151
|
Silva CMG, Castro SV, Faustino LR, Rodrigues GQ, Brito IR, Saraiva MVA, Rossetto R, Silva TFP, Campello CC, Figueiredo JR. Moment of addition of LH to the culture medium improves in vitro survival and development of secondary goat pre-antral follicles. Reprod Domest Anim 2010; 46:579-84. [PMID: 20964726 DOI: 10.1111/j.1439-0531.2010.01704.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The present study investigated the effects of time of addition of luteinizing hormone (LH) to culture medium on the in vitro development of caprine pre-antral follicles. Pre-antral follicles (≥ 150 μm) were isolated from fragments of the goat ovarian cortex and individually cultured for 18 days in the absence (control) or presence of 100 ng/ml LH, added on days 0, 6 or 12 of culture. Follicular development was assessed based on antral cavity formation, increased follicular diameter as well as follicular and fully grown oocyte (>110 μm) viability. The results showed that after 18 days of culture, the percentage of surviving follicles in the control treatment was significantly lower when compared to other treatments (p < 0.05). There were no significant differences in antrum formation, follicular diameter and oocyte viability. The addition of LH at D6 of culture significantly increased the rates of oocytes ≥ 110 μm and the resumption of meiosis (p < 0.05). In contrast, when LH was added at the onset of culture, only germinal vesicle oocytes were obtained. In conclusion, the moment of addition of LH to the culture medium affects the performance of in vitro culture of caprine pre-antral follicles. The addition of LH to the medium from day 6 of culture onward improved the rates of follicular survival, as well as the ability of oocytes to resume meiosis. However, prolonged exposure to LH (addition at the onset of culture onward) showed detrimental effects for the meiotic resumption.
Collapse
Affiliation(s)
- C M G Silva
- Laboratory of Manipulation of Oocytes and Pre-antral Follicles (LAMOFOPA), Faculty of Veterinary Medicine, State University of Ceara, Fortaleza, Brazil.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
152
|
Abstract
Regulation of maturation in meiotically competent mammalian oocytes is a complex process involving the carefully coordinated exchange of signals between the somatic and germ cell compartments of the ovarian follicle via paracrine and cell-cell coupling pathways. This review highlights recent advances in our understanding of how such signaling controls both meiotic arrest and gonadotropin-triggered meiotic resumption in competent oocytes and relates them to the historical context. Emphasis will be on rodent systems, where many of these new findings have taken place. A regulatory scheme is then proposed that integrates this information into an overall framework for meiotic regulation that demonstrates the complex interplay between different follicular compartments.
Collapse
Affiliation(s)
- Stephen M Downs
- Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin 53233, USA.
| |
Collapse
|
153
|
Saraiva M, Rossetto R, Brito I, Celestino J, Silva C, Faustino L, Almeida A, Bruno J, Magalhães D, Matos M, Campello C, Figueiredo J. Dynamic Medium Produces Caprine Embryo From Preantral Follicles Grown In Vitro. Reprod Sci 2010; 17:1135-43. [DOI: 10.1177/1933719110379269] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- M.V.A. Saraiva
- Faculty of Veterinary Medicine, LAMOFOPA, PPGCV, State University of Ceara, Fortaleza-CE, Brazil,
| | - R. Rossetto
- Faculty of Veterinary Medicine, LAMOFOPA, PPGCV, State University of Ceara, Fortaleza-CE, Brazil
| | - I.R. Brito
- Faculty of Veterinary Medicine, LAMOFOPA, PPGCV, State University of Ceara, Fortaleza-CE, Brazil
| | - J.J.H. Celestino
- Faculty of Veterinary Medicine, LAMOFOPA, PPGCV, State University of Ceara, Fortaleza-CE, Brazil
| | - C.M.G. Silva
- Faculty of Veterinary Medicine, LAMOFOPA, PPGCV, State University of Ceara, Fortaleza-CE, Brazil
| | - L.R. Faustino
- Faculty of Veterinary Medicine, LAMOFOPA, PPGCV, State University of Ceara, Fortaleza-CE, Brazil
| | - A.P. Almeida
- Faculty of Veterinary Medicine, LAMOFOPA, PPGCV, State University of Ceara, Fortaleza-CE, Brazil
| | - J.B. Bruno
- Faculty of Veterinary Medicine, LAMOFOPA, PPGCV, State University of Ceara, Fortaleza-CE, Brazil
| | - D.M. Magalhães
- Faculty of Veterinary Medicine, LAMOFOPA, PPGCV, State University of Ceara, Fortaleza-CE, Brazil
| | - M.H.T. Matos
- Biotechnology Nucleus of Sobral (NUBIS), Nucleus of Biotechnology Applied to Ovarian Follicle Development Federal University of São Francisco Valley, Petrolina, PE, Brazil
| | - C.C. Campello
- Faculty of Veterinary Medicine, LAMOFOPA, PPGCV, State University of Ceara, Fortaleza-CE, Brazil
| | - J.R. Figueiredo
- Faculty of Veterinary Medicine, LAMOFOPA, PPGCV, State University of Ceara, Fortaleza-CE, Brazil
| |
Collapse
|
154
|
Albuz FK, Sasseville M, Lane M, Armstrong DT, Thompson JG, Gilchrist RB. Simulated physiological oocyte maturation (SPOM): a novel in vitro maturation system that substantially improves embryo yield and pregnancy outcomes. Hum Reprod 2010; 25:2999-3011. [PMID: 20870682 DOI: 10.1093/humrep/deq246] [Citation(s) in RCA: 202] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Oocyte in vitro maturation (IVM) reduces the need for gonadotrophin-induced ovarian hyperstimulation and its associated health risks but the unacceptably low conception/pregnancy rates have limited its clinical uptake. We report the development of a novel in vitro simulated physiological oocyte maturation (SPOM) system. METHODS AND RESULTS Bovine or mouse cumulus-oocyte complexes (COCs) were treated with cAMP modulators for the first 1-2 h in vitro (pre-IVM), increasing COC cAMP levels ∼100-fold. To maintain oocyte cAMP levels and prevent precocious oocyte maturation, COCs were treated during IVM with an oocyte-specific phosphodiesterase inhibitor and simultaneously induced to mature with FSH. Using SPOM, the pre-IVM and IVM treatments synergized to increase bovine COC gap-junctional communication and slow meiotic progression (both P < 0.05 versus control), extending the normal IVM interval by 6 h in bovine and 4 h in mouse. FSH was required to complete maturation and this required epidermal growth factor signalling. These effects on COC had profound consequences for oocyte developmental potential. In serum-free conditions, SPOM increased bovine blastocyst yield (69 versus 27%) and improved blastocyst quality (184 versus 132 blastomeres; both P < 0.05 versus standard IVM). In mice, SPOM increased (all P < 0.05) blastocyst rate (86 versus 55%; SPOM versus control), implantation rate (53 versus 28%), fetal yield (26 versus 8%) and fetal weight (0.9 versus 0.5 g) to levels matching those of in vivo matured oocytes (conventional IVF). CONCLUSIONS SPOM is a new approach to IVM, mimicing some characteristics of oocyte maturation in vivo and substantially improving oocyte developmental outcomes. Adaption of SPOM for clinical application should have significant implications for infertility management and bring important benefits to patients.
Collapse
Affiliation(s)
- F K Albuz
- Research Centre for Reproductive Health, Robinson Institute, University of Adelaide, Adelaide, Australia
| | | | | | | | | | | |
Collapse
|
155
|
Assidi M, Dieleman SJ, Sirard MA. Cumulus cell gene expression following the LH surge in bovine preovulatory follicles: potential early markers of oocyte competence. Reproduction 2010; 140:835-52. [PMID: 20724459 DOI: 10.1530/rep-10-0248] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Cumulus cells (CCs) are essential for oocytes to reach full development competency and become fertilized. Many major functional properties of CCs are triggered by gonadotropins and governed by the oocyte. Consequently, cumulus may reflect oocyte quality and is often used for oocyte selection. The most visible function of CCs is their ability for rapid extracellular matrix expansion after the LH surge. Although unexplained, LH induces the final maturation and improves oocyte quality. To study the LH signaling and gene expression cascade patterns close to the germinal vesicle breakdown, bovine CCs collected at 2 h before and 6 h after the LH surge were hybridized to a custom-made microarray to better understand the LH genomic action and find differentially expressed genes associated with the LH-induced oocyte final maturation. Functional genomic analysis of the 141 overexpressed and 161 underexpressed clones was performed according to their molecular functions, gene networks, and cell compartments. Following real-time PCR validation of our gene lists, some interesting pathways associated with the LH genomic action on CCs and their possible roles in oocyte final maturation, ovulation, and fertilization are discussed. A list of early potential markers of oocyte competency in vivo and in vitro is thereafter suggested. These early biomarkers are a preamble to understand the LH molecular pathways that trigger the final oocyte competence acquisition process in bovine.
Collapse
Affiliation(s)
- Mourad Assidi
- Centre de Recherche en Biologie de la Reproduction, Université Laval, Québec, Québec, G1K 7P4, Canada
| | | | | |
Collapse
|
156
|
Zamah AM, Hsieh M, Chen J, Vigne JL, Rosen MP, Cedars MI, Conti M. Human oocyte maturation is dependent on LH-stimulated accumulation of the epidermal growth factor-like growth factor, amphiregulin. Hum Reprod 2010; 25:2569-78. [PMID: 20719813 DOI: 10.1093/humrep/deq212] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND The LH surge promotes ovulation via activation of multiple signaling networks in the ovarian follicle. Studies in animal models have shown the importance of LH-induced activation of the epidermal growth factor (EGF)signaling network in critical peri-ovulatory events. We investigated the biological significance of regulatory mechanisms mediated by EGF-like growth factors during LH stimulation in humans. METHODS We characterized the EGF signaling network in mature human ovarian follicles using in vivo and in vitro approaches. Amphiregulin (AREG) levels were measured in 119 follicular fluid (FF) samples from IVF/ICSI patients. Biological activity of human FF was assessed using in vitro oocyte maturation, cumulus expansion and cell mitogenic assays. RESULTS AREG is the most abundant EGF-like growth factor accumulating in the FF of mature follicles of hCG-stimulated patients. No AREG was detected before the LH surge or before hCG stimulation of granulosa cells in vitro, demonstrating that the accumulation of AREG requires gonadotrophin stimulation. Epiregulin and betacellulin mRNA were detected in both human mural and cumulus granulosa cells, although at significantly lower levels than AREG. FF from stimulated follicles causes cumulus expansion and oocyte maturation in a reconstitution assay. Immunodepletion of AREG abolishes the ability of FF to stimulate expansion (P < 0.0001) and oocyte maturation (P < 0.05), confirming the biological activity of AREG. Conversely, mitogenic activity of FF remained after depletion of AREG, indicating that other mitogens accumulate in FF. FF from follicles yielding an immature germinal vesicle oocyte or from an oocyte that develops into an aberrant embryo contains lower AREG levels than that from follicles yielding a healthy oocyte (P = 0.008). CONCLUSIONS EGF-like growth factors play a role in critical peri-ovulatory events in humans, and AREG accumulation is a useful marker of gonadotrophin stimulation and oocyte competence.
Collapse
Affiliation(s)
- A M Zamah
- Department of Obstetrics and Gynecology and Reproductive Sciences, Division of Reproductive Endocrinology and Infertility, University of California San Francisco, 2356 Sutter Street, 7th Floor, San Francisco, CA 94115, USA.
| | | | | | | | | | | | | |
Collapse
|
157
|
Tse ACK, Ge W. Spatial localization of EGF family ligands and receptors in the zebrafish ovarian follicle and their expression profiles during folliculogenesis. Gen Comp Endocrinol 2010; 167:397-407. [PMID: 19799903 DOI: 10.1016/j.ygcen.2009.09.012] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2009] [Revised: 09/14/2009] [Accepted: 09/25/2009] [Indexed: 11/18/2022]
Abstract
The roles of epidermal growth factor (EGF) family in the ovary have received increasing attention recently. Despite this, the production sites of EGF family members in the ovarian follicle still remain controversial. Using zebrafish as the model, the present study investigated spatial distribution of several EGF family ligands and receptors in the follicle as well as their temporal expression profiles during folliculogenesis. RT-PCR analysis on the somatic follicle layer and oocyte revealed that all EGF family ligands examined (egf, tgfa, btc and hbegf) were mostly or exclusively expressed in the oocyte. In contrast, their common receptor (egfr) was expressed exclusively in the follicle layer. By comparison, members of activin family showed an opposite pattern of distribution. Activin subunits (inhbaa and inhbb) were both expressed exclusively in the follicle layer whereas activin receptors and follistatin were abundantly present in the oocyte. During folliculogenesis, egf, tgfa and hbegf increased their expression together with egfr in the fast secondary growth phase. The developmental profiles of EGF family during embryogenesis appeared to argue for an important role for EGF family in folliculogenesis rather than embryogenesis as maternal molecules. The present study provided clear evidence for the existence of two paracrine pathways in the follicle, the oocyte-derived EGF family ligands and follicle cell-derived activins, which may mediate oocyte-to-follicle cell and follicle cell-to-oocyte communications, respectively. The functional relationship between these two signaling systems in the follicle is suggested by the observation that all four EGFR ligands examined significantly stimulated activin subunit expression in cultured follicle cells.
Collapse
Affiliation(s)
- Anna Chung-Kwan Tse
- Department of Biology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | | |
Collapse
|
158
|
Nautiyal J, Steel JH, Rosell MM, Nikolopoulou E, Lee K, Demayo FJ, White R, Richards JS, Parker MG. The nuclear receptor cofactor receptor-interacting protein 140 is a positive regulator of amphiregulin expression and cumulus cell-oocyte complex expansion in the mouse ovary. Endocrinology 2010; 151:2923-32. [PMID: 20308529 PMCID: PMC2875814 DOI: 10.1210/en.2010-0081] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The nuclear receptor cofactor receptor-interacting protein 140 (RIP140) is essential for cumulus cell-oocyte complex (COC) expansion, follicular rupture, and oocyte release during ovulation. The expression of many genes necessary for COC expansion is impaired in the absence of RIP140, but the studies herein document that their expression can be restored and COC expansion rescued by treatment with the epidermal growth factor (EGF)-like factor amphiregulin (AREG) both in vitro and in vivo. We demonstrate by several approaches that RIP140 is required for the expression of the EGF-like factors in granulosa cells, but the dependence of genes involved in cumulus expansion, including Ptgs2 Has2, Tnfaip6, and Ptx3, is indirect because they are induced by AREG. Treatment of granulosa cells with forskolin to mimic the effects of LH increases AREG promoter activity in a RIP140-dependent manner that 1) requires an intact cAMP response element in the proximal promoter region of the Areg gene and 2) involves its actions as a coactivator for cAMP response element-binding protein/c-Jun transcription factors. Although human chorionic gonadotropin and AREG coadministration is sufficient to restore ovulation fully in RIP140 heterozygous mice in vivo, both follicular rupture and ovulation remain impaired in the RIP140 null mice. Thus, we conclude that although the level of RIP140 expression in the ovary is a crucial factor required for the transient expression of EGF-like factors necessary for cumulus expansion, it also plays a role in other signaling pathways that induce follicular rupture.
Collapse
Affiliation(s)
- Jaya Nautiyal
- Molecular Endocrinology Laboratory, Institute of Reproductive and Developmental Biology, Imperial College London, Hammersmith Campus, Du Cane Road, London W12 0NN, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
159
|
Ding GL, Chen XJ, Luo Q, Dong MY, Wang N, Huang HF. Attenuated oocyte fertilization and embryo development associated with altered growth factor/signal transduction induced by endometriotic peritoneal fluid. Fertil Steril 2010; 93:2538-44. [DOI: 10.1016/j.fertnstert.2009.11.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2009] [Revised: 11/02/2009] [Accepted: 11/04/2009] [Indexed: 11/29/2022]
|
160
|
Su YQ, Sugiura K, Li Q, Wigglesworth K, Matzuk MM, Eppig JJ. Mouse oocytes enable LH-induced maturation of the cumulus-oocyte complex via promoting EGF receptor-dependent signaling. Mol Endocrinol 2010; 24:1230-9. [PMID: 20382892 DOI: 10.1210/me.2009-0497] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
LH triggers the maturation of the cumulus-oocyte complex (COC), which is followed by ovulation. These ovarian follicular responses to LH are mediated by epidermal growth factor (EGF)-like growth factors produced by granulosa cells and require the participation of oocyte-derived paracrine factors. However, it is not clear how oocytes coordinate with the EGF receptor (EGFR) signaling to achieve COC maturation. The aim of the present study was to test the hypothesis that oocytes promote the expression of EGFR by cumulus cells, thus enabling them to respond to the LH-induced EGF-like peptides. Egfr mRNA and protein expression were dramatically reduced in cumulus cells of mutant mice deficient in the production of the oocyte-derived paracrine factors growth differentiation factor 9 (GDF9) and bone morphogenetic protein 15 (BMP15). Moreover, microsurgical removal of oocytes from wild-type COCs dramatically reduced expression of Egfr mRNA and protein, and these levels were restored by either coculture with oocytes or treatment with recombinant GDF9 or GDF9 plus recombinant BMP15. Blocking Sma- and Mad-related protein (SMAD)2/3 phosphorylation in vitro inhibited Egfr expression in wild-type COCs and in GDF9-treated wild-type cumulus cells, and conditional deletion of Smad2 and Smad3 genes in granulosa cells in vivo resulted in the reduction of Egfr mRNA in cumulus cells. These results indicate that oocytes promote expression of Egfr in cumulus cells, and a SMAD2/3-dependent pathway is involved in this process. At least two oocyte-derived growth factors, GDF9 and BMP15, are required for EGFR expression by cumulus cells.
Collapse
Affiliation(s)
- You-Qiang Su
- The Jackson Laboratory, 600 Main Street, Bar Harbor, Maine 04609, USA
| | | | | | | | | | | |
Collapse
|
161
|
Romero S, Smitz J. Improvement of in vitro culture of mouse cumulus–oocyte complexes using PDE3-inhibitor followed by meiosis induction with epiregulin. Fertil Steril 2010; 93:936-44. [DOI: 10.1016/j.fertnstert.2008.10.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2008] [Revised: 09/25/2008] [Accepted: 10/06/2008] [Indexed: 10/21/2022]
|
162
|
Pezzuto A, Ferrari B, Coppola F, Nardelli GB. LH supplementation in down-regulated women undergoing assisted reproduction with baseline low serum LH levels. Gynecol Endocrinol 2010; 26:118-24. [PMID: 19718561 DOI: 10.3109/09513590903215516] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
AIM The aim of our study is to evaluate the effect of recombinant-human LH supplementation on ovarian response and pregnancy outcome, during ovarian stimulation, in down-regulated women with baseline low serum LH levels undergoing assisted reproductive technology. STUDY DESIGN A prospective randomized study performed with 80 women, with serum LH levels 50.5 IU/l on cycle Day 6 of stimulation. Group-A (40): 14-days after down-regulation with leuprorelin, ovarian stimulation was initiated only with r-FSH 225 IU. Group-B (40): at the same time stimulation was initiated with rFSH 225 IU associated with rLH 75 UI on cycle Day 6 of stimulation. RESULTS Serum-E2 levels on the hCG-day administration were significantly reduced in the Group-A. FF-VEGF levels were higher in Group-A. We did not find significant differences in the number of retrieved oocytes. The quality of oocytes proved to be higher and more significant from a statistical point of view in Group-B. The number of embryos obtained and transferred, the pregnancy rate lower in Group-A. CONCLUSIONS In our study, it was shown that LH supplementation seems to have a beneficial effect on the maturity and fertilizability of oocyte. Lower FF VEGF levels, found in Group B, could be an indication of a lower apoptosis rate in human cumulus cells after administration of LH. We can affirm that LH-supplementation is beneficial in patients who show asignificant serum LH suppression during the receptorial down-regulation
Collapse
Affiliation(s)
- Antonio Pezzuto
- Department of Obstetrics, Gynaecology and Neonatology, University of Parma, Centre for Reproductive Medicine, Parma, Italy.
| | | | | | | |
Collapse
|
163
|
Robker RL, Akison LK, Russell DL. Control of oocyte release by progesterone receptor-regulated gene expression. NUCLEAR RECEPTOR SIGNALING 2009; 7:e012. [PMID: 20087433 PMCID: PMC2807638 DOI: 10.1621/nrs.07012] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2009] [Accepted: 12/16/2009] [Indexed: 01/21/2023]
Abstract
The progesterone receptor (PGR) is a nuclear receptor transcription factor that is essential for female fertility, in part due to its control of oocyte release from the ovary, or ovulation. In all mammals studied to date, ovarian expression of PGR is restricted primarily to granulosa cells of follicles destined to ovulate. Granulosa cell expression of PGR is induced by the pituitary Luteinizing Hormone (LH) surge via mechanisms that are not entirely understood, but which involve activation of Protein Kinase A and modification of Sp1/Sp3 transcription factors on the PGR promoter. Null mutations for PGR or treatment with PGR antagonists block ovulation in all species analyzed, including humans. The cellular mechanisms by which PGR regulates ovulation are currently under investigation, with several downstream pathways having been identified as PGR-regulated and potentially involved in follicular rupture. Interestingly, none of these PGR-regulated genes has been demonstrated to be a direct transcriptional target of PGR. Rather, in ovarian granulosa cells, PGR may act as an inducible coregulator for constitutively bound Sp1/Sp3 transcription factors, which are key regulators for a discrete cohort of ovulatory genes.
Collapse
Affiliation(s)
- Rebecca L Robker
- The Robinson Institute, School of Paediatrics and Reproductive Health, University of Adelaide, SA, Australia.
| | | | | |
Collapse
|
164
|
Reizel Y, Elbaz J, Dekel N. Sustained activity of the EGF receptor is an absolute requisite for LH-induced oocyte maturation and cumulus expansion. Mol Endocrinol 2009; 24:402-11. [PMID: 20009084 DOI: 10.1210/me.2009-0267] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Mammalian reproduction depends on the release of a mature oocyte from the ovarian follicle. Maturation of the oocyte and rupture of the follicle wall constitute part of the responses to the preovulatory surge of LH, which also include cumulus expansion and granulosa cell luteinization. It was previously shown that the epidermal growth factor receptor (EGFR) mediates the ovulatory response to LH in the ovarian follicle. We hypothesized that it is a sustained activity of the EGFR that generates oocyte maturation and cumulus expansion. We demonstrated that, whereas a transient exposure of rat isolated, intact, preovulatory follicles to either LH or forskolin was sufficient to induce oocyte maturation and cumulus expansion, these LH-induced responses were only generated upon a prolonged activity of the EGFR. In addition, the continuous activity of the EGFR is essential for the chronic phosphorylation of the ERK1/2 downstream signaling molecules, which were shown to be essential for oocyte maturation and cumulus expansion. Interestingly, EGFR-sustained activity was also necessary to maintain the up-regulation of Ptgs2, a gene essential for cumulus expansion. The unusual prolonged duration of ERK1/2 activity may possibly be attributed to the late induction of the ERK-specific phosphatase 3, demonstrated herein. These new data shed light on the unique characteristics of EGFR-ERK1/2 activity in the ovarian follicle and emphasize the fact that the ovulatory process involves a nonclassical activation of this pathway.
Collapse
Affiliation(s)
- Yitzhak Reizel
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | |
Collapse
|
165
|
Mito T, Yoshioka K, Nagano M, Suzuki C, Yamashita S, Hoshi H. Transforming growth factor-α in a defined medium during in vitro maturation of porcine oocytes improves their developmental competence and intracellular ultrastructure. Theriogenology 2009; 72:841-50. [DOI: 10.1016/j.theriogenology.2009.06.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2009] [Revised: 05/28/2009] [Accepted: 06/03/2009] [Indexed: 11/26/2022]
|
166
|
Procházka R, Nemcová L, Nagyová E, Scsuková S, Mlynarcíková A. Development of functional LH Receptors on pig cumulus-oocyte complexes cultured in vitro by a novel two-step culture system. Mol Reprod Dev 2009; 76:751-61. [PMID: 19382213 DOI: 10.1002/mrd.21039] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
We show in the present study that freshly isolated pig cumulus-oocyte complexes (COCs) display a limited response to LH, as assessed by the expression of hyaluronan synthase 2 (Has2) mRNA, activation of protein kinase A (PKA), production of hyaluronic acid (HA) and progesterone, cumulus cell expansion and resumption of meiosis. These data indicate that freshly isolated COCs do not possess a sufficient number of functional LH receptors (LHR). However, the expression of Lhr significantly increased during the culture of COCs in vitro in a medium supplemented with FSH. Assuming that the effect of FSH on LHR induction is mediated via cAMP signaling pathways, we developed a new culture system, in which the COCs were pre-cultured for 72 hr in a medium supplemented with dbcAMP. The pre-cultured COCs remained in the germinal vesicle stage, their cumulus investment underwent a dramatic increase in size and gap junctions between the cumulus cells were preserved. The stimulation of such COCs with either FSH or LH led to the resumption and completion of meiosis, activation of PKA, expression of Has2, synthesis of large amounts of HA and progesterone, and extensive expansion of cumulus cells. We conclude that the formation of functional LHR is stimulated in cumulus cells during the culture in vitro in a cAMP-dependent pathway. The dbcAMP-treated COCs thus represent a new model in which the resumption of meiosis and cumulus expansion can be induced exclusively by the action of recombinant LH.
Collapse
Affiliation(s)
- Radek Procházka
- Academy of Sciences of the Czech Republic, Institute of Animal Physiology and Genetics, Libechov, Czech Republic.
| | | | | | | | | |
Collapse
|
167
|
Caixeta ES, Ripamonte P, Franco MM, Junior JB, Dode MAN. Effect of follicle size on mRNA expression in cumulus cells and oocytes of Bos indicus: an approach to identify marker genes for developmental competence. Reprod Fertil Dev 2009; 21:655-64. [PMID: 19486602 DOI: 10.1071/rd08201] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2008] [Accepted: 03/08/2009] [Indexed: 12/31/2022] Open
Abstract
To identify the genes related to oocyte competence, we quantified transcripts for candidate genes in oocytes (H1Foo, H2A, H3A, GHR, GDF9, BMP15, OOSP1) and cumulus cells (FSHR, EGFR, GHR, PTX3, IGFII) using the follicle size model to select oocytes of better developmental quality. Follicles were dissected and distributed into four groups according to diameter as follows: 1.0-3.0, 3.1-6.0, 6.1-8.0 and >or=8.1 mm. Cumulus-oocyte complexes (COCs) were released, classified morphologically, matured, fertilised and cultured in vitro or denuded for measurement of diameter and determination of gene expression. Denuded germinal vesicle oocytes and their cumulus cells were used for gene expression analysis by reverse transcription-polymerase chain reaction. The blastocyst rate was highest for oocytes recovered from follicles>6 mm in diameter. In the oocyte, expression of the H2A transcript only increased gradually according to follicle size, being greater (P<0.05) in oocytes from follicles>or=8.1 mm in diameter than in oocytes from follicles<6.0 mm in diameter. In cumulus cells, expression of FSHR, EGFR and GHR mRNA increased with follicular size. In conclusion, we confirmed the importance of H2A for developmental competence and identified important genes in cumulus cells that may be associated with oocyte competence.
Collapse
Affiliation(s)
- Ester Siqueira Caixeta
- Faculdade de Agronomia e Veterinária, Ciências Animais, Universidade de Brasília, Brasília, DF 70910-970, Brazil
| | | | | | | | | |
Collapse
|
168
|
Li F, Curry TE. Regulation and function of tissue inhibitor of metalloproteinase (TIMP) 1 and TIMP3 in periovulatory rat granulosa cells. Endocrinology 2009; 150:3903-12. [PMID: 19389837 PMCID: PMC2717866 DOI: 10.1210/en.2008-1141] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In the ovary, the matrix metalloproteinases (MMPs) and the tissue inhibitors of metalloproteinase (TIMPs) have been postulated to regulate extracellular matrix remodeling associated with ovulation. In the present study, we investigated the regulatory mechanisms controlling expression of Timp1 and Timp3 mRNA in periovulatory granulosa cells. Granulosa cells were isolated from immature pregnant mare serum gonadotropin-primed (10 IU) rat ovaries and treated with human chorionic gonadotropin (hCG; 1 IU/ml). At 4 h after hCG treatment, Timp1 expression was highest and then decreased gradually over the remaining 24 h of culture. In contrast, hCG induced a biphasic increase of Timp3 expression at 2 and 16 h. The hCG stimulated expression of Timp1 and Timp3 mRNA was blocked by inhibitors of the protein kinase A (H89), protein kinase C (GF109203), and MAPK (SB2035850) pathways. To further explore Timp1 and Timp3 regulation, cells were cultured with the progesterone receptor antagonist RU486, which blocked the hCG induction of Timp3 expression, whereas the epidermal growth factor receptor tyrosine kinase inhibitor AG1478 blocked the hCG stimulation of both Timp1 and Timp3 expression. The prostaglandin-endoperoxide synthase 2 inhibitor NS-398 had no effect. The potential function of TIMP3 was investigated with Timp3-specific small interfering RNA treatment. Timp3 small interfering RNA resulted in a 20% decrease in hCG-induced progesterone levels and microarray analysis revealed an increase in cytochrome P450 Cyp 17, ubiquitin conjugating enzyme E2T, and heat shock protein 70. IGF binding protein 5, stearyl-CoA desaturase, and annexin A1 were decreased. The differential regulation between Timp1 and Timp3 may correlate with their unique roles in the processes of ovulation and luteinization. For TIMP3, this may include regulating fatty acid synthesis, steroidogenesis, and protein turnover.
Collapse
Affiliation(s)
- Feixue Li
- Department of Obstetrics and Gynecology, Chandler Medical Center, University of Kentucky, Lexington, Kentucky 40536-0298, USA
| | | |
Collapse
|
169
|
Deng J, Carbajal L, Evaul K, Rasar M, Jamnongjit M, Hammes SR. Nongenomic steroid-triggered oocyte maturation: of mice and frogs. Steroids 2009; 74:595-601. [PMID: 19071151 PMCID: PMC2702721 DOI: 10.1016/j.steroids.2008.11.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2008] [Revised: 11/13/2008] [Accepted: 11/14/2008] [Indexed: 11/18/2022]
Abstract
Luteinizing hormone (LH) mediates many important processes in ovarian follicles, including cumulus cell expansion, changes in gap junction expression and activity, sterol and steroid production, and the release of paracrine signaling molecules. All of these functions work together to trigger oocyte maturation (meiotic progression) and subsequent ovulation. Many laboratories are interested in better understanding both the extra-oocyte follicular processes that trigger oocyte maturation, as well as the intra-oocyte molecules and signals that regulate meiosis. Multiple model systems have been used to study LH-effects in the ovary, including fish, frogs, mice, rats, pigs, and primates. Here we provide a brief summary of oocyte maturation, focusing primarily on steroid-triggered meiotic progression in frogs and mice. Furthermore, we present new studies that implicate classical steroid receptors rather than alternative non-classical membrane steroid receptors as the primary regulators of steroid-mediated oocyte maturation in both of these model systems.
Collapse
Affiliation(s)
- James Deng
- Departments of Internal Medicine and Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Liliana Carbajal
- Departments of Internal Medicine and Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Kristen Evaul
- Departments of Internal Medicine and Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Melissa Rasar
- Departments of Internal Medicine and Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Michelle Jamnongjit
- Departments of Internal Medicine and Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Stephen R Hammes
- Departments of Internal Medicine and Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
170
|
Zhang M, Ouyang H, Xia G. The signal pathway of gonadotrophins-induced mammalian oocyte meiotic resumption. Mol Hum Reprod 2009; 15:399-409. [PMID: 19443606 DOI: 10.1093/molehr/gap031] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Fully grown mammalian oocytes are arrested at the first meiotic prophase until a surge of gonadotrophin at the mid-cycle. The actions of gonadotrophins, follicle stimulating hormone (FSH) and luteinizing hormone (LH), on oocyte meiotic resumption are believed to be mediated in large part through increasing the production of cyclic adenosine 3',5'-monophosphate and subsequent activation of mitogen-activated protein kinase (MAPK) in its surrounding cumulus granulosa cells. Recent findings indicate that gonadotrophins-induced epidermal growth factor-like growth factors, meiosis activating sterol and gonadal steroid hormones, possibly via protein kinase A II and protein kinase C pathways, are involved in the activation of MAPK. Another second messenger cyclic guanosine 3',5'-monophosphate induced by nitric oxide or natriuretic peptides system mediates the function of gonadotrophins during oocyte meiotic resumption. FSH and LH induced pathways may either directly overlap or each hormone may utilize redundant pathways in oocyte maturation. A detailed appreciation of different FSH and LH-activated signaling pathways in mammalian oocytes will be needed in understanding their actions in follicular development and oocyte maturation.
Collapse
Affiliation(s)
- Meijia Zhang
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, P.R. China
| | | | | |
Collapse
|
171
|
Akaki Y, Yoshioka K, Noguchi M, Hoshi H, Funahashi H. Successful piglet production in a chemically defined system for in-vitro production of porcine embryos: dibutyryl cyclic amp and epidermal growth factor-family peptides support in-vitro maturation of oocytes in the absence of gonadotropins. J Reprod Dev 2009; 55:446-53. [PMID: 19444007 DOI: 10.1262/jrd.20219] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To induce meiotic resumption of porcine oocytes, it is thought to be necessary to expose the cumulus-oocyte complexes (COCs) to gonadotropins during in-vitro maturation (IVM). However, the detailed mechanism of meiotic resumption by gonadotropins is still unknown, and successful piglet production has not been reported by using oocytes matured in gonadotropin-free media and fertilized in vitro. The present study was undertaken to examine the combinational effects of epidermal growth factor (EGF)-family members and dibutyryl cyclic AMP (cAMP) in a chemically defined medium on IVM of porcine oocytes and the developmental competence following in vitro fertilization (IVF). The basic IVM medium was a chemically defined medium, modified porcine oocyte medium (mPOM). Supplementation of the IVM medium with 10 or 1000 ng/ml EGF, amphiregulin and betacellulin during the whole IVM period, except for 10 ng/ml amphiregulin, increased the percentage of oocytes maturing to the metaphase-II stage. When COCs were exposed to both dibutyryl cAMP and EGF-family members during the first 20-h of IVM and then culture was continued in the absence of EGF-family members and dibutyryl cAMP, the incidence of metaphase-II oocytes was significantly increased and was not different from that of oocytes cultured in a standard IVM system with gonadotropins. The developmental competence of the oocytes to the blastocyst stage following IVF was no different from that of control oocytes matured with gonadotropins. When these blastocysts were transferred into the uterine horn of three recipients, all of gilts became pregnant and delivered a total of 11 piglets. These observations indicate that supplementation of a chemically defined maturation medium with EGF-family members and dibutyryl cAMP during the first 20 h of IVM can support well the meiotic progress and developmental competence of porcine oocytes.
Collapse
Affiliation(s)
- Yuka Akaki
- Department of Animal Science, Okayama University, Okayama, Japan
| | | | | | | | | |
Collapse
|
172
|
Effect of Follicle Size and Follicle-Stimulating Hormone on Ovulation Induction and Embryo Recovery in the Mare. J Equine Vet Sci 2009. [DOI: 10.1016/j.jevs.2009.02.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
173
|
Romero S, Smitz J. Epiregulin can effectively mature isolated cumulus-oocyte complexes, but fails as a substitute for the hCG/epidermal growth factor stimulus on cultured follicles. Reproduction 2009; 137:997-1005. [PMID: 19321658 DOI: 10.1530/rep-08-0523] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Epiregulin mediates LH ovulatory effects in vitro. This study evaluated the use of epiregulin as an alternative to hCG/epidermal growth factor (EGF) stimulus upon cultured ovarian follicles in contrast to isolated cumulus-oocyte complexes (COCs). Pre-antral mouse ovarian follicles were cultured for 12 days and final maturation was induced by administration of 0.65 nM EGF or 100 nM epiregulin without or with 1.2 IU/ml hCG. Results showed that both EGF or epiregulin as sole stimulators are poor inducers of mucification/expansion of cumulus cells and oocyte meiotic reinitiation in follicle-enclosed COCs (25+/-17 and 22+/-16% GVBD respectively; versus 97+/-4 and 90+/-15% GVBD by control hCG/EGF and hCG/epiregulin respectively; mean+/-S.D). Furthermore, EGF or epiregulin did not induce follicle luteinisation: progesterone production was marginally increased and oestradiol was incompletely shut down. Supposing that the sub-normal progesterone secretion was a potential cause for incomplete meiosis in this model, effectiveness of progesterone supplementation and addition of a progesterone receptor inhibitor (RU486) were evaluated on meiotic resumption. Progesterone was not found to be a major regulator of meiosis in this mouse model. Epiregulin induced meiosis more effectively in COCs isolated from cultured preovulatory follicles in a secondary culture well. In conclusion, epiregulin has similar effects as EGF upon fully grown follicles. Used as a sole stimulator of periovulatory events in intact cultured follicles, both are poor inducers of follicle luteinisation and oocyte maturation. By contrast, epiregulin is as efficient as hCG/EGF, when used as meiotic stimulator for COCs isolated from the follicular environment (mural granulosa and theca cells; and conditioned medium).
Collapse
Affiliation(s)
- Sergio Romero
- Follicle Biology Laboratory (FOBI), Vrije Universiteit Brussel (VUB), UZ Brussel, Brussels, Belgium.
| | | |
Collapse
|
174
|
Ovarian Cancer and Genetic Susceptibility: Association of A61G Polymorphism in the EGF Gene. Exp Biol Med (Maywood) 2009; 234:241-5. [DOI: 10.3181/0805-rm-146] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Growth factors play an essential role in regulating cellular proliferation, and lack of control is characteristic of malignant development. The epidermal growth factor ( EGF) gene codifies a growth factor that binds to the EGF receptor (EGFR), which is involved in activating pathways that promote cellular proliferation, survival, migration and differentiation. The purpose of this study was to appraise the association between EGF gene A61G polymorphism with ovarian cancer susceptibility. A total of 564 DNA samples were analysed from 175 women with ovarian cancer and 389 women without cancer, through PCR-RFLP. We found a decreased risk for developing ovarian cancer in GG carriers compared to AA carriers (OR = 0.46, CI = 0.25–0.83, P = 0.010). The seemingly protective role in GG carriers was observed in women under 53 years of age (OR = 0.38, CI = 0.16–0.86, P = 0.011) and in patients diagnosed with advanced stage disease (OR = 0.38, CI = 0.18–0.81, P = 0.012). Allelic comparison evidenced similar results, with decreased risk for G allele. We further observed a linear trend for G allele in cancer risk. Moreover, we analysed the influence of genotypes in the time to onset of the disease and observed that GG carriers had ovarian cancer later than AA carriers ( P = 0.035). We hypothesize that this polymorphism confers protection for ovarian cancer development.
Collapse
|
175
|
Hsieh M, Zamah AM, Conti M. Epidermal growth factor-like growth factors in the follicular fluid: role in oocyte development and maturation. Semin Reprod Med 2009; 27:52-61. [PMID: 19197805 DOI: 10.1055/s-0028-1108010] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The growth and maturation of the ovarian follicle requires the coordinate function of somatic cells and the oocyte. Over the past three decades, numerous growth factors involved in the bidirectional signals between the somatic and germ cells have been identified. A possible function of epidermal growth factor (EGF) signaling at selected stages of follicle maturation had been proposed early on and is supported by many observations of in vitro effects of this growth factor on steroidogenesis, oocyte maturation, and cumulus expansion. However, attempts to link EGF levels in the follicular fluid with the state of follicle and oocyte maturation have been inconclusive. More recently, data generated using mouse genetic models perturbing ovulation and fertility indicate that EGF-like growth factors, rather than EGF itself, accumulate in the follicle at the time of ovulation. EGF-like growth factor mRNA is regulated by the luteinizing hormone surge, and corresponding proteins are detected in the follicle. The EGF-like growth factors amphiregulin, epiregulin, and betacellulin are potent stimulators of oocyte maturation and cumulus expansion, and perturbation of this EGF network in vivo impairs ovulation. Similar findings in species other than the mouse confirm an important physiological role for this network at the time of ovulation. Whether this network also plays a critical role in humans and whether it can be used as a biological marker of follicle development or for the improvement of fertility remains to be determined. This review summarizes the most recent findings on the EGF network during ovulation and the potential clinical applications of manipulating this intercellular communication pathway in the control of fertility.
Collapse
Affiliation(s)
- Minnie Hsieh
- Department of Obstetrics, Gynecology and Reproductive Sciences, Center for Reproductive Sciences, University of California, San Francisco, California 94143-0556, USA
| | | | | |
Collapse
|
176
|
Williams SA, Stanley P. Oocyte-specific deletion of complex and hybrid N-glycans leads to defects in preovulatory follicle and cumulus mass development. Reproduction 2009; 137:321-31. [PMID: 19028923 PMCID: PMC2788604 DOI: 10.1530/rep-07-0469] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Complex and hybrid N-glycans generated by N-acetylglucosaminyltransferase I (GlcNAcT-I), encoded by Mgat1, affect the functions of glycoproteins. We have previously shown that females with oocyte-specific deletion of a floxed Mgat1 gene using a zona pellucida protein 3 (ZP3)Cre transgene produce fewer pups primarily due to a reduction in ovulation rate. Here, we show that the ovulation rate of mutant females is decreased due to aberrant development of preovulatory follicles. After a superovulatory regime of 48 h pregnant mare's serum (PMSG) and 9 h human chorionic gonadotropin (hCG), mutant ovaries weighed less and contained approximately 60% fewer preovulatory follicles and more atretic and abnormal follicles than controls. Unlike controls, a proportion of mutant follicles underwent premature luteinization. In addition, mutant preovulatory oocytes exhibited gross abnormalities with approximately 36% being blebbed or zona-free. While 97% of wild-type oocytes had a perivitelline space at the preovulatory stage, approximately 54% of mutant oocytes did not. The cumulus mass surrounding mutant oocytes was also smaller with a decreased number of proliferating cells compared with controls, although hyaluronan around mutant oocytes was similar to controls. In addition, cumulus cells surrounding mutant eggs were resistant to removal by either hyaluronidase or incubation with capacitated sperm. Therefore, the absence of complex and hybrid N-glycans on oocyte glycoproteins leads to abnormal folliculogenesis resulting in a decreased ovulation rate.
Collapse
Affiliation(s)
| | - Pamela Stanley
- Department of Cell Biology, Albert Einstein College of Medicine, New York, NY-10461, U.S.A
| |
Collapse
|
177
|
Sayasith K, Bouchard N, Doré M, Sirois J. Regulation of bovine tumor necrosis factor-alpha-induced protein 6 in ovarian follicles during the ovulatory process and promoter activation in granulosa cells. Endocrinology 2008; 149:6213-25. [PMID: 18687781 DOI: 10.1210/en.2008-0459] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
To study the regulation of bovine TNFalpha-induced protein 6 (TNFAIP6) prior to ovulation, preovulatory follicles obtained after the treatment with human chorionic gonadotropin (hCG) were used. RT-PCR analyses showed that levels of TNFAIP6 mRNA were low before hCG but significantly increased after hCG treatment in follicles. Further analyses and immunohistochemistry indicated that this increase in transcript and protein levels occurred in theca and granulosa cells. To investigate molecular mechanisms involved in TNFAIP6 transactivation, the activity of bovine TNFAIP6 promoter was studied in granulosa cell cultures. Mutant studies identified the minimal region conferring full-length promoter activity, in which activator protein-1 (AP1) and cAMP response element (CRE) elements were required for promoter activity. Overexpression of dominant-negative AP1 and activating transcription factor/cAMP response element-binding protein (CREB) inhibited forskolin-inducible promoter activity. DNA binding assays demonstrated the importance of AP1 and CRE for activity and identified JunD, FosB, Fra2, CREB1, and CREB2 as being part of the AP1 complex, and FosB, Fra2, and CREB1 for the CRE complex. Chromatin immunoprecipitation assays confirmed binding of these proteins with endogenous TNFAIP6 promoter. Treatment with forskolin, prostaglandin E2, and catalytic subunit protein kinase (cPKA) stimulated, but H89, PKA inhibitor peptide, and indomethacin inhibited, TNFAIP6 promoter activity and gene expression in granulosa cells. Collectively, this study is the first to describe that the ovulatory process in cows is associated with a gonadotropin-dependent induction of TNFAIP6 in ovarian follicles and provide the molecular basis through which AP1 and CRE sites and PKA activation played important roles in the regulation of TNFAIP6 in granulosa cells.
Collapse
Affiliation(s)
- Khampoune Sayasith
- Centre de Recherche en Reproduction Animale and the Département de Biomédecine Vétérinaire, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, Québec, Canada J2S 7C6.
| | | | | | | |
Collapse
|
178
|
Andric N, Ascoli M. The luteinizing hormone receptor-activated extracellularly regulated kinase-1/2 cascade stimulates epiregulin release from granulosa cells. Endocrinology 2008; 149:5549-56. [PMID: 18653716 PMCID: PMC2584583 DOI: 10.1210/en.2008-0618] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We examine the pathways involved in the luteinizing hormone receptor (LHR)-dependent activation of the epidermal growth factor (EGF) network using cocultures of LHR-positive granulosa cells and LHR-negative test cells expressing an EGF receptor (EGFR)-green fluorescent protein fusion protein. Activation of the LHR in granulosa cells results in the release of EGF-like growth factors that are detected by measuring the phosphorylation of the EGFR-green fluorescent protein expressed only in the LHR-negative test cells. Using neutralizing antibodies and real-time PCR, we identified epiregulin as the main EGF-like growth factor produced upon activation of the LHR expressed in immature rat granulosa cells, and we show that exclusive inhibition or activation of the ERK1/2 cascade in granulosa cells prevents or enhances epiregulin release, respectively, with little or no effect on epiregulin expression. These results show that the LHR-stimulated ERK1/2 pathway stimulates epiregulin release.
Collapse
Affiliation(s)
- Nebojsa Andric
- Department of Pharmacology, Carver College of Medicine, The University of Iowa, Iowa City, Iowa 52242, USA
| | | |
Collapse
|
179
|
Tse ACK, Ge W. Differential regulation of betacellulin and heparin-binding EGF-like growth factor in cultured zebrafish ovarian follicle cells by EGF family ligands. Comp Biochem Physiol A Mol Integr Physiol 2008; 153:13-7. [PMID: 19000772 DOI: 10.1016/j.cbpa.2008.10.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2008] [Revised: 10/13/2008] [Accepted: 10/14/2008] [Indexed: 11/25/2022]
Abstract
Recently the roles of epidermal growth factor (EGF) family ligands in vertebrate ovaries have received increasing attention, including betacellulin (BTC), amphiregulin (AR), heparin-binding EGF-like growth factor (HB-EGF), transforming growth factor alpha (TGFalpha), epiregulin, and EGF itself. In the zebrafish (Danio rerio), four members of EGF family have been identified by either molecular cloning or genome sequencing, which are EGF, TGFalpha, BTC, and HB-EGF. Although they are mostly expressed in the oocytes in the ovary, the present study demonstrated the expression of all the four EGF family ligands (egf, btc, tgfa, and hbegf) in cultured zebrafish follicle cells albeit at very low levels. Treatment of the cultured follicle cells with EGF, BTC, and HB-EGF demonstrated differential effects of these ligands on the expression of themselves. While the expression of egf was rather non-responsive to EGF, BTC, and HB-EGF, the expression of btc was consistently down-regulated by all the three molecules. In contrast, hbegf increased its expression in response to these molecules. These results suggest that there is an EGF signaling network in the zebrafish ovarian follicle, and the functionality of this network is self-regulated by its own members.
Collapse
Affiliation(s)
- Anna Chung-Kwan Tse
- Department of Biology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | | |
Collapse
|
180
|
Evaul K, Hammes SR. Cross-talk between G protein-coupled and epidermal growth factor receptors regulates gonadotropin-mediated steroidogenesis in Leydig cells. J Biol Chem 2008; 283:27525-27533. [PMID: 18701461 DOI: 10.1074/jbc.m803867200] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Gonadal steroid production is stimulated by gonadotropin binding to G protein-coupled receptors (GPCRs). Although GPCR-mediated increases in intracellular cAMP are known regulators of steroidogenesis, the roles of other signaling pathways in mediating steroid production are not well characterized. Recent studies suggest that luteinizing hormone (LH) receptor activation leads to trans-activation of epidermal growth factor (EGF) receptors in the testes and ovary. This pathway is critical for LH-induced steroid production in ovarian follicles, probably through matrix metalloproteinase (MMP)-mediated release of EGF receptor (EGFR) binding ectodomains. Here we examined LH and EGF receptor cross-talk in testicular steroidogenesis using mouse MLTC-1 Leydig cells. We demonstrated that, similar to the ovary, trans-activation of the EGF receptor was critical for gonadotropin-induced steroid production in Leydig cells. LH-induced increases in cAMP and cAMP-dependent protein kinase (PKA) activity mediated trans-activation of the EGF receptor and subsequent mitogen-activated protein kinase (MAPK) activation, ultimately leading to StAR phosphorylation and mitochondrial translocation. Steroidogenesis in Leydig cells was unaffected by MMP inhibitors, suggesting that cAMP and PKA trans-activated EGF receptors in an intracellular fashion. Interestingly, although cAMP was always needed for steroidogenesis, the EGFR/MAPK pathway was activated and necessary only for early (30-60 min), but not late (120 min or more), LH-induced steroidogenesis in vitro. In contrast, 36-h EGF receptor inhibition in vivo significantly reduced serum testosterone levels in male mice, demonstrating the physiologic importance of this cross-talk. These results suggest that GPCR-EGF receptor cross-talk is a conserved regulator of gonadotropin-induced steroidogenesis in the gonads, although the mechanisms of EGF receptor trans-activation may vary.
Collapse
Affiliation(s)
- Kristen Evaul
- Departments of Internal Medicine and Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Stephen R Hammes
- Departments of Internal Medicine and Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas 75390.
| |
Collapse
|
181
|
Motola S, Cao X, Popliker M, Tsafriri A. Involvement of mitogen-activated protein kinase (MAPK) pathway in LH- and meiosis-activating sterol (MAS)-induced maturation in rat and mouse oocytes. Mol Reprod Dev 2008; 75:1533-41. [DOI: 10.1002/mrd.20899] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
182
|
Schneider MR, Wolf E. The epidermal growth factor receptor and its ligands in female reproduction: Insights from rodent models. Cytokine Growth Factor Rev 2008; 19:173-81. [DOI: 10.1016/j.cytogfr.2008.01.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
183
|
Andric N, Ascoli M. Mutations of the lutropin/choriogonadotropin receptor that do not activate the phosphoinositide cascade allow hCG to induce aromatase expression in immature rat granulosa cells. Mol Cell Endocrinol 2008; 285:62-72. [PMID: 18313839 PMCID: PMC2288781 DOI: 10.1016/j.mce.2008.01.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2007] [Revised: 01/16/2008] [Accepted: 01/23/2008] [Indexed: 11/28/2022]
Abstract
Using primary cultures of immature rat granulosa cells and adenoviral infections we expressed two mutants of the human lutropin receptor (hLHR) that do not activate the phosphoinositide cascade. One mutant (hLFF) has the extracellular domain of the hLHR and the transmembrane and intracellular domains of the hFSHR. The other (hLHR-L457D) has a leucine to aspartate mutation in residue 457 of transmembrane helix 3. When expressed in immature rat granulosa cells the hLHR stimulates cAMP and inositol phosphate accumulation, transactivates the epidermal growth factor receptor (EGFR), elicits a transient increase in Akt phosphorylation, and a sustained increase in ERK1/2 phosphorylation but aromatase expression is not enhanced. When expressed at comparable densities, hLFF and hLHR-L457D support cAMP accumulation and transient Akt phosphorylation but do not support inositol phosphate accumulation, EGFR transactivation or a sustained phosphorylation of ERK1/2. Cells expressing either of these two mutants respond to hCG with increased aromatase expression. We also show that addition of hCG to cells expressing the hLHR antagonizes the effects of hFSH on aromatase expression whereas addition of hCG to cells expressing the hLHR-L457D mutant does not. These results show that activation of the phosphoinositide cascade is upstream of EGFR transactivation and ERK1/2 phosphorylation and that this pathway is a negative regulator of aromatase expression in granulosa cells.
Collapse
Affiliation(s)
- Nebojsa Andric
- Department of Pharmacology, Carver College of Medicine, The University of Iowa, 2-319B BSB, 51 Newton Road, Iowa City, IA 52242, USA
| | | |
Collapse
|
184
|
Amphiregulin is much more abundantly expressed than transforming growth factor-alpha and epidermal growth factor in human follicular fluid obtained from patients undergoing in vitro fertilization-embryo transfer. Fertil Steril 2008; 91:1035-41. [PMID: 18325497 DOI: 10.1016/j.fertnstert.2008.01.014] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2007] [Revised: 01/04/2008] [Accepted: 01/04/2008] [Indexed: 01/05/2023]
Abstract
OBJECTIVE To identify the most important epidermal growth factor (EGF) receptor ligand in the LH or hCG signal pathway in human ovary. DESIGN A retrospective clinical study. SETTING Tertiary university hospital. PATIENT(S) Ninety-eight infertile patients who underwent IVF-embryo transfer. INTERVENTION(S) Sera and follicular fluid were collected at the time of oocyte retrieval. The levels of EGF, transforming growth factor-alpha (TGFalpha), and amphiregulin (AR) were measured in follicular fluid and sera by using ELISA. MAIN OUTCOME MEASURE(S) The relationships between the level of AR and level of hCG, fertilization rate, and embryo quality. RESULT(S) Amphiregulin was abundantly expressed in follicular fluid after hCG stimulation. Although large differences were found between AR and both EGF and TGFalpha in follicular fluid, no significant difference was detected in the levels of the three EGF receptor ligands in sera. The level of AR was inversely correlated with the fertilization rate and hCG level, whereas little significant association was observed between the level of AR and embryo quality. CONCLUSION(S) Amphiregulin was expressed most dominantly among EGF receptor ligands tested and may mediate the hCG signal in human oocyte maturation. Elaborate interaction between AR and hCG may be required for an optimal oocyte maturation.
Collapse
|
185
|
Trichlorfon-induced polyploidy and nondisjunction in mouse oocytes from preantral follicle culture. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2008; 651:114-24. [DOI: 10.1016/j.mrgentox.2007.10.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2007] [Accepted: 10/28/2007] [Indexed: 11/17/2022]
|
186
|
Downs SM, Chen J. EGF-like peptides mediate FSH-induced maturation of cumulus cell-enclosed mouse oocytes. Mol Reprod Dev 2008; 75:105-14. [PMID: 17549700 DOI: 10.1002/mrd.20781] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
This study was carried out to examine the participation of epidermal growth factor (EGF)-like peptides in the induction of germinal vesicle breakdown (GVB) in mouse cumulus cell-enclosed oocytes (CEO). The EGF-like peptide, amphiregulin (AR), dose-dependently stimulated meiotic resumption in CEO, but not denuded oocytes (DO) maintained in meiotic arrest with 300 microM dbcAMP. The EGF receptor (EGFR) kinase inhibitor, AG1478, blocked meiotic resumption induced by FSH and AR in CEO, but had no effect in DO. FSH-induced maturation was also suppressed by antisera to both EGFR and EGF. Maturation occurred with slightly faster kinetics in AR-stimulated CEO when compared to FSH-stimulated CEO. When CEO were maintained in meiotic arrest with a low level of dbcAMP, FSH was initially inhibitory to maturation and later stimulatory; the stimulatory phase was prevented by AG1478, indicating mediation by EGF-like peptides. Pulsing CEO with high levels of dbcAMP also stimulated GVB and could be blocked by AG1478. Treatment of arrested CEO with PKC agonists stimulated maturation and this was prevented with AG1478 as well as antibodies to EGFR. FSH-induced maturation of dbcAMP-arrested CEO was blocked by bisindolylmaleimide I (BIM-I), an inhibitor of PKC, implicating PKC in FSH action. EGF-stimulated CEO failed to resume maturation in the presence of glycerrhetinic acid, a gap junction inhibitor, suggesting transfer of positive signal through the cell-cell coupling pathway. These data support the idea that EGF-like peptides provide a common pathway mediating the meiosis-inducing influence of FSH, cAMP pulsing, and PKC activation in mouse CEO by a gap junction-dependent process.
Collapse
Affiliation(s)
- Stephen M Downs
- Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin, USA.
| | | |
Collapse
|
187
|
Lafky JM, Wilken JA, Baron AT, Maihle NJ. Clinical implications of the ErbB/epidermal growth factor (EGF) receptor family and its ligands in ovarian cancer. Biochim Biophys Acta Rev Cancer 2008; 1785:232-65. [PMID: 18291115 DOI: 10.1016/j.bbcan.2008.01.001] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2007] [Revised: 01/22/2008] [Accepted: 01/23/2008] [Indexed: 01/28/2023]
Abstract
The ERBB or EGF receptor (EGFR) proto-oncogene family, which consists of four structurally-related transmembrane receptors (i.e., EGFR, ErbB2, ErbB3, and ErbB4), plays an etiological role in the molecular pathogenesis of cancer and is a key therapeutic target in many types of cancer, including ovarian cancer. These ErbB/EGF receptor tyrosine kinases play important physiologic roles in cell proliferation, survival, adhesion, motility, invasion, and angiogenesis. It is, therefore, not surprising that gene amplification, genetic mutation, and altered transcription/translation result in aberrant ErbB/EGF receptor expression and/or signal transduction, contributing to the development of malignant transformation. Clinically, the diagnostic, prognostic, and theragnostic significance of any single ErbB receptor and/or ErbB ligand is controversial, but generally, ErbB receptor overexpression has been correlated with poor prognosis and decreased therapeutic responsiveness in ovarian cancer patients. Thus, anticancer agents targeting ErbB/EGF receptors hold great promise for personalized cancer treatment. Yet, challenges remain in designing prospective clinical trials to assess the clinical utility of ErbB receptors and their ligands to diagnose cancer; to predict progression-free and overall survival, therapeutic responsiveness, and disease recurrence; and to monitor treatment responsiveness. Here, we review the tissue expression and serum biomarker studies that have evaluated the diagnostic, prognostic, and theragnostic utility of ErbB/EGF receptors, their circulating soluble isoforms (sEGFR/sErbBs), and their cognate ligands in ovarian cancer patients.
Collapse
Affiliation(s)
- Jacqueline M Lafky
- Department of Experimental Pathology, Mayo Clinic, Rochester, MN 55905, USA
| | | | | | | |
Collapse
|
188
|
Motola S, Popliker M, Tsafriri A. Response of follicle cells to ovulatory stimuli within the follicle and in primary culture. Mol Cell Endocrinol 2008; 282:26-31. [PMID: 18096309 DOI: 10.1016/j.mce.2007.11.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Cultures of mural granulosa cells (mGCs) and cumulus oocyte complexes (COCs) were employed to investigate various aspects of follicle cell function and response to gonadotropins. Yet, such studies do not reveal the intricate cell-to-cell interactions in the whole follicle. Here we compare the ovulatory responses to LH/hCG or epiregulin (ER) of rat preovulatory follicles and of mGC and COC whether they were stimulated within the follicle or in primary cell cultures. The expression of TSG-6 and COX-2 mRNA varied according to the culture system and mode of stimulation. In primary cultures stimulated with LH or ER resulted in their lower expression as compared to stimulation of follicles. LH/hCG stimulated higher follicular and mGC AR, ER and EGFR mRNA levels than in primary mGC cultures. COCs stimulated by LH/hCG in vivo responded with AR, ER and EGFR mRNA expression, but not in culture where only EGFR mRNA was stimulated. The differences in gene expression of mGCs and COCs when stimulated within their intact follicle or in primary cultures revealed here underscore the important role of cell-cell interactions in follicle physiology. Therefore, results obtained in primary mGC cultures need careful validation in models reproducing such in situ interactions for revealing mGC activity within the intact follicle.
Collapse
Affiliation(s)
- S Motola
- The Bernhard Zondek Hormone Research Laboratory, Department of Biological Regulation, The Weizmann Institute of Science, Rehovot, Israel
| | | | | |
Collapse
|
189
|
Panigone S, Hsieh M, Fu M, Persani L, Conti M. Luteinizing hormone signaling in preovulatory follicles involves early activation of the epidermal growth factor receptor pathway. Mol Endocrinol 2008; 22:924-36. [PMID: 18187604 DOI: 10.1210/me.2007-0246] [Citation(s) in RCA: 161] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
LH activates a cascade of signaling events that are propagated throughout the ovarian preovulatory follicle to promote ovulation of a mature egg. Critical to LH-induced ovulation is the induction of epidermal growth factor (EGF)-like growth factors and transactivation of EGF receptor (EGFR) signaling. Because the timing of this transactivation has not been well characterized, we investigated the dynamics of LH regulation of the EGF network in cultured follicles. Preovulatory follicles were cultured with or without recombinant LH and/or specific inhibitors. EGFR and MAPK phosphorylation were examined by immunoprecipitation and Western blot analyses. By semiquantitative RT-PCR, increases in amphiregulin and epiregulin mRNAs were detected 30 min after recombinant LH stimulation of follicles and were maximal after 2 h. LH-induced EGFR phosphorylation also increased after 30 min and reached a maximum at 2 h. EGFR activation precedes oocyte maturation and is cAMP dependent, because forskolin similarly activated EGFR. LH-induced EGFR phosphorylation was sensitive to AG1478, an EGFR kinase inhibitor, and to inhibitors of matrix metalloproteases GM6001 and TNFalpha protease inhibitor-1 (TAPI-1), suggesting the involvement of EGF-like growth factor shedding. LH- but not amphiregulin-induced oocyte maturation and EGFR phosphorylation were sensitive to protein synthesis inhibition. When granulosa cells were cultured with a combination of neutralizing antibodies against amphiregulin, epiregulin, and betacellulin, EGFR phosphorylation and MAPK activation were inhibited. In cultured follicles, LH-induced MAPK activation was partially inhibited by AG1478 and GM6001, indicating that this pathway is regulated in part by the EGF network but also involves additional pathways. Thus, complex mechanisms are involved in the rapid amplification and propagation of the LH signal within preovulatory follicles and include the early activation of the EGF network.
Collapse
Affiliation(s)
- Sara Panigone
- Division of Reproductive Biology, Department of Obstetrics and Gynecology, Stanford, University School of Medicine, Stanford, California 94305, USA
| | | | | | | | | |
Collapse
|
190
|
Shiraishi K, Ascoli M. A co-culture system reveals the involvement of intercellular pathways as mediators of the lutropin receptor (LHR)-stimulated ERK1/2 phosphorylation in Leydig cells. Exp Cell Res 2008; 314:25-37. [PMID: 17727840 PMCID: PMC2180420 DOI: 10.1016/j.yexcr.2007.06.025] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2007] [Revised: 06/22/2007] [Accepted: 06/22/2007] [Indexed: 10/23/2022]
Abstract
Co-cultures of lutropin receptor (LHR) positive and negative Leydig cells were used to test the hypothesis that the LHR provokes phosphorylation of the extracellular regulated kinases (ERK1/2) using intracellular and intercellular pathways. Addition of hCG to MA-10 cells (LHR positive) stimulates phosphorylation of the EGF receptor (EGFR) and ERK1/2 whereas addition of hCG to I-10 cells (LHR negative) does not. Addition of hCG to co-cultures of MA-10 and I-10 cells rapidly stimulates the phosphorylation of the EGFR and ERK1/2 in I-10 cells, however. Transfection of interfering constructs shows that the LHR-mediated activation of Fyn in MA-10 cells is necessary for the phosphorylation of the EGFR and ERK1/2 in I-10 cells. This pathway can also be demonstrated in MA-10 cells but the phosphorylation of ERK1/2 in MA-10 cells also involves a second pathway mediated by protein kinase A (PKA). We propose that the LHR-mediated stimulation of the ERK1/2 cascade in Leydig cells depends on two independent pathways. One is intracellular and is mediated by PKA. The second is mediated by Fyn and it involves the release of soluble factors that act to phosphorylate the EGFR in an autocrine/paracrine fashion.
Collapse
Affiliation(s)
- Koji Shiraishi
- Department of Pharmacology, Carver College of Medicine, The University of Iowa, Iowa City, IA 52242, USA
| | | |
Collapse
|
191
|
Gratao AA, Dahlhoff M, Sinowatz F, Wolf E, Schneider MR. Betacellulin Overexpression in the Mouse Ovary Leads to MAPK3/MAPK1 Hyperactivation and Reduces Litter Size by Impairing Fertilization1. Biol Reprod 2008; 78:43-52. [PMID: 17914071 DOI: 10.1095/biolreprod.107.062588] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
The epidermal growth factor receptor (EGFR) and its ligands are emerging as key molecules in regulating female reproduction. Here, we used a transgenic mouse model to evaluate whether and at which level of the reproduction cascade higher-than-normal levels of the EGFR ligand betacellulin (BTC) in the reproductive organs affect fertility. Western blots and immunohistochemistry revealed increased BTC levels in uterus and ovaries from transgenic females, particularly evident in granulosa cells of antral follicles. Onset of puberty, estrous cyclicity, and the anatomy and histology of reproductive organs at puberty were not altered as compared to control females. Fertility tests revealed a reduction (~50%) in litter size as the major reproductive deficit of transgenic females. Embryo implantation was delayed in transgenic females, but this was not the reason for the reduced litter size. Transgenic females produced a normal number of oocytes after natural ovulation. The in vivo fertilization rate was significantly reduced in untreated transgenic females but returned to normal levels after superovulation. Impaired oocyte fertilization in the absence of superovulation treatment was associated with MAPK3/MAPK1 hyperactivation in BTC transgenic ovaries, whereas similar levels of MAPK3/MAPK1 activation were detected in transgenic and control ovaries after superovulation treatment. Thus, tight regulation of MAPK3/MAPK1 activity appears to be essential for appropriate granulosa cell function during oocyte maturation. Our study identified hitherto unknown effects of BTC overabundance in reproduction and suggests BTC as a novel candidate protein for the modulation of fertility.
Collapse
Affiliation(s)
- Ana A Gratao
- Institute of Molecular Animal Breeding and Biotechnology and Laboratory for Functional Genome Analysis (LAFUGA), Gene Center of the Ludwig-Maximilians University, 81377, Munich, Germany
| | | | | | | | | |
Collapse
|
192
|
Lindbloom SM, Farmerie TA, Clay CM, Seidel GE, Carnevale EM. Potential involvement of EGF-like growth factors and phosphodiesterases in initiation of equine oocyte maturation. Anim Reprod Sci 2008; 103:187-92. [PMID: 17507186 DOI: 10.1016/j.anireprosci.2007.04.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2006] [Accepted: 04/12/2007] [Indexed: 11/26/2022]
Abstract
Human chorionic gonadotropin (hCG) was administered to mares in estrus with large, dominant ovarian follicles to initiate follicular and oocyte maturation. Follicular contents were collected at 0, 2, 4 and 6 h after hCG. Epiregulin, amphiregulin and phosphodiesterase (PDE) mRNA contents of granulosa cells (PDE 4D) were determined by reverse transcription and real-time PCR; PDE 3A mRNA content of single oocytes was determined similarly. Copy numbers of mRNA did not increase for PDE 3A or 4D over the time interval studied. Amounts of epiregulin and amphiregulin mRNA were correlated (r=0.98) when log transformed. Epiregulin and amphiregulin mRNA increased (P<0.01) from controls by 4 h after hCG administration, with amphiregulin increasing (P<0.01) by 2 h after hCG administration. Epiregulin and amphiregulin mRNA levels remained elevated (P<0.01) at 6h after hCG. These results indicate that EGF-like growth factors are likely paracrine mediators of the LH signal in the horse.
Collapse
Affiliation(s)
- S M Lindbloom
- Animal Reproduction and Biotechnology Laboratory, Colorado State University, Fort Collins, Colorado 80523-1683, USA
| | | | | | | | | |
Collapse
|
193
|
Chen J, Downs SM. AMP-activated protein kinase is involved in hormone-induced mouse oocyte meiotic maturation in vitro. Dev Biol 2008; 313:47-57. [PMID: 18048025 PMCID: PMC3160272 DOI: 10.1016/j.ydbio.2007.09.043] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2007] [Revised: 09/11/2007] [Accepted: 09/21/2007] [Indexed: 11/17/2022]
Abstract
We have previously shown that AMP-activated protein kinase (AMPK) can induce the resumption of meiosis in mouse oocytes maintained in meiotic arrest in vitro. The present study was carried out to determine whether AMPK activation is involved in hormone-induced maturation. Follicle-stimulating hormone (FSH) and the EGF-like peptide, amphiregulin (AR), are potent inducers of maturation in cumulus cell-enclosed oocytes (CEO). Within 3 h of FSH treatment, phospho-acetyl CoA carboxylase (ACC) levels were increased in germinal vesicle (GV)-stage oocytes when compared to non-stimulated controls and remained elevated throughout 9 h of culture, indicating AMPK activation. A similar response to AR was observed after 6 h of culture. Using anti-PT172 antibody (binds only to activated AMPK), Western analysis demonstrated active AMPK in both FSH- or AR-treated GV-stage oocytes within 6 h. The AMPK inhibitors, compound C and adenine 9-beta-d-arabinofuranoside (araA), blocked FSH- or AR-induced meiotic resumption and ACC phosphorylation, further supporting a causal role for AMPK in hormone-induced meiotic resumption. Immunocytochemistry using anti-PT172-AMPK antibody showed an increased diffuse cytoplasmic staining and more intense punctate staining in the germinal vesicles of oocytes following treatment with the AMPK activator 5-aminoimidazole-4-carboxamide-1-beta-d-ribofuranoside (AICAR) or with FSH or AR, and this staining was eliminated by compound C or a blocking peptide for the anti-PT172 antibody. Staining of oocytes from hCG-stimulated mice with the anti-PT172 antibody also showed pronounced label in the germinal vesicles within 1-2 h. Furthermore, in oocytes from all groups, active AMPK was always observed in association with the condensed chromosomes of maturing oocytes. Taken together, these results support a role for AMPK in FSH and AR-induced maturation in vitro and hCG-induced maturation in vivo.
Collapse
Affiliation(s)
- Jing Chen
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53233, USA
| | | |
Collapse
|
194
|
Yamashita Y, Kawashima I, Yanai Y, Nishibori M, Richards JS, Shimada M. Hormone-induced expression of tumor necrosis factor alpha-converting enzyme/A disintegrin and metalloprotease-17 impacts porcine cumulus cell oocyte complex expansion and meiotic maturation via ligand activation of the epidermal growth factor receptor. Endocrinology 2007; 148:6164-75. [PMID: 17901238 DOI: 10.1210/en.2007-0195] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The epidermal growth factor (EGF)-like growth factors, amphiregulin (AREG) and epiregulin (EREG), are expressed in murine cumulus oocyte complexes (COCs) where they impact the function of cumulus cells and oocyte maturation during LH-mediated ovulation. Because TNFalpha-converting enzyme (TACE)/a disintegrin and metalloprotease-17 (ADAM17) is essential for ectodomain shedding of AREG and EREG from the surface of other cell types, the expression and function of TACE/ADAM17 was analyzed in a porcine COC culture system in which FSH- and LH-mediated expansion and oocyte meiotic maturation have been well characterized and shown to occur between 20 and 40 h. In this model, Areg, Ereg, and Tace/Adam17 mRNAs increased significantly with maximal levels observed between 5 and 20 h of culture with FSH plus LH. TACE/ADAM17 protein and protease activity were up-regulated markedly at 10 h and maintained to 40 h. Treatment of COCs with the TACE/ADAM17-selective inhibitor TNFalpha-processing inhibitor-2 (TAPI-2) significantly suppressed in a time-dependent manner downstream targets of EGF receptor activation such as ERK1/2 phosphorylation, Ptgs2, Has2, and Tnfaip6 mRNA expression, hormone-induced COC expansion, and meiotic maturation of the oocytes. Addition of EGF to COCs cultured in the presence of FSH/LH reversed the inhibitory effects of TAPI-2 on these ovulation-related processes. Gonadotropin-induced phosphorylation of ERK1/2 was also inhibited in rat granulosa cells treated with TAPI-2 or after transfection with Tace/Adam17 small interfering RNA. Induced expression of Tnfaip6 mRNA was also reduced by Tace/Adam17 small interfering RNA. Thus, TACE/ADAM17 is induced and the activity is involved in porcine COC expansion as well as oocyte meiotic maturation through the activation of EGF receptor in cumulus cells.
Collapse
Affiliation(s)
- Yasuhisa Yamashita
- Department of Applied Animal Science, Graduate School of Biosphere Science, Hiroshima University, 1-4-4 Kagamiyama, Higashi-Hiroshima, Japan
| | | | | | | | | | | |
Collapse
|
195
|
Abstract
Reproductive aging and assisted reproduction are becoming progressively more relevant in human medicine. Research with human subjects is limited in many aspects, and consequently animal models may have considerable utility. Such models have provided insight into follicular function, oocyte maturation, and reproductive aging. However, models are often selected based on factors other than physiological or functional similarities. Although the mare has received limited attention as a model for reproduction in women, comparisons between these species indicate that the mare has many attributes of a good model. As the mare ages, cyclic and hormonal changes parallel those of older women. The initial sign of reproductive aging in both species is a shortening of the reproductive cycle with elevated concentrations of FSH. Subsequently, cycles become longer with intermittent ovulations and elevated concentrations of FSH and LH. Reproduction ceases with failure of follicular growth and elevated gonadotropins, apparently because of ovarian failure. In the older woman and mare, oocytes have been maintained in meiotic arrest for decades -- approximately four to five for the woman and two to three for the mare; in both species, reduced oocyte quality is the end factor identified in age-associated infertility. After induction of oocyte maturation in vivo, the timeline to ovulation is the same for the mare and woman, suggesting a comparable sequence of events. The mare's anatomy, long follicular phase and single dominant follicle provide a foundation for studies in oocyte and follicular development. The aim of this review is to evaluate the mare as an animal model to study age-associated changes in reproduction and to improve our understanding of oocyte and follicular maturation in vivo.
Collapse
Affiliation(s)
- E M Carnevale
- Department of Biomedical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523-1683, USA.
| |
Collapse
|
196
|
Norris RP, Freudzon L, Freudzon M, Hand AR, Mehlmann LM, Jaffe LA. A G(s)-linked receptor maintains meiotic arrest in mouse oocytes, but luteinizing hormone does not cause meiotic resumption by terminating receptor-G(s) signaling. Dev Biol 2007; 310:240-9. [PMID: 17850783 PMCID: PMC2311505 DOI: 10.1016/j.ydbio.2007.07.017] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2006] [Revised: 07/12/2007] [Accepted: 07/14/2007] [Indexed: 01/19/2023]
Abstract
The maintenance of meiotic prophase arrest in fully grown vertebrate oocytes depends on the activity of a G(s) G-protein that activates adenylyl cyclase and elevates cAMP, and in the mouse oocyte, G(s) is activated by a constitutively active orphan receptor, GPR3. To determine whether the action of luteinizing hormone (LH) on the mouse ovarian follicle causes meiotic resumption by inhibiting GPR3-G(s) signaling, we examined the effect of LH on the localization of Galpha(s). G(s) activation in response to stimulation of an exogenously expressed beta(2)-adrenergic receptor causes Galpha(s) to move from the oocyte plasma membrane into the cytoplasm, whereas G(s) inactivation in response to inhibition of the beta(2)-adrenergic receptor causes Galpha(s) to move back to the plasma membrane. However, LH does not cause a change in Galpha(s) localization, indicating that LH does not act by terminating receptor-G(s) signaling.
Collapse
Affiliation(s)
- Rachael P. Norris
- Department of Cell Biology, University of Connecticut Health Center, Farmington, CT 06032
| | - Leon Freudzon
- Department of Cell Biology, University of Connecticut Health Center, Farmington, CT 06032
| | - Marina Freudzon
- Department of Cell Biology, University of Connecticut Health Center, Farmington, CT 06032
| | - Arthur R. Hand
- Department of Cell Biology, University of Connecticut Health Center, Farmington, CT 06032
- Department of Craniofacial Sciences, University of Connecticut Health Center, Farmington, CT 06032
| | - Lisa M. Mehlmann
- Department of Cell Biology, University of Connecticut Health Center, Farmington, CT 06032
| | - Laurinda A. Jaffe
- Department of Cell Biology, University of Connecticut Health Center, Farmington, CT 06032
| |
Collapse
|
197
|
Tsafriri A, Motola S. Are steroids dispensable for meiotic resumption in mammals? Trends Endocrinol Metab 2007; 18:321-7. [PMID: 17826173 DOI: 10.1016/j.tem.2007.08.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2007] [Accepted: 08/29/2007] [Indexed: 12/28/2022]
Abstract
Meiosis of vertebrate oocytes is a protracted process initiated within differentiated oocytes before the first meiotic arrest of the first meiotic division. Meiosis normally resumes in response to the stimulation of ovulation, proceeding to metaphase of the second meiotic division. In fish and amphibian oocytes, this resumption is triggered by follicular steroids. By contrast, the role of steroids in the resumption of mammalian oocyte maturation is less clear. Specifically, mammalian meiotic maturation proceeds undisturbed even when steroid production is severely suppressed. This puzzling mammalian divergence has been reexamined recently. Here, we review the published data and conclude that steroids are not necessary for the resumption of mammalian meiosis. Nevertheless, steroids are probably involved in follicular growth, somatic-cell differentiation and the acquisition of developmental competence of mature ova.
Collapse
Affiliation(s)
- Alex Tsafriri
- Department of Biological Regulation, The Weizmann Institute of Science, Rehovot 76100, Israel.
| | | |
Collapse
|
198
|
Woods DC, Johnson AL. Protein kinase C activity mediates LH-induced ErbB/Erk signaling in differentiated hen granulosa cells. Reproduction 2007; 133:733-41. [PMID: 17504917 DOI: 10.1530/rep-06-0261] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
While there is accumulating evidence that mitogen-activated protein kinase/Erk and protein kinase C (PKC) signaling inhibits premature differentiation of granulosa cells in hen prehierarchal follicles, it has only recently been established that these signaling pathways play an important facilitory role in promoting steroidogenesis in differentiated granulosa cells from preovulatory follicles. The present studies were conducted with differentiated granulosa cells to establish the ability of LH to initiate PKC activity, and the subsequent requirement for PKC activity in promoting the ErbB/Erk signaling cascade that ultimately facilitates LH-induced progesterone production. Incubation of differentiated granulosa cells with LH increases PKC activity within 15 min, and latently promotes Erk phosphorylation (P-Erk) by 180 min. Inhibition of PKC activity with GF109203X attenuates LH- and 8-bromo-cAMP (8-br-cAMP)-induced P-Erk, but not P-Erk promoted by an epidermal growth factor (EGF) family ligand (e.g., transforming growth factor alpha). Importantly, inhibition of PKC activity also blocks the LH-induced increase in the autocrine expression of mRNA encoding the EGF family ligands, such as EGF, amphiregulin, and betacellulin. Furthermore, inhibition of EGF ligand shedding at the level of the cell membrane using the matrix metalloprotease activity inhibitor, GM6001, prevents both LH- and 8-br-cAMP-induced P-Erk and progesterone production. These findings provide evidence for a facilitory role of PKC and ErbB/Erk signaling in LH-induced progesterone production, place the requirement for PKC activation upstream of ErbB/Erk activity, and demonstrate for the first time in a non-mammalian vertebrate the requirement for PKC activity in LH-induced expression of EGF family ligands in granulosa cells.
Collapse
Affiliation(s)
- Dori C Woods
- Department of Biological Sciences, The University of Notre Dame, PO Box 369, Notre Dame, Indiana 46556, USA
| | | |
Collapse
|
199
|
Wang Y, Li J, Ying Wang C, Yan Kwok AH, Leung FC. Epidermal growth factor (EGF) receptor ligands in the chicken ovary: I. Evidence for heparin-binding EGF-like growth factor (HB-EGF) as a potential oocyte-derived signal to control granulosa cell proliferation and HB-EGF and kit ligand expression. Endocrinology 2007; 148:3426-40. [PMID: 17395697 DOI: 10.1210/en.2006-1383] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
There is increasing evidence that epidermal growth factor (EGF) receptor (EGFR) ligand and Kit ligand (KL) play critical roles in controlling follicular development in mammals. Because little is known about their expressions in the ovary of nonmammalian vertebrate, our study aimed to examine the expression, hormonal regulation, and interaction of HB-EGF and KL in the chicken ovary. Using semiquantitative RT-PCR, we demonstrated that ovarian HB-EGF expression increased dramatically with the posthatching ovarian growth. In line with this finding, HB-EGF was shown to be produced primarily by the growing oocytes and capable of stimulating the proliferation of granulosa cells in prehierarchal (3 mm) and preovulatory follicles (F5 and F1). Although HB-EGF expression is mainly restricted to the oocytes, its expression in cultured granulosa cells could be transiently yet strongly induced by HB-EGF and other EGFR ligands including EGF and TGF-alpha. And the inducing effect of HB-EGF was completely abolished by AG1478 (10 microM) or PD98059 (100 microM), indicating that the action of HB-EGF is mediated by EGFR and intracellular MAPK/ERK signaling pathway. Unlike mammals, only KL-1, not the other three isoforms identified (KL-2, -3, and -4), was detected to be predominantly expressed in the chicken ovary. Interestingly, KL expression in undifferentiated and differentiated granulosa cells could be transiently down-regulated by HB-EGF, implying an intrafollicular communication between growing oocyte and surrounding granulosa cells through the interplay of EGFR ligand and KL. Collectively, our data suggest that HB-EGF is likely a paracrine signal from the oocyte to regulate granulosa cell proliferation and HB-EGF and KL expression during ovarian follicular development.
Collapse
Affiliation(s)
- Yajun Wang
- Department of Zoology, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | | | | | | | | |
Collapse
|
200
|
Ruvolo G, Bosco L, Pane A, Morici G, Cittadini E, Roccheri MC. Lower apoptosis rate in human cumulus cells after administration of recombinant luteinizing hormone to women undergoing ovarian stimulation for in vitro fertilization procedures. Fertil Steril 2007; 87:542-6. [PMID: 17126339 DOI: 10.1016/j.fertnstert.2006.06.059] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2006] [Revised: 06/27/2006] [Accepted: 06/27/2006] [Indexed: 11/30/2022]
Abstract
OBJECTIVE To investigate the effects of recombinant (r-) LH supplementation in "low responder" patients undergoing ovarian stimulation with r-FSH for an IVF program. The apoptosis rate in cumulus cells was used as an indicator of oocyte quality. DESIGN Comparison of the rate of DNA fragmentation and caspase-3 activity in cumulus cells in women stimulated with r-LH and r-FSH, versus patients treated with r-FSH alone (control). SETTING In vitro fertilization (IVF) laboratory. PATIENT(S) Forty patients undergoing assisted fertilization programs treated with a GnRH agonist, or r-FSH treatment begun on day 3 of the cycle (control). In the r-LH group, from day 8 of gonadotropin stimulation, 150 IU per day of r-LH were administered. INTERVENTION(S) Terminal deoxynucleotidyl transferase-mediated digoxigenin-deoxyuridine-triphosphate (dUTP) nick-end labeling (TUNEL) assay, and anti-caspase-3 cleaved immunoassay, to detect apoptosis in human cumulus cells. MAIN OUTCOME MEASURE(S) Difference in DNA fragmentation rate between cumulus cells derived from r-LH treatment and cumulus cells derived from control patients. RESULT(S) No differences were observed between the two groups in the total amount of r-FSH administered and in the number of retrieved oocytes per patient. A statistically significant increase in the number of immature oocytes and in the E(2) serum peak was observed in the control group. The number of transferred embryos was significantly higher in the r-LH group. Pregnancy and implantation rates were higher in the r-LH group, but without statistical significance. The apoptosis rate in cumulus cells was higher in the control group than in the r-LH group. CONCLUSION(S) This study suggests that supplementation with r-LH improves the chromatin quality of cumulus cells involved in the control of oocyte maturation.
Collapse
|