 4BX, UK
| | - Colin R Lindsay
- Department of Medical Oncology, The Christie NHS Foundation Trust, Wilmslow Road, Manchester, M20 4BX, UK
- Division of Molecular and Clinical Cancer Sciences, University of Manchester, Manchester, UK
- Cancer Research UK Lung Cancer Centre of Excellence, Manchester, UK
| | - Alexandra Carmel
- Service de Biostatistique et d'Épidémiologie, Gustave Roussy, Université Paris-Saclay, Villejuif, France
- INSERM U1018 OncoStat, CESP, Université Paris-Sud, Université Paris-Saclay, labeled by Ligue Contre le Cancer, France
| | - Fabiola Fernandez-Gutierrez
- Cancer Research UK Manchester Institute Cancer Biomarker Centre, Cancer Research UK Manchester Institute, University of Manchester, Manchester, UK
- Cancer Research UK Lung Cancer Centre of Excellence, Manchester, UK
| | - Matthew G Krebs
- Department of Medical Oncology, The Christie NHS Foundation Trust, Wilmslow Road, Manchester, M20 4BX, UK
- Division of Molecular and Clinical Cancer Sciences, University of Manchester, Manchester, UK
- Cancer Research UK Lung Cancer Centre of Excellence, Manchester, UK
| | - Lynsey Priest
- Cancer Research UK Manchester Institute Cancer Biomarker Centre, Cancer Research UK Manchester Institute, University of Manchester, Manchester, UK
- Department of Medical Oncology, The Christie NHS Foundation Trust, Wilmslow Road, Manchester, M20 4BX, UK
| | - Mathew Carter
- Cancer Research UK Manchester Institute Cancer Biomarker Centre, Cancer Research UK Manchester Institute, University of Manchester, Manchester, UK
- Department of Medical Oncology, The Christie NHS Foundation Trust, Wilmslow Road, Manchester, M20 4BX, UK
| | - Harry J M Groen
- Department of Pulmonary Diseases, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | - T Jeroen N Hiltermann
- Department of Pulmonary Diseases, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | - Antonella de Luca
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, Napoli, Italy
| | - Francoise Farace
- INSERM, U981 "Predictive Biomarkers and New Therapeutics in Oncology", F-94805, Villejuif, France
- Gustave Roussy, Université Paris-Saclay. "Rare Circulating Cells" Translational Platform, CNRS UMS3655 - INSERM US23, AMMICA, Villejuif, France
| | - Benjamin Besse
- Department of Cancer Medicine, Gustave Roussy Cancer Campus, Villejuif, France; Paris-Sud University, Orsay, France
| | - Leon Terstappen
- Department of Medical Cell BioPhysics, University of Twente, Enschede, The Netherlands
| | - Elisabetta Rossi
- Department of Surgery, Oncology and Gastroenterology, Oncology Section, University of Padova, Padova, Italy
- Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Alessandro Morabito
- Thoracic Medical Oncology, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, Napoli, Italy
| | - Francesco Perrone
- Clinical Trials Unit, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, Napoli, Italy
| | - Andrew Renehan
- Division of Molecular and Clinical Cancer Sciences, University of Manchester, Manchester, UK
| | - Corinne Faivre-Finn
- Division of Molecular and Clinical Cancer Sciences, University of Manchester, Manchester, UK
| | - Nicola Normanno
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, Napoli, Italy
| | - Caroline Dive
- Cancer Research UK Manchester Institute Cancer Biomarker Centre, Cancer Research UK Manchester Institute, University of Manchester, Manchester, UK
- Cancer Research UK Lung Cancer Centre of Excellence, Manchester, UK
| | - Fiona Blackhall
- Department of Medical Oncology, The Christie NHS Foundation Trust, Wilmslow Road, Manchester, M20 4BX, UK
- Division of Molecular and Clinical Cancer Sciences, University of Manchester, Manchester, UK
- Cancer Research UK Lung Cancer Centre of Excellence, Manchester, UK
| | - Stefan Michiels
- Service de Biostatistique et d'Épidémiologie, Gustave Roussy, Université Paris-Saclay, Villejuif, France
- INSERM U1018 OncoStat, CESP, Université Paris-Sud, Université Paris-Saclay, labeled by Ligue Contre le Cancer, France
| |
Collapse
|
183
|
Drapkin BJ, Rudin CM. Advances in Small-Cell Lung Cancer (SCLC) Translational Research. Cold Spring Harb Perspect Med 2021; 11:cshperspect.a038240. [PMID: 32513672 DOI: 10.1101/cshperspect.a038240] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Over the past several years, we have witnessed a resurgence of interest in the biology and therapeutic vulnerabilities of small-cell lung cancer (SCLC). This has been driven in part through the development of a more extensive array of representative models of disease, including a diverse variety of genetically engineered mouse models and human tumor xenografts. Herein, we review recent progress in SCLC model development, and consider some of the particularly active avenues of translational research in SCLC, including interrogation of intratumoral heterogeneity, insights into the cell of origin and oncogenic drivers, mechanisms of chemoresistance, and new therapeutic opportunities including biomarker-directed targeted therapies and immunotherapies. Whereas SCLC remains a highly lethal disease, these new avenues of translational research, bringing together mechanism-based preclinical and clinical research, offer new hope for patients with SCLC.
Collapse
Affiliation(s)
- Benjamin J Drapkin
- University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Charles M Rudin
- Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| |
Collapse
|
184
|
Levy A, Botticella A, Le Péchoux C, Faivre-Finn C. Thoracic radiotherapy in small cell lung cancer-a narrative review. Transl Lung Cancer Res 2021; 10:2059-2070. [PMID: 34012814 PMCID: PMC8107758 DOI: 10.21037/tlcr-20-305] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Small-cell lung cancer (SCLC) represents 10–15% of all lung cancers and has a poor prognosis. Thoracic radiotherapy plays a central role in current SCLC management. Concurrent chemoradiotherapy (CTRT) is the standard of care for localised disease (stage I−III, limited-stage, LS). Definitive thoracic radiotherapy may be offered in metastatic patients (stage IV, extensive stage, ES-SCLC) after chemotherapy. For LS-SCLC, the gold standard is early accelerated hyperfractionated twice-daily CTRT (4 cycles of cisplatin etoposide, starting with the first or second chemotherapy cycle). Modern radiation techniques should be used with involved-field radiotherapy based on baseline CT and PET/CT scans. In ES-SCLC, thoracic radiotherapy should be discussed in cases of initial bulky mediastinal disease/residual thoracic disease not progressing after induction chemotherapy. This strategy was however not assessed in recent trials establishing chemo-immunotherapy as the standard first line treatment in ES-SCLC. Future developments include technical radiotherapy advances and the incorporation of new drugs. Thoracic irradiation is delivered more precisely given technical developments (IMRT, image-guided radiotherapy, stereotactic radiotherapy), reducing the risks of severe adverse events. Stereotactic ablative radiotherapy may be discussed in rare early stage (T1 to 2, N0) inoperable patients. A number of current clinical trials are investigating immunoradiotherapy. In this review, we highlight the current role of thoracic radiotherapy and describe ongoing research in the integration of biological surrogate markers, advanced radiotherapy technologies and novel drugs in SCLC patients.
Collapse
Affiliation(s)
- Antonin Levy
- Department of Radiation Oncology, Institut d'Oncologie Thoracique (IOT), Gustave Roussy, Villejuif, France.,Univ Paris Sud, Université Paris-Saclay, Le Kremlin-Bicêtre, France.,INSERM U1030, Molecular Radiotherapy, Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - Angela Botticella
- Department of Radiation Oncology, Institut d'Oncologie Thoracique (IOT), Gustave Roussy, Villejuif, France
| | - Cécile Le Péchoux
- Department of Radiation Oncology, Institut d'Oncologie Thoracique (IOT), Gustave Roussy, Villejuif, France
| | - Corinne Faivre-Finn
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.,The Christie NHS Foundation Trust and Division of Cancer Sciences, University of Manchester, Manchester, UK
| |
Collapse
|
185
|
De Rosa V, Fonti R, Del Vecchio S, Iommelli F. Non-invasive detection of epithelial mesenchymal transition phenotype and metastatic dissemination of lung cancer by liquid biopsy. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2021; 2:36-47. [PMID: 36046089 PMCID: PMC9400761 DOI: 10.37349/etat.2021.00032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 01/12/2021] [Indexed: 11/19/2022] Open
Abstract
The occurrence of phenotype switch from an epithelial to a mesenchymal cell state during the activation of the epithelial mesenchymal transition (EMT) program in cancer cells has been closely associated with the generation of invasive tumor cells that contribute to metastatic dissemination and treatment failure. Liquid biopsy represents an emergent non-invasive tool that may improve our understanding of the molecular events leading to cancer progression and initiating the metastatic cascade through the dynamic analysis of tumor-derived components isolated from body fluids. The present review will primarily focus on the applications of liquid biopsy in lung cancer patients for identifying EMT signature, elucidating molecular mechanisms underlying the acquisition of an invasive phenotype and detecting new targets for therapy.
Collapse
Affiliation(s)
- Viviana De Rosa
- Institute of Biostructures and Bioimaging, National Research Council, 80145 Naples, Italy
| | - Rosa Fonti
- Institute of Biostructures and Bioimaging, National Research Council, 80145 Naples, Italy
| | - Silvana Del Vecchio
- Department of Advanced Biomedical Sciences, University “Federico II”, 80131 Naples, Italy
| | - Francesca Iommelli
- Institute of Biostructures and Bioimaging, National Research Council, 80145 Naples, Italy
| |
Collapse
|
186
|
Local Anesthetics and Recurrence after Cancer Surgery-What's New? A Narrative Review. J Clin Med 2021; 10:jcm10040719. [PMID: 33670434 PMCID: PMC7918400 DOI: 10.3390/jcm10040719] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/27/2021] [Accepted: 02/08/2021] [Indexed: 12/16/2022] Open
Abstract
The perioperative use of regional anesthesia and local anesthetics is part of almost every anesthesiologist’s daily clinical practice. Retrospective analyses and results from experimental studies pointed towards a potential beneficial effect of the local anesthetics regarding outcome—i.e., overall and/or recurrence-free survival—in patients undergoing cancer surgery. The perioperative period, where the anesthesiologist is responsible for the patients, might be crucial for the further course of the disease, as circulating tumor cells (shed from the primary tumor into the patient’s bloodstream) might form new micro-metastases independent of complete tumor removal. Due to their strong anti-inflammatory properties, local anesthetics might have a certain impact on these circulating tumor cells, either via direct or indirect measures, for example via blunting the inflammatory stress response as induced by the surgical stimulus. This narrative review highlights the foundation of these principles, features recent experimental and clinical data and provides an outlook regarding current and potential future research activities.
Collapse
|
187
|
Deng L, Zhang Y, Zhang W, Feng L, Zhang K, Wang W, Zhou Z, Wang L, Hui Z. Prospective Exploratory Study of the Clinical Significance of Circulating Tumor Cells in Patients With Small Cell Lung Cancer Exposed to Prophylactic Cranial Irradiation. Front Oncol 2021; 10:575394. [PMID: 33628727 PMCID: PMC7897656 DOI: 10.3389/fonc.2020.575394] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 12/21/2020] [Indexed: 12/02/2022] Open
Abstract
OBJECTIVE Circulating tumor cells (CTCs) can predict the efficacy of anti-cancer treatments and indicate prognosis. Here we investigate the significance of CTCs in relation to the prediction of treatment efficacy and prognosis in patients with small cell lung cancer (SCLC) who have received prophylactic cranial irradiation (PCI). METHODS CTCs were detected in 20 patients with SCLC before and after PCI using the oHSV1-hTERT-GFP method. The primary endpoints were progression-free survival (PFS) and overall survival (OS). RESULTS Eleven patients had limited-stage SCLC, and nine had extensive-stage SCLC. All patients completed chemo-radiotherapy and received PCI. The median baseline CTC count before PCI was 12. After PCI, the median CTC count was 4. The median follow-up time for all enrolled patients was 39.2 months. The median PFS and OS were significantly reduced in patients with ≥4 CTCs after PCI compared to those with <4 CTCs (PFS, 28.1 months vs. not reached, p = 0.001; OS, not reached vs. not reached, p = 0.029). Seven of the 10 patients with ≥4 CTCs after PCI failed after treatment, whereas the10 patients with <4 CTCs after PCI remained alive without tumors. The median PFS and OS were significantly improved in patients who exhibited a rate of CTC decline of ≥58% after PCI compared with patients who exhibited a decline rate of <58% (PFS, 26.4 months vs. not reached, p = 0.006; OS, not reached vs. not reached, p = 0.029). CONCLUSION In SCLC patients who receive PCI, the CTC count and rate of CTC decline after PCI significantly correlate with prognosis.
Collapse
Affiliation(s)
- Lei Deng
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ye Zhang
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wen Zhang
- Department of Immunology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lin Feng
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Kaitai Zhang
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wenqing Wang
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zongmei Zhou
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Luhua Wang
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Zhouguang Hui
- Department of VIP Medical Services, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
188
|
Zhao L, Wu X, Li T, Luo J, Dong D. ctcRbase: the gene expression database of circulating tumor cells and microemboli. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2021; 2020:5819651. [PMID: 32294193 DOI: 10.1093/database/baaa020] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 02/16/2020] [Accepted: 02/17/2020] [Indexed: 01/04/2023]
Abstract
Circulating tumor cells/microemboli (CTCs/CTMs) are malignant cells that depart from cancerous lesions and shed into the bloodstream. Analysis of CTCs can allow the investigation of tumor cell biomarker expression from a non-invasive liquid biopsy. To date, high-throughput technologies have become a powerful tool to provide a genome-wide view of transcriptomic changes associated with CTCs/CTMs. These data provided us much information to understand the tumor heterogeneity, and the underlying molecular mechanism of tumor metastases. Unfortunately, these data have been deposited into various repositories, and a uniform resource for the cancer metastasis is still unavailable. To this end, we integrated previously published transcriptome datasets of CTCs/CTMs and constructed a web-accessible database. The first release of ctcRbase contains 526 CTCs/CTM samples across seven cancer types. The expression of 14 631 mRNAs and 3642 long non-coding RNAs of CTCs/CTMs were included. Experimental validations from the published literature are also included. Since CTCs/CTMs are considered to be precursors of metastases, ctcRbase also collected the expression data of primary tumors and metastases, which allows user to discover a unique 'circulating tumor cell gene signature' that is distinct from primary tumor and metastases. An easy-to-use database was constructed to query and browse CTCs/CTMs genes. ctcRbase can be freely accessible at http://www.origin-gene.cn/database/ctcRbase/.
Collapse
Affiliation(s)
- Lei Zhao
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, No.500 Dongchuan Road, Shanghai, 200241 China
| | - Xiaohong Wu
- Department of General Surgery, the Affiliated Yixing Hospital of Jiangsu University, No. 75 Zhenguan Road, Yixing, Jiangsu 214200, China
| | - Tong Li
- Thyroid and breast surgery, the Fourth Hospital of Jinan City, No. 50 Shifan Road, Jinan, Shandong 250021, China
| | - Jian Luo
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, No.500 Dongchuan Road, Shanghai, 200241 China
| | - Dong Dong
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, No.500 Dongchuan Road, Shanghai, 200241 China.,Cancer Institute, Xuzhou Medical University, No. 84 West huaihai Road, Xuzhou, Jiangsu 221006, China.,Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, No.315 West huaihai Road, Xuzhou, Jiangsu 221006, China
| |
Collapse
|
189
|
Shah D, Lamarca A, Valle JW, McNamara MG. The Potential Role of Liquid Biopsies in Advancing the Understanding of Neuroendocrine Neoplasms. J Clin Med 2021; 10:jcm10030403. [PMID: 33494364 PMCID: PMC7865482 DOI: 10.3390/jcm10030403] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 01/15/2021] [Accepted: 01/16/2021] [Indexed: 12/22/2022] Open
Abstract
Tumour tissue as a source for molecular profiling and for in vivo models has limitations (e.g., difficult access, limited availability, single time point, potential heterogeneity between primary and metastatic sites). Conversely, liquid biopsies provide an easily accessible approach, enabling timely and longitudinal interrogation of the tumour molecular makeup, with increased ability to capture spatial and temporal intra-tumour heterogeneity compared to tumour tissue. Blood-borne biomarker assays (e.g., circulating tumour cells (CTCs), circulating free/tumour DNA (cf/ctDNA)) pose unique opportunities for aiding in the molecular characterisation and phenotypic subtyping of neuroendocrine neoplasms and will be discussed in this article.
Collapse
Affiliation(s)
- Dinakshi Shah
- Department of Medical Oncology, The Christie NHS Foundation Trust, Manchester M20 4BX, UK; (D.S.); (A.L.)
| | - Angela Lamarca
- Department of Medical Oncology, The Christie NHS Foundation Trust, Manchester M20 4BX, UK; (D.S.); (A.L.)
- Division of Cancer Sciences, University of Manchester, Manchester M13 9PL, UK;
| | - Juan W Valle
- Department of Medical Oncology, The Christie NHS Foundation Trust, Manchester M20 4BX, UK; (D.S.); (A.L.)
- Division of Cancer Sciences, University of Manchester, Manchester M13 9PL, UK;
| | - Mairéad G McNamara
- Department of Medical Oncology, The Christie NHS Foundation Trust, Manchester M20 4BX, UK; (D.S.); (A.L.)
- Division of Cancer Sciences, University of Manchester, Manchester M13 9PL, UK;
- Correspondence:
| |
Collapse
|
190
|
Abstract
Small-cell lung cancer (SCLC) represents about 15% of all lung cancers and is marked by an exceptionally high proliferative rate, strong predilection for early metastasis and poor prognosis. SCLC is strongly associated with exposure to tobacco carcinogens. Most patients have metastatic disease at diagnosis, with only one-third having earlier-stage disease that is amenable to potentially curative multimodality therapy. Genomic profiling of SCLC reveals extensive chromosomal rearrangements and a high mutation burden, almost always including functional inactivation of the tumour suppressor genes TP53 and RB1. Analyses of both human SCLC and murine models have defined subtypes of disease based on the relative expression of dominant transcriptional regulators and have also revealed substantial intratumoural heterogeneity. Aspects of this heterogeneity have been implicated in tumour evolution, metastasis and acquired therapeutic resistance. Although clinical progress in SCLC treatment has been notoriously slow, a better understanding of the biology of disease has uncovered novel vulnerabilities that might be amenable to targeted therapeutic approaches. The recent introduction of immune checkpoint blockade into the treatment of patients with SCLC is offering new hope, with a small subset of patients deriving prolonged benefit. Strategies to direct targeted therapies to those patients who are most likely to respond and to extend the durable benefit of effective antitumour immunity to a greater fraction of patients are urgently needed and are now being actively explored.
Collapse
Affiliation(s)
- Charles M Rudin
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Druckenmiller Center for Lung Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| | - Elisabeth Brambilla
- Institute for Advanced Biosciences, Université Grenoble Alpes, Grenoble, France
| | - Corinne Faivre-Finn
- Department of Clinical Oncology, The Christie Hospital NHS Foundation Trust, Manchester, UK
- Division of Cancer Sciences, University of Manchester, Manchester, UK
| | - Julien Sage
- Department of Pediatrics, Stanford University, Stanford, CA, USA
- Department of Genetics, Stanford University, Stanford, CA, USA
| |
Collapse
|
191
|
Wang C, Zhang Z, Chong W, Luo R, Myers RE, Gu J, Lin J, Wei Q, Li B, Rebbeck TR, Lu-Yao G, Kelly WK, Yang H. Improved Prognostic Stratification Using Circulating Tumor Cell Clusters in Patients with Metastatic Castration-Resistant Prostate Cancer. Cancers (Basel) 2021; 13:cancers13020268. [PMID: 33450815 PMCID: PMC7828213 DOI: 10.3390/cancers13020268] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/31/2020] [Accepted: 01/07/2021] [Indexed: 12/18/2022] Open
Abstract
Simple Summary Metastatic castration-resistant prostate cancer (mCRPC) is the most aggressive and deadly form of prostate cancer. As a bone-predominant metastatic disease, liquid biopsy-based biomarkers have advantages in monitoring cancer dynamics. Previous studies have demonstrated the associations between circulating tumor cells (CTCs) and mCRPC outcomes, but little is known about the prognostic value of CTC-clusters. In this study, we investigated the associations of CTCs and CTC-clusters with mCRPC prognosis, individually and jointly, using longitudinal samples. We confirmed the associations of CTC counts with mCRPC outcomes in both baseline and longitudinal analyses. Our results also showed that the presence of CTC-clusters alone had prognostic value and that CTC-clusters may further improve CTC-based prognostic stratification in mCRPC. Our findings suggest the potential of combing CTC and CTC-clusters as non-invasive means to monitor progression and predict survival in mCRPC and build a premise for in-depth genomic and molecular analyses of CTCs and CTC-clusters. Abstract Liquid biopsy-based biomarkers have advantages in monitoring the dynamics of metastatic castration-resistant prostate cancer (mCRPC), a bone-predominant metastatic disease. Previous studies have demonstrated associations between circulating tumor cells (CTCs) and clinical outcomes of mCRPC patients, but little is known about the prognostic value of CTC-clusters. In 227 longitudinally collected blood samples from 64 mCRPC patients, CTCs and CTC-clusters were enumerated using the CellSearch platform. The associations of CTC and CTC-cluster counts with progression-free survival (PFS) and overall survival (OS), individually and jointly, were evaluated by Cox models. CTCs and CTC-clusters were detected in 24 (37.5%) and 8 (12.5%) of 64 baseline samples, and in 119 (52.4%) and 27 (11.9%) of 227 longitudinal samples, respectively. CTC counts were associated with both PFS and OS, but CTC-clusters were only independently associated with an increased risk of death. Among patients with unfavorable CTCs (≥5), the presence of CTC-clusters signified a worse survival (log-rank p = 0.0185). mCRPC patients with both unfavorable CTCs and CTC-clusters had the highest risk for death (adjusted hazard ratio 19.84, p = 0.0072), as compared to those with <5 CTCs. Analyses using longitudinal data yielded similar results. In conclusion, CTC-clusters provided additional prognostic information for further stratifying death risk among patients with unfavorable CTCs.
Collapse
Affiliation(s)
- Chun Wang
- Department of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA; (C.W.); (Z.Z.); (W.C.); (R.L.); (R.E.M.); (G.L.-Y.); (W.K.K.)
| | - Zhenchao Zhang
- Department of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA; (C.W.); (Z.Z.); (W.C.); (R.L.); (R.E.M.); (G.L.-Y.); (W.K.K.)
| | - Weelic Chong
- Department of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA; (C.W.); (Z.Z.); (W.C.); (R.L.); (R.E.M.); (G.L.-Y.); (W.K.K.)
| | - Rui Luo
- Department of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA; (C.W.); (Z.Z.); (W.C.); (R.L.); (R.E.M.); (G.L.-Y.); (W.K.K.)
| | - Ronald E. Myers
- Department of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA; (C.W.); (Z.Z.); (W.C.); (R.L.); (R.E.M.); (G.L.-Y.); (W.K.K.)
| | - Jian Gu
- Department of Epidemiology, MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Jianqing Lin
- Department of Medicine, GW Cancer Center, George Washington University, Washington, DC 20037, USA;
| | - Qiang Wei
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37235, USA; (Q.W.); (B.L.)
| | - Bingshan Li
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37235, USA; (Q.W.); (B.L.)
| | - Timothy R. Rebbeck
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA;
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Grace Lu-Yao
- Department of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA; (C.W.); (Z.Z.); (W.C.); (R.L.); (R.E.M.); (G.L.-Y.); (W.K.K.)
| | - William K. Kelly
- Department of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA; (C.W.); (Z.Z.); (W.C.); (R.L.); (R.E.M.); (G.L.-Y.); (W.K.K.)
| | - Hushan Yang
- Department of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA; (C.W.); (Z.Z.); (W.C.); (R.L.); (R.E.M.); (G.L.-Y.); (W.K.K.)
- Correspondence: ; Tel.: +1-215-503-6521
| |
Collapse
|
192
|
Ko J, Winslow MM, Sage J. Mechanisms of small cell lung cancer metastasis. EMBO Mol Med 2021; 13:e13122. [PMID: 33296145 PMCID: PMC7799359 DOI: 10.15252/emmm.202013122] [Citation(s) in RCA: 135] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 11/02/2020] [Accepted: 11/05/2020] [Indexed: 12/12/2022] Open
Abstract
Metastasis is a major cause of morbidity and mortality in cancer patients. However, the molecular and cellular mechanisms underlying the ability of cancer cells to metastasize remain relatively poorly understood. Among all solid tumors, small cell lung cancer (SCLC) has remarkable metastatic proclivity, with a majority of patients diagnosed with metastatic disease. Our understanding of SCLC metastasis has been hampered for many years by the paucity of material from primary tumors and metastases, as well as the lack of faithful pre-clinical models. Here, we review recent advances that are helping circumvent these limitations. These advances include methods that employ circulating tumor cells from the blood of SCLC patients and the development of diverse genetically engineered mouse models of metastatic SCLC. New insights into the cellular mechanisms of SCLC metastasis include observations of cell fate changes associated with increased metastatic ability. Ongoing studies on cell migration and organ tropism promise to expand our understanding of SCLC metastasis. Ultimately, a better molecular understanding of metastatic phenotypes may be translated into new therapeutic options to limit metastatic spread and treat metastatic SCLC.
Collapse
Affiliation(s)
- Julie Ko
- Department of PediatricsStanford UniversityStanfordCAUSA
- Department of GeneticsStanford UniversityStanfordCAUSA
| | - Monte M Winslow
- Department of GeneticsStanford UniversityStanfordCAUSA
- Department of PathologyStanford UniversityStanfordCAUSA
| | - Julien Sage
- Department of PediatricsStanford UniversityStanfordCAUSA
- Department of GeneticsStanford UniversityStanfordCAUSA
| |
Collapse
|
193
|
Mondelo-Macía P, García-González J, León-Mateos L, Castillo-García A, López-López R, Muinelo-Romay L, Díaz-Peña R. Current Status and Future Perspectives of Liquid Biopsy in Small Cell Lung Cancer. Biomedicines 2021; 9:48. [PMID: 33430290 PMCID: PMC7825645 DOI: 10.3390/biomedicines9010048] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/24/2020] [Accepted: 01/04/2021] [Indexed: 01/08/2023] Open
Abstract
Approximately 19% of all cancer-related deaths are due to lung cancer, which is the leading cause of mortality worldwide. Small cell lung cancer (SCLC) affects approximately 15% of patients diagnosed with lung cancer. SCLC is characterized by aggressiveness; the majority of SCLC patients present with metastatic disease, and less than 5% of patients are alive at 5 years. The gold standard of SCLC treatment is platinum and etoposide-based chemotherapy; however, its effects are short. In recent years, treatment for SCLC has changed; new drugs have been approved, and new biomarkers are needed for treatment selection. Liquid biopsy is a non-invasive, rapid, repeated and alternative tool to the traditional tumor biopsy that could allow the most personalized medicine into the management of SCLC patients. Circulating tumor cells (CTCs) and cell-free DNA (cfDNA) are the most commonly used liquid biopsy biomarkers. Some studies have reported the prognostic factors of CTCs and cfDNA in SCLC patients, independent of the stage. In this review, we summarize the recent SCLC studies of CTCs, cfDNA and other liquid biopsy biomarkers, and we discuss the future utility of liquid biopsy in the clinical management of SCLC.
Collapse
Affiliation(s)
- Patricia Mondelo-Macía
- Liquid Biopsy Analysis Unit, Oncomet, Health Research Institute of Santiago (IDIS), 15706 Santiago de Compostela, Spain; (P.M.-M.); (L.M.-R.)
| | - Jorge García-González
- Department of Medical Oncology, Complexo Hospitalario Universitario de Santiago de Compostela (SERGAS), 15706 Santiago de Compostela, Spain; (J.G.-G.); (L.L.-M.); (R.L.-L.)
- Translational Medical Oncology (Oncomet), Health Research Institute of Santiago (IDIS), 15706 Santiago de Compostela, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
| | - Luis León-Mateos
- Department of Medical Oncology, Complexo Hospitalario Universitario de Santiago de Compostela (SERGAS), 15706 Santiago de Compostela, Spain; (J.G.-G.); (L.L.-M.); (R.L.-L.)
- Translational Medical Oncology (Oncomet), Health Research Institute of Santiago (IDIS), 15706 Santiago de Compostela, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
| | | | - Rafael López-López
- Department of Medical Oncology, Complexo Hospitalario Universitario de Santiago de Compostela (SERGAS), 15706 Santiago de Compostela, Spain; (J.G.-G.); (L.L.-M.); (R.L.-L.)
- Translational Medical Oncology (Oncomet), Health Research Institute of Santiago (IDIS), 15706 Santiago de Compostela, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
| | - Laura Muinelo-Romay
- Liquid Biopsy Analysis Unit, Oncomet, Health Research Institute of Santiago (IDIS), 15706 Santiago de Compostela, Spain; (P.M.-M.); (L.M.-R.)
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
| | - Roberto Díaz-Peña
- Liquid Biopsy Analysis Unit, Oncomet, Health Research Institute of Santiago (IDIS), 15706 Santiago de Compostela, Spain; (P.M.-M.); (L.M.-R.)
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
| |
Collapse
|
194
|
Abdul Pari AA, Singhal M, Augustin HG. Emerging paradigms in metastasis research. J Exp Med 2021; 218:e20190218. [PMID: 33601416 PMCID: PMC7754674 DOI: 10.1084/jem.20190218] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 09/17/2020] [Accepted: 11/04/2020] [Indexed: 12/15/2022] Open
Abstract
Historically, therapy of metastatic disease has essentially been limited to using strategies that were identified and established to shrink primary tumors. The limited efficacy of such treatments on overall patient survival stems from diverging intrinsic and extrinsic characteristics of a primary tumor and metastases originating therefrom. To develop better therapeutic strategies to treat metastatic disease, there is an urgent need to shift the paradigm in preclinical metastasis research by conceptualizing metastatic dissemination, colonization, and growth as spatiotemporally dynamic processes and identifying rate-limiting vulnerabilities of the metastatic cascade. Clinically, while metastatic colonization remains the most attractive therapeutic avenue, comprehensive understanding of earlier steps may unravel novel metastasis-restricting therapies for presurgical neoadjuvant application. Moving beyond a primary tumor-centric view, this review adopts a holistic approach to understanding the spatial and temporal progression of metastasis. After reviewing recent developments in metastasis research, we highlight some of the grand challenges and propose a framework to expedite mechanism-based discovery research feeding the translational pipeline.
Collapse
Affiliation(s)
- Ashik Ahmed Abdul Pari
- Division of Vascular Oncology and Metastasis, German Cancer Research Center (DKFZ-ZMBH Alliance), Heidelberg, Germany
- Department of Vascular Biology and Tumor Angiogenesis, European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Mahak Singhal
- Division of Vascular Oncology and Metastasis, German Cancer Research Center (DKFZ-ZMBH Alliance), Heidelberg, Germany
- Department of Vascular Biology and Tumor Angiogenesis, European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Hellmut G. Augustin
- Division of Vascular Oncology and Metastasis, German Cancer Research Center (DKFZ-ZMBH Alliance), Heidelberg, Germany
- Department of Vascular Biology and Tumor Angiogenesis, European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
195
|
Lv Y, Zhang X, Chen L. Suspension state regulates epithelial-to-mesenchymal transition and stemness of breast tumor cells. Biotechnol Lett 2021; 43:561-578. [PMID: 33386502 DOI: 10.1007/s10529-020-03074-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 12/19/2020] [Indexed: 12/12/2022]
Abstract
OBJECTIVES The mechanical forces on circulating tumor cells (CTCs) should not be ignored in blood and it is more essential that CTCs can overcome and utilize the mechanical interaction to acquire the ability of distant metastasis. At present there are few studies on how suspension mechanics regulates the behavior of tumor cells. The aim of the study was to explore the effects of suspension state on the epithelial-mesenchymal transition (EMT) and stemness of breast CTCs and the molecular mechanisms involved. RESULTS Suspension state could regulate the program of EMT in breast cancer cells, which supported the complex dynamic concept of EMT. It is that the Ras homolog family member A (RhoA)/Rho-associated coiled-coil containing protein kinase 1 (ROCK1) signaling pathway was activated by suspension state in MCF-7 cells instead of MDA-MB-231 cells. In addition, suspension state increased the stemness of breast cancer cells from different aspects. CONCLUSION The study highlighted the emergence of hybrid epithelial/mesenchymal (E/M) state during hematogenous metastasis and the plasticity of CTCs caused by cancer stem cells, further providing novel insights into clinical monitoring of CTCs and therapeutic strategies.
Collapse
Affiliation(s)
- Yonggang Lv
- Mechanobiology and Regenerative Medicine Laboratory, Bioengineering College, Chongqing University, 174 Shazheng Street, Shapingba District, Chongqing, 400044, People's Republic of China.
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Bioengineering College, Chongqing University, Chongqing, 400044, People's Republic of China.
| | - Xiaomei Zhang
- Mechanobiology and Regenerative Medicine Laboratory, Bioengineering College, Chongqing University, 174 Shazheng Street, Shapingba District, Chongqing, 400044, People's Republic of China
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Bioengineering College, Chongqing University, Chongqing, 400044, People's Republic of China
| | - Lini Chen
- Mechanobiology and Regenerative Medicine Laboratory, Bioengineering College, Chongqing University, 174 Shazheng Street, Shapingba District, Chongqing, 400044, People's Republic of China
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Bioengineering College, Chongqing University, Chongqing, 400044, People's Republic of China
| |
Collapse
|
196
|
Wang H, Wu J, Zhang Q, Hao J, Wang Y, Li Z, Niu H, Zhang H, Zhang S. A Modified Method to Isolate Circulating Tumor Cells and Identify by a Panel of Gene Mutations in Lung Cancer. Technol Cancer Res Treat 2021; 20:1533033821995275. [PMID: 34032165 PMCID: PMC8155778 DOI: 10.1177/1533033821995275] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 12/29/2020] [Accepted: 01/27/2021] [Indexed: 01/01/2023] Open
Abstract
The CellSearch system is the only FDA approved and successful used detection technology for circulating tumor cells(CTCs). However, the process for identification of CTCs by CellSearch appear to damage the cells, which may adversely affects subsequent molecular biology assays. We aimed to explore and establish a membrane-preserving method for immunofluorescence identification of CTCs that keeping the isolated cells intact. 98 patients with lung cancer were enrolled, and the efficacy of clinical detection of CTCs was examined. Based on the CellSearch principle, we optimized an anti-EpCAM antibody and improved cell membrane rupture. A 5 ml peripheral blood sample was used to enrich CTCs with EpCAM immunomagnetic beads. Fluorescence signals were amplified with secondary antibodies against anti-EpCAM antibody attached on immunomagnetic beads. After identifying CTCs, single CTCs were isolated by micromanipulation. To confirm CTCs, genomic DNA was extracted and amplified at the single cell level to sequence 72 target genes of lung cancer and analyze the mutation copy number variations (CNVs) and gene mutations. A goat anti-mouse polyclonal antibody conjugated with Dylight 488 was selected to stain tumor cells. We identified CTCs based on EpCAM+ and CD45+ cells to exclude white blood cells. In the 98 lung cancer patients, the detection rate of CTCs (≥1 CTC) per 5 ml blood was 87.76%, the number of detections was 1-36, and the median was 2. By sequencing 72 lung cancer-associated genes, we found a high level of CNVs and gene mutations characteristic of tumor cells. We established a new CTCs staining scheme that significantly improves the detection rate and allows further analysis of CTCs characteristics at the genetic level.
Collapse
Affiliation(s)
- Helin Wang
- Department of Oncology, The First Affiliated Hospital of Xinxiang
Medical University, Henan, China
| | - Jieqing Wu
- Department of Oncology, The First Affiliated Hospital of Xinxiang
Medical University, Henan, China
| | - Qi Zhang
- Department of Oncology, Beijing Chaoyang Huanxing Cancer Hospital,
Beijing, China
| | - Jianqing Hao
- Department of Respiratory Medicine, Qingyang People’s Hospital,
Gansu, China
| | - Ying Wang
- Department of Oncology, The First Affiliated Hospital of Xinxiang
Medical University, Henan, China
| | - Zhuoran Li
- Department of Oncology, The First Affiliated Hospital of Xinxiang
Medical University, Henan, China
| | - Hongrui Niu
- Department of Oncology, The First Affiliated Hospital of Xinxiang
Medical University, Henan, China
| | - Hongtao Zhang
- Department of Central Laboratory, Beijing Chest Hospital, Capital
Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute,
Beijing, China
| | - Shucai Zhang
- Department of Oncology, Beijing Chest Hospital, Capital Medical
University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing,
China
| |
Collapse
|
197
|
Coban B, Bergonzini C, Zweemer AJM, Danen EHJ. Metastasis: crosstalk between tissue mechanics and tumour cell plasticity. Br J Cancer 2021; 124:49-57. [PMID: 33204023 PMCID: PMC7782541 DOI: 10.1038/s41416-020-01150-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 10/06/2020] [Accepted: 10/20/2020] [Indexed: 12/12/2022] Open
Abstract
Despite the fact that different genetic programmes drive metastasis of solid tumours, the ultimate outcome is the same: tumour cells are empowered to pass a series of physical hurdles to escape the primary tumour and disseminate to other organs. Epithelial-to-mesenchymal transition (EMT) has been proposed to drive the detachment of individual cells from primary tumour masses and facilitate the subsequent establishment of metastases in distant organs. However, this concept has been challenged by observations from pathologists and from studies in animal models, in which partial and transient acquisition of mesenchymal traits is seen but tumour cells travel collectively rather than as individuals. In this review, we discuss how crosstalk between a hybrid E/M state and variations in the mechanical aspects of the tumour microenvironment can provide tumour cells with the plasticity required for strategies to navigate surrounding tissues en route to dissemination. Targeting such plasticity provides therapeutic opportunities to combat metastasis.
Collapse
Affiliation(s)
- Bircan Coban
- Leiden Academic Center for Drug Research, Leiden University, Leiden, The Netherlands
| | - Cecilia Bergonzini
- Leiden Academic Center for Drug Research, Leiden University, Leiden, The Netherlands
| | - Annelien J M Zweemer
- Leiden Academic Center for Drug Research, Leiden University, Leiden, The Netherlands
| | - Erik H J Danen
- Leiden Academic Center for Drug Research, Leiden University, Leiden, The Netherlands.
| |
Collapse
|
198
|
Peyre L, Meyer M, Hofman P, Roux J. TRAIL receptor-induced features of epithelial-to-mesenchymal transition increase tumour phenotypic heterogeneity: potential cell survival mechanisms. Br J Cancer 2021; 124:91-101. [PMID: 33257838 PMCID: PMC7782794 DOI: 10.1038/s41416-020-01177-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 11/02/2020] [Accepted: 11/03/2020] [Indexed: 02/07/2023] Open
Abstract
The continuing efforts to exploit the death receptor agonists, such as the tumour necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL), for cancer therapy, have largely been impaired by the anti-apoptotic and pro-survival signalling pathways leading to drug resistance. Cell migration, invasion, differentiation, immune evasion and anoikis resistance are plastic processes sharing features of the epithelial-to-mesenchymal transition (EMT) that have been shown to give cancer cells the ability to escape cell death upon cytotoxic treatments. EMT has recently been suggested to drive a heterogeneous cellular environment that appears favourable for tumour progression. Recent studies have highlighted a link between EMT and cell sensitivity to TRAIL, whereas others have highlighted their effects on the induction of EMT. This review aims to explore the molecular mechanisms by which death signals can elicit an increase in response heterogeneity in the metastasis context, and to evaluate the impact of these processes on cell responses to cancer therapeutics.
Collapse
Affiliation(s)
- Ludovic Peyre
- Université Côte d'Azur, CNRS UMR 7284, Inserm U 1081, Institut de Recherche sur le Cancer et le Vieillissement de Nice (IRCAN), Centre Antoine Lacassagne, 06107, Nice, France
| | - Mickael Meyer
- Université Côte d'Azur, CNRS UMR 7284, Inserm U 1081, Institut de Recherche sur le Cancer et le Vieillissement de Nice (IRCAN), Centre Antoine Lacassagne, 06107, Nice, France
| | - Paul Hofman
- Université Côte d'Azur, CNRS UMR 7284, Inserm U 1081, Institut de Recherche sur le Cancer et le Vieillissement de Nice (IRCAN), Centre Antoine Lacassagne, 06107, Nice, France
| | - Jérémie Roux
- Université Côte d'Azur, CNRS UMR 7284, Inserm U 1081, Institut de Recherche sur le Cancer et le Vieillissement de Nice (IRCAN), Centre Antoine Lacassagne, 06107, Nice, France.
| |
Collapse
|
199
|
Ray SK, Mukherjee S. Cell free DNA as an evolving liquid biopsy biomarker for initial diagnosis and therapeutic nursing in Cancer- An evolving aspect in Medical Biotechnology. Curr Pharm Biotechnol 2020; 23:112-122. [PMID: 33308128 DOI: 10.2174/1389201021666201211102710] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/26/2020] [Accepted: 10/20/2020] [Indexed: 11/22/2022]
Abstract
Cell-free DNA (cfDNA) is present in numerous body fluids in addition to initiates generally from blood cells. It is undoubtedly the utmost promising tool among all components of liquid biopsy. Liquid biopsy is a specialized method investigating the nonsolid biological tissue by revealing of circulating cells, cell free DNA etc. that enter body fluids. Since, cancer cells disengage from compact tumors circulate in peripheral blood, evaluating blood of cancer patients holds the opportunities for capture and molecular level analysis of various tumor-derived constituents. Cell free DNA samples can deliver a significant perceptions into oncology, for instance tumor heterogeneity, instantaneous tumor development, response to therapy and treatment, comprising immunotherapy and mechanisms of cancer metastasis. Malignant growth at any phase can outhouse tumor cells in addition to fragments of neoplasticity causing DNA into circulatory system giving noble sign of mutation in the tumor at sampling time. Liquid biopsy distinguishes diverse blood based evolving biomarkers comprising circulating tumor cells (CTCs), circulating tumor DNA (ctDNA) or cfDNA, circulating RNA (cfRNA) and exosomes. Cell free DNA are little DNA fragments found circulating in plasma or serum, just as other fluids present in our body. Cell free DNA involves primarily double stranded nuclear DNA and mitochondrial DNA, present both on a surface level and in the lumen of vesicles. The probable origins of the tumor-inferred portion of cfDNA are apoptosis or tumor necrosis, lysis of CTCs or release of DNA from the tumor cells into circulation. The evolution of innovations, refinement and improvement in therapeutics for determination of cfDNA fragment size and its distribution provide significant information related with pathological conditions of the cell, thus emerging as promising indicator for clinical output in medical biotechnology.
Collapse
Affiliation(s)
| | - Sukhes Mukherjee
- Department of Biochemistry. All India Institute of Medical Sciences. Bhopal, Madhya pradesh-462020. India
| |
Collapse
|
200
|
Church M, Carter L, Blackhall F. Liquid Biopsy in Small Cell Lung Cancer-A Route to Improved Clinical Care? Cells 2020; 9:E2586. [PMID: 33287165 PMCID: PMC7761700 DOI: 10.3390/cells9122586] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/27/2020] [Accepted: 11/30/2020] [Indexed: 01/22/2023] Open
Abstract
Small cell lung cancer (SCLC) has a particularly poor prognosis despite the high initial response to first-line systemic therapy, and there is a well-recognised lack of meaningful treatments beyond the second line. A number of reasons have been put forward to explain this, including a lack of common, easily-druggable genetic mutations in SCLC and rarity of high-quality tissue samples due to late presentation. Liquid biopsies, including circulating tumour cells (CTCs) and circulating tumour DNA (ctDNA) are increasingly used as surrogates for tumour tissue and have the advantage of being easily obtained serially to inform on the biology of disease progression and acquired chemoresistance, and may provide a pathway to improve care in this notoriously refractory disease. Here we discuss the current evidence behind these liquid biopsy methods in SCLC, and how they could be employed in future clinical care.
Collapse
Affiliation(s)
- Matt Church
- Division of Cancer Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester M13 9PL, UK; (M.C.); (L.C.)
| | - Louise Carter
- Division of Cancer Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester M13 9PL, UK; (M.C.); (L.C.)
- The Christie NHS Foundation Trust, Wilmslow Road, Manchester M20 4BX, UK
| | - Fiona Blackhall
- Division of Cancer Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester M13 9PL, UK; (M.C.); (L.C.)
- The Christie NHS Foundation Trust, Wilmslow Road, Manchester M20 4BX, UK
| |
Collapse
|